CHAPTER 2

Linear Models and Regression

The purpose of models is not to fit the data, but to sharpen the questions
Samuel Karlin (1924 ), Evolutionary Geneticist

Abstract

A model is said to be linear if the partial derivatives with
respect to any of the model parameters are independent of
the other parameters. This chapter introduces linear models
and regression, both simple linear and multiple regression,
within the framework of ordinary least squares and
maximum likelihood. Influence diagnostics, conditional
models, error in variables, and smoothers and splines are
discussed. How to appropriately handle missing data in
both the dependent and independent variables is discussed.

Introduction

A model is said to be linear if the partial derivatives
with respect to any of the model parameters are
independent of the other parameters. All models of the form

p-1
Y=6,+) 6x, 6]
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where Y is a n x 1 vector of responses called the dependent
variable, x is a n x 1 matrix of predictor or independent

variables, n is the total number of observations, fis a p x 1

vector of regression parameters, and p is the number of
estimable parameters, are linear because
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006,
which does not depend on any other &, k#;. Much has
been written about linear regression models and little will
be devoted towards it exposition herein, except for a few
general properties of the linear model and a review of some
of its salient features. The reader is referred to Neter et al.
(1996) or Myers (1986) for further details. The goal is to
develop the concepts necessary for the exposition of the
nonlinear model, the most common model type seen in
pharmacokinetics.
The purpose of a model is explain the behavior of a
system and/or to predict the current or future observations. Let
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and let the predicted value (}9’) be defined as

p-1
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k=1
where ¢ is the estimator for § and e are independent,
normally distributed residuals with mean 0 and variance ¢”.
In general, the hat-notation, », indicates that the value is

estimated. By definition, the residuals are calculated as the
difference between (3) and (4), i.e.,

e=Y-7Y. (5)
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It should be noted that for notation purposes, the symbol
“e” will be used interchangeably with the symbol “e,”
although technically “e” is an estimator of “¢.”

The goal is to find the “best” line through the data and

consequently find the “best” estimators for 4. One method

is to find the set of yg that are closest to the observed Y
based on some type of minimization criterion or objective
function. Thus,

0:min[ £ (Y, )], (6)
where £(v, f) is a specific function based on the observed

and predicted values. It should be noted that many different
types of objective functions exist. If

SO =3 -1 =Y, ™

then the solution to the minimization problem is the method
of ordinary least squares (OLS). The function defined in (7)
is called the residual sum of squares or error sum of
squares. The use of the word “ordinary” is used to
differentiate it from weighted least squares, which will be
discussed in the chapter on “Variance Models, Weighting,
and Transformations.” For weighted least-squares the
objective function is

FOD =Y w1 =Ty
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where w; is the weight associated with the ith data point. A
robust procedure for curve fitting is the least-absolute value
criterion,

(®)
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sometimes called the L;-norm criterion. Most often least
squares is used as the minimization criterion because of its
statistical properties. Since no pharmacokinetic software
package provides alternative objective functions, like the
Li-norm, only least squares and its modifications will be
discussed.

The Method of Least Squares and Simple Linear
Regression

The Concept of Ordinary Least Squares Applied to the
Simple Linear Model

At the minimum of a function, the first derivative
equals zero. In the case of the simple linear regression

(SLR) model, Y= @)+ Gx + ¢, where the function being
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minimized is the residual sum of squares (7), the following
equalities must hold

a n
7R Y-, +6x)] =0
0 i=l
(10)
0 < 2
@Z[Y -, +6x)] =0.
1 i=1

Applying the derivatives, the following pair of equations
are obtained
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These equations are referred to as the least squares normal
equations. Solving (11) and (12) simultaneously, 8, and 6,
may be estimated by

P Y 5O
_w T (13)

Se i (x,— f)2
P

0,=Y-6x. (14)
Intuitively, the concept of least squares makes sense since
the predicted model attempts to minimize the squared
deviations from the observed values (Fig. 1). Under OLS
assumptions, every data point contributes equally to the
estimate of the slope and intercept.
The variance of the parameter estimates may then be
obtained using the linear expectation rule

Var(éo) = Var(Y - él X)
= Var(Y) + )?2Var(6A’1) (15)

ZYi(xf _f)
Var(6,) = Var =

Z (xi - )_5)2

:S%Var(idz(xi—)_c)zj (16)
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The square roots of Var(6y) and Var(8;) are called the
standard error of the parameter estimates denoted as SE(6,)
and SE(#,), respectively. The residual variance estimator,
o, is estimated by

(¥ -1)
6’=MSE=+-L | (17)
n—p

Y Data

X Data

Fig. 1 Illustration of the concept of least squares linear regression.
The dashed line minimizes the squared deviation (indicated by
solid lines) between the observed data and the predicted value

where MSE is referred to as the mean square error or
residual mean square error. The numerator in (17) is called
the residual sum of squares or sum of squares error, while
the denominator is called the residual degrees of freedom or
simply degrees of freedom. Degrees of freedom is a term
that estimates the amount of known information (n) less the
amount of unknown information (p). It can be shown that

E(0d%)=MSE, which means that MSE is an unbiased
estimate for the residual variance under the assumption that
the model is correct. Actual estimation of (15) and (16) is
made using the MSE estimator for the residual variance.
The following assumptions are made with a linear
model:
e The xs or independent variables are fixed and known
with certainty.
e The residuals are independent with mean zero and
constant variance.
When both X and Y are measured with error, this is called
error-in-variables (EIV) regression, which will be dealt with
in a later section. When x is not fixed, but random and X
and Y have a joint random distribution, this is referred to as
conditional regression, and will also be dealt with later in
the chapter. When the residual’s have nonconstant variance,
this is referred to as heteroscedasticity, which will be dealt
with in later chapters. Under OLS assumptions, the fitted
regression line has the following properties:
1. The sum of the residuals equals zero.
2. The sum of the squared residuals is a minimum
(hence least squares).
3. The sum of the observed Y values equals the sum
of the predicted Y values.
4. The regression line always goes through the point
Also under OLS assumptions, the regression parameter
estimates have a number of optimal properties. First, § is
an unbiased estimator for 8 Second, the standard error of
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the estimates are at a minimum, i.e., the standard error of
the estimates will be larger than the OLS estimates given
any other assumptions. Third, assuming the errors to be
normally distributed, the OLS estimates are also the
maximum likelihood (ML) estimates for 8 (see below). It is
often stated that the OLS parameter estimates are best linear
unbiased predictors (BLUE) in the sense that “best” means
“minimum variance.” Fourth, OLS estimates are consistent,
which in simple terms means that as the sample size
increases the standard error of the estimate decreases and
the bias of the parameter estimates themselves decreases.

Maximum Likelihood Estimation of Parameters
in a Simple Linear Model
Let Y(d,x) be the vector of predicted values for Y.

When the errors are normally distributed the likelihood
function is given by

L(Y|6,0)= H 5 exp£—[x2;§]2]. (18)
72'0

The log-likelihood function is the logarithm of the
likelihood and is given by

2] (19)

To find the maximum likelihood estimates for 6 and ¢* the
log-likelihood must be concentrated with respect to o°.
After concentrating the log-likelihood, differentiate with
respect to o7, set the derivative equal to zero, solve for o7,
and substitute the result back into (19). The concentrated
log-likelihood is then maximized with respect to 6.

Differentiating with respect to ¢° and setting the
derivative equal to zero leads to

n n 1 <
LL(Y|0,0) ==~ Ln(27) —ELn(O'Z) oy Z[
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=0.
Solving for ¢” leads to
S[y-i]
o’ (0) = H——r 2
n

where ¢”(#) denotes the dependence of ¢* on 6. Substituting

back into (19) leads to
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The middle term in (22) is a function of the residual sum of
squares. The first and last terms are constants. Only the
middle term in the equation matters for maximization. By
minimizing the negative of (22) (which is equivalent to
maximizing the log-likelihood function) the maximum
likelihood estimate of &, which is equivalent to the OLS
solution, is found. Once 6 is found, the maximum likelihood
estimate of o can be found, although the estimate is biased
since the choice of denominator (n for maximum likelihood
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and n — p for least squares) is different. The same result can
be obtained if the likelihood is concentrated with respect to
0 first.

The fact that the same result was obtained with the
OLS estimates is dependent on the assumption of normality
and that the residual variance does not depend on the model
parameters. Different assumptions or a variance model that
depends on the value of the observation would lead to
different ML estimates. Least squares estimates focus
completely on the structural model in finding the best
parameter estimates. However, ML estimates are a
compromise between finding a good fit to both the
structural model and the variance model. ML estimates are
desirable because they have the following properties
(among others):

1. They are asymptotically unbiased.

2. Asymptotically they have minimum variance.

3. They are scale invariant.

For more on the properties and derivation of likelihood
functions, the reader is referred to the Appendix given at
the end of the book.

Precision and Inference of the Parameter Estimates for
the Simple Linear Model
Under normal theory assumptions on the residuals, i.e.,

£~N(0, ¢°), a (1 —&)100% confidence interval for éj can

0,%1,,, ,\/Var(0)), (23)

where ¢ is Student’s two-tailed #-distribution with n—p
degrees of freedom. A corresponding test for whether a
model parameter equals zero (null hypothesis).

H,:0,=0
vs. the alternative hypothesis that the parameter does not
equal zero

be computed from

H,:0+0
can be made from the (1-a)100% confidence interval. If the
(1-a)100% confidence interval does not contain zero, the
null hypothesis is rejected at level o. Similarly, an
equivalent 7-test can be developed where

_ ABS(0)

SE(9)

where ABS(") is the absolute value function. If T is greater
than Student’s two-tailed #-distribution with n —p degrees
of freedom, then the null hypothesis is rejected. Both the
confidence interval approach and the T7-test approach
produce equivalent results. This latter approach is
sometimes referred to as a 7-test. For larger sample sizes,
the 7-test is replaced by a Z-test based on a N(0,1)
distribution. For this book, the 7-test and Z-test will be used
interchangeably.

24

If g is the slope and the null hypothesis is rejected,

then there is evidence to suggest that x affects Y in a linear
manner. However, it is unwise to read too much into the
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rejection of the null hypothesis for the slope because
rejection simply states that there is a trend in the data and

speaks nothing to the quality of the fit. § may be rejected

but the quality of the regression line is poor, i.e., the model
does a poor job at explaining the data. Also, rejection of the
null hypothesis says nothing about the ability to predict
future observations.

Regression Through the Origin

Sometimes the regression model is linear and is known
to go through the origin at the point (0,0). An example may
be the regression of dose against area under the curve
(AUC). Obviously, when the dose of the administered drug
is zero then the AUC should be zero as well. In this case, x
becomes a n x 1 matrix of predictor variables with the
column of ones removed and for the SLR model, the model
reduces to Y= 6,x + ¢. The solution to the SLR model is

f - ©3)

1 n
2
with variance estimate
MSE

2%

Regression through the origin is presented here because of a
number of peculiarities to the model, some of which may be
unfamiliar to pharmacokineticists. First, the residuals may
not necessarily sum to zero and a residual plot may not fall

(26)

Var{6,]=

around the zero line. But Z_”il x,e, =0 and, thus, a residual

plot using x;e;, instead of e;, may be of more use. Second, it
may be possible for the coefficient of determination to be
negative because sometimes the residual sum of squares
may be greater than the total sum of squares, an event that
may occur if the data are curvilinear. Hence, the coefficient
of determination is a meaningless statistic under this model.
Third, confidence intervals for predicted values will
increase in range as x, the value to be predicted, becomes
removed from the origin, as opposed to the confidence
intervals typically seen with SLR. Neter et al. (1996)
suggest that using a regression through the origin model is
not “safe practice,” that an intercept model always be used.
They argue that if the regression line does go through the

origin, then &, will be very close to zero using an intercept

model, differing only by a small sampling error, and unless
the sample size is small there will be no deleterious effects
in using an intercept model. But if the regression line does
not go through the origin and a no-intercept model is used,
the resulting model may be quite biased.

An example of a model that perhaps should have used a
no-intercept model is the so-called Calvert formula used to
dose carboplatin, a platinum-containing oncolytic agent used
to treat a wide range of tumors. Carboplatin is primarily
excreted through the kidney by filtration. Calvert et al. (1989)

developed a semimechanistic model from 18 adult patients to
dose carboplatin. Since clearance (CL) is the ratio of dose to
AUC then
Dose = CLx AUC. 27

Using linear regression the authors estimated that

CL in mL/min =1.21xGFR in mL/min +23  (28)
where GFR is the glomerular filtration rate for the patient
estimated using *'Cr-EDTA clearance. Hence, a suitable
dosing equation (after rounding) was
Dose in mg = (1.2xGFR in mL/min +20)x AUC in mg/(mL min), ~ (29)
where the target AUC was 3 mg min/mL. However, a quick
examination of their parameter estimates shows that the
standard error associated with the intercept was 16. A 7-test
for this parameter was 1.44 with a corresponding p-value of
0.39. Also, examination of Fig. 1 in the paper shows that the
95% confidence interval for the regression of GFR against
carboplatin CL crosses the ordinate when GFR equals zero.
The authors interpreted the intercept as the degree of
nonrenal elimination, but the intercept in this example was
not statistically different from zero and by all accounts
should have been removed from the model and a no-
intercept model used instead. Perhaps the authors are
correct and the intercept does reflect nonrenal clearance and
that with a larger sample size the standard error of the
intercept will be reduced making its estimation more
precise. Based on the data at hand, however, a no-intercept
model appeared to be more appropriate in this case. This
issue will be revisited in the chapter on “Case Studies in
Linear and Nonlinear Regression,” when a similar equation
will be developed in children.

Goodness of Fit Tests for the Simple Linear Model

As just mentioned, the 7-test tests the significance of a
particular parameter estimate. What is really needed is also
a test of the overall significance of a model. To start, the
total sum of squares of the observed data, SS, is
partitioned into a component due to regression, SS;cgressions
and a component due to residual, unexplained error, SSE,

_Z":(Y—?)z :_Z":(?—?)z +Z”:(Y—?)2 .

(30)
Sstotal = Ssrcgrcssion +SSE.
Equation (30) can be seen conceptually as
Total Variability |
(of the Observationsj -
(€1))

Variability explained N Unexplained
by the model Variability

Equally, terms on the right-hand side of (30) can be viewed
as variability due to the regression line and variability
around the regression line. Clearly, a good model is one
where SSicgression >> SSE. Assuming that the residuals are
independent and normally distributed with mean 0 and
variance ¢”, a F-test can be computed to test the null
hypothesis that 6 = 0,
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[Ssregression ]

SSregression ) (32)
[SSE/(n— p)] MSE

Under the null hypothesis, F is distributed as an F-
distribution with p, n — p degrees of freedom. If F>F), ,_,,
the null hypothesis is rejected. This is called the analysis of
variance approach to regression. The power of this
approach comes in when multiple covariates are available
(see “Multiple Linear Regression” section later in this
chapter). The F-test then becomes an overall test of the
“significance” of the regression model.

One of the most commonly used yardsticks to evaluate
the goodness of fit of the model, the coefficient of
determination (R?), develops from the analysis of variance of
the regression model. If SS,, is the total sum of squares then

RZ — Ssregression . (33)

SStota]
The correlation coefficient is the square root of R*. These
metrics have been discussed in greater detail in the previous
chapter.

Prediction and Extrapolation in the Simple Linear
Model

The goal of regression analysis is usually twofold.
First, a model is needed to explain the data. Second, using
the model, predictions about mean responses or future
observations may be needed. The distinction between mean
responses and future observations must be clarified. Mean
responses are based on already observed data. Future
observations are unobserved. The confidence interval for a
future observation should be wider than that of a mean
response because of the additional uncertainty in future
observations compared to the known observation. Now, let

f(xo) be the estimated response (or expected value) given
Xo 18
Y(x,) :éo +6A’1x0. (34)
The standard error for ?(xo) is interpreted as the standard
error the mean response conditional on x, Thus, the
variance of ?(xo) is
Var[Y (x,)] = Var[6, + 6,x,] (35)

and using the estimate for ¢, the estimated standard error
of prediction is

SE[Y(x,)] = \/MSE FJFM} (36)
n A

with a corresponding (1 —a)100% confidence interval
given by

(CAETI \/MSE {L(%S_—f)z}. (37)

n

Note that the standard error of prediction is not a constant
for all values of x, but reflects where x, is collected in
relation to the mean. Observations removed from the mean
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of x will have larger standard errors of prediction than
values close to the mean. Equation (37) is developed as the
confidence interval for a single observation measured at x;.
If more than one observation is observed at x, the term 1/n
in (36) and (37) is substituted with the term m/n, where m is
the number of observations at x,. Note that m is contained
within z. If the confidence interval is made for all points on
the regression line, the result would be a confidence band.

The confidence interval for a future response, one not
in the original data set, must be more variable due to the
additional uncertainty in its measurement. Thus, (36) is
modified to

N 1 1 (x,-X)
SE[Y(x,)]=,|MSE| —+—+-—"—2_|, (38)
m n S
where m is the number of future observations to be
collected. The corresponding prediction interval is

f(xo)itm)np\/MSE{L+l+(x°S_—Y)2}. (39)

m n

Clearly prediction intervals are wider than corresponding
confidence intervals.

To illustrate further the distinction between confidence
intervals for mean responses and prediction intervals for
future observations, consider allometric scaling. In allometric
scaling, the systemic clearance or volume of distribution is
calculated for many different species, usually mouse, rat,
and dog. A regression line of the log-transformed
pharmacokinetic parameter is regressed against the log-
transformed weight. One may then ask “What is the 95%
confidence interval for clearance in the rat?” This is an
example of confidence interval using (37). Next, someone
may ask “If 10 rats were taken from the population, what is
the 95% confidence interval for clearance in the rat?” This is
another example of a confidence interval using (37) with the
term 1/n replaced by 1/10. Then, someone may ask “What is
the 95% prediction interval for clearance in a guinea pig?”
This is an example of a prediction interval using (39)
because guinea pigs were not in the original population. A
similar question can be asked about humans — what is the
clearance in humans given a dataset based entirely on animal
data. This approach, called prospective allometric scaling, is
often used in choosing the starting dose for a new drug in a
first time in man study. Bonate and Howard (2000) argue that
prospective allometric scaling can lead to unreasonably large
confidence intervals because the extrapolation from animals to
humans, based on body weight, is tremendous and that using
this approach in practice should be done with great care. A
further example of allometric scaling is presented in the
chapter on “Case Studies in Linear and Nonlinear Modeling.”

An amusing report of extrapolation, and the pitfalls
thereof, is presented by Tatem et al. in the journal Nature.
The authors plotted the winning times of the men’s and
women’s Olympic 100 m finals for the past 100 years. A
linear model was able to adequately describe the relationship
for both males and females. In both cases, males and females
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are getting faster over time. In 1932, males and females had a
finish time of 10.3 and 11.9 s, respectively. By 2000, the
times had decreased to 9.85 and 10.75s, respectively.
Females, however, are improving at a faster rate than males,
and the authors speculated that “should these trends continue,
the projections will intersect at the 2156 Olympics, when —
for the first time ever — the winning women’s 100 m sprint
time of 8.079 s will be lower than the men’s winning time of
8.098 s” (Fig. 2). The authors themselves question whether
the trend will indeed continue but it is nevertheless an
amusing example of extrapolation.

An even more amusing example of extrapolation was
reported by Mark Twain in 1874. He said

In the space of one hundred and seventy six years the
Lower Mississippi has shortened itself two hundred and
forty-two miles. That is an average of a trifle over a mile
and a third per year. Therefore, any calm person, who is not
blind or idiotic, can see that in the Old Odlitic Silurian
Period, just a million years ago next November, the Lower
Mississippi was upwards of one million three hundred
thousand miles long, and stuck out over the Gulf of Mexico
like a fishing-pole. And by the same token any person can
see that seven hundred and forty-two years from now the
Lower Mississippi will be only a mile and three-quarters
long, and Cairo [lllinois] and New Orleans will have joined
their streets together and be plodding comfortably along
under a single mayor and a mutual board of aldermen.
There is something fascinating about science. One gets such
wholesale returns of conjecture out of such a trifling
investment of fact.

Both of the Olympics example and Twain’s quote
illustrate the risks one takes when extrapolating. In both
cases, the results lead to an absurd result, although to be fair,
the Olympics example may indeed come true. While making
predictions outside the bounds of an observed dataset has its
uses, blind extrapolation needs to be cautioned against.

O Males
N .= m  Females

Finish Times (sec)

T T T T
1900 2000 2100 2200

Year

Fig. 2 Plot of winning 100 m sprint times in the Olympics for
males (open circles) and females (closed squares), superimposed
with the linear regression lines, for the twentieth century

Categorical Independent Variables

Up until now it has been assumed that x consists of
continuous variables. OLS is not predicated on x being
continuous, although this makes it convenient to explain the
model. An extremely important data type is a categorical
variable where the variable of interest takes on discrete
values. These variables are also called factors or class
variables. For instance, whether a person is considered a
smoker can be coded as either “yes” or “no.” The variable
race may take on the values: White, Black, Asian, or
Hispanic. These variables must enter the model through
what are called dummy variables or indicator variables
which are themselves categorical variables that take on the
value of either O or 1. If there are & levels in the categorical
variable, then £ — 1 dummy variables are need to uniquely
define that variable. For example, the variable smoker has
two levels and thus needs a single dummy variable (0 or 1)
to define that variable.

In general, there are three different types of coding
dummy variables for nominal variables. One is reference
cell coding, which is the most common, where one category
serves as the reference cell (such as a placebo group) and
all other categories are interpreted relative to the reference
cell (such as active treatment groups). For example,
suppose the categorical variable race has four levels:
White, Black, Hispanic, and Other. Three dummy variables
(D1 —D3) are needed to uniquely define that variable. In
reference cell coding, using White as the reference cell, the
categories can be defined as:

Dummy variables

Variable: race D1 D2 D3
White 0 0 0
Black 1 0 0
Asian 0 1 0
Hispanic 0 0 1

Another type of coding is deviation from the means
coding whereby the contrast compares the “group mean”
from the “overall mean.” This coding is accomplished by
setting all the design variables equal to —1 for one of the
groups and then coding the other groups as 0 or 1. So,
returning to the race example, the deviation from the mean
coding schema is:

Dummy variables

Variable: race D1 D2 D3
White -1 -1 -1
Black 1 0 0
Asian 0 1 0
Hispanic 0 0 1

A modification of reference cell coding is incremental
effects coding, where one group is the reference and all
other categories are coded as increments from the prior
group. So the design matrix in the race example would be
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Dummy variables

Variable: race D1 D2 D3
White 1 0 0
Black 1 0 1
Asian 1 1 0
Hispanic 1 1 1

Lastly, if the categorical variable is ordinal then
orthogonal polynomials, which are typically used to assess
trends in the analysis of variance models, could be used to
code the design matrix. The advantage of orthogonal
polynomials is that they provide a test for whether the logit
has a significant linear, quadratic, cubic, etc. component.
So, suppose that weight was categorized into four variables.
The design matrix could be coded as:

Dummy variables

Variable: weight DI D2 D3

70 kg or lower -0.67 0.5 -0.22
70 — 80 kg -0.22 -0.5 0.67
80— 90 kg 0.22 -0.5 —0.67
90 kg or higher 0.67 0.5 0.22

If the coefficient associated with D1 were statistically
significant based on a 7-test or Wald’s test then this would
be indicative of a linear trend. If D2 were significant, this
would be indicative of a quadratic trend and so on.

The presence of a dummy variable results in a shift in
the regression through its effect on the intercept (Fig. 3).
The difference between the regression lines is an indication
of the difference between the levels of the variable
assuming that the regression coefficients for the continuous
variables across classes remain constant among the factor
levels. Also, note that the inferential statistics on the

20 A r
E(Y) = 60 + 62x,+ 01x1
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> 12 A Dummy Variable: x, = 0
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10 1 ( )
8 | E(Y) =00 + 61x1
6 o
4 ;
5 10 15 20
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Fig. 3 Plot of regression line for a single categorical covariate
(sex) with two levels (males and females). The effect of the
categorical variable is to shift the model intercept
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regression parameters, even the regression estimates
themselves, are independent of how the factor levels are
coded. For instance, with variable sex it makes no
difference whether “males” are coded as 0 or 1 as long as
“females” are coded 1 or 0, respectively.

Multiple Linear Regression

Rarely in a single experiment is one dependent variable
and one independent variable collected. More often, many
dependent variables and many independent variables are
collected. Then, a scientist may wish to use the independent
variables to explain a particular dependent variable. For
example, suppose from a population pharmacokinetic
analysis (which will be discussed in later chapters) total
systemic clearance (CL) was estimated in a group of
subjects. Also available were demographic information,
such as age, weight, and smoking status. Of interest would
be whether any of the demographic variables were related
to clearance. It may be that smokers have higher clearance
estimates than nonsmokers and require more drug to
achieve the same therapeutic effect.

In this case, multiple linear regression may be used to
determine the significance of the demographic variables,
which are often called covariates. The model may then be
formulated as

CL =6, + 6, Weight + 0, Age + 6, Smoker + . (40)
As in SLR, the same assumptions are made: ¢; is normally
distributed, uncorrelated with each other and have mean
zero with variance ¢”. In addition, the covariates are
measured without error. In matrix notation then, the general
linear model can be written as
Y=xO0+¢, (41)
with solution
0= (x"x)"'x'Y. (42)
In this case, x is a nx(k+ 1) matrix of independent
variables where the first column of the matrix is a column
of ones, which is necessary for inclusion of the intercept in
the model, and £ is the number of independent variables. An
estimate of MSE is obtained by
AT A n _ AN2
wvisp - X =30 (7 =x6) _ D (Y —x0) @
n—p n—p
which is exactly the same as (17), but written in matrix
notation. The standard error of the parameter estimates is

calculated by

SE(0) = \/diag(x"x) " MSE (44)
where diag(") is the diagonal elements of xx. Similarly, 7-
tests and confidence intervals for the parameter estimates
can be calculated using (24) and (23), respectively.
(1 —a)100% confidence intervals for mean responses can
be computed from

P(x) %1, A MSELX! (x"x) " x, ], (45)
and (1 —a)100% prediction intervals for future responses
can be calculated from

al2,n—p
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Y(x,) £, ,MSE[1+x! (x"x)"x,1, (46)

al2,n-p

Similarly, a (1 — a)100% confidence band for the response
function at any x can be developed using

X0+ MSE[1+x" (x"x) ' x1JF, . p. (47)

Confidence bands differ from confidence intervals in that
they consider all the values of x simultaneously, as opposed
to a single value x,. Confidence bands are larger than
confidence intervals.

Model Selection and Sequential Variable Selection
Procedures in Multiple Linear Regression

Even though many different covariates may be collected
in an experiment, it may not be desirable to enter all these in
a multiple regression model. First, not all covariates may be
statistically significant — they have no predictive power.
Second, a model with too many covariates produces models
that have variances, e.g., standard errors, residual errors, etc.
that are larger than simpler models. On the other hand, too
few covariates lead to models with biased parameter
estimates, mean square error, and predictive capabilities. As
previously stated, model selection should follow Occam’s
Razor, which basically states “the simpler model is always
chosen over more complex models.”

To strike the proper balance between an over-
parameterized model and an underparameterized model,
one must strike a balance between a biased model and an
overinflated variance model. Mallows (1973) proposed his
C, criterion which is defined as

c - SSE

MSE

where SSE* is the sum of squares error from the model

containing p* parameters, where p* < p. When p* = p, then

C,=p. For example, if a model with four possible

covariates is examined, the submodel with covariates
{x1, x,} becomes

—(n-2p"), (48)

SSEGwn) (). (49)

MSE
When there is no bias in the model, the expected value of C,
is p*, the number of parameters in the model. Thus, when C,
is plotted against p*, models with little bias will fall near the

line C,=p*. Models with substantial bias will have C,

values greater than the line. In using Mallow C, as a model
selection criterion one chooses a C, that is small and near p*.

One way to identify important predictor variables in a
multiple regression setting is to do all possible regressions
and choose the model based on some criteria, usually the
coefficient of determination, adjusted coefficient of
determination, or Mallows C,. With this approach, a few
candidate models are identified and then further explored
for residual analysis, collinearity diagnostics, leverage
analysis, etc. While useful, this method is rarely seen in the
literature and cannot be advocated because the method is a

“dummy-ing down” of the modeling process — the method
relies too much on blind usage of the computer to solve a
problem that should be left up to the modeler to solve.

Related to all possible regressions, a variety of
automated algorithms have been developed to screen a
large number of covariates in a multiple regression setting
and select the “best” model. Forward selection algorithms
begin with no covariates in the model. Each covariate is
then screened using SLR. F-tests are then calculated
reflecting each covariate’s contribution to the model when
that covariate is included in the model. These F-tests are
then compared to a significance level criteria (Fi,) set by
the user a priori and if the F-tests meets Fj, the covariate is
included in the model. At each step only one covariate is
added to the model — that covariate having the highest
contribution to the F-test. For example, suppose {xi, x5, x3,
x4} were possible covariates and using SLR x; was found to
be the most significant covariate based on the F-test. The
next step then compares the models {x;, x3}, {x;, x3}, and
{x3, x4}. The contribution x;, x,, and x4 make to their
respective models is then compared and the covariate
having the highest contribution is compared to Fi,. The new
variable is then added to the model if that F-test meets
the entry criteria. If in this case, that variable was x;, then
the next models tested will be {xi, x3, x»} and {x;, x3, x4}.
This process repeats until no further variables are available
or until the model with the highest contribution does not
meet the entry criteria, at which point the algorithm stops.

Backward elimination is similar to forward selection,
except that the initial model contains all the covariates and
removal from the model starts with the covariate of the least
significance. Removal from the model then proceeds one
variable at a time until no covariates meet the criteria for
removal (F,y). Stepwise regression is a blend of both
forward and backward selection in that variables can be
added or removed from the model at each stage. Thus, a
variable may be added and a variable may be removed in
the same step. The algorithm quits when no additional
covariates can be added on the basis of Fj, and no
covariates can be removed on the basis of F.

The problem with using all possible regressions or
sequential methods is that they lead to the “dumbing down”
of statistical analysis. The user plugs in some data and the
computer spits out a “best model.” Simply because a
software manufacturer includes an algorithm in a package
does not mean it should be used. Scientific judgment must
play a role in covariate selection and model selection.
Explanatory covariates should be based on physiological or
physical sense. As an example, suppose volume of distribution
were screened against clinical chemistry laboratories and
inorganic phosphate was identified as a significant
covariate. How does one interpret this? It is better to use a
priori covariates that make sense in the model and then
build on that model. As a rule, sequential variable selection
procedures and all possible regressions should be used
with caution. Harrell presents some very valid criticisms of
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stepwise regression and all possible subsets regression.
They are:

1. The coefficient of determination is often biased
high.

2. The F- and chi-squared distribution next to each
variable do not have the prescribed theoretical
distribution.

3. Confidence intervals for effects and predicted
values are too narrow.

4. p-Values do not have the proper meaning anymore

because of multiplicity.
The regression coefficients are biased.
The algorithm has problems with collinearity.

7. Itis based on methods, i.e., F-tests for nested
models, that were designed to test prespecified
hypotheses.

8. Increasing the sample size does not improve
things.

9. [Itis too easy to use and causes people to quit
thinking about their problem.

10. It uses a lot of paper.

In summary, automated techniques should not be used
blindly, even though they often are.

SN

Collinearity and Ill-Conditioning

When multiple covariates are included in the regression
model, the possibility for collinearity, which is sometimes
called multicollinearity or ill-conditioning, among the
predictors arises. The term collinear implies that there is
correlation or linear dependencies among the independent
variable. Entire books (Belsley et al. 1980) have been
written on collinearity and all its nuances will not be
discussed in its entirety here. Nevertheless, an analyst
should at least understand what it is, how to detect it, and
how to combat it.

Collinearity is actually simple to understand, although
there are complex geometric reasons for its effect on
parameter estimation. Consider two variables x; and x, that
are regressed against Y. Now suppose x; and x, are
correlated to the extent that they essentially are the same
thing. Thus, x, does not provide any more information than
x; and vice versa. As the correlation between x; and x,
increases, it becomes more and more difficult to isolate the
effect due to x; from the effect due to x,, such that the
parameter estimates become unstable. The bottom line is
when collinearity exists among a set of predictors, the
parameter estimates become extremely sensitive to small
changes in the values of the predictors and are very much
dependent on the particular data set that generated them. A
new data set may generate completely different parameter
estimates. Although collinearity is often due to correlation
between variables, collinearity may be due to a few
influential observations and not necessarily to the whole
vector of data. Careful examination of the scatter plots
between possible correlated variables should be done to
rule out this cause of collinearity.

69

Collinearity manifests itself during the inversion of the
matrix x"x in (42), such that small changes in x lead to large
changes in the parameter estimates and their standard
errors. When the predictors are uncorrelated, the values of
the parameter estimates remain unchanged regardless of
any other predictor variables included in the model. When
the predictors are correlated, the value of a regression
parameter depends on which other parameters are entered
into the model and which others are not, i.e., collinearity
destroys the uniqueness of the parameter estimate. Thus,
when collinearity is present a “regression coefficient does
not reflect any inherent effect of the particular predictor
variable on the response variable but only a marginal or
partial effect, given whatever other correlated predictor
variables are included in the model” (Neter et al. 1996).
Correlation between predictor variables in and of itself does
not mean that a good fit cannot be obtained nor that
predictions of new observations are poorly inferred,
provided the inferences are made within the sample space
of the data set upon which the model was derived. What it
means is that the estimated regression coefficients tend to
widely vary from one data set to the next.

There are a variety of methods to detect collinearity
(Belsley et al. 1980). First, examine the parameter
estimates. A priori variables that are expected to be
important which are not found to be statistically significant
is a clue that collinearity may be present. If the values of
the parameters change drastically if a row of x or column of
x is deleted (such as a sign change), that is another clue.
Second, examine the various collinearity diagnostics, of
which there are many, some of which are better than others.
Keep in mind, however, that there are no definitive cut-off
values indicating whether collinearity is present.

The first simple diagnostic is to examine the
correlation matrix of the covariates. High correlations,
either positive or negative, are indicative of collinearity.
However, the correlation matrix is sometimes unable to
detect the situation where three or more covariates are
collinear but no two correlations are high (Belsley et al.
1980). Related to the inverse of the correlation matrix are
variance inflation factors (VIF), calculated as

VIF = (50)

where Rf is the coefficient of determination of x; regressed

against all other x. The higher the coefficient of
determination, the higher the VIF, and the greater the
collinearity. Possible collinearity is present when the VIF is
greater than 5 and multicollinearity is almost certainly
occurring when the VIF is greater than 10.

Another useful tool is to examine the eigenvalues of
the x"x matrix, /. The number of eigenvalues near zero
indicate the number of collinear covariates among the
regressors. One of the most commonly used yardsticks to
measure the degree of collinearity is the condition number
(K), which can be calculated using many different methods.
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The first definition is simply the ratio of the largest to
smallest eigenvalue

/

e
lﬂ
where /; and /, are the largest and smallest eigenvalues of
the correlation matrix (Jackson 1991). The second way is to
define K as

K=-=", G}

K= |- (52)

The latter method is often used simply because the
condition numbers are smaller. The user should be aware
how a software package computes a condition number. For
instance, SAS uses (52). For this book (51) will be used as
the definition of the condition number. Condition numbers
range from 1, which indicates perfect stability, to infinity,
which indicates perfect instability. As a rule of thumb,
Log;¢(K) using (51) indicates the number of decimal places
lost by a computer due to round-off errors due to matrix
inversion. Most computers have about 16 decimal digits of
accuracy and if the condition number is 10*, then the result
will be accurate to at most 12 (calculated as 16 — 4) decimal
places of accuracy.

It is difficult to find useful yardsticks in the literature
about what constitutes a large condition number because
many books have drastically different cut-offs. For this
book, the following guidelines will be used. For a linear
model, when the condition number is less than 104, no
serious collinearity is present. When the condition number
is between 10* and 10°, moderate collinearity is present,
and when the condition number exceeds 10°, severe
collinearity is present and the values of the parameter
estimates are not to be trusted. The difficulty with the use
of the condition number is that it fails to identify which
columns are collinear and simply indicates that collinearity
is present. If multicollinearity is present wherein a function
of one or more columns is collinear with a function of one
or more other columns, then the condition number will fail
to identify that collinearity. See Belsley et al. (1980) for
details on how to detect collinearity among sets of
covariates.

Collinearity may also be caused by poor scaling and/or
near singularity of the x"x matrix. If the collinearity is due
to scaling, then one simple way to remove the collinearity is
by centering. Centering creates a new variable x* using

x; =X; =X, (53)
where x;; is the value of the jth row of the ith variable and

¥, 1is the mean of the ith variable. An expansion of

centering is standardizing the covariates which is done
using

X =N (54)

where s; is the standard deviation of the ith variable. After
centering, x* has zero mean with the same variance as the

original data. After standardization, x* has zero mean and
variance 1, which forces approximate orthogonality
between the covariates. A third method is scaling where
each observation is divided by a column-dependent
constant, such as the mean, making each column
approximately the same scale.

For example, suppose with the linear model

Y =6, +6x, +6,x, (55)
with corresponding x'x matrix
8 117 3607
x'x=| 2251 S8112 | (56)
1861257

The condition number of x'x is 1.92 x 10°, which is quite
ill-conditioned. The model could be centered on the mean
of 15 and 450, respectively,

Y =0, +6 (x, =15)+ 6, (x, — 450) (57)
with corresponding x"x matrix
8 -3 7
x'x=| 541 5357 (58)
234957

and condition number 29,475, a 65-fold reduction over the
original model. The “*” superscript in (57) denotes that the
parameter estimates are not the same as those in (55). Or
the model could be scaled to its mean

y=g +9% 0% (59)
15 450
Then
80 7.8 8.0
x'x= 10.0 8.6]. (60)
9.2

and the condition number becomes 47, a 40,000-fold
reduction from the original condition number. In the
original domain, inverting x"x would lead to a loss of about
six decimals of precision on a double-precision computer,
but inversion after transformation would lead to only a 2
decimal loss in precision. Lastly, the model could be
standardized

191*()61 _15) + (92*()62 _450)

Y=g+ (61)
8.78 183.21
with x"x matrix
8.00 -0.34 0.038
x'x= 7.02  3.33 (62)

7.00

and corresponding condition number of 2.83, a 682,000-
fold reduction over the original condition number. Less
than 1 decimal loss of precision would occur after
standardization. It makes little difference whether centering
or standardizing with the mean or median, except that these
estimates tend to be study specific. A more robust method
of centering would be to use a consistent value across all
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studies and all drugs (Holford 1996). For example, all BSA
values would be centered by 1.7 m% weight by 70 kg, age
by 40 years (70 years for elderly studies), 7.5 L/h for
creatinine clearance, etc. In this manner, parameter
estimates can be compared across studies making them
more relevant.

One advantage of centering over standardization or
scaling is that the parameter estimates associated with x are
the same as the original data. The only difference being the
estimate of the intercept. However, since centering only
transforms the data to have the same mean, the variance of
the columns of x may still be of differing magnitudes. Even
after centering, ill-conditioning may still be present. Scaling
presents the opposite problem. After scaling, the variance
of the columns of x may be of the same magnitude but the
means may be vastly different. Hence, ill-conditioning may
still be present after scaling. Only standardization transforms
the data to the same mean and variance and from a purely
numeric point of view is the method of choice. However,
with standardization and scaling the parameter estimates
obtained from the transformed data are not the same as the
original data and must be transformed back to the original
domain should one wish to interpret the parameter
estimates. A disadvantage of transforming the predictor
variables to the same scale is that the transformation does
not always cure ill-conditioning. For example, centering
will not prevent loss of numerical accuracy if any of the
predictor variables are correlated with the model intercept
(Simon and Lesage 1988).

A fourth method to remove the collinearity is by
transforming the collinear variables into another variable
and use that variable as a surrogate. For example, height
and weight are often highly correlated and can be combined
into a composite variable called body surface area (BSA),
which is a measure of the overall surface area on an
individual. There are a number of different measures to
compute BSA, but a common one is based on the height
and weight on an individual

BSA =0.0235(Weight)"*'*** (Height)*****,  (63)
where BSA is in m?, weight is in kg, and height is in cm
(Gehan and George 1970). As an example, consider the
data in Table 1. Apparent oral clearance was obtained from
65 individuals. Height and weight were collected on all
subjects. Both height (Pearson’s r: 0.2219, p = 0.0757) and
weight (Pearson’s r: 0.4684, p <0.0001) were marginally
correlated with clearance (see Fig. 4). Height and weight
had a better correlation with each other (Pearson’s r:
0.6038, p <0.0001) than with clearance. The SAS output
from the regression analysis is presented in Table 2.

When height and weight were included in the models
alone, they were both positively related to clearance
(p <0.10). When both variables were included in the model,
height showed a sign change and now has a negative
relationship with clearance. This is the first warning sign
that something is wrong. The eigenvalues of x"x were {2.99,
0.00854, 0.000939}. The condition number of the model
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with both covariates was 3,185, which is not exceedingly
large, but nevertheless indicated that the resulting inverted
matrix lost three to four decimal places during large. But,
there were two eigenvalues near zero indicating that two
variables were collinear. When BSA was used as the sole
covariate, the coefficient of determination was slightly
smaller than using weight alone, but far better than height.
A further refinement in the model might be one where the
intercept is removed from the model since the 90%
confidence interval for the intercept included zero. In
summary, when the covariates were regressed alone they
both were statistically significant as predictor variables for
clearance. But when entered together, collinearity among
predictors occurred and the effect of height became
opposite what was expected.

Sometimes, even after rescaling, when the x"x matrix is
still ill-conditioned, then either ridge regression or principal
components regression may be necessary. Briefly, in ridge
regression a small constant (k) is added to the x"x matrix
prior to inversion so as to stabilize the matrix. Hence, the
estimator for 6 becomes

0= x(x"x+kD7'XTY, (64)
where / is the identity matrix. The choice of the constant
must be chosen with care because the resulting parameter
estimates become biased to some degree. However, the
reduction in the variance of the estimators may be greater
than the resulting increase in bias such that the trade-off is
of merit.

Principal components regression is another biased
regression technique but when done successfully is superior
to OLS in terms of prediction and estimation. Principal
components (PC) are linear transformations of the original
variables such that each PC is orthogonal or uncorrelated to
the others (Jackson 1991). There will be & principal
components if there are k variables. Of these & principal
components, j(j < k) components may contain most of the
“information” contained in k. Thus, regression of the j
principal components, instead of the original & variables,
may be used for regression. The predicted values can then
be back-transformed to the original domain for prediction.
The reader should see Neter et al. (1996) for further details
of these algorithms.

Influence Diagnostics

Frequently, data contain samples that are different from
the bulk of the remaining data, i.e., these observations may
be outliers. Outliers may arise from improper recording of
data, assay error (both random and systematic), choice of an
invalid model, or may not be outliers at all, but are in fact
legitimate data points. Residual analysis is a tool to assess the
fit of a model. Although useful, it fails to provide information
on how individual observations may affect the parameter
estimates or their standard errors. As most modelers have
seen, a single observation may have a dramatic influence on
the estimation of the relationship between Y and x. Similarly,
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Clearance, weight, and height estimates from 65 subjects

Table 1

Pharmacokinetic-Pharmacodynamic Modeling and Simulation

Clearance Weight Height Clearance Weight Height

(mL/min)  (Ib.) (in) | (mL/min) (Ib.) (in.)
62,612 1245 67.7 51,530 117.2 66.4
54,951 136.5 65.1 55,333 1424  65.1
54,897  140.7 68.6 48,292 115.0  66.5
55,823 148.8 65.2 51,453 143.9 69.5
68,916  185.1 70.8 56,779 1225 70.2
74,333 185.7 70.5 56,346 1456  71.1
62,203 143.4 71.9 58,239 1689 72.6
40,359  126.7 67.5 64,677  182.0  67.9
51,205 134.5 66.8 67,045 167.8 71.1
57,108 151.8 67.2 51,764  140.0  71.7
51,574 1312 60.2 69,917  165.1 74.6
49,579  127.6 63.4 38,738 1074  63.7
62,450  152.5 75.6 59,912 1322 66.3
49,879  144.6 68.6 53,475 1344  67.6
53,818 161.5 73.6 51,197 1542 72.4
53,417 1558 71.9 55,603 149.6 724
65,510  171.0 72.6 53,013 123.0  70.7
45,320 1145 65.5 63,697 1550 764
53,174 1284 67.0 71,911 137.8 65.8
56,905  131.1 65.9 52,606  138.2 71.1
67,193 145.6 68.6 45,523 153.3 73.9
48,135 146.9 71.4 54,643 157.6  72.6
53,952 104.8 65.1 55,699 1357 65.9
51,145 147.0 67.3 51,787  132.1 73.6
58,154  173.1 74.5 59,247 1409 69.8
51,574  141.0 71.4 56,044 1419 68.7
59,407 1445 70.6 47,898 134.8 72.9
69,394 1454 71.4 45,694  152.0 70.2
60,276  167.0 72.3 41,664 116.2 66.3
50,626  126.8 67.2 53,827 1306 702
37,266  128.1 72.5 57,166  141.7 74.2
52,343 120.6 65.5 50,248 147.1 70.5
43,509 1499 70.4
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Fig. 4 Correlation plot of data in Table 1. Top plot is clearance
against weight. Middle plot is height against clearance and
bottom plot is weight against height. Solid line is least squares fit
to the data. All three plots show evidence for a linear
relationship between the respective variables
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Table 2

SAS output from regression analysis of Table 1 using clearance as the dependent variable

Both Variables

Parameter Standard T for HO: Variance
Variable df estimate error parameter=0 Prob > |T| inflation
Intercept 1 34810 17179.538954 2.026 0.0470 0.00000000
Height 1 -278.561305 290.86043976 -0.958 0.3419 1.44322425
Weight 1 277.806275 54.70976093 5.078 0.0001 1.44322425
Collinearity Diagnostics
Condition Var Prop Var Prop Var Prop
Number Eigenvalue Index® Intercept Height Weight
1 2.99052 1.00000 0.0002 0.0002 0.0012
2 0.00854 18.70927 0.0690 0.0152 0.7982
3 0.0009391 56.43213 0.9308 0.9846 0.2006
Height only
Parameter Standard T for HO:
Variable df Estimate Error Parameter=0 Prob > |T|
Intercept 1 17537 19877.615084 0.882 0.3810
Height 1 539.916181 285.79575217 1.889 0.0635
Weight only
Parameter Standard T for HO:
Variable df estimate error Parameter=0 Prob > |T|
Intercept 1 19595 6,535.0993235 2.998 0.0039
Weight 1 248.769673 45.51058177 5.466 0.0001
BSA only
Parameter Standard
Variable df estimate error t Value Pr > |t|
Intercept 1 1,695.00446 10848 0.16 0.8763
BSA 1 30090 6,100.33895 4.93 <.0001
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“Denotes that the condition index reported by SAS is calculated using (52) and is the square root of the condition

number otherwise used throughout this book

deleting a single observation in a nonlinear model may
result in convergence, whereas inclusion of the data point
may not. An observation which individually, or together
with other observations, has a larger impact on a
parameter estimate, such as the slope, its standard error,
or associated 7-test, than other observations is said to be
influential. Influence diagnostics provide rational,
objective measures to assess the impact individual data
points have on the regression coefficients and their
standard errors. Thus, by using influence diagnostics a
modeler can have an impartial measure by which to either
remove a data point from an analysis or weight that data
point sufficiently so as to force it to have equal influence
as other observations in the data set.

The purpose of this section is to provide a primer on
influence diagnostics with the ultimate hope being that
more rational decision making rules will be used before
discarding data points from an analysis and greater use of
influence diagnostics will result in their incorporation in
pharmacokinetic software packages (something that is
definitely lacking at this time). The reader is referred to
Belsley et al. (1980) or Neter et al. (1996) for further in-
depth discussion on using influence diagnostics.

Influence in the x-direction

Although most are familiar with the influence a
discordant observation in the Y-direction has on parameter
estimation, the independent variables themselves also
influence the parameter estimates. Recall that ordinary
least squares minimizes the quantity

Z":(Y— V) = Zn:(y —x0)?, (65)
which can be exp;lded to -
i(Y— Y)? = i(Y —x(xTx)'xTY)%. (66)
Let h= x(xT;ile be callie::ld the HAT matrix. Then least
squares minimizes
i(Y— hY)?, (67)
=

and an alternative method for determining the predicted
values of the dependent variable is

Y =x0=hY. (68)
The HAT matrix can be thought to map the observed values
(Y) to the predicted values (}9) . One important aspect of the
least squares model is that a better fit is observed at remote
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observations than at observations near the middle of the
data. By corollary, observations that have large HAT
values will be better predicted because the method of least
squares attempts to find parameter estimates that result in
residuals near zero. Thus, it is said that observations with
large HAT values have more influence than observations
with small HAT values. Another term used to indicate
influence in the x-direction is called leverage." Observations
with high leverage exert greater influence on parameter
estimates than observations with low leverage.

Another way to look at the HAT matrix is as a distance
measure — values with large HAT values are far from the
mean of x. It can be shown that the HAT matrix has two
useful properties: 0 </;<1 and Xh;=p for i=1 to n. The
average size of A; is then p/n. It is desirable to have all
independent variables to have equal influence, i.e., each

data point has 4; = p/n. As a rule of thumb, an independent

variable has greater /everage than other observations when
h; is greater than 2p/n. Figure 5 presents an example of
noninfluential and influential x-values.

Consider the previous example where clearance was
modeled as a function of BSA. There were 65 observations
and two estimable parameters in the model. Hence, under
the rule of thumb, observations with HAT values greater
than 0.062 exerted greater leverage than other observations.
Figure 6 presents the HAT values plotted against BSA.
Four observations met the criteria for having high leverage.
This plot illustrates that observations with large HAT
values in a model including an intercept are at the extremes
of x. In the single predictor case, this corresponds to
observations at the tails of the distribution of x. In the two-
dimensional case this would correspond to observations
near the ends of the ellipse. In the case where no intercept
is in the model, only observations far removed from zero
can have high leverage. It must be kept in mind that a large
HAT value is not necessarily a bad thing. An observation
with a large HAT value that is concordant with the rest of
the data probably will not change the parameter estimates
much. However, a large HAT value coupled with a large
DFBETAS (see below) is a combination that spells trouble.

Influence in the Y-direction

Most pharmacokineticists are familiar with this case,
when a single observation(s) is discordant from the other
observations in the Y-direction. Outliers in the Y-direction
are often detected by visual examination or more formally
by residual analysis. One common statistic is standardized
residuals

0 = — . (69)

! More formally, leverage is defined as the partial derivative of
the predicted value with respect to the corresponding dependent

variable, i.e., h = afi /oY, which reduces to the HAT matrix for
linear models.

Under the assumption that the residuals are independent,
normally distributed with mean 0 and constant variance,
when the sample size is large, standardized residuals
greater than +£2 are often identified as suspect observations.
Since asymptotically standardized residuals are normally
distributed, one might think that they are bounded by —o
and +oo, but in fact, a standardized residual can never

exceed +,/(n—p)(n—1n~' (Gray and Woodall 1994). For

a simple linear model with 19 observations, it is impossible
for any standardized residual to exceed +4. Standardized
residuals suffer from the fact that they prone to
“ballooning” in which extreme cases of x tend to have
smaller residuals than cases of x near the centroid of the
data. To account for this, a more commonly used statistic,
called studentized or internally studentized residuals, was
developed

0 =——a (70)

JMSE(1-4,)
Under the assumption that the residuals are independent,
normally distributed with mean 0 and constant variance,
when the sample size is large, studentized residuals greater
than 2 are often identified as suspect observations. Like
standardized residuals, studentized residuals are not bound

by —o0 and +oo, but are bounded by +./(n— p) (Gray and

Woodall 1994). An alternative statistic, one that is often
erroneously interchanged with standardized residuals, are
studentized deleted residuals, which are sometimes called
jackknifed residuals, externally studentized residuals, or R-
student residuals

R (71)
JMSEQ@)(1-4,)
where MSE(7) is the square root of the mean square error
with the ith data point removed. Fortunately, a simple
relationship exists between MSE and MSE(i) so that ¢
can be recalculated without having to fit a new regression
after each data point is removed
ei

{(n — p)MSE - 0 —2h }

i

MSE() = (72)

n—p-1

Upper bounds for externally studentized residuals have
not been developed. Externally studentized residuals are
distributed as a Student’s #-distribution with n—p—1
degrees of freedom. Thus, in the case of a single outlier
observation, a quick test would be to compare the value of
the external studentized residual to the appropriate -
distribution value, although as Cook and Weisberg (1999)
point out, because of issues with multiplicity a more
appropriate comparison would be Student’s #-distribution
with a/n critical value and n — p — 1 degrees of freedom. In
general, however, a yardstick of 2 or £2.5 is usually used
as a critical value to flag suspect observations.
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Fig. 5 Example of influential and noninfluential observations.
Top plot: Y-value is discordant from bulk of data but does not
influence the estimate of the regression line. Middle plot: x-
value is discordant from bulk of data but does not influence the
estimate of the regression line. Bottom plot: x-value and Y-value
are discordant from bulk of data and have a profound influence
on the estimate of the regression line. Not all outlier
observations are influential and not all influential observations
are outliers
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Fig. 6 Plot of HAT values against body surface area under a
simple linear model using the data in Table 1. The plot
illustrates that HAT values are a function of the x-matrix and
that observations with high HAT values are at the extremes in x.
The dashed line is the yardstick for observations with high
leverage, 2p/n

Identification of Influential Observations

Influential observations are ones that significantly
affect the values of the parameter estimates, their standard
errors, and the predicted values. One statistic used to detect
influential observations has already been presented, the
HAT matrix. An obvious way to detect these observations
is to remove an observation one at a time and examine how
the recalculated parameter estimates compare to their
original values. This is the row deletion approach to
influence diagnostics and on first glance it would appear
that this process requires n-iterations — a numerically
intensive procedure. Statisticians, however, have derived
equations that directly reflect the influence of the ith
observation without iteration. One useful diagnostic is

DFFITS
DFFITS = |- o : (73)
1=h, | JMSE(i)(1-h,)

which measures the impact of deleting the ith data point on
predicted values and is the number of standard errors that
the ith predicted value changes if that observation is deleted
from the data set. DFFITS are basically studentized deleted
residuals scaled according to the leverage of the ith
observation.

Another useful statistic that is used is called DFBETAS,

B—BG)
JMSE@@)(x"x)™! (74)

T N-1..T
(x'x)" x, ¢

DFBETAS =

(1= MSE()(x"x)"




76 Pharmacokinetic-Pharmacodynamic Modeling and Simulation

where (i) denotes the least squares parameter estimates
with the ith data point removed. DFBETAS measures the
number of standard errors that a parameter estimate changes
with the ith observation deleted from the data set.

A large change in DFBETAS is indicative that the ith
observation has a significant impact on the value of a
regression coefficient. As a yardstick for small to moderate
sample sizes, DFFITS and DFBETAS greater than +1 are
indicative of influential observations. For larger sample
sizes a smaller absolute value may be needed as a yardstick:

one rule of thumb is 27" for DFBETAS and 2/ p/n for

DFFITS (Belsley et al. 1980).

One problem with DFBETAS is that there will be n x p
DFBETAS for the analyst to examine, which can be tedious
to examine. Cook’s distance, D;, is a composite score that
assesses the influence an observation has on the set of
regression parameters and is computed by

D.:( ¢ j( h ) (75)
"l a=h) ) pxMSE

As its name implies, Cook’s distance is a distance measure
that represents the standardized distance in p-dimensional

space between £ and B(i). A large value of D; indicates that

the ith observation has undue influence on the set of
regression parameters. Once an observation has been
identified as exerting undue influence then DFBETAS can
be examined to determine which regression parameters are
affected. Interpreting Cook’s distance and finding a
yardstick is much more difficult than DFFITS or
DFBETAS. Myers (1986) recommends interpreting a
particular Cook’s distance as follows: If Cook’s D is about
50% of the F-value from an F, ,_, distribution then
deletion of the ith observation moves the centroid of
confidence region to the 50% confidence region.

Although DFFITS and DFBETAS provide a flag that
the ith observation has an impact on the value of the jth
regression coefficient, they do not give any indication of
whether the influence that is exerted is positive or negative.
Like the HAT matrix, a large DFFITS or DFBETAS is not
necessarily a bad thing. It is the combination of a high
leverage observation in the presence of large DFFITS or
DFBETAS that results in erratic regression parameter
estimates.

The variance—covariance of linear regression parameter
estimates is given by o’(x'x)” and a statistic that
summarizes the properties of the variance/covariance
matrix is the generalized variance of the regression
parameters

GV =|Var(8)|=[MSE(x"x)"|, (76)
where |-| is the determinant function. Precise estimation of
the regression parameters results in small determinants or
GV. COVRATIO measures the ratio of the variance/
covariance without and with the ith observation and is
calculated using

IMSE()(x,x,)"|
IMSE(x"x)"|
where x(; denotes the x matrix without the ith observation.
COVRATIOs greater than one are indicative that the ith
observation improves the performance of the model over
what would be seen without the observation in the data set.
A combination of high leverage and a small residual results
in an observation that improves the properties of the
regression parameters. As a yardstick, observations with
COVRATIO > 1+ 3p/n or COVRATIO < 1 — 3p/n (applies
only when n > 3p) show undue influence on the generalized

variance of the regression parameters.

Unless the number of observations is small, influence
diagnostics are best examined graphically. Gray (1986)
recommended for the linear model that a useful diagnostic
plot is /4; against 3,~2 /SSE , the normalized residual for the

COVRATIO = (77)

ith subject. Such a plot is called an L-R triangle for leverage
and residual. Regardless of the data set, the L-R triangle
data should show low leverage and small residuals such that
the majority of the data cluster near (p/n, 0). Cases will that
have undue influence will be discordant from the bulk of
the data. Obviously, plots of #4; against any influence
diagnostics will find utility. Lastly, bubble plots having one
of the other influence diagnostics, such as COVRATIO,
may be used to gain a trivariable influence plot.

Belsley et al. (1980) present many more diagnostics,
including ones for multiple row deletion, but most of the
ones that have been presented herein are easily obtained
using most, if not all, linear regression software. One last
point is that these diagnostics are not independent of each
other, they are often correlated themselves and will show
overlap in observations that are flagged.

So What Now?

Once an outlier or an influential observation is detected
what can be done about it? Obviously an observation can be
deleted, but clearly what is needed is a further examination
of why that observation was flagged in the first place. If
nothing of interest arises in re-examination of the data
points, then there is no sound rationale for removal of the
observation in question. One might then consider that the
model itself is wrong. This is a very important concept
because model misspecification is often discovered through
outlier and influential observation analysis. Lastly, one
might try a weighted linear regression model where the
weights are proportional to the inverse of the HAT matrix.
In other words, influential observations are given less
weight in the model than uninfluential observations.
Alternatively, all observations could have weights equal to
“1,” except the data point(s) in question which is given a
much smaller weight. In this manner the observation is not
removed from the data set, but is simply given less weight
in the modeling process.
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Given the level of research activity devoted to
identification of influential observations, considerably less
effort has been devoted to what to do about them. Under
guidelines (E9: Statistical Principles for Clinical Trials)
developed by the International Conference on
Harmonisation of Technical Requirements for Registration
of Pharmaceuticals for Human Use (1997), more commonly
called ICH, several principles for dealing with outliers or
influential observations are presented. First, data analysis
should be defined prior to analyzing the data, preferable
before data collection even begins. The data analysis plan
should specify in detail how outliers or influential
observations will be handled. Second, in the absence of a
plan for handling outliers or influential observations, the
analyst should do two analyses, one with and the other
without the points in question, and the differences between
the results should be presented in the discussion of the
results. Lastly, identification of outliers should be based on
statistical, as well as scientific rationale, and that the
context of the data point should dictate how to deal with it.

Example

Port et al. (1991) administered 5-fluorouracil (5-FU)
treatments to 26 patients with advanced carcinomas of
various origin under a variety of doses and treatment
schedules. Monotherapy was given as 5-day courses weekly
for 3 weeks, once weekly for 3 weeks, or once every 3
weeks. Combination therapy with methotrexate (MTX) was
given once every 2-3 weeks. Serial blood samples for
pharmacokinetic analysis were collected on Day 1 and 5-
FU clearance was determined by noncompartmental
methods. Some patients had multiple cycles of therapy and
for those subjects only data from the first cycle was
included in this analysis. The following covariates were
available for analysis: sex, age, BSA, 5-FU dose, and the
presence or absence of MTX. Scatter plots and box and
whisker plots are shown in Fig. 7 with the data presented in
Table 3.

Of interest was to determine whether a useful model
relating 5-FU clearance and patient demographics could be
developed for possible use in future individualized dosing
regimens. Nonparametric correlation analysis between the
covariates revealed that sex and BSA were correlated
(r=-0.4689, p = 0.0157), a not surprising result since both
males and females were enrolled in the study and males
(which were coded as “1”) would be expected to have
higher BSA than females (which were coded as “0”). The
sign of the correlation would change to positive had the
coding been reversed. Also, 5-FU dose was correlated with
the presence or absence of MTX (r=0.4382, p =0.0251).
This too was not surprising given the study design in that
patients who were treated with MTX were also the ones
who were treated with relatively high-dose 5-FU. The
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magnitude of the correlations indicated that mild
collinearity may be a problem during the analysis.

Examination of the univariate distribution of 5-FU
clearance revealed it to be skewed and not normally
distributed suggesting that any regression analysis based on
least squares will be plagued by non-normally distributed
residuals. Hence, Ln-transformed 5-FU clearance was used
as the dependent variable in the analyses. Prior to multiple
regression analysis, age was standardized to 50 years old,
BSA was standardized to 1.83 mz, and dose was
standardized to 1,000 mg. A p-value less than 0.05 was
considered to be statistically significant. The results from
the SLRs of the data (Table 4) revealed that sex, 5-FU dose,
and presence or absence of MTX were statistically
significant.

Multiple regression of all covariates (Table 5) had a
condition number of 1,389, indicating that the model had
little collinearity. Notice that presence or absence of MTX
as a variable in the model was not statistically significant,
possibly a result of the collinearity between presence or
absence of MTX and 5-FU dose. Since with the univariate
models, 5-FU dose had a higher coefficient of determination
than presence or absence of MTX, a second multivariate
model was examined where presence or absence of MTX
was removed from the model. Table 6 presents the results.
Now, age was not statistically significant. This variable
was removed from the model and the reduced model’s
results are shown in Table 7. Sex was almost significant
and it was decided to remove this variable from the model.
The resulting model and influence diagnostics are shown
in Tables 8 and 9, respectively. Influence plots, including
an LR plot, are shown in Fig. 8. The condition number of
this model was 451 indicating the new model had good
parameter stability.

Examination of the collinearity diagnostics indicated
that two of the observations had HAT values greater than
the yardstick of 2 x 3/26 or 0.23. One studentized residual
was greater than £3 (Subject 3). Subject 3 had a DFBETA
of 1.023 for the intercept and -1.084 for the parameter
associated with BSA, indicating that these parameters
would change by more than one standard error should this
subject be removed from the data set. This subject had a
COVRATIO of 0.444, much lower than the critical value of
0.65, and the largest absolute DFFITs in the data set.
Clearly, there was something unusual about this subject. At
this point, one might then go back and examine what was
unique about this subject. Although not the lowest
clearance observed in the study, this subject did have the
second lowest value. Why? Since this data set was taken
from the literature this question cannot be answered. For
purposes of this analysis, it was decided that Subject 3
would be removed from the data set. The resulting model
after removal of Subject 3, as shown in Table 10 with
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Table 3

Treatment groups, patient demographics, and 5-FU clearance values from Port et al. (1991)

5-FU
Age BSA Dose CL
Subject Sex (Years) (m?) (mg) MTX (L/min)

1 1 43 1.65 1,500 1 0.58
2 1 48 1.63 750 0 0.56
3 1 50 2.14 1,500 1 0.47
4 0 68 2.14 1,800 1 0.85
5 1 50 1.91 1,500 1 0.73
6 1 48 1.66 1,500 1 0.71
7 1 45 1.6 1,500 1 0.61
8 0 53 2.05 1,600 1 0.86
9 0 44 1.94 850 0 1.36
10 0 58 1.7 1,500 1 0.53
11 1 61 1.83 1,600 1 0.91
12 0 49 1.67 1,500 1 0.81
13 0 70 1.89 1,600 1 0.64
14 0 47 1.64 1,500 1 0.56
15 0 63 1.88 600 0 0.98
16 1 46 1.67 1,500 1 0.79
17 0 45 2.01 1,000 0 1.92
18 0 46 1.82 1,000 0 1.65
19 0 57 1.68 1,400 1 0.83
20 1 52 1.76 750 0 1.19
21 1 64 1.27 1,200 1 0.57
22 0 65 1.67 750 0 1.12
23 1 75 1.67 1,500 0 0.5
24 1 64 1.57 1,500 0 0.44
25 0 60 2.02 1,800 0 0.67
26 0 54 2.13 1,800 0 0.93

Sex: 0 = males, 1 = females; MTX: 0 = no methotrexate given, 1 = methotrexate given; CL, clearance

influence diagnostics shown in Table 11, resulted in a model
accounting for more than 59% of the total variance with all
model parameters being statistically significant. The
condition number of the final model was 481 indicating the
model to be quite stable. Examination of the influence
diagnostics showed that now possibly Subject 2 showed
undue influence. Some modelers would indeed remove this
subject from the model, but removal of Subject 2 is not
advised given the sample size of the analysis. So, the final
model was one where BSA positively affected 5-FU
clearance and dose negatively affected 5-FU clearance, an
indication of Michaelis-Menten elimination kinetics.

Conditional Models

Up to now it has been assumed that x is fixed and
under control of the experimenter, e.g., the dose of drug
given to subjects or sex of subjects in a study, and it is of
interest to make prediction models for some dependent
variable Y or make inferences on the regression parameters.
There are times when x is not fixed, but is a random
variable, denoted X. An example would be a regression
analysis of weight vs. total clearance, or age vs. volume of
distribution. In both cases, it is possible for the experimenter
to control age or weight, but more than likely these are
samples randomly drawn from subjects in the population.
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Table 4

Results of univariate regression analysis of the data in Table 3 using a simple linear model with
Ln-transformed 5-FU clearance as the dependent variable

Variable Intercept SE(Intercept) Slope SE(Slope) R

Sex —0.0922 0.0916 —-0.346 0.135 0.2158
Age 0.366 0.453 —0.564 0.408 0.0738
BSA -1.416 0.620 1.188 0.628 0.1297
Dose 0.428 0.264 —0.505 0.190 0.2278
MTX —0.0763 0.107 —0.305 0.140 0.1640

Note: Bold values were statistically significant at p < 0.05
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Table 5

Results of multivariate linear regression of data in Table 3 using Ln-transformed 5-FU clearance as
the dependent variable

Variable Estimate SE(Estimate) t-value p-value
Intercept 0.104 0.696 0.15 0.883
Sex —-0.247 0.123 -2.00 0.059
Age —0.490 0.323 -1.51 0.146
BSA 0.995 0.589 1.69 0.106
Dose —4.78 0.212 -2.26 0.035
MTX —0.061 0.146 —0.42 0.681

Note: R* was 0.5750 with an adjusted coefficient of determination of 0.4688

Table 6

Results of multivariate linear regression of data in Table 3 using Ln-transformed 5-FU clearance as
the dependent variable without MTX included in the model

Variable Estimate SE(Estimate) t-value p-value
Intercept 0.025 0.656 0.04 0.971
Sex —0.246 0.121 —2.04 0.054
Age —0.452 0.305 -1.48 0.153
BSA 1.076 0.545 1.97 0.062
Dose —0.535 0.160 —3.35 0.003

Note: R* was 0.5713 with an adjusted coefficient of determination of 0.4897

Table 7

Results of multivariate linear regression of data in Table 3 using Ln-transformed 5-FU clearance as
the dependent variable without MTX and age included in the model

Variable Estimate SE(Estimate) t-value p-value
Intercept 0.522 0.558 0.04 0.971
Sex -0.219 0.122 -1.79 0.087
BSA 1.176 0.556 2.12 0.046
Dose —0.580 0.161 —3.60 0.002

Note: R* was 0.5263 with an adjusted coefficient of determination of 0.4617

Table 8

Results of multivariate linear regression of data in Table 3 using Ln-transformed 5-FU clearance as
the dependent variable without MTX, age, and sex included in the model

Variable Estimate SE(Estimate) t-value p-value
Intercept —-1.004 0.512 1.96 0.062
BSA 1.622 0.520 3.12 0.005
Dose —0.621 0.167 -3.73 0.001

Note: The coefficient of determination was 0.4574 with an adjusted coefficient of determination of 0.4102. BSA and
dose were standardized prior to analysis.
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Table 9

Influence diagnostics for the regression model presented in Table 8
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Ccov DFBETAs
Subject  Residual RStudent HAT Ratio DFFITS Intercept BSA DOSE
1 -0.071 -0.247 0.071 1220 —0.068 —0.033 0.041 -0.031
2 -0.555 —2.249 0.156 0.728  —0.967 —0.582 0.201 0.750
3 -0.716 -3.130 0.148 0.444  -1.305 1.023 -1.084 —0.041
4 0.064 0.237 0.182 1.386 0.112 —0.089 0.074 0.048
5 -0.071 -0.247 0.055 1.199  -0.059 0.025 -0.024 -0.016
6 0.123 0.428 0.068 1.196 0.116 0.053 —0.066 0.052
7 0.024 0.084 0.089 1.253 0.026 0.015 -0.018 0.012
8 0.031 0.109 0.107 1.277 0.038 -0.027 0.025 0.010
9 0.120 0.442 0.159 1.322 0.192 -0.022 0.100 -0.152
10 -0.205 -0.719 0.058 1.131 -0.178 —0.062 0.081 -0.080
11 0.282 0.999 0.059 1.063 0.249 -0.044 0.004 0.141
12 0.246 0.867 0.065 1.105 0.229 0.099 -0.125 0.103
13 -0.123 —0.428 0.063 1.189  —0.111 0.042 -0.028 -0.055
14 —0.097 -0.340 0.074 1.215 —0.096 -0.048 0.059 -0.043
15 -0.310 -1.239 0.245 1236 -0.706 -0.054 -0.259 0.637
16 0.221 0.776 0.065 1.127 0.205 0.088 -0.112 0.092
17 0.496 1.948 0.142 0.826 0.792 -0.265 0.540 -0.517
18 0.513 1.946 0.081 0.772 0.578 0.082 0.145 -0.415
19 0.199 0.694 0.053 1.131 0.164 0.081 -0.083 0.040
20 0.084 0.307 0.151 1.329 0.130 0.041 0.015 —0.111
21 0.062 0.247 0.286 1.588 0.157 0.145 -0.144 0.009
22 0.103 0.377 0.151 1.321 0.159 0.083 -0.018 -0.129
23 —0.237 -0.836 0.065 1.113 -0.221 -0.095 0.120 -0.099
24 -0.276 -1.001 0.102 1.113 -0.337 -0.209 0.250 -0.144
25 -0.068 -0.245 0.130 1302 -0.095 0.061 -0.043 -0.055
26 0.162 0.606 0.176 1.320 0.281 —0.220 0.181 0.124

Note: Bolded data indicate data that are questionable.

As subjects enroll in a study, the experimenter usually
cannot control how old they are or what their weight is
exactly. They are random. Still, in this case one may wish
to either make inferences on the parameter estimates or
predictions of future Y values. Begin by assuming that Y
can be modeled using a simple linear model and that X and
Y have a joint probability density function that is bivariate
normal

1 1| (X—pe,
(X.Y)= .
f%D) 276, 0,\1- P exp{ 2(1—/3)[[ Oy ]

fcn s (] ).

(78)

where x, and u, are the population means for X and Y,
respectively, o, and o, are the standard deviations for X and
Y, respectively, and p is the correlation between X and Y
which can be expressed as

p=—2a, (79)
O-X GY

where oyy is the covariance between X and Y. Further
details regarding joint probability densities and conditional
inference is presented in Appendix given at the end of the
book. What is of interest is to find the conditional density
function of Y given X. The probability density function for
the conditional distribution of Y given X is

S (X,Y)
(] x) = L) (80)
S (Y 1X) 700




82

0.6 :
L4 °
0.4 ]
0.2 ] s . .
= . * ° ® o °
T 00 ] o
2 ¢ L
DG:J -0.2 4 . ® .
0.4 ]
06 1 Subject2 —— (o)
SubjectS —_—
PYS ©
0.8 0.6 -0.4 -0.2 0.0 0.2 0.4
Predicted Value
0.4 ;
Subject 3
0.3 1 r
ICIIJ) Subject 2
B 021 ubjec |
" o
i .
0.1 4 3
> ’
0.0 A : -
0.0 0.1 0.2 0.3 0.4
HAT

Studentized Residuals

Pharmacokinetic-Pharmacodynamic Modeling and Simulation

3
2] . . L
19 o H
8 o
01 hd L] ¢ .. L] ¢ . ¢ L
L ®°
11 ° o® L
L]
21 L
Subject 3 © D
31 \@ Subject 2 1
-4 T T T T T
-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4
Predicted Value
15 L L L L L
Subject 17
1.0 1 @ H
05 ] ® I
) / ° o
0.0 1 Subject 18 ;. oo |
Subject 2
059 Subject 3 [
1.0 (:s /® r
Subject 15
1.5 T T T T T T
04 05 06 07 08 09 1.0 1.1 1.2 13
COVRATIO

Fig. 8 Residual plots and influence plots for final linear model shown in Table 8 using data presented in Table 3. Suspect values are

noted in the plots

Table 10

Results of multivariate linear regression of data in Table 3 using Ln-transformed 5-FU clearance
as the dependent variable using only BSA and 5-FU dose with subject 3 removed from the analysis

Variable Estimate SE(Estimate) t-value p-value
Intercept —1.445 0.458 -3.16 0.0045
BSA 2.102 0.468 4.49 0.0002
Dose —0.616 0.142 —4.34 0.0003

Note: The coefficient of determination was 0.5950 with an adjusted coefficient of determination of 0.5581.

where fy(X) is the marginal density of X, which is assumed
normal in distribution. Hence, the conditional distribution
of Y given X is the ratio of the bivariate normal density
function to a univariate normal distribution function. After
a little algebra then

2
Y-6-0X
For (V1 X) =— —exp| -2 L2 4 (81)
O yN27 2 Oyix
where
0, =ty _#Xp_y’ (82)
X

O-X
O-)%\X = 0-5 ¢ _,02 ). (34)
Notice that two assumptions have been made: normality of
the responses and constant variance. The result is that the

conditional distribution itself is normally distributed with
mean @ +0x Thus,

distribution function at any level of X can be “sliced” and
still have a normal distribution. Also, any conditional
probability distribution function of Y has the same standard
deviation after scaling the resulting probability distribution
function to have an area of 1.

and

2

and variance Oyx the joint
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If data are collected from a random population (X, Y)
from a bivariate normal distribution and predictions about Y
given X are desired, then from the previous paragraphs it may
be apparent that the lincar model assuming fixed x is
applicable because the observations are independent, normally
distributed, and have constant variance with mean 6, + 6,.X.
Similar arguments can be made if inferences are to be made on
X given Y. Thus, if X and Y are random, all calculations and
inferential methods remain the same as if X were fixed.

EIVg Regression

One assumption until now has been that the dependent
and independent variables are measured without error. The
impact of measurement error on the regression parameter
estimates depends on whether the error affects the dependent
or independent variable. When Y has measurement error, the
effect on the regression model is not problematic if the
measurement errors are uncorrelated and unbiased. In this
case, the linear model becomes

p-l
Y:90+26’kxk+8+/(, (85)
k=1
where x is the measurement error in Y. This model can be
rewritten as
p-1
Y=0,+) 0x +¢, (86)
k=1
where ¢* is the sum of the measurement error and model
error. Equation (86) is functionally equivalent to (5). Thus,
measurement error in Y is absorbed by the model error term
and standard OLS techniques may be used.

Before proceeding, a distinction needs to be made
between X being simply a random variable and X being
random due to random measurement error. This distinction
is important and the question is sometimes asked, what is
the difference? If X is random but measured accurately, the
experimenter has no control over its measurement, and its
value may vary from study to study. An example of this
might be the weight of subjects in a clinical study. If this
random variable X is measured without error, then an exact,
accurate measurement of X can be obtained only for that
study. If, however, X is random due to measurement error,
then repeated measurement of X within the same study will
result in differing values of X each time X is measured and
a misleading relationship between X and Y will be obtained.

One other distinction needs to be made between
random X and X with random measurement error. Neither
implies that X is biased. Bias implies a constant effect
across all measurements. For example, if a weight scale is
not calibrated properly and when no one is standing on it,
the scale records a measure of 1 kg, then when any person
is measured their weight will be biased high by 1 kg. This
is not the type of measurement error that is being discussed
here because any constant bias in a measuring instrument
will be reflected in the estimate of the intercept. Random
measurement error means that repeated measuring of a
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variable will vary from measurement to measurement even
though its value has not changed. An example of this might be
when a patient goes to the doctor’s office and their weight is
measured at 180 Ib. The nurse forgets to write down the value
and so the patient is weighed again. This time their weight is
179 Ib. That patient has not lost a pound in the few moments
between measurements; they are still the same weight. But due
to random measurement error, their weight changed from one
reading to the next.

If both X and Y are random variables and X is measured
without random error, then all the theory presented for the case
of fixed x is still applicable if the following conditions are true:

1. The conditional distribution for each of the Y;
given JX; is independent and normally distributed
with conditional mean 6, + 6,.X; and conditional
variance o”.

2. The X; are independent random variables whose
distribution does not depend on the model
parameters 6 or o”.

This was discussed in the previous section. In contrast,
when the independent variable has measurement error, then
the analyst observes

X, =x, +0,, (87)
where X is the observed value of x; and J;, is the vector of
measurement errors for x;. It is usual to assume that
d~NO, o7) with independent measurement errors. The

model is then
p-1
Y=0,+) 0x +¢. (88)
k=1

Since X} is observed, not the true value of x;, the true value
must be replaced with the observed value. Then the linear
model becomes

p-1
Y=0,+) 0,(X-0), +¢ (89)
k=1
which can be expanded to
p-1
Y=6,+) 6,X, +(c-6,5,). (90)
k=1

Equation (90) looks like an ordinary regression model with
predictor variable X and model error term (6 — ék 8,)

p-1
Y=0,+) 60X, +¢. o1
k=1

However, the expected value of &¢* is zero with variance
-1 .
o’ +§ : lakzo-kz . Thus the variance of the measurement

errors are propagated to the error variance term, thereby
inflating it. An increase in the residual variance is not the only
effect on the OLS model. If X is a random variable due to
measurement error such that when there is a linear relationship
between x; and Y, then X is negatively correlated with the
model error term. If OLS estimation procedures are then used,
the regression parameter estimates are both biased and
inconsistent (Neter et al. 1996).
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Table 11
Influence diagnostics for the model presented in Table 10
Cov DFBETAs
Subject  Residual RStudent HAT Ratio DFFITS Intercept BSA DOSE
1 —-0.067 -0.274 0.071 1.225 -0.076 —-0.035 0.043 —-0.034
2 —-0.541 -2.696 0.156 0.559 -1.161 —-0.680 0.244 0.900
4 —-0.062 -0.277 0.208 1.436 —-0.142 0.116 —-0.099 —0.058
5 —-0.135 —0.555 0.062 1.173 —-0.142 0.069 -0.067 —-0.036
6 0.124 0.510 0.068 1.189 0.138 0.060 -0.075 0.062
7 0.041 0.170 0.089 1.257 0.053 0.030 —-0.036 0.023
8 —-0.071 —0.298 0.124 1.295 -0.112 0.084 —-0.080 —-0.029
9 0.052 0.225 0.166 1.369 0.100 —-0.018 0.055 —-0.078
10 -0.214 —0.888 0.058 1.093 —-0.220 —-0.069 0.091 —-0.099
11 0.239 0.995 0.062 1.067 0.255 —-0.060 0.023 0.142
12 0.244 1.022 0.065 1.063 0.270 0.110 —0.138 0.121
13 -0.182 —0.755 0.068 1.139 —-0.205 0.089 —-0.066 —-0.098
14 —-0.090 —-0.372 0.074 1.218 —-0.105 —-0.051 0.063 —-0.047
15 -0.361 -1.760 0.249 1.014 -1.015 —-0.031 —-0.392 0.906
16 0.219 0.913 0.065 1.095 0.241 0.098 —-0.124 0.109
17 0.409 1.899 0.155 0.845 0.812 -0.319 0.578 —-0.505
18 0.476 2.168 0.083 0.684 0.654 0.053 0.189 —-0.461
19 0.196 0.805 0.053 1.108 0.190 0.088 —-0.090 0.046
20 0.064 0.273 0.152 1.342 0.116 0.033 0.015 —-0.099
21 0.168 0.805 0.305 1.510 0.533 0.497 -0.491 0.028
22 0.106 0.458 0.151 1.315 0.193 0.096 —-0.021 —-0.156
23 -0.238 —0.994 0.065 1.071 -0.263 —-0.107 0.135 -0.118
24 —-0.251 -1.075 0.103 1.092 —-0.364 -0.224 0.266 —-0.155
25 -0.163 —-0.702 0.145 1.254 —-0.288 0.197 —0.148 —-0.161
26 0.039 0.172 0.202 1.434 0.087 —0.070 0.060 0.036
Note: Bold data indicate data that were questionable
Obtaining unbiased and consistent parameter estimates
1200 under these conditions using OLS is difficult. Measurement
nreasing Measarement Enror Varince i X error in x is traditionally handled by two types of models:
1000 1 e  (lassical error models and calibration models,
where the relationship between X given x is
8001 modeled
2 600 e Regression calibration models, where the
> relationship between x given X is modeled
400 1 Alternative models may be developed to include additional
covariates which are not measured with error, e.g.,
200 + X=AR, 7). The classical model is used when an attempt to
measure x is made but cannot be done so due to various
0 o 200 200 600 800 1000 1200 measurement errors. An example of this is the measurement

x Data

Fig. 9 Effect of increasing measurement error in X on least
squares fit. Heavy line is the true least squares fit to model
Y=x+10. Y has no measurement error associated with it. x has
increasing degrees of measurement error as indicated by the
direction of the arrow, the result being the slope is attenuated
and the intercept is inflated

of blood pressure. There is only one true blood pressure
reading for a subject at a particular point in time, but due to
minor calibration errors in the instrument, transient
increases in blood pressure due to diet, etc., possible
recording errors and reading errors by the nurse, etc., blood
pressure is a composite variable that can vary substantially
both within and between days. In this case, it makes sense
to try and model the observed blood pressure using (87).
Under this model, the expected value of X is x. In
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regression calibration problems, the focus is on the
distribution of x given X. For purposes herein, the focus
will be on the classical error model. The reader is referred
to Fuller (1987) and Carroll et al. (1995) for a more
complete exposition of the problem.

In the pharmacokinetic arena, there are many cases
where the independent variable is measured with error and
a classical measurement model is needed. Some examples
include in vitro—in vivo correlations, such as the
relationship between Log P and volume of distribution
(Kaul and Ritschel 1990), in vivo clearance estimates based
on in vitro microsomal enzyme studies (Iwatsubo et al.
1996, 1997), or the estimation of drug clearance based on
creatinine clearance (Bazunga et al. 1998; Lefevre et al.
1997). In these three examples, log P, in vitro clearance,
and creatinine clearance, all have some measurement error
associated with them that may be large enough to produce
significantly biased regression parameter estimates.

Before a solution to the problem is presented, it is
necessary to examine what happens when the measure-
ment error in x is ignored and the SLR model applies.
When a classical error model applies, the effect of
measurement error in x is attenuation of the slope and
corresponding inflation of the intercept. To illustrate this,
consider the linear model Y =x + 10 where x is a set of
triplicate measurements at {50, 100, 250, 500, 750,
1,000}. Y is not measured with error, only x has error.
Figure 9 plots the resulting least squares fit with
increasing measurement error in x. As the measurement
error variance increases, the slope of the line decreases
with increasing intercept. Sometimes the attenuation is so
severe that bias correction techniques must be used in
place of OLS estimates.

Let us assume the SLR model applies, where x has
mean . and variance g and ¢ ~N(0, 0°). The predictor x

cannot be observed, but X can, where X=x+ 0 with 0
being the difference between the observed and true values

having mean 0 and variance o . Thus, the total variance of
Xis ol +o;- Then the OLS estimate of the slope of ¥ on X
is not 4, , but

0 =14, (92)
where
2
A=—Z <1 93)
o, +o0,

The denominator in (93) represents the total variability
of X, whereas the numerator is the variability in x, the true
values. A is sometimes called the attenuation factor or
reliability factor and represents the proportion of variation
in x found in X. The net effect of measurement variance of
the predicted values is greater than when x has error in x is

that él is attenuated toward zero and the no measurement

error. Corresponding to this is that as the slope decreases,
the intercept increases in response.
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Measurement error causes double-trouble: attenuation
of the slope and increased error about the regression line.
However, when more complex error structures are
assumed, such as when X is not an unbiased estimate of x
or the variance of d depends on x, then it is possible for the

opposite effect to occur, e.g., él is inflated (Carroll et al.

1995). Rarely are these alternative measurement error
models examined, however. The bottom line is that
measurement error in the predictors leads to biased
estimates of the regression parameters, an effect that is
dependent on the degree of measurement error relative to
the distribution of the predictors.

Hodges and Moore (1972) showed for the linear
model, the maximum bias introduced by measurement
error in the predictors, assuming an additive error model,
can be estimated by

bias=0—(n— p—-1)(x"x)"'U8, (%94)
where
o} 0
0_2
U= 2 95)
0 o;

with the diagonal elements of U being the measurement
error variance for the kth predictor variable. Bias estimates
can be transformed to relative bias estimates by

relative bias = % x100%. (96)

If (96) indicates that severe bias is present in the parameter
estimates, then the parameter estimates need to be bias-
corrected. It should be mentioned, however, that correcting
for bias is not without its downside. There is a trade-off
involved, the bias vs. variance trade-off, which states that
by correcting for bias in measurement error models, the
variance of the unbiased estimator increases relative to the
biased estimator leading to larger confidence intervals. In
general, for large sample sizes and for moderate attenuation
correction, bias correction is beneficial. The reader is
referred to Fuller (1987) for further details.

In the case of SLR when A is known, an unbiased

estimate of the slope can be obtained by rearrangement of
(92), i.e.,

4= ©7)

Stefanski et al. (Carroll et al. 1995, 1996; Cook and Stefanski
1994; Stefanski and Cook 1995) present a “remeasurement
method” called simulation-extrapolation (SIMEX), which
is a Monte Carlo approach to estimating and reducing
measurement error bias, in the same vein as the bootstrap is
used to estimate sampling error. The advantage of the
SIMEX algorithm is that it is valid for linear and nonlinear
models and for complex measurement error structures,
included heteroscedastic variance models. The method
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assumes that O—/f , the variance of the measurement error, is
known to some degree of certainty. If & is not known,

then it must be estimated. If no estimate of o} can be

obtained, then no method can be used to obtain unbiased
parameter estimates.

The basic idea is to add random measurement error to
the predictor variables using Monte Carlo and develop the
relationship between measurement error and parameter
estimates. Using this relationship, the parameter estimates
for the case of no measurement error can then be
extrapolated. When asked what does SIMEX offer over
other methods in reducing the bias of parameter estimates
in regression models, Stefanski (personal communication)
responds by asking “does the bootstrap offer any advantage
for computing the standard error of the sample mean?”
Thus, SIMEX is analogous to bootstrap methods, i.e., it
may be over-kill for simple problems or it may be the only
solution but for complex problems.

SIMEX is easiest to understand in the linear regression
case and its exposition will be as described by Carroll et al.
(1995). Begin by assuming the simple linear model. Recall
that g,f represents the variance in x with no error and glf

is the measurement variance of X. Now suppose that there
are m — 1 additional data sets in addition to the original
data with each of these additional data sets having
successively larger measurement error variances, i.e.,

(1+4,)0; where 0 =4, > 1, > A3 >...4,. Then for each of

these datasets the slope of the mth data set, él*m , does not

consistently estimate 6, ,, but instead estimates

A 0.0’

g -— %% (98)

o.+(1+4,)0;

This problem can now be thought of as a nonlinear
regression problem where é; is regressed against 4,,. The
regression parameters in the absence of measurement error
can be obtained by extrapolating A to —1. However,
modeling (98) is not practical since o} and o may not be
known. Carroll et al. (1995) suggest that in their experience
it is much easier to regress A, against él*m using a
quadratic polynomial

é:m =7 + N/ +722’ri (99)
evaluated over the equally spaced interval 0<A4, <2.
Estimation of the standard error of SIMEX parameter
estimates can be calculated using the bootstrap or
jackknife, a process which should not increase computing
time to prohibitive levels given the current processor speed
of most personal computers.

Therefore, the SIMEX algorithm is as follows. First a
simulation step is performed:
1. Define X(A,)=X, + /,1m c.Z where Z are

independent, random variates with mean zero and
variance 1.

Table 12

Desirudin clearance as a function of creatinine clearance

Creatinine CL (mL/min) Desirudin CL (mL/min)
8.22 13.61
9.79 17.33

25.07 16.09
24.28 19.80
25.07 23.51
27.42 27.23
36.19 29.21
44.41 47.03
44.26 56.93
58.75 70.54
63.45 133.66
76.37 105.20
82.25 134.90
82.64 141.09
93.21 102.72
96.34 170.79
107.70 148.51
105.74 170.79
106.14 199.26
111.23 195.54
125.72 170.79

2. For each data set, regression is done and the
parameter estimates saved.

Repeat steps 1 and 2 many times (>100).
Calculate the average parameter estimate.

5. Following the extrapolation step regress the
average parameter estimates vs. A using a
quadratic polynomial.

6. Extrapolate to A =—1.

If the error assumed for X is not normally distributed, a
suitable transformation needs to be found prior to
performing the algorithm. Carroll et al. (1995) stress that
the “extrapolation step should be approached as any other
modeling problem, with attention paid to the adequacy of
the extrapolant based on theoretical considerations, residual
analysis, and possible use of linearizing transformations
and that extrapolation is risky in general even when model
diagnostics fail to indicate problems.”

As an example, consider the data presented by Lefevre
et al. (1997). In that study, eight healthy subjects with
normal renal function and 15 patients with varying degrees
of renal impairment were given an infusion of desirudin,
the recombinant form of the naturally occurring anticoagulant
hirudin, found in the European leech Hirudo medicinalis,

Bw
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with doses ranging from 0.125 to 0.5 mg/kg infused over a
30-min period. Serial blood samples were collected and the
clearance of hirudin was calculated using noncompartmental
methods. The raw data values were not reported in the
publication, but the data were presented as a plot. This plot
was reanalyzed by taking the X—Y coordinates for each data
point and determining the associated X—Y value.

The reanalyzed data are presented in Table 12 and
plotted in Fig. 10. Lefevre et al. (1997) reported that plasma
clearance (CL) of hirudin could be related to creatinine
clearance (CrCL) by the equation: CL=1.73 x CrCL —
17.5. The reanalyzed model gave OLS estimates of
1.71 £ 0.13 for the parameter associated with CrCL and —
151+93mL/min for the intercept (R*=0.9058,
MSE =442.9). Ignore for the moment that a better model
might be a no-intercept model. Residual analysis suggested
that the residuals were normally distributed and that data
weighting was unnecessary.

In order to use the SIMEX algorithm on this data, an
estimate of the measurement variance for creatinine
clearance must be obtained. In discussions with clinical
chemists, the upper limit of measurement error associated
with measuring serum or urine creatinine using the Jaffe
reaction is 5%. Assuming mean 24 h values for urinary
volume, urinary daily creatinine excretion, and serum
creatinine of 1,000 mL, 1.5 g, and 1.1 mg/dL, respectively,
an approximate measurement error variance for creatinine
clearance was found to be 60 (mL/min)>.

With this as an estimate of the assay measurement
variance, the SIMEX algorithm was applied. Figure 11
plots the mean regression parameter against varying values
of A wusing 1,000 iterations for each wvalue of A.
Extrapolation of 4 to —1 for both the slope and intercept
leads to a SIMEX equation of

Cl = —19.4 + 1.78x CrCl, (100)

250

200 -

150 1

100 1

Desirudin Clearance (mL/min)

50 4

0 20 40 60 80 100 120 140
Creatinine Clearance (mL/min)
Fig. 10 Plot of desirudin clearance as a function of creatinine

clearance. Data redrawn from Lefevre et al. (1997). Solid line is
the ordinary least squares fit

87

1.80

1.75 r

1.70 4 L

Slope

1.65 - r

1.60 - r

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Lambda
-6
-8 1 e
-10 4
s -124
@
o
2
£ -14 A
-16
-18
-20 T T T T T T
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
Lambda

Fig. 11 Plot of SIMEX extrapolation to desirudin data show in
Fig. 10. extrapolated value for slope (fop) and intercept (bottom)
at A=-1; o, mean regression parameter using 100 iterations for
each value of 1; solid line is the second order polynomial fit

values not too different from the OLS estimates. The bias
of the OLS estimates for slope and intercept using (94) was
0.06 and —4.1 mL/min, respectively, with a relative error of
23 and 4%, respectively. The jackknife SIMEX estimates
for slope and intercept were 1.90 = 0.43 (mean + standard
error of mean) and —21.0 + 4.9 mL/min, respectively. Hence,
the OLS estimates in this case were relatively unbiased.
Surprisingly, even though the parameter estimates
obtained from regression of independent variables with
measurement errors are biased, one can still obtain unbiased
prediction estimates and corresponding confidence intervals.
The reason is that even though X has measurement error,
the model still applies to the data set on hand. The problem
arises when one wishes to make predictions in another
population or data set. In this case, three options are
available (Buonaccorsi 1995). First, carry out the
regression of ¥ on X and calculate the predicted response
ignoring the measurement error. Second, regress Y on X,
recognizing that X is measured with error, but obtain a
modified estimate of ¢°, and calculate a modified prediction
interval. Third, correct for the measurement error of X and
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Power Model: Y = 20x0-25

25

1.0 1.5 2.0 25 3.0 3.5 4.0
X Data

Fig. 12 Plot of a cubic, quadratic, and power function

regress Y against the corrected X. The prediction interval
then uses the parameters obtained from the corrected
regression. Options 1 and 2 are reasonable assuming that
the value to be predicted has the same measurement error
distribution as the current data.

Buonaccorsi (1995) present equations for using Option
2 or 3 for the SLR model. In summary, measurement error
is not a problem if the goal of the model is prediction, but
keep in mind the assumption that the predictor data set
must have the same measurement error distribution as the
modeling data set. The problem with using option 2 is that
there are three variance terms to deal with: the residual
variance of the model, ¢%, the uncertainty in 6, and the
measurement error in the sample to be predicted. For
complex models, the estimation of a corrected o° may be
difficult to obtain.

Polynomial Regression
Sometimes one sees in the literature models of the
form

m p-1
Y=0,+).6x.+ Y Ox/ +¢, (101)
k=1 I=m+1
where ¢ is the power term, being described as “nonlinear
models.” This is in error because this model is still linear in

the parameters. Even for the terms of degree higher than 1,

O e 102
20 gx;—, (102)
which means that the parameters are independent of other
model parameters. What may confuse some people is that
polynomial models allow for curvature in the model, which
may be interpreted as nonlinearity. Since polynomial models
are only special cases of the linear model, their fitting
requires no special algorithms or presents no new problems.

Often a polynomial may be substituted as a function if
the true model is unknown. For example, a quadratic model
may be substituted for an E,,,,, model in a pharmacodynamic
analysis or a quadratic or cubic function may be used in
place of a power function

Y =6X" (103)
as shown in Figure 12. It is almost impossible to
distinguish the general shape of the quadratic model and
power model. The change in intercept was added to
differentiate the models graphically. Also note that an
increase in the number of degrees of freedom in the model
increases its flexibility in describing curvature as evidenced
from the cubic model in Fig. 12.

Polynomial model development proceeds the same as
model development when the degree of the equation is 1.
However, model development generally proceeds first from
simpler models and then terms of higher order are added
later. Hence, if a quadratic term is added to a model, one
should keep the linear term as well. The function of the
linear term is to provide information about the basic shape
of the curve, while the function of the quadratic term is to
provide refinements to the model. The LRT or information
criteria can be used to see if the additional terms improves
the goodness of fit. Extreme caution should be made in
extrapolating a polynomial function as the function may
deviate significantly from the interval of data being
studied. Also, higher order models (greater than 2) are
usually avoided because, even though they often provide
good fits to the data, it is difficult to interpret their
coefficients and the predictions they make are often erratic.
When two or more predictors are modeled using quadratic
polynomials, response surfaces of the type shown in
Fig. 13 can be generated. These are extremely useful in
examining how two variables interact to generate the
response variable. They are also very useful for detecting

Predicted Mean Change in DBP
From Baseline (mm Hg)

Fig. 13 Quadratic response surface of predicted mean change
from baseline in diastolic blood pressure following 8 weeks of
randomized therapy to fosinopril and/or hydrochlorthiazide.
Data presented in Pool et al. (1997)
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and characterizing antagonism or synergy between drug
combinations. Although not used commonly clinically,
response surfaces are useful both in vitro and in vivo
models. See Greco et al. (1995) for details and Carter et al.
(1985), Rockhold and Goldberg (1996), and Stewart (1996)
for examples.

Smoothers and Splines
Linear regression models are of the form

Y=6,+6x+0,x,+-+0,x,+¢ (104)
ignoring higher order polynomial and interaction terms.
Additive models are of the form

Y:fl(xl)+f2(x2)+"'+fp(xp)+g: (105)
where f1(), /(). ..., f,( ) are now generic smooth functions
that do not have to be of a linear or nonlinear form or even
of the same functional form. Linear models and additive
models can be combined to form semiparametric models of
the form

Y=0,+6x +f(x,)++f(x,)+e,  (106)
where the model consists of both a parametric structural
form and an additive structural form. Semiparametric
models are sometimes also called partially linear models,
partial linear models, partly linear models, or partial spline
models. Additive and semiparametric models can be
further extended through generalized additive models
(GAMs) to allow for categorical dependent variables or
survival data similar to how generalized linear models
extend linear models. When the structural model contains
some elements which are additive in nature, the exact
nature of the function f{*) or the parameter estimates of f{*)
may not be of interest, simply whether a “relationship”
between x and Y exists. So unlike linear models, inference
on the model parameters in a GAM or semiparametric
model is usually not of interest. The purpose of this chapter
will be to introduce semiparametric models and smoothing
models and to illustrate how semiparametric or additive
models can be easily developed using linear mixed effect
methodology.

Smoothers and Locally Weighted Regression (LOESS)

A smoother describes the trend in Y as a function of
some set of predictors and are generally nonparametric in
nature. If only one predictor variable is available, these
smoothers are called scatterplot smoothers. Of importance
is that the smoother does not assume a rigid structural form
like in (104). Smoothers work through the concept of local
averaging or neighborhoods, i.e., the predicted value is
based on observations near the reference value as opposed
to linear or nonlinear models which base predictions on the
totality of the data. By assuming a nonparametric form the
smoother can become linear in parts of a curve and
curvilinear in other parts.

Two main decisions must be made for any smoother.
First, how big should the neighborhood be around the
reference value and then, second, how should the predicted
response at the reference value be calculated within each
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neighborhood. How the predicted value is estimated within
the neighborhood is what distinguishes the types of
smoothers: running mean, running median, exponential,
LOESS, etc. The size of the neighborhood can vary from
very small to very large. As the size of the neighborhood
increases, the curve becomes smoother but flatter (variance
decreases but bias increases). As the size of the neighborhood
decreases, the curve becomes more jittery and not very
useful (variance increases but bias decreases). So clearly
there will be some optimum neighborhood that minimizes
the bias-variance trade-off. Many algorithms exist for
finding the optimum neighborhood, such as cross-
validation, but many times the choice of the neighborhood
is simply based on graphical examination and the analyst’s
discretion.

The idea behind a smoother will begin through the
exposition of running mean and running median smoothers.
First, the x observations are ordered from smallest to
largest. Starting at x(;), the smallest value of x, a neighborhood
of k observations near x;, is chosen. Few software
packages require the neighborhood be defined in terms of
k, the number of observations in the neighborhood. Rather
it is more convenient to have each neighborhood consist of
some proportion of the total number of observations

e 2k +1)
n

a value referred to as the span. So, if the span was defined
as the nearest 10% of the observations to x; and the total
number of observations was 100, then the neighborhood
around x;, would consist of the ten nearest observations.
For a running mean smoother, the average of Y in the
neighborhood of x(;) is calculated and used as the first
predicted value of the smoothed line. This process is
repeated for x(p), X3), ... X(». The predicted values are then
joined by a line segment and the entire line is called the
running mean smoother. A running median smoother uses
the same algorithm except the median Y-value is calculated
within each neighborhood and used as the predicted value.

The neighborhood around x(, can be based on either
the nearest symmetric neighbors in which the k/2
observations to the left and k/2 observations to the right of
x(y are chosen as the neighborhood. In the case where x, is
near the tail of x and it is not possible to take all the points
both to the right and left of x(,, as many observations as
possible are taken for the calculation. Alternatively, symmetry
can be ignored and the nearest neighborhood may consist
of the nearest neighbors to x(, regardless of whether the
observations are to the right or left of x,. Hastie and
Tibshirani (1990) suggest that nearest neighborhoods are
preferable to symmetric neighborhoods because in a
neighborhood with a fixed number of observations the
average distance of the observations to the reference value
is less with nearest neighborhoods, unless the observations
are equally spaced, resulting in less bias in the predictions.

Running mean and median smoothers, while often
seen in time series analysis, are not very useful because the
smoothed line tends to be too jittery to be useful and tends

(107)
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to flatten out at near the tails of x leading to large bias in
the fit. However, a simple solution to the bias problem
exists. Instead of computing the mean in the neighborhood,
a running line smoother is computed where within each
neighborhood ordinary least squares linear regression is
used to compute the predicted value at x(,. Cleveland
(1979) further improved on the algorithm by suggesting
that within each neighborhood weighted least squares
linear regression (which will be discussed in the chapter on
“Variance Models and Transformations”) be used to
predict the value at x., where the weights decrease
smoothly away from x.,. This algorithm is more commonly
referred to as the Locally Weighted Scatterplot Smoother
(LOWESS) or LOESS algorithm.

The algorithm proceeds by starting at x;, and
calculating the distance from x;,, for each x,

Ag) =|x(,.) _x<1>|’ (108)
where || is the absolute value function. The & nearest
neighbors having the smallest A, are then identified, as is
the observation having the largest A, denoted max(A). A
scaled distance is then calculated as

0 Ao (109)
max(A)

Once the scaled distances are calculated, the tricube weight

function is formed for each x; in the neighborhood of x(;,
353
W, ={(1—%) for u,, <1 (110)

0 foru, >1
Weighted linear regression using the above weights is then
performed on the observations in the neighborhood and the
Y value at x(;, (denoted Y(y) is predicted. This process is then
repeated on xp), X3y, ... X replacing xg, in the above
equations with x), X(3), etc. The LOESS smoother then joins
each predicted Y, by a line segment. Figure 14 illustrates the
concepts just described for a single observation in a data set.
Each observation in the neighborhood does not contribute
equally to the predicted x(;). Observations near x(;, have
greater weight than observations within the neighborhood
but further removed from x(;y. An optional robustness factor
can be built into the model by providing less weight to
observations having large residuals.

Figure 15 presents a representative concentration-time
profile with a LOESS smooth to the data. To create a
LOESS smooth to the data, an analyst must first decide
whether the weighted regression model within each
neighborhood will be linear or quadratic in nature. Higher
order polynomial models are of course possible, but are
rarely used. Quadratic models are useful is the data exhibit
a large degree of curvature or has many inflection points.
Secondly, the proportion of observations in each
neighborhood must be selected. The span may range from 0

o O-08

Y Data
o
o
Y
Weights

r 04

0.2

0.0

T
25 30

X Data

Fig. 14 Example of a LOESS smoother and nearest neighbor
concept. Twenty observations were simulated. A LOESS smoother
having span 0.5 and using a weighted linear regression model is
shown as a heavy-set solid line. The hatched area is the k nearest
neighbors (ten observations because 20 x 0.5 = 10) to a target value
of 16.5. The solid line within the neighborhood is the tricube weight
function. The solid dot within the window is the predicted value.
Notice that the tricube weight function is not necessarily symmetric
around the target value

to 1, but typically, a good default value is 0.3-0.5, i.e., each
neighborhood consists of the nearest half to third of the
data surrounding x;. The number of observations in each
neighborhood is then £ =w x n. If k is not a whole number,
the value must be either truncated or rounded. The default
span in S-Plus is 2/3. No default value is used in SAS; the
smoothing parameter is an optimized one that is data-
dependent. If x is sorted from smallest to largest then the
physical width of each window may change in size as the
smoother proceeds from x, ..., X, as will the degree of
asymmetry. For example, the neighborhood will lie entirely
to the right of x(;), but will lie entirely to the left of x,).

Kernel Smoothers

The smoothers just presented use neighborhoods of
constant span with the neighborhood being either the nearest
k observations or the nearest symmetric neighbors.

In contrast, kernel smoothers use neighborhoods of
constant width or bandwith (denoted as b) as is more often
used (Altman 1992). A kernel is a continuous bounded and
symmetric function K that integrates to one. Given a
reference point, say x(;), the difference between x;) and all
other x;s is scaled to the bandwith

X, =X
U = M (111)
b
The scaled difference u;, is then passed to the kernel
function. Popular kernel functions include the Epanechnikov
kernel
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Fig. 15 Concentration data from 97 subjects having from one to
four samples collected per patient at steady state. The dotted,
solid, and dashed lines are the LOESS fits of varying span and
either linear or quadratic regression

0.75(1-u>) fi <1
K= P0mt0) fortg =1 )
0 for U > 1
the standard Gaussian kernel
1 u;
(0
K(U([)) = Eexp |:—T:| for all l/t(i), (1 13)
and the quartic kernel
15 )
—(—u foru,. <1
K(ug)) = 16( o) 0 (114)

0 for u,, >1

Figure 16 plots the differences in the kernels and how they
decrease as they move from their reference point.

In general, the Gaussian kernel weights less drastically
than does the Epanechnikov kernel, while the quartic
kernel weights most dramatically as the distance from the
reference point increases. The weight given to the ith by

c
W :ZK("M)’ (115)

where ¢ is a constant defined such that the weights sum to
unity. The weight given an observation is only dependent
on how close the observation is to x). The predicted value
for xy) is then the weighted average of all the Y values
I} — i=1 VV(:‘)Y
Q)] Zn W :
i=1 ()
This process is repeated for all x;.

Kernel smoothing is more like a weighted running
mean smoother, even though it is sometimes referred to as
kernel regression. With kernel smoothing, the analyst must
choose the bandwidth and the choice of kernel. For
constant bandwith the number of data points in the
neighborhood varies from neighborhood to neighborhood.
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Fig. 16 The Epanechnikov (solid line), standard Gaussian (dotted
line), and quartic kernel (dashed line) smoother

As the bandwidth increases the variance of the estimate
decreases, but the bias of the predicted fit decreases.
Conversely, the weights around the reference value
increase as the bandwidth decreases. As for choice of the
kernel function, in practice the choice of kernel is relatively
unimportant compared to the choice of bandwidth as most
kernel functions produce roughly equivalent smooths to the
data (Hastie and Tibshirani 1990). The general opinion is
that kernel smoothing is inferior to local weighted
regression as kernel smoothing suffers from the same
boundary bias as running mean smoothers and under
performs when the “true” regression function is linear
(Ryan 1997).

Spline Interpolation

Another type of smoother sometimes seen in the
pharmacokinetic arena is a spline smoother, which comes in
many different flavors. Splines have their history in drafting
where draftsmen needed to draw a smooth curve through a
set of points. To do this, the draftsman would place a piece of
paper over a board, hammer in nails or push in pins where
the points were, and then a thin piece of wood was interwoven
between the points. The result was a smooth curve that passed
through each point. This type of spline is referred to as an
interpolating splines. The problem with interpolating splines
is that the spline passes through every point. Interpolating
splines applied to data with replicate values or noisy data are
not very appealing and so penalized regression splines,
which use a penalized least squares minimization approach
to the problem, are often used instead.

The concept of an interpolating spline is best explained
through linear splines and then expanded to higher order
splines (Chapra and Canale 1998). Given a set of ordered
data points Xy, X@), ..., X a first order spline can be
defined through the linear functions
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f(x)= f(x(l)) +m (x_x(l)) Xy S XS Xy

S(x) = f(x(z)) +m, (x— x(z))

X3 Sxﬁxm (117)

S =) +m,  (x=x,) X, SX<X,

where m; is the slope of the straight line connecting the
points

— f(x(i+l))_f(x(i)) . (118)

L Xy ~ X0

The points where two splines meet are called the knots. A
first order spline is a simple linear interpolating line to the
function, but suffers from the problem that the change from
one interpolating line to another is not smooth — the
derivatives are discontinuous.

To overcome the problem of discontinuity, higher
order splines may be developed. In order for the spline to
be smooth at the knots, both the first and second derivative
of the spline must exist and be continuous. In general, a
spline of at least m + 1 must be used for m-derivatives to be
continuous and exist. Hence, for both the first and second
derivative to be continuous a cubic spline of the following
form must be used

Y:6’0+6’1x+93x2+t94x3. (119)
The following conditions must also be met:
1. The function values must be equal at the interior
knots, i.e., the splines must join at the knots.
2. The first and last functions must pass through the
first and last observed data points (the end points).
3. The first and second derivatives of the interior knots
must be equal.
Under these constraints there are n—2 equations but n
unknowns. Thus the spline cannot be solved as is. Two
unknowns can be eliminated and the problem solved by
imposing some constraints on the end points. Under the
constraint that the second derivatives at the end knots equal
zero creates what is referred to as a natural spline. The result
is that at the end points the end cubics approach linearity and
have zero curvature. This type of spline is the mathematical
equivalent to the draftsman’s spline from earlier. If instead
the slope of the first and last cubics at the end points is
specifically defined the result is a clamped cubic spline. See
Fig. 17 for an example of a natural cubic spline.
Unfortunately, as is apparent in the bottom plot of
Fig. 17, interpolating cubic splines may not be valuable in
some instances, such as trying to smooth concentration-
time data pooled across individuals in a population or when
the data are particularly noisy. In this case, regression
splines, which do not force the spline curve to interpolate
the observed data points, may be more useful. Like
interpolating splines, regression splines use piecewise
polynomials to interpolate between the knots, the most
common polynomial being cubic. As the number of knots
increases the flexibility of the spline increases. Thus, a
regression spline may pass near the observed data but not
be constrained to interpolate it.

Y Data

X Data

Concentration (ng/mL)

Time After Dose (h)

Fig. 17 Interpolating cubic spline fit to the data in Fig. 14 (top)
and Fig. 15 (bottom)

Handling Missing Data

Anyone who does data analysis will eventually run into
the problem of missing data, either the dependent variable is
missing or one or more of the independent variables is
missing. The problem of handling missing data is far too
complex to cover it in its entirety within this book and many
excellent books are available on the subject for readers who
wish greater detail. These include books by Allison (2002),
Little and Rubin (2002), and Schafer (1997).

It is worthwhile to consider the regulatory opinion on
missing data, keeping in mind that these guidances were
written with an eye toward formal statistical analysis, such
as hypothesis testing, and not with an eye toward
pharmacokinetic or pharmacodynamic modeling per se.
Having said that, more and more modeling is done to
support New Drug Applications and that in the future it is
likely that increased scrutiny will be paid toward these
issues. ICH E9 (1998) states that the missing data is a
potential source of bias and as such every effort should be
done to collect the data in the first place. The guidance also
recognizes that despite best efforts, missing data is a fact of
life in clinical studies. Also, trial results are valid “provided
the methods for dealing with missing data are sensible, ...
particularly those pre-defined in the protocol.” Unfortunately,
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no recommendations are made in the guideline on what those
“methods” are. The guideline does state that no universal
method for handling missing data is available and that any
analysis based on data containing missing values should also
have a corresponding sensitivity analysis to see what effect
the method of data handling has on the analysis results.

The Committee for Proprietary Medicinal Products
(CPMP) (2001) has also issued a points to consider document
related to missing data that expands on the ICH E9
guideline. The CPMP document is mainly concerned with
the issue of bias and how missing data affects detecting and
estimating treatment effects. The CPMP does not generally
accept analyses where all missing data is deleted and only
data with complete cases is analyzed. They recommend that
all efforts be directed at avoiding missing data in the first
place, something that seems intuitively obvious but needs to
be restated for its importance. The CPMP also recommends
that whatever method used to handle missing data be stated a
priori, before seeing the data, in a data analysis plan or the
statistical methods section of the study protocol. The final
report should include documentation on any deviations from
the analysis plan and defend the use of the prespecified
method for handling missing data. Lastly, a sensitivity
analysis should be included in the final report indicating the
impact of the missing data handling procedure on treatment
outcomes. This may be as simple as a complete case analysis
vs. imputed data analysis (which will be discussed later).

Types of Missing Data and Definitions

Little and Rubin (2002) define three types of missing
data mechanisms. The first and most restrictive is missing
completely at random (MCAR) in which cases that are
missing are indistinguishable from cases that have complete
data. For example, if a sample for drug analysis was broken
in the centrifuge after collection and could not be analyzed
then this sample would be MCAR. If the data are MCAR
then missing data techniques such as casewise deletion are
valid. Unfortunately, data are rarely MCAR.

Missing at random (MAR), which is a weaker
assumption than MCAR, is where cases of missing data
differ from cases with complete data but the pattern of
missingness is predictable from other variables in the dataset.
For example, suppose in a Phase 3 study all patients at a
particular site failed to have their weight collected at study
entry. This data would be MAR because the missingness is
conditional on whether the data were collected at a particular
site or not. When data are MAR, the missing data
mechanism is said to be “ignorable” because the missing
data mechanism or model is independent of the parameters
to be estimated in the model under consideration. Most data
sets consist of a mixture of MCAR and MAR.

If data are missing because the value was not collected
then that value is truly missing. In more statistical terms, if
the data are missing independent of the actual value of the
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missing data then the missing data mechanism is said to be
ignorable. If, however, data are missing because their value
is above or below some level at which obtaining quantifiable
measurements is not possible then this type of missing data
is an entirely different problem. In this case, the data are
missing because of the actual value of the observation and
the missing data mechanism is said to be nonignorable.
These last type of data are extremely tricky to handle
properly and will not be discussed in any great detail herein.
The reader is referred to Little (1995) and Diggle and
Kenward (1994) for details.

Last, is the pattern of missingness as it relates to
missing covariates. Figure 18 presents a schematic of the
general pattern of missingness. Some covariates have
missing data, others do not. There may be gaps in the
covariates. But if the covariates can be re-arranged and re-
ordered xi, X, ..., X,, such that the degree of missingness
within each covariate is less than the preceding covariate
then such a pattern of missingness is monotonic or nested.
Monotonic missingness is useful because there are specific
ways to impute monotonic missing data.

Methods for Handling Missing Data: Missing
Dependent Variables

If the missing data are the dependent variable and the
reason for missingness is not nonignorable then the missing
data should be deleted from the analysis. If however, the
missing dependent variable is missing because it is below or
above some threshold value then more complicated methods
to analyze the data are needed. For instance, the dependent
variable may be missing because its value was below the
lower limit of quantification (LLOQ) of the method used to
measure it. For example, white blood cell count may be near
zero after chemotherapy and may not be measurable using
current technologies. In this case, the value may be reported
as <0.1 x 10° per liter. In such a case, the true value for
white blood cell count lies between 0 and the LLOQ of the
assay. Such data are said to be censored. Another instance
might be when the value exceeds some threshold beyond
which an accurate and quantifiable measurement cannot be
made, such as determining the weight of a super-obese
individual whose weight exceeds the limit of the scale in a
doctor’s office. In this case only that the subject’s weight
was larger than ¢, the upper limit of the scale, is known. A
value is said to be censored from below if the value is less
than some threshold or censored from above if the value
exceeds some constant. With censored data, the usual
likelihood function does not apply and parameter estimates
obtained using maximum likelihood will be biased.

For data where the dependent variable is censored, the
log-likelihood function is the sum of the log-likelihoods for
observations not censored plus the sum of the log-
likelihoods for censored observations. To obtain parameter



94 Pharmacokinetic-Pharmacodynamic Modeling and Simulation

Observation

1
2
3
4 .......
5
6
n | L
Y Xy X, X3 e Xp-1 Xp
General Pattern of Missingness
Observation
1
2
3
4 .......
5
6

n L L

Y X X, X3 Xp-1

Monotone Pattern of Missingness

Fig. 18 General (fop) and monotonic (botfom) pattern of
missingness in the covariates

estimates one needs access to an optimization package that
can fit a general likelihood function, like MATLAB (The
MathWorks Inc., Natick, MA). A simpler more pragmatic
(but certainly more biased) approach in the case where
observations are censored from below, imputation is usually
done by setting the value equal to zero, equal to some
fraction of the constant, such as one-half the LLOQ of the
assay, or randomly assigning the data point a value based on
a probability distribution. For instance, a sample may be
randomly drawn from the interval [0, LLOQ] based on a
uniform distribution. Observations censored from above are
more problematic because there may be no theoretical upper
limit and in such cases, imputation is usually done by setting
the missing value equal to the upper threshold. Whatever the
imputation method used, the usual caveats apply. The reader
is referred to Breen (1996) for a good exposition to the
problem. Unfortunately at this time, no major statistical
package, such as SAS or S-Plus, or pharmacokinetic
software package can handle the censored data case using
the correct log-likelihood equations.

Methods for Handling Missing Data: Missing
Independent Variables

There are many different ways for handling missing
data including ignore the missing data (complete case
analysis), mean or median substitution, hot deck methods,
regression methods, and maximum likelihood and its
variants. The simplest method, called listwise deletion or
complete case analysis, is to ignore the missing data and
model only the data that have no missing data. The
advantages of this method are that it can be applied to any
type of statistical model and is easy to do. Hence, casewise
deletion is the method of choice for handling missing data
in most statistical software packages. A disadvantage of
this method is that it may lead to biased results, especially
if the data are not MCAR, but are MAR, such as if the data
were more likely to be missing because of assignment to a
particular treatment arm. If the data are MCAR, then the
model parameters will be unbiased but the standard errors
will be larger due to a reduced sample size. Hence, power
will be decreased at detecting significant treatment effects.
The CPMP does not generally accept listwise deletion
analysis because it violates the intent to treat principle.”
The Points to Consider document does state, however, that
listwise deletion may be useful in certain circumstances,
such as in exploratory data analysis and confirmatory trials
as a secondary endpoint, to illustrate the robustness of
other conclusions.

Imputation, which is basically making up data,
substitutes the made-up data into the missing data and treats
the imputed data as if it were real. Imputation is generally
recognized as the preferred approach to handling missing
data and there are many different ways to impute missing
data. The first approach is naive substitution wherein the
mean or median value is substituted for all missing values.
For example, if a person’s weight was missing from a data
set then the mean weight, perhaps stratified by sex, would
be substituted. While preserving the mean of the marginal
distribution of the missing variable, it biases the distribution
of the variable. The result is that if the variable is indeed
related to the dependent variable and the proportion of
missing data is large, then naive substitution may distort
the relationship between variables. It is generally recognized
that this approach does more harm than good, unless the
proportion of missing data is small (less than a few
percent), where at best the substitution adds no information.

If the missing value is one of the independent variables
then naive substitution ignores any correlations that may be
present among predictor variables. To account for any
correlations between variables, conditional mean imputation
may be used wherein for cases with complete data
the variable with missing data is regressed against the other

? The intent to treat principle essentially states that all patients are
analyzed according to the treatment they were randomized to,
irrespective of the treatment they actually received. Hence, a
patient is included in the analysis even if that patient never
received the treatment.
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predictor variables and then the predicted value is
substituted for the missing value. In general, all variables
are used in the analysis and no attempt is made to reduce
the imputation model to its simplest form.

A variant of naive substitution is to use random
substitution wherein an observation is randomly sampled
from the observed values and substituted for the missing
value. This approach too tends to maintain the mean on-
average but may obscure real relationships among the
variables. Another variant of naive substitution is hot-deck
imputation, which requires pretty large data sets to be
useful and has been used for many years by the U.S.
Census Bureau. The basic idea is that each missing value is
randomly replaced from other subjects having similar
covariates. Suppose the weight of a 67-year-old male was
missing, but weight was collected on three other 67-year-
old males in the study, then the weight of the missing value
is randomly drawn from one of the three observable
weights. The advantage of the method is that it imputes
realistic values since the imputed value is itself actual data
and is conceptually simple. But what if there were no other
67-year-old males in the study. How would the imputation
work? This is where hot deck is often criticized, in the
choice of the “donor” cases since one then must set up
“similarity” criterion to find matching donors. Also,
besides SOLAS (Statistical Solutions, Saugus MA), no
other software package has a built-in hot deck imputation
algorithm. The user must program their own filters and
similarity measures which makes the method data-specific
and difficult to implement.

Regression-based methods impute the missing values
using least-squares regression of the missing covariate
against the observed covariates (Little 1992). In other words,
the missing covariate becomes the dependent variable and
the other covariates with no missing data become the
independent variables. Ordinary least-squares, or sometimes
weighted least-squares that downweights incomplete cases,
is then used to obtain the regression model and the missing
value is imputed based on the predicted value. A
modification of this approach is to add random error to the
predicted value based on the residual mean square error to
account for unexplained variability. Little (1992) suggests
that when the partial correlation between Y and the observed
xs is high then a better imputation can be had by including ¥,
as well as the observed xs, in the imputation process. This
may seem like cheating but if Y is not included in the
imputation then biased parameter estimates may result
using the filled-in data.

If the covariates show a monotone pattern of
missingness (Fig. 18) then the imputation procedure can be
done sequentially. For instance, suppose that x;, x,, x3, and x4
are the covariates that exhibit monotone missingness and
that x, and x, have no missing data. In the first step, x; would
be imputed based on the regression of x; against Y, x;, and
x». Then given imputed values for x3, x4 would be imputed
using the regression of Y, xj, x,, and x3 against x4. In this
manner all the covariates can be imputed. One problem that
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may arise using regression-based methods is that the
covariates may show collinearity. The covariate design
matrix used in the imputation may be near singular with the
resulting parameter estimates showing instability. A check
of the correlation matrix prior to imputation may be useful to
detect which covariates show collinearity. Collinearity could
also arise if one or more of the covariates show excessive
skewness. In which case, a transformation to normality may
be useful prior to imputation.

A parametric method for handling missing data is
maximum likelihood. Recall that in linear regression
maximum likelihood maximizes the likelihood function

L()
LY 10.0)=]]/(10), (120)

where f is the probability density function. In the case
where missing data are present the likelihood function
becomes the entire sample

L (0.0)=[1s.v10)[]exo).  (121)
i=1 i=m+1

where g is the probability density function for the missing
data and there are m cases with observed data and n — m
cases of missing data. The problem then becomes to find
the set of 6 that maximizes the likelihood. In order to
maximize the likelihood certain distributional assumptions
must be made, the most common being a multivariate
normal distribution. Although direct maximization of the
likelihood is possible, the software to do such
maximization is not readily available.

Two alternatives to direct maximization of the
likelihood are available: the EM algorithm, which is the
default multiple imputation (MI) algorithm in SAS, and
Markov chain data augmentation. The expectation-
maximization (EM) is difficult to explain in lay terms, but
in brief, the EM approach to missing data proceeds in two
steps. In the first step, the expectation step, the algorithm
essentially computes a regression-based imputation to the
missing values using all available variables. After the
expectation step, the maximization step computes new
estimates of the likelihood as if the variable had no missing
data. Then the E-step is repeated, etc., until stability of the
estimates is obtained.

Data augmentation using Markov Chain Monte Carlo
(MCMC), which has its basis in Bayesian statistics, is
much like the EM algorithm except that two random draws
are made during the process. Markov chains are a sequence
of random variables where the current value depends on the
value of the previous step. In the first step, starting values
are made. For a multivariate normal model, the starting
values are the means and covariance matrix or the means
and covariances obtained using the EM algorithm. For each
missing variable, given the estimates of the mean and
covariance, estimates of the regression parameters relating
the variable with missing data to the other variables are
obtained. Using the regression estimates, the predicted
values for all missing data are calculated. Then (and this is
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the first random, stochastic step in the process) normally
distributed random variability is added to the predicted
values and substituted for the missing data. The means and
covariances for the imputed data set are then computed.
Based on these updated means and covariances (and this is
the second random stochastic step in the process) a random
draw from the posterior distribution of the means and
covariances is made. Using the randomly drawn means and
covariances, the entire process is repeated until convergence
is achieved. The imputations obtained at the final step in
the process are those that are used in the statistical analysis.

Related to MCMC are two fundamental issues: how
many iterations are needed before convergence is achieved
and what posterior distribution should be used. There is no
satisfactory answer for whether or not convergence (or
stationarity) has been achieved. The default in SAS is to
use 50 burn-in iterations before the first imputation is
available for use. Schaffer (1997) used anywhere from 50
to 1,000 iterations in examples used in his book. Of course
the more iterations the better, but increasing the number of
iterations also increases the computation time, which may
become prohibitive. Allison (2002) suggests that as the
proportion of missing data increases the number of iterations
should increase. If only 5% of the data are missing then
fewer iterations are needed, although typically 500—-1,000
iterations is usually seen in the literature for most realistic
data sets. The reader is referred to Gelman et al. (1995) for
further details on MCMC and convergence. The second
fundamental issue related to MCMC is the choice of
the posterior distribution. In order to obtain the posterior
distribution, one needs a prior distribution, which is a
probability distribution associated with the prior beliefs of
the data before actual collection of any data. An
uninformative prior is often used in the absence of any
prior knowledge, which is what SAS does as a default.

The problem with any imputation method wherein a
single value is substituted for the missing data and then the
data set is analyzed as if it were all complete cases is
that the standard errors of the model parameters are
underestimated because the sampling variability of the
imputed values is not taken into account. For this reason
multiple imputation arose. With multiple imputation many
different datasets are generated, each with their own set of
imputed values, and each imputed data set is analyzed as if
complete. The parameter estimates across data sets are then
combined to generate improved estimates of the standard
errors. Multiple imputation, when done correctly, can provide
consistent, asymptotically normally distributed, unbiased
estimates of model parameters given the data are MAR.
Problems with multiple imputation include generation of
different parameter estimates every time it is used, is
difficult to implement if not built into a statistical package,
and is easy to do the wrong way (Allison 2002).

Rubin (1987) proposed that if m-imputed data sets are
analyzed that have generated m-different sets of parameter
estimates then these m-sets of parameter estimates need to
be combined to generate a set of parameter estimates that

takes into account the added variability from the imputed
values. He proposed that if §; and SE(8;) are the parameter
estimates and standard errors of the parameter estimates,
respectively, from the ith imputed data set, then the point
estimate for the m-multiple imputation data sets is

1 m
Oy =;Z€, (122)

So the multiple imputation parameter estimate is the mean
across all m-imputed data sets. Let L7(9i ) be the variance

of 6, i.e., the standard error squared, averaged across all m-
data sets

0(0) =~ S [SEO)F (123)

i=1

and let E(H,. ) be the variance of the point estimates across

imputations
BO)-——Y(0-8) (124)
m—143
Then the variance associated with 6; is
_ 1) =
Var(¢9,.):U(6,.)+(l+—jB(6i), (125)
m

The multiple imputation standard error of the parameter
estimate 6; is then the square root of (125). Examination of
(125) shows that the multiple imputation standard error is a
weighted sum of the within- and between-data set standard
errors. As m increases to infinity the variance of the
parameter estimate becomes the average of the parameter
estimate variances.

Rubin (1987) also showed that the relative increase in
variability (RIV) due to missing data is a simple function

(Hljl_?(@,»)
m
0(6)

and that the overall fraction of “missing data” can be
calculated as

RIV = (126)

>

RIV +2

(m—l)(l+1j
‘o RIV) | (127)
RIV +1

Given an estimate of RIV the relative efficiency of a
parameter estimate based on m imputations to the estimate
based on an infinite number of imputations can be calculated
by (1 + &m)™". For example, with five imputations and 40%
missing data the relative efficiency is 93%. With ten
imputations the relative efficiency is only 96%. Thus, the
difference between five and ten imputations is not that
large and so the increase in relative efficiency with the
larger number of imputation sets may not be worth the
computational price. Typically, the gain in efficiency is not
very large when more imputation data sets are used and it
is for this reason that when multiple imputation is used and
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reported in the literature the number of imputed data sets is
usually five or less.

There are two additional twists related to multiple
imputation using MCMC. Obviously multiple imputation
creates multiple datasets. For a fixed amount of computing
time, one can either increase the number of iterations in the
Markov chain generating a fixed number of imputed data sets
or one can increase the number of imputed data sets to be
analyzed using a smaller number of iterations in the Markov
chain. Allison (2002) suggests that more imputation data sets
be generated instead of spending more time on increasing the
number of iterations in the Markov chain. The second twist is
that several different data sets need to be generated. To do this,
independent Markov chains are generated, one for each data
set, using perhaps different starting values; this is called the
parallel approach. Care must be taken with this approach that
convergence has been achieved with each individual Markov
chain. Alternatively, one very long Markov chain can be
generated and then the data sets generated every k iterations
are chosen. For example, a Markov chain of 3,000 iterations
could be generated with the first 500 iterations used for burn-
in and then every 500th data set thereafter used for the imputed
data sets. With this method the question of independence must
be raised — are the imputed data sets truly independent if they
are run from the same Markov chain? As k decreases the issue
of correlated data sets becomes more and more important, but
when k is very large, the correlation is negligible. For
example, the issue of correlation would be valid if the imputed
data every ten iterations were used, but becomes a nonissue
when k& is in the hundreds. In general, either method is
acceptable, however.

To illustrate these concepts a modification of the
simulation suggested by Allison (2000) will be analyzed. In
this simulation 10,000 observations of three variables were
simulated: Y, xj, and x,. Such a large sample size was used
to insure that sampling variability was small. x; and x, were
bivariate normally distributed random variables with mean
0 and variance 1 having a correlation of 0.5. Y was then
generated using

Y=1+x+x,+Z, (128)
where Z was normally distributed random error having
mean 0 and variance 1. Four missing data mechanisms
were then examined:

1. Missing completely at random: x, was missing with
probability 0.5 independent of Y or x;
2. Missing at random, dependent on x;: x, was missing
ifx; <0
3. Missing at random, dependent on Y: x, was missing
ifY<0
4. Nonignorable: x, was missing if x, <0
The data were then fit using linear regression of (xi, x;)
against Y. The results are presented in Table 13. Listwise
deletion resulted in parameter estimates that were unbiased,
except when the data were MAR and dependent on the
value of Y in which case all three parameter estimates were
severely biased. Surprisingly, even when the missing data
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mechanism was nonignorable the parameter estimates were
unbiased and precise. The standard errors for all models
with missing data were about 25-200% larger than the data
set with no missing data because of the smaller sample
sizes. MI tended to decrease the estimates of the standard
errors compared to their original values. When the data
were MAR or MCAR, the parameter estimates remained
unbiased using MI with MCMC, even when the data were
MAR and dependent on Y. The bias that was observed was
now removed. But when the missing data were non-
ignorable, the parameter estimates obtained by MI became
biased because MI assumes the data MAR.

So how is MI incorporated in the context of
exploratory data analysis since obviously one would not
wish to analyze m different data sets. A simple method
would be to impute m+1 data sets, perform the
exploratory analysis on one of the imputed data sets, and
obtain the final model of interest. Then using the
remaining m-data sets compute the imputed parameter
estimates and standard errors of the final model. It should
be kept in mind, however, that with the imputed data set
being used to develop the model, the standard errors will
be smaller than they actually are since this data set fails to
take into account the sampling variability in the missing
values. Hence, a more conservative test of statistical
significance for either model entry or removal should be
considered during model development.

A totally different situation arises when covariates are
missing because of the value of the observation, not because
the covariate was not measured. In such a case the value is
censored, which means that the value is below or above
some critical threshold for measurement. On the other hand,
a covariate may be censored from above where the covariate
reported as greater than upper limit of quantification (ULOQ)
of the method used to measure it. In such a case the covariate
is reported as >ULOQ), but its true value may lie theoretically
between ULOQ and infinity. The issue of censored
covariates has not received as much attention as the issue of
censored dependent variables. Typical solutions include any
of the substitution or imputation methods described for
imputed missing covariates that are not censored.

In summary, case-deletion is easy but can lead to biased
parameter estimates and is not generally recommended
by regulatory authorities. In contrast, multiple imputation,
although computationally more difficult, is generally
recognized as the preferred method to handling missing data
and like any statistical analysis requires certain assumptions
be met for validity. The analyst is especially warned in the
case of censored data and the effects of case-deletion or
multiple imputation on parameter estimation. This section
has presented a high-level overview of MI and handling
missing data that is far from complete. The reader is strongly
encouraged to read more specialized texts on the topic prior
to actually implementing their use in practice. Before closing
this section, the best advice for missing data is to have none
— do everything possible to obtain the data in the first place!
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Table 13

Parameter estimates and standard errors from simulated multiple imputation data set

Number of Listwise Deletion MCMC
Missing Data Observations Without Mean Mean
Mechanism Parameter Missing Data (Standard deviation) (Standard deviation)
No missing data Intercept 10,000 1.005 (0.0101) -
X 0.987 (0.0116) -
X2 0.998 (0.0117) -
MCAR Intercept 4,982 1.000 (0.0141) 0.993 (0.0101)
X 0.986 (0.0162) 0.978 (0.0118)
X5 0.996 (0.0164) 1.012 (0.0133)
MAR on x; Intercept 5,023 0.998 (0.0234) 1.001 (0.0284)
X 0.996 (0.0250) 0.994 (0.0126)
X2 0.992 (0.0166) 0.993 (0.0142)
MAR on Y Intercept 6,942 1.419 (0.0123) 1.000 (0.0122)
X 0.779 (0.0133) 0.988 (0.0162)
X5 0.789 (0.0136) 0.996 (0.0150)
Nonignorable on x, Intercept 5,016 1.017 (0.0234) 1.66 (0.0187)
X 0.973 (0.0166) 1.13 (0.0148)
X 1.016 (0.0254) 1.22 (0.0300)

Note: True values are 1.000 for intercept, 1.000 for x;, and 1.000 for x,. Results based on 10,000 simulated observations. MI
was based on five imputed data sets having a burn-in of 500 iterations

Software

Every statistical package, and even spreadsheet programs
like Microsoft Excel®, has the capability to perform linear
regression. SAS (SAS Institute, Cary, NC, http://www.sas.
com) has the REG procedure, while S-Plus (Insightful Corp.,
Seattle, WA, http://www.insightful.com) has available its Im
function. Statistical packages are far more powerful than the
spreadsheet packages, but spreadsheet packages are more
ubiquitous. The choice of either S-Plus or SAS is a difficult
one. S-Plus has better graphics, but SAS is an industry
standard — a workhorse of proven capability. S-Plus is
largely seen in the pharmacokinetic community as a tool for
exploratory data analysis, while SAS is viewed as the de
facto standard for statistical analysis in pharmaceutical
development. All the examples in this book were analyzed
using SAS (version 8) for Windows.

Using statistical reference data sets (certified to 16
significant digits in the model parameters) available from
the National Institute of Standards and Technology (NIST)
Information Technology Department (http://www.itl.nist.
gov/div898/strd), McCullough (1999) compared the
accuracy of SAS (version 6.12) and S-Plus (version 4.5),
both of which are older versions than are currently
available, in fitting a variety of linear models with varying
levels of difficulty. Data sets of low difficult should be
easily fit by most algorithms, whereas data sets of high

difficult, which are highly collinear, may produce quite
biased parameter estimates because different software may
use different matrix inversion algorithms. McCullough
found that SAS and S-Plus both demonstrate reliability
in their linear regression results. However, for analysis
of variance problems, which should use the same linear
regression algorithms, the results were quite variable.
Neither SAS or S-Plus passed average difficulty problems.
When the linear regression data sets were analyzed using
Microsoft’s Excel 97 (Microsoft Corp., Seattle, WA,
http://www.microsoft.com) built-in data analysis tools,
most performed reasonable well, but failed on a problem
that was ill-conditioned, leading the authors to conclude
that Excel 97 is “inadequate” for linear regression
problems (McCullough and Wilson 1999). Furthermore,
when Excel 97 analyzed the analysis of variance data sets,
the software delivered acceptable performance on only
low-level difficulty problems and was deemed inadequate.

Unfortunately, there have been no studies of this type
with more recent software versions or with other software,
such as R or Matlab. It might be expected that more recent
versions of software that previously performed adequately,
such as SAS and S-plus, still perform adequately. It is not
clear whether R, Matlab, or Excel perform adequately with
reasonable accuracy. It seems likely that R and Matlab do
in fact perform adequately, but Excel should still be
considered questionable until shown otherwise.
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Summary

Linear regression is one of the most important tools in
a modelers toolbox, yet surprisingly its foundations and
assumptions are often glossed over at the graduate level.
Few books published on pharmacokinetics cover the
principles of linear regression modeling. Most books start
at nonlinear modeling and proceed from there. But, a
thorough understanding of linear modeling is needed
before one can understand nonlinear models. In this
chapter, the basics of linear regression have been
presented, although not every topic in linear regression has
been presented — the topic is too vast to do that in one
chapter of a book. What has been presented are the
essentials relevant to pharmacokinetic and pharmacodynamic
modeling. Later chapters will expand on these concepts and
present new ones with an eye towards developing a unified
exposition of pharmacostatistical modeling.
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