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Abstract In recent years there has been a significant growth of investment products
aimed at attracting investors who are worried about the downside potential of the
financial markets. This paper introduces a dynamic stochastic optimization model
for the design of such products. The pricing of minimum guarantees as well as the
valuation of a portfolio of bonds based on a three-factor term structure model are
described in detail. This allows us to accurately price individual bonds, including
the zero-coupon bonds used to provide risk management, rather than having to rely
on a generalized bond index model.
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1 Introduction

In recent years there has been a significant growth of investment products aimed at
attracting investors who are worried about the downside potential of the financial
markets for pension investments. The main feature of these products is a minimum
guaranteed return together with exposure to the upside movements of the market.

There are several different guarantees available in the market. The one most
commonly used is the nominal guarantee which guarantees a fixed percentage of
the initial investment. However there also exist funds with a guarantee in real terms
which is linked to an inflation index. Another distinction can be made between fixed
and flexible guarantees, with the fixed guarantee linked to a particular rate and the
flexible to for instance a capital market index. Real guarantees are a special case of
flexible guarantees. Sometimes the guarantee of a minimum rate of return is even
set relative to the performance of other pension funds.
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Return guarantees typically involve hedging or insuring. Hedging involves elim-
inating the risk by sacrificing some or all of the potential for gain, whereas insuring
involves paying an insurance premium to eliminate the risk of losing a large amount.

Many government and private pension schemes consist of defined benefit plans.
The task of the pension fund is to guarantee benefit payments to retiring clients by
investing part of their current wealth in the financial markets. The responsibility of
the pension fund is to hedge the client’s risk, while meeting the solvency require-
ments in such a way that all benefit payments are met. However at present there
are significant gaps between fund values, contributions made by employees, and
pension obligations to retirees.

One way in which the guarantee can be achieved is by investing in zero-coupon
Treasury bonds with a maturity equal to the time horizon of the investment product
in question. However using this option foregoes all upside potential. Even though
the aim is protect the investor from the downside, a reasonable expectation of returns
higher than guaranteed needs to remain.

In this paper we will consider long-term nominal minimum guaranteed return
plans with a fixed time horizon. They will be closed end guarantee funds; after the
initial contribution there is no possibility of making any contributions during the
lifetime of the product. The main focus will be on how to optimally hedge the risks
involved in order to avoid having to buy costly insurance.

However this task is not straightforward, as it requires long-term forecasting for
all investment classes and dealing with a stochastic liability. Dynamic stochastic
programming is the technique of choice to solve this kind of problem as such
a model will automatically hedge current portfolio allocations against the future
uncertainties in asset returns and liabilities over a long horizon (see e.g. Dempster
et al.,2003). This will lead to more robust decisions and previews of possible future
benefits and problems contrary to, for instance, static portfolio optimization models
such as the Markowitz (1959) mean-variance allocation model.

Consiglio et al. (2007) have studied fund guarantees over single investment
periods and Hertzog et al. (2007) treat dynamic problems with a deterministic
risk barrier. However a practical method should have the flexibility to take into
account multiple time periods, portfolio constraints such as prohibition of short
selling and varying degrees of risk aversion. In addition, it should be based on a
realistic representation of the dynamics of the relevant factors such as asset prices
or returns and should model the changing market dynamics of risk management.
All these factors have been carefully addressed here and are explained further in the
sequel.

The rest of the chapter is organized as follows. In Section 2 we describe the
stochastic optimization framework, which includes the problem set up, model con-
straints and possible objective functions. Section 3 presents a three-factor term
structure model and its application to pricing the bond portfolio and the liability
side of the fund on individual scenarios. As our portfolio will mainly consist of
bonds, this area has been extensively researched. Section 4 presents several his-
torical backtests to show how the framework would have performed had it been
implemented in practice, paying particular attention to the effects of using different
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objective functions and varying tree structures. Section 5 repeats the backtest when
the stock index is modeled as a jumping diffusion so that the corresponding returns
exhibit fat tails and Section 6 concludes. Throughout this chapter boldface is used
to denote random entities.

2 Stochastic Optimization Framework

In this section we describe the framework for optimizing minimum guaranteed
return funds using stochastic optimization. We will focus on risk management
as well as strategic asset allocation concerned with allocation across broad asset
classes, though we will allow specific maturity bond allocations.

2.1 Set Up

This chapter looks at several methods to optimally allocate assets for a minimum
guaranteed return fund using expected average and expected maximum shortfall
risk measures relative to the current value of the guarantee. The models will be
applied to eight different assets: coupon bonds with maturity equal to 1, 2, 3, 4, 5,
10 and 30 years and an equity index, and the home currency is the euro. Extensions
incorporated into these models are the presence of coupon rates directly dependent
on the term structure of bond returns and the annual rolling of the coupon-bearing
bonds.

We consider a discrete time and space setting. The time interval considered is
given by {0, 11—2, 12—2, R T}, where the times indexed by t =0, 1, ..., T — 1 corre-
spond to decision times at which the fund will trade and 7 to the planning horizon at
which no decision is made, see Figure 1. We will be looking at a five-year horizon.

Uncertainty 2 is represented by a scenario tree, in which each path through the
tree corresponds to a scenario w in €2 and each node in the tree corresponds to a
time along one or more scenarios. An example scenario tree is given in Figure 2.
The probability p(w) of scenario w in 2 is the reciprocal of the total number of
scenarios as the scenarios are generated by Monte Carlo simulation and are hence
equiprobable.

Stages:

s=1 s=2

| | | | | | | | | | | | | | | | >
[ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ "

t=0  t=1/12 t=2/12 t=3/12 t=4/12 t=5/12 t=1/2 t=7/12 t=8/12 t=9/12 t=10/12t=11/12 t=1 t=13/12 t=14/12 t=15/12

Time

Fig. 1 Time and stage setting
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Fig. 2 Graphical representation of scenarios
The stock price process S is (initially) assumed to follow a geometric Brownian
motion, i.e.

ds
S—f = psdt + osdW?, (1)
t

where dW? is correlated with the dW, terms driving the three term structure factors
discussed in Section 3.

2.2 Model Constraints

Let (see Table 1)

e /1; (w) denote the shortfall at time tand scenario w, i.e.

h: () ;= max (0, L; () — W; (0)) VYo eQ te T 2
o H(w):= max ' h: (@) denote the maximum shortfall over time for scenario w.
teTlr)ta

The constraints considered for the minimum guaranteed return problem are:

e cash balance constraints. These constraints ensure that the net cash flow at each
time and at each scenario is equal to zero

Z fP(?’uay(a))x&a (@) =Wy w € Q 3)

acA
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1 _ _ b
Y 28 (@) Fx () + Y gPE N w)x (@) = Y [P (@)X, (w)
acA\(S) 2 acA acA 4)

weQ teTh{0}.

In (4) the left-hand side represents the cash freed up to be reinvested at time
t € T\ {0} and consists of two distinct components. The first term represents the
semi-annual coupons received on the coupon-bearing Treasury bonds held between
time ¢ — 1 and ¢, the second term represents the cash obtained from selling part of
the portfolio. This must equal the value of the new assets bought given by the right
hand side of (4).

Table 1 Variables and parameters of the model

Time Sets

Ttotal _ {(), ﬁ R T} set of all times considered in the stochastic programme

T9 = {0,1,..., T — 1} set of decision times

Ti = rronl\7d set of intermediate times

T¢ = {%, %, T — %} times when a coupon is paid out in-between decision times

Instruments

St (w) Dow Jones EuroStoxx 50 index level at time tin scenario @

Bl (») EU Treasury bond with maturity T at time tin scenario @
T . . . . .

8B (w) coupon rate of EU Treasury bond with maturity 7 at time ¢ in scenario @
T . .

FB face value of EU Treasury bond with maturity 7

Z; (w) EU zero-coupon Treasury bond price at time t in scenario @

Risk Management Barrier

.1 (w) EU zero-coupon Treasury yield with maturity 7 at time ¢ in scenario @
G annual guaranteed return
Lfv (w) nominal barrier at time tin scenario

Portfolio Evolution

A set of all assets

P,;fgy (w)/ P[ffl” (w) buy/sell price of asseta € A at time ¢ in scenario w

f/g transaction costs for buying / selling

Xt.q (@) quantity held of asset a € A between time ¢ and ¢ +
1/12 in scenario @

xtfa (®) /x4 (@) quantity bought/sold of asset a € A at time ¢ in
scenario

Wo initial portfolio wealth

W; (@) portfolio wealth before rebalancing at time t € T in
scenario

wy (w) portfolio wealth after rebalancing at time

t € T¢ U T\{T} in scenario @
h; (@) :=max (0, L; (w) — W; (w))  shortfall at time tin scenario @
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short sale constraints. In our model we assume no short selling of any stocks or
bonds

Xa@) >0 acA weQ rer™ 5)
X (@=0 YaeA VYoeQ VieT\(T} (6)
X,@ =0 YaeA YoeQ VieT"\({0}. (7)

information constraints. These constraints ensure that the portfolio allocation can
not be changed during the period from one decision time to the next and hence
that no decisions with perfect foresight can be made

@ =x,=0 acA weQ teT\T" (8)

wealth constraint. This constraint determines the portfolio wealth at each point
in time
W@ =Y P @xa@ w0eQ 1eTN\(T) ©)

acA

Wiw) =) Pl @x,_1 (@ weQ 1eT*N\(0} (10

,a
acA

1

wr@) =) gPF @1 @)+ ) @ Fx_ @) weQ.
acA acA\(S}

1D

accounting balance constraints. These constraints give the quantity invested in
each asset at each time and for each scenario

X0.q(w) = x{{a(w) aceA wel (12)
Ya@) =x,_1 @)+ x5, @) —x,@) acA weQ te 7% {0}
(13)

The total quantity invested in asset @ € A between time rand 7 + ﬁ is equal to the
total quantity invested in asset a € A between time ¢ — ﬁ and ¢ plus the quantity of

asset a € A bought at time ¢ minus the quantity of asset a € A sold at time .

e annual rolling constraint. This constraint ensures that at each decision time all

the coupon-bearing Treasury bond holdings are sold

Y@ =x_1 @ acA{S] weQ reTh{0}. (14

e coupon re-investment constraints. We assume that the coupon paid every six

months will be re-invested in the same coupon-bearing Treasury bond
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Lae @F%_ 1 @

X (@) = X 4(@) =0

o)
_ (15)
X (@) = x; g(@) =0

aecA\{S} weQ rteT°".

e barrier constraints. These constraints determine the shortfall of the portfolio at
each time and scenario as defined in Table 1

hi(w) + Wi (w) > Li(w) weQ e (16)
hi@) >0 weQ teT° (17)
As the objective of the stochastic programme will put a penalty on any shortfall,
optimizing will ensure that 4; (w) will be zero if possible and as small as possible
otherwise, i.e.
hy (w) = max (0, L; (w) — W; (w)) Vo € Q Vie T (18)
which is exactly how we defined 4, (w) in (2).
To obtain the maximum shortfall for each scenario, we need to add one of the
following two sets of constraints:
H () > h; (o) Vo eQ VieTU(T) (19)
H () > h; (w) Yo € Q Vie T (20)

Constraint (19) needs to be added if the max shortfall is to be taken into account on
a yearly basis and constraint (20) if max shortfall is on a monthly basis.

2.3 Objective Functions: Expected Average Shortfall and Expected
Maximum Shortfall

Starting with an initial wealth Wy and an annual nominal guarantee of G, the liabil-
ity at the planning horizon at time 7 is given by

Wo(14+G)". @1
To price the liability at time ¢+ < T consider a zero-coupon Treasury bond, which
pays l attime 7,i.e. Z7(w) = 1, for all scenarios w € Q2. The zero-coupon Treasury

bond price at time ¢ in scenario @ assuming continuous compounding is given by

Z (w) = e—)’z,T(w)(T—l)’ (22)
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where y; 7(w) is the zero-coupon Treasury yield with maturity 7 at time ¢ in
scenario w.

This gives a formula for the value of the nominal or fixed guarantee barrier at
time ¢ in scenario w as

LY (@) := Wo(l + G)T Z,(w) = Wo(1 + G)T e 1 @I =D, (23)

In a minimum guaranteed return fund the objective of the fund manager is twofold;
firstly to manage the investment strategies of the fund and secondly to take into
account the guarantees given to all investors. Investment strategies must ensure that
the guarantee for all participants of the fund is met with a high probability.

In practice the guarantor (the parent bank of the fund manager) will ensure the
investor guarantee is met by forcing the purchase of the zero coupon bond of (22)
when the fund is sufficiently near the barrier defined by (23). Since all upside poten-
tial to investors is thus foregone, the aim of the fund manager is to fall below the
barrier with acceptably small if not zero probability.

Ideally we would add a constraint limiting the probability of falling below the
barrier in a VaR-type minimum guarantee constraint, i.e.

P ( max h; (w) > O) <a (24)

teTtotal

for o small. However, such scenario-based probabilistic constraints are extremely
difficult to implement, as they may without further assumptions convert the convex
large-scale optimization problem into a non-convex one. We therefore use the fol-
lowing two convex approximations in which we trade off the risk of falling below
the barrier against the return in the form of the expected sum of wealth.

Firstly, we look at the expected average shortfall (EAS) model in which the
objective function is given by:

max XY p@ (- p Wi - B
{x,,a(wxx,fa(w),x;a(w):} ©eQ 1eTdU(T)
acA,we,1eTIU(T)}

= max A=/1>2 plw) Y Wio) (25)
{xr.aw),xra(w),x:a(w):} weQ 1eTdU(T)
acA,we,1eTU(T}

~o( gz )]
}

weR teT4U(T

In this case we maximize the expected sum of wealth over time while penalizing
each time the wealth falls below the barrier. For each scenario w € €2 we can calcu-
late the average shortfall over time and then take expectations over all scenarios.

In this case only shortfalls at decision times are taken into account and any seri-
ous loss in portfolio wealth in-between decision times is ignored. However from the



Designing Minimum Guaranteed Return Funds 29

fund manager’s and guarantor’s perspective the position of the portfolio wealth rel-
ative to the fund’s barrier is significant on a continuous basis and serious or repeated
drops below this barrier might force the purchase of expensive insurance. To cap-
ture this feature specific to minimum guaranteed return funds, we also consider an
objective function in which the shortfall of the portfolio is considered on a monthly
basis.

For the expected average shortfall with monthly checking (EAS MC) model the
objective function is given by

max }{(1—/3) (Zp(w) Z Wz(w))—ﬁ(zl’(‘”) Z m)}

+ = ()
Xta(@),%; (w),x,_a (): we I‘ET‘]U{T) we teTtotal
acA,weQ,teTIU{T}

(20)

Note that although we still only rebalance once a year shortfall is now being mea-
sured on a monthly basis in the objective and hence the annual decisions must also
take into account the possible effects they will have on the monthly shortfall.

The value of 0 < B8 < 1 can be chosen freely and sets the level of risk aversion.
The higher the value of g, the higher the importance given to shortfall and the less
to the expected sum of wealth, and hence the more risk-averse the optimal portfolio
allocation will be. The two extreme cases are represented by = 0, corresponding
to the ‘unconstrained’ situation, which is indifferent to the probability of falling
below the barrier, and 8 = 1, corresponding to the situation in which the shortfall
is penalized and the expected sum of wealth ignored.

In general short horizon funds are likely to attract more risk-averse participants
than long horizon funds, whose participants can afford to tolerate more risk in the
short run. This natural division between short and long-horizon funds is automat-
ically incorporated in the problem set up, as the barrier will initially be lower for
long-term funds than for short-term funds as exhibited in Figure 3. However the
importance of closeness to the barrier can be adjusted by the choice of 8 in the
objective.

The second model we consider is the expected maximum shortfall (EMS) model
given by:

x,_a(w),x:ra (@)%, 4 (w): weQ teTdy we
aeA,weQ,zerU{T}

max } {(1 - B) (Z pl@ Y Wt<w)) -8 (Z p(w)H(w))}
{1}
(27)
using the constraints (19) to define H (w).

For the expected maximum shortfall with monthly checking (EMS MC) model
the objective function remains the same but H (w) is now defined by (20).
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Fig. 3 Barrier for one-year and five-year 2% guaranteed return fund

In both variants of this model we penalize the expected maximum shortfall,
which ensures that H (w) is as small as possible for each scenario w € 2. Combining
this with constraints (19)/(20) it follows that H (w) is exactly equal to the maximum
shortfall.

The constraints given in Section 2.2 apply to both the expected average shortfall
and expected maximum shortfall models.

The EAS model incurs a penalty every time portfolio wealth falls below the
barrier, but it does not differentiate between a substantial shortfall at one point in
time and a series of small shortfalls over time. The EMS model on the other hand,
focusses on limiting the maximum shortfall and therefore does not penalize portfolio
wealth falling just slightly below the barrier several times. So one model limits the
number of times portfolio wealth falls below the barrier while the other limits any
shortfall substantially.

3 Bond Pricing

In this section we present a three-factor term structure model which we will use to
price both our bond portfolio and the fund’s liability. Many interest-rate models, like
the classic one-factor Vasicek (1977) and Cox, Ingersoll, and Ross (1985) class of
models and even more recent multi-factor models like Anderson and Lund (1997),
concentrate on modeling just the short-term rate.

However for the minimum guaranteed return funds we have to deal with a long-
term liability and bonds of varying maturities. We therefore must capture the dynam-
ics of the whole term structure. This has been achieved by using the economic factor
model described below in Section 3.1. In Section 3.2 we describe the pricing of
coupon-bearing bonds and Section 3.3 investigates the consequences of rolling the
bonds on an annual basis.
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3.1 Yield Curve Model

To capture the dynamics of the whole term structure, we will use a Gaussian eco-
nomic factor model (EFM) (see Campbell (2000) and also Nelson and Siegel (1987))
whose evolution under the risk-neutral measure Q is determined by the stochastic
differential equations

dX; = (ux — rx X)) dt + oxdW¥ (28)
dY; = (uy — AyY,) dt + oydWY (29)
dR, =k (X, + Y, — R, dt + ordWR (30)

where the dW terms are correlated. The three unobservable Gaussian factors R, X
and Y represent respectively a short rate, a long rate and (minus) the slope between
an instantaneous short rate and the long rate. Solving these equations the following
formula for the yield at time ¢ with time to maturity equal to 7 — ¢ is obtained (for
a derivation, see Medova et al., 2005)

At TYR+B@. )X, +Ct, 1Y, + D, T)

VT = T (31)
where
o 1 —k(T—t)
AWT) =2 (1 —e ) (32)
o 1 —Ax(T—t) 1 —k(T—1)
B(t,T)._k_/\X{AX(l—e )—k(l—e ) 33)

Ct,T):= k_k {i (1 _ e*)»Y(T*I)> _ 1 (1 _ ek(Tt))} (34)

D(.T) = (T 1 (1- e—k(T—'>)) <“—X + ﬂ) _HKXp (t,T)—%C ,T)
Y

. k Ax Ay Ax
1 nmy. my:
_Z 2 (] = = 22x(T=1) (1= ey (T—0)
z,-;{z,\x( ¢ )5, (e )
2
ns 2my.my,
+2_, (1 — e 2KT=0Y 4 p2(T — 1) + /\X_Y (1 — e~ Cx AT =0))
3 ' 5 X + Ay
+)f71_’:fr’“]€l (1 — e~Gxth(T=0) 4 % (1= e~*x(T-0)
X X
2my.n; 2my, p;
TN (] = e Wy (T D) AP — (T
T (1~ )+ S (1 — T

(35)
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and
kUX,-
my, ;= ———————
Ax (k—Ax)
oy;
my ———————
i Ay (k— Ay) (36)
. 9Xi oy _ ORi
Mo TP Tk
pi = —(mx[ + my; +nl~).

Bond pricing must be effected under the risk-neutral measure Q. However, for the
model to be used for forward simulation the set of stochastic differential equations
must be adjusted to capture the model dynamics under the real-world or market
measure P. We therefore have to model the market prices of risk which take us
from the risk-neutral measure Q to the real-world measure P.

Under the market measure P we adjust the drift term by adding the risk premium
given by the market price of risk y in terms of the quantity of risk. The effect of
this is a change in the long-term mean, e.g. for the factor X the long-term mean now
equals ”J)’\ﬂ It is generally assumed in a Gaussian world that the quantity of
risk is given by the volatility of each factor.

This gives us the following set of processes under the market measure

dX; = (ux — Ax X, + yxox)dt + oxdW; (37)
dY, = (uy — AyY; + yyoy)dt + oydWY (38)
dR, = {k(X; + Y, — R)) + yrog}dt + ordWE, (39)

where all three factors contain a market price of risk y in volatility units.

The yields derived in the economic factor model are continuously compounded
while most yield data are annually compounded. So for appropriate compar-
ison when estimating the parameters of the model we will have to convert
the annually compounded yields into continuously compounded yields using the
transformation

y(continuous) = In(1 + y(annual)). (40)

In the limit as 7' tends to infinity it can be shown that expression (31) derived for
the yield does not tend to the ‘long rate’ factor X, but to a constant. This sug-
gests that the three factors introduced in this term structure model may really be
unobservable. To handle the unobservable state variables we formulate the model in
state space form, a detailed description of which can be found in Harvey (1993)
and use the Kalman filter to estimate the parameters (see e.g. Dempster et al.,
1999).
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3.2 Pricing Coupon-Bearing Bonds

As sufficient historical data on Euro coupon-bearing Treasury bonds is difficult to
obtain we use the zero-coupon yield curve to construct the relevant bonds. Coupons
on newly-issued bonds are generally closely related to the corresponding spot rate
at the time, so the current zero-coupon yield with maturity 7 is used as a proxy for
the coupon rate of a coupon-bearing Treasury bond with maturity 7. For example,
on scenario w the coupon rate 8510 (w) on a newly issued 10-year Treasury bond at
time ¢ = 2 will be set equal to the projected 10-year spot rate y» 19(w) at time t = 2.
Generally

BD d
8" ) =yr (@  VteT Yo € Q 1)

B @) =81 (@ vieT! Veeq, (42)
where |.| denotes integral part. This ensures that as the yield curve falls, coupons
on newly-issued bonds will go down correspondingly and each coupon cash flow
will be discounted at the appropriate zero-coupon yield.

The bonds are assumed to pay coupons semi-annually. Since we roll the bonds
on an annual basis, a coupon will be received after six months and again after a
year just before the bond is sold. This forces us to distinguish between the price at
which the bond is sold at rebalancing times and the price at which the new bond is
purchased.

Let PI(SI;:IT)> denote the selling price of the bond B at time ¢, assuming two
coupons have now been paid out and the time to maturity is equal to 7 — 1, and

let Ptfl;;x(yr)) denote the price of a newly issued coupon-bearing Treasury bond with a

maturity equal to 7.
The ‘buy’ bond price at time ¢ is given by

BT (w) = FB' ¢=THl=0y1.1411)-1 (@)
T
I 3 8 @) pBT g=(5=01 -0 (@)
(43)

weQ 1eTenl

where the principal of the bond is discounted in the first term and the stream of
coupon payments in the second.
At rebalancing times ¢ the sell price of the bond is given by

BT
B! (w) = FB" o= (T=Dyir—1(@) 4 > #FBTE—(S—O%.@m(w)
1
s=3.1,...T—1 (44)

weQ te{Th\{0}}ulT}
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with coupon rate § tB_Tl (w). The coupon rate is then reset for the newly-issued Trea-
sury bond of the same maturity. We assume that the coupons paid at six months
are re-invested in the off-the-run bonds. This gives the following adjustment to the
amount held in bond B” at time ¢

T T
300 @ FP x,_ 1 pr ()

b
fPt’Lll;yT (w)

X g7 (@) = X, _ 1 pr(®) + teT weQ. (45)

4 Historical Backtests

We will look at an historical backtest in which statistical models are fitted to data
up to a trading time t and scenario trees are generated to some chosen horizon ¢ + 7.
The optimal root node decisions are then implemented at time t and compared to the
historical returns at time t + 1. Afterwards the whole procedure is rolled forward
for T trading times.

Our backtest will involve a telescoping horizon as depicted in Figure 4.

At each decision time ¢ the parameters of the stochastic processes driving the
stock return and the three factors of the term structure model are re-calibrated using
historical data up to and including time ¢ and the initial values of the simulated
scenarios are given by the actual historical values of the variables at these times.
Re-calibrating the simulator parameters at each successive initial decision time ¢
captures information in the history of the variables up to that point.

Although the optimal second and later-stage decisions of a given problem may
be of “what-if” interest, manager and decision maker focus is on the implementable
first-stage decisions which are hedged against the simulated future uncertainties.
The reasons for implementing stochastic optimization programmes in this way are
twofold. Firstly, after one year has passed the actual values of the variables realized
may not coincide with any of the values of the variables in the simulated scenarios.
In this case the optimal investment policy would be undefined, as the model only has

5-year scenario tree

4-year scenario tree

3-year scenario tree

2-year scenario tree

1-year scenario tree

Jan 1999 Jan 2000 Jan 2001 Jan 2002 Jan 2003 Jan 2004

Fig. 4 Telescoping horizon backtest schema
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optimal decisions defined for the nodes on the simulated scenarios. Secondly, as one
more year has passed new information has become available to re-calibrate the simu-
lator’s parameters. Relying on the original optimal investment strategies will ignore
this information. For more on backtesting procedures for stochastic optimization
models see Dempster et al. (2003).

For our backtests we will use three different tree structures with approximately
the same number of scenarios, but with an increasing initial branching factor. We
first solve the five-year problem using a 6.6.6.6.6 tree, which gives 7776 scenar-
ios. Then we use 32.4.4.4.4 = 8192 scenarios and finally the extreme case of
512.2.2.2.2 = 8192 scenarios.

For the subsequent stages of the telescoping horizon backtest we adjust the
branching factors in such a way that the total number of scenarios stays as close
as possible to the original number of scenarios and the same ratio is maintained.
This gives us the tree structures set out in Table 2.

Historical backtests show how specific models would have performed had they
been implemented in practice. The reader is referred to Rietbergen (2005) for the
calibrated parameter values employed in these tests. Figures 5 to 10 show how the
various optimal portfolios’ wealth would have evolved historically relative to the
barrier. It is also important to determine how the models performed in-sample on the
generated scenario trees and whether or not they had realistic forecasts with regard
to future historical returns. To this end one-year-ahead in-sample expectations of

Table 2 Tree structures for different horizon backtests

Jan 1999 6.6.6.6.6 = 7776 32.4.44.4=8192 512.2.2.2.2 =8192
Jan 2000 9.9.9.9 = 6561 48.6.6.6 = 10368 512.2.2.2 = 4096
Jan 2001 20.20.20 = 8000 80.10.10 = 8000 768.3.3 =6912
Jan 2002 88.88 = 7744 256.32 =8192 1024.8 = 8192

Jan 2003 7776 8192 8192

Backtest 99-04: 6.6.6.6.6 = 7776 scenarios
expected average shortfall
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Fig. 5 Backtest 1999-2004 using expected average shortfall for the 6.6.6.6.6 tree
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Backtest 99-04: 6.6.6.6.6 = 7776 scenarios
expected maximum shortfall
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Fig. 6 Backtest 1999-2004 using expected maximum shortfall for the 6.6.6.6.6 tree

Backtest 99-04: 32.4.4.4.4 = 8192 scenarios
expected average shortfall
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Fig. 7 Backtest 1999-2004 using expected average shortfall for the 32.4.4.4.4 tree

portfolio wealth are shown as points in the backtest performance graphs. Imple-
menting the first-stage decisions in-sample the portfolio’s wealth is calculated one
year later for each scenario in the simulated tree after which an expectation is taken
over the scenarios.

From these graphs a first observation is that the risk management monitoring
incorporated into the model appears to work well. In all cases the only time portfolio
wealth dips below the barrier, if at all, is on September 11, 2001. The initial in-
sample wealth overestimation of the models is likely to be due mainly to the short
time series available for initial parameter estimation which led to hugely inflated
stock return expectations during the equity bubble. However as time progresses and
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Backtest 99-04: 32.4.4.4.4 = 8192 scenarios
expected maximum shortfall
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Fig. 8 Backtest 1999-2004 using expected maximum shortfall for the 32.4.4.4.4 tree

Backtest 99-04: 512.2.2.2.2 = 8192 scenarios
expected average shortfall
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Fig. 9 Backtest 1999-2004 using expected average shortfall for the 512.2.2.2.2 tree

more data points to re-calibrate the model are obtained, the models’ expectations
and real-life realizations very closely approximate each other.

For reference we have included the performance of the EuroStoxx 50 in
Figure 11 to indicate the performance of the stock market over the backtesting
period. Even though this was a difficult period for the optimal portfolios to generate
high historical returns, it provides an excellent demonstration that the risk manage-
ment incorporated into the models operates effectively. It is in periods of economic
downturn that one wants the portfolio returns to survive.

Tables 3 and 4 give the optimal portfolio allocations for the 32.4.4.4.4 tree using
the two maximum shortfall objective functions. In both cases we can observe a ten-
dency for the portfolio to move to the safer, shorter-term assets as time progresses.
This is naturally built into the model as depicted in Figure 3.
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Backtest 99-04: 512.2.2.2.2 = 8192 scenarios
expected maximum shortfall
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Fig. 10 Backtest 1999-2004 using expected maximum shortfall for the 512.2.2.2.2 tree

Backtest 99-04: 512.2.2.2.2 = 8192 scenarios
expected maximum shortfall
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Fig. 11 Comparison of the fund’s portfolio performance to the eurostoxx 50

Table 3 Portfolio allocation expected maximum shortfall using the 32.4.4.4.4 tree

ly 2y 3y 4y Sy 10y 30y Stock
Jan 99 0 0 0 0 0 0.23 0.45 0.32
Jan 00 0 0 0 0 0 0 0.37 0.63
Jan 01 0.04 0 0 0 0 0.39 0.53 0.40
Jan 02 0.08 0.16 0.74 0 0 0 0 0.01
Jan 03 0.92 0 0 0 0 0.07 0 0.01
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Table 4 Portfolio allocation expected Maximum shortfall with monthly checking using the
32.4.4.4.4 tree

ly 2y 3y 4y Sy 10y 30y Stock
Jan 99 0 0 0 0 0.49 0.27 0 0.24
Jan 00 0 0 0 0 0.25 0.38 0 0.36
Jan 01 0 0 0 0 0.49 0.15 0 0.36
Jan 02 0 0 0 0.47 0.44 0 0 0.10
Jan 03 0 0 0.78 0.22 0 0 0 0.01

For the decisions made in January 2002/2003, the portfolio wealth is signifi-
cantly closer to the barrier for the EMS model than it is for the EMS MC model.
This increased risk for the fund is taken into account by the EMS model and
results in an investment in safer short-term bonds and a negligible equity com-
ponent. Whereas the EMS model stays in the one to three year range the EMS
MC model invests mainly in bonds with a maturity in the range of three to
five years and for both models the portfolio wealth manages to stay above the
barrier.

From Figures 5 to 10 it can be observed that in all cases the method with monthly
checking outperforms the equivalent method with just annual shortfall checks. Sim-
ilarly as the initial branching factor is increased, the models’ out-of-sample per-
formance is generally improved. For the 512.2.2.2.2 = 8192 scenario tree, all
four objective functions give optimal portfolio allocations which keep the portfolio
wealth above the barrier at all times, but the models with the monthly checking
still outperform the others. The more important difference however seems to lie in
the deviation of the expected in-sample portfolio’s wealth from the actual historical
realization of the portfolio value. Table 5 displays this annual deviation averaged
over the five rebalances and shows a clear reduction in this deviation for three of the
four models as the initial branching factor is increased. Again the model that uses
the expected maximum shortfall with monthly checking as its objective function
outperforms the rest.

Overall the historical backtests have shown that the described stochastic opti-
mization framework carefully considers the risks created by the guarantee. The
EMS MC model produces well-diversified portfolios that do not change dras-
tically from one year to the next and results in optimal portfolios which even
through a period of economic downturn and uncertainty remained above the
barrier.

Table 5 Average annual deviation

EAS EAS MC EMS EMS MC
6.6.6.6.6 9.87% 13.21% 9.86% 10.77%
324444 10.06% 9.41% 9.84% 7.78%

5122222 10.22% 8.78% 7.78% 6.86%
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5 Robustness of Backtest Results

Empirical equity returns are now well known not to be normally distributed but
rather to exhibit complex behaviour including fat tails. To investigate how the EMS
MC model performs with more realistic asset return distributions we report in this
section experiments using a geometric Brownian motion with Poisson jumps to
model equity returns. The stock price process S is now assumed to follow

s, . g
S—’ = fisdt + 55dW? + J:dN;, (46)
t

where N is an independent Poisson process with intensity A and the jump saltus J at
Poisson epochs is a normal random variable.

As the EMS MC model and the 512.2.2.2.2 tree provided the best results with
Gaussian returns the backtest is repeated for this model and treesize. Figure 12
gives the historical backtest results and Tables 5 and 6 represent the allocations
for the 512.2.2.2.2 tests with the EMS MC model for the original GBM process
and the GBM with Poisson jumps process respectively. The main difference in the
two tables is that the investment in equity is substantially lower initially when the
equity index volatility is high (going down to 0.1% when the volatility is 28% in
2001), but then increases as the volatility comes down to 23% in 2003. This is
born out by Figure 12 which shows much more realistic in-sample one-year-ahead
portfolio wealth predictions (cf. Figure 10) and a 140 basis point increase in terminal
historical fund return over the Gaussian model. These phenomena are the result of
the calibration of the normal jump saltus distributions to have negative means and
hence more downward than upwards jumps resulting in downwardly skewed equity
index return distributions, but with the same compensated drift as in the GBM case.
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Fig. 12 Expected maximum shortfall with monthly checking using 512.2.2.2.2 tree for the GBM
with jumps equity index process
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Table 6 Portfolio allocation expected maximum shortfall with monthly checking using the
512.2.2.2.2 tree

ly 2y 3y 4y Sy 10y 30y Stock
Jan 99 0 0 0 0 0.69 0.13 0 0.18
Jan 00 0 0 0 0 0.63 0 0 0.37
Jan 01 0 0 0 0 0.37 0.44 0 0.19
Jan 02 0 0 0 0 0.90 0 0 0.10
Jan 03 0 0 0.05 0 0.94 0 0 0.01

Table 7 Portfolio allocation expected maximum shortfall with monthly checking using the
512.2.2.2.2 tree for the GBM with poisson jumps equity index process

ly 2y 3y 4y Sy 10y 30y Stock
Jan 99 0 0 0 0 0.12 0.77 0 0.11
Jan 00 0 0 0 0 0 0.86 0 0.14
Jan 01 0 0 0 0 0.43 0.56 0 0.01
Jan 02 0 0 0 0 0.70 0.11 0 0.19
Jan 03 0 0 0 0 0.04 0.81 0 0.15

As a consequence the optimal portfolios are more sensitive to equity variation and
take benefit from its lower predicted value in the last year.

Although much more complex equity return processes are possible, these results
show that the historical backtest performance of the EMS MC model is only
improved in the presence of downwardly skewed asset equity return distributions
possessing fat tails due to jumps.

6 Conclusions

This chapter has focussed on the design of funds to support investment products
which give a minimum guaranteed return. We have concentrated here on the design
of the liability side of the fund, paying particular attention to the pricing of bonds
using a three-factor term structure model with reliable results for long-term as well
as the short-term yields. Several objective functions for the stochastic optimization
of portfolios have been constructed using expected average shortfall and expected
maximum shortfall risk measures to combine risk management with strategic asset
allocation. We also introduced the concept of monthly shortfall checking which
improved the historical backtesting results considerably. In addition to the standard
GBM model for equity returns we reported experiments using a GBM model with
Poisson jumps to create downwardly skewed fat tailed equity index return distri-
butions. The EMS MC model responded well with more realistic expected portfo-
lio wealth predictions and the historical fund portfolio wealth staying significantly
above the barrier at all times.

The models of this paper have been extended in practice to open ended funds
which allow for contributions throughout the lifetime of the corresponding invest-
ment products. In total funds of the order of 10 billion euros have been managed
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with these extended models. In future research we hope to examine open multi-link
pension funds constructed using several unit linked funds of varying risk aversion
in order to allow the application of individual risk management to each client’s
portfolio.
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