
CHAPTER 2 

Linear Models and Regression 
The purpose of models is not to fit the data, but to sharpen the questions 

Samuel Karlin (1924 ), Evolutionary Geneticist 
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Abstract 
A model is said to be linear if the partial derivatives with 
respect to any of the model parameters are independent of 
the other parameters. This chapter introduces linear models 
and regression, both simple linear and multiple regression, 
within the framework of ordinary least squares and 
maximum likelihood. Influence diagnostics, conditional 
models, error in variables, and smoothers and splines are 
discussed. How to appropriately handle missing data in 
both the dependent and independent variables is discussed. 
 
Introduction 

A model is said to be linear if the partial derivatives 
with respect to any of the model parameters are 
independent of the other parameters. All models of the form 
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where Y is a n  1 vector of responses called the dependent 
variable, x is a n  1 matrix of predictor or independent 

variables, n is the total number of observations, θ is a p  1 

vector of regression parameters, and p is the number of 
estimable parameters, are linear because 
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which does not depend on any other j, k  j. Much has 
been written about linear regression models and little will 
be devoted towards it exposition herein, except for a few 
general properties of the linear model and a review of some 
of its salient features. The reader is referred to Neter et al. 
(1996) or Myers (1986) for further details. The goal is to 
develop the concepts necessary for the exposition of the 
nonlinear model, the most common model type seen in 
pharmacokinetics. 

The purpose of a model is explain the behavior of a 
system and/or to predict the current or future observations. Let 
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and let the predicted value ˆ( )iY  be defined as 
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where ̂  is the estimator for θ and e are independent, 
normally distributed residuals with mean 0 and variance σ2. 
In general, the hat-notation, ^, indicates that the value is 
estimated. By definition, the residuals are calculated as the 
difference between (3) and (4), i.e., 

 ˆ.e Y Y   (5) 

It should be noted that for notation purposes, the symbol 
“ε” will be used interchangeably with the symbol “e,” 
although technically “e” is an estimator of “ε.” 

The goal is to find the “best” line through the data and 
consequently find the “best” estimators for θ. One method 

is to find the set of ŝY  that are closest to the observed Y 
based on some type of minimization criterion or objective 
function. Thus, 

 ˆ ˆ: min[ ( , )],f Y Y  (6) 

where ˆ( , )f Y Y  is a specific function based on the observed 

and predicted values. It should be noted that many different 
types of objective functions exist. If 
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then the solution to the minimization problem is the method 
of ordinary least squares (OLS). The function defined in (7) 
is called the residual sum of squares or error sum of 
squares. The use of the word “ordinary” is used to 
differentiate it from weighted least squares, which will be 
discussed in the chapter on “Variance Models, Weighting, 
and Transformations.” For weighted least-squares the 
objective function is 
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where wi is the weight associated with the ith data point. A 
robust procedure for curve fitting is the least-absolute value 
criterion, 
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sometimes called the L1-norm criterion. Most often least 
squares is used as the minimization criterion because of its 
statistical properties. Since no pharmacokinetic software 
package provides alternative objective functions, like the 
L1-norm, only least squares and its modifications will be 
discussed. 

The Method of Least Squares and Simple Linear 
Regression 

The Concept of Ordinary Least Squares Applied to the 
Simple Linear Model 

At the minimum of a function, the first derivative 
equals zero. In the case of the simple linear regression 

(SLR) model, Y = θ0 + θ1x + ε, where the function being 
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minimized is the residual sum of squares (7), the following 
equalities must hold 
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Applying the derivatives, the following pair of equations 
are obtained 
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These equations are referred to as the least squares normal 
equations. Solving (11) and (12) simultaneously, θ0 and θ1 
may be estimated by 
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Intuitively, the concept of least squares makes sense since 
the predicted model attempts to minimize the squared 
deviations from the observed values (Fig. 1). Under OLS 
assumptions, every data point contributes equally to the 
estimate of the slope and intercept. 

The variance of the parameter estimates may then be 
obtained using the linear expectation rule 
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The square roots of Var(θ0) and Var(θ1) are called the 
standard error of the parameter estimates denoted as SE(θ0) 
and SE(θ1), respectively. The residual variance estimator, 
σ2, is estimated by 
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where MSE is referred to as the mean square error or 
residual mean square error. The numerator in (17) is called  

 

the residual sum of squares or sum of squares error, while 
the denominator is called the residual degrees of freedom or 
simply degrees of freedom. Degrees of freedom is a term 
that estimates the amount of known information (n) less the 
amount of unknown information (p). It can be shown that 
E(σ2) = MSE, which means that MSE is an unbiased 
estimate for the residual variance under the assumption that 
the model is correct. Actual estimation of (15) and (16) is 
made using the MSE estimator for the residual variance. 
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Fig. 1 Illustration of the concept of least squares linear regression. 
The dashed line minimizes the squared deviation (indicated by 
solid lines) between the observed data and the predicted value 

 
The following assumptions are made with a linear 

model: 
 The xs or independent variables are fixed and known 

with certainty. 
 The residuals are independent with mean zero and 

constant variance. 
When both X and Y are measured with error, this is called 
error-in-variables (EIV) regression, which will be dealt with 
in a later section. When x is not fixed, but random and X 
and Y have a joint random distribution, this is referred to as 
conditional regression, and will also be dealt with later in 
the chapter. When the residual’s have nonconstant variance, 
this is referred to as heteroscedasticity, which will be dealt 
with in later chapters. Under OLS assumptions, the fitted 
regression line has the following properties: 
 1.  The sum of the residuals equals zero. 
 2. The sum of the squared residuals is a minimum 

(hence least squares). 
 3. The sum of the observed Y values equals the sum 

of the predicted Y values. 
 4. The regression line always goes through the point 

( , )x Y . 

Also under OLS assumptions, the regression parameter 
estimates have a number of optimal properties. First, ̂  is 
an unbiased estimator for θ. Second, the standard error of  
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the estimates are at a minimum, i.e., the standard error of 
the estimates will be larger than the OLS estimates given 
any other assumptions. Third, assuming the errors to be 
normally distributed, the OLS estimates are also the 
maximum likelihood (ML) estimates for θ (see below). It is 
often stated that the OLS parameter estimates are best linear 
unbiased predictors (BLUE) in the sense that “best” means 
“minimum variance.” Fourth, OLS estimates are consistent, 
which in simple terms means that as the sample size 
increases the standard error of the estimate decreases and 
the bias of the parameter estimates themselves decreases.  

Maximum Likelihood Estimation of Parameters 
in a Simple Linear Model 

Let ˆˆ( , )Y x  be the vector of predicted values for Y. 

When the errors are normally distributed the likelihood 
function is given by 
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The log-likelihood function is the logarithm of the 
likelihood and is given by 
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To find the maximum likelihood estimates for θ and σ2 the 
log-likelihood must be concentrated with respect to σ2. 
After concentrating the log-likelihood, differentiate with 
respect to σ2, set the derivative equal to zero, solve for σ2, 
and substitute the result back into (19). The concentrated 
log-likelihood is then maximized with respect to θ. 

Differentiating with respect to σ2 and setting the 
derivative equal to zero leads to 
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Solving for 2 leads to 
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where σ2(θ) denotes the dependence of σ2 on θ. Substituting 
back into (19) leads to 
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The middle term in (22) is a function of the residual sum of 
squares. The first and last terms are constants. Only the 
middle term in the equation matters for maximization. By 
minimizing the negative of (22) (which is equivalent to 
maximizing the log-likelihood function) the maximum 
likelihood estimate of θ, which is equivalent to the OLS 
solution, is found. Once θ is found, the maximum likelihood 
estimate of σ2 can be found, although the estimate is biased 
since the choice of denominator (n for maximum likelihood  
 

and n  p for least squares) is different. The same result can 
be obtained if the likelihood is concentrated with respect to 
θ first. 

The fact that the same result was obtained with the 
OLS estimates is dependent on the assumption of normality 
and that the residual variance does not depend on the model 
parameters. Different assumptions or a variance model that 
depends on the value of the observation would lead to 
different ML estimates. Least squares estimates focus 
completely on the structural model in finding the best 
parameter estimates. However, ML estimates are a 
compromise between finding a good fit to both the 
structural model and the variance model. ML estimates are 
desirable because they have the following properties 
(among others): 
 1.  They are asymptotically unbiased. 
 2.  Asymptotically they have minimum variance. 
 3.  They are scale invariant. 
For more on the properties and derivation of likelihood 
functions, the reader is referred to the Appendix given at 
the end of the book. 

Precision and Inference of the Parameter Estimates for 
the Simple Linear Model 

Under normal theory assumptions on the residuals, i.e., 

ε ~ N(0, σ2), a (1  α)100% confidence interval for ˆ
j  can 

be computed from 
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where t is Student’s two-tailed t-distribution with n  p 
degrees of freedom. A corresponding test for whether a 
model parameter equals zero (null hypothesis). 

oH : 0j   

vs. the alternative hypothesis that the parameter does not 
equal zero 

aH : 0   

can be made from the (1α)100% confidence interval. If the 
(1α)100% confidence interval does not contain zero, the 
null hypothesis is rejected at level α. Similarly, an 
equivalent T-test can be developed where 
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where ABS(·) is the absolute value function. If T is greater 
than Student’s two-tailed t-distribution with n  p degrees 
of freedom, then the null hypothesis is rejected. Both the 
confidence interval approach and the T-test approach 
produce equivalent results. This latter approach is 
sometimes referred to as a T-test. For larger sample sizes, 
the T-test is replaced by a Z-test based on a N(0,1) 
distribution. For this book, the T-test and Z-test will be used 
interchangeably. 

If θj is the slope and the null hypothesis is rejected, 

then there is evidence to suggest that x affects Y in a linear 
manner. However, it is unwise to read too much into the  
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rejection of the null hypothesis for the slope because 
rejection simply states that there is a trend in the data and 

speaks nothing to the quality of the fit. θj may be rejected 

but the quality of the regression line is poor, i.e., the model 
does a poor job at explaining the data. Also, rejection of the 
null hypothesis says nothing about the ability to predict 
future observations. 

 
Regression Through the Origin 

Sometimes the regression model is linear and is known 
to go through the origin at the point (0,0). An example may 
be the regression of dose against area under the curve 
(AUC). Obviously, when the dose of the administered drug 
is zero then the AUC should be zero as well. In this case, x 
becomes a n  1 matrix of predictor variables with the 
column of ones removed and for the SLR model, the model 
reduces to Y = θ1x + ε. The solution to the SLR model is 
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with variance estimate 
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Regression through the origin is presented here because of a 
number of peculiarities to the model, some of which may be 
unfamiliar to pharmacokineticists. First, the residuals may 
not necessarily sum to zero and a residual plot may not fall 

around the zero line. But 
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  and, thus, a residual 

plot using xiei, instead of ei, may be of more use. Second, it 
may be possible for the coefficient of determination to be 
negative because sometimes the residual sum of squares 
may be greater than the total sum of squares, an event that 
may occur if the data are curvilinear. Hence, the coefficient 
of determination is a meaningless statistic under this model. 
Third, confidence intervals for predicted values will 
increase in range as x0, the value to be predicted, becomes 
removed from the origin, as opposed to the confidence 
intervals typically seen with SLR. Neter et al. (1996) 
suggest that using a regression through the origin model is 
not “safe practice,” that an intercept model always be used. 
They argue that if the regression line does go through the 

origin, then θ0 will be very close to zero using an intercept 

model, differing only by a small sampling error, and unless 
the sample size is small there will be no deleterious effects 
in using an intercept model. But if the regression line does 
not go through the origin and a no-intercept model is used, 
the resulting model may be quite biased. 

An example of a model that perhaps should have used a 
no-intercept model is the so-called Calvert formula used to 
dose carboplatin, a platinum-containing oncolytic agent used 
to treat a wide range of tumors. Carboplatin is primarily 
excreted through the kidney by filtration. Calvert et al. (1989) 
 
 

developed a semimechanistic model from 18 adult patients to 
dose carboplatin. Since clearance (CL) is the ratio of dose to 
AUC then 
 Dose CL AUC.   (27) 
Using linear regression the authors estimated that 
 CL in mL/min 1.21 GFR in mL/min 23    (28) 

where GFR is the glomerular filtration rate for the patient 
estimated using 51Cr-EDTA clearance. Hence, a suitable 
dosing equation (after rounding) was 
Dose in mg (1.2 GFR in mL/min 20) AUCin mg/(mL min),     (29) 

where the target AUC was 3 mg min/mL. However, a quick 
examination of their parameter estimates shows that the 
standard error associated with the intercept was 16. A T-test 
for this parameter was 1.44 with a corresponding p-value of 
0.39. Also, examination of Fig. 1 hows that the

carboplatin CL crosses the ordinate when GFR equals zero. 
The authors interpreted the intercept as the degree of 
nonrenal elimination, but the intercept in this example was 
not statistically different from zero and by all accounts 
should have been removed from the model and a no-
intercept model used instead. Perhaps the authors are 
correct and the intercept does reflect nonrenal clearance and 
that with a larger sample size the standard error of the 
intercept will be reduced making its estimation more 
precise. Based on the data at hand, however, a no-intercept 
model appeared to be more appropriate in this case. This 
issue will be revisited in the chapter on “Case Studies in 
Linear and Nonlinear Regression,” when a similar equation 
will be developed in children. 

Goodness of Fit Tests for the Simple Linear Model 
As just mentioned, the T-test tests the significance of a 

particular parameter estimate. What is really needed is also 
a test of the overall significance of a model. To start, the 
total sum of squares of the observed data, SStotal, is 
partitioned into a component due to regression, SSregression, 
and a component due to residual, unexplained error, SSE, 
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Equation (30) can be seen conceptually as 
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Equally, terms on the right-hand side of (30) can be viewed 
as variability due to the regression line and variability 
around the regression line. Clearly, a good model is one 
where SSregression >> SSE. Assuming that the residuals are 
independent and normally distributed with mean 0 and 
variance σ2, a F-test can be computed to test the null 
hypothesis that θ = 0, 

in the paper s
95% confidence interval for the regression of GFR against 
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 regression regression[SS /1] SS
.

[SSE / ( )] MSE
F

n p
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Under the null hypothesis, F is distributed as an F-
distribution with p, n  p degrees of freedom. If F > Fp, np,α 
the null hypothesis is rejected. This is called the analysis of 
variance approach to regression. The power of this 
approach comes in when multiple covariates are available 
(see “Multiple Linear Regression” section later in this 
chapter). The F-test then becomes an overall test of the 
“significance” of the regression model. 

One of the most commonly used yardsticks to evaluate 
the goodness of fit of the model, the coefficient of 
determination (R2), develops from the analysis of variance of 
the regression model. If SStotal is the total sum of squares then 

 regression2

total

SS
.

SS
R   (33) 

The correlation coefficient is the square root of R2. These 
metrics have been discussed in greater detail in the previous 
chapter. 

Prediction and Extrapolation in the Simple Linear 
Model 

The goal of regression analysis is usually twofold. 
First, a model is needed to explain the data. Second, using 
the model, predictions about mean responses or future 
observations may be needed. The distinction between mean 
responses and future observations must be clarified. Mean 
responses are based on already observed data. Future 
observations are unobserved. The confidence interval for a 
future observation should be wider than that of a mean 
response because of the additional uncertainty in future 
observations compared to the known observation. Now, let 

0
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x0 is 
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The standard error for 
0

ˆ( )Y x  is interpreted as the standard 

error the mean response conditional on x0. Thus, the 
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and using the estimate for σ2, the estimated standard error 
of prediction is 
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with a corresponding (1  α)100% confidence interval 
given by 
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Note that the standard error of prediction is not a constant 
for all values of x0 but reflects where x0 is collected in 
relation to the mean. Observations removed from the mean  
 

of x will have larger standard errors of prediction than 
values close to the mean. Equation (37) is developed as the 
confidence interval for a single observation measured at x0. 
If more than one observation is observed at x0, the term 1/n 
in (36) and (37) is substituted with the term m/n, where m is 
the number of observations at x0. Note that m is contained 
within n. If the confidence interval is made for all points on 
the regression line, the result would be a confidence band. 

The confidence interval for a future response, one not 
in the original data set, must be more variable due to the 
additional uncertainty in its measurement. Thus, (36) is 
modified to 
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where m is the number of future observations to be 
collected. The corresponding prediction interval is 
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Clearly prediction intervals are wider than corresponding 
confidence intervals.  

To illustrate further the distinction between confidence 
intervals for mean responses and prediction intervals for 
future observations, consider allometric scaling. In allometric 
scaling, the systemic clearance or volume of distribution is 
calculated for many different species, usually mouse, rat,  
and dog. A regression line of the log-transformed 
pharmacokinetic parameter is regressed against the log-
transformed weight. One may then ask “What is the 95% 
confidence interval for clearance in the rat?” This is an 
example of confidence interval using (37). Next, someone 
may ask “If 10 rats were taken from the population, what is 
the 95% confidence interval for clearance in the rat?” This is 
another example of a confidence interval using (37) with the 
term 1/n replaced by 1/10. Then, someone may ask “What is 
the 95% prediction interval for clearance in a guinea pig?” 
This is an example of a prediction interval using (39) 
because guinea pigs were not in the original population. A 
similar question can be asked about humans – what is the 
clearance in humans given a dataset based entirely on animal 
data. This approach, called prospective allometric scaling, is 
often used in choosing the starting dose for a new drug in a 
first time in man study. Bonate and Howard (2000) argue that 
prospective allometric scaling can lead to unreasonably large 
confidence intervals because the extrapolation from animals to 
humans, based on body weight, is tremendous and that using 
this approach in practice should be done with great care. A 
further example of allometric scaling is presented in the 
chapter on “Case Studies in Linear and Nonlinear Modeling.” 

An amusing report of extrapolation, and the pitfalls 
thereof, is presented by Tatem et al. in the journal Nature. 
The authors plotted the winning times of the men’s and 
women’s Olympic 100 m finals for the past 100 years. A 
linear model was able to adequately describe the relationship 
for both males and females. In both cases, males and females  
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are getting faster over time. In 1932, males and females had a 
finish time of 10.3 and 11.9 s, respectively. By 2000, the 
times had decreased to 9.85 and 10.75 s, respectively. 
Females, however, are improving at a faster rate than males, 
and the authors speculated that “should these trends continue, 
the projections will intersect at the 2156 Olympics, when – 
for the first time ever – the winning women’s 100 m sprint 
time of 8.079 s will be lower than the men’s winning time of 
8.098 s” (Fig. 2). The authors themselves question whether 
the trend will indeed continue but it is nevertheless an 

An even more amusing example of extrapolation was 
reported by Mark Twain in 1874. He said 

In the space of one hundred and seventy six years the 
Lower Mississippi has shortened itself two hundred and 
forty-two miles. That is an average of a trifle over a mile 
and a third per year. Therefore, any calm person, who is not 
blind or idiotic, can see that in the Old Oölitic Silurian 
Period, just a million years ago next November, the Lower 
Mississippi was upwards of one million three hundred 
thousand miles long, and stuck out over the Gulf of Mexico 
like a fishing-pole. And by the same token any person can 
see that seven hundred and forty-two years from now the 
Lower Mississippi will be only a mile and three-quarters 
long, and Cairo [Illinois] and New Orleans will have joined 
their streets together and be plodding comfortably along 
under a single mayor and a mutual board of aldermen. 
There is something fascinating about science. One gets such 
wholesale returns of conjecture out of such a trifling 
investment of fact. 

Both of the Olympics example and Twain’s quote 
illustrate the risks one takes when extrapolating. In both 
cases, the results lead to an absurd result, although to be fair, 
the Olympics example may indeed come true. While making 
predictions outside the bounds of an observed dataset has its 
uses, blind extrapolation needs to be cautioned against. 
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Fig. 2 Plot of winning 100 m sprint times in the Olympics for 
males (open circles) and females (closed squares), superimposed 
with the linear regression lines, for the twentieth century 

Categorical Independent Variables 
Up until now it has been assumed that x consists of 

continuous variables. OLS is not predicated on x being 
continuous, although this makes it convenient to explain the 
model. An extremely important data type is a categorical 
variable where the variable of interest takes on discrete 
values. These variables are also called factors or class 
variables. For instance, whether a person is considered a 
smoker can be coded as either “yes” or “no.” The variable 
race may take on the values: White, Black, Asian, or 
Hispanic. These variables must enter the model through 
what are called dummy variables or indicator variables 
which are themselves categorical variables that take on the 
value of either 0 or 1. If there are k levels in the categorical 
variable, then k  1 dummy variables are need to uniquely 
define that variable. For example, the variable smoker has 
two levels and thus needs a single dummy variable (0 or 1) 
to define that variable.  

In general, there are three different types of coding 
dummy variables for nominal variables. One is reference 
cell coding, which is the most common, where one category 
serves as the reference cell (such as a placebo group) and 
all other categories are interpreted relative to the reference 
cell (such as active treatment groups). For example, 
suppose the categorical variable race has four levels: 
White, Black, Hispanic, and Other. Three dummy variables 
(D1 – D3) are needed to uniquely define that variable. In 
reference cell coding, using White as the reference cell, the 
categories can be defined as: 

 
 Dummy variables 
Variable: race D1 D2 D3 
White 0 0 0 
Black 1 0 0 
Asian 0 1 0 
Hispanic 0 0 1 
 
Another type of coding is deviation from the means 

coding whereby the contrast compares the “group mean” 
from the “overall mean.” This coding is accomplished by 
setting all the design variables equal to 1 for one of the 
groups and then coding the other groups as 0 or 1. So, 
returning to the race example, the deviation from the mean 
coding schema is: 

 
 Dummy variables 
Variable: race D1 D2 D3 
White –1 –1 –1 
Black 1 0 0 
Asian 0 1 0 
Hispanic 0 0 1 
 
A modification of reference cell coding is incremental 

effects coding, where one group is the reference and all 
other categories are coded as increments from the prior 
group. So the design matrix in the race example would be 

 

amusing example of extrapolation. 
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 Dummy variables 
Variable: race D1 D2 D3 
White 1 0 0 
Black 1 0 1 
Asian 1 1 0 
Hispanic 1 1 1 
 
Lastly, if the categorical variable is ordinal then 

orthogonal polynomials, which are typically used to assess 
trends in the analysis of variance models, could be used to 
code the design matrix. The advantage of orthogonal 
polynomials is that they provide a test for whether the logit 
has a significant linear, quadratic, cubic, etc. component. 
So, suppose that weight was categorized into four variables. 
The design matrix could be coded as: 

 
 Dummy variables 
Variable: weight D1 D2 D3 
70 kg or lower –0.67 0.5 –0.22 
70 – 80 kg –0.22 –0.5 0.67 
80 – 90 kg 0.22 –0.5 –0.67 
90 kg or higher 0.67 0.5 0.22 
 

If the coefficient associated with D1 were statistically 
significant based on a T-test or Wald’s test then this would 
be indicative of a linear trend. If D2 were significant, this 
would be indicative of a quadratic trend and so on. 

The presence of a dummy variable results in a shift in 
the regression through its effect on the intercept (Fig. 3). 
The difference between the regression lines is an indication 
of the difference between the levels of the variable 
assuming that the regression coefficients for the continuous 
variables across classes remain constant among the factor 
levels. Also, note that the inferential statistics on the 
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Fig. 3 Plot of regression line for a single categorical covariate 
(sex) with two levels (males and females). The effect of the 
categorical variable is to shift the model intercept 

regression parameters, even the regression estimates 
themselves, are independent of how the factor levels are 
coded. For instance, with variable sex it makes no 
difference whether “males” are coded as 0 or 1 as long as 
“females” are coded 1 or 0, respectively. 

Multiple Linear Regression 
Rarely in a single experiment is one dependent variable 

and one independent variable collected. More often, many 
dependent variables and many independent variables are 
collected. Then, a scientist may wish to use the independent 
variables to explain a particular dependent variable. For 
example, suppose from a population pharmacokinetic 
analysis (which will be discussed in later chapters) total 
systemic clearance (CL) was estimated in a group of 
subjects. Also available were demographic information, 
such as age, weight, and smoking status. Of interest would 
be whether any of the demographic variables were related 
to clearance. It may be that smokers have higher clearance 
estimates than nonsmokers and require more drug to 
achieve the same therapeutic effect.  

In this case, multiple linear regression may be used to 
determine the significance of the demographic variables, 
which are often called covariates. The model may then be 
formulated as 
 

0 1 2 3CL Weight Age Smoker .          (40) 

As in SLR, the same assumptions are made: εi is normally 
distributed, uncorrelated with each other and have mean 
zero with variance σ2. In addition, the covariates are 
measured without error. In matrix notation then, the general 
linear model can be written as 
 ,Y x    (41) 
with solution 

 T 1 Tˆ ( ) .x x x Y   (42) 

In this case, x is a n  (k + 1) matrix of independent 
variables where the first column of the matrix is a column 
of ones, which is necessary for inclusion of the intercept in 
the model, and k is the number of independent variables. An 
estimate of MSE is obtained by 

 
2T

1
ˆˆ ˆ ( )( ) ( )

MSE ,

n

i
Y xY x Y x

n p n p

  
 

 
 

  (43) 

which is exactly the same as (17), but written in matrix 
notation. The standard error of the parameter estimates is 
calculated by 

 1ˆSE( ) diag( ) MSETx x   (44) 

where diag(·) is the diagonal elements of xTx. Similarly, T-
tests and confidence intervals for the parameter estimates 
can be calculated using (24) and (23), respectively. 
(1  α)100% confidence intervals for mean responses can 
be computed from 

 T T 1
0 /2, o 0

ˆ( ) MSE[ ( ) ],n pY x t x x x x


  (45) 

and (1  α)100% prediction intervals for future responses 
can be calculated from  
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 T T 1
0 /2, o 0

ˆ( ) MSE[1 ( ) ],n pY x t x x x x


   (46) 

Similarly, a (1  α)100% confidence band for the response 
function at any x can be developed using 

 T T 1
, ,

ˆ MSE[1 ( ) ] .p n px x x x x F p 
   (47) 

Confidence bands differ from confidence intervals in that 
they consider all the values of x simultaneously, as opposed 
to a single value x0. Confidence bands are larger than 
confidence intervals. 

Model Selection and Sequential Variable Selection 
Procedures in Multiple Linear Regression 

Even though many different covariates may be collected 
in an experiment, it may not be desirable to enter all these in 
a multiple regression model. First, not all covariates may be 
statistically significant – they have no predictive power. 
Second, a model with too many covariates produces models 
that have variances, e.g., standard errors, residual errors, etc. 
that are larger than simpler models. On the other hand, too 
few covariates lead to models with biased parameter 
estimates, mean square error, and predictive capabilities. As 
previously stated, model selection should follow Occam’s 
Razor, which basically states “the simpler model is always 
chosen over more complex models.”  

To strike the proper balance between an over-
parameterized model and an underparameterized model, 
one must strike a balance between a biased model and an 
overinflated variance model. Mallows (1973) proposed his 
Cp criterion which is defined as 

 
*

*SSE
( 2 ),

MSEpC n p    (48) 

where SSE* is the sum of squares error from the model 
containing p* parameters, where p* ≤ p. When p* = p, then 
Cp = p. For example, if a model with four possible 
covariates is examined, the submodel with covariates  
{x1, x2} becomes 

 1 2SSE( , )
( 6).

MSEp

x x
C n    (49) 

When there is no bias in the model, the expected value of Cp 
is p*, the number of parameters in the model. Thus, when Cp 
is plotted against p*, models with little bias will fall near the 

line Cp ≅ p*. Models with substantial bias will have Cp 

values greater than the line. In using Mallow Cp as a model 
selection criterion one chooses a Cp that is small and near p*. 

One way to identify important predictor variables in a 
multiple regression setting is to do all possible regressions 
and choose the model based on some criteria, usually the 
coefficient of determination, adjusted coefficient of 
determination, or Mallows Cp. With this approach, a few 
candidate models are identified and then further explored 
for residual analysis, collinearity diagnostics, leverage 
analysis, etc. While useful, this method is rarely seen in the 
literature and cannot be advocated because the method is a 

“dummy-ing down” of the modeling process – the method 
relies too much on blind usage of the computer to solve a 
problem that should be left up to the modeler to solve. 

Related to all possible regressions, a variety of 
automated algorithms have been developed to screen a 
large number of covariates in a multiple regression setting 
and select the “best” model. Forward selection algorithms 
begin with no covariates in the model. Each covariate is 
then screened using SLR. F-tests are then calculated 
reflecting each covariate’s contribution to the model when 
that covariate is included in the model. These F-tests are 
then compared to a significance level criteria (Fin) set by 
the user a priori and if the F-tests meets Fin the covariate is 
included in the model. At each step only one covariate is 
added to the model – that covariate having the highest 
contribution to the F-test. For example, suppose {x1, x2, x3, 
x4} were possible covariates and using SLR x3 was found to 
be the most significant covariate based on the F-test. The 
next step then compares the models {x1, x3}, {x2, x3}, and 
{x3, x4}. The contribution x1, x2, and x4 make to their 
respective models is then compared and the covariate 
having the highest contribution is compared to Fin. The new 
variable is then added to the model if that F-test meets

x1, then
x1, x3, x2} and {x1, x3, x4}.

Backward elimination is similar to forward selection, 
except that the initial model contains all the covariates and 
removal from the model starts with the covariate of the least 
significance. Removal from the model then proceeds one 
variable at a time until no covariates meet the criteria for 
removal (Fout). Stepwise regression is a blend of both 
forward and backward selection in that variables can be 
added or removed from the model at each stage. Thus, a 
variable may be added and a variable may be removed in 
the same step. The algorithm quits when no additional 
covariates can be added on the basis of Fin and no 
covariates can be removed on the basis of Fout. 

The problem with using all possible regressions or 
sequential methods is that they lead to the “dumbing down” 
of statistical analysis. The user plugs in some data and the 
computer spits out a “best model.” Simply because a 
software manufacturer includes an algorithm in a package 
does not mean it should be used. Scientific judgment must 
play a role in covariate selection and model selection. 
Explanatory covariates should be based on physiological or 
physical sense. As an example, suppose volume of distribution 
were screened against clinical chemistry laboratories and 
inorganic phosphate was identified as a significant 
covariate. How does one interpret this? It is better to use a 
priori covariates that make sense in the model and then 
build on that model. As a rule, sequential variable selection 
procedures and all possible regressions should be used  
with caution. Harrell presents some very valid criticisms of

the entry criteria. If in this case, that variable was 
the next models tested will be {
This process repeats until no further variables are available
or until the model with the highest contribution does not
meet the entry criteria, at which point the algorithm stops. 
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stepwise regression and all possible subsets regression. 
They are: 
 1. The coefficient of determination is often biased 

high. 
 2. The F– and chi-squared distribution next to each 

variable do not have the prescribed theoretical 
distribution. 

 3. Confidence intervals for effects and predicted 
values are too narrow. 

 4. p-Values do not have the proper meaning anymore 
because of multiplicity. 

 5.  The regression coefficients are biased. 
 6.  The algorithm has problems with collinearity. 
 7. It is based on methods, i.e., F-tests for nested 

models, that were designed to test prespecified 
hypotheses. 

 8. Increasing the sample size does not improve 
things. 

 9. It is too easy to use and causes people to quit 
thinking about their problem. 

 10. It uses a lot of paper. 
In summary, automated techniques should not be used 
blindly, even though they often are. 

Collinearity and Ill-Conditioning 
When multiple covariates are included in the regression 

model, the possibility for collinearity, which is sometimes 
called multicollinearity or ill-conditioning, among the 
predictors arises. The term collinear implies that there is 
correlation or linear dependencies among the independent 
variable. Entire books (Belsley et al. 1980) have been 
written on collinearity and all its nuances will not be 
discussed in its entirety here. Nevertheless, an analyst 
should at least understand what it is, how to detect it, and 
how to combat it.  

Collinearity is actually simple to understand, although 
there are complex geometric reasons for its effect on 
parameter estimation. Consider two variables x1 and x2 that 
are regressed against Y. Now suppose x1 and x2 are 
correlated to the extent that they essentially are the same 
thing. Thus, x2 does not provide any more information than 
x1 and vice versa. As the correlation between x1 and x2 
increases, it becomes more and more difficult to isolate the 
effect due to x1 from the effect due to x2, such that the 
parameter estimates become unstable. The bottom line is 
when collinearity exists among a set of predictors, the 
parameter estimates become extremely sensitive to small 
changes in the values of the predictors and are very much 
dependent on the particular data set that generated them. A 
new data set may generate completely different parameter 
estimates. Although collinearity is often due to correlation 
between variables, collinearity may be due to a few 
influential observations and not necessarily to the whole 
vector of data. Careful examination of the scatter plots 
between possible correlated variables should be done to 
rule out this cause of collinearity. 

Collinearity manifests itself during the inversion of the 
matrix xTx in (42), such that small changes in x lead to large 
changes in the parameter estimates and their standard 
errors. When the predictors are uncorrelated, the values of 
the parameter estimates remain unchanged regardless of 
any other predictor variables included in the model. When 
the predictors are correlated, the value of a regression 
parameter depends on which other parameters are entered 
into the model and which others are not, i.e., collinearity 
destroys the uniqueness of the parameter estimate. Thus, 
when collinearity is present a “regression coefficient does 
not reflect any inherent effect of the particular predictor 
variable on the response variable but only a marginal or 
partial effect, given whatever other correlated predictor 
variables are included in the model” (Neter et al. 1996). 
Correlation between predictor variables in and of itself does 
not mean that a good fit cannot be obtained nor that 
predictions of new observations are poorly inferred, 
provided the inferences are made within the sample space 
of the data set upon which the model was derived. What it 
means is that the estimated regression coefficients tend to 
widely vary from one data set to the next. 

There are a variety of methods to detect collinearity 
(Belsley et al. 1980). First, examine the parameter 
estimates. A priori variables that are expected to be 
important which are not found to be statistically significant 
is a clue that collinearity may be present. If the values of 
the parameters change drastically if a row of x or column of 
x is deleted (such as a sign change), that is another clue. 
Second, examine the various collinearity diagnostics, of 
which there are many, some of which are better than others. 
Keep in mind, however, that there are no definitive cut-off 
values indicating whether collinearity is present. 

The first simple diagnostic is to examine the 
correlation matrix of the covariates. High correlations, 
either positive or negative, are indicative of collinearity. 
However, the correlation matrix is sometimes unable to 
detect the situation where three or more covariates are 
collinear but no two correlations are high (Belsley et al. 
1980). Related to the inverse of the correlation matrix are 
variance inflation factors (VIF), calculated as 

 
2

1
VIF ,

1 iR



 (50) 

where 2
iR  is the coefficient of determination of xi regressed 

against all other x. The higher the coefficient of 
determination, the higher the VIF, and the greater the 
collinearity. Possible collinearity is present when the VIF is 
greater than 5 and multicollinearity is almost certainly 
occurring when the VIF is greater than 10. 

Another useful tool is to examine the eigenvalues of 
the xTx matrix, li. The number of eigenvalues near zero 
indicate the number of collinear covariates among the 
regressors. One of the most commonly used yardsticks to 
measure the degree of collinearity is the condition number 
(K), which can be calculated using many different methods. 



70 Pharmacokinetic-Pharmacodynamic Modeling and Simulation 

The first definition is simply the ratio of the largest to 
smallest eigenvalue 

 1 ,
p

l
K

l
  (51) 

where l1 and lp are the largest and smallest eigenvalues of 
the correlation matrix (Jackson 1991). The second way is to 
define K as 

 1 .
p

l
K

l
  (52) 

The latter method is often used simply because the 
condition numbers are smaller. The user should be aware 
how a software package computes a condition number. For 
instance, SAS uses (52). For this book (51) will be used as 
the definition of the condition number. Condition numbers 
range from 1, which indicates perfect stability, to infinity, 
which indicates perfect instability. As a rule of thumb, 
Log10(K) using (51) indicates the number of decimal places 
lost by a computer due to round-off errors due to matrix 
inversion. Most computers have about 16 decimal digits of 
accuracy and if the condition number is 104, then the result 
will be accurate to at most 12 (calculated as 16  4) decimal 
places of accuracy.  

It is difficult to find useful yardsticks in the literature 
about what constitutes a large condition number because 
many books have drastically different cut-offs. For this 
book, the following guidelines will be used. For a linear 
model, when the condition number is less than 104, no 
serious collinearity is present. When the condition number 
is between 104 and 106, moderate collinearity is present, 
and when the condition number exceeds 106, severe 
collinearity is present and the values of the parameter 
estimates are not to be trusted. The difficulty with the use 
of the condition number is that it fails to identify which 
columns are collinear and simply indicates that collinearity 
is present. If multicollinearity is present wherein a function 
of one or more columns is collinear with a function of one 
or more other columns, then the condition number will fail 
to identify that collinearity. See Belsley et al. (1980) for 
details on how to detect collinearity among sets of 
covariates. 

Collinearity may also be caused by poor scaling and/or 
near singularity of the xTx matrix. If the collinearity is due 
to scaling, then one simple way to remove the collinearity is 
by centering. Centering creates a new variable x* using 
 * ,ij ij ix x x   (53) 

where xij is the value of the jth row of the ith variable and 

ix  is the mean of the ith variable. An expansion of 

centering is standardizing the covariates which is done 
using 

 ,ij i

i

x x

s


*

ijx  (54) 

where si is the standard deviation of the ith variable. After 
centering, x* has zero mean with the same variance as the  
 

original data. After standardization, x* has zero mean and 
variance 1, which forces approximate orthogonality 
between the covariates. A third method is scaling where 
each observation is divided by a column-dependent 
constant, such as the mean, making each column 
approximately the same scale.  

For example, suppose with the linear model 
 

0 1 1 2 2Y x x      (55) 

with corresponding xTx matrix 

 T

8 117 3607

2251 58112 .

1861257

x x

 
   
  

 (56) 

The condition number of xTx is 1.92  105, which is quite 
ill-conditioned. The model could be centered on the mean 
of 15 and 450, respectively,  
 * * *

0 1 1 2 2( 15) ( 450)Y x x        (57) 

with corresponding xTx matrix 

 T

8 3 7

541 5357

234957

x x

 
   
  

 (58) 

and condition number 29,475, a 65-fold reduction over the 
original model. The “*” superscript in (57) denotes that the 
parameter estimates are not the same as those in (55). Or 
the model could be scaled to its mean  

 
* *

* 1 1 2 2
0 .

15 450

x x
Y

 
    (59) 

Then 

 T

8.0 7.8 8.0

10.0 8.6 .

9.2

x x

 
   
  

 (60) 

and the condition number becomes 47, a 40,000-fold 
reduction from the original condition number. In the 
original domain, inverting xTx would lead to a loss of about 
six decimals of precision on a double-precision computer, 
but inversion after transformation would lead to only a 2 
decimal loss in precision. Lastly, the model could be 
standardized 

 
* *

* 1 1 2 2
0

( 15) ( 450)

8.78 183.21

x x
Y

 


 
    (61) 

with xTx matrix 

 T

8.00 0.34 0.038

7.02 3.33

7.00

x x

 
   
  

 (62) 

and corresponding condition number of 2.83, a 682,000-
fold reduction over the original condition number. Less 
than 1 decimal loss of precision would occur after 
standardization. It makes little difference whether centering 
or standardizing with the mean or median, except that these 
estimates tend to be study specific. A more robust method 
of centering would be to use a consistent value across all  
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studies and all drugs (Holford 1996). For example, all BSA 
values would be centered by 1.7 m2, weight by 70 kg, age 
by 40 years (70 years for elderly studies), 7.5 L/h for 
creatinine clearance, etc. In this manner, parameter 
estimates can be compared across studies making them 
more relevant. 

One advantage of centering over standardization or 
scaling is that the parameter estimates associated with x are 
the same as the original data. The only difference being the 
estimate of the intercept. However, since centering only 
transforms the data to have the same mean, the variance of 
the columns of x may still be of differing magnitudes. Even 
after centering, ill-conditioning may still be present. Scaling 
presents the opposite problem. After scaling, the variance 
of the columns of x may be of the same magnitude but the 
means may be vastly different. Hence, ill-conditioning may 
still be present after scaling. Only standardization transforms 
the data to the same mean and variance and from a purely 
numeric point of view is the method of choice. However, 
with standardization and scaling the parameter estimates 
obtained from the transformed data are not the same as the 
original data and must be transformed back to the original 
domain should one wish to interpret the parameter 
estimates. A disadvantage of transforming the predictor 
variables to the same scale is that the transformation does 
not always cure ill-conditioning. For example, centering 
will not prevent loss of numerical accuracy if any of the 
predictor variables are correlated with the model intercept 
(Simon and Lesage 1988). 

A fourth method to remove the collinearity is by 
transforming the collinear variables into another variable 
and use that variable as a surrogate. For example, height 
and weight are often highly correlated and can be combined 
into a composite variable called body surface area (BSA), 
which is a measure of the overall surface area on an 
individual. There are a number of different measures to 
compute BSA, but a common one is based on the height 
and weight on an individual 
 0.51456 0.42246BSA 0.0235(Weight) (Height) ,  (63) 

where BSA is in m2, weight is in kg, and height is in cm 
(Gehan and George 1970). As an example, consider the 
data in Table 1. Apparent oral clearance was obtained from 
65 individuals. Height and weight were collected on all 
subjects. Both height (Pearson’s r: 0.2219, p = 0.0757) and 
weight (Pearson’s r: 0.4684, p < 0.0001) were marginally 
correlated with clearance (see Fig. 4). Height and weight 
had a better correlation with each other (Pearson’s r: 
0.6038, p < 0.0001) than with clearance. The SAS output 
from the regression analysis is presented in Table 2. 

When height and weight were included in the models 
alone, they were both positively related to clearance 
(p < 0.10). When both variables were included in the model, 
height showed a sign change and now has a negative 
relationship with clearance. This is the first warning sign 
that something is wrong. The eigenvalues of xTx were {2.99, 
0.00854, 0.000939}. The condition number of the model 
 

with both covariates was 3,185, which is not exceedingly 
large, but nevertheless indicated that the resulting inverted 
matrix lost three to four decimal places during large. But, 
there were two eigenvalues near zero indicating that two 
variables were collinear. When BSA was used as the sole 
covariate, the coefficient of determination was slightly 
smaller than using weight alone, but far better than height. 
A further refinement in the model might be one where the 
intercept is removed from the model since the 90% 
confidence interval for the intercept included zero. In 
summary, when the covariates were regressed alone they 
both were statistically significant as predictor variables for 
clearance. But when entered together, collinearity among 
predictors occurred and the effect of height became 
opposite what was expected.  

Sometimes, even after rescaling, when the xTx matrix is 
still ill-conditioned, then either ridge regression or principal 
components regression may be necessary. Briefly, in ridge 
regression a small constant (k) is added to the xTx matrix 
prior to inversion so as to stabilize the matrix. Hence, the 
estimator for θ becomes 

 T 1 Tˆ ( ) ,x x x kI x Y    (64) 

where I is the identity matrix. The choice of the constant 
must be chosen with care because the resulting parameter 
estimates become biased to some degree. However, the 
reduction in the variance of the estimators may be greater 
than the resulting increase in bias such that the trade-off is 
of merit.  

Principal components regression is another biased 
regression technique but when done successfully is superior 
to OLS in terms of prediction and estimation. Principal 
components (PC) are linear transformations of the original 
variables such that each PC is orthogonal or uncorrelated to 
the others (Jackson 1991). There will be k principal 
components if there are k variables. Of these k principal 
components, j(j < k) components may contain most of the 
“information” contained in k. Thus, regression of the j 
principal components, instead of the original k variables, 
may be used for regression. The predicted values can then 
be back-transformed to the original domain for prediction. 
The reader should see Neter et al. (1996) for further details 
of these algorithms. 

Influence Diagnostics 
Frequently, data contain samples that are different from 

the bulk of the remaining data, i.e., these observations may 
be outliers. Outliers may arise from improper recording of 
data, assay error (both random and systematic), choice of an 
invalid model, or may not be outliers at all, but are in fact 
legitimate data points. Residual analysis is a tool to assess the 
fit of a model. Although useful, it fails to provide information 
on how individual observations may affect the parameter 
estimates or their standard errors. As most modelers have 
seen, a single observation may have a dramatic influence on 
the estimation of the relationship   between  Y and x.  Similarly, 
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Fig. 4 Correlation plot of data in Table 1. Top plot is clearance 
against weight. Middle plot is height against clearance and 
bottom plot is weight against height. Solid line is least squares fit 
to the data. All three plots show evidence for a linear 
relationship between the respective variables 

 

Table 1 

Clearance, weight, and height estimates from 65 subjects 

Clearance 
(mL/min) 

Weight 
(lb.) 

Height 
(in.) 

Clearance 
(mL/min) 

Weight 
(lb.) 

Height 
(in.) 

62,612 124.5 67.7 51,530 117.2 66.4 

54,951 136.5 65.1 55,333 142.4 65.1 

54,897 140.7 68.6 48,292 115.0 66.5 

55,823 148.8 65.2 51,453 143.9 69.5 

68,916 185.1 70.8 56,779 122.5 70.2 

74,333 185.7 70.5 56,346 145.6 71.1 

62,203 143.4 71.9 58,239 168.9 72.6 

40,359 126.7 67.5 64,677 182.0 67.9 

51,205 134.5 66.8 67,045 167.8 71.1 

57,108 151.8 67.2 51,764 140.0 71.7 

51,574 131.2 60.2 69,917 165.1 74.6 

49,579 127.6 63.4 38,738 107.4 63.7 

62,450 152.5 75.6 59,912 132.2 66.3 

49,879 144.6 68.6 53,475 134.4 67.6 

53,818 161.5 73.6 51,197 154.2 72.4 

53,417 155.8 71.9 55,603 149.6 72.4 

65,510 171.0 72.6 53,013 123.0 70.7 

45,320 114.5 65.5 63,697 155.0 76.4 

53,174 128.4 67.0 71,911 137.8 65.8 

56,905 131.1 65.9 52,606 138.2 71.1 

67,193 145.6 68.6 45,523 153.3 73.9 

48,135 146.9 71.4 54,643 157.6 72.6 

53,952 104.8 65.1 55,699 135.7 65.9 

51,145 147.0 67.3 51,787 132.1 73.6 

58,154 173.1 74.5 59,247 140.9 69.8 

51,574 141.0 71.4 56,044 141.9 68.7 

59,407 144.5 70.6 47,898 134.8 72.9 

69,394 145.4 71.4 45,694 152.0 70.2 

60,276 167.0 72.3 41,664 116.2 66.3 

50,626 126.8 67.2 53,827 130.6 70.2 

37,266 128.1 72.5 57,166 141.7 74.2 

52,343 120.6 65.5 50,248 147.1 70.5 

43,509 149.9 70.4    
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Table 2 

SAS output from regression analysis of Table 1 using clearance as the dependent variable 

Both Variables 
                 Parameter      Standard     T for H0:                    Variance 
Variable  df      estimate         error   parameter=0    Prob > |T|     inflation 
Intercept  1         34810  17179.538954         2.026        0.0470    0.00000000 
Height     1   -278.561305  290.86043976        -0.958        0.3419    1.44322425 
Weight     1    277.806275   54.70976093         5.078        0.0001    1.44322425 
 
                                 Collinearity Diagnostics 
 
                     Condition      Var Prop   Var Prop   Var Prop 
Number  Eigenvalue       Indexa     Intercept     Height     Weight 
     1     2.99052     1.00000        0.0002     0.0002     0.0012 
     2     0.00854    18.70927        0.0690     0.0152     0.7982 
     3   0.0009391    56.43213        0.9308     0.9846     0.2006 
 

Height only 
 
                 Parameter      Standard     T for H0: 
Variable  df      Estimate         Error   Parameter=0    Prob > |T| 
Intercept  1         17537  19877.615084         0.882        0.3810 
Height     1    539.916181  285.79575217         1.889        0.0635 
 

Weight only 
                 Parameter      Standard     T for H0: 
Variable  df      estimate         error   Parameter=0    Prob > |T| 
Intercept  1         19595 6,535.0993235         2.998        0.0039 
Weight     1    248.769673   45.51058177         5.466        0.0001 
 

BSA only 
                     Parameter       Standard 
Variable     df       estimate          error    t Value    Pr > |t| 
Intercept     1    1,695.00446          10848       0.16      0.8763 
BSA           1          30090    6,100.33895       4.93      <.0001 
aDenotes that the condition index reported by SAS is calculated using (52) and is the square root of the condition 
number otherwise used throughout this book 

deleting a single observation in a nonlinear model may 
result in convergence, whereas inclusion of the data point 
may not. An observation which individually, or together 
with other observations, has a larger impact on a 
parameter estimate, such as the slope, its standard error, 
or associated T-test, than other observations is said to be 
influential. Influence diagnostics provide rational, 
objective measures to assess the impact individual data 
points have on the regression coefficients and their 
standard errors. Thus, by using influence diagnostics a 
modeler can have an impartial measure by which to either 
remove a data point from an analysis or weight that data 
point sufficiently so as to force it to have equal influence 
as other observations in the data set. 

The purpose of this section is to provide a primer on 
influence diagnostics with the ultimate hope being that 
more rational decision making rules will be used before 
discarding data points from an analysis and greater use of 
influence diagnostics will result in their incorporation in 
pharmacokinetic software packages (something that is 
definitely lacking at this time). The reader is referred to 
Belsley et al. (1980) or Neter et al. (1996) for further in-
depth discussion on using influence diagnostics. 

Influence in the x-direction 
Although most are familiar with the influence a 

discordant observation in the Y-direction has on parameter 
estimation, the independent variables themselves also 
influence the parameter estimates. Recall that ordinary 
least squares minimizes the quantity  

 2 2

1 1

ˆˆ( ) ( ) ,
n n

i i

Y Y Y x
 

     (65) 

which can be expanded to 

 2 T 1 T 2

1 1

ˆ( ) ( ( ) ) .
n n

i i

Y Y Y x x x x Y

 

     (66) 

Let h = x(xTx)1xT be called the HAT matrix. Then least 
squares minimizes 

 2

1

( ) ,
n

i

Y hY


  (67) 

and an alternative method for determining the predicted 
values of the dependent variable is 

 ˆˆ .Y xθ hY   (68) 
The HAT matrix can be thought to map the observed values 

(Y) to the predicted values ˆ( )Y . One important aspect of the 

least squares model is that a better fit is observed at remote 
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observations than at observations near the middle of the 
data. By corollary, observations that have large HAT 
values will be better predicted because the method of least 
squares attempts to find parameter estimates that result in 
residuals near zero. Thus, it is said that observations with 
large HAT values have more influence than observations 
with small HAT values. Another term used to indicate 
influence in the x-direction is called leverage.1 Observations 
with high leverage exert greater influence on parameter 
estimates than observations with low leverage. 

Another way to look at the HAT matrix is as a distance 
measure – values with large HAT values are far from the 
mean of x. It can be shown that the HAT matrix has two 
useful properties: 0 ≤ hi ≤ 1 and Σhi = p for i = 1 to n. The 
average size of hi is then p/n. It is desirable to have all 
independent variables to have equal influence, i.e., each 

data point has hi ≅ p/n. As a rule of thumb, an independent 

variable has greater leverage than other observations when 
hi is greater than 2p/n. Figure 5 presents an example of 
noninfluential and influential x-values. 

Consider the previous example where clearance was 
modeled as a function of BSA. There were 65 observations 
and two estimable parameters in the model. Hence, under 
the rule of thumb, observations with HAT values greater 
than 0.062 exerted greater leverage than other observations. 
Figure 6 presents the HAT values plotted against BSA. 
Four observations met the criteria for having high leverage. 
This plot illustrates that observations with large HAT 
values in a model including an intercept are at the extremes 
of x. In the single predictor case, this corresponds to 
observations at the tails of the distribution of x. In the two-
dimensional case this would correspond to observations 
near the ends of the ellipse. In the case where no intercept 
is in the model, only observations far removed from zero 
can have high leverage. It must be kept in mind that a large 
HAT value is not necessarily a bad thing. An observation 
with a large HAT value that is concordant with the rest of 
the data probably will not change the parameter estimates 
much. However, a large HAT value coupled with a large 
DFBETAS (see below) is a combination that spells trouble. 

Influence in the Y-direction 
Most pharmacokineticists are familiar with this case, 

when a single observation(s) is discordant from the other 
observations in the Y-direction. Outliers in the Y-direction 
are often detected by visual examination or more formally 
by residual analysis. One common statistic is standardized 
residuals 

 .
MSE

i
s

e
e   (69) 

                                                           

1 More formally, leverage is defined as the partial derivative of 
the predicted value with respect to the corresponding dependent 

variable, i.e., ˆ /i i ih Y Y   , which reduces to the HAT matrix for 

linear models. 

Under the assumption that the residuals are independent, 
normally distributed with mean 0 and constant variance, 
when the sample size is large, standardized residuals 
greater than ±2 are often identified as suspect observations. 
Since asymptotically standardized residuals are normally 
distributed, one might think that they are bounded by ∞ 
and +∞, but in fact, a standardized residual can never 

exceed 1( )( 1)n p n n    (Gray and Woodall 1994). For 

a simple linear model with 19 observations, it is impossible 
for any standardized residual to exceed ±4. Standardized 
residuals suffer from the fact that they prone to 
“ballooning” in which extreme cases of x tend to have 
smaller residuals than cases of x near the centroid of the 
data. To account for this, a more commonly used statistic, 
called studentized or internally studentized residuals, was 
developed 
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Under the assumption that the residuals are independent, 
normally distributed with mean 0 and constant variance, 
when the sample size is large, studentized residuals greater 
than ±2 are often identified as suspect observations. Like 
standardized residuals, studentized residuals are not bound 

by ∞ and +∞, but are bounded by ( )n p   (Gray and 

Woodall 1994). An alternative statistic, one that is often 
erroneously interchanged with standardized residuals, are 
studentized deleted residuals, which are sometimes called 
jackknifed residuals, externally studentized residuals, or R-
student residuals 
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where MSE(i) is the square root of the mean square error 
with the ith data point removed. Fortunately, a simple 
relationship exists between MSE and MSE(i) so that *

ie  

can be recalculated without having to fit a new regression 
after each data point is removed 
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Upper bounds for externally studentized residuals have 
not been developed. Externally studentized residuals are 
distributed as a Student’s t-distribution with n  p  1 
degrees of freedom. Thus, in the case of a single outlier 
observation, a quick test would be to compare the value of 
the external studentized residual to the appropriate t-
distribution value, although as Cook and Weisberg (1999) 
point out, because of issues with multiplicity a more 
appropriate comparison would be Student’s t-distribution 
with α/n critical value and n – p – 1 degrees of freedom. In 
general, however, a yardstick of ±2 or ±2.5 is usually used 
as a critical value to flag suspect observations. 
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Fig. 5 Example of influential and noninfluential observations. 
Top plot: Y-value is discordant from bulk of data but does not 
influence the estimate of the regression line. Middle plot: x-
value is discordant from bulk of data but does not influence the 
estimate of the regression line. Bottom plot: x-value and Y-value 
are discordant from bulk of data and have a profound influence 
on the estimate of the regression line. Not all outlier 
observations are influential and not all influential observations 
are outliers 
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Fig. 6 Plot of HAT values against body surface area under a 
simple linear model using the data in Table 1. The plot 
illustrates that HAT values are a function of the x-matrix and 
that observations with high HAT values are at the extremes in x. 
The dashed line is the yardstick for observations with high 
leverage, 2p/n 

Identification of Influential Observations 
Influential observations are ones that significantly 

affect the values of the parameter estimates, their standard 
errors, and the predicted values. One statistic used to detect 
influential observations has already been presented, the 
HAT matrix. An obvious way to detect these observations 
is to remove an observation one at a time and examine how 
the recalculated parameter estimates compare to their 
original values. This is the row deletion approach to 
influence diagnostics and on first glance it would appear 
that this process requires n-iterations – a numerically 
intensive procedure. Statisticians, however, have derived 
equations that directly reflect the influence of the ith 
observation without iteration. One useful diagnostic is 
DFFITS  

 DFFITS ,
1 MSE( )(1 )
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which measures the impact of deleting the ith data point on 
predicted values and is the number of standard errors that 
the ith predicted value changes if that observation is deleted 
from the data set. DFFITS are basically studentized deleted 
residuals scaled according to the leverage of the ith 
observation. 

Another useful statistic that is used is called DFBETAS, 
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where β(i) denotes the least squares parameter estimates 
with the ith data point removed. DFBETAS measures the 
number of standard errors that a parameter estimate changes 
with the ith observation deleted from the data set.  

A large change in DFBETAS is indicative that the ith 
observation has a significant impact on the value of a 
regression coefficient. As a yardstick for small to moderate 
sample sizes, DFFITS and DFBETAS greater than ±1 are 
indicative of influential observations. For larger sample 
sizes a smaller absolute value may be needed as a yardstick: 

one rule of thumb is 2n0.5 for DFBETAS and 2 /p n  for 

DFFITS (Belsley et al. 1980). 
One problem with DFBETAS is that there will be n  p 

DFBETAS for the analyst to examine, which can be tedious 
to examine. Cook’s distance, Di, is a composite score that 
assesses the influence an observation has on the set of 
regression parameters and is computed by 

 
2

2
.

MSE(1 )
i i

i
i

e h
D

ph

  
      

 (75) 

As its name implies, Cook’s distance is a distance measure 
that represents the standardized distance in p-dimensional 

space between β and β(i). A large value of Di indicates that 

the ith observation has undue influence on the set of 
regression parameters. Once an observation has been 
identified as exerting undue influence then DFBETAS can 
be examined to determine which regression parameters are 
affected. Interpreting Cook’s distance and finding a 
yardstick is much more difficult than DFFITS or 
DFBETAS. Myers (1986) recommends interpreting a 
particular Cook’s distance as follows: If Cook’s D is about 
50% of the F-value from an Fp, n  p distribution then 
deletion of the ith observation moves the centroid of 
confidence region to the 50% confidence region. 

Although DFFITS and DFBETAS provide a flag that 
the ith observation has an impact on the value of the jth 
regression coefficient, they do not give any indication of 
whether the influence that is exerted is positive or negative. 
Like the HAT matrix, a large DFFITS or DFBETAS is not 
necessarily a bad thing. It is the combination of a high 
leverage observation in the presence of large DFFITS or 
DFBETAS that results in erratic regression parameter 
estimates. 

The variance–covariance of linear regression parameter 
estimates is given by σ2(xTx)1 and a statistic that 
summarizes the properties of the variance/covariance 
matrix is the generalized variance of the regression 
parameters 

 1GV Var( ) MSE( ) ,Tx x    (76) 

where |·| is the determinant function. Precise estimation of 
the regression parameters results in small determinants or 
GV. COVRATIO measures the ratio of the variance/ 
covariance without and with the ith observation and is 
calculated using 
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where x(i) denotes the x matrix without the ith observation. 
COVRATIOs greater than one are indicative that the ith 
observation improves the performance of the model over 
what would be seen without the observation in the data set. 
A combination of high leverage and a small residual results 
in an observation that improves the properties of the 
regression parameters. As a yardstick, observations with 
COVRATIO > 1 + 3p/n or COVRATIO < 1  3p/n (applies 
only when n > 3p) show undue influence on the generalized 
variance of the regression parameters. 

Unless the number of observations is small, influence 
diagnostics are best examined graphically. Gray (1986) 
recommended for the linear model that a useful diagnostic 
plot is hi against 2 / SSEie , the normalized residual for the 

ith subject. Such a plot is called an L-R triangle for leverage 
and residual. Regardless of the data set, the L-R triangle 
data should show low leverage and small residuals such that 
the majority of the data cluster near (p/n, 0). Cases will that 
have undue influence will be discordant from the bulk of 
the data. Obviously, plots of hi against any influence 
diagnostics will find utility. Lastly, bubble plots having one 
of the other influence diagnostics, such as COVRATIO, 
may be used to gain a trivariable influence plot. 

Belsley et al. (1980) present many more diagnostics, 
including ones for multiple row deletion, but most of the 
ones that have been presented herein are easily obtained 
using most, if not all, linear regression software. One last 
point is that these diagnostics are not independent of each 
other, they are often correlated themselves and will show 
overlap in observations that are flagged. 

So What Now? 
Once an outlier or an influential observation is detected 

what can be done about it? Obviously an observation can be 
deleted, but clearly what is needed is a further examination 
of why that observation was flagged in the first place. If 
nothing of interest arises in re-examination of the data 
points, then there is no sound rationale for removal of the 
observation in question. One might then consider that the 
model itself is wrong. This is a very important concept 
because model misspecification is often discovered through 
outlier and influential observation analysis. Lastly, one 
might try a weighted linear regression model where the 
weights are proportional to the inverse of the HAT matrix. 
In other words, influential observations are given less 
weight in the model than uninfluential observations. 
Alternatively, all observations could have weights equal to 
“1,” except the data point(s) in question which is given a 
much smaller weight. In this manner the observation is not 
removed from the data set, but is simply given less weight 
in the modeling process.  
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Given the level of research activity devoted to 
identification of influential observations, considerably less 
effort has been devoted to what to do about them. Under 
guidelines (E9: Statistical Principles for Clinical Trials) 
developed by the International Conference on 
Harmonisation of Technical Requirements for Registration 
of Pharmaceuticals for Human Use (1997), more commonly 
called ICH, several principles for dealing with outliers or 
influential observations are presented. First, data analysis 
should be defined prior to analyzing the data, preferable 
before data collection even begins. The data analysis plan 
should specify in detail how outliers or influential 
observations will be handled. Second, in the absence of a 
plan for handling outliers or influential observations, the 
analyst should do two analyses, one with and the other 
without the points in question, and the differences between 
the results should be presented in the discussion of the 
results. Lastly, identification of outliers should be based on 
statistical, as well as scientific rationale, and that the 
context of the data point should dictate how to deal with it.  

Example 
Port et al. (1991) administered 5-fluorouracil (5-FU) 

treatments to 26 patients with advanced carcinomas of 
various origin under a variety of doses and treatment 
schedules. Monotherapy was given as 5-day courses weekly 
for 3 weeks, once weekly for 3 weeks, or once every 3 
weeks. Combination therapy with methotrexate (MTX) was 
given once every 2–3 weeks. Serial blood samples for 
pharmacokinetic analysis were collected on Day 1 and 5-
FU clearance was determined by noncompartmental 
methods. Some patients had multiple cycles of therapy and 
for those subjects only data from the first cycle was 
included in this analysis. The following covariates were 
available for analysis: sex, age, BSA, 5-FU dose, and the 
presence or absence of MTX. Scatter plots and box and 
whisker plots are shown in Fig. 7 with the data presented in 
Table 3. 

Of interest was to determine whether a useful model 
relating 5-FU clearance and patient demographics could be 
developed for possible use in future individualized dosing 
regimens. Nonparametric correlation analysis between the 
covariates revealed that sex and BSA were correlated 
(r = 0.4689, p = 0.0157), a not surprising result since both 
males and females were enrolled in the study and males 
(which were coded as “1”) would be expected to have 
higher BSA than females (which were coded as “0”). The 
sign of the correlation would change to positive had the 
coding been reversed. Also, 5-FU dose was correlated with 
the presence or absence of MTX (r = 0.4382, p = 0.0251). 
This too was not surprising given the study design in that 
patients who were treated with MTX were also the ones 
who were treated with relatively high-dose 5-FU. The 
 

 
 
 

magnitude of the correlations indicated that mild 
collinearity may be a problem during the analysis. 

Examination of the univariate distribution of 5-FU 
clearance revealed it to be skewed and not normally 
distributed suggesting that any regression analysis based on 
least squares will be plagued by non-normally distributed 
residuals. Hence, Ln-transformed 5-FU clearance was used 
as the dependent variable in the analyses. Prior to multiple 
regression analysis, age was standardized to 50 years old, 
BSA was standardized to 1.83 m2, and dose was 
standardized to 1,000 mg. A p-value less than 0.05 was 
considered to be statistically significant. The results from 
the SLRs of the data (Table 4) revealed that sex, 5-FU dose, 
and presence or absence of MTX were statistically 
significant.  

Multiple regression of all covariates (Table 5) had a 
condition number of 1,389, indicating that the model had 
little collinearity. Notice that presence or absence of MTX 
as a variable in the model was not statistically significant, 
possibly a result of the collinearity between presence or 
absence of MTX and 5-FU dose. Since with the univariate 
models, 5-FU dose had a higher coefficient of determination 
than presence or absence of MTX, a second multivariate 
model was examined where presence or absence of MTX 
was removed from the model. Table 6 presents the results. 
Now, age was not statistically significant. This variable 
was removed from the model and the reduced model’s 
results are shown in Table 7. Sex was almost significant 
and it was decided to remove this variable from the model. 
The resulting model and influence diagnostics are shown 
in Tables 8 and 9, respectively. Influence plots, including 
an L–R plot, are shown in Fig. 8. The condition number of 
this model was 451 indicating the new model had good 
parameter stability.  

Examination of the collinearity diagnostics indicated 
that two of the observations had HAT values greater than 
the yardstick of 2  3/26 or 0.23. One studentized residual 
was greater than ±3 (Subject 3). Subject 3 had a DFBETA 
of 1.023 for the intercept and -1.084 for the parameter 
associated with BSA, indicating that these parameters 
would change by more than one standard error should this 
subject be removed from the data set. This subject had a 
COVRATIO of 0.444, much lower than the critical value of 
0.65, and the largest absolute DFFITs in the data set. 
Clearly, there was something unusual about this subject. At 
this point, one might then go back and examine what was 
unique about this subject. Although not the lowest 
clearance observed in the study, this subject did have the 
second lowest value. Why? Since this data set was taken 
from the literature this question cannot be answered. For 
purposes of this analysis, it was decided that Subject 3 
would be removed from the data set. The resulting model 
after removal of Subject 3, as shown in Table 10 with  
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Table 3 

Treatment groups, patient demographics, and 5-FU clearance values from Port et al. (1991) 

Subject Sex 
Age 

(Years) 
BSA 
(m2) 

Dose 
(mg) MTX 

5-FU 
CL 

(L/min) 

1 1 43 1.65 1,500 1 0.58 
2 1 48 1.63 750 0 0.56 
3 1 50 2.14 1,500 1 0.47 
4 0 68 2.14 1,800 1 0.85 
5 1 50 1.91 1,500 1 0.73 
6 1 48 1.66 1,500 1 0.71 
7 1 45 1.6 1,500 1 0.61 
8 0 53 2.05 1,600 1 0.86 
9 0 44 1.94 850 0 1.36 

10 0 58 1.7 1,500 1 0.53 
11 1 61 1.83 1,600 1 0.91 
12 0 49 1.67 1,500 1 0.81 
13 0 70 1.89 1,600 1 0.64 
14 0 47 1.64 1,500 1 0.56 
15 0 63 1.88 600 0 0.98 
16 1 46 1.67 1,500 1 0.79 
17 0 45 2.01 1,000 0 1.92 
18 0 46 1.82 1,000 0 1.65 
19 0 57 1.68 1,400 1 0.83 
20 1 52 1.76 750 0 1.19 
21 1 64 1.27 1,200 1 0.57 
22 0 65 1.67 750 0 1.12 
23 1 75 1.67 1,500 0 0.5 
24 1 64 1.57 1,500 0 0.44 
25 0 60 2.02 1,800 0 0.67 
26 0 54 2.13 1,800 0 0.93 

Sex: 0 = males, 1 = females; MTX: 0 = no methotrexate given, 1 = methotrexate given; CL, clearance 

influence diagnostics shown in Table 11, resulted in a model 
accounting for more than 59% of the total variance with all 
model parameters being statistically significant. The 
condition number of the final model was 481 indicating the 
model to be quite stable. Examination of the influence 
diagnostics showed that now possibly Subject 2 showed 
undue influence. Some modelers would indeed remove this 
subject from the model, but removal of Subject 2 is not 
advised given the sample size of the analysis. So, the final 
model was one where BSA positively affected 5-FU 
clearance and dose negatively affected 5-FU clearance, an 
indication of Michaelis-Menten elimination kinetics. 

Conditional Models 
Up to now it has been assumed that x is fixed and 

under control of the experimenter, e.g., the dose of drug 
given to subjects or sex of subjects in a study, and it is of 
interest to make prediction models for some dependent 
variable Y or make inferences on the regression parameters. 
There are times when x is not fixed, but is a random 
variable, denoted X. An example would be a regression 
analysis of weight vs. total clearance, or age vs. volume of 
distribution. In both cases, it is possible for the experimenter 
to control age or weight, but more than likely these are 
samples randomly drawn from subjects in the population. 
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Fig. 7 Scatter plots and box and whisker plots of 5-fluorouracil (5-FU) clearance as a function of patient demographics. Data 
are presented in Table 3. Solid line is the least squares fit to the data. Note that some plots are shown on a log-scale 

Table 4 

Results of univariate regression analysis of the data in Table 3 using a simple linear model with  
Ln-transformed 5-FU clearance as the dependent variable 

Variable Intercept SE(Intercept) Slope SE(Slope) R2 

Sex –0.0922 0.0916 –0.346 0.135 0.2158 
Age 0.366 0.453 –0.564 0.408 0.0738 
BSA –1.416 0.620 1.188 0.628 0.1297 
Dose 0.428 0.264 –0.505 0.190 0.2278 
MTX –0.0763 0.107 –0.305 0.140 0.1640 

Note: Bold values were statistically significant at p < 0.05   
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Table 5 

Results of multivariate linear regression of data in Table 3 using Ln-transformed 5-FU clearance as 
the dependent variable 

Variable Estimate SE(Estimate) t-value p-value 

Intercept 0.104 0.696 0.15 0.883 
Sex –0.247 0.123 –2.00 0.059 
Age –0.490 0.323 –1.51 0.146 
BSA 0.995 0.589 1.69 0.106 
Dose –4.78 0.212 –2.26 0.035 
MTX –0.061 0.146 –0.42 0.681 

Note: R2 was 0.5750 with an adjusted coefficient of determination of 0.4688 

 
Table 6 

Results of multivariate linear regression of data in Table 3 using Ln-transformed 5-FU clearance as 
the dependent variable without MTX included in the model 

Variable Estimate SE(Estimate) t-value p-value 

Intercept 0.025 0.656 0.04 0.971 
Sex –0.246 0.121 –2.04 0.054 
Age –0.452 0.305 –1.48 0.153 
BSA 1.076 0.545 1.97 0.062 
Dose –0.535 0.160 –3.35 0.003 

Note: R2 was 0.5713 with an adjusted coefficient of determination of 0.4897 

Table 7 

Results of multivariate linear regression of data in Table 3 using Ln-transformed 5-FU clearance as 
the dependent variable without MTX and age included in the model 

Variable Estimate SE(Estimate) t-value p-value 

Intercept 0.522 0.558 0.04 0.971 
Sex –0.219 0.122 –1.79 0.087 
BSA 1.176 0.556 2.12 0.046 
Dose –0.580 0.161 –3.60 0.002 

Note: R2 was 0.5263 with an adjusted coefficient of determination of 0.4617 

 
Table 8 

Results of multivariate linear regression of data in Table 3 using Ln-transformed 5-FU clearance as 
the dependent variable without MTX, age, and sex included in the model 

Variable Estimate SE(Estimate) t-value p-value 

Intercept –1.004 0.512 1.96 0.062 
BSA 1.622 0.520 3.12 0.005 
Dose –0.621 0.167 –3.73 0.001 
Note: The coefficient of determination was 0.4574 with an adjusted coefficient of determination of 0.4102. BSA and 
dose were standardized prior to analysis. 
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Table 9 

Influence diagnostics for the regression model presented in Table 8 

    COV  DFBETAs 
Subject Residual RStudent HAT Ratio DFFITS Intercept BSA DOSE 

1 0.071 0.247 0.071 1.220 0.068 0.033 0.041 0.031 

2 0.555 2.249 0.156 0.728 0.967 0.582 0.201 0.750 

3 0.716 3.130 0.148 0.444 1.305 1.023 1.084 0.041 

4 0.064 0.237 0.182 1.386 0.112 0.089 0.074 0.048 

5 0.071 0.247 0.055 1.199 0.059 0.025 0.024 0.016 

6 0.123 0.428 0.068 1.196 0.116 0.053 0.066 0.052 

7 0.024 0.084 0.089 1.253 0.026 0.015 0.018 0.012 

8 0.031 0.109 0.107 1.277 0.038 0.027 0.025 0.010 

9 0.120 0.442 0.159 1.322 0.192 0.022 0.100 0.152 

10 0.205 0.719 0.058 1.131 0.178 0.062 0.081 0.080 

11 0.282 0.999 0.059 1.063 0.249 0.044 0.004 0.141 

12 0.246 0.867 0.065 1.105 0.229 0.099 0.125 0.103 

13 0.123 0.428 0.063 1.189 0.111 0.042 0.028 0.055 

14 0.097 0.340 0.074 1.215 0.096 0.048 0.059 0.043 

15 0.310 1.239 0.245 1.236 0.706 0.054 0.259 0.637 

16 0.221 0.776 0.065 1.127 0.205 0.088 0.112 0.092 

17 0.496 1.948 0.142 0.826 0.792 0.265 0.540 0.517 

18 0.513 1.946 0.081 0.772 0.578 0.082 0.145 0.415 

19 0.199 0.694 0.053 1.131 0.164 0.081 0.083 0.040 

20 0.084 0.307 0.151 1.329 0.130 0.041 0.015 0.111 

21 0.062 0.247 0.286 1.588 0.157 0.145 0.144 0.009 

22 0.103 0.377 0.151 1.321 0.159 0.083 0.018 0.129 

23 0.237 0.836 0.065 1.113 0.221 0.095 0.120 0.099 

24 0.276 1.001 0.102 1.113 0.337 0.209 0.250 0.144 

25 0.068 0.245 0.130 1.302 0.095 0.061 0.043 0.055 

26 0.162 0.606 0.176 1.320 0.281 0.220 0.181 0.124 
Note: Bolded data indicate data that are questionable. 

As subjects enroll in a study, the experimenter usually 
cannot control how old they are or what their weight is 
exactly. They are random. Still, in this case one may wish 
to either make inferences on the parameter estimates or 
predictions of future Y values. Begin by assuming that Y 
can be modeled using a simple linear model and that X and 
Y have a joint probability density function that is bivariate 
normal 
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where μx and μy are the population means for X and Y, 
respectively, σx and σy are the standard deviations for X and 
Y, respectively, and ρ is the correlation between X and Y 
which can be expressed as 

 ,XY
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  (79) 

where σXY is the covariance between X and Y. Further 
details regarding joint probability densities and conditional 
inference is presented in Appendix given at the end of the 
book. What is of interest is to find the conditional density 
function of Y given X. The probability density function for 
the conditional distribution of Y given X is 
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Fig. 8 Residual plots and influence plots for final linear model shown in Table 8 using data presented in Table 3. Suspect values are 
noted in the plots 

Table 10 

Results of multivariate linear regression of data in Table 3 using Ln-transformed 5-FU clearance 
as the dependent variable using only BSA and 5-FU dose with subject 3 removed from the analysis 

Variable Estimate SE(Estimate) t-value p-value 

Intercept –1.445 0.458 –3.16 0.0045 
BSA  2.102 0.468  4.49 0.0002 
Dose –0.616 0.142 –4.34 0.0003 

Note: The coefficient of determination was 0.5950 with an adjusted coefficient of determination of 0.5581. 
 
where fX(X) is the marginal density of X, which is assumed 
normal in distribution. Hence, the conditional distribution 
of Y given X is the ratio of the bivariate normal density 
function to a univariate normal distribution function. After 
a little algebra then 

2

0 1

|

1 1
( | ) exp ,

22
XY

Y XXY

Y X
f Y X

 
 

           

 (81) 

where 
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and 2 2 2
| (1 ).Y X Y     (84) 

Notice that two assumptions have been made: normality of 
the responses and constant variance. The result is that the 
conditional distribution itself is normally distributed with 

mean 
0 1

ˆ ˆ x   and variance 2
|Y X . Thus, the joint 

distribution function at any level of X can be “sliced” and 
still have a normal distribution. Also, any conditional 
probability distribution function of Y has the same standard 
deviation after scaling the resulting probability distribution 
function to have an area of 1. 
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If data are collected from a random population (X, Y) 
from a bivariate normal distribution and predictions about Y 
given X are desired, then from the previous paragraphs it may 
be apparent that the linear model assuming fixed x is 
applicable because the observations are independent, normally 
distributed, and have constant variance with mean θ0 + θ1X. 
Similar arguments can be made if inferences are to be made on 
X given Y. Thus, if X and Y are random, all calculations and 
inferential methods remain the same as if X were fixed. 

EIVS Regression 
One assumption until now has been that the dependent 

and independent variables are measured without error. The 
impact of measurement error on the regression parameter 
estimates depends on whether the error affects the dependent 
or independent variable. When Y has measurement error, the 
effect on the regression model is not problematic if the 
measurement errors are uncorrelated and unbiased. In this 
case, the linear model becomes 
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where κ is the measurement error in Y. This model can be 
rewritten as 
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where ε* is the sum of the measurement error and model 
error. Equation (86) is functionally equivalent to (5). Thus, 
measurement error in Y is absorbed by the model error term 
and standard OLS techniques may be used. 

Before proceeding, a distinction needs to be made 
between X being simply a random variable and X being 
random due to random measurement error. This distinction 
is important and the question is sometimes asked, what is 
the difference? If X is random but measured accurately, the 
experimenter has no control over its measurement, and its 
value may vary from study to study. An example of this 
might be the weight of subjects in a clinical study. If this 
random variable X is measured without error, then an exact, 
accurate measurement of X can be obtained only for that 
study. If, however, X is random due to measurement error, 
then repeated measurement of X within the same study will 
result in differing values of X each time X is measured and 
a misleading relationship between X and Y will be obtained. 

One other distinction needs to be made between 
random X and X with random measurement error. Neither 
implies that X is biased. Bias implies a constant effect 
across all measurements. For example, if a weight scale is 
not calibrated properly and when no one is standing on it, 
the scale records a measure of 1 kg, then when any person 
is measured their weight will be biased high by 1 kg. This 
is not the type of measurement error that is being discussed 
here because any constant bias in a measuring instrument 
will be reflected in the estimate of the intercept. Random 
measurement error means that repeated measuring of a  
 

variable will vary from measurement to measurement even 
though its value has not changed. An example of this might be 
when a patient goes to the doctor’s office and their weight is 
measured at 180 lb. The nurse forgets to write down the value 
and so the patient is weighed again. This time their weight is 
179 lb. That patient has not lost a pound in the few moments 
between measurements; they are still the same weight. But due 
to random measurement error, their weight changed from one 
reading to the next. 

If both X and Y are random variables and X is measured 
without random error, then all the theory presented for the case 
of fixed x is still applicable if the following conditions are true: 
 1.  The conditional distribution for each of the Yi 

given Xi is independent and normally distributed 
with conditional mean θ0 + θ1Xi and conditional 
variance σ2. 

 2. The Xi are independent random variables whose 
distribution does not depend on the model 
parameters θ or σ2. 

This was discussed in the previous section. In contrast, 
when the independent variable has measurement error, then 
the analyst observes 
 ,k k kX x    (87) 

where Xk is the observed value of xk and δk is the vector of 
measurement errors for xk. It is usual to assume that 
δ ~ N(0, 2

k ) with independent measurement errors. The 

model is then 

 
1

0
1

.
p

k k
k

Y x  




    (88) 

Since Xk is observed, not the true value of xk, the true value 
must be replaced with the observed value. Then the linear 
model becomes 
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which can be expanded to 
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Equation (90) looks like an ordinary regression model with 

predictor variable X and model error term ˆ( )k k    
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However, the expected value of ε* is zero with variance 
12 2 2

1

p

k kk
  


 . Thus the variance of the measurement 

errors are propagated to the error variance term, thereby 
inflating it. An increase in the residual variance is not the only 
effect on the OLS model. If X is a random variable due to 
measurement error such that when there is a linear relationship 
between xk and Y, then X is negatively correlated with the 
model error term. If OLS estimation procedures are then used, 
the regression parameter estimates are both biased and 
inconsistent (Neter et al. 1996). 
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Table 11 

Influence diagnostics for the model presented in Table 10 

    COV  DFBETAs 
Subject Residual RStudent HAT Ratio DFFITS Intercept BSA DOSE 

1 0.067 0.274 0.071 1.225 0.076 0.035 0.043 0.034 
2 0.541 2.696 0.156 0.559 1.161 0.680 0.244 0.900 
4 0.062 0.277 0.208 1.436 0.142 0.116 0.099 0.058 
5 0.135 0.555 0.062 1.173 0.142 0.069 0.067 0.036 
6 0.124 0.510 0.068 1.189 0.138 0.060 0.075 0.062 
7 0.041 0.170 0.089 1.257 0.053 0.030 0.036 0.023 
8 0.071 0.298 0.124 1.295 0.112 0.084 0.080 0.029 
9 0.052 0.225 0.166 1.369 0.100 0.018 0.055 0.078 

10 0.214 0.888 0.058 1.093 0.220 0.069 0.091 0.099 
11 0.239 0.995 0.062 1.067 0.255 0.060 0.023 0.142 
12 0.244 1.022 0.065 1.063 0.270 0.110 0.138 0.121 
13 0.182 0.755 0.068 1.139 0.205 0.089 0.066 0.098 
14 0.090 0.372 0.074 1.218 0.105 0.051 0.063 0.047 
15 0.361 1.760 0.249 1.014 1.015 0.031 0.392 0.906 
16 0.219 0.913 0.065 1.095 0.241 0.098 0.124 0.109 
17 0.409 1.899 0.155 0.845 0.812 0.319 0.578 0.505 
18 0.476 2.168 0.083 0.684 0.654 0.053 0.189 0.461 
19 0.196 0.805 0.053 1.108 0.190 0.088 0.090 0.046 
20 0.064 0.273 0.152 1.342 0.116 0.033 0.015 0.099 
21 0.168 0.805 0.305 1.510 0.533 0.497 0.491 0.028 
22 0.106 0.458 0.151 1.315 0.193 0.096 0.021 0.156 
23 0.238 0.994 0.065 1.071 0.263 0.107 0.135 0.118 
24 0.251 1.075 0.103 1.092 0.364 0.224 0.266 0.155 
25 0.163 0.702 0.145 1.254 0.288 0.197 0.148 0.161 
26 0.039 0.172 0.202 1.434 0.087 0.070 0.060 0.036 

Note: Bold data indicate data that were questionable 
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Fig. 9 Effect of increasing measurement error in X on least 
squares fit. Heavy line is the true least squares fit to model 
Y = x + 10. Y has no measurement error associated with it. x has 
increasing degrees of measurement error as indicated by the 
direction of the arrow, the result being the slope is attenuated 
and the intercept is inflated 

Obtaining unbiased and consistent parameter estimates 
under these conditions using OLS is difficult. Measurement 
error in x is traditionally handled by two types of models: 

 Classical error models and calibration models, 
where the relationship between X given x is 
modeled 

 Regression calibration models, where the 
relationship between x given X is modeled 

Alternative models may be developed to include additional 
covariates which are not measured with error, e.g., 
X = f(R, Z). The classical model is used when an attempt to 
measure x is made but cannot be done so due to various 
measurement errors. An example of this is the measurement 
of blood pressure. There is only one true blood pressure 
reading for a subject at a particular point in time, but due to 
minor calibration errors in the instrument, transient 
increases in blood pressure due to diet, etc., possible 
recording errors and reading errors by the nurse, etc., blood 
pressure is a composite variable that can vary substantially 
both within and between days. In this case, it makes sense 
to try and model the observed blood pressure using (87). 
Under this model, the expected value of X is x. In 
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regression calibration problems, the focus is on the 
distribution of x given X. For purposes herein, the focus 
will be on the classical error model. The reader is referred 
to Fuller (1987) and Carroll et al. (1995) for a more 
complete exposition of the problem. 

In the pharmacokinetic arena, there are many cases 
where the independent variable is measured with error and 
a classical measurement model is needed. Some examples 
include in vitro–in vivo correlations, such as the 
relationship between Log P and volume of distribution 
(Kaul and Ritschel 1990), in vivo clearance estimates based 
on in vitro microsomal enzyme studies (Iwatsubo et al. 
1996, 1997), or the estimation of drug clearance based on 
creatinine clearance (Bazunga et al. 1998; Lefevre et al. 
1997). In these three examples, log P, in vitro clearance, 
and creatinine clearance, all have some measurement error 
associated with them that may be large enough to produce 
significantly biased regression parameter estimates. 

Before a solution to the problem is presented, it is 
necessary to examine what happens when the measure-
ment error in x is ignored and the SLR model applies. 
When a classical error model applies, the effect of 
measurement error in x is attenuation of the slope and 
corresponding inflation of the intercept. To illustrate this, 
consider the linear model Y = x + 10 where x is a set of 
triplicate measurements at {50, 100, 250, 500, 750, 
1,000}. Y is not measured with error, only x has error. 
Figure 9 plots the resulting least squares fit with 
increasing measurement error in x. As the measurement 
error variance increases, the slope of the line decreases 
with increasing intercept. Sometimes the attenuation is so 
severe that bias correction techniques must be used in 
place of OLS estimates.  

Let us assume the SLR model applies, where x has 
mean μx and variance 2

x  and ε ~ N(0, σ2). The predictor x 

cannot be observed, but X can, where X = x + δ with δ 
being the difference between the observed and true values 
having mean 0 and variance 2

k . Thus, the total variance of 

X is 2 2
x k  . Then the OLS estimate of the slope of Y on X 

is not 
1̂ , but 

 *
1 1
ˆ ˆ ,   (92) 

where 

 
2

2 2
1.x

x k




 
 


 (93) 

The denominator in (93) represents the total variability 
of X, whereas the numerator is the variability in x, the true 
values. λ is sometimes called the attenuation factor or 
reliability factor and represents the proportion of variation 
in x found in X. The net effect of measurement variance of 
the predicted values is greater than when x has error in x is 

that 
1̂  is attenuated toward zero and the no measurement 

error. Corresponding to this is that as the slope decreases, 
the intercept increases in response. 

 

Measurement error causes double-trouble: attenuation 
of the slope and increased error about the regression line. 
However, when more complex error structures are 
assumed, such as when X is not an unbiased estimate of x 
or the variance of δ depends on x, then it is possible for the 

opposite effect to occur, e.g., 
1̂  is inflated (Carroll et al. 

1995). Rarely are these alternative measurement error 
models examined, however. The bottom line is that 
measurement error in the predictors leads to biased 
estimates of the regression parameters, an effect that is 
dependent on the degree of measurement error relative to 
the distribution of the predictors. 

Hodges and Moore (1972) showed for the linear 
model, the maximum bias introduced by measurement 
error in the predictors, assuming an additive error model, 
can be estimated by 

 T 1ˆ ˆbias ( 1)( ) ,n p x x U      (94) 

where 
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with the diagonal elements of U being the measurement 
error variance for the kth predictor variable. Bias estimates 
can be transformed to relative bias estimates by 

 bias
relative bias 100%.

̂
   (96) 

If (96) indicates that severe bias is present in the parameter 
estimates, then the parameter estimates need to be bias-
corrected. It should be mentioned, however, that correcting 
for bias is not without its downside. There is a trade-off 
involved, the bias vs. variance trade-off, which states that 
by correcting for bias in measurement error models, the 
variance of the unbiased estimator increases relative to the 
biased estimator leading to larger confidence intervals. In 
general, for large sample sizes and for moderate attenuation 
correction, bias correction is beneficial. The reader is 
referred to Fuller (1987) for further details. 

In the case of SLR when λ is known, an unbiased 

estimate of the slope can be obtained by rearrangement of 
(92), i.e., 

 
*
1

1

ˆ
ˆ .





  (97) 

Stefanski et al. (Carroll et al. 1995, 1996; Cook and Stefanski 
1994; Stefanski and Cook 1995) present a “remeasurement 
method” called simulation-extrapolation (SIMEX), which 
is a Monte Carlo approach to estimating and reducing 
measurement error bias, in the same vein as the bootstrap is 
used to estimate sampling error. The advantage of the 
SIMEX algorithm is that it is valid for linear and nonlinear 
models and for complex measurement error structures, 
included heteroscedastic variance models. The method  
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assumes that 2
k , the variance of the measurement error, is 

known to some degree of certainty. If 2
k  is not known, 

then it must be estimated. If no estimate of 2
k  can be 

obtained, then no method can be used to obtain unbiased 
parameter estimates. 

The basic idea is to add random measurement error to 
the predictor variables using Monte Carlo and develop the 
relationship between measurement error and parameter 
estimates. Using this relationship, the parameter estimates 
for the case of no measurement error can then be 
extrapolated. When asked what does SIMEX offer over 
other methods in reducing the bias of parameter estimates 
in regression models, Stefanski (personal communication) 
responds by asking “does the bootstrap offer any advantage 
for computing the standard error of the sample mean?” 
Thus, SIMEX is analogous to bootstrap methods, i.e., it 
may be over-kill for simple problems or it may be the only 
solution but for complex problems. 

SIMEX is easiest to understand in the linear regression 
case and its exposition will be as described by Carroll et al. 
(1995). Begin by assuming the simple linear model. Recall 
that 2

k  represents the variance in x with no error and 2
k  

is the measurement variance of X. Now suppose that there 
are m – 1 additional data sets in addition to the original 
data with each of these additional data sets having 
successively larger measurement error variances, i.e., 

2(1 )m k   where 0 = λ1 > λ2 > λ3 >…λm. Then for each of 

these datasets the slope of the mth data set, *
1,
ˆ

m , does not 

consistently estimate θ1,m but instead estimates 
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2 2

ˆ .
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x m k
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 
 (98) 

This problem can now be thought of as a nonlinear 

regression problem where *
m̂  is regressed against λm. The 

regression parameters in the absence of measurement error 
can be obtained by extrapolating λ to –1. However, 
modeling (98) is not practical since 2

k  and 2
k  may not be 

known. Carroll et al. (1995) suggest that in their experience 

it is much easier to regress λm against *
1,
ˆ

m  using a 

quadratic polynomial 

 * 2
1, 0 1 2
ˆ

m m m         (99) 

evaluated over the equally spaced interval 0 < λm ≤ 2. 
Estimation of the standard error of SIMEX parameter 
estimates can be calculated using the bootstrap or 
jackknife, a process which should not increase computing 
time to prohibitive levels given the current processor speed 
of most personal computers. 

Therefore, the SIMEX algorithm is as follows. First a 
simulation step is performed: 

 1. Define ( )  m i m kX X Z     where Z are 

independent, random variates with mean zero and 
variance 1. 

 

 2. For each data set, regression is done and the 
parameter estimates saved. 

 3.  Repeat steps 1 and 2 many times (>100). 
 4.  Calculate the average parameter estimate. 
 5. Following the extrapolation step regress the 

average parameter estimates vs.  using a 
quadratic polynomial. 

 6.  Extrapolate to  = –1. 

 

Table 12 

Desirudin clearance as a function of creatinine clearance

Creatinine CL (mL/min) Desirudin CL (mL/min) 

8.22 13.61 

9.79 17.33 

25.07 16.09 

24.28 19.80 

25.07 23.51 

27.42 27.23 

36.19 29.21 

44.41 47.03 

44.26 56.93 

58.75 70.54 

63.45 133.66 

76.37 105.20 

82.25 134.90 

82.64 141.09 

93.21 102.72 

96.34 170.79 

107.70 148.51 

105.74 170.79 

106.14 199.26 

111.23 195.54 

125.72 170.79 

 

If the error assumed for X is not normally distributed, a 
suitable transformation needs to be found prior to 
performing the algorithm. Carroll et al. (1995) stress that 
the “extrapolation step should be approached as any other 
modeling problem, with attention paid to the adequacy of 
the extrapolant based on theoretical considerations, residual 
analysis, and possible use of linearizing transformations 
and that extrapolation is risky in general even when model 
diagnostics fail to indicate problems.” 

As an example, consider the data presented by Lefevre 
et al. (1997). In that study, eight healthy subjects with 
normal renal function and 15 patients with varying degrees 
of renal impairment were given an infusion of desirudin, 
the recombinant form of the naturally occurring anticoagulant 
hirudin, found in the European leech Hirudo medicinalis, 
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with doses ranging from 0.125 to 0.5 mg/kg infused over a 
30-min period. Serial blood samples were collected and the 
clearance of hirudin was calculated using noncompartmental 
methods. The raw data values were not reported in the 
publication, but the data were presented as a plot. This plot 
was reanalyzed by taking the X–Y coordinates for each data 
point and determining the associated X–Y value.  

The reanalyzed data are presented in Table 12 and 
plotted in Fig. 10. Lefevre et al. (1997) reported that plasma 
clearance (CL) of hirudin could be related to creatinine 
clearance (CrCL) by the equation: CL = 1.73  CrCL –
 17.5. The reanalyzed model gave OLS estimates of 
1.71 ± 0.13 for the parameter associated with CrCL and –
15.1 ± 9.3 mL/min for the intercept (R2 = 0.9058, 
MSE = 442.9). Ignore for the moment that a better model 
might be a no-intercept model. Residual analysis suggested 
that the residuals were normally distributed and that data 
weighting was unnecessary. 

In order to use the SIMEX algorithm on this data, an 
estimate of the measurement variance for creatinine 
clearance must be obtained. In discussions with clinical 
chemists, the upper limit of measurement error associated 
with measuring serum or urine creatinine using the Jaffe 
reaction is 5%. Assuming mean 24 h values for urinary 
volume, urinary daily creatinine excretion, and serum 
creatinine of 1,000 mL, 1.5 g, and 1.1 mg/dL, respectively, 
an approximate measurement error variance for creatinine 
clearance was found to be 60 (mL/min)2. 

With this as an estimate of the assay measurement 
variance, the SIMEX algorithm was applied. Figure 11 
plots the mean regression parameter against varying values 
of λ using 1,000 iterations for each value of λ. 
Extrapolation of λ to –1 for both the slope and intercept 
leads to a SIMEX equation of 
 Cl  19.4  1.78 CrCl,     (100) 
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Fig. 10 Plot of desirudin clearance as a function of creatinine 
clearance. Data redrawn from Lefevre et al. (1997). Solid line is 
the ordinary least squares fit 
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Fig. 11 Plot of SIMEX extrapolation to desirudin data show in 
Fig. 10. extrapolated value for slope (top) and intercept (bottom) 
at λ = 1; ο, mean regression parameter using 100 iterations for 
each value of λ; solid line is the second order polynomial fit 

values not too different from the OLS estimates. The bias 
of the OLS estimates for slope and intercept using (94) was 
0.06 and –4.1 mL/min, respectively, with a relative error of 
23 and 4%, respectively. The jackknife SIMEX estimates 
for slope and intercept were 1.90 ± 0.43 (mean ± standard 
error of mean) and –21.0 ± 4.9 mL/min, respectively. Hence, 
the OLS estimates in this case were relatively unbiased. 

Surprisingly, even though the parameter estimates 
obtained from regression of independent variables with 
measurement errors are biased, one can still obtain unbiased 
prediction estimates and corresponding confidence intervals. 
The reason is that even though X has measurement error, 
the model still applies to the data set on hand. The problem 
arises when one wishes to make predictions in another 
population or data set. In this case, three options are 
available (Buonaccorsi 1995). First, carry out the 
regression of Y on X and calculate the predicted response 
ignoring the measurement error. Second, regress Y on X, 
recognizing that X is measured with error, but obtain a 
modified estimate of σ2, and calculate a modified prediction 
interval. Third, correct for the measurement error of X and 
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Fig. 12 Plot of a cubic, quadratic, and power function 

regress Y against the corrected X. The prediction interval 
then uses the parameters obtained from the corrected 
regression. Options 1 and 2 are reasonable assuming that 
the value to be predicted has the same measurement error 
distribution as the current data. 

Buonaccorsi (1995) present equations for using Option 
2 or 3 for the SLR model. In summary, measurement error 
is not a problem if the goal of the model is prediction, but 
keep in mind the assumption that the predictor data set 
must have the same measurement error distribution as the 
modeling data set. The problem with using option 2 is that 
there are three variance terms to deal with: the residual 
variance of the model, σ2, the uncertainty in θ, and the 
measurement error in the sample to be predicted. For 
complex models, the estimation of a corrected σ2 may be 
difficult to obtain.  

Polynomial Regression 
Sometimes one sees in the literature models of the 

form 

 
1

0
1 1

 ,
pm

q
k k l l

k l m

Y x x   


  

      (101) 

where q is the power term, being described as “nonlinear 
models.” This is in error because this model is still linear in 
the parameters. Even for the terms of degree higher than 1, 

 1,q
l

l

qx






 (102) 

which means that the parameters are independent of other 
model parameters. What may confuse some people is that 
polynomial models allow for curvature in the model, which 
may be interpreted as nonlinearity. Since polynomial models 
are only special cases of the linear model, their fitting 
requires no special algorithms or presents no new problems. 

Often a polynomial may be substituted as a function if 
the true model is unknown. For example, a quadratic model 
may be substituted for an Emax model in a pharmacodynamic 
analysis or a quadratic or cubic function may be used in 
place of a power function 

 2
1Y X   (103) 

as shown in Figure 12. It is almost impossible to 
distinguish the general shape of the quadratic model and 
power model. The change in intercept was added to 
differentiate the models graphically. Also note that an 
increase in the number of degrees of freedom in the model 
increases its flexibility in describing curvature as evidenced 
from the cubic model in Fig. 12. 

Polynomial model development proceeds the same as 
model development when the degree of the equation is 1. 
However, model development generally proceeds first from 
simpler models and then terms of higher order are added 
later. Hence, if a quadratic term is added to a model, one 
should keep the linear term as well. The function of the 
linear term is to provide information about the basic shape 
of the curve, while the function of the quadratic term is to 
provide refinements to the model. The LRT or information 
criteria can be used to see if the additional terms improves 
the goodness of fit. Extreme caution should be made in 
extrapolating a polynomial function as the function may 
deviate significantly from the interval of data being 
studied. Also, higher order models (greater than 2) are 
usually avoided because, even though they often provide 
good fits to the data, it is difficult to interpret their 
coefficients and the predictions they make are often erratic. 
When two or more predictors are modeled using quadratic 
polynomials, response surfaces of the type shown in 
Fig. 13 can be generated. These are extremely useful in 
examining how two variables interact to generate the 
response variable. They are also very useful for detecting 
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Fig. 13 Quadratic response surface of predicted mean change 
from baseline in diastolic blood pressure following 8 weeks of 
randomized therapy to fosinopril and/or hydrochlorthiazide. 
Data presented in Pool et al. (1997)  
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and characterizing antagonism or synergy between drug 
combinations. Although not used commonly clinically, 
response surfaces are useful both in vitro and in vivo 
models. See Greco et al. (1995) for details and Carter et al. 
(1985), Rockhold and Goldberg (1996), and Stewart (1996) 
for examples. 

Smoothers and Splines 
Linear regression models are of the form 

 
0 1 1 2 2 p pY x x x           (104) 

ignoring higher order polynomial and interaction terms. 
Additive models are of the form 
 

1 1 2 2( ) ( ) ( ) ,p pY f x f x f x       (105) 

where f1(·), f2(·), , fp( ) are now generic smooth functions 
that do not have to be of a linear or nonlinear form or even 
of the same functional form. Linear models and additive 
models can be combined to form semiparametric models of 
the form 
 

0 1 1 2( ) ( ) ,pY x f x f x         (106) 

where the model consists of both a parametric structural 
form and an additive structural form. Semiparametric 
models are sometimes also called partially linear models, 
partial linear models, partly linear models, or partial spline 
models. Additive and semiparametric models can be 
further extended through generalized additive models 
(GAMs) to allow for categorical dependent variables or 
survival data similar to how generalized linear models 
extend linear models. When the structural model contains 
some elements which are additive in nature, the exact 
nature of the function f(·) or the parameter estimates of f(·) 
may not be of interest, simply whether a “relationship” 
between x and Y exists. So unlike linear models, inference 
on the model parameters in a GAM or semiparametric 
model is usually not of interest. The purpose of this chapter 
will be to introduce semiparametric models and smoothing 
models and to illustrate how semiparametric or additive 
models can be easily developed using linear mixed effect 
methodology. 

Smoothers and Locally Weighted Regression (LOESS) 
A smoother describes the trend in Y as a function of 

some set of predictors and are generally nonparametric in 
nature. If only one predictor variable is available, these 
smoothers are called scatterplot smoothers. Of importance 
is that the smoother does not assume a rigid structural form 
like in (104). Smoothers work through the concept of local 
averaging or neighborhoods, i.e., the predicted value is 
based on observations near the reference value as opposed 
to linear or nonlinear models which base predictions on the 
totality of the data. By assuming a nonparametric form the 
smoother can become linear in parts of a curve and 
curvilinear in other parts. 

Two main decisions must be made for any smoother. 
First, how big should the neighborhood be around the 
reference value and then, second, how should the predicted 
response at the reference value be calculated within each 

neighborhood. How the predicted value is estimated within 
the neighborhood is what distinguishes the types of 
smoothers: running mean, running median, exponential, 
LOESS, etc. The size of the neighborhood can vary from 
very small to very large. As the size of the neighborhood 
increases, the curve becomes smoother but flatter (variance 
decreases but bias increases). As the size of the neighborhood 
decreases, the curve becomes more jittery and not very 
useful (variance increases but bias decreases). So clearly 
there will be some optimum neighborhood that minimizes 
the bias-variance trade-off. Many algorithms exist for 
finding the optimum neighborhood, such as cross-
validation, but many times the choice of the neighborhood 
is simply based on graphical examination and the analyst’s 
discretion. 

The idea behind a smoother will begin through the 
exposition of running mean and running median smoothers. 
First, the x observations are ordered from smallest to 
largest. Starting at x(1), the smallest value of x, a neighborhood 
of k observations near x(1) is chosen. Few software 
packages require the neighborhood be defined in terms of 
k, the number of observations in the neighborhood. Rather 
it is more convenient to have each neighborhood consist of 
some proportion of the total number of observations 

 (2 1)k
w

n


  (107) 

a value referred to as the span. So, if the span was defined 
as the nearest 10% of the observations to x(i) and the total 
number of observations was 100, then the neighborhood 
around x(i) would consist of the ten nearest observations. 
For a running mean smoother, the average of Y in the 
neighborhood of x(1) is calculated and used as the first 
predicted value of the smoothed line. This process is 
repeated for x(2), x(3),  x(n). The predicted values are then 
joined by a line segment and the entire line is called the 
running mean smoother. A running median smoother uses 
the same algorithm except the median Y-value is calculated 
within each neighborhood and used as the predicted value. 

The neighborhood around x(·) can be based on either 
the nearest symmetric neighbors in which the k/2 
observations to the left and k/2 observations to the right of 
x(·) are chosen as the neighborhood. In the case where x(·) is 
near the tail of x and it is not possible to take all the points 
both to the right and left of x(·), as many observations as 
possible are taken for the calculation. Alternatively, symmetry 
can be ignored and the nearest neighborhood may consist 
of the nearest neighbors to x(·) regardless of whether the 
observations are to the right or left of x(·). Hastie and 
Tibshirani (1990) suggest that nearest neighborhoods are 
preferable to symmetric neighborhoods because in a 
neighborhood with a fixed number of observations the 
average distance of the observations to the reference value 
is less with nearest neighborhoods, unless the observations 
are equally spaced, resulting in less bias in the predictions. 

Running mean and median smoothers, while often 
seen in time series analysis, are not very useful because the 
smoothed line tends to be too jittery to be useful and tends 
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to flatten out at near the tails of x leading to large bias in 
the fit. However, a simple solution to the bias problem 
exists. Instead of computing the mean in the neighborhood, 
a running line smoother is computed where within each 
neighborhood ordinary least squares linear regression is 
used to compute the predicted value at x(·). Cleveland 
(1979) further improved on the algorithm by suggesting 
that within each neighborhood weighted least squares 
linear regression (which will be discussed in the chapter on 
“Variance Models and Transformations”) be used to 
predict the value at x(·) where the weights decrease 
smoothly away from x(·). This algorithm is more commonly 
referred to as the Locally Weighted Scatterplot Smoother 
(LOWESS) or LOESS algorithm. 

The algorithm proceeds by starting at x(1) and 
calculating the distance from x(1) for each x(·) 

 
( ) ( ) (1) ,i ix x    (108) 

where |·| is the absolute value function. The k nearest 
neighbors having the smallest Δ(i) are then identified, as is 
the observation having the largest Δ(i), denoted max(Δ). A 
scaled distance is then calculated as 
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Once the scaled distances are calculated, the tricube weight 
function is formed for each x(i) in the neighborhood of x(1) 
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Weighted linear regression using the above weights is then 
performed on the observations in the neighborhood and the 
Y value at x(1) (denoted Y(1)) is predicted. This process is then 
repeated on x(2), x(3),  x(n) replacing x(1) in the above 
equations with x(2), x(3), etc. The LOESS smoother then joins 
each predicted Y(i) by a line segment. Figure 14 illustrates the 
concepts just described for a single observation in a data set. 
Each observation in the neighborhood does not contribute 
equally to the predicted x(1). Observations near x
greater weight than observations within the neighborhood 
but further removed from x(1). An optional robustness factor 
can be built into the model by providing less weight to 
observations having large residuals. 

Figure 15 presents a representative concentration-time 
profile with a LOESS smooth to the data. To create a 
LOESS smooth to the data, an analyst must first decide 
whether the weighted regression model within each 
neighborhood will be linear or quadratic in nature. Higher 
order polynomial models are of course possible, but are 
rarely used. Quadratic models are useful is the data exhibit 
a large degree of curvature or has many inflection points. 
Secondly, the proportion of observations in each 
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Fig. 14 Example of a LOESS smoother and nearest neighbor 
concept. Twenty observations were simulated. A LOESS smoother 
having span 0.5 and using a weighted linear regression model is 
shown as a heavy-set solid line. The hatched area is the k nearest 
neighbors (ten observations because 20 × 0.5 = 10) to a target value 
of 16.5. The solid line within the neighborhood is the tricube weight 
function. The solid dot within the window is the predicted value. 
Notice that the tricube weight function is not necessarily symmetric 
around the target value 

to 1, but typically, a good default value is 0.3–0.5, i.e., each 
neighborhood consists of the nearest half to third of the 
data surrounding x(i). The number of observations in each 
neighborhood is then k = w × n. If k is not a whole number, 
the value must be either truncated or rounded. The default 
span in S-Plus is 2/3. No default value is used in SAS; the 
smoothing parameter is an optimized one that is data-
dependent. If x is sorted from smallest to largest then the 
physical width of each window may change in size as the 
smoother proceeds from x(1), …, x(n), as will the degree of 
asymmetry. For example, the neighborhood will lie entirely 
to the right of x(1), but will lie entirely to the left of x(n). 

 
Kernel Smoothers 

The smoothers just presented use neighborhoods of 
constant span with the neighborhood being either the nearest 
k observations or the nearest symmetric neighbors. 

In contrast, kernel smoothers use neighborhoods of 
constant width or bandwith (denoted as b) as is more often 
used (Altman 1992). A kernel is a continuous bounded and 
symmetric function K that integrates to one. Given a 
reference point, say x(1), the difference between x(1) and all 
other x(i)s is scaled to the bandwith 
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The scaled difference u(i) is then passed to the kernel 
function. Popular kernel functions include the Epanechnikov 
kernel  

 have (1)

neighborhood must be selected. The span may range from 0 
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Fig. 15 Concentration data from 97 subjects having from one to 
four samples collected per patient at steady state. The dotted, 
solid, and dashed lines are the LOESS fits of varying span and 
either linear or quadratic regression 

 
2
( ) ( )

( )
( )

0.75(1 ) for 1
( ) ,

0 for 1
i i

i
i

u u
K u

u

    
 (112) 

the standard Gaussian kernel 
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and the quartic kernel 
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Figure 16 plots the differences in the kernels and how they 
decrease as they move from their reference point. 

In general, the Gaussian kernel weights less drastically 
than does the Epanechnikov kernel, while the quartic 
kernel weights most dramatically as the distance from the 
reference point increases. The weight given to the ith by 
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where c is a constant defined such that the weights sum to 
unity. The weight given an observation is only dependent 
on how close the observation is to x(i). The predicted value 
for x(1) is then the weighted average of all the Y values 
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This process is repeated for all x(i). 
Kernel smoothing is more like a weighted running 

mean smoother, even though it is sometimes referred to as 
kernel regression. With kernel smoothing, the analyst must 
choose the bandwidth and the choice of kernel. For 
constant bandwith the number of data points in the 
neighborhood varies from neighborhood to neighborhood.  
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Fig. 16 The Epanechnikov (solid line), standard Gaussian (dotted 
line), and quartic kernel (dashed line) smoother 

As the bandwidth increases the variance of the estimate 
decreases, but the bias of the predicted fit decreases. 
Conversely, the weights around the reference value 
increase as the bandwidth decreases. As for choice of the 
kernel function, in practice the choice of kernel is relatively 
unimportant compared to the choice of bandwidth as most 
kernel functions produce roughly equivalent smooths to the 
data (Hastie and Tibshirani 1990). The general opinion is 
that kernel smoothing is inferior to local weighted 
regression as kernel smoothing suffers from the same 
boundary bias as running mean smoothers and under 
performs when the “true” regression function is linear 
(Ryan 1997). 

Spline Interpolation 
Another type of smoother sometimes seen in the 

pharmacokinetic arena is a spline smoother, which comes in 
many different flavors. Splines have their history in drafting 
where draftsmen needed to draw a smooth curve through a 
set of points. To do this, the draftsman would place a piece of 
paper over a board, hammer in nails or push in pins where 
the points were, and then a thin piece of wood was interwoven 
between the points. The result was a smooth curve that passed 
through each point. This type of spline is referred to as an 
interpolating splines. The problem with interpolating splines 
is that the spline passes through every point. Interpolating 
splines applied to data with replicate values or noisy data are 
not very appealing and so penalized regression splines, 
which use a penalized least squares minimization approach 
to the problem, are often used instead. 

The concept of an interpolating spline is best explained 
through linear splines and then expanded to higher order 
splines (Chapra and Canale 1998). Given a set of ordered 
data points x(1), x(2), …, x(n) a first order spline can be 
defined through the linear functions 
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where mi is the slope of the straight line connecting the 
points 
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The points where two splines meet are called the knots. A 
first order spline is a simple linear interpolating line to the 
function, but suffers from the problem that the change from 
one interpolating line to another is not smooth – the 
derivatives are discontinuous. 

To overcome the problem of discontinuity, higher 
order splines may be developed. In order for the spline to 
be smooth at the knots, both the first and second derivative 
of the spline must exist and be continuous. In general, a 
spline of at least m + 1 must be used for m-derivatives to be 
continuous and exist. Hence, for both the first and second 
derivative to be continuous a cubic spline of the following 
form must be used 

 2 3
0 1 3 4 .Y x x x        (119) 

The following conditions must also be met: 
1. The function values must be equal at the interior 

knots, i.e., the splines must join at the knots. 
2. The first and last functions must pass through the 

first and last observed data points (the end points). 
3. The first and second derivatives of the interior knots 

must be equal. 
Under these constraints there are n  2 equations but n 
unknowns. Thus the spline cannot be solved as is. Two 
unknowns can be eliminated and the problem solved by 
imposing some constraints on the end points. Under the 
constraint that the second derivatives at the end knots equal 
zero creates what is referred to as a natural spline. The result 
is that at the end points the end cubics approach linearity and 
have zero curvature. This type of spline is the mathematical 
equivalent to the draftsman’s spline from earlier. If instead 
the slope of the first and last cubics at the end points is 
specifically defined the result is a clamped cubic spline. See 
Fig. 17 for an example of a natural cubic spline. 

Unfortunately, as is apparent in the bottom plot of  
Fig. 17, interpolating cubic splines may not be valuable in 
some instances, such as trying to smooth concentration-
time data pooled across individuals in a population or when 
the data are particularly noisy. In this case, regression 
splines, which do not force the spline curve to interpolate 
the observed data points, may be more useful. Like 
interpolating splines, regression splines use piecewise 
polynomials to interpolate between the knots, the most 
common polynomial being cubic. As the number of knots 
increases the flexibility of the spline increases. Thus, a 
regression spline may pass near the observed data but not 
be constrained to interpolate it. 
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Fig. 17 Interpolating cubic spline fit to the data in Fig. 14 (top) 
and Fig. 15 (bottom) 

Handling Missing Data 
Anyone who does data analysis will eventually run into 

the problem of missing data, either the dependent variable is 
missing or one or more of the independent variables is 
missing. The problem of handling missing data is far too 
complex to cover it in its entirety within this book and many 
excellent books are available on the subject for readers who 
wish greater detail. These include books by Allison (2002), 
Little and Rubin (2002), and Schafer (1997). 

It is worthwhile to consider the regulatory opinion on 
missing data, keeping in mind that these guidances were 
written with an eye toward formal statistical analysis, such 
as hypothesis testing, and not with an eye toward 
pharmacokinetic or pharmacodynamic modeling per se. 
Having said that, more and more modeling is done to 
support New Drug Applications and that in the future it is 
likely that increased scrutiny will be paid toward these 
issues. ICH E9 (1998) states that the missing data is a 
potential source of bias and as such every effort should be 
done to collect the data in the first place. The guidance also 
recognizes that despite best efforts, missing data is a fact of 
life in clinical studies. Also, trial results are valid “provided 
the methods for dealing with missing data are sensible, … 
particularly those pre-defined in the protocol.” Unfortunately, 
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no recommendations are made in the guideline on what those 
“methods” are. The guideline does state that no universal 
method for handling missing data is available and that any 
analysis based on data containing missing values should also 
have a corresponding sensitivity analysis to see what effect 
the method of data handling has on the analysis results. 

The Committee for Proprietary Medicinal Products 
(CPMP) (2001) has also issued a points to consider document 
related to missing data that expands on the ICH E9 
guideline. The CPMP document is mainly concerned with 
the issue of bias and how missing data affects detecting and 
estimating treatment effects. The CPMP does not generally 
accept analyses where all missing data is deleted and only 
data with complete cases is analyzed. They recommend that 
all efforts be directed at avoiding missing data in the first 
place, something that seems intuitively obvious but needs to 
be restated for its importance. The CPMP also recommends 
that whatever method used to handle missing data be stated a 
priori, before seeing the data, in a data analysis plan or the 
statistical methods section of the study protocol. The final 
report should include documentation on any deviations from 
the analysis plan and defend the use of the prespecified 
method for handling missing data. Lastly, a sensitivity 
analysis should be included in the final report indicating the 
impact of the missing data handling procedure on treatment 
outcomes. This may be as simple as a complete case analysis 
vs. imputed data analysis (which will be discussed later). 

Types of Missing Data and Definitions 
Little and Rubin (2002) define three types of missing 

data mechanisms. The first and most restrictive is missing 
completely at random (MCAR) in which cases that are 
missing are indistinguishable from cases that have complete 
data. For example, if a sample for drug analysis was broken 
in the centrifuge after collection and could not be analyzed 
then this sample would be MCAR. If the data are MCAR 
then missing data techniques such as casewise deletion are 
valid. Unfortunately, data are rarely MCAR. 

Missing at random (MAR), which is a weaker 
assumption than MCAR, is where cases of missing data 
differ from cases with complete data but the pattern of 
missingness is predictable from other variables in the dataset. 
For example, suppose in a Phase 3 study all patients at a 
particular site failed to have their weight collected at study 
entry. This data would be MAR because the missingness is 
conditional on whether the data were collected at a particular 
site or not. When data are MAR, the missing data 
mechanism is said to be “ignorable” because the missing 
data mechanism or model is independent of the parameters 
to be estimated in the model under consideration. Most data 
sets consist of a mixture of MCAR and MAR. 

If data are missing because the value was not collected 
then that value is truly missing. In more statistical terms, if 
the data are missing independent of the actual value of the  
 

 

missing data then the missing data mechanism is said to be 
ignorable. If, however, data are missing because their value 
is above or below some level at which obtaining quantifiable 
measurements is not possible then this type of missing data 
is an entirely different problem. In this case, the data are 
missing because of the actual value of the observation and 
the missing data mechanism is said to be nonignorable. 
These last type of data are extremely tricky to handle 
properly and will not be discussed in any great detail herein. 
The reader is referred to Little (1995) and Diggle and 
Kenward (1994) for details. 

Last, is the pattern of missingness as it relates to 
missing covariates. Figure 18 presents a schematic of the 
general pattern of missingness. Some covariates have 
missing data, others do not. There may be gaps in the 
covariates. But if the covariates can be re-arranged and re-
ordered x1, x2, , xp, such that the degree of missingness 
within each covariate is less than the preceding covariate 
then such a pattern of missingness is monotonic or nested. 
Monotonic missingness is useful because there are specific 
ways to impute monotonic missing data. 

Methods for Handling Missing Data: Missing 
Dependent Variables 

If the missing data are the dependent variable and the 
reason for missingness is not nonignorable then the missing 
data should be deleted from the analysis. If however, the 
missing dependent variable is missing because it is below or 
above some threshold value then more complicated methods 
to analyze the data are needed. For instance, the dependent 
variable may be missing because its value was below the 
lower limit of quantification (LLOQ) of the method used to 
measure it. For example, white blood cell count may be near 
zero after chemotherapy and may not be measurable using 
current technologies. In this case, the value may be reported 
as <0.1  109 per liter. In such a case, the true value for 
white blood cell count lies between 0 and the LLOQ of the 
assay. Such data are said to be censored. Another instance 
might be when the value exceeds some threshold beyond 
which an accurate and quantifiable measurement cannot be 
made, such as determining the weight of a super-obese 
individual whose weight exceeds the limit of the scale in a 
doctor’s office. In this case only that the subject’s weight 
was larger than c, the upper limit of the scale, is known. A 
value is said to be censored from below if the value is less 
than some threshold or censored from above if the value 
exceeds some constant. With censored data, the usual 
likelihood function does not apply and parameter estimates 
obtained using maximum likelihood will be biased. 

For data where the dependent variable is censored, the 
log-likelihood function is the sum of the log-likelihoods for 
observations not censored plus the sum of the log-
likelihoods for censored observations. To obtain parameter  
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Fig. 18 General (top) and monotonic (bottom) pattern of 
missingness in the covariates 

estimates one needs access to an optimization package that 
can fit a general likelihood function, like MATLAB (The 
MathWorks Inc., Natick, MA).  A simpler more pragmatic 
(but certainly more biased) approach in the case where 
observations are censored from below, imputation is usually 
done by setting the value equal to zero, equal to some 
fraction of the constant, such as one-half the LLOQ of the 
assay, or randomly assigning the data point a value based on 
a probability distribution. For instance, a sample may be 
randomly drawn from the interval [0, LLOQ] based on a 
uniform distribution. Observations censored from above are 
more problematic because there may be no theoretical upper 
limit and in such cases, imputation is usually done by setting 
the missing value equal to the upper threshold. Whatever the 
imputation method used, the usual caveats apply. The reader 
is referred to Breen (1996) for a good exposition to the 
problem. Unfortunately at this time, no major statistical 
package, such as SAS or S-Plus, or pharmacokinetic 
software package can handle the censored data case using 
the correct log-likelihood equations. 

Methods for Handling Missing Data: Missing 
Independent Variables 

There are many different ways for handling missing 
data including ignore the missing data (complete case 
analysis), mean or median substitution, hot deck methods, 
regression methods, and maximum likelihood and its 
variants. The simplest method, called listwise deletion or 
complete case analysis, is to ignore the missing data and 
model only the data that have no missing data. The 
advantages of this method are that it can be applied to any 
type of statistical model and is easy to do. Hence, casewise 
deletion is the method of choice for handling missing data 
in most statistical software packages. A disadvantage of 
this method is that it may lead to biased results, especially 
if the data are not MCAR, but are MAR, such as if the data 
were more likely to be missing because of assignment to a 
particular treatment arm. If the data are MCAR, then the 
model parameters will be unbiased but the standard errors 
will be larger due to a reduced sample size. Hence, power 
will be decreased at detecting significant treatment effects. 
The CPMP does not generally accept listwise deletion 
analysis because it violates the intent to treat principle.2 
The Points to Consider document does state, however, that 
listwise deletion may be useful in certain circumstances, 
such as in exploratory data analysis and confirmatory trials 
as a secondary endpoint, to illustrate the robustness of 
other conclusions. 

Imputation, which is basically making up data, 
substitutes the made-up data into the missing data and treats 
the imputed data as if it were real. Imputation is generally 
recognized as the preferred approach to handling missing 
data and there are many different ways to impute missing 
data. The first approach is naïve substitution wherein the 
mean or median value is substituted for all missing values. 
For example, if a person’s weight was missing from a data 
set then the mean weight, perhaps stratified by sex, would 
be substituted. While preserving the mean of the marginal 
distribution of the missing variable, it biases the distribution 
of the variable. The result is that if the variable is indeed 
related to the dependent variable and the proportion of 
missing data is large, then naïve substitution may distort 
the relationship between variables. It is generally recognized 
that this approach does more harm than good, unless the 
proportion of missing data is small (less than a few 
percent), where at best the substitution adds no information. 

If the missing value is one of the independent variables 
then naïve substitution ignores any correlations that may be 
present among predictor variables. To account for any 
correlations between variables, conditional mean imputation 
may be used wherein for cases with complete data  
the variable with  missing data is regressed against the other 

                                                           

2 The intent to treat principle essentially states that all patients are 
analyzed according to the treatment they were randomized to, 
irrespective of the treatment they actually received. Hence, a 
patient is included in the analysis even if that patient never 
received the treatment. 
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predictor variables and then the predicted value is 
substituted for the missing value. In general, all variables 
are used in the analysis and no attempt is made to reduce 
the imputation model to its simplest form. 

A variant of naïve substitution is to use random 
substitution wherein an observation is randomly sampled 
from the observed values and substituted for the missing 
value. This approach too tends to maintain the mean on-
average but may obscure real relationships among the 
variables. Another variant of naïve substitution is hot-deck 
imputation, which requires pretty large data sets to be 
useful and has been used for many years by the U.S. 
Census Bureau. The basic idea is that each missing value is 
randomly replaced from other subjects having similar 
covariates. Suppose the weight of a 67-year-old male was 
missing, but weight was collected on three other 67-year-
old males in the study, then the weight of the missing value 
is randomly drawn from one of the three observable 
weights. The advantage of the method is that it imputes 
realistic values since the imputed value is itself actual data 
and is conceptually simple. But what if there were no other 
67-year-old males in the study. How would the imputation 
work? This is where hot deck is often criticized, in the 
choice of the “donor” cases since one then must set up 
“similarity” criterion to find matching donors. Also, 
besides SOLAS (Statistical Solutions, Saugus MA), no 
other software package has a built-in hot deck imputation 
algorithm. The user must program their own filters and 
similarity measures which makes the method data-specific 
and difficult to implement. 

Regression-based methods impute the missing values 
using least-squares regression of the missing covariate 
against the observed covariates (Little 1992). In other words, 
the missing covariate becomes the dependent variable and 
the other covariates with no missing data become the 
independent variables. Ordinary least-squares, or sometimes 
weighted least-squares that downweights incomplete cases, 
is then used to obtain the regression model and the missing 
value is imputed based on the predicted value. A 
modification of this approach is to add random error to the 
predicted value based on the residual mean square error to 
account for unexplained variability. Little (1992) suggests 
that when the partial correlation between Y and the observed 
xs is high then a better imputation can be had by including Y, 
as well as the observed xs, in the imputation process. This 
may seem like cheating but if Y is not included in the 
imputation then biased parameter estimates may result 
using the filled-in data. 

If the covariates show a monotone pattern of 
missingness (Fig. 18) then the imputation procedure can be 
done sequentially. For instance, suppose that x1, x2, x3, and x4 
are the covariates that exhibit monotone missingness and 
that x1 and x2 have no missing data. In the first step, x3 would 
be imputed based on the regression of x3 against Y, x1, and 
x2. Then given imputed values for x3, x4 would be imputed 
using the regression of Y, x1, x2, and x3 against x4. In this 
manner all the covariates can be imputed. One problem that 

may arise using regression-based methods is that the 
covariates may show collinearity. The covariate design 
matrix used in the imputation may be near singular with the 
resulting parameter estimates showing instability. A check 
of the correlation matrix prior to imputation may be useful to 
detect which covariates show collinearity. Collinearity could 
also arise if one or more of the covariates show excessive 
skewness. In which case, a transformation to normality may 
be useful prior to imputation. 

A parametric method for handling missing data is 
maximum likelihood. Recall that in linear regression 
maximum likelihood maximizes the likelihood function 
L(·) 
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where f is the probability density function. In the case 
where missing data are present the likelihood function 
becomes the entire sample 
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where g is the probability density function for the missing 
data and there are m cases with observed data and n − m 
cases of missing data. The problem then becomes to find 
the set of θ that maximizes the likelihood. In order to 
maximize the likelihood certain distributional assumptions 
must be made, the most common being a multivariate 
normal distribution. Although direct maximization of the 
likelihood is possible, the software to do such 
maximization is not readily available. 

Two alternatives to direct maximization of the 
likelihood are available: the EM algorithm, which is the 
default multiple imputation (MI) algorithm in SAS, and 
Markov chain data augmentation. The expectation-
maximization (EM) is difficult to explain in lay terms, but 
in brief, the EM approach to missing data proceeds in two 
steps. In the first step, the expectation step, the algorithm 
essentially computes a regression-based imputation to the 
missing values using all available variables. After the 
expectation step, the maximization step computes new 
estimates of the likelihood as if the variable had no missing 
data. Then the E-step is repeated, etc., until stability of the 
estimates is obtained. 

Data augmentation using Markov Chain Monte Carlo 
(MCMC), which has its basis in Bayesian statistics, is 
much like the EM algorithm except that two random draws 
are made during the process. Markov chains are a sequence 
of random variables where the current value depends on the 
value of the previous step. In the first step, starting values 
are made. For a multivariate normal model, the starting 
values are the means and covariance matrix or the means 
and covariances obtained using the EM algorithm. For each 
missing variable, given the estimates of the mean and 
covariance, estimates of the regression parameters relating 
the variable with missing data to the other variables are 
obtained. Using the regression estimates, the predicted 
values for all missing data are calculated. Then (and this is 



96 Pharmacokinetic-Pharmacodynamic Modeling and Simulation 

the first random, stochastic step in the process) normally 
distributed random variability is added to the predicted 
values and substituted for the missing data. The means and 
covariances for the imputed data set are then computed. 
Based on these updated means and covariances (and this is 
the second random stochastic step in the process) a random 
draw from the posterior distribution of the means and 
covariances is made. Using the randomly drawn means and 
covariances, the entire process is repeated until convergence 
is achieved. The imputations obtained at the final step in 
the process are those that are used in the statistical analysis. 

Related to MCMC are two fundamental issues: how 
many iterations are needed before convergence is achieved 
and what posterior distribution should be used. There is no 
satisfactory answer for whether or not convergence (or 
stationarity) has been achieved. The default in SAS is to 
use 50 burn-in iterations before the first imputation is 
available for use. Schaffer (1997) used anywhere from 50 
to 1,000 iterations in examples used in his book. Of course 
the more iterations the better, but increasing the number of 
iterations also increases the computation time, which may 
become prohibitive. Allison (2002) suggests that as the 
proportion of missing data increases the number of iterations 
should increase. If only 5% of the data are missing then 
fewer iterations are needed, although typically 500–1,000 
iterations is usually seen in the literature for most realistic 
data sets. The reader is referred to Gelman et al. (1995) for 
further details on MCMC and convergence. The second 
fundamental issue related to MCMC is the choice of  
the posterior distribution. In order to obtain the posterior 
distribution, one needs a prior distribution, which is a 
probability distribution associated with the prior beliefs of 
the data before actual collection of any data. An 
uninformative prior is often used in the absence of any 
prior knowledge, which is what SAS does as a default. 

The problem with any imputation method wherein a 
single value is substituted for the missing data and then the 
data set is analyzed as if it were all complete cases is  
that the standard errors of the model parameters are 
underestimated because the sampling variability of the 
imputed values is not taken into account. For this reason 
multiple imputation arose. With multiple imputation many 
different datasets are generated, each with their own set of 
imputed values, and each imputed data set is analyzed as if 
complete. The parameter estimates across data sets are then 
combined to generate improved estimates of the standard 
errors. Multiple imputation, when done correctly, can provide 
consistent, asymptotically normally distributed, unbiased 
estimates of model parameters given the data are MAR. 
Problems with multiple imputation include generation of 
different parameter estimates every time it is used, is 
difficult to implement if not built into a statistical package, 
and is easy to do the wrong way (Allison 2002). 

Rubin (1987) proposed that if m-imputed data sets are 
analyzed that have generated m-different sets of parameter 
estimates then these m-sets of parameter estimates need to 
be combined to generate a set of parameter estimates that 

takes into account the added variability from the imputed 
values. He proposed that if θi and SE(θi) are the parameter 
estimates and standard errors of the parameter estimates, 
respectively, from the ith imputed data set, then the point 
estimate for the m-multiple imputation data sets is 

 
MI

1
.

m

i
i im

 


   (122) 

So the multiple imputation parameter estimate is the mean 
across all m-imputed data sets. Let ( )iU   be the variance 

of θi, i.e., the standard error squared, averaged across all m-
data sets 
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and let ( )iB   be the variance of the point estimates across 

imputations 

 2

1

1
( ) ( ) .

1

m

i i i
i

B
m

  


 
   (124) 

Then the variance associated with θi is 

 1
Var( ) ( ) 1 ( ).i i iU B

m
      

 
 (125) 

The multiple imputation standard error of the parameter 
estimate θi is then the square root of (125). Examination of 
(125) shows that the multiple imputation standard error is a 
weighted sum of the within- and between-data set standard 
errors. As m increases to infinity the variance of the 
parameter estimate becomes the average of the parameter 
estimate variances. 

Rubin (1987) also showed that the relative increase in 
variability (RIV) due to missing data is a simple function 
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and that the overall fraction of “missing data” can be 
calculated as 
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Given an estimate of RIV the relative efficiency of a 
parameter estimate based on m imputations to the estimate 
based on an infinite number of imputations can be calculated 
by (1 + ξ/m)1. For example, with five imputations and 40% 
missing data the relative efficiency is 93%. With ten 
imputations the relative efficiency is only 96%. Thus, the 
difference between five and ten imputations is not that 
large and so the increase in relative efficiency with the 
larger number of imputation sets may not be worth the 
computational price. Typically, the gain in efficiency is not 
very large when more imputation data sets are used and it 
is for this reason that when multiple imputation is used and 
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reported in the literature the number of imputed data sets is 
usually five or less. 

There are two additional twists related to multiple 
imputation using MCMC. Obviously multiple imputation 
creates multiple datasets. For a fixed amount of computing 
time, one can either increase the number of iterations in the 
Markov chain generating a fixed number of imputed data sets 
or one can increase the number of imputed data sets to be 
analyzed using a smaller number of iterations in the Markov 
chain. Allison (2002) suggests that more imputation data sets 
be generated instead of spending more time on increasing the 
number of iterations in the Markov chain. The second twist is 
that several different data sets need to be generated. To do this, 
independent Markov chains are generated, one for each data 
set, using perhaps different starting values; this is called the 
parallel approach. Care must be taken with this approach that 
convergence has been achieved with each individual Markov 
chain. Alternatively, one very long Markov chain can be 
generated and then the data sets generated every k iterations 
are chosen. For example, a Markov chain of 3,000 iterations 
could be generated with the first 500 iterations used for burn-
in and then every 500th data set thereafter used for the imputed 
data sets. With this method the question of independence must 
be raised – are the imputed data sets truly independent if they 
are run from the same Markov chain? As k decreases the issue 
of correlated data sets becomes more and more important, but 
when k is very large, the correlation is negligible. For 
example, the issue of correlation would be valid if the imputed 
data every ten iterations were used, but becomes a nonissue 
when k is in the hundreds. In general, either method is 
acceptable, however. 

To illustrate these concepts a modification of the 
simulation suggested by Allison (2000) will be analyzed. In 
this simulation 10,000 observations of three variables were 
simulated: Y, x1, and x2. Such a large sample size was used 
to insure that sampling variability was small. x1 and x2 were 
bivariate normally distributed random variables with mean 
0 and variance 1 having a correlation of 0.5. Y was then 
generated using 
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where Z was normally distributed random error having 
mean 0 and variance 1. Four missing data mechanisms 
were then examined: 

1. Missing completely at random: x2 was missing with 
probability 0.5 independent of Y or x1 

2. Missing at random, dependent on x1: x2 was missing 
if x1 < 0 

3. Missing at random, dependent on Y: x2 was missing 
if Y < 0 

4. Nonignorable: x2 was missing if x2 < 0 
The data were then fit using linear regression of (x1, x2) 
against Y. The results are presented in Table 13. Listwise 
deletion resulted in parameter estimates that were unbiased, 
except when the data were MAR and dependent on the 
value of Y in which case all three parameter estimates were 
severely biased. Surprisingly, even when the missing data 

mechanism was nonignorable the parameter estimates were 
unbiased and precise. The standard errors for all models 
with missing data were about 25–200% larger than the data 
set with no missing data because of the smaller sample 
sizes. MI tended to decrease the estimates of the standard 
errors compared to their original values. When the data 
were MAR or MCAR, the parameter estimates remained 
unbiased using MI with MCMC, even when the data were 
MAR and dependent on Y. The bias that was observed was 
now removed. But when the missing data were non-
ignorable, the parameter estimates obtained by MI became 
biased because MI assumes the data MAR. 

So how is MI incorporated in the context of 
exploratory data analysis since obviously one would not 
wish to analyze m different data sets. A simple method 
would be to impute m + 1 data sets, perform the 
exploratory analysis on one of the imputed data sets, and 
obtain the final model of interest. Then using the 
remaining m-data sets compute the imputed parameter 
estimates and standard errors of the final model. It should 
be kept in mind, however, that with the imputed data set 
being used to develop the model, the standard errors will 
be smaller than they actually are since this data set fails to 
take into account the sampling variability in the missing 
values. Hence, a more conservative test of statistical 
significance for either model entry or removal should be 
considered during model development. 

A totally different situation arises when covariates are 
missing because of the value of the observation, not because 
the covariate was not measured. In such a case the value is 
censored, which means that the value is below or above 
some critical threshold for measurement. On the other hand, 
a covariate may be censored from above where the covariate 
reported as greater than upper limit of quantification (ULOQ) 
of the method used to measure it. In such a case the covariate 
is reported as >ULOQ, but its true value may lie theoretically 
between ULOQ and infinity. The issue of censored 
covariates has not received as much attention as the issue of 
censored dependent variables. Typical solutions include any 
of the substitution or imputation methods described for 
imputed missing covariates that are not censored. 

In summary, case-deletion is easy but can lead to biased 
parameter estimates and is not generally recommended  
by regulatory authorities. In contrast, multiple imputation, 
although computationally more difficult, is generally 
recognized as the preferred method to handling missing data 
and like any statistical analysis requires certain assumptions 
be met for validity. The analyst is especially warned in the 
case of censored data and the effects of case-deletion or 
multiple imputation on parameter estimation. This section 
has presented a high-level overview of MI and handling 
missing data that is far from complete. The reader is strongly 
encouraged to read more specialized texts on the topic prior 
to actually implementing their use in practice. Before closing 
this section, the best advice for missing data is to have none 
– do everything possible to obtain the data in the first place! 
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Table 13 

Parameter estimates and standard errors from simulated multiple imputation data set 

 
 
Missing Data 
Mechanism 

 
 
 

Parameter 

 
Number of 

Observations Without 
Missing Data 

 
Listwise Deletion 

Mean 
(Standard deviation) 

 
MCMC 
Mean 

 (Standard deviation) 
No missing data Intercept 10,000 1.005 (0.0101) – 

 x1  0.987 (0.0116) – 
 x2  0.998 (0.0117) – 
     

MCAR Intercept 4,982 1.000 (0.0141) 0.993 (0.0101) 
 x1  0.986 (0.0162) 0.978 (0.0118) 
 x2  0.996 (0.0164) 1.012 (0.0133) 
     

MAR on x1 Intercept 5,023 0.998 (0.0234) 1.001 (0.0284) 
 x1  0.996 (0.0250) 0.994 (0.0126) 
 x2  0.992 (0.0166) 0.993 (0.0142) 
     

MAR on Y Intercept 6,942 1.419 (0.0123) 1.000 (0.0122) 
 x1  0.779 (0.0133) 0.988 (0.0162) 
 x2  0.789 (0.0136) 0.996 (0.0150) 
     

Nonignorable on x2 Intercept 5,016 1.017 (0.0234) 1.66 (0.0187) 
 x1  0.973 (0.0166) 1.13 (0.0148) 
 x2  1.016 (0.0254) 1.22 (0.0300) 

Note: True values are 1.000 for intercept, 1.000 for x1, and 1.000 for x2. Results based on 10,000 simulated observations. MI 
was based on five imputed data sets having a burn-in of 500 iterations 
 

Software 
Every statistical package, and even spreadsheet programs 

like Microsoft Excel®, has the capability to perform linear 
regression. SAS (SAS Institute, Cary, NC, http://www.sas. 
com) has the REG procedure, while S-Plus (Insightful Corp., 
Seattle, WA, http://www.insightful.com) has available its lm 
function. Statistical packages are far more powerful than the 
spreadsheet packages, but spreadsheet packages are more 
ubiquitous. The choice of either S-Plus or SAS is a difficult 
one. S-Plus has better graphics, but SAS is an industry 
standard – a workhorse of proven capability. S-Plus is 
largely seen in the pharmacokinetic community as a tool for 
exploratory data analysis, while SAS is viewed as the de 
facto standard for statistical analysis in pharmaceutical 
development. All the examples in this book were analyzed 
using SAS (version 8) for Windows. 

Using statistical reference data sets (certified to 16 
significant digits in the model parameters) available from 
the National Institute of Standards and Technology (NIST) 
Information Technology Department (http://www.itl.nist. 
gov/div898/strd), McCullough (1999) compared the 
accuracy of SAS (version 6.12) and S-Plus (version 4.5), 
both of which are older versions than are currently 
available, in fitting a variety of linear models with varying 
levels of difficulty. Data sets of low difficult should be 
easily fit by most algorithms, whereas data sets of high 
 

difficult, which are highly collinear, may produce quite 
biased parameter estimates because different software may 
use different matrix inversion algorithms. McCullough 
found that SAS and S-Plus both demonstrate reliability  
in their linear regression results. However, for analysis  
of variance problems, which should use the same linear 
regression algorithms, the results were quite variable. 
Neither SAS or S-Plus passed average difficulty problems. 
When the linear regression data sets were analyzed using 
Microsoft’s Excel 97 (Microsoft Corp., Seattle, WA, 
http://www.microsoft.com) built-in data analysis tools, 
most performed reasonable well, but failed on a problem 
that was ill-conditioned, leading the authors to conclude 
that Excel 97 is “inadequate” for linear regression 
problems (McCullough and Wilson 1999). Furthermore, 
when Excel 97 analyzed the analysis of variance data sets, 
the software delivered acceptable performance on only 
low-level difficulty problems and was deemed inadequate. 

Unfortunately, there have been no studies of this type 
with more recent software versions or with other software, 
such as R or Matlab. It might be expected that more recent 
versions of software that previously performed adequately, 
such as SAS and S-plus, still perform adequately. It is not 
clear whether R, Matlab, or Excel perform adequately with 
reasonable accuracy. It seems likely that R and Matlab do 
in fact perform adequately, but Excel should still be 
considered questionable until shown otherwise.  

http://www.sas
http://www.insightful.com
http://www.itl.nist.gov/div898/strd
http://www.itl.nist.gov/div898/strd
http://www.microsoft.com
http://www.sas.com
http://www.insightful.com
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Summary 
Linear regression is one of the most important tools in 

a modelers toolbox, yet surprisingly its foundations and 
assumptions are often glossed over at the graduate level. 
Few books published on pharmacokinetics cover the 
principles of linear regression modeling. Most books start 
at nonlinear modeling and proceed from there. But, a 
thorough understanding of linear modeling is needed 
before one can understand nonlinear models. In this 
chapter, the basics of linear regression have been 
presented, although not every topic in linear regression has 
been presented – the topic is too vast to do that in one 
chapter of a book. What has been presented are the 
essentials relevant to pharmacokinetic and pharmacodynamic 
modeling. Later chapters will expand on these concepts and 
present new ones with an eye towards developing a unified 
exposition of pharmacostatistical modeling. 
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