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Quantum and Coulomb Effects in Nano Devices
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Abstract In state of the art devices, it is well known that quantum and Coulomb
effects play significant role on the device operation. In this book chapter we
demonstrate that a novel effective potential approach in conjunction with a Monte
Carlo device simulation scheme can accurately capture the quantum-mechanical
size quantization effects. Inclusion of tunneling within semi-classical simulation
schemes is discussed in details. We also demonstrate, via proper treatment of the
short-range Coulomb interactions, that there will be significant variation in device
design parameters for devices fabricated on the same chip due to the presence of
unintentional dopant atoms at random locations within the channel of alternative
technology devices.

Keywords Nanoscale devices · Quantum confinement · SCHRED · Random
dopants

1 Introduction

As semiconductor devices are being scaled into nanometer dimensions (Fig. 2.1),
significant number of effects start to become important and they can be clas-
sified into quantum and classical reliability effects. In general, there are three
manifestations of quantum effects in nanodevices: (1) quantum-mechanical size
quantization, (2) tunneling and (3) quantum interference. Quantum-mechanical
size quantization effects and gate leakage can be easily incorporated into classi-
cal simulators, but quantum interference effects require fully quantum-mechanical
treatment. In this book chapter we focus on the inclusion of quantum-mechanical
size quantization and tunneling effects into particle-based device simulators. Several
separate book chapters in this book are devoted to quantum transport. In addition
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Fig. 2.1 Intel trend in transistor channel length scaling

Direct Solution of the Schrödinger Equation in Slices
Applies to Drift-Diffusion, Hydrodynamic and Particle-Based Device
Simulators
For MOS Capacitors the best tool is SCHRED (www.nanoHUB.org)
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Fig. 2.2 Inclusion of Quantum Mechanical Space/Size Quantization effects in classical device
simulators

to this, in this book chapter we also address in detail the issue of transistor relia-
bility due to random dopant effects or due to unintentional dopants in alternative
technology devices.

The inclusion of quantum-mechanical size quantization effects in drift-diffusion,
hydrodynamic and particle-based device simulators is schematically illustrated in
Fig. 2.2 and explained in more detail later in the text.

Quantum correction models try to incorporate quantum-mechanical description
of carrier behavior via modification of certain device parameters within the standard
drift-diffusion or hydrodynamic model. For example, the Hansch model [1] modifies
the effective density of states function using,

N∗C = NC[1− exp(−z/LAMBDA)]2 (2.1)

where LAMBDA is a parameter.
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On the other hand, the very popular Van Dort model [2] modifies the intrinsic
carrier concentration by taking into account the effective band-gap increase due
to quantum-mechanical size quantization effects. Namely, the surface potential is
modified according to:

ψQM
s = ψCONV

s + Δε/q + EnΔz, Δz = 〈zQM〉− 〈zCONV〉 (2.2)

The second term on the RHS of the above expression accounts for the band-gap
widening effect because of the upward shift of the lowest allowed state. The third
term accounts for the larger displacement of the carriers from the interface and the
extra band-bending needed for given population that is expressed with

qEnΔz≈ 4
9

Δε (2.3)

The energy shift that appears in the above equation is calculated using the varia-
tional approach of Fang and Howard [3]. With these modifications, one arrives at
the following expression for the effective band-gap

EQM
g = ECONV

g +
13
9

Δε, Δε ≈ β
(

εSi

4qkBT

)1/3

E2/3
⊥ (2.4)

where β is a parameter. The modification in the effective bandgap leads to modifi-
cation of the intrinsic carrier concentration

nQM
i = nCONV

i exp
[
(EQM

g −ECONV
g )/2kBT

]
ni = nCONV

i [1−F(y)]+ F(y)nQM
i (2.5)

where the function F(y) defined with

F(y) = 2exp(−a2)/
[
1 + exp(−2a2)

]
, a = y/yref (2.6)

enables a smooth transition between the intrinsic carrier density in the quantum
region (towards the semiconductor-oxide interface) and the semiclassical region
(towards the bulk portion of the device). The meaning of the various parameters
that appear in the expressions of the Van Dort model is graphically represented in
Fig. 2.3 below.

The quantum moment methods for inclusion of size quantization effects into
drift-diffusion and hydrodynamic simulators are discussed in Sect. 2.1 below.
SCHRED First and Second Generation are discussed in Sect. 2.2. SCHRED First
Generation (or SCHRED V1.0) is a tool developed by Prof. Vasileska from Arizona
State University back in 1992 and it was further developed in 1998 and installed
on PUNCH (in fact, SCHRED was the first tool installed on Purdue University
Network Computational Hub). When the Network for Computational Nanotech-
nology (NCN) was formed, SCHRED V1.0 was immediately transferred on the
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Fig. 2.3 Graphical description of the idea of the Van Dort model

Fig. 2.4 SCHRED usage statistics

nanoHUB portal. In the meantime SCHRED V1.0 went through several revisions
made by Prof. Vasileska and Dr. Zhibin Ren (Currently at IBM T. J. Watson), the
most important being the introduction of quantization of holes using a heavy-hole
and a light-hole band model and calculation of the tunneling current through the
gate oxide. After being installed on PUNCH, and more so after its installment on the
nanoHUB, SCHRED V1.0 gained enormous popularity. In fact, it was not only pop-
ular for educators to help teach students principles of operation of MOS capacitors,
it was also heavily used in research work all around the world and is at the moment
cited in 108 research papers (www.nanoHUB.org). The usage statistic of SCHRED
v1.0 is depicted in Fig. 2.4 and its world-wide usage is illustrated in Fig. 2.5.
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Fig. 2.5 SCHRED worldwide usage

The trend in transistors channel length scaling shown in Fig. 2.1 also requires
oxide thickness reduction to improve the device transconductance and achieve better
control of the charge in the channel with the gate. Since 1 nm oxide have shown to be
very leaky, Intel in its 45 nm technology node already introduced high-k dielectrics,
thus eliminating the gate leakage problem.

However, the gate leakage is still a big issue in Schottky transisors like MESFETs
and HEMTs. The calculation of the gate leakage current in these structures can be
accomplished by the use of either the WKB approximation or the transfer matrix
approach. With regard to the injection between the Schottky gate and the device
channel, it is best handled by using transmission probabilities, which are obtained
as solutions of the Schrödinger equation along paths perpendicular to the semicon-
ductor/metal interface. The potential along these paths is taken from the solution
of the Poisson equation at each self-consistent step of the Monte Carlo procedure.
The transmission probability is calculated using standard Airy function approach
based on the 1 D Schrödinger equation on the propagating path. A transfer matrix
approach is then applied, where the potential is interpolated linearly between the
grid points on which the Poisson equation is solved in the Monte Carlo region. The
unique solution is calculated with the application of the boundary conditions for
the continuity of the wavefunction and its derivative at each grid point. The use of
the Airy functions approach is better than the simple WKB approximation, because
WKB model neglects quantum-mechanical reflections for the thermionic emission
and is typically inaccurate for tunneling near the top of the potential barrier. Direct
solution of the Schrödinger equation, as implemented via the Airy function formal-
ism, also has the advantage of treating on an equal footing both thermionic emission
and field-emission tunneling.
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To compute the current injected by the metal contact, we calculate transmission
coefficient as a ratio of the transmitted and incident probability current densities. At
each iteration step, a table of transmission probabilities is generated for each mesh
location along the contact interface. Then, the injected current density is obtained
by integrating the product between carrier distribution and transmission probability.
In its actual implementation within the Monte Carlo scheme, the transmission prob-
ability is evaluated separately for each particle and a random number technique is
used to decide whether the particle is absorbed or not. Note that a similar version of
the above-described approach has been successfully applied in simulations of Schot-
tky barrier MOSFETs, as described in more detail in [4]. The WKB approximation
and the transfer matrix approach that employs Airy function solutions for piecewise
linear potential barrier are explained in Sect. 3 of this book chapter.

Yet another issue that we discuss in this book chapter in great details is transistor
mismatch due to random number and random position of the impurity atoms in the
active region of the device. These statistical fluctuations of the channel dopant num-
ber were predicted by Keyes [5] as a fundamental physical limitation of MOSFET
down-scaling. Entering into the nanometer regime results in a decreasing number of
channel impurities whose random distribution leads to significant fluctuations of the
threshold voltage and off-state leakage current. These effects are likely to induce se-
rious problems on the operation and performances of logical and analog circuits. It
has been experimentally verified by Mizuno and co-workers [6] that threshold volt-
age fluctuations are mainly caused by random fluctuations of the number of dopant
atoms and that other contributions such as fluctuations of the oxide thickness are
comparably very small. It follows from these remarks that impurities cannot be con-
sidered anymore using the continuum doping model in advanced semiconductor
device modeling but the precise location of each individual impurity within a full
Coulomb interaction picture must be taken into account.

In the past, the effect of discrete dopant random distribution in MOSFET channel
has been assessed by analytical or drift-diffusion (DD) approaches. The first DD
study consisted in using a stochastically fluctuating dopant distribution obeying
Poisson statistics [7]. 3D atomistic simulators have also been developed for study-
ing threshold voltage fluctuations [8, 9]. Even though the DD/HD methods are very
useful because of their simplicity and fast computing times, it is not at all clear
whether such macroscopic simulation schemes can be exploited into the atomistic
regime. In fact, it is not at all clear how such discrete electrons and impurities are
modeled in macroscopic device simulations due to the long-range nature of the
Coulomb potential.

Three-dimensional (3D) Monte Carlo (MC) simulations should provide a more
realistic transport description in ultra-short MOSFETs. The MC procedure gives an
exact solution of the Boltzmann transport equation. Thus it correctly describes the
non-stationary transport conditions. Even where the microscopic simulations such
as the MC method are considered, the treatment of the electrons and impurities is not
straightforward which is again due to the long-range nature of the Coulomb poten-
tial. The incorporation of the long-range Coulomb potential in the MC method has
been a long-standing issue [10,11]. This problem is, in general, avoided by assuming
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that the electrons and the impurities are always screened by the other carriers so that
the long-range part of the Coulomb interaction is effectively suppressed. The com-
plexity of the MC simulation increases as one takes into account more complicated
screening processes by using the dynamical and wave-vector dependent dielectric
function obtained from, for example, the random phase approximation. However,
the screening is a very complicated many-body matter [12].

This situation is also complicated in the MC device simulations in which the
BTE is self-consistently coupled with the Poisson equation [13]. The Coulomb po-
tential due to electrons and impurities is then separated into the long-range and
the short-range parts. The long-range part is taken into account by the solution of
the Poisson equation, whereas the short-range part is usually included in the BTE
through the scattering kernel. In other words, the Coulomb potential is separated into
the long-range and short-range parts by the size of the mesh employed in the Poisson
equation. However, the choice of the mesh size is not trivial. For example, the mesh
cannot be arbitrarily small as the Coulomb potential would then be double-counted
by the Poisson equation and the BTE. Since the long-range part of the Coulomb po-
tential is responsible for the many-body effects, the mesh size has to be determined
consistently with, say, the renormalized electron (kinetic) energy calculated from the
many-body theory [14]. This is of course not an easy task, especially for the case
of small device structures. On the other hand, since the size of localized electrons
in the MC device simulations is roughly given by the size of the mesh, this is not
consistent with the concept of the electron wave packet. The BTE (or equivalently,
the microscopic simulation) assumes that the electrons are localized and described
by the wave packet whose size is comparable to the de Broglie wavelength. How-
ever, the size of the active device region is now comparable with the size of the wave
packet in nanoscale MOSFETs and so it is not clear how the localized electrons in
the channel should be interpreted in such microscopic simulations.

2 Inclusion of Quantum-Mechanical Size Quantization
and Tunneling Effects in Particle-Based Device Simulators

2.1 Quantum-Mechanical Size Quantization Effects
in Conjunction with Device Simulators

Successful scaling of MOSFETs towards shorter channel lengths requires thinner
gate oxides and higher doping levels to achieve high drive currents and minimized
short-channel effects [15, 16]. For these nanometer devices it was demonstrated
a long time ago that, as the oxide thickness is scaled to 10 nm and below, the
total gate capacitance is smaller than the oxide capacitance due to the comparable
values of the oxide and the inversion layer capacitances. As a consequence, the de-
vice transconductance is degraded relative to the expectations of the scaling theory
[17]. The inversion layer capacitance was also identified as being the main cause
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Fig. 2.6 SCHRED simulation data for the shift in the threshold voltage compared to the experi-
mental values provided by van Dort and co-workers [20, 21]

of the second-order thickness dependence of MOSFET’s IV-characteristics [18].
The finite inversion layer thickness was estimated experimentally by Hartstein and
Albert [19]. The high levels of substrate doping, needed in nano-devices to pre-
vent the punch-through effect has lead to quasi-two-dimensional (Q2D) nature of
the carrier transport which is found responsible for the increased threshold voltage
and decreased channel mobility, and a simple analytical model that accounts for this
effect was proposed by van Dort and co-workers [20, 21]. Later on, Vasileska and
Ferry [22] confirmed these findings by investigating the doping dependence of the
threshold voltage in MOS capacitors. The experimental data for the doping depen-
dence of the threshold voltage shift and our simulation results from [22] are shown
in Fig. 2.6.

These results clearly demonstrate the influence of quantum-effects on the oper-
ation of nano-scale MOSFETs in both the off- and the on-state. The two physical
origins of the inversion layer capacitance due to the finite density of states and due to
the finite inversion layer thickness were demonstrated experimentally by Takagi and
Toriumi [23]. A computationally efficient three-subband model that predicts both
the quantum-mechanical effects in the electron inversion layer and the electron dis-
tribution within the inversion layer was proposed and implemented into the PICSEC
simulator [24]. The influence of the image and many-body exchange-correlation ef-
fects on the inversion layer and the total gate capacitance was studied by Vasileska
et al. [25]. It was also pointed out that the depletion of the poly-silicon gates con-
siderably affects the magnitude of the total gate capacitance [26].

The above examples outline the advances during the two decades of research
on the influence of quantum-effects on the operation on nano-devices. The conclu-
sion is that any state-of-the-art device simulator must take into consideration the
quantum-mechanical nature of the carrier transport and the poly-depletion effects
to correctly predict the device off- and on-state behavior. As noted by many of
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these authors, to account for the quantum-mechanical effects, one in principle has to
solve the 2D/3D Schrödinger-Poisson problem in conjunction with an appropriate
transport kernel. (For devices in which velocity overshoot is strongly pronounced,
minimum that one can do is to solve the Boltzmann transport equation using the
Ensemble Monte Carlo (EMC) technique.) Since the exact solution of the 2D/3D
Schrödinger–Poisson problem is time-consuming even with present state-of-the-
art computers, alternative paths have been sought for device simulators that utilize
quantum potentials.

The idea of quantum potentials originates from the hydrodynamic formulation of
quantum mechanics, first introduced by de Broglie and Madelung [27–29], and later
developed by Bohm [30, 31]. In this picture, the wave function is written in com-
plex form in terms of its amplitude R(r,t) and phase ψ(r, t) = R(r,t)exp[iS(r, t)/h̄].
These are then substituted back into the Schrödinger equation to obtain the follow-
ing coupled equations of motion for the density and phase

∂ρ(r,t)
∂ t

+ ∇ ·
(

ρ(r,t)
1
m

∇S(r, t)
)

= 0, (2.7)

−∂S(r,t)
∂ t

= 1
2m [∇S(r,t)]2 +V(r, t)+ Q(ρ ,r, t), (2.8)

where ρ(r, t) = R2(r,t) is the probability density. By identifying the velocity as
1
m ∇S, and the flux as j = ρv, (2.7) becomes the continuity equation. Hence, (2.7)
and (2.8) arising from this so-called Madelung transformation to the Schrödinger
equation have the form of classical hydrodynamic equations with the addition of an
extra potential, often referred to as the quantum or Bohm potential, written as

VQ =− h̄2

2mR
∇2R→− h̄2

2m
√

n
∇2√n (2.9)

where the density n is related to the probability density as n(r, t) = Nρ(r, t) =
NR2(r, t), where N is the total number of particles. The Bohm potential essentially
represents a field through which the particle interacts with itself. It has been used,
for example, in the study of wave packet tunneling through barriers [32], where the
effect of the quantum potential is shown to lower or smoothen barriers, and hence
allow for the particles to leak through.

An alternate form of the quantum potential was proposed by Iafrate, Grubin
and Ferry [33], who derived a form of the quantum potential based on moments
of the Wigner–Boltzmann equation, the kinetic equation describing the time evolu-
tion of the Wigner distribution function [34]. Their form is based on moments of the
Wigner function in the pure state, and involve an expansion of order O(h̄2), which
is given by

VQ =− h̄2

8m
∇2(lnn), (2.10)
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this is sometimes referred to as the Wigner potential, or as the density gradient
correction. Such quantum potentials have been extensively used in density-gradient
and quantum-hydrodynamic methods. Their use in particle-based simulation
schemes becomes questionable due to the presence of statistical noise in the rep-
resentation of the electron density and the considerable difficulty to calculate the
second derivative of the density on a completely unstructured mesh given by the
particle discretization.

To avoid this problem, Ferry and Zhou derived a form for a smooth quantum
potential [35], based on the effective classical partition function of Feynman and
Kleinert [36]. More recently, Gardner and Ringhofer [37] derived a smooth quantum
potential for hydrodynamic modeling, valid to all orders of h̄2, which involves a
smoothing integration of the classical potential over space and temperature. There, it
was shown that close to the equilibrium regime, the influence of the potential on the
ensemble can be replaced by the classical influence of a smoothed non-local barrier
potential. While this effective potential depends non-locally on the density, it does
not directly depend on its derivatives. Through this effective quantum potential, the
influence of the barriers on an electron is felt at quite some distance from the barrier.
The smoothed effective quantum potential has been used successfully in quantum-
hydrodynamic simulations of resonant tunneling effects in one-dimensional double-
barrier structures [38].

In analogy to the smoothed potential representations discussed above for the
quantum hydrodynamic models, it is desirable to define a smooth quantum potential
for use in quantum particle-based simulations. Ferry [40] has suggested an effec-
tive potential scheme that emerges from a wave packet description of the particle
motion, where the extent of the wave packet spread is obtained from the range of
wavevectors in the thermal distribution function (characterized by an electron tem-
perature). The effective potential, Veff, is related to the self-consistent Hartree poten-
tial V , obtained from the Poisson equation, through an integral smoothing relation

Veff(x) =
∫

V (x + y) G(y,a0) dy (2.11)

where G is a Gaussian with standard deviation a0. The effective potential Veff is
then used to calculate the electric field that accelerates the carriers in the transport
kernel of the Monte Carlo particle-based device simulator discussed in [39]. The
calculation of Veff has a fairly low computational cost, but the requirement that the
electric field is updated every 0.01 fs to get physically accurate particle trajectories
and to eliminate the artificial heating of the carriers in the vicinity of the Si/SiO2
interface (where the fields are the strongest), adds to the computational cost. Note
also that within this approach the parameter a0 has to be adjusted in the initial
stages of the simulation via comparisons of the sheet/line density of the Q2D/Q1D
structure being investigated using the effective potential approach and the 1D/2D
Schrödinger–Poisson simulations.

In this book chapter, in addition to the effective potential approach due to
Ferry [40], we present a new form of the effective quantum potential for use in
Monte Carlo device simulators. The proposed approach is based on perturbation
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theory around thermodynamic equilibrium and leads to an effective potential which
depends on the energy and wavevector of each individual electron, thus effectively
lowering step-function barriers for high-energy carriers [41]. The quantum potential
is derived from the idea that the Wigner and the Boltzmann equation with the quan-
tum corrected potential should possess the same steady state. The resultant quantum
potential is in general two-degrees smoother than the original Coulomb and barrier
potentials, i.e. possesses two more classical derivatives which essentially eliminate
the problem of statistical noise. The computation of the quantum potential involves
only the evaluation of pseudo-differential operators and can therefore, be effectively
facilitated using Fast Fourier Transform (FFT) algorithms. The approach is quite
general and can easily be modified to modeling of, for example, triangular quantum
wells. The above-described approach has been used in simulation of 25 nm MOS-
FET device with oxide thickness of 1.2 nm.

2.1.1 Thermodynamic Effective Potential

The basic idea of the thermodynamic approach to effective quantum potentials is
that the resulting semiclassical transport picture should yield the correct thermalized
equilibrium quantum state. Using quantum potentials, one generally replaces the
quantum Liouville equation

∂tρ +
i
h̄
[H,ρ ] = 0 (2.12)

for the density matrix ρ(x,y) by the classical Liouville equation

∂t f +
h̄

2m∗
k ·∇x f − 1

h̄
∇xV ·∇k f = 0, (2.13)

for the classical density function f (x,k). Here, the relation between the density ma-
trix and the density function f is given by the Weyl quantization,

f (x,k) = W [ρ ] =
∫

ρ(x + y/2,x− y/2)exp(ik · y)dy. (2.14)

The thermal equilibrium density matrix in the quantum mechanical setting is
given by ρeq = e−β H , where β = 1/kBT is the inverse energy and the exponential
is understood as a matrix exponential, i.e. ρeq(x,y) = ∑λ ψλ (x)exp(−β λ )ψλ (y)∗
holds with {ψλ} the orthonormal eigensystem of the Hamiltonian H. On the other
hand, in the semiclassical transport picture, the thermodynamic equilibrium density

function feq is given by the Maxwellian feq(x,k) = exp
(
− β h̄2|k|2

2m∗ −βV
)

. Con-

sequently, to obtain the quantum mechanically correct equilibrium states in the
semiclassical Liouville equation with the effective quantum potential V Q, we set

feq(x,k) = exp

(
−β h̄2|k|2

2m∗
−βV Q

)
= W [ρeq]

=
∫

e−β Hρ(x + y/2,x− y/2)exp(ik · y)dy.

(2.15)
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This basic concept was originally introduced by Feynman and Kleinert [36].
Different forms of the effective quantum potential arise from different approaches
to approximate the matrix exponential e−β H .

In the approach presented in this paper, we represent eβ H as the Green’s function
of the semigroup generated by the exponential. Introducing an artificial dimension-
less parameter γ and defining ρ(x,y,γ) = ∑λ ψλ (x)exp(−γβ λ )ψλ (y)∗, we obtain a
heat equation for ρ by differentiating ρ w.r.t. γ and using the eigenfunction property
of the wave functions ψλ . This heat equation is referred to as the Bloch equation

∂γρ =−β
2

(H ·ρ + ρ ·H) , ρ(x,y,γ = 0) = δ (x− y), (2.16)

and ρeq(x,y) is given by ρ(x,y,γ = 1). Under the Weyl quantization this becomes

with the usual Hamiltonian H =− h̄2

2m∗Δx +V and defining the effective energy E by
f = W [ρ ] = e−β E ,

∂γ E =
β h̄2

8m∗
(
ΔxE−β |∇xE|2)+ h̄2|k|2

2m∗

+
1

2(2π)3 ∑
ν=±1

∫
V (x + νy/2)exp[β E(x,k,γ)−β E(x,q,γ)

+iy(k−q)]dqdy,E(x,k,γ = 0) = 0. (2.17)

The effective quantum potential in this formulation is given by E(x,k,γ = 1) =

V Q + h̄2|k|2
2m∗ . The logarithmic Bloch equation is now solved ‘asymptotically’ using

the Born approximation, i.e. by iteratively inverting the highest order differential
operator (the Laplacian). This involves successive solution of a heat equation for
which the Green’s function is well known, giving (see [42] for the details),

V Q(x,k)=
1

(2π)3

∫
2m∗

β h̄2k ·ξ sinh

(
β h̄2k ·ξ

2m∗

)
exp

(
−β h̄2

8m∗
|ξ |2

)
V (y)eiξ ·(x−y)dydξ .

(2.18)

Note that the effective quantum potential V Q now depends on the wave vector k. For
electrons at rest, i.e. for k = 0, the effective potential V Q reduces to the Gaussian
smoothing given in (2.11) and [40]. Also note that there are no fitting parameters in
this approach, i.e. the size of the wavepacket is determined by the particle’s energy.

The potential V (y) that appears in the integral of (2.18) can be represented as
a sum of two potentials: the barrier potential VB(x), which takes into account the
discontinuity at the Si/SiO2 interface due to the difference in the semiconductor
and the oxide affinities and the Hartree potential VH(x) that results from the solution
of the Poisson equation. Note that the barrier potential is 1D and independent of time
and needs to be computed only once in the initialization stage of the code. On the
other hand, the Hartree potential is 2D and time-dependent it describes the evolution
of charge from quasi-equilibrium to a non-equilibrium state. Since the evaluation
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of the effective Hartree potential as given by (2.18), is very time consuming and
CPU intensive, approximate solution methods have been pursued to resolve this
term within a certain level of error tolerance.

We recall from the above discussion that the barrier potential is just a step-
function. Under these circumstances e∇xVB(x) = B(1,0,0)T δ (x1), where B is the
barrier height (in the order of 3.2 eV) and x1 is a vector perpendicular to the
interface. We actually need only the gradient of the potential so that using the
pseudo-differential operators, we compute

∇xV
Q
B (x, p) = exp

[
β h̄2|∇x|2

8m∗

] 2m∗ sin
(

β h̄p·∇x
2m∗

)
β h̄p ·∇x

∇xVB(x). (2.19)

This gives

e∇xV
Q
B (x, p) =

B
2π

(1,0,0)T
∫

exp

[
−β

h̄2 |ξ1|2
8m∗

]
2m∗ sinh

(
β h̄p1·ξ1

2m∗
)

β h̄p1 ·ξ1
eiξ1·x1 dξ1

(2.20)

Note that V Q
B is only a function of (x1, p1), i.e. it remains to be strictly one-

dimensional, where x1 and p1 are the position and the momentum vector perpen-
dicular to the interface. This when combined with the fact that we have to calculate
this integral only once is a reason why we have decided to tabulate the result given
by (2.20) on a mesh.

The Hartree potential, as computed by solving the d-dimensional Poisson equa-
tion depends in general upon d particle coordinates. For example, on a rectangular
mesh the 2D Hartree potential is given by VH(x1,x2, t), and one has to evaluate
V Q

H (x1,x2, p1, p2, t) using (2.18) N times each time step for all particles position and
momenta: xn, pn,n = 1, . . .,N (where N is the number of electrons, which is large).
Of course, this is an impossible task to be accomplished in finite time on present
state-of-the-art computers. We, therefore, suggest the following scheme. According
to (2.18), we evaluate the quantum potential by multiplying the Hartree potential by
a function of h̄∇x, or by multiplying the Fourier transform of the Hartree potential
by a function of h̄ξ . We factor the expression in (2.18) into

V Q
H (x,k) =

2im∗

β h̄2k ·∇x
sinh

(
β h̄2k ·∇x

2im∗

)
exp

(
β h̄2

8m∗
|∇x|2

)
VH(x)

=
2im∗

β h̄2k ·∇x
sinh

(
β h̄2k ·∇x

2im∗

)
V 0

H(x), (2.21)

with

V 0
H(x) = exp

(
β h̄2

8m∗
|∇x|2

)
VH(x). (2.22)
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The evaluation of the potential V 0
H(x), which is a version of the Gaussian smoothed

potential due to Ferry [40]. This is computationally inexpensive since it does not
depend on the wavevector k. On the other hand because of the Gaussian smoothing,
V 0

H(x) will be a smooth function of position, even if the Hartree potential VH(x) is
computed via the Poisson equation where the electron density is given by a particle
discretization. Therefore, the Fourier transform of the potential V 0

H(x) will decay
rapidly as a function of ξ , and it is admissible to use a Taylor expansion for small
values of h̄ξ in the rest of the operator. This gives

2im∗

β h̄2k ·∇x
sin h

(
β h̄2k ·∇x

2im∗

)
≈ 1− β 2h̄4(k ·∇x)2

24(m∗)2 , (2.23)

or

∂xrV
Q
H (xn, pn) = ∂xrV

0
H(xn)− β 2h̄2

24m∗2
2

∑
j,k=1

pn
j pn

k∂x j∂xk∂xrV
0
H(xn), n = 1, . . . ,N

(2.24)

for all particles. This is done simply by numerical differentiation of the sufficiently
smooth grid function V 0

H and interpolation. The evaluation of (2.24) is the price we
have to pay when we compare the computational cost of this approach as opposed to
the Ferry approach [40] which uses simple forward, backward or centered difference
scheme for the calculation of the electric field. However, with this novel effective
potential approach we avoid the use of adjustable parameters.

Example: Quantum Effects in a Conventional 25 nm MOSFET

As a first example to which we apply the Ringhofer’s effective potential approach
we take conventional MOSFET device with 25 nm channel length. The parameters
of the device structure being simulated are as follows: the average channel/substrate
doping is 1019 cm−3, the doping of the source and drain regions is 1019 cm−3,
the junction depth is 30 nm, the oxide thickness is 1.2 nm and the gates are as-
sumed to be metal gates with work-function equal to the semiconductor affinity. The
gate/channel length is 25 nm. First in Fig. 2.7, the carrier confinement within the tri-
angular potential well with and without the inclusion of the quantum-mechanical
size-quantization effects is shown for the bias conditions VG = VD = 1V. From
the results shown in this figure, it is evident that the low-energy electrons are dis-
placed little more than the high-energy electrons; the reason being the fact that the
high-energy electrons tend to behave as classical particles and hence are displaced
relatively less. Also note that there is practically no carrier heating for the case
when the effective potential is used in calculating the driving electric field. The car-
rier displacement from the interface proper is also seen from the results presented in
Fig. 2.8. Notice that there is approximately 2 nm average shift of the electron den-
sity distribution near the source end of the channel when quantization effects are
included in the model.



2 Quantum and Coulomb Effects in Nano Devices 111

Fig. 2.7 Electron localization within the triangular potential barrier for the case when quantization
effects are not included in the model (left panel) and for the case when we include quantum-
mechanical space-quantization effects by using the effective potential approach presented in this
paper (right panel). The potential profile is taken in the middle portion of the channel, not at the
drain end, and because of that some electrons seem to be in regions where they should not, but that
is just an artifact of presenting the results. The triangular potential at the drain end of the channel
is much wider

Fig. 2.8 Electron distribution in the device without (left panel) and with (right panel) the incor-
poration of quantum-mechanical size-quantization effects

Also note that carriers behave more like bulk carriers at the drain end of the
channel and are displaced in the same manner when using both the classical and the
quantum-mechanical model.

The channel length variation of the sheet electron density is shown in Fig. 2.9
for classical, fully-quantum (V Q

H +V Q
B ) and quantum-barrier field (V Q

B ) models [43].
Also compared are the simulation results for the sheet electron density from the
new method with those utilizing the approach due to Ferry [44]. There are several
noteworthy features to be observed in this figure. First, the pinch-off of the sheet
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Fig. 2.9 Variation of the
sheet electron density along
the channel. New-barr
corresponds to the case when
we only include the influence
of the barrier field. New
represents the case when we
include both the barrier and
the Hartree contributions to
the total electric field

Fig. 2.10 Average electron velocity (left panel) and average electron energy (right panel) variation
along the channel

electron density near the drain end of the channel is evident in all models used.
Second, the barrier and the full-effective potential scheme give almost the same
value for the sheet electron density, which suggests that the repulsive barrier field
dominates over the attractive field due to the Hartree potential. Third, the method
due to Ferry leads to significantly lower value for the sheet electron density which
can be improved by choosing lower values of the Gaussian smoothing parameter.

The average electron velocity and the average electron energy are shown in the
left and the right panels of Fig. 2.10, respectively. Comparing the results for the av-
erage carrier energy on the right panel, one can see that the data for the case when
one has not included the effective potential and the case when one has used the
new model for the effective potential agree very well with each other. The slight
increase in the carrier energy in the channel region (which is non-physical) when
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one uses the new effective potential approach is because of the very high value
of the quantum field being present in the vicinity of the Si/SiO2 interface proper.
The situation can be improved by using a sufficiently small time-step (for example
0.01 fs) during Monte Carlo simulation. The approach due to Ferry gives signifi-
cantly lower value for the carrier energy near the source end of the channel which
has been explained to be due to the bandgap widening effect. Also, here we do not
observe the non-physical carrier heating because of the fact that Ferry’s effective
potential is calculated from the mesh potential which depends on both the meshing
and the Gaussian parameter used in the model. The quantum field is calculated from
direct differentiation of the effective mesh-potential and has every possibility of be-
ing underestimated due to the finite size of the meshing used in simulations. It also
is independent on carrier energy (according to the current implementation of the
model). When one confronts these data with the results for the average electron ve-
locity, its east to say that in the low-energy region near the source end of the channel
the velocity is almost the same for all cases considered. At the drain end, one finds
degradation of the velocity due to the smearing introduced by the quantum poten-
tial. Again, the inclusion of the barrier field and of the quantum-corrected Hartree
term give similar values, which suggests that for the device being considered in this
study only the barrier field has significant impact [45].

The device transfer characteristics are shown in the left panel of Fig. 2.11. Again,
it becomes clear that the proposed full quantum potential and the barrier potential
give similar values for the current. Looking more in detail the device transfer char-
acteristics one finds that the quantization effects lead to threshold voltage increase
of about 220 mV. When properly adjusted for the oxide thickness difference, this
result is consistent with previously published data [20]. Evidently, as deduced from
the output characteristics shown in the right panel of Fig. 2.11, the shift in the
threshold voltage leads to a decrease in the on-state current by 30%. The later
observation confirms earlier findings that one must include quantum effects into the
theoretical model to be able to properly predict the device threshold voltage and its
on-state current.
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Fig. 2.11 Device transfer characteristic for VD = 0.1V (left panel). Device output characteristics
for VG = 1.0V (right panel)
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Fig. 2.12 Left panel: Conventional 15 nm MOSFET device output characteristics. Right panel:
Average electron velocity along the channel

Next, the simulation results of a 15 nm conventional n-channel MOSFET device
are discussed. Similar devices have been fabricated by Intel Corporation [46]. The
physical gate length of the device used is 15 nm. The source/drain length equals
15 nm and the junction depth is also 15 nm. The bulk substrate thickness used for
simulations is 45 nm. The height of the fabricated polysilicon gate electrode for
this device is 25 nm. The gate oxide used was SiO2 with physical thickness of only
0.8 nm. The source/drain doping density is 2×1019 cm−3 and the channel doping is
1.5×1019 cm−3. The substrate doping used is 1×1018 cm−3. The simulated device
output characteristics are shown in Fig. 2.12.

There are again several noteworthy features in these results: (1) Quantum-
mechanical size quantization increases the threshold voltage as observed from the
decrease in the slope in the linear region and hence degrades the device transconduc-
tance. (2) Drain current degradation due to the quantum effects is not uniform rather
decreases with the increase in drain bias. The reason may be attributed again to the
fact that the electrons tend to behave as classical particles as average carrier energy
increases with the increase in drain bias, (3) there is a considerable difference be-
tween the barrier-correction and the barrier-Hartree (full) correction which is mainly
due to the use of higher doping density (1.5×1019 cm−3) in the channel region than
was used in the 25 nm MOSFET (1× 1019 cm−3) case. The higher doping density
has a direct impact on the Hartree potential making the triangular channel potential
steeper and hence introducing a pronounced quantum effects. But the overall degra-
dation of the drain current as compared to the 25 nm MOSFET device structure has
reduced in the 15 nm device because of the ballistic nature of the carrier motion in
the latter case. This fact becomes clear if one observes the velocity profile of the
device as depicted in the right panel of Fig. 2.12. What is important in this figure
is that the carriers attain a velocity which is comparable to that in the 25 nm device
structure even with a lesser biases applied i.e. VG = VD = 0.8V. Also, the gate oxide
thickness is lesser in the 10 nm device which means that the gate oxide capacitance
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constitutes the major portion of the total effective gate capacitance thereby reducing
the impact of the quantum capacitance. (4) The discrepancy between the experi-
mental and the simulated results is attributed mainly to two reasons: (a) the series
resistance coming from the finite width of the actual device structure and the con-
tact resistances, and (b) the gate polysilicon depletion effects which as previously
mentioned, can introduce further degradation of the drain current on the order of 10–
30% depending on the doping density and the height of the polysilicon gate used.
The limited data as supplied by the Intel Corporation shows that the polysilicon gate
is of 25 nm height which can indeed contribute to a significant degradation of the
drain current. (5) The use of a commercial simulator like the drift-diffusion based
SILVACO Atlas fails considerably to predict the device behavior mainly because of
the ballistic and quantized nature of the carriers in these nanoscale device structures.

Example: Size-Quantization in Nanoscale SOI Devices

Because of using lightly/nearly undoped channel region, size-quantization effects
in nanoscale fully-depleted SOI devices find a major source in the very physical
nature of the confined region which remains sandwiched between the two oxide lay-
ers. In order to verify the applicability of the quantum potential approach developed
in this work, a single gated SOI device structure will be studied first. Simulations
will be carried out to calculate the threshold voltage as a function of the silicon
film thickness and the results will be compared to other available methods. The
SOI device used here has the following specifications: gate length is 40 nm, the
source/drain length is 50 nm each, the gate oxide thickness is 7 nm with a 2 nm
source/drain overlap, the box oxide thickness is 200 nm, the channel doping is uni-
form at 1×1017 cm−3, the doping of the source/drain regions equals 2×1019 cm−3,
and the gate is assumed to be a metal gate with workfunction equal to the semicon-
ductor affinity. There is a 10 nm spacer region between the gate and the source/drain
contacts. The silicon (SOI) film thickness is varied over a range of 1–10 nm for the
different simulations that were performed to capture the trend in the variations of the
device threshold voltage. Similar experiments were performed in [47, 48] using the
Schrödinger–Poisson solver and Ferry’s effective potential approaches, respectively.
For comparison purposes, threshold voltage is extracted from the channel inversion
density vs. gate bias profile and extrapolating the linear region of the characteris-
tics to a zero value. This method also corresponds well to the linear extrapolation
technique using the drain current-gate voltage characteristics.

The results showing the trend in the threshold voltage variation with respect to
the SOI film thickness are depicted in Fig. 2.13. One can see that Ferry’s effective
potential approach overestimates the threshold voltage for a SOI thickness of 3 nm
due to the use of a rather approximate value for the standard deviation of the Gaus-
sian wave packet which results in a reduced sheet electron density. As the silicon
film thickness decreases, the resulting confining potential becomes more like rect-
angular from a combined effects of both the inversion layer quantization and the
SOI film (physical) quantization, which also emphasizes the need for using a more
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Fig. 2.13 Threshold voltage
variation with SOI film
thickness. SEPE stands for
Schrödinger-Poisson, Ferry
stands for Ferry’s effective
potential approach and New
QP stands for new quantum
potential
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realistic quantum-mechanical wavepacket description for the confined electrons. Of
most importance in this figure is the very fact that the new quantum potential ap-
proach is free from this large discrepancy and can capture the trend in the threshold
voltage as it is obtained from the more accurate 2D Schrödinger-3D Poisson solver.
These results indicate that the new quantum potential method can be applied to the
simulations of SOI devices with a greater accuracy and predictive capability as it
will be seen from the results presented in the next section.

Example: Size-Quantization in Nanoscale DG SOI Devices

Figure 2.14 shows the simulated DG SOI device structure used in this work, which
is similar to the devices reported in [49]. For quantum simulation purposes only the
dotted portion of the device, termed as the intrinsic device is taken into considera-
tions. The device was originally designed in order to achieve the ITRS performance
specifications for the year 2016.

The effective intrinsic device consists of two gate stacks (gate contact and SiO2

gate dielectric) above and below a thin silicon film. For the intrinsic device, the
thickness of the silicon film is 3 nm. Use of a thicker body reduces the series resis-
tance and the effect of process variation but it also degrades the short channel effects
(SCE). From the SCE point of view, a thinner body is preferable but it is harder
to fabricate very thin films of uniform thickness, and the same amount of process
variation (±10%) may give intolerable fluctuations in the device characteristics.
A thickness of 3 nm seems to be a reasonable compromise, but other body thick-
nesses are also examined. The top and bottom gate insulator thickness is 1 nm,
which is expected to be near the scaling limit for SiO2. As for the gate contact,
a metal gate with tunable workfunction, ΦG, is assumed, where ΦG is adjusted to
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Fig. 2.14 DG device
structure being simulated
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4.188 eV to provide a specified off-current value of 4μA/μm. The background dop-
ing of the silicon film is taken to be intrinsic, however due to diffusion of the dopant
ions, the doping profile from the heavily doped S/D extensions to the intrinsic chan-
nel is graded with a coefficient of g which equals to 1 nm/dec. For convenience,
the doping scheme is also shown in Fig. 2.14. According to the roadmap, the high
performance (HP) device should have a gate length of LG = 9nm at the year 2016.
At this scale, two-dimensional (2D) electrostatics and quantum mechanical effects
both play an important role and traditional device simulators may not provide re-
liable projections. The length LT, is an important design parameter in determining
the on-current, while gate metal workfunction ΦG, directly controls the off-current.
The doping gradient g, affects both on-current and off-current. Values of all the
structural parameters of the device are shown in Fig. 2.14 as well.

The intrinsic device is simulated using the new quantum potential approach in
order to gauge the impact of size-quantization effects on the DG SOI performance.
The results are then compared to that from a full quantum approach based on the
non-equilibrium Green’s function (NEGF) formalism (NanoMOS–2.5) developed
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Fig. 2.15 Generic DG SOI device output characteristics

at Purdue University [50]. In this method, scattering inside the intrinsic device is
treated by a simple Büttiker probe model, which gives a phenomenological descrip-
tion of scattering and is easy to implement under the Greens’ function formalism.
The simulated output characteristics are shown in Fig. 2.15. Devices with both 3 and
1 nm channel thickness are used with applied gate bias of 0.4 V. The salient features
of this figure are as follows: (1) Even with an undoped channel region, the devices
achieve a significant improvement with respect to the SCEs as depicted in flatness of
the saturation region. This is due to the use of the two gate electrodes and an ultrathin
SOI film which makes the gates gain more control on the channel charge. (2) Reduc-
ing the channel SOI film thickness to 1 nm further reduces the SCEs and improves
the device performance. However, the reduction in the drive current at higher drain
biases is due to series resistance effect pronounced naturally when the drain current
increases. (3) Regarding the quantum effects, one can see that quantum-mechanical
size quantization does not play a very dominant role in degrading the device drive
current mainly because of use of an undoped channel region. Also, looking at the
3 nm (or 1 nm) case alone one can see that the impact of quantization effects reduces
as the drain voltage increases because of the growing bulk nature of the channel elec-
trons. (4) Percentage reduction in the drain current is more pronounced in 1 nm case
throughout the range of applied drain bias because of the stronger physical confine-
ment arising from the two SiO2 layers sandwiching the silicon film. (5) Finally, the
comparison between the quantum potential formalism and the NEGF approach for
the device with 3 nm SOI film thickness shows reasonable agreement which further
establishes the applicability of this method in the simulations of different techno-
logically viable nanoscale classical and non-classical MOSFET device structures.
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2.2 SCHRED First and Second Generation

Proper inclusion of the quantum-mechanical size quantization effects in device sim-
ulators is achieved by solving the Schrödinger–Poisson–Boltzmann problem. This
approach was discussed in details in [51]. Here we only focus on solving the 1D
Schrödinger–Poisson problem for proper description of charge quantization in MOS
capacitors. This can be achieved with SCHRED First Generation tool that is in-
stalled on the Network for Computational Nanotechnology (www.nanoHUB. org).
However, in the past 2–3 years many users of the existing SCHRED expressed
wishes for increasing the present capabilities of SCHRED tool in terms of making
it capable to study MOS capacitors made of silicon or strained silicon with arbitrary
crystallographic transport directions and to be able to simulate MOS capacitors fab-
ricated of other materials. To satisfy user needs, an effort was undertaken at ASU
and SCHRED Second Generation was developed that has all the required features
that were on the wish list of SCHRED First Generation. The tool was developed
by a M.S. student of Prof. Vasileska at Arizona State University Gokula Kannan. In
what follows, we will first explain the capabilities of the SCHRED First Generation
Tool and then we will describe SCHRED Second Generation Tool in details.

2.2.1 SCHRED First Generation Capabilities

The periodic crystal potential in the bulk of semiconducting materials is such that,
for a given energy in the conduction band, the allowed electron wavevectors trace
out a surface in k-space. In the effective-mass approximation for silicon, these con-
stant energy surfaces can be visualized as six equivalent ellipsoids of revolution
(Fig. 2.16), whose major and minor axes are inversely proportional to the effective
masses. A collection of such ellipsoids for different energies is referred to as a valley.

In this framework, the bulk Hamiltonian for an electron, residing in one of these
valleys is of the form

Ho(R) =−
(

h̄2

2m∗x

∂ 2

∂x2 +
h̄2

2m∗y

∂ 2

∂y2 +
h̄2

2m∗z

∂ 2

∂ z2

)
+Veff (z) = Ho||(r)+ Ho⊥(z),

(2.25)

where R = (r,z), Veff (z) = VH(z)+Vexc(z) is the effective potential energy profile
of the confining potential, VH(z) is the Hartree potential which is nothing more but
a solution of the 1D Poisson equation introduced later in the text, Vexc(z) is the
exchange-correlation potential also discussed later in the text, Ho|| is the parallel
part of Ho, and the transverse part is defined as

Ho⊥(z) =− h̄2

2m∗z

∂ 2

∂ z2 +Veff (z). (2.26)
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Fig. 2.16 Right panel – Potential diagram for inversion of p-type semiconductor. In this first
notation Eij refers to the jth subband from either the Δ2-band (i = 1) or Δ4-band (i = 2). Left panel –
Constant-energy surfaces for the conduction-band of silicon showing six conduction-band valleys
in the <100> direction of momentum space. The band minima, corresponding to the centers of
the ellipsoids, are 85% of the way to the Brillouin-zone boundaries. The long axis of an ellipsoid
corresponds to the longitudinal effective mass of the electrons in silicon, ml = 0.916mo, while the
short axes correspond to the transverse effective mass, mt = 0.190mo. For <100> orientation of the
surface, the Δ2-band has the longitudinal mass (ml ) perpendicular to the semiconductor interface
and the Δ4-band has the transverse mass (mt) perpendicular to the interface. Since larger mass
leads to smaller kinetic term in the Schrödinger equation, the unprimed ladder of subbands (as is
usually called), corresponding to the Δ2-band, has the lowest ground state energy. The degeneracy
of the unprimed ladder of subbands for <100> orientation of the surface is 2. For the same reason,
the ground state of the primed ladder of subbands corresponding to the Δ4-band is higher than
the lowest subband of the unprimed ladder of subbands, The degeneracy of the primed ladder of
subbands for (100) orientation of the interface is 4

The basis-states of the unperturbed Hamiltonian are assumed to be of the form

Ψn(R) =
1√
A

eik·rψn(z), (2.27)

where k is a wavevector in the xy-plane and A is the area of the sample interface.
The subband wavefunctions satisfy the one-dimensional Schrödinger equation,

Ho⊥(z)ψn(z) = εnψn(z) (2.28)

subject to the boundary conditions that ψn(z) are zero for z = 0 and approach zero
as z→ ∞. In (2.28), εn is the subband energy and ψn(z) is the corresponding wave-
function. In the parabolic band approximation, the total energy of the electrons is
given by

En(k) =
h̄2k2

2m∗xy
+ εn = εk + εn, (2.29)
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where εk is the kinetic energy and m∗xy is the density of states mass along the
xy-plane. An accurate description of the charge in the inversion layer of deep-
submicrometer devices and, therefore, the magnitude of the total gate capacitance
Ctot requires a self-consistent solution of the 1D Poisson

∂
∂ z

[
ε(z)

∂φ
∂ z

]
=−e[N+

D (z)−N−A (z)+ p(z)−n(z)], (2.30)

and the 1D Schrödinger equation

[
− h̄2

2m⊥i

∂ 2

∂ z2 +Veff (z)
]

ψij(z) = Eijψij(z). (2.31)

In (2.30) and (2.31), ϕ(z) is the electrostatic potential [the Hartree potential VH(z) =
−eϕ(z)], ε(z) is the spatially dependent dielectric constant, N+

D (z) and N−A (z) are
the ionized donor and acceptor concentrations, n(z) and p(z) are the electron and
hole densities, Veff (z) is the effective potential energy term that equals the sum of
the Hartree and exchange-correlation corrections to the ground state energy of the
system, m⊥i is the effective mass normal to the semiconductor-oxide interface of the
ith valley, and Eij and ψij(z) are the energy level and the corresponding wavefunction
of the electrons residing in the jth subband from the ith valley. The electron-density
is calculated using

n(z) = ∑
i, j

Nijψ2
ij(z) (2.32)

where Nij is the sheet electron concentration in the ith subband from the jth valley
is given by

Nij = gi
m∗xy

π h̄2 kBT ln
{

1 + exp[(EF −Eij)/kBT ]
}

(2.33)

where gi is the valley degeneracy factor and EF is the Fermi energy. When evalu-
ating the exchange-correlation corrections to the chemical potential, we have relied
on the validity of the density functional theory (DFT) of Hohenberg and Kohn [52],
and Kohn and Sham [53]. According to DFT, the effects of exchange and corre-
lation can be included through a one-particle exchange-correlation term Vexc[n(z)],
defined as a functional derivative of the exchange-correlation part of the ground-
state energy of the system with respect to the electron density n(z). In the local
density approximation (LDA), one replaces the functional Vexc[n(z)] with a function
Vexc[n(z)] = μexc[n0 = n(z)], where μexc is the exchange-correlation contribution to
the chemical potential of a homogeneous electron gas of density n0, which is taken
to be equal to the local electron density n(z) of the inhomogeneous system. In our
model, we use the LDA and approximate the exchange-correlation potential energy
term Vexc(z) by an interpolation formula developed by Hedin and Lundqvist [54]

Vexc(z) =− e2

8πεscb

[
1 + 0.7734x ln

(
1 +

1
x

)](
2

παrs

)
, (2.34)
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which is accurate over a large density range. In (2.34), α = (4/9π)1/3, x = x(z) =
rs/21, rs = rs(z) = [4πb3n(z)/3]−1/3, and b = 4πεsch̄2/m∗e2. Exchange and corre-
lation effects tend to lower the total energy of the system and lead to non-uniform
shift of the energy levels and repopulation of the various subbands. The enhance-
ment of the exchange-correlation contribution to the energy predominantly affects
the ground subband of the occupied valley; the unoccupied subbands of the same
valley are essentially unaffected. As a result, noticeable increase in the energy of the
inter-subband transitions can be observed at high electron densities.

Similarly, the valence band is represented by the heavy hole band and light hole
band, the spit-off band is ignored because the spit-off energy is large enough to
exclude any hole staying there. In treating holes quantum mechanically, the same
effective mass based Schrodinger equation is solved with the masses quoted from
references [55, 56]. Due to their different perpendicular masses, the heavy holes
form the first set of energy levels which are relatively low, and the light holes form
the second set with higher confined energies. SCHRED V1.0 also has the capability
of treating the electron/hole density in the inversion layer classically by using either
Maxwell–Boltzmann or Fermi–Dirac statistics.

In doing bulk structure quantum mode simulation, SCHRED V1.0 can not only
solve the effective mass based Schrödinger equation for inversion layer carriers, but
also can solve the equation for accumulation layer carriers, for example, if the bulk
is p-type silicon, in the inversion range, electrons are treated quantum mechanically,
whereas in the accumulation range, holes are treated quantum mechanically. This is
a feature that many other simulators do not offer.

In doing SOI quantum mode simulation, both electrons and holes are treated
quantum mechanically at the same time. This is because in most cases, the SOI
bodies are undoped or lightly doped, and the two dielectric gates confine the carriers
in both inversion and accumulation regimes, therefore, the quantum effects can be
equally important for both electrons and holes at low biases.

For both simulation modes, (classical or quantum mechanical) if the gate con-
tacts are polysilicon, the charge density on the gates will always be computed
classically. The gate dielectric constant can be specified different from SiO2. The
latest version also allows different dielectrics for the top and bottom gates in a
SOI structure. This eases the simulations of effects of exotic insulator materials
on device performance. Typical outputs of the solver are the spatial variations of the
conduction-band edge and 3D charge density in the body; 2D surface charge den-
sity, average distance of the carriers from the interface; inversion layer capacitance
Cinv, depletion layer capacitance Cdepl, total gate capacitance Ctot and in the case
of capacitors with poly-silicon gates, it also calculates the poly-gate capacitance
Cpoly. When choosing quantum-mechanical description of the electron density in
the channel, it also provides the subband energies, the subband population, and the
wavefunction variations in the body.

Schred is written in Fortran 77. The program is more efficient compared to other
1D Schrödinger–Poisson self-consistent simulators. A simplified flow-chart of the
SCHRED V1.0 code is given in Fig. 2.17.
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Fig. 2.17 Flow-chart of Schred V1.0

Examples of the application of SCHRED V1.0 can be found in [57–59] and in
the sub-sections below.

Representative Simulation Results Obtained with SCHRED V1.0

Example 1: Semiclassical Versus Quantum Behavior

A first set of important simulation results that can be obtained with SCHRED V1.0
is the comparison between the semi-classical and quantum-mechanical models and
how that affects the shape of the electron density and the magnitude of the sheet
charge density. For that purpose we simulate an MOS capacitor with oxide thickness
tox = 1nm, substrate doping NA = 1018 cm−3 and applied gate bias of 1 V. The metal
workfunction is assumed to be equal to the semiconductor affinity.

The simulation results for the sheet electron density obtained with SCHRED
V1.0 are: Ns(semi − classical)=1.43 × 1013 cm−2 and Ns(quantum) = 1.08 ×
1013 cm−2. These results indicate that the semiclassically calculated sheet elec-
tron density is about 30% higher than the quantum-mechanically calculated sheet
electron density. There are two reasons for this: (1) the bandgap widening effect
in the case of the quantum-mechanical model due to the shift of the first allowed
state in the conduction band by 200.47 meV, and (2) the charge set-back from the
interface because the wavefunction vanishes right at the interface, which leads to
effective oxide thickness larger than the physical oxide thickness, thus leading to
transconductance degradation. The charge set-back is clearly seen from the results
shown in Fig. 2.18 where we plot the semi-classically calculated total electron den-
sity and the quantum-mechanically calculated total electron density. We see that
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Fig. 2.18 Semiclassical (left panel) and quantum-mechanical (right panel) electron density

Fig. 2.19 Wavefunctions of the unprimed (left) and primed (right) ladder of subbands

the semiclassical charge density peaks at the interface as it is exponentially depen-
dent of the negative of the potential, whereas the quantum-mechanically calculated
electron density is zero at the interface and peaks at few angstroms away from the
interface.

For the case of the quantum-mechanical model we have taken 4 subbands
from the unprimed ladder of subbands and 2 subbands from the primed ladder of
subbands. The spatial variation of the corresponding wavefunctions is shown in
Fig. 2.19. There are several important things that can be observed from the results
shown in Fig. 2.19. First, the shape of the wavefunctions resembles Airy functions
that are solution to the 1D Schrödinger equation with linear potential energy term.
Second, if we compare the first two wavefunctions from both the unprimed and
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Fig. 2.20 Energy levels
values from the unprimed and
primed ladder of subbands

primed latter of subbands, then we see that the unprimed wavefunctions are more
squeezed as the energies are lower and for those energies (see Fig. 2.20) the well
is squeezed, therefore there exists larger localization of the carriers. Third, the first
wavefunction has zero intersections with the x-axis, the second one has one, the
third one has two, etc.

The corresponding energy levels of the unprimed and primed ladder of subbands
are shown in Fig. 2.20. We see that the Fermi-level is above the first subband, there-
fore the semiconductor is degenerate. More importantly, we see that as we go higher
in energy, the well widens and the energy level separation becomes smaller and
smaller.

Example 2: Total Capacitance Degradation for Old and New Technology Nodes

In this second example we examine degradation of the total gate capacitance as
a function of technology node. We consider what we call state of the art de-
vice technology, which is essentially the MOS capacitor discussed in Sect. 2.2.1.
Regarding the older device technology MOS capacitor, its parameters are as follows:
NA = 1016 cm−3 and tox = 40nm. The results of the simulations are presented in
Figs. 2.21 and 2.22. There are several noteworthy features that can be deduced from
the results shown.

For the case of state-of-the-art MOS capacitors, looking at the capacitances
obtained for the case when the electron density is treated classically and quantum-
mechanically, we observe two very important things: (1) there is a threshold voltage
shift due to the quantum-mechanical size-quantization effect, and (2) there is a
significant degradation of the total gate capacitance when using the quantum charge
model that effectively degrades the device transconductance. The total capacitance
degradation can be explained by examining the results for the average distance of the
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Fig. 2.21 Left panel – Total gate capacitance vs. gate voltage for state of the art device technology.
Right panel – Average distance of the carriers from the interface

Fig. 2.22 Left panel – Total gate capacitance vs. gate voltage for older device technology. Right
panel – Average distance of the carriers from the interface

electrons from the interface (Fig. 2.21 – Right panel). We see that classically carriers
are about three times closer to the semiconductor/oxide interface when compared to
the quantum case. The average distance in a way is a measure of the effective ox-
ide thickness and quantum charge model leads to larger effective oxide thickness;
therefore smaller transconductance.

For the case of older technology devices, looking at the results for the total gate
capacitance shown in the left panel of Fig. 2.22, we might safely say that quantum
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effects are not important as the total capacitance degradation is negligible. This
can be attributed to the lower energy levels due to the wider well because of two
orders of magnitude lower doping. As the well is wider, the average distance of
the electrons from the interface is larger but that does not lead to transconductance
degradation because the oxide thickness is 40 nm (40 times larger than in state-of-
the-art devices).

From these two examples we might conclude that when modeling novel tech-
nology devices, quantum effects must be accounted for to properly determine the
threshold voltage and total gate capacitance.

Example 3: Single Versus Dual Gate Capacitors

One of the primary reasons for device degradation at shorter channel lengths in FD
SOI devices is the encroachment of drain electric field in the channel region. As
shown in Fig. 2.23, the gate electrode shields the channel region from those lines at
the top of the device, but electric field lines penetrate the device laterally and from
underneath, through the buried oxide and the silicon wafer substrate causing the
undesirable DIBL for the charge carriers.

To prevent the encroachment of electric field lines from the drain on the
channel region, special gate structures can be used as shown in Fig. 2.24. Such
“multiple-gate” devices include double-gate transistors, triple-gate devices such

Fig. 2.23 Electric field lines
from the drain

Fig. 2.24 Double-gate, triple-gate, gate all around (GAA), and Π-gate SOI MOSFETs
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as the quantum wire [60], the FinFET [61] and Π-channel SOI MOSFET [62],
and quadruple-gate devices such as the gate-all-around device [63], the DELTA
transistor [64], and vertical pillar MOSFETs [65].

The double-gate device structure allows for termination of the drain electric
field at the gates and leads to a more scalable FET. The double-gate concept was
first reported in 1984 [66] and has been fabricated by several groups since then.
The salient features of the DG FET (Fig. 2.24) are: (1) control of short-channel
effects by device geometry, as compared to bulk FET, where the short-channel ef-
fects are controlled by doping (channel doping and/or halo doping); and (2) a thin
silicon channel leading to tight coupling of the gate potential with the channel poten-
tial. These features provide potential DG FET advantages that include: (1) reduced
2D short-channel effects leading to a shorter allowable channel length compared to
bulk FET; (2) a sharper subthreshold slope (60 mV/dec compared to 80 mV/dec for
bulk FET) which allows for a larger gate overdrive for the same power supply and
the same off-current; and (3) better carrier transport as the channel doping is re-
duced (in principle, the channel can be undoped). Reduction of channel doping also
relieves a key scaling limitation due to the drain-to-body band-to-band tunneling
leakage current. A further potential advantage is more current drive (or gate capaci-
tance) per device area; however, this density improvement depends critically on the
specific fabrication methods employed and is not intrinsic to the device structure.
The most common mode of operation of the DG FET is to switch the two gates
simultaneously.

In this exercise, we compare the performance of single-gate vs. double-gate
MOSFET device structure by considering the double-gate option in SCHRED V1.0.
We assume metal gates and the second gate is set to VG2 = 1V, and we sweep
the first gate VG1. The simulation results of the sheet electron density in the chan-
nel for single-gate and double-gate MOS capacitor are shown in Fig. 2.25. We use
tox = 1nm and NA = 1018 cm−3. For the double-gate MOS capacitor the body
thickness is 10 nm. Evidently, we have almost twice the number of electrons in
the channel region in the double-gate structure when compared to the single-gate
structure.

Example 4: Dual Gate Capacitors – Volume Inversion

The thickness and/or width of multi-gate FETs are reaching values that are less
than 10 nanometers. Under these conditions the electrons in the channel (if we take
the example of an n-channel device) form either a two-Dimensional Electron Gas
(2DEG) if we consider a double-gate device or a one-Dimensional Electron Gas
(1DEG) if we consider a triple or quadruple-gate MOSFET. This confinement is
at the origin of the “volume inversion” effect and yields an increase of threshold
voltage when the width/thickness of the devices is reduced. The volume inversion
effect is illustrated in Figs. 2.26 and 2.27, where we plot the electron density profile
vs. gate voltage and the sheet electron density vs. body thickness, respectively.
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Fig. 2.25 Sheet electron density in a single-gate and double-gate structure as a function of the
front gate voltage

2.2.2 SCHRED Second Generation Capabilities

Theoretical Model and Implementation Details

The theoretical model implemented is as follows. First user chooses one of the
material systems described below. Then user specifies how many conduction bands
are going to be taken into consideration. Then, for each specified conduction band
(or pair of bands in the case of Si or strained-Si) the user specifies the effective
masses. For the case of materials different than Si, the masses are taken to be
isotropic. In the case of Si or strained-Si material system, the mass is assumed to
be anisotropic, therefore crystallographic directions become important. Following
the nomenclature of Rahman and co-workers [67], the user specifies the device, the
crystal and the transport direction based on which one calculates the width, the con-
finement and the transport mass for each of the three pairs of ellipsoids of revolution
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Fig. 2.26 Electron density profile for VG1 = VG2 = 1V
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Fig. 2.27 Sheet electron density vs. silicon body thickness in the dual-gate structure

for the conduction band. Thus for a general conduction band ellipsoid (assuming 3
valleys) in the ellipse coordinate system (ECS),

E =
h̄2k2
||

2m1
+

h̄2k2
⊥1

2m2
+

h̄2k2
⊥2

2m3
(2.35)

For a given crystal coordinate system (CCS) and the ellipsoidal effective masses,
we can write rotation matrix RE−C for transforming components of an arbitrary
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vector in CCS to its components in the ellipse co-ordinate system (ECS). Similarly
we can write a rotation matrix RC−D for transforming wave vector in the device
co-ordinate system (DCS) to CCS. Thus we can write the inverse effective mass in
the DCS as [68],

(M−1
D ) = RT

E←D(M−1
E )RE←D (2.36)

where

RE←D = RE←CRC←D, (2.37)

and M−1
E is a 3× 3 diagonal matrix with m−1

l , m−1
t , m−1

t along the diagonal. As a
result, we can effectively model different orientations of Si or strained Si based on
this approach for the effective mass calculation.

The valley offset in the conduction band in strained Si can be modeled using our
three valley conduction band model. The various different effective masses for these
three valleys can also be taken into consideration while solving the coupled system
of Schrödinger–Poisson equations. The change in effective masses in the valence
band of strained Si can also be included for the simulation.

As shown in Fig. 2.28, any material that can be expressed using a three valley
conduction band system can be modeled by using our three valley conduction band
model. This would enable us to model even those materials that are being researched
at present. We can thus include in our simulation the different effective masses for
the various conduction band and valence bands.

Because in some regimes of operation of the MOS capacitor there is no quantum-
mechanical confinement and charge has to be treated classically, the effective
density of states of the conduction band is calculated. Note that in SCHRED Sec-
ond Generation holes at the moment are treated classically. In near future k.p method

Fig. 2.28 General 3 valley conduction band model of a material
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will be implemented to properly account for the warped valence bands and how they
change under the influence of strain. User can choose whether to use semi-classical
or quantum-mechanical charge description for the electrons. For the case of classical
charge description the user has the option of Maxwell–Boltzmann and Fermi–Dirac
statistics. The gate electrode can be treated as either a metal with user-defined
workfunction or polysilicon. For simulations at low temperatures the users can also
include partial ionization of the impurity atoms.

For the case of semiclassical charge description of the electrons and holes, only
the linearized Poisson equation is solved using the LU decomposition method.
When the electrons are treated quantum mechanically then a self-consistent solu-
tion of the 1D Poisson and the 1D Schrödinger equation is obtained. Note that the
1D Schrödinger equation is solved separately for each conduction band valley/valley
pair. It is important to note that when finite difference approximation is applied to
the 1D Schrodinger equation, a tri-diagonal non-symmetric coefficient matrix is ob-
tained. Since the EISPACK routines that solve the eigenvalue problem are designed
for symmetric coefficient tridiagonal matrices, a symmetrization procedure is nec-
essary. This is achieved in the following manner. The discretized 1D Schrodinger
equation is given by,

∑n
j=1 Ai jψ j = λ ψi (2.38)

where Aij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− h̄2

m∗xi (xi + xi−1)
j = i+ 1

h̄2

m∗xi (xi + xi−1)
+

h̄2

m∗xi−1 (xi + xi−1)
+Vi j = i

− h̄2

m∗xi−1 (xi + xi−1)
j = i−1

0 otherwise

Thus, with the finite difference discretization of the 1D Schrödinger equation on
a non-uniform mesh one arrives at a tridiagonal matrix that is not symmetric. The
symmetrization of the coefficient matrix is achieved with the matrix transformation
technique detailed below [69].

Let xi + xi−1 be L2
i . Then, we have

Aij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− h̄2

m∗xi

1

L2
i

j = i+ 1
(

h̄2

m∗xi
+

h̄2

m∗xi−1

)
1

L2
i

+Vi j = i

− h̄2

m∗xi−1

1

L2
i

j = i−1

0 otherwise
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Let Bij = L2
i Aij or in matrix notation, B = MA, where M is the diagonal matrix

with elements L2
i , and B is tridiagonal and symmetric matrix. Thus the eigenvalue

matrix (2.39) becomes,
Bψ = MAψ = λ Mψ (2.39)

The matrix M can be written as: M = LL, where L is a diagonal matrix with elements
Li. One can show that

L−1BL−1Lψ = L−1LLAψ = λ L−1LLψ , (2.40)

or
Hϕ = λ ϕ , (2.41)

where
H = L−1BL−1, (2.42)

and
ψ = L−1ϕ . (2.43)

Thus we can now solve using the symmetric matrix H, obtain the value of the ϕ
matrix and from that obtain the value of ψ matrix – the eigenvectors.

Simulation Results

This section is divided into three parts. The first Sub-Section details the results from
SCHRED Second Generation for the Silicon case. The following Sub-Section ex-
plains the results of SCHRED Second Generation in comparison with experimental
results for a multi-valley semiconductor such as GaAs. The last Sub-Section com-
pares experimental results of Strained Silicon for <100> transport orientation with
the results of SCHRED Second Generation.

Example 1: Simulations of Regular Silicon for Specific Crystallographic
Orientations

As shown in Table 2.1, the following orientations (wafer/transport/width directions)
are simulated using SCHRED Second Generation.

We simulate MOS Capacitor with the following parameters: metal gate, substrate
doping concentration of 1017 cm−3, and oxide thickness of 4 nm. Two subbands are
assumed for each of the three pairs of valleys. The resultant plots are then discussed.
The effective masses for the different conduction band valley pairs are shown in
Table 2.2 [67]. The mass mz refers to the confinement effective mass and the mass
mxy refers to the product of the transport and width direction masses. This product
contributes to the 2D density of states (DOS) mass.

Table 2.1 Different
crystallographic orientations
of silicon

(Wafer)/[Transport]/[Width]

(001) /[100]/[010]
(111)/[211]/[011]
(110)/[001]/[00]
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Table 2.2 Transport, width and confinement effective masses

Confinement
direction

Transport, width
and confinement
effective mass Valley 1 Valley 2 Valley 3

(001) mz 0.19 0.19 0.98
(110) mz 0.3189 0.3189 0.19
(111) mz 0.2598 0.2598 0.2598
(001) mxy 1.17 1.17 0.0361
(110) mxy 0.2223 0.2223 0.3724
(111) mxy 0.13604 0.13572 0.13572

Fig. 2.29 Subband energy vs. applied voltage for valleys 1 and 2 (for various subband energy Eij,
where i – denotes the subband, j – denotes the valley)

From the result shown in Fig. 2.29, it is evident that conduction band valley pair
1 has the lowest confinement mass for (001) confinement direction (see Table 2.2)
and highest for (110) direction. Thus, the subband energies are lowest for the
(110) direction and highest for the (001) direction. (The kinetic energy term in the
Schrödinger equation will be the highest for the lowest mass, hence higher total sub-
band energy). The valley pair 2 subband energies follow the same variation as the
valley pair 1 subbands as they have the same set of masses in given directions and
hence are equivalent to valley pair 1. The lower subband energies of valley pair 3
(unprimed set of subbands) as shown in Fig. 2.30, and are lower due to their higher
confinement mass mz (Table 2.2). As we increase the applied voltage, the potential
well deepens, and the subband energies increase.

As shown in Fig. 2.31, the 2D sheet charge density is highest for the (001)
orientation due to its lowest subband energy values. Thus we have lower sheet
charge densities for the case of (110) which has higher subband energy than (001).
In Fig. 2.32, the capacitance variation is presented for the three crystallographic
directions. There is slight degradation for the total gate capacitance for orientations
different than [001]. The most prominent result is shown in Fig. 2.33 where we
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Fig. 2.30 Subband energy vs. applied voltage for valley3 (for various subband energy Eij, where
i – denotes the subband, j – denotes the valley)

Fig. 2.31 Sheet charge density (Ns) vs. voltage

plot the average distance of the carriers from the interface as a function of the gate
bias. We see that for [001] orientation we have the smallest average distance which
means that in these devices interface roughness will play much higher role when
compared to the other two crystallographic directions. This can significantly affect
the on-current of the device fabricated in this material system.
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Fig. 2.32 Capacitance for the three confinement directions

Fig. 2.33 Average distance of the carriers from the interface

Example 2: Gallium Arsenide MOS Capacitors

In order to verify the actual capability of SCHRED Second Generation in solving
for multi-valley semiconductors, we had simulated MOS capacitors for a specific
case of GaAs and compared our simulation results with the published data [70]. A
substrate doping concentration of 1018 cm−3 is used together with an oxide thickness
of tox = 16nm. The simulation runs have been performed for voltages in the range
(−4 to 4 V). We use three conduction band valleys (gamma, X and L valleys). We
use two subbands for each of these valleys. The offsets between the valleys are
included in the simulation.

From the results shown in Fig. 2.34 it can be seen that our results match much
closer to the experimentally determined capacitance than the simulation results of
[70]. The capacitance values match in the inversion and accumulation regions. We
also observe that our results indicate a higher value of accumulation capacitance
because we have not included hole confinement in the negative bias region of the
simulation.
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Fig. 2.34 GaAs capacitance for quantum mechanical (QM) and semi-classical case with experi-
mental and simulation results from [70]

Fig. 2.35 Subband population

From the results presented in Figs. 2.35 and 2.36, we can clearly see that the
subband population shifts from valley 1(gamma) to valley 2(L valley) as the gate
voltage increases. More carriers are being excited to higher valleys, namely the L
valley, as the applied voltage increases, thus increasing their population density.
From the results presented in Fig. 2.36, it is also observed that only the lower sub-
bands contribute to the majority of the population in a given valley, whereas the
higher subbands are relatively unoccupied. This can be explained with the plot of
the energy levels variation shown in Fig. 2.37.
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Fig. 2.36 Valley population

Fig. 2.37 Lowest two subband energies variation of the gamma and L valleys

Example 3: Strained Silicon

In the case of strained Si, strain on the Si material forces the valence bands de-
generate levels to split; the heavy hole band crosses the light hole band and also
the equi-energy Δ valleys are split into Δ4 and Δ2 conduction bands. This leads
to change in the effective masses of the heavy hole and light hole valence bands
(Figs. 2.38 and 2.39) and a change in the bandgap of the material.

Here we simulate to match experimental results of tensile strained Si (Silicon on
silicon germanium). The experiment uses a polysilicon gate on a bi-axial strained
Si layer on Si0.8Ge0.2. The experimental values are: polysilicon gate with doping
concentration of 1020 cm−3 oxide thickness tox = 1.33nm, temperature T = 300K,
substrate doping NA = 9×1019 cm−3.



2 Quantum and Coulomb Effects in Nano Devices 139

(out-of-plane)(in-plane)

Unstrained Si

E

HH
LH

SO

Compressive strain

E

LH

HH

SO

k⊥kII k⊥kII k⊥kII

Tensile strain

E

HH

LH

SO
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Fig. 2.39 Subband structure in the inversion layer of regular and surface-channel strained-Si layer

Our results in Fig. 2.40 closely match with the experimental results of [71]. The
quantum capacitance matches with the experimental values in the inversion region,
but differs in the accumulation and the depletion region due to the omission of the
hole confinement in this work.
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Fig. 2.40 Bi-axial strained on silicon (100) capacitance, experimental results from [71]

Fig. 2.41 Valley population

From the results presented in Fig. 2.41, we observe that, contrasting to the case
of normal Si the population now shifts to the Δ2 band(D2 valleys) from the Δ4 band
(D1 and D2 valleys) due to the application of the bi-axial strain (see Fig. 2.41),
which makes the Δ2 band to have a lower energy than the Δ4 band.

Conclusions

This part of the research work presented in this book chapter has successfully cre-
ated a nano-device simulator that can model MOS/SOS capacitors with the inclusion
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of quantum effects, poly gate depletion, uniform/non-uniform doping, and user
defined number of valleys, partial/complete ionization of carriers and several other
features.

The simulator is built with a fast direct LU-decomposition Poisson solver that
is coupled with the Schrödinger equation. The Schrödinger equation is solved
in the bulk region using three point finite difference scheme, which results in a
non-symmetric matrix (due to the non-uniform mesh used). This matrix is then
transformed to a symmetric matrix using a matrix transformation technique. This
transformed symmetric matrix is used to solve for eigenvalues and wavefunctions
using the EISPACK routine.

2.3 Inclusion of Tunneling in Particle-Based Device Simulators

Tunneling is an important phenomenon in the operation of some devices in both
the positive and the negative sense. For example, the negative differential charac-
teristics in an Esaki diode (heavily doped p + /n+ junction – see Fig. 2.42) or in
resonant tunneling diode are due to tunneling/resonant tunneling in these structures
respectively. The peak to valley current is an important indicator on the quality of
the device and larger the ratio, better is the device usability in oscillators.

Also, tunneling into the floating gate is necessary for the operation of EEPROM
memories. Tunneling is the basic principle on which the operation of scanning tun-
neling microscopes is based, which revolutionized the understanding of surfaces and
surface reconstructions in different semiconductor materials.

There are also instances in which tunneling is an undesired phenomenon, such as
gate leakage in FET devices (see Fig. 2.43 ) or transistors with Schottky gate. In the
case of FET devices, if the carriers tunnel through the tip of the barrier, then we call
this tunneling process as Fowler–Nordheim tunneling. In small structures with thin
oxides, carriers tunnel through the whole thickness of the oxide and in that case we
have direct tunneling process.

The WKB (Wentzel, Kramers, Brillouin) approximation is a quasi-classical
method for solving the one-dimensional (and effectively one-dimensional, such as
radial) time-independent Schrödinger equation. The nontrivial step in the method is
the connection formulas, that problem was first solved by Lord Rayleigh [72] and as
Jeffries notes [73] “it has been rediscovered by several later writers” presumably re-
ferring to Wentzel, Kramers and Brillouin (WKB). A more accurate method for the
calculation of the transmission coefficient in 1D tunneling structures is the trans-
fer matrix approach which sometimes suffers from numerical overflow problems.
To avoid these issues, a variant of this approach, the so-called scattering matrix ap-
proach is typically used. For 2D and 3D problems, the Usuki method [74] is the
method of choice alongside with the Green’s function approaches [75]. In what fol-
lows here, we first describe the WKB approximation on the example of tunneling
through a triangular barrier, and then we discuss the transfer matrix approach on the
example of a piecewise linear approximation of the potential barrier and its applica-
tion in calculation of tunneling current in SOI Schottky MESFET.
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Fig. 2.42 Forward and reverse tunneling in heavily-doped PN (Esaki diodes). Top panel – Equi-
librium band diagram, bottom left panel – forward bias conditions and bottom right panel – reverse
bias conditions

2.3.1 WKB Approximation Used in Tunneling Coefficient Calculation

Consider a particle of mass m∗ and energy E > 0 moving through some slowly
varying potential V (x). The particle’s wave-function satisfies
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Fig. 2.43 Tunneling (gate leakage) limiting device miniaturization and leading to the introduction
of gate stacks with high-k dielectrics (top panel). Bottom panel – Schematics of a tunnel barrier
and the concept of Fowler–Nordheim tunneling

d2ψ
dx2 =−k2(x)ψ(x) (2.44)

where

k2(x) =
2m∗[E−V(x)]

h̄2 (2.45)

Let us try a solution to (2.44) of the form

ψ(x) = ψ0 exp

⎡
⎣

x∫
0

ik(x′)dx′
⎤
⎦ (2.46)
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where ψ0 is a complex constant. Note that this solution represents a particle moving
to the right with the continuously varying wavenumber k(x). Substituting (2.46) into
(2.44) gives

d2ψ
dx

2

= ik′(x)ψ(x)− k2(x)ψ(x) (2.47)

where k′ = dk/dx. From (2.44–2.47) it follows that (2.46) is a solution to (2.44) pro-
vided that the first term on its right-hand side is negligible compared to the second.
This yields the validity criterion |k′| << k2. In other words, the variation length-
scale of k(x) (which is approximately the same as the variation length-scale of V (x))
must be much greater than the particle’s de Broglie wave-length (which is of order
k−1). Let us suppose that this is the case. Incidentally, the approximation involved
in dropping the first term on the right-hand side of (2.47) is generally known as the
WKB approximation. Similarly, (2.46) is termed a WKB solution. According to the
WKB solution (2.46), the probability density remains constant: i.e., |ψ(x)|2 = |ψ0|2
as long as the particle moves through a region in which E > V (x) and k(x) is con-
sequently real (i.e., an allowed region according to classical physics).

Suppose, however, that the particle encounters a potential barrier (i.e., a region
from which the particle is excluded according to classical physics). By definition,
E < V (x) inside such a barrier, and k(x) is consequently imaginary. Let the barrier
extend from x = x1 to x2, where 0 < x1 < x2. The WKB solution inside the barrier
is written

ψ(x) = ψ1 exp

⎡
⎣−

x∫
x1

∣∣k(x′)∣∣dx′
⎤
⎦ (2.48)

where

ψ1(x) = ψ0 exp

⎡
⎣

x1∫
0

ik(x′)dx′
⎤
⎦ . (2.49)

Here, we have neglected the unphysical exponentially growing solution. Accord-
ing to the WKB solution, the probability density decays exponentially inside the
barrier: i.e.,

|ψ(x)|2 = |ψ1|2 exp

⎡
⎣−2

x∫
x1

∣∣k(x′)∣∣dx′
⎤
⎦ , (2.50)

where |ψ1|2 is the probability density at the left-hand side of the barrier (i.e., x =
x1). It follows that the probability density at the right-hand side of the barrier (i.e.,
x = x2) is

|ψ2|2 = |ψ1|2 exp

⎡
⎣−2

x2∫
x1

∣∣k(x′)∣∣dx′
⎤
⎦ . (2.51)

Note that |ψ2|2 < |ψ1|2. Of course, in the region to the right of the barrier (i.e.,
x > x2), the probability density takes the constant value |ψ2|2. We can interpret the
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ratio of the probability densities to the right and to the left of the potential barrier
as the probability |T |2, that a particle incident from the left will tunnel through the
barrier and emerge on the other side: i.e.,

T =
|ψ2|2
|ψ1|2 = exp

⎡
⎣−2

x2∫
x1

|k(x′)|dx′
⎤
⎦ (2.52)

It is easily demonstrated that the probability of a particle incident from the right
tunneling through the barrier is the same.

Note that the criterion for the validity of the WKB approximation implies that
the above transmission probability is very small. Hence, the WKB approximation
only applies to situations in which there is very little chance of a particle tunneling
through the potential barrier in question. Unfortunately, the validity criterion breaks
down completely at the edges of the barrier (i.e., at x = x1 and x2), since k(x) =
0 at these points. However, it can be demonstrated that the contribution of those
regions, around x = x1 and x2, in which the WKB approximation breaks down to the
integral in (2.52) is fairly negligible. Hence, the above expression for the tunneling
probability is a reasonable approximation provided that the incident particle’s de
Broglie wave-length is much smaller than the spatial extent of the potential barrier.

Let us now apply the result given in (2.52) to the triangular barrier shown in
Fig. 2.44. Upon the calculation of the integral in the exponent given by (2.52), one
gets the transmission coefficient as,

T = exp

(
−πm∗1/2E3/2

G

2
√

2h̄eE

)
exp

(
−2Ez

Ē

)
, (2.53)

where

Ē =
4
√

2h̄eE

3π
√

m∗EG
, (2.54)

Fig. 2.44 Triangular
potential barrier encountered
by the electrons in an Esaki
diode from Fig. 2.42 under
forward and reverse bias
conditions

W

z

V(z)

z
EG

Ez

EG-Ez
EG-Ez
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and E is the electric field along the transport direction. The result given in (2.53) is
then substituted in the Tsu–Esaki Formula for the current to get:

Jt =
e3m∗1/2ξVa

4
√

2π2h̄2E1/2
g

exp

(
−4
√

2m∗E3/2
G

3eh̄ξ

)
. (2.55)

2.3.2 Transfer Matrix Approach for Piece-Wise Linear Approximation
of the Potential Barrier

We next discuss the methodology for the calculation of the transmission probability
and apply the technique for the calculation of the transmission coefficient through an
arbitrary varying potential barrier. The exact method [76] that we use is based on the
analytical solution of the Schrödinger equation across a linearly varying potential.
In this case, the solution can be expressed as linear combination of Airy functions.
Proper boundary conditions are imposed at the interface between adjacent linear
intervals of the potential using a transfer matrix [77] procedure. The method for the
calculation of the transmission coefficient is outlined below.

Let us consider a piecewise linear potential function such that the potential en-
ergy profile varies linearly in the region (ai−1,ai) (Fig. 2.45).

V (x) = V (ai−1)+
x−ai−1

ai−ai−1
[V (ai)−V(ai−1)] = Vi−1 +

Vi−Vi−1

ai−ai−1
(x−ai−1) (2.56)

The electric field profile is given by,

Fi =− dφ
dx

∣∣∣∣
i
=

1
e

dV
dx

∣∣∣∣
i
=−Vi−Vi−1

ai−ai−1
, (2.57)

E

Vi

Vi+1

ai+1

Vi-1

ai-1 ai

V(x)

Fig. 2.45 Piecewise linear potential barrier
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Fig. 2.46 Slicing of the
region and corresponding
variables in the slices

i-1 i+1i

ai+1ai-1

ζi-1 ζi ζi+1
ai

where Vi is in eV. Therefore,

V (x) = Vi−1 + Fi(x−ai−1) (2.58)

Substituting back into the time-independent Schrödinger Wave Equation (TISE)
gives (Fig. 2.46),

− h̄2

2m
d2Ψ
dx2 +V(x)ψ = Eψ ,

⇒− h̄2

2m
d2Ψ
dx2 +[Vi−1 + Fi(x−ai)]ψ = Eψ ,

⇒− h̄2

2m
d2Ψ
dx2 + Fixψ = (E + Fiai−Vi−1)ψ,

⇒− h̄2

2m
d2Ψ
dx2 + Fixψ = ε ′ψ. (2.59)

We now define a dimensionless variable ξ such that

ξ =
(

2mFi

h̄2

)1/3

x− 2mε ′

h̄2

(
h̄2

2mqFi

)2/3

. (2.60)

Substituting (2.60) into (2.59) leads to

d2ψ
dξ 2 − ξ ψ(ξ ) = 0, (2.61)

where ε ′ = E + qFiai−Vi−1. The solutions of the reduced equation are the Airy
functions and the modified Airy functions. Thus,

ψi = C(1)
i Ai(ξ )+C(2)

i Bi(ξ ), (2.62a)
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and

ψi+1(ξ ) = C(1)
i+1Ai(ξ )+C(2)

i+1Bi(ξ ) (2.62b)

From the continuity and the smoothness conditions for the wave function at x = ai

we get

ψi(ξi) = ψi+1(ξi), (2.63a)

dψi

dx

∣∣∣∣
ai

=
dψi+1

dx

∣∣∣∣
ai

⇒ dψi

dx
=

dψi

dξ

∣∣∣∣
ξi

dξ
dx

= ri
dψi

dξ
,

dψi+1

dx

∣∣∣∣
ai

= ri+1
dψi+1

dx

∣∣∣∣
ξi

(2.63b)

Therefore,

C(1)
i Ai(ξi)+C(2)

i Bi(ξi) = C(1)
i+1Ai(ξi)+C(2)

i+1Bi(ξi), (2.64a)

riC
(1)
i A′i(ξi)+ riC

(2)
i B′i(ξi) = ri+1C(1)

i+1A′i(ξi)+ ri+1C(2)
i+1B′i(ξi). (2.64b)

Rearranging (2.64a) and (2.64b) and writing them in a matrix form gives,

[
Ai(ξi) Bi(ξi)
riA′i(ξi) riB′i(ξi)

][
C(1)

i

C(2)
i

]
=
[

Ai(ξi) Bi(ξi)
ri+1A′i(ξi) ri+1B′i(ξi)

][
C(1)

i+1

C(2)
i+1

]

⇒
[

C(1)
i

C(2)
i

]
= M−1

[
Ai(ξi) Bi(ξi)
ri+1A′i(ξi) ri+1B′i(ξi)

][
C(1)

i+1

C(2)
i+1

]

where

M−1 =
1

detM

[
riB′i(ξi) −riA′i(ξi)
−Bi(ξi) Ai(ξi)

]T

, (2.65)

and det (M) = ri[Ai(ξi)B′i(ξi)−A′i(ξi)Bi(ξi)] =
ri

π
. As a result of (2.65)

M−1 =
π
ri

[
riB′i(ξi) −Bi(ξi)
−riA′i(ξi) Ai(ξi)

]
,

and (2.65) becomes
[

C(1)
i

C(2)
i

]
= π

ri

[
riB′i(ξi) −Bi(ξi)
−riA′i(ξi) Ai(ξi)

][
Ai(ξi) Bi(ξi)
ri+1A′i(ξi) ri+1B′i(ξi)

][
C(1)

i+1

C(2)
i+1

]
=Mi

[
C(1)

i+1

C(2)
i+1

]
.

(2.66)

Now let us consider the case for initial boundary between region 0 and region 1.
In region 0 the wave function is described as plane wave and in region 1 it is a
combination of Airy functions. Then
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ψ0 = C(1)
0 eikox +C(2)

0 e−ikox,

ψ1(ξ ) = C(1)
1 Ai(ξ )+C(2)

1 Bi(ξ ). (2.67)

The continuity of the wave function and of the derivative of the wave function
leads to

C(1)
0 +C(2)

0 = C(1)
1 Ai(ξ0)+C(2)

1 Bi(ξ0),

ik0[C
(1)
0 −C(2)

0 ] = r1C(1)
1 A′i(ξ0)+ r1C(2)

1 B′i(ξ0). (2.68)

Dividing the second equation by iko one gets

C(1)
0 −C(2)

0 =
r1

ik0
C(1)

1 A′i(ξ0)+
r1

ik0
C(2)

1 B′i(ξ0). (2.69)

Then

2 C(1)
0 =

[
Ai(ξ0)+

r1

ik0
A′i(ξ0)

]
C(1)

1 +
[

Bi(ξ0)+
r1

ik0
B′i(ξ0)

]
C(2)

1 ,

2 C(2)
0 =

[
Ai(ξ0)− r1

ik0
A′i(ξ0)

]
C(1)

1 +
[

Bi(ξ0)+
r1

ik0
B′i(ξ0)

]
C(2)

1 . (2.70)

In summary,

⎡
⎣ C(1)

0

C(2)
0

⎤
⎦=

⎡
⎣

1
2 [Ai(ξ0)+ r1

ik0
A′i(ξ0)] 1

2 [Bi(ξ0)+ r1
ik0

B′i(ξ0)]
1
2 [Ai(ξ0)− r1

ik0
A′i(ξ0)] 1

2 [Bi(ξ0)+ r1
ik0

B′i(ξ0)]

⎤
⎦
⎡
⎣C(1)

1

C(2)
1

⎤
⎦ . (2.71)

We now consider the other boundary [N, N+1]. In region N we have a combination
of Airy functions and in region N+ 1 we have plane waves. Hence, we have

ψN(ξ ) = C(1)
N Ai(ξ )+C(2)

N Bi(ξ ),

ψN+1(ξ ) = C(1)
N+1eikN+1x +C(2)

N+1e−ikN+1x. (2.72)

The continuity of the wave function and of the derivative of the wave function then
implies

C(1)
N Ai(ξN)+C(2)

N Bi(ξN) = C(1)
N+1eikN+1aN+1 +C(2)

N+1e−ikN+1aN+1 ,rNC(1)
N A′i(ξN)

+rNC(2)
N B′i(ξN)

= ikN+1[C
(1)
N+1eikN+1aN−C(1)

N+1e−ikN+1aN . (2.73)

In matrix form this can be represented as,
⎡
⎣C(1)

N

C(2)
N

⎤
⎦=

π
rn

⎡
⎣rNB′i(ξN)+ ikN+1Bi(ξN) rNB′i(ξN)− ikN+1Bi(ξN)

−rNA′i(ξN)+ ikN+1Ai(ξN) −rNA′i(ξN)− ikN+1Ai(ξN)

⎤
⎦M1

⎡
⎣C(1)

N+1

C(2)
N+1

⎤
⎦ .

(2.74)
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Now, combining (2.66), (2.71), and (2.74), one finally arrives at the total transmis-
sion matrix of the system,

MT = MFIM1M2 . . . . . . . . .MN−1MBI

[
eikN+1aN 0
0 e−ikN+1aN

]

=

[
mT

11 mT
12

mT
21 mT

22

][
eikN+1aN 0
0 e−ikN+1aN

]
. (2.75)

The transmission coefficient is then given by,

T =
kN+1

k0

1

|mT
11|2

, (2.76)

where mT
11 is the element of the matrix MT = MFIM1M2 . . . . . . . . .MN−1MBI and the

various matrices that appear in (2.75) are defined as follows:

MFI =

[ 1
2 [Ai(ξ0)+ r1

ik0
A′i(ξ0)] 1

2 [Bi(ξ0)+ r1
ik0

B′i(ξ0)]
1
2 [Ai(ξ0)− r1

ik0
A′i(ξ0)] 1

2 [Bi(ξ0)+ r1
ik0

B′i(ξ0)]

]
,

MBI =
π
rn

[
rNB′i(ξN)+ ikN+1Bi(ξN) rNB′i(ξN)− ikN+1Bi(ξN)

−rNA′i(ξN)+ ikN+1Ai(ξN) −rNA′i(ξN)− ikN+1Ai(ξN)

]
,

Mi =
π
ri

[
riB′i(ξi) −Bi(ξi)

−riA′i(ξi) Ai(ξi)

][
Ai(ξi) Bi(ξi)

ri+1A′i(ξi) ri+1B′i(ξi)

]
. (2.77)

In the actual implementation of the method outlined above in the simulation of de-
vices with Schottky barriers, we are considering the electrons between the gate and
the buried oxide layer (in the active region) and we calculate the potential profile
along the thickness of the device by solving Poisson’s equation. Then, applying the
Airy function transfer matrix method, we calculate the transmission probability for
each particle in the MESFET device. On the basis of particle’s position we calculate
its potential energy. Then, we compare each particle’s energy with the correspond-
ing grid point potential energy. Now, using random number generation method, we
evaluate whether each particle is going to tunnel through the Schottky barrier or not.
If the transmission probability is greater than the random number then tunneling oc-
curs. Once the particle tunnels, we use a rejection technique to make it inactive for
the next iterative steps. For each time increment, we count the number of particles
that tunnel through the barrier. After reaching a steady state condition, we calculate
the tunneling current from the number of tunneled particles. We apply the piece-wise
linear transfer matrix technique in a nonlinear potential barrier as shown in Fig. 2.47
to calculate the transmission probability. Following the technique, we have obtained
the transmission probability which is shown in Fig. 2.48. From Fig. 2.48 it is ob-
served that our result is properly matched with calculation previously performed by
Lui et al. [78].
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Fig. 2.47 Nonlinear potential barrier is used to calculate quantum mechanical transmission
probability

Fig. 2.48 Quantum mechanical transmission probability variation with respect to particle energy
and validates our model’s exactness

3 Discrete Impurity Effects

The pioneering experimental studies by Mizuno and co-workers [79] in the mid
1990s clearly demonstrated that threshold voltage fluctuations due to the discrete
nature of the impurity atoms, are going to be a significant problem in future ultra-
small devices. They had shown that the threshold voltage standard deviation is
inversely proportional to the square root of the gate area, to the oxide thickness,
and to the fourth root of the average doping in the device channel region. They also
observed that the statistical variation of the channel dopant number accounts for
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about 60% of the experimentally derived threshold voltage fluctuation. In a later
study, Mizuno [80] also found that the lateral and vertical arrangement of ions pro-
duces variations in the threshold voltage that depend upon the drain and substrate
biases. Horstmann and co-workers [81] investigated global and local matching of
sub-100 nm n-channel metal-oxide-semiconductor (NMOS) and p-channel metal-
oxide-semiconductor (PMOS)-transistors and confirmed the area law proposed in
[80]. The empirical analytical expression by Mizuno was generalized by Stolk et al.
[82] by taking into account the finite thickness of the inversion layer, the depth-
distribution of the charge in the depletion layer and the influence of the source and
drain impurity distributions.

Numerical drift-diffusion and hydrodynamic simulations [83–86] have also con-
firmed the existence of the fluctuations in the threshold voltage in ultra-small
devices. Two-dimensional (2D) [87] and three-dimensional (3D) [88–91] ensem-
ble Monte Carlo (EMC) particle-based simulations have also been carried out. An
important observation was made in [10], where it was shown that there is a sig-
nificant correlation between the threshold voltage shift and the actual position of
the impurity atoms. A rather systematic analysis of the random dopant induced
threshold voltage fluctuations in ultra-small metal-oxide-semiconductor field-effect
transistors (MOSFETs) was carried out by Asenov [92] using 3D drift-diffusion de-
vice simulations and confirming previous results. Recent simulation experiments by
Asenov and Saini [93] have shown that discrete impurity effects are significantly
suppressed in MOSFETs with a δ-doped channel.

However, the majority of the above-mentioned simulation experiments, except
[10,91], utilized 2D or 3D device simulators, in which the “discreteness” of the ions
was only accounted for through the charge assignment to the mesh nodes. There, the
long-range portion of the electron-ion forces are inherent in the mesh force and is
found from the solution of the Poisson equation. The short-range portion of these in-
teractions is either completely ignored or treated in the k-space portion of the EMC
transport kernel (in particle based simulations) or via the doping dependence of the
mobility (in drift-diffusion simulations). Because of the complexity and obscurity
of the treatment of the Coulomb interaction in the MC simulations, a more direct
approach has been introduced [10], in which the MC method is supplemented by a
molecular dynamics (MD) routine. In this approach, the mutual Coulomb interac-
tion among electrons and impurities is treated in the drift part of the MC transport
kernel. Indeed, the various aspects associated with the Coulomb interaction, such as
dynamical screening and multiple scatterings, are automatically taken into account.
Very recently, the MC/MD method has been extended for spatially inhomogeneous
systems. Since a part of the Coulomb interaction is already taken into account by
the solution of the Poisson equation, the MD treatment of the Coulomb interaction
is restricted only to the limited area near the charged particles. It is claimed that
the full incorporation of the Coulomb interaction is indispensable to reproduce the
correct electron mobility in highly doped silicon samples.

Although real space treatments eliminate the problem of double counting of the
force, a drawback is that the 3D Poisson equation must be solved repeatedly to
properly describe the self-consistent fields which consumes over 80% of the total
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simulation time. To further speed up simulations, in this work a new idea has been
proposed: to use a 3D Fast Multi-Pole Method (FMM) [94–97] instead. The FMM
allows calculation of the field and the potential in a system of n particles connected
by a central force within O(n) operations given certain prescribed accuracy. The
FMM is based on the idea of condensing the information of the potential generated
by point sources in truncated series expansions. After calculating suitable expan-
sions, the long range part of the potential is obtained by evaluating the truncated
series at the point in question and the short range part is calculated by direct sum-
mation. The field due to the applied boundary biases is obtained at the beginning of
the simulation by solving the Poisson equation. Hence the total field acting on each
electron is the sum of this constant field and the contribution from the electron–
electron and electron–impurity interactions handled by the FMM calculations. The
image charges, which arrise because of the dielectric discontinuity, are handled by
the method of images.

Quite recently, several groups, including ours [39], have shown that the Coulomb
effects become even more prominent when the device size scales into the nm range.
Even in undoped samples, a single unintentional dopant atom can cause significant
fluctuations in the threshold voltage and therefore in the device on-state current
due to the randomness of its position within the device active area. Thus, proper
inclusion of the short – range Coulomb interactions is a MUST when considering
state of the art SOI FD-MOSFETs and alternate device structures, such as dual gate
and FinFET devices.

3.1 The P3M Method

The particle-particle-particle-mesh (P3M) algorithms are a class of hybrid al-
gorithms developed by Hockney and Eastwood [98]. These algorithms enable
correlated systems with long-range forces to be simulated for a large ensemble of
particles. The essence of P3M algorithms is to express the inter-particle force as a
sum of a short-range part calculated by a direct particle–particle force summation
and a long-range part approximated by the particle-mesh (PM) force calculation.
Using the notation of Hockney, the total force on a particle i may be written as

Fi = ∑
j �=i

Fcoul
ij + Fext

i . (2.78)

Fext
i represents the external field or boundary effects of the global Poisson solution.

Fcoul
ij , is the force of particle j on particle i given by Coulomb’s law as

Fcoul
ij =

qiq j

4πε
(ri− r j)
|ri− r j|3 , (2.79)
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where qi and q j are particle charges and ri and r j are particle positions. In a P3M
algorithm, the total force on particle i is split into two sums

Fi = ∑
j �= i
SRD

Fsr
ij + ∑

j �= i
GD

Fm
ij . (2.80)

The first sum represents the direct forces of particles j on particle i within the short-
range domain (SRD), while the second sum represents the mesh forces of particles j
on particle i over the global problem domain (GD) that includes the effect of material
boundaries and the boundary conditions on particle i. Fsr

ij is the short-range particle
force of particle j on particle i, and Fm

ij is the long-range mesh force of particle j on
particle i. The short-range Coulomb force can be further defined as,

Fsr
ij = Fcoul

ij −Rij, (2.81)

where Fcoul
ij is given by (2.79) and Rij is called the reference force. The reference

force in (2.81) is needed to avoid double counting of the short-range force due to
the overlapping domains in (2.80). The reference force should correspond to the
mesh force inside the short-range domain (SRD) and equal to the Coulomb force
outside the short-range domain. In other words, a suitable form of the reference
force for a Coulombic long-range force is one which follows the point particle force
law beyond the cutoff radius rsr, and goes smoothly to zero within that radius. Such
smoothing procedure is equivalent to ascribing a finite size to the charged particle.
As a result, a straightforward method of including smoothing is to ascribe some
simple density profile S(r) to the reference inter-particle force. Examples of shapes
which are used in practice and give comparable total force accuracy are the uni-
formly charged sphere, the sphere with uniformly decreasing density

S(r) =

⎧⎨
⎩

48
πr4

sr

( rsr

2
− r
)

, r≤ rsr/2

0, otherwise,
(2.82)

and the Gaussian distribution of density. The second scheme gives marginally bet-
ter accuracies in 3D simulations. For this case the reference force can be obtained
[99] as,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rij(r) = qiqj
4πε × 1

35r2
sr

(
224ξ −224ξ 3 ξ = 2r

rsr
and 0≤ r≤ rsr/2

+70ξ 4 + 48ξ 5−21ξ 6
)

Rij(r) = qiq j
4πε × 1

35r2
sr

( 12
ξ 2 −224 + 896ξ rsr/2≤ r≤ rsr

−840ξ 2−224ξ 3 + 70ξ 4

+48ξ 5−7ξ 6
)

Rij(r) = qiq j
4πε × 1

r2 r > rsr

(2.83)
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Hockney advocates pre-calculating the short-range force, Fsr
ij (r) in (2.81) includ-

ing the reference force above for a fixed mesh. It is important to extend the P3M
algorithm to nonuniform meshes for the purpose of semiconductor device simula-
tion since practical device applications involve rapidly varying doping profiles and
narrow conducting channels which need to be adequately resolved. Since the mesh
force from the solution to the Poisson equation is a good approximation within about
two mesh spaces, rsr is locally chosen as the shortest distance which spans two mesh
cells in each direction of every dimension of the mesh at charge i.

In order to incorporate the effects of material boundaries and boundary condi-
tions, the reference force would be found most precisely in the short-range domain
by associating particle j with the particle-mesh and calculating the resulting force
on particle i with Fext

i = 0. Since such a procedure would be required for each parti-
cle, it is obviously too costly for reasonable ensemble sizes and defeats the purpose
of the P3M algorithm [100]. Instead, it is desirable to use an approximation for this
force, which minimizes the effects of the transition error in going from the long-
range domain to the short-range domain. One approach developed in [100] is to
choose a particular orientation of approaching particles relative to the mesh and find
a radial approximation to the reference force. This method is straightforward and
computationally efficient per particle for a fixed uniform mesh, but it is not easily
adaptable to nonuniform meshes where the mesh force is not isotropic.

3.2 The Fast Multipole Method

FMM was first introduced by Rokhlin [95] and was later refined by Greengard [96]
for the application of two and three-dimensional N-body problems whose interac-
tions are Coulombic or gravitational in nature. In a system of N particles, the decay
of the Coulombic or gravitational potential is sufficiently slow so that all interactions
must be accounted for, resulting in CPU time requirements on the order of O(N2).
On the other hand, the FMM requires an amount of work proportional to N to eval-
uate all interactions to within a round off error, making it practical for large-scale
problems encountered in plasma physics, fluid dynamics, molecular dynamics, and
celestial mechanics.

There have been a number of previous efforts aimed at reducing the computa-
tional complexity of the N-body problem. Assuming the potential satisfies Poisson’s
equation, a regular mesh is laid out over the computational domain and the method
proceeds by: (1) interpolating the source density at mesh points; (2) using a fast
Poisson solver to obtain potential values on the mesh; (3) computing the force
from the potential and interpolating to the particle positions. The complexity of
these methods is of the order of O(N + M logM), where M is the number of mesh
points. The number of mesh points is usually chosen to be proportional to the
number of particles, but with a small constant of proportionality so that M〈〈N.
Therefore, although the asymptotic complexity for the method is O(N logN) the
computational cost in practical calculations is usually observed to be proportional
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to N. Unfortunately, the mesh provides limited resolution, and highly non-uniform
source distributions cause a significant degradation of performance. Further errors
are introduced in step (3) by the necessity for numerical differentiation to obtain the
force. To improve the accuracy of particle-in-cell calculations, short-range interac-
tions can be handled by direct computation, while far-field interactions are obtained
from the mesh, giving rise to the so-called particle-particle-particle-mesh (P3M)
method described previously. While these algorithms still depend for their efficient
performance on a reasonably uniform distribution of particles, in theory they do per-
mit arbitrarily high accuracy to be obtained. As a rule, when the required precision
is relatively low, and the particles are distributed more or less uniformly in a rect-
angular region, P3M methods perform satisfactorily. However, when the required
precision is high (for example in the modeling of highly correlated systems), the
CPU time requirements of such algorithms tend to become excessive.

3.2.1 Multipole Moment

A multipole expansion is a series expansion which describes the effect produced
by a given system in terms of an expansion parameter [95] that becomes smaller as
the distance of the observation point from the source point increases. Therefore the
leading order terms in a multipole expansion are generally the dominant. The first
order behavior of the system at large distances can therefore be predicted from the
first terms of the series, which is much easier to compute than the general solution.

Let r be the vector from the fixed reference point to a point in the system and r1

be the vector from reference point to the observation point, and d ≡ r1− r be the
vector from a point in the system to the observation point. From the laws of cosines,
d can be expressed as

d2 = r2
1 + r2−2r1r cosϕ = r2

1

(
1 +

r2

r2
1

−2
r
r1

cosϕ
)

(2.84)

where cosϕ ≡ ∧r .
∧
r1. Therefore,

d = r1

√
1 +

r2

r2
1

−2
r
r1

cosϕ (2.85)

Let ξ ≡ r
r1

and y = cosϕ . Then

1
d

=
1
r1

(
1−2ξ y + ξ 2)−1/2

(2.86)

But (1−2ξ y + ξ 2)−1/2 is the generating function for Legendre Polynomials, i.e.

(1−2ξ y + ξ 2)−1/2 =
∞

∑
i=0

ξ iPi(y) (2.87)
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so,

1
d

=
1
r1

∞

∑
i=0

(
r
r1

)i

Pi(cosϕ) =
∞

∑
i=0

1

ri+1
1

riPi(cosϕ). (2.88)

Any physical potential that obeys a 1/d law can therefore be expressed as a multi-
pole expansion,

V =
∞

∑
i=0

1

ri+1
1

∫
riPi (cosϕ)ρ(r)d3r. (2.89)

In MKS unit,

V =
1

4πε0εr

∞

∑
i=0

1

ri+1
1

∫
riPi(cosϕ)ρ(r)d3r, (2.90)

where ε0 is the permittivity of the free space, εr is the dielectric constant of the
medium and ρ(r) is the charge density.

3.2.2 How FMM Speeds Up the Computation?

In FMM multipole moments are used to represent distant particle groups and a local
expansion is used to evaluate the contribution from distant particles in the form of
a series. The multipole moment associated with a distant group can be translated
into the coefficient of the local expansion associated with a local group. In FMM
the computational domain is decomposed in a hierarchical manner with a quad-tree
in two dimensions and an oct-tree in three dimensions to carry out efficient and sys-
tematic grouping of particles with tree structures. The hierarchical decomposition
is used to cluster particles at various spatial lengths and compute interactions with
other clusters that are sufficiently far away by means of the series expansions.

For a given input configuration of particles, the sequential FMM first decom-
poses the data-space in a hierarchy of blocks and computes local neighborhoods and
interaction-lists involved in subsequent computations. Then, it performs two passes
on the decomposition tree. The first pass starts at the leaves of the tree, computing
multipole expansion coefficients for the Columbic field. It proceeds towards the root
accumulating the multipole coefficients at intermediate tree-nodes. When the root is
reached, the second pass starts. It moves towards the leaves of the tree, exchanging
data between blocks belonging to the neighborhoods and interaction-lists calculated
at tree-construction. At the end of the downward pass all long-range interactions
have been computed. Subsequently, nearest-neighbor computations are performed
directly to take into consideration interactions from nearby bodies. Finally, short-
and long-range interactions are accumulated and the total forces exerted upon parti-
cles are computed. The algorithm repeats the above steps and simulates the evolution
of the particle system for each successive time-step.
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3.3 The Role of Discrete Impurities as Observed by Simulations
and with Comparisons to Experiments

In the three subsequent subsections first the role of discrete impurities on the op-
eration of conventional device designs is discussed, then unintentional dopants are
being examined and finally the role of unintentional dopants on the FinFET transfer
and output characteristics is being examined.

3.3.1 Previous Knowledge on Threshold Voltage and On-State Current
Fluctuations in Sub-Micrometer MOSFET Devices

As already discussed in the introduction part of this book chapter, continued scaling
of devices has led to a number of undesirable effects, including fluctuations in the
threshold voltage that arise because of the discrete, or atomistic nature of the im-
purity atoms in the device active region. For better insight of the importance of this
issue, we have considered a prototypical MOSFET with 0.07μm channel length,
0.07μm channel width and channel doping of 1018 cm−3. The number of dopant
atoms in the depletion region of this device is on the order of several hundreds,
and well below 100 in the active region. In addition, there are regions where the
impurity atoms cluster and other regions in which the impurity density is well be-
low the average value expected from the doping level. With such a small number
of the impurity atoms in the device active region, the local variations in the “dop-
ing concentration” across the channel become a significant factor in determining
the threshold voltage, mobility and drain current characteristics. This in turn, causes
considerable problems for circuit design, especially for circuits in which the devices
must be well matched, such as operational amplifiers [101] and static random access
memories [102]. The SIA roadmap technology requirements state that the variation
in gate length should be less than 10% and the variation in threshold voltage should
be less than 40 mV for devices in the 150 nm generation and beyond [103].

It is interesting to note that the existence of these surface potential fluctuations
in MOS devices was postulated by Nicollian and Goetzberger [104] in order to ex-
plain the departures from the theoretical predictions in conductance vs. frequency
measurements in MOS structures. In addition to their effect on the ac-conductance
results, surface potential fluctuations were also found to have significant influence
on a variety of other device characteristics, such as threshold voltage, transcon-
ductance, substrate current and off-state leakage currents. Experimental studies by
Mizuno, Okamura, and Toriumi [6] have shown that the threshold voltage standard
deviation is related to the average number of ionized impurities beneath the channel
according to

σvt =

(
4
√

q3εsφb√
2εox

)
Tox

4
√

N√
LeffWeff

, (2.91)
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where N is the average channel doping density, φb is the built-in potential, Tox is
the oxide thickness, Leff and Weff are the effective channel length and width, and εs

and εox are the semiconductor and oxide permittivity, respectively. They found that
the statistical variation of the channel dopant number accounts for about 60% of the
experimentally derived threshold voltage fluctuations. In a later study, Mizuno [81]
also found that the lateral and vertical arrangement of ions produces variations in
the threshold voltage dependence upon the drain and substrate bias. Quite recently,
Horstmann, Hilleringmann and Goser [105], who investigated the global and local
matching of sub-100 nm NMOS- and PMOS-transistors, confirmed the law of area
given in (2.91). Also, Stolk et al. [106] generalized the analytical result by Mizuno
and his co-workers by taking into account the finite thickness of the inversion layer,
depth-distribution of charges in the depletion layer and the influence of the source
and drain dopant distributions and depletion regions. For a uniform channel dopant
distribution, the analytical expression for the threshold voltage standard deviation
given in [107] simplifies to

σvt =

(
4
√

q3εsφb√
3

)[
kbT

q
· 1√

4εsφbNa
+

Tox

εox

] 4
√

N√
LeffWeff

. (2.92)

In (2.92), the first term in the square brackets represents the surface potential fluc-
tuations whereas the second term represents the fluctuations in the electric field.

The purpose of this section is twofold. First, we will clarify some issues related to
the origin of the threshold voltage fluctuations in ultra-small devices. The second,
and more important issue discussed here is how discrete impurities affect device
high-field characteristics, such as carrier drift velocity and the on-state currents in
conventional MOSFETs.

The Role of the Short-Range e–e and e–i Interactions

To be able to study the effect of the proper inclusion of the short-range Coulomb
force to the mesh force, the energy and position of several electrons were monitored
during a simulation run. The simulated device has channel length LG = 80nm, chan-
nel width WG = 80nm and oxide thickness Tox = 3nm. The lateral extension of the
source and drain regions is 50 nm. The channel doping equals 3× 1018 cm−3. The
applied bias is VG = VD = 1V. Only those electrons that entered the channel region
from the source side were “tagged” and their energy and position was monitored and
used in the average energy calculation. The average velocity and the average energy
of the electrons that reach the drain end of the device is shown in Fig. 2.49. From the
average velocity simulation results, it follows that the short-range electron–electron
(e–e) and electron–ion (e–i) interaction terms damp the velocity overshoot effect,
thus increasing the transit time of the carriers through the device, in turn reducing
its cut-off frequency (Fig. 2.49a). It is also quite clear that when we use the mesh
force only, i.e. we skip the molecular dynamics (MD) loop that allows us to correct
for the short-range e–e and e–i interactions, those electrons that enter the drain end
of the device from the channel never reach equilibrium (Fig. 2.49b). Their average
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Fig. 2.50 (a) Phase-space trajectories of ten randomly chosen electrons for the case when the mesh
force is only considered in the free-flight portion of the simulator. (b) Phase-space trajectories
of ten randomly chosen electrons for the case when the short-range e–e and e–i interactions are
included via our MD routine

energy is more than 60 meV far into the drain region. Also, the average energy peaks
past the drain junction. The addition of the short-range Coulomb forces to the mesh
force via the MD loop, leads to rapid thermalization of the carriers once they enter
the drain region. The characteristic distance over which carriers thermalize is on the
order of a few nm.

In Fig. 2.50, we show the phase-space trajectory of 10 randomly selected elec-
trons that reach the drain region. We use VG = 0.5V, VD = 0.8V, Tox = 3nm, and
NA = 3× 1017 cm−3 in these simulations. Notice that some of the electrons reach
the end of the device and are reflected back without losing much energy when we
use the mesh force only (Fig. 2.50a). The addition of the short-range Coulomb force
leads to very fast thermalization of the carrier energy once they enter the drain end
(Fig. 2.50b). None of the randomly selected electrons reach the device boundary,
as opposed to 3 out of 10 electrons reaching the boundary when the short-range
Coulomb force is turned off.
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Threshold Voltage Fluctuations

The threshold voltage fluctuations vs. device gate width, channel doping and oxide
thickness, are shown in Fig. 2.51. Also shown in this figure are the analytical
model predictions given by (2.91) and (2.92). The decrease of the threshold voltage

Fig. 2.51 Variation of the
threshold voltage with (a)
gate width, (b) channel
doping, and (c) oxide
thickness
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fluctuations with increasing the width of the gate is due to the averaging effects,
in agreement with the experimental findings by Horstmann et al. [82]. We want to
point out that we still observed significant spread of the device transfer characteris-
tics along the gate voltage axis even for devices with WG = 100nm. This is due to
the nonuniformity of the potential barrier, which allows for early turn-on of some
parts of the channel. As expected, the increase in the channel doping leads to larger
threshold voltage standard deviation σVTH . These results also imply that the fluctu-
ations in the threshold voltage can be even larger in devices in which counter ion
implantation is used for threshold voltage adjustments. Similarly, the increase in the
oxide thickness leads to linear increase in the threshold voltage standard deviation.
The results shown in Fig. 2.51a–c also suggest that reconstruction of the established
scaling laws is needed to reduce the fluctuations in the threshold voltage. In other
words, within some new scaling methodology, Tox should become much thinner, or
NA much lower that what the conventional scaling laws give.

Fluctuations in the On-State Currents

Besides investigating the threshold voltage fluctuations, our 3D EMC particle-based
device simulator also allows us to investigate the fluctuations in the high-field char-
acteristics, such as the saturation drain current. The variation of the drain current
vs. the number of channel dopant atoms for the 15 devices from [107] described in
terms of the number of dopants in Fig. 2.52a, is shown in Fig. 2.52c. Each device
was simulated for a total of 4 ps. The gate voltage was set to 1.5 V and the drain
voltage to 1.0 V. The drain current was measured by averaging the velocity of elec-
trons in the channel over the last 2.4 ps of the simulation. It is important to note
that at these bias conditions, the devices were in the saturation region of the ID−VG

curve, but were not velocity saturated.
As expected, as the number of channel dopant atoms increases, the drain current

decreases due to the increase in the VT . More importantly, for the five devices from
the high-end of the distribution, due to the larger probability that some of the im-
purity atoms will be located near the semiconductor/oxide interface, there is larger
fluctuation in the saturation current. This is also reflected in the average velocity
of channel electrons vs. the number of dopant atoms in the channel, as shown in
Fig. 2.52d. Again, the velocity decreases as the number of dopant atoms increases
due to increased ionized impurity scattering. At the low end of the dopant num-
ber distribution, the average electron velocity is roughly the same for each dopant
configuration. However, the fluctuation in the electron velocity increases with the
number of dopant atoms, with a 3× spread in the velocity seen for the devices at the
high dopant number extreme.

The average electron velocity and device drain current characteristics were corre-
lated to the number of dopant atoms in a 10 nm range at various depths. Figure 2.52
(Top right panel) shows a plot of the square of the correlation coefficient vs. depth
(beneath the semiconductor/oxide interface). The correlation to the electron veloc-
ity is very high for the first 6 nm, and steadily decreases up to 18 nm depth, beyond
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Fig. 2.52 Top left: Histogram of the number of dopant atoms in the channel for a population
of 1,000 devices. Top right: Correlation of the drain current and average electron velocity to the
number of dopant atoms within a 10 nm range at various depths beneath the channel. Bottom left:
Drain current vs. the number of channel dopant atoms. Bottom right: Average velocity of channel
electrons vs. the number of channel dopant atoms

which the correlation is nearly zero. It appears that only the dopant atoms in the first
6–10nm from the semiconductor/oxide interface have significant effect on the ve-
locity. This is reinforced by the fact that the correlation nearly goes to zero at a depth
of 18 nm, as opposed to the threshold voltage correlation, which remains fairly high
at a larger depth. The correlation of the drain current to the number of dopant atoms
is also high near the surface, but the drop-off is not as steep as the velocity corre-
lation. Beyond 18 nm depth, the correlation of the drain current is non-zero due to
the correlation of the threshold voltage to the number of dopant atoms (see previous
discussion).

3.3.2 Threshold Voltage Fluctuations Due to Unintentional Doping in
Narrow-Width SOI Device Structures

The SOI device structure that has been simulated in this work to study com-
prehensively the effects of quantum mechanical size-quantization and discrete/
unintentional dopant effects on the performance of nanoscale devices is shown in
Fig. 2.53. It consists of a thick (600 nm) silicon substrate, on top of which is grown
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Fig. 2.53 Device structure of ultra-narrow channel FD-SOI device

400 nm of buried oxide. The thickness of the silicon on insulator layer is 7 nm, with
p− region width of 10 nm (if not stated otherwise) making it a fully-depleted device
under normal operating conditions. The channel length is 50 nm and the doping
of the p− active layer is 1016 cm−3 which corresponds to a nearly undoped chan-
nel region. The source/drain length is 15 nm, width being three times the channel
width i.e. 30 nm. On top of the SOI layer sits the gate-oxide layer with a thickness
of 34 nm. This is rather a thick gate oxide, but it is used to compare the simula-
tion results with the experimental data of Majima et al. [108]. The doping of the
source/drain junctions equals 1019 cm−3 (if not stated otherwise), and the gate is as-
sumed to be a metal gate with workfunction equal to the semiconductor affinity. The
use of the low source-drain doping is justified by the fact that most of the carriers
that are being simulated are residing in the source/drain regions and the reduction
of the source/drain doping leads to a smaller ensemble of carriers. It has been found
via Silvaco ATLAS Drift-Diffusion simulations of similar device structures that a
reduction in the source/drain doping by one order of magnitude leads to approxi-
mately 20–30% decrease in the on-state current due to the additional source/drain
series resistances.

In a 50 by 10 by 7 nm SOI device structure in Fig. 2.53, with a channel doping
of 1016 cm−3, one has merely a single dopant atom in the channel region. Even if
the channel is undoped, the unavoidable background doping gives rise to at least
one ionized dopant being present at a random location within the channel. Also,
if an electron becomes trapped in a defect state at the interface, or in the active
silicon body, it will introduce a fixed charge in the channel region. These potential
sources of localized single charge will introduce a highly localized barrier to the
carrier/current flow. Such a localized barrier is shown in Fig. 2.54. The device
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Fig. 2.54 Shape of the conduction band profile when a single impurity is localized in the center
of the channel
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Fig. 2.55 Left panel: Velocity and energy plots for VG = 1.0 and VD = 0.2 V when a single impurity
is present at the center of the channel. Right panel: Device transfer characteristics for the case of a
continuum and discrete impurity model with a single charge at the center of the channel

operation is affected by this localized barrier from both electrostatics (effective
increase in doping) and dynamics (transport) points of view. The transport is af-
fected through modulation of carrier velocity and energy characteristics as shown
in Fig. 2.55 (left panel) where the dip is due to the presence of a single impurity
in the center of the channel region. In Fig. 2.55 (right panel), the device transfer
characteristics are shown for a device with continuum doping and with an uninten-
tional dopant present in the center of the channel. The channel width is 10 nm. One
observes increase in the device threshold voltage Vth and degradation of the drain
current due to the presence of a single charge.

In Fig. 2.56 shown are the fluctuations in the drain current as a function of the
position of a single dopant ion in the channel region of the device. Simulations have
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Fig. 2.56 Slicing of the region and corresponding variables in the slices

been performed using VG = 1.0 V and VD = 0.1V. Results for devices with channel
width of both 10 and 5 nm are shown. Due to the size-quantization effect, as a con-
sequence of the charge set-back, results in the majority of current flowing through
the middle portion of the channel. Thus a dopant ion trapped in the center region of
the channel produces maximum fluctuations in the on-state current. The drain-end
is less affected due to two reasons: (a) the presence of a weaker quantization effect
therein due to the least vertical field experienced by the electrons and (b) the pres-
ence of the largest in-plane (x-component) electric field along the length of channel
region which obviously minimizes the effect of the single dopant.

To investigate the impact of screening effect for the impurity positioned along
the center of the channel region on the drain current detailed simulations were per-
formed. The results are shown in Fig. 2.56. One can see that the impurity positioned
in the very vicinity of the source-end has lower effect than when it is positioned a
little away from the source-end. This is attributed to the fact that the very presence
of a large number of electrons in the source region try to screen further the impurity
and thereby its effect on the drain current.
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Fig. 2.57 Impact of
screening on the drain current
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The impurity position dependence of the drain current is shown in Fig. 2.57 (left
panel) in the device output characteristics. There are several noteworthy conclusions
that can be drawn from these simulations:

• Single impurity at the source-end of the channel affects the drain current the
most.

• Impurities at the drain-end of the channel reduce the DIBL (drain-induced-
barrier-lowering) in the output characteristics.

• Dopant atoms trapped in the center region of the channel produce the maximum
fluctuations than the dopant atoms near the interface.

The observed impurity position dependence of the drain current may be attributed
to both the inhomogeneities in the electrostatics and the non-uniform carrier quan-
tization in the channel region. Another potential source arises from the modulation
of the transport characteristics, which is reflected in the carrier velocity behavior as
shown in the right panel of Fig. 2.58. Here, the velocity profiles for impurities at
three different positions are shown. One can see that the impurity near the source
end affects (reduces) the electron velocity most, throughout the channel region. Sim-
ulations have been performed using VG = 1.0V and VD = 0.2V.

The results presented in Fig. 2.58 also suggest that there might be fluctuations
in the device threshold voltage for devices fabricated on the same chip due to un-
intentional doping and random positioning of the impurity atoms. This can also be
deduced from the scatter of the experimental data from [109]. The simulation results
of the transfer characteristics with a single impurity present in different regions in
the channel of the device, shown in the left panel of Fig. 2.59 clearly demonstrates
the origin of the threshold voltage shifts for devices with 10 and 5 nm channel width.
The width dependence of the threshold voltage for the case of a uniform (undoped)
and a discrete impurity model is shown in the right panel of Fig. 2.59. This figure
suggests that both size-quantization effects and unintentional doping must be con-
currently considered to explain threshold voltage variation in small devises.
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Fig. 2.58 Left panel: Variations of the device drain current as a function of the placement of a
single impurity at various positions in the channel. We have used VG = 1.0 V in these simulations.
Right panel: Variations of the electron velocity as a function of the placement of a single impurity
at various positions in the channel. We have used VG = 1.0 V and VD = 0.2 V in these simulations

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

2 4 6 8 10 12 14 16
Channel Width [nm]

T
hr

es
ho

ld
 V

ol
ta

ge
 [V

]

Experimental: Lg = 250nm
Simulation: Lg = 50 nm
Simulation: Vt roll-off adjusted
Discrete single dopants
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model. Clearly seen in this figure are two trends: (a) Threshold voltage increase with decreasing
channel width due to quantum-mechanical size quantization effects, and (b) Scatter in the threshold
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3.3.3 The Role of Unintentional Doping on FinFET Device
Design Parameters

The FinFET device structure that has been simulated in this work is shown in
Fig. 2.60 [109]. It consists of a thick (100 nm) buried oxide on top of which
source/drain regions and a vertical fin are formed. The channel length is 40 nm with
a gate length of 20 nm and a fin extension length of 10 nm on each side of the gate.
The fin height and width are 30 and 10 nm, respectively. The source/drain length
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in top panel along the cross section A-A’
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Fig. 2.61 Left panel: Average velocity (x-component) profile of carriers along the channel. Right
panel: Average energy of carriers along the length of the device. VG = VD = 0.8 V and S/G =
D/G = 10 nm

is 20 nm, the width being three times the channel width, i.e. 30 nm. The doping of
the source/drain junctions equals 2× 1019 cm−3. The fin is assumed intrinsic. The
gate is assumed to be n+ polysilicon with work function equal to the semiconductor
affinity. Gate oxide of 2.5 nm has been used for both side and top gates. To simulate
this device structure, a convenient meshing scheme has been adopted. Meshing is
uniform along the x (channel length) and z (width) directions and is non-uniform
along the y (depth) direction, with the exception of the semiconductor region, where
uniformity in meshing has been kept in order to facilitate the Monte Carlo transport
simulations.

Significant velocity overshoot is observed in small geometry devices due to the
presence of very high electric fields. Figure 2.61 (left panel) depicts the average
velocity profile along the channel length of a FinFET device. Equal amount of ve-
locity overshoot is observed near the source and the drain end of the channel when
fin extension length on each side of the gate is equal. Note that the magnitude of the
velocity overshoot also depends on the fin extension length on each side of the gate
and this observation is discussed later in the text. Figure 2.61 (right panel) depicts
the average energy profile along the device channel length. Near the source end the
average carrier energy equals the thermal energy. Along the channel the average
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energy increases progressively reaching its peak value near the drain end. Note that
carriers are not thermalized near the drain end of the channel due to the omission of
the short-range electron–electron and electron–ion interactions in these simulations.
Fin extension of 10 nm has been used on each side of the gate. The applied bias
equals VD = VG = 0.8V.

The amount of velocity overshoot the carriers experience within the FinFET de-
vices shown previously heavily depends on the fin extension length on each side of
the gate. Keeping D/G gap fixed, gradual increase in S/G gap causes the source end
to experience more overshoot and the drain side overshoot to gradually diminish as
shown in Fig. 2.62 (left panel). This is due to the fact that with an increase in ex-
tension length, source and drain lateral fields along the channel redistribute which
changes the velocity profiles which can be seen from the 1-D conduction band pro-
file along the x-direction as shown in Fig. 2.62 (right panel). Near the drain end and
in the channel the slope of conduction band decreases with increase in S/G gap,
resulting in lower electric field. Also note that near the source end the slope of con-
duction band increases giving higher electric field at that region. D/G gap is fixed at
10 nm and VD = VG = 0.8V is used in the simulation. The same phenomena happen
for varying the D/G gap while keeping S/G gap constant at 10 nm.

From the transfer characteristics of the device as shown in Fig. 2.63 (left panel),
it is evident that the threshold voltage is negative and is around −0.1V. Negative
threshold voltage results due to the use of n+-polysilicon as a gate electrode. The
metal work function equal to the electron affinity of Si is assumed in the simulation.
Polysilicon gates also suffer from depletion and high gate resistance. A nominal
threshold voltage of 0.2–0.4V for n-channel FinFET can be achieved using metal
gates with work function close to the mid band-gap of silicon (∼4.6 eV ). Achieving
symmetric threshold voltages for both n-channel and p-channel FinFETs requires
metals with different work functions [110]. The output characteristics of the device
from Fig. 2.60 are presented in Fig. 2.63 (right panel). Equal fin extension of 10 nm
is assumed on both sides of the gate. Gate voltage VG = 0.4V is used. The inclusion
of the electron–electron and electron–ion interaction results in lower drain current.
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Fig. 2.63 Left panel: Transfer characteristics. Right panel: Output characteristics

Table 2.3 P3M vs. FMM
speed-up

Approach CPU time per iteration (s)

P3M ∼24
FMM <1

Also the Fast Multipole method (FMM) gives output characteristic which is in good
agreement with that using the P3M approach.

It is important to note that the CPU time requirement when using the FMM is
much smaller compared to the traditional P3M approach. Table 2.3, gives a compar-
ison of the CPU time requirements for simulating FinFET device with a 3D mesh of
64× 24× 24 node points. The number of particles simulated is around 1,500. The
speedup due to using FMM depends on the number of particles, mesh size and com-
putational resources. As the number of particles increases, FMM becomes slower
but still much faster when compared to the P3M approach. Also for very small
number of particles, it is better to calculate e–e and e–ion interaction directly than
using FMM [111]. Correction for image charges is incorporated in our simulator to
get the precise results.

FinFET devices use undoped or lightly doped fin. In a 40 by 10 by 30 nm chan-
nel region, with a channel doping of 1016 cm−3, one has merely 0.12 dopant atoms
in the channel region. Even if the channel is undoped, the unavoidable background
doping gives rise to at least one ionized dopant being present at a random location
within the channel. Also, if an electron becomes trapped in a defect state at the in-
terface or in the silicon body, it will introduce a fixed charge in the channel region.
These potential sources of localized single charge will introduce a localized barrier
to current flow. The position of a single dopant at the center of the channel along
with the localized barrier it creates is shown in Fig. 2.64 (left and right panel). The
device operation is affected by this localized barrier from both electrostatics (ef-
fective increase in doping) and dynamics (transport) points of view. The effective
increase in doping in the channel region results in increase in the threshold volt-
age and consequently, the drain current reduces. The transport is affected through
modulation of the carrier velocity and energy characteristics.
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Fig. 2.64 Left panel: Top view of the FinFET device showing dopant position at the center re-
gion of the channel. Right panel: Potential profile showing the localized barrier introduced by the
unintentional dopant

Due to the presence of multiple channels in the FinFET device, the effect of
unintentional doping is not that much pronounced. The reduction in drain current
heavily depends on the fin width. With decrease in fin width, the localized barrier
has more pronounced effect on carrier motion through the channel, and the reduction
in drain current is significant. This trend is schematically shown on the left panel of
Fig. 2.65 . Fin extension length of 10 nm is used on each side of the gate. VD =
0.1V, VG = 0.4V is used in the simulation. The unintentional dopant is placed near
the source end close to the top interface. Fin extension length on each side also
influences the reduction in drain current due to unintentional dopant as it is shown
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Fig. 2.65 Left panel: Reduction in drain current due to unintentional dopant as a function of fin
width. VG = 0.4V, VD = 0.1V. Right panel: Reduction in drain current due to unintentional dopant
as a function of fin extension length. VG = 0.4V, VD = 0.1V

in the right panel of Fig. 2.65. Longer fin extension results in more reduction in drain
current than that due to smaller fin extension for any dopant position. With longer
fin extension, lateral field from source and drain has less influence on the barrier
produced by the unintentional dopant thereby, reducing the drain current more when
compared to the case with smaller fin extension. Fin extension length can therefore,
be optimized for suppressing unintentional doping effects while keeping the drive
current within required range. VG = 0.4V and VD = 0.1V is used. The dopant atom
is placed near the source end close to the top interface. Fin width of 4 nm is used. As
noted in earlier device structures, the reduction in drain current due to unintentional
dopant significantly depends on the position of the dopant atom in the channel.
It is found that dopant placed near the source end has greater effect on the drain
current. Near the drain end, the effect is less pronounced. Since in FinFET devices
channels are formed symmetrically in vertical plane on each side of the fin, placing
the unintentional dopant near the center along the width will reduce drain current
more than that caused by dopant for any other position.

The effect of unintentional doping on device operation is relatively strong near
sub threshold regime/weak inversion when few carriers are present in the channel.
Thus the presence of unintentional dopant in the channel is expected to affect the
switching behavior of the device. Increasing either the gate voltage or the drain bias
will reduce the effect. As the gate voltage is increased, the number of carriers in the
channel region increases and screens the localized potential produced by the unin-
tentional dopant as shown in the left panel of Fig. 2.66. Drain bias of 0.1 V is applied
in the simulation. Unintentional dopant is placed at the center of the channel near
the top interface. Similarly with increase in drain voltage carriers are accelerated
more along the channel and thus, can easily overcome the localized barrier. There-
fore the reduction in drain current gradually decreases with increasing drain bias as
shown in the right panel of Fig. 2.66. Gate bias of 0.4 V is applied in the simulation.
Dopant is placed near the source end of the fin close to the top interface.
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4 Conclusions

A recently proposed effective potential approach has been utilized to successfully
simulate two-dimensional space-quantization effects in a model of a narrow-channel
SOI device structure. The incorporation of the effective potential approach into a full
3D Monte Carlo particle-based simulator allows one to investigate the device trans-
fer and output characteristics with proper treatment of the size-quantization effects,
velocity overshoot and carrier heating on an equal footing. The effective potential
provides a set-back of the charge from the interface proper and quantization energy
within the channel. Both of these effects lead to an increase in the threshold voltage.
A threshold voltage increase of about 180 mV has been observed when the effective
potential is included in the SOI device with 10 nm channel width. Also, observed is
a pronounced channel width dependency of the threshold voltage which is termed
as the quantum mechanical narrow channel effect. The width dependence of the
threshold voltage is in close agreement with the experimental results. The increase
in the threshold voltage is found to give rise to a significant on-state current reduc-
tion (20–30%), which depends upon the gate bias. Larger degradation is observed
for larger gate voltages. The energy characteristics along the channel do not change
with the inclusion of quantum mechanical size-quantization effects. The average
drift velocity shows a small decrease due to the smearing of the potential.

A novel effective potential approach has been proposed and tested in the sim-
ulations of quantization effects in 25 nm nano-MOSFET device. The approach is
parameter free as the size of the electron depends upon its energy. We have justi-
fied the correctness of the approach with simulations of the gate voltage dependence
of the sheet electron density. The excellent agreement between the simulations and
SCHRED results suggests that one is able to correctly predict the effective oxide
thickness increase due to quantum-mechanical size-quantization effects that leads
to a reduction of the sheet electron density. The nano-MOSFET simulation results
also confirm this charge displacement effect near the source end of the channel
where quantization effects play significant role. Due to the larger smearing of the
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potential for high energy electrons, we see a decrease in the carrier velocity when
quantization effects are included in the model. This leads to a smaller drain current
in both the device transfer and output characteristics. The charge displacement from
the interface, and the effective increase of the oxide thickness, gives rise to a thresh-
old voltage shift of ∼220 mV which is consistent with earlier observations. The
shift in the threshold voltage leads in turn, to a drain current degradation of about
30%. Hence, the observations presented here that utilize the new effective poten-
tial approach, confirm that quantum-mechanical space-quantization effects must be
included in the theoretical model to correctly predict the device behavior. In some
cases, this can be achieved with the incorporation of the barrier field that is pre-
computed in the initial stages of the simulation and does not require additional CPU
time during the simulation sequence. We believe that this new effective potential
approach is more reliable in simulation of quantization effects in nano-scale devices
with barriers that have different size and shape.

To treat the short-range Coulomb (electron–ion and electron–electron) interac-
tions properly, three different but consistent real-space molecular dynamics (MD)
schemes have been implemented in the simulator: the particle-particle-particle-mesh
(P3M) method, the corrected Coulomb approach and the Fast Multipole Method
(FMM). It is believed that the FMM algorithm has been used for the first time in the
simulations of semiconductor devices. The correctness of the approaches is verified
via the simulations of the doping dependence of the low-field electron mobility in a
3D resistor and through its comparison with available experimental data. These ap-
proaches are then applied in the investigations of the role of unintentional doping on
the operation of narrow-width SOI devices. We find significant correlation between
the location of the impurity atom and the magnitude of the drain current. Namely,
impurities near the source end of the channel have maximum influence on the drain
current. This observation suggests that one has to take into account transistor mis-
matches due to unintentional doping when performing circuit designs. We have also
investigated in depth the fluctuations in the threshold voltage due to discrete distri-
bution of the impurity atoms in narrow width SOI devices with 10 and 5 nm channel
width. The simulated data for the threshold voltages are in perfect agreement with
the experimental values and they explain the fluctuations in the experimentally de-
rived threshold voltage data.

Another device structure that has been investigated regarding the influence of the
discrete impurities is the FinFET. Among different double gate structures FinFET
attracts the researchers due to its inherent immunity to short channel effects and ease
of fabrication using the existing planar fabrication process flow. Single fin FinFET
can easily be extended to multiple fin structure for higher drive current. Again, in
this structure as well, we find significant correlation between the magnitude of the
drain current and the position of the discrete dopant for the case when screening
effects do not play considerable role.
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