
Chapter 2
Paradigms for Deployed Spoken Dialog Systems

Abstract This chapter covers state-of-the-art paradigms for all the components of
deployed spoken dialog systems. With a focus on speech recognition and under-
standing components as well as dialog management, the specific requirements of
deployed systems will be discussed. This includes their robustness against distorted
and unexpected user input, their real-time-ability, and the need for standardized
interfaces.
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2.1 A Few Remarks on History

After half a century of intensive research into automatic speech recognition (one of
the first published functional speech recognizers was built at Bell Labs in 1952 [27]),
in the 1990s, the technology finally achieved a performance (in terms of accuracy
and speed) that could be applied to simple tasks in the telephony systems of
companies with large customer care call volume. Solutions to phone-based self-
service using touch-tone interaction already existed. Now, applications could be
speech-enabled allowing for a much wider range of solutions helping companies like
FedEx, American Airlines, or UPS to effectively expand their self-service customer
support offerings [88]. Applications ranged from package tracking (with a tracking
number specified by the caller) to stock quotes and flight schedule information.
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Speech-enabled menus have clear advantages compared to touch-tone menus when
it comes to:

• Input items distinguishing a large number of types (such as city names or stock
listings) or

• Mixed initiative or over-specification – when spoken language understanding
and dialog manager are designed accordingly, the caller can input information
or formulate requests unexpected at the current point of the dialog, e.g.

S: Where would you like to depart from?
C: From JFK on January 5th.

Another milestone in the development of spoken dialog systems was the introduc-
tion of natural language call routing in 1997 by researchers at AT&T Labs [43].
Large companies (as AT&T itself) often have a single service hotline phone number
that serves as a portal to a variety of services and call center departments with
different skills. There can be dozens if not hundreds of different destinations
conventionally requiring a multi-layered menu structure to get the caller to the right
place as shown in the following dialog recorded from the service hotline of a cable
provider:

S: Which one can I help you with: Your bill, tech support, an order, an appointment, or a
change to your service?
C: Repeat.
S: Just say: My bill, or press 1. Tech support, or press 2. An order, or press 3. An
appointment, or press 4. Or say make a change to my service, or press 5.
C: Tech support.
S: And which one are you having problems with: Internet, e-mail, cable TV, or telephone?
C: My telephone.
S: Are you having trouble with the dial tone on your phone?
C: Nay.
S: Then, do you have a question about a feature on your phone such as voicemail or call
forwarding?
C: Yeah.
S: You can say voice mail, caller ID, or call forwarding. If it is not one of those, say help
me with something else.
C: Repeat the message, please.
S: Just say: Voice mail, or press 1. Caller ID, or press 2. Call forwarding, or press 3. Or, if
it is not one of those, say help me with something else, or press 4.
C: Help me with something else.
S: Here are some others to choose from: Call waiting, three-way calling, speed dialing, call
return, anonymous call rejection, or custom ring. Again, if it is not one of these, say help
me with something else.
C: Three-way calling.
S: I can explain you how three-way calling works or help you with problems with it. Just
say instructions or problems. Or you can say help me with something else.
C: Problems.

In contrast, a conversation using a natural language call router with an open-ended
question could have been

S: Briefly tell me what you are calling about today.
C: My three-way calling is not working.
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Apparently, this type of prompting comes along with a much shorter handling time
resulting in a number of substantial advantages:

• Handling fees are saved (considering the processing of millions of such calls, the
shaving of just seconds for every call can result in a significant impact on the
application’s bottom line).

• By reducing the number of recognition events necessary to get a caller to the
right place, the chance of recognition errors decreases as well (even though it
is true that open-ended question contexts perform worse than directed dialog,
e.g., 85% vs. 95% True Total1, the fact that doing several of the latter in a
row exponentially decreases the chance that the whole conversation completes
without error – e.g. the estimated probability that five user turns get completed
without error is (95%)5 = 77% which is already way lower than the performance
of the open-ended scenario; for further reading on measuring performance, see
Chap. 3). Reducing recognition errors raises the chance of automating the call
without intervention of a human agent.

• User experience is also positively influenced by shortening handling time, reduc-
ing recognition errors, and conveying a smarter behavior of the application [35].

• Open-ended prompting also prevents problems with callers not understanding
the options in the menu and choosing the wrong one resulting in potential
misroutings.

The underlying principle of natural language call routing is the automatic mapping
of a user utterance to a finite number of well-defined classes (aka categories, slots,
keys, tags, symptoms, call reasons, routing points, or buckets). For instance, the
above utterance

My three-way calling is not working

was classified as Phone 3WayCalling Broken, in a natural language call routing
application distinguishing more than 250 classes [115]. If user utterances are too
vague or out of the application’s scope, additional directed disambiguation questions
may be asked to finally route the call. Further details on the specifics of speech
recognition and understanding paradigms used in deployed spoken dialog systems
are given in Sect. 2.3.

2.2 Components of Spoken Dialog Systems

As introduced in Sect. 1.1 and depicted in Fig. 1.1, spoken dialog systems con-
sist of a number of components (speech recognition and understanding, dialog
manager, language and speech generation). In the following sections, each of

1See Sect. 3.2 for the definition of this metric.
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these components will be discussed in more detail focusing on deployed solutions
and drawing brief comparisons to techniques primarily used in academic research
to date.

2.3 Speech Recognition and Understanding

In Sect. 2.1, the use of speech recognition and understanding in place of the formerly
common touch-tone technology was motivated. This section gives an overview
about techniques primarily used in deployed systems as of today.

2.3.1 Rule-Based Grammars

In order to commercialize speech recognition and understanding technology for
their application in dialog systems, at the turn of the millennium, companies
such as Sun Microsystems, SpeechWorks, and Nuance made the concept of
speech recognition grammar popular among developers. Grammars are essentially
a specification “of the words and patterns of words to be listened for by a speech
recognizer” [47,128]. By restricting the scope of what the speech recognizer “listens
for” to a small number of phrases, two main issues of speech recognition and
understanding technology at that time could be tackled:

1. Before, large-vocabulary speech recognizers had to recognize every possible
phrase, every possible combination of words. Likewise, the speech understanding
component had to deal with arbitrary textual input. This produced a significant
margin of error unacceptable for commercial applications. By constraining
the recognizer with a small number of possible phrases, the possibility of
errors could be greatly reduced, assuming that the grammar covers all of the
possible caller inputs. Furthermore, each of the possible phrases in a grammar
could be uniquely and directly associated with a predefined semantic symbol,
thereby providing a straightforward implementation of the spoken language
understanding component.

2. The strong restriction of the recognizer’s scope as well as the straightforward
implementation of the spoken language understanding component significantly
reduced the required computational load. This allowed speech servers to pro-
cess multiple speech recognition and understanding operations simultaneously.
Modern high-end servers can individually process more than 20 audio inputs at
once [2].

Similar to the industrial standardization endeavor on VoiceXML described in
Sect. 2.6, speech recognition grammars often follow the W3C Recommendation
SRGS (Speech Recognition Grammar Specification) published in 2004 [47].
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2.3.2 Statistical Language Models and Classifiers

Typical contexts for the use of rule-based grammars are those where caller responses
are highly constrained by the prompt such as:

• Yes/No questions (Are you calling because you lost your Internet connection?).
• Directed dialog (Which one best describes your problem: No picture, missing

channels, error message, bad audio...?).
• Listable items (city names, phone directory, etc.).
• Combinatorial items (phone numbers, monetary amounts, etc.).

On the other hand, there are situations where rule-based grammars prove impractical
because of the large variety of user inputs. Especially, responses to open prompts
tend to vary extensively. For example, the problem collection of a cable TV
troubleshooting application uses the following prompt:

Briefly tell me the problem you are having in one short sentence.

The total number of individual collected utterances of this context was so large
that the rule-based grammar resulting from the entire data used almost 100 MB
memory which proves unwieldy in production server environments with hundreds
of recognition contexts and dozens of concurrent calls. In such situations, the use of
statistical language models and classifiers (statistical grammars) is recommendable.
By generally treating an open prompt such as the one above as a call routing problem
(see Sect. 2.1), every input utterance is associated with exactly one class (the routing
point). For instance, responses to the above open prompt and their associated classes
are:

Um, the Korean channel doesn’t work well � Channel Other
The signal is breaking up � Picture PoorQuality
Can’t see HBO � Channel Missing
My remote control is not working � Remote NotWorking
Want to purchase pay-per-view � Order PayPerView Other

This type of mapping is generally produced semi-automatically as further discussed
in Sect. 4.1.

The utterance data can be used to train a statistical language model that is applied
at runtime by the speech recognizer to generate a recognition hypothesis [100].
Both the utterances and the associated classes can be used to train statistical
classifiers that are applied at runtime to map the recognition hypothesis to a semantic
hypothesis (class). An overview about state-of-the-art classifiers used for spoken
language understanding in dialog systems can be found in [36].

The initial reason to come up with the rule-based grammar paradigm was that of
avoiding too complex search trees common in large-vocabulary continuous speech
recognition (see Sect. 2.3.1). This makes the introduction of statistical grammars
for open prompts as done in this section sound a little paradoxical. However, it turns
out that, surprisingly to the most common intuition, statistical grammars seem to
always outperform even very carefully designed rule-based grammars when enough
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training data is available. A respective study with four dialog systems and more
than 2,000 recognition contexts was conducted in [120]. The apparent reason for
this paradox is that in contrast to a general large-vocabulary language model trained
on millions of word tokens, here, strongly context-dependent information was used,
and statistical language models and classifiers were trained based only on data
collected in the very context the models were later used in.

2.3.3 Robustness

Automatic speech recognition accuracy kept improving greatly over the last six
decades since the first studies at Bell Laboratories in the early 1950s [27]. While
some people claim that improvements have amounted to about 10% relative word
error rate (WER2) reduction every year [44], this is factually not correct: It would
mean that the error rate of an arbitrarily complex large-vocabulary continuous
speech recognition task as of 2010 would be around 0.2% when starting at 100%
in 1952. It is more reasonable to assume the yearly relative WER reduction being
around 5% on average resulting in some 5% absolute WER as of today. This
statement, however, is true for a trained, known speaker using a high-quality
microphone in a room with echo cancellation [44]. When it comes to speaker-
independent speech recognition in typical phone environments (including cell
phones, speaker phones, Voice-over-IP, background noise, channel noise, echo, etc.)
word error rates easily exceed 40% [145].

This sounds disastrous. How can a commercial (or any other) spoken dialog
system ever be practically deployed when 40% of its recognition events fail?
However, there are three important considerations that have to be taken into account
to allow the use of speech recognition even in situations where the error rate can be
very high [126]:

• First of all, the dialog manager does not use directly the word strings produced
by the speech recognizer, but the product of the language understanding (SLU)
component as shown in Fig. 1.1. The reader may expect that cascading ASR
and SLU may increase the chance of failure since both of them are error-prone,
and errors should grow rather than diminish. However, as a matter of fact, the
combination of ASR and SLU has proven very effective when the SLU is robust
enough to ignore insignificant recognition errors and still map the speech input
to the right semantic interpretation.

Here is an example. The caller says I wanna speak to an associate, and the
recognizer hypothesizes on the time associate which amounts to 5 word errors

2Word error rate is a common performance metric in speech recognition. It is based on the Leven-
shtein (or edit) distance [64] and divides the minimum sum of word substitutions, deletions, and
insertions to perform a word-by-word alignment of the recognized word string to a corresponding
reference transcription by the number of tokens in said reference.
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Fig. 2.1 Relationship between word error rate (abscissa) and semantic classification accuracy
(True Total, ordinate)

altogether. Since the reference utterance has 6 words, the WER for this single
case is 83%. However, the SLU component deployed in production was robust
enough to interpret the sole presence of the word associate as an agent request
and correctly classified the sentence as such resulting in no error at the output of
the SLU module.

Figure 2.1 shows how, more globally, word error rate and semantic classifi-
cation accuracy (True Total, see Sect. 3.2 for a definition of this metric) relate to
each other. The displayed data points show the results of 1,721 experiments with
data taken from 262 different recognition contexts in deployed spoken dialog
systems involving a total of 2,998,254 test utterances collected in these contexts.
Most experiments featured 1,000 or more test utterances to assure reliability
of the measured values. As expected, the figure shows an obvious correlation
between word error rate and True Total (Pearson’s correlation coefficient is
−0.61, i.e. the correlation is large [98]). Least-squares fitting a linear function
to this dataset produces a line with the gradient −0.23 and an offset of 97.5%
True Total that is also displayed in the figure. This confirms that the semantic
classification is very robust to speech recognition errors reflecting only a fraction
of the errors made on the word level of the recognition hypothesis.

Even though it may very well be due to the noisiness of the analyzed data,
the fact that the constant offset of the regression line is not exactly 100%
suggests that perfect speech recognition would result in a small percentage of
classification errors. This suggestion is true since the classifier itself (statistical
or rule-based), most often, is not perfect either. For instance, many semantic
classifiers discard the order of words in the recognition hypothesis. This makes
the example utterances
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(1) Service interrupt

and

(2) Interrupt service

look identical to the semantic classifier while they actually convey different
meanings:

(1) A notification that service is currently unavailable or a request to stop service

(2) A request to stop service

• It is well-understood that human speech recognition and understanding exploits
three types of information: acoustic, syntactic, and semantic [45,133]. Using the
probabilistic framework typical for pattern recognition problems, one can express
the search for the optimal meaning M̂ (or class, if the meaning can be expressed
by means of a finite number of classes) of an input acoustic utterance A in two
stages:

Ŵ = argmax
W

p(W |A) = argmax
W

p(A|W)p(W) (2.1)

formulates the determination of the optimal word sequence Ŵ given A by means
of a search over all possible word sequences W inserted in the product of the
acoustic model p(A|W) and the language model p(W). Similarly,

M̂ = argmax
M

p(M|W) = argmax
M

p(W |M)p(M) (2.2)

expresses the search for the optimal meaning M̂ [36] based on the lexicalization
model p(W |M) and the semantic prior model p(M) [78].

This two-stage approach has been shown to underperform a one-stage ap-
proach where no hard decision is drawn on the word sequence level [137]. In the
latter case, a full trellis of word sequence hypotheses and their probabilities are
considered and integrated with (2.2) [58,84]. Despite its higher performance, the
one-stage approach has not found its way into deployed spoken dialog systems
yet because of primarily practical reasons, for instance:

– They are characterized by a significantly higher computational load (the
search of an entire trellis requires extensively more computation cycles and
memory than a single best hypothesis).

– Semantic parsers or classifiers may be built by different vendors than the
speech recognizer, so, the trellis would have to be provided by means of
a standardized API to make components compatible (see Sect. 2.6 for a
discussion on standards of spoken dialog system component interfaces).

With reference to the different types of information used by human speech
recognition and understanding discussed above, automatic recognition and un-
derstanding performance can be increased by providing as much knowledge as
possible:

1. Acoustic models (representing the acoustic information type) of state-of-
the-art speech recognizers are trained on thousands of hours of transcribed
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speech data [37] in an attempt to cover as much of the acoustic variety as
possible. In some situations, it can be beneficial to improve the effectiveness
of the baseline acoustic models by adapting them to the specific application,
population of callers, and context. Major phenomena which can require
baseline model adaptation are the presence of foreign or regional accents, the
use of the application in noisy environments as opposed to clean speech, and
the signal variability resulting from different types of telephony connections,
such as cell phone, VoIP, speaker phone, or landline.

2. In today’s age of cloud-based speech recognizers [11], the size of lan-
guage models (i.e. the syntactic information type) can have unprecedented
dimensions: Some companies (Google, Microsoft, Vlingo, among others)
use language models estimated on the entire content of the World Wide
Web [18, 46], i.e., on trillions of word tokens, so, one could assume, there
is no way to ever outperform these models. However, in many contexts, these
models can be further improved by providing information characteristic to the
respective context. For instance, in case of a directed dialog such as

Which one can I help you with: Your bill, tech support, an order, an appointment, or
a change to your service?

the a priori probabilities of the menu items (e.g. tech support) are much higher
than those of terms outside the scope of the prompt (e.g. I want to order
hummus). These priors have a direct impact on the optimality of the language
model.

Even if only in-scope utterances are concerned, a thorough analysis of the
context can have a beneficial effect on the model performance. An example:
Many contexts of deployed spoken dialog systems are yes/no questions as

I see you called recently about your bill. Is this what you are calling about today?

Most of the responses to yes/no questions in deployed systems are affirmative
(voice user interface design best practices suggest to phrase questions in such
a way that the majority of users would answer with a confirmation, as this has
been found to increase the user confidence in the application’s capability). As
a consequence, a language model trained on yes/no contexts usually features
a considerably higher a-priory probability for yes than for no. Thus, using a
generic yes/no language model in contexts where yes is responded much less
frequently than no can be disastrous as in the case where an initial prompt of
a call routing application reads

Are you calling about [name of a TV show]?

The likelihood of somebody calling the general hotline of a cable TV provider
to get information on or order exactly this show is certainly not very high
(even so, in the present example, the company decided to place this question
upfront for business reasons), so, most callers will respond no. Using the
generic yes/no language model (trained on more than 200,000 utterances, see
Table 2.1) in this context turned out to be problematic since it tended to cause
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Table 2.1 Performance of yes hypotheses in a yes/no context with overwhelming
majority of no events comparing a generic with a context-specific language model

Language model Training size
True Total of utterances
hypothesized as yes (%)

Generic yes/no 214,168 27.3
Context-specific yes/no 1,542 77.4

substitutions between yes and no and false accepts of yes much more often
than in regular yes/no contexts due to the wrong priors. In fact, almost three
quarters of the cases where the system hypothesized that a caller responded
with yes were actually recognition errors (27.3% True Total) emphasizing the
importance of training language models with as much as possible context-
specific information. It turned out that training the context-specific language
model using less than 1% data than used for the generic yes/no language
model resulted in a much higher performance (77.4% True Total).

• Last but not least, the amount and effect of speech recognition and
understanding errors in deployed spoken dialog systems can be reduced by
robust voice user interface design. There is a number of different strategies
to this:

– rejection and confirmation threshold tuning
Both the speech recognition and spoken language understanding com-
ponents of a spoken dialog system provide confidence scores along
with their word or semantic hypotheses. They serve as a measure
of likelihood that the provided hypothesis was actually correct. Even
though confidence scores often do not directly relate to the actual
probability of the response being correct, they relate to the latter in a
more or less monotonous fashion, i.e., the higher the score, the more
likely the response is correct. Figure 2.2 shows an example relationship
between the confidence score and the True Total of a generic yes/no
context measured on 214,710 utterances recorded and processed by a
commercial speech recognizer and utterance classifier on a number of
deployed spoken dialog systems. The figure also shows the distribution
of observed confidence scores.

The confidence score of a recognition and understanding hypothesis
is often used to trigger one of the following system reactions:

1. If the score is below a given rejection threshold, the system prompts
callers to repeat (or rephrase) their response:

I am sorry, I didn’t get that. Are you calling from your cell phone right
now? Please just say yes or no.

2. If the score is between the rejection threshold and a given confirma-
tion threshold, the system confirms the hypothesis with the caller:

I understand you are calling about a billing issue. Is that right?
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Fig. 2.2 Relationship between confidence score (abscissa) and semantic classification accuracy –
True Total (ordinate, bold). The thin dotted line is the histogram of confidence values. The data is
from a generic yes/no context

3. If the score is above the confirmation threshold, the hypothesis gets
accepted, and the system continues to the next step.

Obviously, the use of thresholds does not guarantee that the input will be
correct, but it increases the chance. To give an example, a typical menu
for the collection of a cable box type is considered. The context’s prompt
reads

Depending on the kind of cable box you have, please say either Motorola,
Pace, or say other brand.

Figure 2.3 shows the relationship between confidence and True Total
as well as the frequency distribution of the confidence values for this
context. Assuming the following example settings3:

RejectThreshold = 0.07,
ConfirmThreshold = 0.85,

the frequency distribution of the box collection context can be used to
estimate the ratio of utterances rejected, confirmed, and accepted.

In order to come up with an estimate for the accuracy of the box col-
lection activity including confirmation (if applicable), re-confirmation,
re-collection, and so on, one has to take into account that, in every
recognition context, there are input utterances out of the system’s action
scope. In response to the question about the box type, people may say

3See Chap. 4 on how to determine optimal thresholds.
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True Total (ordinate, bold). The thin dotted line is the histogram of confidence values. The data is
from a cable box collection context.

Table 2.2 Distribution of utterances among rejection, confir-
mation, and acceptance for a box collection and a yes/no
context. The yes/no context is used for confirmation and, hence,
does not feature an own confirmation context. Consequently,
one cannot distinguish between TACC and TACA but only
specify TAC. The same applies to TAW and FA

Event Box collection (%)
Yes/No
(confirmation) (%)

TACC 43.29 80.89
TACA 35.17
TAWC 2.10 0.52
TAWA 0.03
FAC 3.78 1.14
FAA 0.09
FR 6.94 5.90
TR 8.61 11.56

I actually need a phone number, or the recognizer might have caught
some side conversation or line noise, etc. Hence, when asking for how
successful the determination of the caller’s box type given the contexts’
speech understanding performance is at the end, one will have to use the
full set of spoken language understanding metrics discussed in Chap. 3
as demonstrated in Table 2.2.

In a standard collection activity that allows for confirmation,
re-confirmation, re-collection, second confirmation, and second re-
confirmation, there are 18 ways to correctly determine the sought-for
information entity:
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1. Correctly or falsely accepting4 the entity without confirmation
(TACA, FAA at collection),

2. Correctly or falsely accepting the entity with confirmation (TACC,
FAC) followed by a correct or false accept of yes at the confirmation
(TAC, FA).

3. Correctly or falsely accepting the entity with confirmation (TACC)
followed by a true or false reject at the confirmation (TR, FR)
followed by a correct or false accept of yes at the confirmation
(TAC, FA).

4. ...

Instead of listing all 18 ways of determining the correct entity, the
diagram in Fig. 2.4 displays all possible paths. Using the example per-
formance measures listed in Table 2.2, one can estimate the proportional
traffic going down each path and, finally, the amount ending up correctly
(in the lower right box), see Fig. 2.5. Here, one sees the effectiveness
of the collection/confirmation/re-collection strategy, since about 93% of
the collections end up with the correct entity. The collection context itself
featured a correct accept (with and without confirmation) of only 78.5%.
This is an example for how robust interaction strategies can considerably
improve spoken language understanding performance.

– Robustness to specific input
In recognition contexts with open prompts such as the natural lan-
guage call router discussed in Sect. 2.1, often, understanding models
distinguishing hundreds of classes [115] are deployed. Depending on
the very specifics of the caller response, the application performs dif-
ferent actions or routes to different departments or sub-applications.
In an example, somebody calls about the bill. The response to the
prompt

Briefly tell me what you are calling about today.

could be, for example:

(1) My billing account number.
(2) How much is my bill?
(3) I’d like to cancel this bill.

4The author has witnessed several cases where a speech recognizer falsely accepted some noise or
the like, and it turned out that the accepted entity was coincidentally correct. For example:

S: Depending on the kind of cable box you have, please say either Motorola, Pace, or say
other brand.
C: <cough>
S: This was Pace, right?
C: That’s correct.
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Fig. 2.4 Graph showing all successful paths of a disambiguation context with collection, re-
collection, first and second confirmation. M=the correct box; P=a wrong box; [n]=noise or
out-of-scope input; y=yes; n=no. a > b represents an input event a that is understood as b by
the speech recognition and understanding components

(4) Bill payment center locator.
(5) Change in billing.
(6) My bill is wrong.
(7) I wanna pay my bill.
(8) I need to change my billing address.
(9) Pay bill by credit card.
(10) Make arrangements on my bill.
(11) Seasonal billing.
(12) My bill.

All of these responses map to a different class and are treated
differently by the application in how it follows up with the caller or
routes the call to a destination.
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Fig. 2.5 The same as Fig. 2.4, but the path caption indicates the portion of traffic hitting the
respective path

If, due to speech recognition and understanding problems, one of
the specific responses (1–11) is classified as the generic one (12), this
would be counted as an understanding error. The overall experience
to the caller may, however, not be bad since the underlying high
resolution of the context’s classes is not known externally. An
example conversation with this kind of wrong classification is

A1: Briefly tell me what you are calling about today.
C1: How much is my bill?
A2: You are calling about your bill, right?
C2: Yes.
A3: Sure. Just say get my balance, or make a payment. Or say, I have a
different billing question.
C3: Get my balance.
A4: <presents balance>
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(If there would not have been recognition problems, Turns A3, and C3
would have been bypassed). When looking at a number of example
calls of the above scenario, there were 1,648 callers responding yes
to the confirmation question A2 as opposed to 1,139 responding
no (41%). This indicates that the disturbing effect of a substitution
of a class by a broader class can be moderate. For the sake of
completeness, when the classifier returned the right class, 11834
responses were yes and only 369 were no (3%).

– Miscellaneous design approaches to improve robustness
There are several other voice user interface design techniques that
have proven to be successful in gathering information entities such
as [116]:

• Giving examples at open prompts:

Briefly tell me what you are calling about today.

can be replaced by

Briefly tell me what you are calling about today. For example,
you can say what’s my balance?

• Offering directed back-up menu:

Briefly tell me what you are calling about today.

can be replaced by

Briefly tell me what you are calling about today. Or you can say
what are my choices?

• Clear instructions of which caller input is allowed (recom-
mendable in re-prompts):

Have you already rebooted your computer today?

can be replaced by

Have you already rebooted your computer today? Please say yes
or no.

• Offer touchtone alternatives (recommendable in re-prompts):

Please say account information, transfers and funds, or credit or
debit card information.

can be replaced by

Please say account information or press 1, transfers and funds
or press 2, or say credit or debit card information or press 3.
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2.4 Dialog Management

After covering the system components speech recognition and understanding,
Fig. 1.1 points at the dialog manager as the next block. In Sect. 1.1, it was
pointed out that it “host[s] the system logic[,] communicat[es] with arbitrary types
of backend services [and] generates a response ... corresponding to ... semantic
symbols”. This section is to briefly introduce the most common dialog management
strategies, again with a focus on deployed solutions.

In most deployed dialog managers nowadays, the dialog strategy is encoded
by means of a call flow that is a finite state automation [86]. The nodes of this
automaton represent dialog activities, and the arcs are conditions. Activities can:

• Instruct the language generation component to play a certain prompt.
• Give instructions to synthesize a prompt using a text-to-speech synthesizer.
• Activate the speech recognition component with a specific language model.
• Query external backend knowledge repositories.
• Set or read variables,
• perform any type of computation, or
• Invoke another call flow as subroutine (that may invoke yet another call flow, and

so on – this way, a call flow can consist of multiple hierarchical levels distributed
among a large number of pages, several hundreds or even more).

Call flows are often built using WYSIWYG tools that allow the user to drag and
drop shapes onto a canvas and connect them using dynamic connectors. An example
sub-call flow is shown in Fig. 2.6.

Fig. 2.6 Example of a call flow page
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Call flow implementations incorporate features to handle designs getting more
and more complex including:

• Inheritance of default activity behavior in an object-oriented programming
language style (language models, semantic classifiers, settings, prompts, etc.
need to be specified only once for activity types used over and over again;
only the changing part gets overwritten; see Activities WaitUnplugModem,
WaitUnplugModem 2, WaitUnplugModemAndCoax in Fig. 2.6 – they only differ
in some of the prompt verbiage).

• Shortcuts, anchors, gotos, gosubs, loops.
• Standard activities and libraries collecting, for instance, phone numbers, ad-

dresses, times and dates, locations, credit card numbers, e-mail addresses, or
performing authentication, backend database lookups or actions on the telephony
layer.

Despite these features, complex applications are mostly bound to relatively simple
human-machine communication strategies such as yes/no questions, directed dialog,
and, to a very limited extent, open prompts. This is because of the complexity of
the call flow graphs that, with more and more functionality imposed on the spoken
language application, quickly become unwieldy. Some techniques to overcome the
statics of the mentioned dialog strategies will be discussed in Chap. 4.

Apart from the call flow paradigm, there are a number of other dialog manage-
ment strategies that have been used mostly in academic environments:

• Many dialog systems aim at gathering a certain set of information from the caller,
a task comparable to that of filling a form. While one can build call flows to
ask questions in a predefined order to sequentially fill the fields of the form,
callers often provide more information than actually requested, thus, certain
questions should be skipped. The form-filling (aka slot-filling) call management
paradigm [89, 108] dynamically determines the best question to be asked next in
order to gather all information items required in the form.

• Yet another dialog management paradigm is based on inference and applies for-
malisms from communication theory by implementing a set of logical principles
on rational behavior, cooperation, and communication [63]. This paradigm was
used in a number of academic implementations [8,33,103] and aims at optimizing
the user experience by:

– Avoiding redundancy.
– Asking cooperative, suggestive, or corrective questions.
– Modeling the states of system and caller (their attitudes, beliefs, intentions,

etc.).

• Last but not least, there is an active community focusing on statistical approaches
to dialog management based on techniques such as:

– Belief systems [14, 139, 144]
This approach models the caller’s true actions and goals (that are hidden to the
dialog manager because of the fact that speech recognition and understanding
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are not perfect). It establishes and updates an estimate of the probability
distribution over the space of possible actions and goals and uses all possible
hints and input channels to determine the truth.

– Markov decision processes/reinforcement learning [56, 66]
In this framework, a dialog system is defined by a finite set of dialog states,
system actions, and a system strategy mapping states to actions allowing for
a mathematical description in the form of a Markov decision process (MDP).
The MDP allows for automatic learning and adaptation by altering local
parameters in order to maximize a global reward. In order to do so, an MDP
system needs to process a considerable number of live calls, hence, it has to be
deployed, which, however, is very risky since the initial strategy may be less
than sub-optimal. This is why, very often, simulated users [7] come into play,
i.e. a set of rules representing a human caller that interacts with the dialog
system initializing local parameters to some more or less reasonable values.
Simulated users can also be based on a set of dialog logs from a different,
fairly similar spoken dialog system [48].

– Partially observable Markov decision processes [143]
While MDPs are a sound statistical framework for dialog strategy opti-
mization, they assume that the dialog states are observable. This is not
exactly true since caller state and dialog history are not known for sure. As
discussed in Sect. 2.3.3, speech recognition and understanding errors can lead
to considerable uncertainty on what the real user input was. To account for
this uncertainty, partially observable Markov decision processes (POMDPs)
combine MDPs and belief systems by estimating a probability distribution
over all possible caller objectives after every interaction turn. POMDPs are
among the most popular statistical dialog management frameworks these
days. Despite the good number of publications on this topic, very few
deployed systems incorporate POMDPs. Worth mentioning are those three
systems that were deployed to the Pittsburgh bus information hotline in the
summer of 2010 in the scope of the first Spoken Dialog Challenge [13]:

• AT&T’s belief system [140].
• Cambridge University’s POMDP system [130].
• Carnegie Mellon University’s benchmark system [95] based on the Agenda

architecture, a hierarchical version of the form-filling paradigm [102].

2.5 Language and Speech Generation

(Natural) language generation [26] refers to the production of readable utterances
given semantic concepts provided by the dialog manager. For example, a semantic
concept could read

CONFIRM: Modem=RCA
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i.e., the dialog manager wants the speech generator to confirm that the caller’s
modem is of the brand RCA. A suitable utterance for doing this could be

You have an RCA modem, right?

Since the generated text has to be conveyed over the audio channel, the speech gen-
eration component (aka speech synthesizer, text-to-speech synthesizer) transforms
the text into audible speech [114].

Language and speech generation as described above are typical components of
academic spoken dialog systems [94]. Without going into detail on the technological
approaches used in such systems, it is apparent that both of these components come
along with a certain degree of trickiness. Since language generation has to deal with
every possible conceptual input provided by the dialog manager it is either based
on a set of static rules or relies on statistical methods [39, 60]. Both approaches
can hardly be exhaustively tested and lack predictability in exceptional situations.
Moreover, the exact wording, pausing, or prosody can play an important role for the
success of a deployed application (see examples in [116]). Rule-based or statistical
language generation can hardly deliver the same conversational intuition like a
human speaker. The same criticism applies to the speech synthesis component.
Even though significant quality improvements have been achieved over the past
years [57], speech synthesis generally lacks numerous subtleties of human speech
production. Examples include:

• Proper stress on important words and phrases:

S: In order to check your connection, we will be using the ping service.

• Affectivity such as when apologizing:

S: Tell me what you are calling about today.
C: My Internet is out.
S: I am sorry you are experiencing problems with your Internet connection. I will help
you getting it up and running again.

• Conveying cheerfulness:

S: Is there anything else I can help you with?
C: No, thank you.
S: Well, thank you for working with me!

Even though there is a strong trend towards affective speech processing evolving
over the last 5 years potentially improving these issues [85], the general problem
of speech quality associated with text-to-speech synthesis persists. Highly tuned
algorithms trained on large amounts of high-quality data with context awareness still
produce audible artifacts, not to speak of certain commercial speech synthesizers
that occasionally produce speech not even intelligible.

All the above arguments are the reasons why deployed spoken dialog systems
hardly ever use language and speech generation technology. Instead, the role of
the voice user interface designer comprises the writing and recording of prompts.
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That is, every single system response is carefully worded and then recorded by a
professional voice talent in a sound studio environment. At run-time, the spoken
dialog system simply plays the pre-recorded prompt producing optimal sound
quality5. Dynamic contents (such as the embedding of numbers, locations, e-mail
addresses, etc.) can be implemented in a concatenative manner with pre-recorded
contents as well. Only in instances where the nature of the presented contents is
unpredictable or of a prohibitive complexity (such as with last names in a phone
directory application on a large and frequently changing set of destinations), speech
synthesis has no alternative.

In spite of the clear advantage of the prerecorded prompt approach, it features
the clear disadvantage that every single prompt needs to be formulated and recorded
covering every possible situation that can arise in the course of every dialog activity
including, e.g.:

• The announcement prompt (the introductory part of the activity).
• Re-announcement prompts.
• Announcement-interruptedprompt(when the caller interrupts the announcement).
• Question prompt.
• Hold prompt (a caller asks the system to hold on).
• No-input, no-match, etc. prompts for the hold role.
• Hold-return prompt (resumes the interaction after a hold).
• No-input prompts (when the caller does not say anything).
• No-match prompts (when the caller caused a reject).
• Confirmation prompts (when the speech input needs to be confirmed).
• No-input, no-match, etc. prompts for the confirmation role.
• N-best prompts (when more than one recognition hypothesis is used for the

confirmation).
• Help prompt (when the caller asked for more information).
• Operator prompt (when the caller asked for an agent).
• Expert prompt (when the caller is an expert user).
• Repeat prompt (when the caller asked to repeat the information), or
• Technical-difficulty prompt.

Consequently, deployed systems of regular complexity usually require thousands,
sometimes tens of thousands of pre-recorded prompts. For example, the Internet
troubleshooting application described in [6] currently comprises 10,573 prompts
with a total duration of 33 h. As a result, the professional recording of prompts plays
a major role for the overall cost and time of building an application. Presumably
trivial projects such as switching the voice talent or localizing an existing spoken
dialog system to another language [118] can become prohibitive.

5This approach occasionally tricks callers in that they assume to be talking to a live person.
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2.6 Voice Browsing

It became obvious to the speech industry that there was a need for standardized
speech interfaces for spoken dialog systems only after the market saw an uptake
in the number of speech applications that were introduced into the market, ac-
companied by the burgeoning number of speech vendors and consumers of such
commercial spoken dialog systems. Given that speech recognizers, text-to-speech
systems, telephony infrastructure, dialog managers, backend infrastructure, and the
actual applications are potentially built by different companies in the first place, by
standardizing how these components talk to each other, architecting and building
solutions became much easier.

A great step towards the modularization of spoken dialog system components
was the introduction of a proxy component, the voice browser [61]. It takes over
the communication layer between speech recognition and synthesis on the one hand
and language understanding and generation on the other as shown in Fig. 2.7. In an
alternative architecture, speech recognition and understanding are coupled, so the
voice browser communicates directly with the dialog manager (see Fig. 2.8).

As its name suggests, the voice browser plays a role similar to a web browser
which most often communicates with a human client on the one hand and
a web server on the other. In this analogy (see Fig. 2.9), speech recognition
(and, potentially, understanding) functions as input device of the voice browser
which, in the web world, are keyboard, mouse, camera, and other input channels
communicating with the web browser. Output device of the voice browser is the
speech synthesizer that replaces the screen, loudspeakers, and other output channels
used by a web browser. On the internal side, a voice browser communicates with
the dialog manager (or with the spoken language understanding and generation
components that are directly controlled by the dialog manager) playing the role of
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Fig. 2.7 General diagram of a spoken dialog system with voice browser
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Fig. 2.9 General diagram of a web browser

the web server in the web-based world. In fact, modern implementations of dialog
managers are web applications making use of standard web servers such as Apache
or Internet Information Services as well as common programming environments
as Java Servlets, PHP, or .NET. Very much like their web counterparts, the
components of Figs. 2.7 and 2.8 can be distributed over local and wide area networks
communicating via HTTP and other standard protocols (in fact, the applications
the author was working on in the past years – see e.g. [118, 120, 121, 123, 124] for
details – were hosted on infrastructure in New York, New Jersey, Pennsylvania,
California, Georgia, among others).

Inspired by the strength of standardization in the web world where the Hypertext
Markup Language (HTML) serves as primary markup language for web pages, and
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almost all available browsers and web content generators adhere to this standard,
in 1999, a forum based on a selection of the most advanced speech research
laboratories (AT&T, IBM, Lucent, and Motorola) was founded to develop a markup
language for spoken dialog systems [109]. Based on the general definition of the
Extensible Markup Language (XML), the new standard was branded VoiceXML,
and soon after releasing Version 1 in 2000, control was handed over to the World
Wide Web consortium (W3C) that made VoiceXML a W3C Recommendation in
2004 [72].

VoiceXML specifies, among other features:

• Which prompts to play (TTS or pre-recorded audio files).
• Which language or classification models (aka grammars, see Sect. 2.3) to activate

(speech and touch tone).
• How to record spoken input or full-duplex telephone conversations.
• Control of the call flow.
• Telephony features for call transfer or disconnect.

VoiceXML was meant to open the entire feature space of the World Wide Web to
the domain of spoken dialog systems. In this way, it was to:

• Minimize the number of transactions between voice browser and dialog man-
ager (see Sect. 2.7 on how crucial and demanding real-time ability can be in
distributed spoken dialog systems) – simple dialog systems can be implemented
as a single VoiceXML page.

• Separate application code (VoiceXML) from low-level platform code (that
can be in whatever programming language, or come along as a precompiled
application).

• Allow for portability across different VoiceXML-compliant platforms (for both
voice browsers and dialog managers).

• VoiceXML can be static (like static HTML), or dynamic (produced by dynamic
web content generators such as PHP, CGI, Servlets, JSP, or ASP.NET).

Certainly, the most important step towards the modularization of spoken dialog
systems was the specification of VoiceXML as the interface between dialog manager
and voice browser. However, the internals of the voice browser itself, which had
been originally introduced to serve as a proxy for proper communication between
dialog manager and speech recognition and generation, still required well-defined
interfaces. Again, this was because vendors of browser, ASR, and TTS in a single
bundle could be multilateral, and there was a high demand for standardization to
make components compatible with each other [19]. The response to this demand
was the Media Resource Control Protocol (MRCP) published in 2006 by the Internet
Society as an RFC (Request for Comments) [106]. MRCP controls media resources
like speech recognizers and synthesizers and uses streaming protocols such as the
Session Initiation Protocol (SIP), widely deployed in Voice-over-Internet-Protocol
telephony [51].
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2.7 Deployed Spoken Dialog Systems are Real-Time Systems

The heavy use of distributed architecture (see Fig. 3.2 for a high-level diagram of a
deployed spoken dialog system’s architecture including infrastructure to measure
performance) requires a lot of attention to the real-time ability of the involved
network machinery. In order to understand what real-time processing means in the
context of deployed spoken dialog systems, one can use human-to-human phone
conversations as a standard of comparison.

The average pause length between interaction turns is about 250 ms [15,42], and
the average tolerance interval, i.e., the time after which the conversational partner
feels obliged to speak, is approximately 1 s for American English speakers [50]. This
means that the time lag between the moment when the caller stops and that when the
system starts speaking should not be considerably longer than 1 s. If this requirement
is not fulfilled, callers tend to repeat themselves assuming the system missed their
response to a prompt (Turn 1). This repetition, however, may fall into the time scope
of the next interaction turn (Turn 2) and, hence, may be interpreted as the response to
the question of Turn 2. It is possible that the caller only heard snippets (or possibly
nothing at all) of Turn 2’s prompt, since, often, question prompts allow for so-called
barge-in: Callers can respond at any time during the prompt and do not have to wait
until the end of a possibly lengthy prompt allowing expert users to quickly navigate
through a speech menu.

Table 2.3 displays an example conversation taken from a call routing application.
The application was tuned to minimize handling time (around 37 s on average)
producing substantial cost savings considering a volume of about 4 million calls per
month.

This conversation features major glitches mainly because of the system taking
too long to respond:

• The caller utters a response (3), waits for 1.3 s (4) to decide that the system either
did not hear or is still listening, and qualifies her former response by saying
Technical (5, 6). At this moment, the speech recognizer has already stopped
listening, and the dialog manager is preparing the next context. In fact, the first
200 ms of the caller response (Tech) still fall into Context 1. The remaining
part of the utterance (nical) coincides with the next context’s system prompt that
does not get played at all for being interrupted by the caller, and the corrupted
utterance is interpreted in the scope of Context 6. The system receives a response
that is out-of-scope for Context 6 (the fragment nical cannot be interpreted) and,
consequently, re-prompts (8) by saying I didn’t get that...

• The caller assumes the system is still in Context 1 and did not understand her
response, so, she repeats her former input (9), pauses again for 1.2 s (10) without
any system response and qualifies her answer by saying Tech support (11). The
latter, however, again coincides with a system response to Input 9 (Phone, sure)
and gets ignored since the system is not listening during this indirect confirmation
prompt.
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Table 2.3 Example conversation in a call router application showing problems arising due to
latency. Gray parts of the system prompt are not played due to barge-in by the caller

ID Time/s System Caller

1 0 Briefly tell me what you are calling about today. For
example: I want to order new services.

2 4.7 <2.5 s silence>
3 7.2 Telephone.
4 8.0 <1.3 s silence>
5 9.3 Tech...
6 9.5 Which one can I help you with: your bill, tech support, an

order, an appointment, or a change to your service?
...nical.

7 10 <1.9 s silence>
8 11.9 I didn’t get that. Just say my bill or press 1, tech support or

press 2, an order or press 3, an appointment or press 4.
Or say make a change to my service or press 5.

9 18.1 Telephone.
10 18.9 <1.2 s silence>
11 20.1 Phone, sure. Tech support.
12 21.4 <0.8 s silence>
13 22.2 Just say my bill or press 1, tech support or press 2, an order

or press 3, an appointment or press 4. Or say make a
change to my service or press 5.

14 31.8 Tech support.
15 32.7 <0.8 s silence>
16 33.5 Tech sup...
17 34.0 Are you having trouble with the dial tone on your phone? ...port.
18 34.4 <3.5 s silence>
19 37.9 I didn’t get that. If you’re having trouble with the dial tone

say yes, otherwise, say no.
20 40.5 Tech support.

Tech support.
21 43.8 <1.9 s silence>
22 45.7 OK. Let me get someone on the line to help you.
23 48.0 <1.0 s silence>
24 49.0 Thank you.

• After another silence to load the next prompt (12), the system starts speaking (13)
offering menu options including the one just ignored (Tech support). The patient
caller repeats herself (14), waits for 0.8 s (15) and repeats herself once again (16,
17). In the meantime, the system has already interpreted Response 14 and moves
on to the next context while the speaker already started speaking (16). Again, the
prompt gets interrupted right away, and the recognizer only captures the second
part of the response (port) which cannot be successfully interpreted.

• Consequently, the system apologizes and replays the question (19). The caller
assumes she is still in Context 13, and, therefore, interrupts the prompt repeating
her former response twice (20). Since her input still does not answer the question,
the system gives up according to the application’s policy and escalates to a human
operator (22).
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The reader may want to argue that the speech understanding problems could have
been reduced by:

1. Overcoming technical hurdles making the system listen without even slight
interruptions (thereby avoiding the cut user inputs 5/6 and 16/17).

2. Revisiting the barge-in behavior of certain prompts (e.g. forcing the caller to
listen to the first seconds of 6 and 17).

(1) is in the responsibility of the technology vendors (i.e. the developers of speech
recognizer and voice browser) which, as discussed above, are usually companies
different from the ones building the applications, making it a hard problem to tackle.
(2) is in the court of the voice user interface designers, but there are also a number
of drawbacks to forcing callers to listen to extended prompts, inter alia, an increase
of average handling time and the fact that speech input may not be acknowledged at
all (exemplified by Turn 11 in Table 2.3), in turn resulting in potential understanding
problems.

Generally, a significant reduction of latency most probably would have saved
the above sample conversation to begin with. To understand what it takes to make
deployed spoken dialog systems in a distributed environment real-time-able, one
needs to look at all the actions performed between the moment when a caller’s
speech is over and when the system response starts playing (considering the
architecture shown in Fig. 2.8):

As shown in Table 2.4, there are three types of contributors to the overall latency,
constant (C), server-load-dependent (S ), and network-dependent (N) ones. The
single constant contributor, the complete recognition time-out (i.e. the duration the
recognizer waits after the caller stops speaking until deciding that the utterance
is over), cannot be altered without compromising recognition and understanding
accuracy due to false end-point detection (in fact, there is extensive scientific work
dedicated to the determination when to take turn based on various clues such as
prosody, syntax, semantics, or pragmatics [53, 82, 131]). Latency caused by server
overload can be reduced by carefully balancing load among available servers or
by upgrading the stock of available computational resources connecting additional
machines. Finally, the network needs to be laid out to accommodate guaranteed
response times of a magnitude lower than 100 ms round-trip delay (consider
that a single voice browser/dialog manager turn can involve up to seven network
transactions or even more depending on the specific communication protocol). This
response time may not exceed a certain maximum threshold (e.g., 100 ms) even in
case of occasional high-load situations.

To get a rough idea of the required network capacity in such a real-time system,
the example scenario referred to in Fig. 1.4 is considered where:

• In peak situations, a customer service hotline receives some n = 20,000 calls per
hour.

• Every single of these calls is processed by the call routing application mentioned
earlier in this chapter.
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Table 2.4 Steps performed by a deployed spoken dialog system between a caller stops talking and
the system starts responding. C is a constant contribution to latency, while S and N are variable
durations depending on server load and network speed, respectively

step C|S |N
Complete recognizer time-out (this is the time the recognizer waits until

deciding that the speaker utterance is over and that the silence is not a
natural speaking pause) (ASR)

C (1,000 ms)

Completing speech recognition and delivering the recognition hypothesis
(ASR)

S

Classifying the recognition hypothesis and delivering the semantic
hypothesis (SLU)

S

Returning recognition and semantic hypotheses over the network to the
voice browser

N (<5 ms LAN;
<100 ms WAN)

The voice browser decides whether to ignore the recognition event based
on the semantic hypothesis (in so-called hot-word contexts, the
application is to ignore all user inputs but a number of predefined
classes in order not to interrupt the conversation unnecessarily – see
e.g. Context 11 in Table 2.3)

S

In regular contexts, the voice browser forwards recognition and semantic
hypotheses over the network to the dialog manager

N

The dialog manager processes the voice browser’s output, navigating the
call flow, accessing backend services if required, and preparing the
system’s response (language generation)

S (3 s with, 100 ms
without backend)

The dialog manager sends the next request to the voice browser over the
network providing information about what prompt to play, which
speech recognition and understanding models to load, and a number
of additional parameters such as time-outs, sensitivity, confidence
thresholds, etc. (for details about these, see Sect. 2.3)

N

The dialog manager request gets compiled (or interpreted) by the voice
browser

S

All required prompts (audio files) are requested over the network (they
are usually located on a separate media server). Alternatively, the
prompt text is sent over the network to a text-to-speech module

Na

If applicable, the text-to-speech module generates an audio signal (speech
generation)

S

The audio signal or file is sent back to the voice browser (or directly to
the prompt player) over the network

Na

Speech recognition and understanding models are requested over the
network (they are usually located on a separate media server)

Na

Speech recognition and understanding models are sent back to the voice
browser (or directly to the speech recognizer) over the network

Na

ASR and SLU modules are compiled by providing speech recognition
and understanding models

S a

ASR starts listening –
The prompt starts playing –
aIndicates that this contribution does not apply when server file caching is active

• One call requires 19.1 transactions between voice browser and dialog manager
on average (measured on data from July 2010).

• A single transaction averages at 3,463 bytes sent from the dialog manager and
700 bytes the other way (measured on data from July 2010).
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Table 2.5 Network throughput produced by a number of applications hosted on two data
centers (one for the voice browsers, one for the dialog managers) connected by a single wide
area network connection

Application Customer Throughput/(Mbit/s)

Call router A 2.81
Internet troubleshooting A 1.80
Cable TV troubleshooting A 0.80
Digital phone troubleshooting and FAQ A 0.03
FAQ (about settings and new cable equipment) A 0.07
Customer survey after speaking to a human agent A 0.78
Call-back application after outage clearance A 0.02
Internet troubleshooting B 0.21
Cable TV troubleshooting B 0.33

Sum 6.84

Using these values, one can compute the average load for the dialog manager
outbound connection as

L = 20000 ·19.1 ·3463 bytes/hour= 2.81 Mbit/s. (2.3)

While this amount sounds non-critical assuming that reliable high-speed Internet
connections are available for at least 10 Mbit/s, one has to consider that there may be
other applications sharing the same network connection. Specifically, as the example
application is a call router, it routes callers to human operators or other spoken
dialog systems. When these other systems’ voice browsers and dialog managers are
hosted in the same facilities as those of the call router, most often, they will share
the network connection. In the case of the present example, Table 2.5 shows which
applications were sharing the network connection with the call router and which
expected throughput each of them produced.

Moreover, transactions are not evenly distributed during the 1-h time frame.
Similar to what was discussed in Sect. 1.2, one can calculate the likelihood that
transactions overlap in time, and, based on that, what the expected network latency
caused by overlapping transactions would be.
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