Chapter 14
Discrete Time Martingales and Concentration
Inequalities

For an independent sequence of random variables X, X»,..., the conditional
expectation of the present term of the sequence given the past terms is the same
as its unconditional expectation. Martingales let the conditional expectation depend
on the past terms, but in a special way. Thus, similar to Markov chains, martingales
act as natural models for incorporating dependence into a sequence of observed
data. But the value of the theory of martingales is much more than simply its mod-
eling value. Martingales arise, as natural byproducts of the mathematical analysis
in an amazing variety of problems in probability and statistics. Therefore, results
from martingale theory can be immediately applied to all these situations in order
to make deep and useful conclusions about numerous problems in probability and
statistics. A particular modern set of applications of martingale methods is in the
area of concentration inequalities, which place explicit bounds on probabilities of
large deviations of functions of a set of variables from their mean values. This chap-
ter gives a glimpse into some important concentration inequalities, and explains
how martingale theory enters there. Martingales form a nearly indispensable tool
for probabilists and statisticians alike.

Martingales were introduced into the probability literature by Paul Lévy, who
was interested in finding situations beyond the iid case where the strong law of
large numbers holds. But its principal theoretical studies were done by Joseph Doob.
Two extremely lucid expositions on martingales are Doob (1971) and Heyde (1972).
Some other excellent references for this chapter are Karlin and Taylor (1975), Chung
(1974), Hall and Heyde (1980), Williams (1991), Karatzas and Shreve (1991),
Fristedt and Gray (1997), and Chow and Teicher (2003). Other references are pro-
vided in the sections.

14.1 Illustrative Examples and Applications in Statistics

We start with a simple example, which nevertheless captures the spirit of the idea of
a martingale sequence of random variables.

A. DasGupta, Probability for Statistics and Machine Learning: Fundamentals 463
and Advanced Topics, Springer Texts in Statistics, DOI 10.1007/978-1-4419-9634-3_14,
(© Springer Science+Business Media, LLC 2011



464 14 Discrete Time Martingales and Concentration Inequalities

Example 14.1 (Gambler’s Fortune). Consider a gambler repeatedly playing a fair
game in a casino. Thus, a fair coin is tossed. If heads show, the player wins
$1; if it is tails, the house wins $1. He plays repeatedly. Let X1, X5, ... be the
players’s sequence of wins. Thus, the X; are iid with the common distribution
P(X; =%£1)= %.Theplayer’s fortune after n playsis S, = So+Y ;—, Xi,n > 1.
If we take the player’s initial fortune So to be just zero, then S, = Y_"_; X;. Sup-
pose now the player has finished playing for n times, and he is looking ahead to
what his fortunes will be after he plays the next time. In other words, he wants to
find E(Sn+1 |Sl, e Sn) But,

E(Sp+11S1,...,80)
=E(Sy + Xn+1151,...,80) =S + E(Xp+1|S1,...,80)
= Sy 4 E(Xns1) = Sp +0 = S,.

In the above, E(Xy+1]S1,...,Sy) equals the unconditional expectation of X1
because X,+; is independent of (Xi, X»,..., X,), and hence, independent of
(S1,...,8n).

Notice that the sequence of fortunes Sy, S», ... is not an independent sequence.
There is information in the past sequence of fortunes for predicting the current for-
tune. But the players’s forecast for what his fortune will be after the next round of
play is simply what his fortunes are right now, no more and no less. This is basically
what the martingale property means, and is the reason for equating martingales with
fair games.

Here is the definition. Rigorous treatment of martingales requires use of measure
theory. For the most part, our treatment avoids measure-theory terminology.

Definition 14.1. Let X,,,n > 1 be a sequence of random variables defined on a
common sample space 2 such that £ (| X,|) < oo forall n > 1. The sequence { X}, }
is called a martingale adapted to itself if for each n > 1, E(X,+1 X1, X2,...,
X,) = X, with probability one.

The sequence { X} is called a supermartingale if for eachn > 1, E(Xp41 | X1,
X2,...,Xn) < X, with probability one. The sequence { X} is called a submartin-
gale if foreachn > 1, E(Xp+41 | X1, X2, ..., X»n) = X, with probability one.

Remark. We generally do not mention the adapted to itself qualification when that
is indeed the case. It is sometimes useful to talk about the martingale property with
respect to a different sequence of random variables. This concept is defined below
and Example 14.8 is an example of such a martingale sequence.

Note that X, is a submartingale if and only if —X, is a supermartingale, and that
itis a martingale if and only if it is both a supermartingale and a submartingale. Also
notice that for a martingale sequence X, E(Xn+m) = E(X,) foralln,m > 1;in
other words, E(X,) = E(X;) for all n.

Definition 14.2. Let X,,,n > 1 and Y,,,n > 1 be sequences of random variables
defined on a common sample space 2 such that E(|X,|) < oo foralln > 1.
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The sequence { X, } is called a martingale adapted to the sequence {Y,} if for each
n > 1, X, is a function of Y1,...,Y,, and E(Xy411Y1,Y2,...,Ys) = X, with
probability one.

Some elementary examples are given first.

Example 14.2 (Partial Sums). Let Zy1,Z,,... be independent zero mean ran-
dom variables, and let S, denote the partial sum Z?=1 Z;. Then, clearly,
E(Sn+1|Sl, Sy = Sy + E(Zn+1|Sl, oS = Sh + E(Zn.H) = S,
and so {S,} forms a martingale. More generally, if the common mean of the Z; is
some number u, then S, — nu is a martingale.

Example 14.3 (Sums of Squares). Let Z1,Z,, ... be iid N(0, 1) random variables,
andlet X, = (Z1 +++-+ Zp)*> —n = S2? —n,where S, = Zy + -+ Z,. Then,

E(Xnt1|X1, X2, ..., X»n)
=E[(Zy + 4 Zn)* +2Zns1(Z1 + - + Zn)
+ Z2 X1, Xy Xn]l — (n 4+ 1)
=Xy +n+2(Z1+ -+ Z)E(Zns11X1, Xay ..., Xn)
+ E(Z2 X1, Xy Xn) —(n + 1)
=Xp+n+0+1-mn+1) =X,

and so { X, } forms a martingale sequence.

Actually, we did not use the normality of the Z; at all, and the martingale prop-
erty holds without the normality assumption. Thatis, if Z;, Z5, .. . are iid with mean
zero and variance 02, then S? — no? is a martingale.

Example 14.4. Suppose X1, X2, ... are iid N(0, 1) variables and S, = Z?=1 X;.
Because S, ~ N(0,n), its mgf E(e'S") = /2 Now let Z, = e!Snn1*/2,
where 7 is a fixed real number. Then, E(Zp41|Z1, ..., Zn) = e~ @+D/2 E(tSn
etXnt1|8,) = e~ (102126180 01212 — 7. Therefore, for any real ¢, the sequence
e!Sn=n1%/2 forms a martingale.

Once again, a generalization beyond the normal case is possible; see the chapter
exercises for a general result.

Example 14.5 (Matching Problem). Consider the matching problem. For example,
suppose N people, each wearing a hat, have gathered in a party and at the end of
the party, the N hats are returned to them at random. Those that get their own hats
back then leave the room. The remaining hats are distributed among the remaining
guests at random, and so on. The process continues until all the hats have been given
away. Let X, denote the number of guests still present after the nth round of this
hat returning process.
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At each round, we expect one person to get his own hat back and leave the room.
In other words, E(X, — X,+1) = 1 Vn. In fact, with a little calculation, we even
have

EXns11X1.+. 0. Xn) = EXpg1 — Xn + Xl X1, ... Xn)

= E(Xps1— Xn|X1.o o, Xn) + Xn = —1 + X,

This immediately implies that E(X,+1+n4+1|X1,...,Xp) = —-14+0+1)+X, =
X, + n. Hence the sequence { X, + n} is a martingale.

Example 14.6 (Polya’s Urn). The Pélya urn scheme is defined as follows. Initially,
an urn contains ¢ white and b black balls, a total of ¢ + b balls. One ball is drawn
at random from among all the balls in the urn. It, together with ¢ more balls of its
color is returned to the urn, so that after the first draw, the urn has a + b + ¢ balls.
This process is repeated.

Suppose X; is the indicator of the event A; that a white ball is drawn at the ith
trial, and for given n > 1,S, = X; + --- + X,, which is the total number of
times that a white ball has been drawn in the first n trials. For the sake of notational
simplicity, we take ¢ = 1. Then, the proportion of white balls in the urn just after
the nth trial has been completed is R, = ;’_Fib‘i%.

Elementary arguments show that

a+xy+---+xp

P(Xn+1 = 1|X1 :Xl,...,Xn:xn)Z

a+b+n
Thus,
a+ S,
E(S,s1181,...,8:) = E(Sus1|Sn) =Sy + ———
(Sn+1151 ) (Sn+11Sn) +a—|—b+n
a 1

= E(Rps1|R1.....Ry) =
(Ru1 Ry W= b andl Tatbhantl

[(@+b+n)Ry—a+ Ry] = Ry.

We therefore have the interesting result that in the Pélya urn scheme, the sequence
of proportions of white balls in the urn forms a martingale.

Example 14.7 (The Wright—Fisher Markov Chain). Consider the stationary Markov
chain {X,} on the state space {0,1,2,..., N} with the one-step transition pro-

babilities
IAYERY i\N 7/
o= ) (1=-= .
Pi=A\; (N)( N)
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This is the Wright—Fisher chain in population genetics (see Chapter 10). We show
that X, is a martingale adapted to itself. Indeed, by direct calculation,

E(Xny11X1,.... Xn) = E(Xnt1|Xn)
N j N—j
N\ (Xn)’ X J X
,Z=o AN N N

Example 14.8 (Likelihood Ratios). Suppose X1, X2, ..., X, are iid with a common
density function f, which is one of fp, and f7, two different density functions. The
statistician is supposed to choose from the two densities fg, f1, the one that is truly
generating the observed data x1, X2, ..., xX,. One therefore has the null hypothesis
Hy that f = fo, and the alternate hypothesis that f = f;. The statistician’s decision
is commonly based on the likelihood ratio

fl(Xz
l_[ fo(X)

If A, is large for the observed data, then one concludes that the data values come
from a high-density region of f; and a low-density region of fj, and therefore con-
cludes that the true f generating the observed data is f3.

Suppose now the null hypothesis is actually true; that is, truly, X, X», ... areiid
with the common density fy. Now,

S1(Xn+1)
So(Xn+1)

X
= AuEy, [MV\L---,An}

Ef[Ansi AL Ay] = Efo[ AnlAl,...,An}
Jo(Xn+1)

fl(Xn+l)i|

=ML |:f0(Xn+1)

(because the sequence X1, X, ... are independent)

J1(x) _
[ TS o = A, /R A)dx

= A, x1=A,.

Therefore, the sequence of likelihood ratios forms a martingale under the null hy-
pothesis (i.e., if the true f is fp).

Example 14.9 (Bayes Estimates). Suppose random variables Y, X1, X», ... are de-
fined on a common sample space 2. For given n > 1, (X1, X3,...,X,) has the
joint conditional distribution Py, given that ¥ = 6. From a statistical point of
view, Y is supposed to stand for an unknown parameter, which is formally treated
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as a random variable, and X ) — (X1, X2, ..., Xy) for some specific n, namely
the actual sample size, is the data that the statistician has available to estimate the
unknown parameter. The Bayes estimate of the unknown paramter is the posterior
mean E(Y | X ™) (see Chapter 3).

Denote for eachn > 1, E(Y |X™) = Z,. We show that Z, forms a martin-
gale sequence with respect to the sequence X “; that is, E(Z,+1 |X™) = Z,.
However, this follows on simply observing that by the iterated expectation formula,

Zy=E(Y1XP) = Ex, ., xon [E(YIX®. X0 11)] = E (Zos1 1X®).

Example 14.10 (Square of a Martingale). Suppose X,,, defined on some sample
space €2 is a positive submartingale sequence. For simplicity, let us consider the
case when it is adapted to itself. Thus, forany n > 1, E(Xp41 | X1,..., Xn) = X,
(with probability one). Therefore, for any n > 1,

EX2 01Xt Xn) = [EXng1 [ X1, X))

> X2

Therefore, if welet Z,, = X ,%, then Z, is a submartingale sequence.

If we inspect this example carefully, then we realize that we have only used a very
special case of Jensen’s inequality to establish the needed submartingale property
for the Z, sequence. Furthermore, if the original {X,} sequence is a martingale,
rather than a submartingale, then the positivity restriction on the X, is no longer
necessary. Thus, by simply following the steps of this example, we in fact have the
following simple but widely useful general result.

Theorem 14.1 (Convex Function Theorem). Let X,,n>1 be defined on a
common sample space Q2. Let f be a convex function on R, and let Z,, = f(Xp).

(a) Suppose {X,} is a martingale adapted to some sequence {Yy,}. Then {Z,} is a
submartingale adapted to {Y,}.

(b) Suppose { Xy} is a submartingale adapted to some sequence {Yy}. Assume that
f is in addition nondecreasing. Then {Z,} is a submartingale adapted to {Y,}.

14.2 Stopping Times and Optional Stopping

The optional stopping theorem is one of the most useful results in martingale theory.
It can be explained in gambling terms. Consider a gambler playing a fair game
repeatedly, so that her sequence of fortunes forms a martingale. One might think that
by gaining experience as the game proceeds, and by quitting at a cleverly chosen
opportune time based on the gambler’s experience, a fair game could be turned
into a favorable game. The optional stopping theorem says that this is in fact not
possible, if the gambler does not have unlimited time on her hands and the house
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has limits on how much she can put up on the table. Mathematical formulation of the
optional stopping theorem requires use of stopping times, which were introduced in
Chapter 11 in the context of random walks. We redefine stopping times and give
additional examples below before introducing optional stopping.

14.2.1 Stopping Times

Definition 14.3. Let X, X», ... be a sequence of random variables, all defined on
a common sample space Q2. Let t be a nonnegative integer-valued random vari-
able, also defined on 2. We call t a stopping time adapted to the sequence {X,} if
P(tr < 00) =1, and if for each n > 1, I{;<p) is a function of only X1, X2, ..., Xp.

In other words, 7 is a stopping time adapted to { X, } if for any n > 1, whether or
not T < n can be determined by only knowing X1, X», ..., X,, and provided that t
cannot be infinite with a positive probability.

We have seen some examples of stopping times in Chapter 11. We start with a
few more illustrative examples.

Example 14.11 (Sequential Tests in Statistics). Suppose to start with we have an
infinite sequence of random variables X;, X»,... on a common sample space 2,
and let S, denote the nth partial sum, S, = Z?=1 Xi,n > 1. The X, need not be
independent. Fix numbers —oo < [ < u < co. Then 7 defined as

t=inf{n: S, <lorS, > u},

and T = o0 if ] < S, <uVn > 1, is a stopping time adapted to the sequence {S,}.

A particular case of this arises in sequential testing of hypotheses in statistics.
Suppose an original sequence Z1, Z, . .. is iid from some density f, which equals
either fp or f1. Then, as we have seen above, the likelihood ratio is

_ [T 1(Z)
Hl"l=1 fO(Zi).

The Wald sequential probability ratio test (SPRT) continues sampling as long as A,
remains between two specified numbers a and b,a < b, and stops and decides in
favor of f1 or fy the first time A, > b or < a. If we denote [ = loga,u = logbh,
then Wald’s test waits till the first time log A, = Y 7_, log ;(‘)gj ; =37, Xi (say)
goes above u or below /, and thus the sampling number of Wald’s SPRT is a stopping
time.

An

Example 14.12 (Combining Stopping Times). This example shows a few ways that
we can make new stopping times out of given ones. Suppose 7 is a stopping time
(adapted to some sequence { X, }) and n is a prespecified positive integer. Then t,, =
min(z,n) is a stopping time (adapted to the same sequence). This is because

{tn <k} ={r<k}U{n <k},
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and therefore, 7 being a stopping time adapted to {X,}, for any given k, deciding
whether t, < k requires the knowledge of only X1, ..., Xk.

Suppose 1, 72 are both stopping times, adapted to some sequence {X}. Then
71 + 12 is also a stopping time adapted to the same sequence. To prove this, note
that

{n+n <kl =U, Uisgln=jin=i—j}= Ufzo Ulio Aij-

and whether any A;; occurs depends only on X1, ..., Xk.
For the sake of reference, we collect a set of such facts about stopping times in
the next result. They are all easy to prove.

Theorem 14.2. (a) Let t be a stopping time adapted to some sequence { X, }. Then,
for any given n > 1, min(z, n) is also a stopping time adapted to { X, }.

(b) Let 11, 12 be stopping times adapted to { X, }. Then each of T + 12, min(ty, 12),
max(ty, 72) is a stopping time adapted to { X }.

(c) Let {tx,k > 1} be a countable family of stopping times, each adapted to {X,,}.
Let

T =infr; 7T =suptg; T = lim 7,
k k k—o00

where T,7T, and t are defined pointwise, and it is assumed that the limit T exists
almost surely. Then each of T, T and t is a stopping time adapted to { X, }.

14.2.2 Optional Stopping

The most significant derivative of introducing the concept of stopping times is the
optional stopping theorem. At the expense of using some potentially hard to verify
conditions, stronger versions of our statement of the optional stopping theorem can
be stated. We choose to opt for simplicity of the statement over greater generality,
and refer to more general versions (which are useful!). The main message of the op-
tional stopping theorem is that a gambler cannot convert a fair game into a favorable
one by using clever quitting strategies.

Theorem 14.3 (Optional Stopping Theorem). Let {X,,,n > 0} be a submartin-
gale adapted to some sequence {Yy}, and Tt a stopping time adapted to the same
sequence. For n > 0, let v, = min(z,n). Then {X,} is also a submartingale
adapted to {Yy,}, and for eachn > 0,

E(XO) = E(X'Cn) = E(Xn)
In particular, if

{Xn}is a martingale, E(|X;|) < 0o, and lim E(X,) = E(X:).
n—oo
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then
E(X7) = E(Xo).

Remark. 1t is of course unsatisfactory to simply demand that E(|X;|) < oo and
lim, 00 E(Xg,) = E(X;). What we need are simple sufficient conditions that a
user can verify relatively easily. This is addressed following the proof of the above
theorem.

Proof of Theorem. For simplicity, we give the proof only for the case when {X,,} is
adapted to itself. The main step involved is to notice the identity

n—1

W = Xe, =Y Xilg—iy + Xnlezny. (%)
i=0

for all n > 0. It follows from this identity and the submartingale property of the
{X,} sequence that

E(Wn+1 |X0, D) Xn)

n
=Y EXilte=iy| Xo.. ... Xn) + EXni1liz=ny [ Xo. ... Xn)
i=0

n
= ZX,-I{,,=Z~} + Lo E(Xnv11Xo, ..., X5)
i=0

n
>3 Xilimiy + Xultesny = Xo, = Wi
i=0

Thus, as claimed, W, = {X,,} is a submartinagle adapted to the original {X,}
sequence. It follows that

E(Xq,) = E(W) = E(Wo) = E(Xo).

To complete the proof of the theorem, we need the reverse inequality E(W,) <
E(X,). This too follows from the same identity (x) given at the beginning of the
proof of this theorem, and on using the additional inequality

E(Xnlz=iy|Xo,....Xi)
= I E(Xn|Xo,....Xi) > Iz=i3 X,

because { X} is a submartingale. If this bound on X; /;—; is plugged into our basic
identity (x) above, the reverse inequality follows.

The remaining claim, when {X,} is in fact a martingale, follows immediately
from the two inequalities E£(Xo) < E(W,) < E(X»). O
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14.2.3 Sufficient Conditions for Optional Stopping Theorem

Easy examples show that the assertion E(X;) = E(X() for a martingale sequence
{X,} cannot hold without some control on the stopping time t. We first provide
a simple example where the assertion of the optional stopping theorem fails. In
looking for such counterexamples, it is useful to construct the stopping time in a
way that when we stop, the value of the stopped martingale is a constant; that is, X
is a constant.

Example 14.13 (An Example Where the Optional Stopping Theorem Fails). Con-
sider again the gambling example, or what really is the simple symmetric random
walk, with X; iid having the common distribution P(X; = +£1) = %, and
Sp = Z:'l=1 Xi,n > 1. We define Sy = 0. We know S, to be a martingale. Consider
now the stopping time

r=inf{n >0:5, =1}.

We know from Chapter 11 that the one-dimensional simple symmetric random walk
is recurrent; thus, P(t < oo) = 1. Note that S; = 1, and so, E(S;) = 1. However,
E(So) = E(S,) = 0. So, the assertion of the optional stopping theorem does not
hold.

What is going on in this example is that we do not have enough control on the
stopping time 7. Although the random walk visits all its states (infinitely often) with
probability one, the recurrence times are infinite on the average. Thus, T can be
uncontrollably large. Indeed, the assumption

lim E(Sninz,n)) = E(So)(= 1)

does not hold. Roughly speaking, P(t > n) goes to zero at the rate \/Lﬁ and if the
random walk still has not reached positive territory by time 7, then it has traveled
to some distance roughly of the order of —./n. These two now exactly balance
out, so that E(Swin(z,n)) [{z>n} does not go to zero. This causes the assumption
limy 00 E (Smin(z,n)) = £(S7) = 1 to fail.

Thus, our search for sufficient conditions in the optional stopping theorem should
be directed at finding nice enough conditions that ensure that the stopping time t
cannot get too large with a high probability. The next two theorems provide such a
set of aesthetically attractive sufficient conditions. It is not hard to prove these two
theorems. We refer the reader to Fristedt and Gray (1997, Chapter 24) for proofs of
these two theorems.

Theorem 14.4. Suppose {X,,n > 0} is a martingale, adapted to itself, and T a
stopping time adapted to the same sequence. Suppose any one of the following con-
ditions holds.

(a) Forsomen < oo, P(t <n)=1.
(b) For some nonnegative random variable Z with E(Z) < oo, the martingale
sequence { X, } satisfies | X,| < Z foralln > 0.
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(c) For some positive and finite ¢,| X,+1 — Xu| < c foralln > 0, E(|Xo|) < o0,
and E(1) < oo.
(d) For some finite constant ¢, E(X2) < ¢ foralln > 0.

Then E(X;) = E(Xop).

Remark. It is important to keep in mind that none of these four conditions is
necessary for the equality E(X;) = E(Xo) to hold. We recall from our discussion
of uniform integrability in Chapter 7 that conditions (b) and (d) in Theorem 14.4
each imply that the sequence { X, } is uniformly integrable. In fact, it may be shown
that under the weaker condition that our martingale sequence {X,} is uniformly
integrable, the equality E(X;) = E(Xp) holds. The important role played by uni-
form integrability in martingale theory reappears when we discuss convergence of
martingales.

An important case where the equality holds with essentially the minimum re-
quirements is the special case of a random walk. We precisely describe this im-
mediately below. The point is that the four sufficient conditions are all-purpose
conditions. But if the martingale has a special structure, then the conditions can
sometimes be weakened. Here is such a result for a special martingale, namely the
random walk.

Theorem 14.5. Let Z1,Z,, ... be an iid sequence such that E(|Z1]) < oo. Let
Sw = Y.'_1Zi,n > 1. Let T be any stopping time adapted to {S,} such that
E(t) < oo. Consider the martingale sequence X, = S, — nu,n > 1, where
w = E(Z1). Then the equality E(X.) = E(X1) = 0 holds.

Remark. The special structure of the random walk martingale allows us to conclude
the assertion of the optional stopping theorem, without requiring the bounded incre-
ments condition | X, 11 — X, | < ¢, which was included in the all-purpose sufficient
condition in Theorem 14.4.

Example 14.14 (Weighted Rademacher Series). Let X1, X5, ... be a sequence of iid

Rademacher variables with common distribution P(X; = £1) = % Forn > 1, let
Sp=3"_, l%{-, where o > % Because X; are independent and £ (iXO,L) = 0 for all
i, S, forms a martingale sequence (see Example 14.2). On the other hand,

n

E(S?) = Var(S,) = )

i=1

"1 21
=D e S = 0w <o,

i=1 i=1

Var(X;)
20

where ¢(z) is the Riemann zeta function {(z) = Y oo, ,%,z > 1. Therefore, if
a > %, E(S?) < ¢ = {(2a) for all n, and hence by our theorem above, E(S;) = 0
holds for any stopping time 7 adapted to {S,}.
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Example 14.15 (The Simple Random Walk). Consider the one-dimensional random
walk with iid steps X;, having the common distribution P(X; = 1) = p, P(X; =
-1)=¢q,0<p<1,p+q=1Then E(X;) = p—q = u (say), and S, — npu,
where S, = Z?:l X, is a martingale. We also have, for any 7,

[Sn+1 =+ D —(Sp —np)| = [Xnt1 —p| <2.

Furthermore, E(|S; — j|) is clearly finite. Therefore, for any stopping time t with
a finite expectation, by using our theorem above, the equality E(S; — ut) = 0, or
equivalently, £(S;) = wE(r) holds. Recall from Chapter 11 that this is a special
case of Wald’s identity. Wald’s identity is revisited in the next section.

14.2.4 Applications of Optional Stopping

We provide a few applications of the optional stopping theorem. The optional stop-
ping theorem also has important applications to martingale inequalities, which is
our topic in the next section.

Perhaps the two best general applications of the optional stopping theorem are
two identities, known as Wald identities. Of these, the first Wald identity is already
known to us; see Chapter 11. We connect that identity to martingale theory and
present a second identity, which was not presented in Chapter 11.

Theorem 14.6 (Wald’s First and Second Identity). Ler X1, X»,... be a se-
quence of iid random variables, defined on a common sample space 2. Let
Sn = Y.i_1 Xi,n > 1. Let T be a stopping time adapted to the sequence {Sy}
and suppose that E(t) < oo.

(a) Suppose E(|X1]) < oo and E(X1) = [ (which need not be zero). Then
E(S7) = p(E1).
(b) Suppose E(X1) =0, E(X?) = 0% < oc. Then Var(S;) = 0%(E7).

Proof. Both parts of this theorem follow from Theorem 14.5. For part (a), apply
Theorem 14.5 to the martingale sequence S, — nu to conclude that E(S; — tpu) =
0 = E(S;) = u(E1). For part (b), because © = E(X;) has now been assumed to
be zero, by applying part (a) of this theorem,

Var(Se) = E(S; — E[S¢])> = E(S: —0)> = E(S}).
Next note that because the X; are independent,

Var(S,,+1 |Sl, ey Sn) = Var(Xn+1) = 0'2
= E(S2,IS1,....8:) = SZ + 02
= E(S}. —(n+1)0|S1,....8,) = S} —no?;
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that is, S2 — no? is a martingale sequence adapted to the S, sequence. From here,
it follows that E(S2 — t0?) = E(S? — 0%) = 0, which means

Var(Se) = E(S7) = 0*(Ev),

which is what part (b) says. O

Example 14.16 (Expected Hitting Times for a Random Walk). The Wald identity
may be used to evaluate the expected hitting time of a given level by a random walk.
Specifically, let S, be the one-dimensional simple symmetric random walk with the
iid steps having the common distribution P(X; = +1) = %, Let x be any given
positive integer and consider the first passage time

T =inf{n > 0: S, = x}.

We know from general random walk theory (Chapter 11) that P(z, < oo0) = 1.
Also, obviously E(|X1]) = 1 < oo, and u = E(X;) = 0. Therefore, if E(ty)
is finite, Wald’s identity E(S;,) = uE(tyx) will hold. However, S;, = x with
probability one, and hence, E(S;, ) = x. It follows that the equality x = 0 x E(tx)
cannot hold for any finite value of E(ty). In other words, for any positive x, the
expected hitting time of x must be infinite for the simple symmetric random walk.
The same argument also works for negative x.

Example 14.17 (Gambler’s Ruin). Now let us revisit the so-called gambler’s ruin
problem, wherein the gambler quits when he either goes broke, or attains a prespec-
ified amount of fortune (see Chapter 10). In other words, the gambler waits for the
random walk S, to hit one of two integers 0, b, b > 0. Suppose a < b is the amount
of money with which the gambler walked in, so that the gambler’s sequence of for-
tunes is the random walk S, = Z?zl X; + So, where So = a, and the steps are
still iid with P(X; = 1) = % Formally, let

T =1yp =inf{n >0:S, € {0,b}}.
By applying the optional stopping theorem,
E(S:) = 0x P(S; = 0) + b[1 — P(S; = 0)] = E(So) = a:

note that we have implicitly assumed the validity of the optional stopping theorem
in the last step (which is true in this example; why?). Rearranging terms, we deduce
that P(S; = 0) = 22, or equivalently, P(S; = b) = 4.

Example 14.18 (Generalized Wald Identity). The two identities of Wald given above
assume only the existence of the first and the second moment of X;, respectively.
If we make the stronger assumption that the X; have a finite mgf, then a more
embracing martingale identity can be proved, from which the two Wald identities
given above fall out as special cases. This generalized Wald identity is presented in
this example.
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The basic idea is the same as before, which is to think of a suitable martingale,
and apply the optional stopping theorem to it. Suppose then that X, X5, ... is an
iid sequence, with the mgf ¥ (t) = E(e’®i), which we assume to be finite in some
nonempty interval containing zero. The martingale that works for our purpose in
this example is

Zy =[] """, n=>0,

where, as usual, S, = Z?=1 X;, and we take So = 0. The number ¢ is fixed, and is
often cleverly chosen in specific applications.

The special normal case of this martingale was seen in Example 14.4. Exactly
the same proof works in order to show that Z, as defined above is a martingale in
general, not just the normal case. Formally, therefore, whenever we have a stopping
time t such that the optional stopping theorem is valid for this martingale sequence
Z,, we have the identity

E(Z:) = E[(y (1)) "e'"5"] = E(Zy) = 1.

Once we have this general identity, we can manipulate it for special stopping times
7 to make useful conclusions in specific applications.

Example 14.19 (Error Probabilities of Wald’s SPRT). As a specific application of
historical importance in statistics, consider again the example of Wald’s SPRT
(Example 14.11). The setup is that we are acquiring iid observations Zi, Z», ...
from a parametric family of densities f(x|6), and we have to decide between the
two hypotheses Hy : 8 = 6 (the null hypothesis), and H; : 6 = 0; (the alternative
hypothesis). As was explained in Example 14.11, we continue sampling as long as
[ < S, <uforsomel,u,l < u,and stop and decide in favor of H; or Hy when for
the first time S, > u or S, <; here, S, is the log likelihood ratio

[Ti=, f(Zi16v)

[1i=1 £(Zi160)

~ FZi16)
Zlf@ww 2 Koy,

i=1

Sp =log A, = log

Therefore, in this particular case, the relevant stopping time is
t=inf{n >0:S, & (,u)}.

The type I error probability of our test is the probability that the test would reject
H, if Hp happened to be true. Denoting the type I error probability as ¢, we have
a = Pg—g,(St > u). We use Wald’s generalized identity to approximate «. Exact
calculation of « is practically impossible except in stray cases.
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To proceed with this approximation, suppose there is a number ¢ # 0 such that
Eg—g, (e’Xi) = 1. In our notation for the generalized Wald identity, this makes
¥ (¢) = 1 for this judiciously chosen ¢. If we now make the assumption (of some
faith) that when S,, leaves the interval (/, u), it does not overshoot the limits /, # by
too much, we should have

Se ~ ulis 2y + Uis. <1y
Therefore, by applying Wald’s generalized identity,

1 = Egzgo(etsf) ~e'a + etl(l —a)

1 — etl
=S ar Sl
This is the classic Wald approximation to the type I error probability of the SPRT
(sequential probability ratio test). A similar approximation exists for the type II
error probability of the SPRT, which is the probability that the test will accept Hy if
Hj happens to be false.

14.3 Martingale and Concentration Inequalities

The optional stopping theorem is also the main tool in proving a collection of impor-
tant inequalities involving martingales. To provide a little context for such inequali-
ties, consider the special martingale of a random walk, namely S, = Z?:l Xi,n >
1, where we assume the X; to be iid mean zero random variables with a fi-
nite variance o2. If we take any fixed n, and any fixed A > 0, then simply by

2
Chebyshev’sinequality, P(|S,| > 1) < % Kolmogorov’s inequality (see Chap-
2
ter 8) makes the stronger assertion P(max;<x<y |Sg| = 1) < % A fundamental

inequality in martingale theory says that such an inequality holds for more general
martingales, and not just the special martingale of a random walk.

14.3.1 Maximal Inequality

Theorem 14.7 (Martingale Maximal Inequality).

(a) Let {Xn,n > 0} be a nonnegative submartingale adapted to some sequence
{Yu}, and A any fixed positive number. Then, for any n > 0,

) E(Xn)

< —".

P X > A
(max > o

0<k<n
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(b) Let {X,,,n > 0} be a martingale adapted to some sequence {Yy}, and A any
fixed positive number. Suppose p > 1 is such that E(|Xx|?) < oo for any
k > 0. Then, for any n > 0,

E (1Xnl” lmaxoin 1Xe223) _ E(1Xal?)
AP - AP ’

P(max | Xr| Z/X) <

0<k<n

Proof. Note that the final inequality in part (b) follows from part (a) by use of
Theorem 14.1 because f(z) = |z|? is a nonnegative convex function, and therefore
if {X},} is a martingale adapted to some sequence {Y5}, then for p > 1, {| X,|?}is a
nonnegative submartingale (adapted to that same sequence {Y}). The first inequal-
ity in part (b) is proved by partitioning the event {maxo<g <, | Xx| = A} into disjoint
events of the form {|Xo| < A,...|X;| < A,|Xi+1| = A}, and then using simple
bounds on each of these partitioning sets. This is left as an exercise.
For proving part (a) of this theorem, define the stopping time

T =inf{k > 0: X; > A},

and 7, = min(z, n).
Then, by the optional stopping theorem,

E(Xn) = E(X‘ry,) =F (th I{max()skgn sz)t}) + E(th I{maxosksn Xk<)t})

z E (an I{mﬂx()sksn Xy Z/\})

(since the { X, } sequence has been assumed to be nonnegative)

> \E [I{maXO§k§n sz/l}] = AP ( max Xk > )L) s

0<k<n
which is what part (a) of this theorem says. O

Part (a) of the theorem above assumes the submartingale {X,} to be nonnega-
tive. This assumption is in fact not needed. In addition, the inequality itself can be
somewhat strengthened. The following improved version of the maximal inequality
can be proved by minor modifications of the argument given above; we record the
stronger version, which is important for applications.

Theorem 14.8 (A Better Maximal Inequality). Let {X,,,n > 0} be a submartin-
gale adapted to some sequence {Yy}, and A any fixed positive number. Then, for any
n=>0,
EQXGH _ E(Xa))

AT A

P(max szk)f

0<k<n

where for any real number x, xT = max(x,0) < |x|.
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Example 14.20 (Sharper Bounds Near Zero). The bounds in Theorem 14.7 and
Theorem 14.8 are not useful unless A is large, because the upper bounds blow up
as A — 0. However, if we work a little harder, then useful bounds can be derived
at least in some cases even when A is near zero. This example illustrates such a
calculation.

Let {X,} be a zero mean martingale, and suppose 0,? = Var(Xy) < oo for
all k. For n > 0, denote M, = maxo<k<n Xk. Fix a constant ¢ > 0; the constant
¢ is chosen later suitably. By Theorem 14.1, {(X; + ¢)?} is a submartingale, and
therefore, by Theorem 14.8,

P(ank)zP(Mn—i-cz)u—i-c):P(m]?x (Xk—i-c)Z/\—i-c)
0<k=<n

E(Xy + ¢)? 4o,
< = .
~ (A40)? 24+ 2ch + A2

Therefore,

2 2
c’+o

P(M, > ) <inf ——2 .

(My = )—clr>10c2+2c)t+)u2

. (;2-‘,-0% . . e . . .
The function e rywm R uniquely minimized at the root of the derivative equation

c c+Ai _0
2+02 2+2eA+A2
2
o
<:>c2)t+c(kz—o,f)—ko,f=0<:>c=7".

Plugging this value of ¢, we get

2 402
P(M, > 1) < inf —2
(M = )_CIEOCZ+2C)L+)LZ
0,
A2 402’

for any A > 0. Clearly, this bound is strictly smaller than one for any A > 0.

Example 14.21 (Bounds on the Moments of the Maximum). Here is a clever applica-
tion of Theorem 14.7 to bounding the moments of M, = maxg<x<y, |Xk| in terms
of the same moment of | X, | for a martingale sequence { X}, }. The example is a very
nice illustration of the art of putting simple things together to get a pretty end result.

Suppose that {X,,n > 0} is a martingale sequence, and p > 1 is such that
E(|Xk|?) < oo for every k. The proof of the result in this example makes use
of Holder’s inequality E(|XY|) < (E|X|%)Y*(E|Y|#)Y/8, where o, f > 1, and
B = ;% (see Chapter 1).
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Proceeding,

E(MP) :/ pAPTLP(M, > L)d A
0

o0
- [ o E WSl
0

(by using part (b) of Theorem 14.7)

[es) M,
= [P E (Xl ) d2 = [mm ( / AP—%M)}
0 0

(by Fubini’s theorem)

mpP! P _
E| plX = E(|X,|MP1
[pl n|p_1] P (1Xn|MP™Y)

IA

LB Ix 7))
p j—

(by using Holder’s inequality with & = p, f = -£).
Transferring [E (M,F)]?~D/P to the left side,

[EMP)Y? < %[Eanl”]l/”.

In particular, for a square integrable martingale, by using p = 2 in the inequality
we just derived,

[E(M)V? < 2[E(XP)]V? = E(MP) < 4E(X}).

a very pretty and useful inequality.

14.3.2 % Inequalities of Burkholder, Davis, and Gundy

The previous two examples indicated applications of various versions of the
maximal inequality to obtaining bounds on the moments of the maximum
M, = maxg<k<y, |Xk| for a martingale sequence {X,}. The maximal inequality
tells us how to obtain bounds on the moments from bounds on the tail probability.
In particular, if the martingale is square integrable, that is, if E(X If) < oo for any
k, then the maximal inequality leads to a bound on the second moment of M,, in
terms of the second moment of the last term, namely E(X?2).
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There is a useful connection between E(X?2) and E(D?2) for a general square
integrable martingale {X,}, where D2 = Y"_ (X; — X;—1)%. The connection,
which we prove below, is the neat identity E(X?) — E(X2) = E(D?), so that if
Xo = 0, then E(X?) and E(D?) are equal. Therefore, we can think of the maximal
inequality and the implied moment bounds in terms of £(D2), because E(D?) and
E(X,%) are, after all, equal. It was shown in Burkholder (1973), Davis (1970), and
Burkholder, Davis, and Gundy (1972) that one can bound expectations of far more
general functions of M, in terms of expectations of the same functions of D,; in
particular, one can bound the pth moment of M, from both directions by multiples
of the pth moment of D, for general p > 1. In some sense, the moments of M,
and the moments of D, grow in the same order; if one can control the increments of
the martingale sequence, then one can control the maximum. Three such important
bounds are presented in this section for reference and completeness. But first, we
demonstrate the promised connection between E(X?2) and E(D?), an interesting
result in its own right.

Proposition. Suppose {X,,,n > 0} is a martingale. Let V; = X; — X;j—1,i > 1,
and D} =Y"7_, Viz. Suppose E(X]f) < oo foreach k > 0. Then, for anyn > 1,

E(D) = E(X;) — E(X3).

Proof.

E(D}) =Y El(Xi = Xi—1)’l = D E[Xi(Xi = Xi—1) = Xi—1(X; — X;—1)]

i=1 i=1

=Y E(E[Xi(X; — Xi~1) | Xo..... Xi1])

i=1

=Y E(E[Xi1(Xi = Xi—1) | Xo..... Xi1])
i=1
= Y {E(E[X? |Xo..... Xi1]) = E(Xi 1 E[X; [ Xo..... Xi 1))}

i=1

n
—Y E(Xi1E[Xi [Xo..... Xia] = X2 )

i=1

=Y AEX?)— E(XZ)— ) E(X7, —X7)

i=1 i=1

= E(X;) — E(X3). o
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Remark. In view of this result, we can restate part (b) of Theorem 14.7 for the case
p = 2 in the following manner.

Theorem 14.9. Let {X,,,n > 0} be a martingale such that Xo = 0 and E(X,f) <
oo for all k > 1. Let A be any fixed positive number, and for any n > 1, M,, =
Mmaxo<k<pn |Xk|- Then,
E(Dp)

22
The inequalities of Burkholder, Davis, and Gundy show how to establish bounds
on moments of M,, in terms of the same moments of D,,. To describe some of these
bounds, we first need a little notation.

P(M,>2) <

Given a real-valued random variable X, and a positive number p, the L, norm
of X is defined as || X||, = [E(|X|1’)]%, assuming that £ (] X|?) < oo. Obviously,

if X is already a nonnegative random variable, then || X ||, = [E(X? )]%, Here
are two specific bounds on the L, norms of M,, in terms of the L, norms of D,.
Of these, the case p > 1 was considered in works of Donald Burkholder (e.g.,
Burkholder (1973)); the case p = 1 needed a separate treatment, and was dealt with
in Davis (1970).

Theorem 14.10. (a) Suppose {X,,n > 0} is a martingale, with Xo = 0. Suppose
for some given p > 1, || Xy||p < oo forall k > 1. Then, for anyn > 1,
p—1 18])3/2

——75[Dnllp < | Mnllp < T

18372 T)3/2”D”||p'

(b) There exist universal positive constants c1, ¢y such that
C1||Dn||1 = ||Mn||1 = C2||Dn||1-

Moreover, the constant c, may be taken to be V3.
For p > 1, the functions x — |x|?P are convex. It was shown in Burkholder,
Davis, and Gundy (1972) that bounds of the same nature as in the theorem above
hold for general convex functions. The exact result says the following.

Theorem 14.11. Suppose {X,,n > 0} is a martingale with Xo = 0 and
¢ : R — R a convex function. Then there exist universal positive constants
¢y, Cyp,cyp < Cy, depending only on the function ¢, such that for anyn > 1,

cp E(@(Dn)) = E(@(My)) = CoE($(Dp)).

Remark. Note that apart from the explicit constants, both parts of Theorem 14.10
follow as special cases of this theorem. To our knowledge, no explicit choices of
¢¢, Cy are known.
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14.3.3 Inequalities of Hoeffding and Azuma

The classical inequality of Hoeffding (Hoeffding (1963); see Chapter 8) gives
bounds on the probability of a large deviation of a partial sum of bounded iid ran-
dom variables from its mean value. The message of that inequality is that if the
iid summands can be controlled, then the deviations of the sum from its mean can
be controlled. Inequalities on probabilities of the form P(|f(X1, X2,..., X») —
E(f(X1,X2,...,Xn))| > t) are called concentration inequalities. An equally
classic concentration inequality of K. Azuma (Azuma (1967)) shows that a Ho-
effding type inequality holds for a martingale sequence, provided that the incre-
ments Xy — Xg—1 vary in bounded intervals. The analogy between the iid case
and the martingale case is then clear. In the iid case, we can control S, =
Z?=1 X; if we can control the summands X;; in the martingale case, we can con-
trol X;, — Xo = ZLI(X,- — X;—1) if we can control the summands X; — X;_;.
Here is Azuma’s inequality in its classic form; a more general form is given
afterwards.

Theorem 14.12 (Azuma’s Inequality). Suppose {X,,n > 0} is a martingale such
that Vi = | X; — Xi—1| < ci, where c; are positive constants. Then, for any positive
numbert and anyn > 1,

__ 12
(@) P(Xny —Xo>1) <e 2Xi=17
__ 2
(b) P(Xp—Xo <—t) <e 2Zim1.
t2

(¢c) P(|Xn— Xo| > 1) <2¢ 2Xi=17.

The proof of part (b) is exactly the same as that of part (a), and part (c) is an im-
mediate consequence of parts (a) and (b). So only part (a) requires a proof. For this,
we need a classic convexity lemma, originally used in Hoeffding (1963), and then a
generalized version of it. Here is the first lemma.

(Hoeffding’s Lemma). Let X be a zero mean random variable such that P(a <
X < b) =1, where a, b are finite constants. Then, for any s > 0,

2 (ha)?
E(eX) <5

Remark. Tt is important to note that the bound in this lemma depends only on b — a
and the mean zero assumption, but not on the individual values of @, b.

Proof of Hoeffding’s Lemma. The proof uses convexity of the function x — e**,
and a calculus inequality on the function ¢ (1) = —pu + log(1 — p + pe*),u > 0,
where p is a fixed number in (0, 1).
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First, by the convexity of x — e**, fora < x < b,

sa

sx - X =4 b—x

¢ “b-—a b—a

Taking an expectation,
E@X) = pe” + (1= p)e™®. (+)

where p = =% note that p belongs to [0, 1]. It now remains to show that pe* b4

sa s2(b—a)? . .
(1 —p)e*® <e 8 . Towards this, write

pesb + (1 _ p)esa — % [1 —p+ pes(b—a):l — e—sp(b—a) [1 —p+ pes(b—a)]
_ e—sp(b—a)+log(1—p+pe‘(b*“)) — o~ Putlog(1—p+pe")

writing u for s(b — a).
A relatively simple calculus argument shows that the function ¢ (1) = —pu +

log(1 — p 4+ pe") is bounded above by % for all u > 0. Plugging this bound in ()
results in the bound in the lemma.

(Generalized Hoeffding Lemma). Let V, Z be two random variables such that
E(V|Z)=0,and P(f(Z) <V < f(Z)+¢) =1

for some function f(Z) of Z and some positive constant c. Then, for any s > 0,

$202

E@EV|Z)<e ® .
The generalized Hoeffding lemma has the same proof as Hoeffding’s lemma itself.

Refer to the remark that we made just before the proof of Hoeffding’s lemma. It is
the generalized Hoeffding lemma that gives us Azuma’s inequality.

Proof of Azuma’s Inequality. Still using the notation V; = X; — X;_;, then, with
s >0,

P(Xy = Xo 2 1) = P (e®n7X0) = o) < ¢=1 (500 —X0))
—e¢ SE (es Yo Vi) — e StE (es Yizi V,'+sV,,)
— e E (eSZ?;f Vig [eSV” 1 Xo, .. .,X,,_l])

-1 2(2, )2
ST (esz,-”_l R

IA
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(because E(Vy | Xo, ..., Xn—1) = 0 by the martingale property of {X},}, and then
by applying the generalized Hoeffding lemma)

SZ(‘% n—1 52 er‘l=1 “1‘2
=e¢ e 2 E (eszi=1 V’) <e e 2,

by repeating the same argument.
This latest inequality is true for any s > 0. Therefore, by minimizing the bound

overs > 0,
25 -

i =1 TSy 2

P(X,—Xo>1) < inge_sze T = 2Xi=19
5>

where the infimum over s is easily established by a simple calculus argument. This
proves Azuma’s inequality. O

14.3.4 = Inequalities of McDiarmid and Devroye

McDiarmid (1989) and Devroye (1991) use novel martingale techniques to derive
concentration inequalities and variance bounds for potentially complicated func-
tions of independent random variables. The only requirement is that the function
should not change by arbitrarily large amounts if all but one of the coordinates
remain fixed. The first result below says that functions of certain types are concen-
trated near their mean value with a high probability.

Theorem 14.13. Suppose Xi,...,Xn are independent random variables, and
f(x1,...,xn) is a function such that for each i,1 < i < n, there exist finite
constant ¢; = ¢; y such that

(X1, e Xim 1, Xi s Xid 1y e ey Xn) — f(X1y ey Xim 1, X)X 1y e o5 Xn)| S i
forallxl,...,xi,xlf,...,xn.Letlbe any positive number. Then,
22 5
(@) P(f —E(f)=1) <e =1,
22
(b) P(f —E(f) =) e Y=,

2,2

(c) P(Lf —E(f) = 1) <2¢ Xi=17 .

Proof. Once again, only part (a) is proved, because (b) is proved exactly analo-
gously, and (c) follows by adding the inequalities in (a) and (b). For notational
convenience, we take E( f') to be zero; this allows us to write f in place of f—E(f)
below.
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The trick is to decompose f as f = Y ;_, Vi, where {V;} is a martingale
difference sequence such that it can be bounded in both directions, Zy < Vi < W,
in a manner so that Wy — Z; < ¢,k = 1,2,...,n. Then, Azuma’s inequality
applies and the inequality of this theorem falls out. Construct the random variables
Vie, Zi, Wy, as follows.

Define

n(xy,...,xx) = E[f(X1,..., Xn) | X1 = x1,..., X = x¢];
Vi =n(X1,...,Xx) —n(Xy1,..., Xg—1) fork > 2, and V7 = n(X1);
Zr =infn(Xq,..., Xp—1,xx) = n(X1,..., Xp—1) fork > 2,
Xk

and Z; = inf n(x1);
x1
Wi = supn(X1, ..., Xk—1,x) — n(X1,..., Xg—1) fork > 2,
Xk

and W = sup n(xy).
X]

Now observe the following facts.

(a) By construction, Z; < Vi < W; foreach k.
(b) By hypothesis, Wy — Zy < ¢ foreach k.

© f(X1oo Xn) = Yoy Vi

(d) {Vi}] forms a martingale difference sequence.

Therefore, we can once again apply the generalized Hoeffding lemma and simply
repeat the proof of Azuma’s inequality to obtain the inequality in part (a) of this
theorem. O

An interesting feature of McDiarmid’s inequality is that martingale methods were
used to derive a probability inequality involving independent random variables. It
turns out that martingale methods may also be used to derive variance bounds for
functions of independent random variables. The following variance bound is taken
from Devroye (1991).

Theorem 14.14. Suppose Xi,..., X, are independent random variables and
f(x1,...,x) is a function that satisfies the conditions of Theorem 14.13. Then,
Yot

Var(f(X1,...,Xn)) < 2

Proof. We use the same notation as in the proof of Theorem 14.13. The proof con-
sists of showing Var(f) = E(}_7_, V%) and E(V?) < (c?/4).
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To prove the first fact, we use the martingale decomposition as in Theorem 14.13
to get

win-w($0) - [(50)

i=1 i=1

=Y EVA1+2) Y EVV)]

i=1 i<j
=Y EWV21+2) > EWVE[V;|X1..... X,
i=1 i<j
=D EWVA+2) Y E(Vix0) =) E[V7].
i=1 i<j i=1

To prove the second fact, we use an extremal property of two-point distribu-
tions, namely that the two-point distribution placing probability % at each of a,b
maximizes the variance among all distributions supported on [a, b], and that this
two-point distribution has variance (b_4“)2. From the proof of Theorem 14.13,
Z; < Vi < W, < Z; + c;. Therefore, the conditional variance of V; given

2
X1,...,X;—1 is at most CT', and the conditional mean is zero. Putting these two

2
facts together, we get our desired bound E(Viz) < %, which gives the variance

bound stated in this theorem. O

The two theorems in this section give useful probability and variance bounds
in many complicated problems in which direct evaluation would be essentially
impossible.

Example 14.22 (The Kolmogorov—Smirnov Statistic). Suppose X1, X2, ..., X, are
iid observations from some continuous CDF F(x) on the real line. It is some-
times of interest in statistics to test the hypothesis that FF = Fj, some specific
CDF on the real line. By the Glivenko—Cantelli theorem (see Chapter 7), the em-
pirical CDF F,, converges uniformly to the true CDF with probability one. So
a measure of discrepancy of the observed data from the postulated CDF Fj is
An = sup, |F,(x) — Fo(x)|. The Kolmogorov—Smirnov statistic is Dy = /nAy.
Exact calculations with D, are very cumbersome, because of the complicated nature
of its distribution for given n. The purpose of this example is to use the inequalities
of McDiarmid and Devroye to get useful bounds on its tail probabilities and the
variance.

The function f to which we would apply the inequalities of McDiarmid and De-
vroye is f(X1,..., Xn) = sup, | Fn(x) — Fo(x)|. We need to show that if just one
data value changes, then the function f cannot change by too large an amount.
Indeed, consider two datasets, {X1,...,X;,..., Xy} and {Xl,...,Xi’,...,Xn},
where in the second set the X/ value is different from X;. Let the corresponding
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empirical CDFs be Fj,, F,;. Fix an x. The number of observations < x in the two
datasets can differ by at most one, and therefore | F,, (x) — F, (x)| < % This holds
for any x. By the triangular inequality,

| sup | F (x) — Fo(x)| = sup | F,;(x) — Fo(x)|| < sup|Fy(x) — F,(x)| < 1/n.

Thus, we may use ¢; = ¢ = % in the inequalities of McDiarmid and Devroye.
First, by simply plugging ¢; = % in Theorem 14.13, we get

P(|An — E(Ay)| > 1) < 2e72"°
= P(|Dn— E(Dy)| > 1) < 2¢72.

This concentration inequality holds for every fixed n and ¢ > 0, and we do not need
to deal with the exact distribution of D, to arrive at this inequality.
Again plugging ¢; = % in Theorem 14.14, we get

1 1
Var(A,) < — = Var(D,) < -,
4n 4

for all n > 1. Once again, this is an attractive variance bound that is valid for every
n, and we do not need to work with the exact distribution of D,, to arrive at this
bound.

14.3.5 The Upcrossing Inequality

A final key inequality in martingale theory that we present is Doob’s upcrossing
inequality. The inequality is independently useful for studying fluctuations in the
trajectory of a martingale (submartingale) sequence. It is also the result we need in
the next section for establishing the fundamental convergence theorem for martin-
gales (submartingales).

Given the discrete time process {X,,n > 0}, fix an integer N > 0, and two
numbers a, b,a < b. We now track the time instants at which this process crosses b
from below, or a from above. Formally, let 7y = inf{k > 0 : X} < a}.If X¢ > a,
then this is the first downcrossing of a. If Xo < a, then Ty = 0. Now we wait for the
first upcrossing of b after the time Ty. Formally, 77 = inftk > Ty : X > b}. We
continue tracking the down and the upcrossings of the two levels a, b in this fashion.
Here then is the formal definition for the entire sequence of stopping times 7,:

To = infltk >0: X <a};
Ton+1 = inflk > Top : Xp > b}, n>0;

Ton+a = inflk > Topt1 0 X <a}, n=>0.
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The times 77, T3, ... are then the instants of upcrossing, and the times Ty, 75, .. .
are the instants of downcrossing. The upcrossing inequality places a bound on the
expected value of Uy n, the number of upcrossings up to the time N. Note that
this is simply the number of odd labels 2n + 1 for which 75,41 < N.

Theorem 14.15. Let {X,,n > 0} be a submartingale. Then for any a, b, N(a < b),

E(Xy —a)" ] - E[(Xo—a)*] _ E(Xn]) + lal

E[U, <
[ a,b,N]_ h—a = h—a

Proof. The second inequality follows from the first inequality by the pointwise in-
equality (x —a)t < x* +|a| < |x|+ |a|, and so, we prove only the first inequality.

First make the following reduction. Define a new nonnegative submartingale as
Y, = (X, —a)*.,n > 0. This shifting by a is going to result in a useful reduction.
There is a functional identity between the upcrossing variable that we are interested
in, namely U, , x and the number of upcrossings Vp p—4 n of this new process
{Yn}g] of the two new levels 0 and b — a. Indeed, U, p, y = Vo p—a,n- SO We need

to show that E[Vg p_q n] < EZx=Y0)

b—a
The key to proving this inequality is to write a clever decomposition

N
Yn—Yo=) (Y5 =Yg ),
=0

such that three things happen:

(i) The t; are increasing stopping times, so that the submartingale property is in-
herited by the Y7, sequence.
(i) The sum over the odd labels in this decomposition satisfy the pointwise in-
equality
Y. (=Yg )= (b—a)Voban-
i:0<i<N,i odd

(iii)) The sum over the even labels satisfy the inequality

E Yoo Yy =Y | =0

i:0<i<N,i even
If we put (ii) and (iii) together, we immediately get
E(Yn —Yo) > (b—a)E[Vop—a,n].

which is the needed result.

What are these stopping times t;, and why are (ii) and (iii) true? The stopping
times 79 < 17 < ... are defined in the following way. Analogous to the down-
crossing and upcrossing times Ty, T1, . .. of (a, b) for the original {X,} process, let
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Tg. T1. ... be the downcrossing and upcrossing times of (0, b — a) for the new {Y,,}
process. Now define t; = min(Ti’, N). The 7; are increasing, that is, 79 < 71 < ...,
because the 7/ are. Note that these t; are stopping times adapted to {Y},}.

Now look at the sum over the odd labels, namely (Y7, —Y7,) + (Y3 —Y5,) +---.
Break this sum further into two subsets of labels, i <V = Vy 4 n,andi > V.
For each label i in the first subset, (Yr,,, | —Yr,;) > b —a, because Yr,; ., > b and
Y:,; < a. Adding over these labels, of which there are V' many, we get the sum to
be > (b — a)V. The labels in the other subset can be seen to give a sum > 0 (just
think of what V' means, and a little thinking shows that the rest of the labels produce
a sum > 0). So, now adding over the two subsets of labels, we get our claimed
inequality in (ii) above.

The claim in (iii) is automatic by the optional stopping theorem, because for each
individual i, we will have E(Y;,_,) < E(Y7,) (actually, this is a slightly stronger
demand than what the optional stopping theorem says; but it is true).

As was explained above, this completes the argument for the upcrossing
inequality. O

14.4 Convergence of Martingales

14.4.1 The Basic Convergence Theorem

Paul Lévy initiated his study of martingales in his search for laws of large numbers
beyond the case of means in the iid case. It turns out that martingales often con-
verge to a limiting random variable, and even convergence of the means or higher
moments can be arranged, provided that our martingale sequence is not allowed to
fluctuate or grow out of control. To see why some such conditions would be needed,
consider the case of the simple symmetric random walk S, = Z?:l X;, where the
X; are iid taking the values 1 with probability % each. We know that the simple
symmetric random walk is recurrent, and therefore it comes back infinitely often
to every integer value x with probability one. So S,, although a martingale, does
not converge to some Soo. The expected value of |S,| in the simple symmetric ran-
dom walk case is of the order of ¢4/n for some constant ¢, and c+/n diverges as
n — oo. A famous result in martingale theory says that if we can keep E (| X,|) in
control (i.e., bounded away from oo), then a martingale sequence { X, } will in fact
converge to some suitable X . Furthermore, some such condition is also essentially
necessary for the martingale to converge. We start with an example.

Example 14.23 (Convergence of the Likelihood Ratio). Consider again the likeli-
hood ratio A, = l_[;l=l %’%, where fj, f1 are two densities and the sequence

X1, X2, ... is iid from the density fo. We have seen that A, is a martingale (see
Example 14.8).

The likelihood ratio A, gives a measure of the support in the first n data values
for the density f1. We know fj to be the true density from which the data values
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are coming, therefore we would like the support for f7 to diminish as more data are
accumulated. Mathematically, we would like A, to converge to zero as n — oo.
We recognize that this is therefore a question about convergence of a martingale
sequence, because A, after all, is a martingale if the true density is fp.

Does A, indeed converge (almost surely) to zero? Indeed, it does, and we can
verify it directly, without using any martingale convergence theorems that we have
not yet encountered. Here is why we can verify the convergence directly.

Assume that fy, f1 are strictly positive for the same set of x values; that is,
{x: filx) >0} ={x: fo(x) > 0}. Since u — logu is a strictly concave function
on (0, 0o0), by Jensen’s inequality,

X X
S - R O Rt

Because Z; = log ;:(1) g’ ; are iid with mean m, by the usual SLLN for iid random
variables,

1 1 s s
—logAnz—ZZigm<O:>10gAng—oo
n n

i=1

= A, 0.

So, in this example, the martingale A, does converge with probability one to a
limiting random variable A, and A happens to be a constant random variable,
equal to zero. We remark that the martingale A, satisfies E(|A,]) = E(A,) =1
and so, a fortiori, sup, E(|A,|) < co. This has something to do with the fact that
A, converges in this example, although the random walk, also a martingale, failed
to converge. This is borne out by the next theorem, a famous result in martingale
theory. The proof of this next theorem requires the use of two basic facts in measure
theory, which we state below.

Theorem 14.16 (Fatou’s Lemma). Let X,,,n > 1 and X be random variables
defined on a common sample space Q2. Suppose each X, is nonnegative with prob-

ability one, and suppose X, “3 X. Then, lim inf, E(X»n) > E(X).

Theorem 14.17 (Monotone Convergence Theorem). Let X,,,n > 1 and X be
random variables defined on a common sample space Q2. Suppose each X, is non-
negative with probability one, that X1 < X, < X3 < ..., and X, % X. Then
E(X) 1 E(X).

Theorem 14.18 (Submartingale Convergence Theorem). (a) Let {X,} be a
submartingale such that sup, E(X,[) = ¢ < oo. Then there exists a random
variable X = X, almost surely finite, such that X, 2 x.

(b) Let {X,} be a nonnegative supermartingale, or a nonpositive submartingale.
Then there exists a random variable X = X, almost surely finite, such that

X, 3 x.
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Proof. The proof uses the upcrossing inequality, the monotone convergence theo-
rem, and Fatou’s lemma. The key idea is first to show that under the hypothesis
of the theorem, the process {X},} cannot fluctuate indefinitely between two given
numbers a, b,a < b. Then a standard analytical technique of approximation by ra-
tionals, and use of the monotone convergence theorem and Fatou’s lemma produces
the submartingale convergence theorem. Here are the steps of the proof. Define

Uga,p,n = Number of upcrossings of (a,b) by Xo, X1,..., Xn;
U, = Number of upcrossings of (a,b) by Xo, X1,...;
Oup ={w € Q:liminf X, <a <b <limsup X,};

n n

O ={we Q:liminf X, < limsup X,}.
n n

First, by the monotone convergence theorem, E[U, » n] = E[Ugp] as N — oo,
because U, 5 y converges monotonically to U, as N — oo. Therefore, by the
upcrossing inequality,

E(|XN]|) + |a]
b—a
li E(lX
< oty BQX) bl _
—a

E[Ua,b,N] =< = E[Ua,b] = liAIIIl E[Ua,b,N]

This means that U, ; must be finite with probability one (i.e., it cannot equal co
with a positive probability).

Next, note that ® C U {a<b.a, brational}@)a,b’ and because we now have that
P(®,45) = 0 for any specific pair a, b, P(U{a<b,a,brationa1}®a,b) must also be
zero. This then implies that P(®) = 0, which establishes the existence of an almost
sure limit for the sequence X,.

However, a subtle point still remains. The limit, X, could be co or —oo with a
positive probability. We use Fatou’s lemma to rule out that possibility. Indeed, by
Fatou’s lemma,

E(|X|) < liminf E(| X,|) < sup E(|X»|) < oo,
n n

and so X must be finite with probability one. This finishes the proof of part (a) of
the submartingale convergence theorem.

Part (b) is an easy consequence of part (a). For example, if { X}, } is a nonpositive
submartingale, then

sup E(|X»|) =sup E(—X,) = —inf E(X,) = —E(X;) < o0,
n n n

and so convergence of X, to an almost surely finite X follows from part (a). O
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14.4.2 Convergencein L, and L,

The basic convergence theorem that we just proved says that an L; bounded sub-
martingale converges to some random variable X. It is a bit disappointing that the
apparently strong hypothesis that the submartingale is L; bounded is not strong
enough to ensure convergence of the expectations: E(X,) need not converge to
E(X) in spite of the L1 bounded assumption. A slightly stronger control on the
growth of the submartingale sequence is needed to ensure convergence of expec-
tations, in addition to the convergence of the submartingale itself. For example,
sup,, E(]X,|?) < oo for some p > 1 will suffice. A condition of this sort immedi-
ately reminds us of uniform integrability. Indeed, if sup, E(|X,|?) < oo for some
p > 1, then {X,,} will be uniformly integrable. It turns out that uniform integrability
will be enough to assure us of convergence of the expectations in the basic conver-
gence theorem, and it is almost the minimum that we can get away with. Statisticians
are often interested in convergence of variances also. That is a stronger demand, and
requires a stronger hypothesis. The next theorem records the conclusions on these
issues. For reasons of space, this next theorem is not proved. One can see a proof in
Fristedt and Gray (1997, p. 480).

Theorem 14.19. Let {X,,n > 0} be a submartingale.

(a) Suppose {X,} is uniformly integrable. Then there exists an X such that X, =
X, and E(|X,, — X|) > 0asn — oo.

(b) Conversely, suppose there exists an X such that E(|X,, — X|) = 0 asn — oo.
Then {X,} must be uniformly integrable, and moreover, X, necessarily con-
verges almost surely to this X.

(c) If{Xn} is a martingale, and is L, bounded (i.e., sup, E(X?) < o), then there

exists an X such that X, 2 X, and E(X,—X|*) — 0asn — oo.

Example 14.24 (Pdlya’s Urn). We previously saw that the proportion of white balls
in Pélya’s urn, namely R, = %ﬁ& forms a martingale (see Example 14.6). This
is an example in which the various convergences that we may want come easily. Be-
cause R, is obviously a uniformly bounded sequence, by the theorem stated above,
R,, converges almost surely and in L, (and therefore, in L;) to a limiting random
variable R, taking values in [0, 1].

Neither the basic (sub)martingale convergence theorem nor the theorem in this
section helps us in any way to identify the ditribution of R. In fact, in this case,
R has a nondegenerate distribution, which is a Beta distribution with parameters a
and b. As a consequence of this, E(R,) — 247 and Var(R,) — m as
n — oo. A proof that R has a Beta distribution with parameters a, b is available in
DasGupta (2010).

Example 14.25 (Bayes Estimates). We saw in Example 14.9 that the sequence of
Bayes estimates (namely, the mean of the posterior distribution of the parameter)
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is a martingale adapted to the sequence of data values {X,}. Continuing with the
same notation as in Example 14.9, Z, = E(Y |X ) is our martingale sequence.
Assume that the prior distribution for the parameter has a finite variance; that is,
E(Y?) < oo. Then, by using Jensen’s inequality for conditional expectations,

E(Z2) = E[(E(Y |X™))?] < E[E(Y?|x™)] = E(Y?).

Hence, by the theorem above in this section, the sequence of Bayes estimates Z,
converges to some Z almost surely, and moreover the mean and the variance of Z,,
converge to the mean and the variance of Z.

A natural followup question is what exactly is this limiting random variable Z.
We can only give partial answers in general. For example, for each n, E(Z | X ™) =
Z, with probability one. It is tempting to conclude from here that Z is the same as
Y with probability one. This will be the case if knowledge of the entire infinite data
sequence X, X, ... pins down Y completely, that is, if it is the case that someone
who knows the infinite data sequence also knows Y with probability one.

14.5 = Reverse Martingales and Proof of SLLN

Partial sums of iid random variables are of basic interest in many problems in proba-
bility, such as the study of random walks, and as we know, the sequence of centered
partial sums forms a martingale. On the other hand, the sequence of sample means is
of fundamental interest in statistics; but the sequence of means does not form a mar-
tingale. Interestingly, if we measure time backwards, then the sequence of means
does form a martingale, and then the rich martingale theory once again comes into
play. This motivates the concept of a reverse martingale.

Definition 14.4. A sequence of random variables {X,,,n > 0} defined on a com-
mon sample space 2 is called a reverse submartingale adapted to the sequence
{Yn,n > 0}, defined on the same sample space €2, if E(|X,|) < oo for all n and
E(Xy |Yn+1,Yn+2,...) = X,41 for each n > 0. The sequence {X,} is called a
reverse supermartingale if E(Xy |Yn+1, Yn+t2,...) < Xu41 for each n.

The sequence { X, } is called a reverse martingale if it is both a reverse submartin-
gale and a reverse supermartingale with respect to the same sequence {Y;,}, that is,
if E(Xp | Yn+1, Yut2,...) = Xp4 foreach n.

Example 14.26 (Sample Means). Let X1, X»,... be an infinite exchangeable
sequence of random variables: for any n > 2 and any permutation m, of
(1,2,...,n),(X1. X2,.... Xp) and (X,) Xx,2)---» Xn,(»)) have the same

X)+++X,
n

joint distribution. Forn > 1,let X,, = = ‘i—” be the sequence of sample

means.
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Then, by the exchanageability property of the {X,} sequence, for any given n,
and any k,1 <k <n,

_ _ 1<
Xn = EXp|Sn.Snt1...) ==Y E(Xi [Sn. Snt1....)
n

i=1

1
;I’lE(Xk |Sn, Sn+1, .. ) = E(Xk |Sn, Sn+1, .. )

Consequently,
o 1 n—1
E(Xn-1|Sn.Sns1.-.) = —— Y E(Xg [Su. Sus1...)
n—1 =

= - )X, = X,
n—1
which shows that the sequence of sample means is a reverse martingale (adapted to
the sequence of partial sums).
There is a useful convex function theorem for reverse martingales as well, which
is straightforward to prove.

Theorem 14.20 (Second Convex Function Theorem). Let {X,} be a sequence of
random variables defined on some sample space 2, and f a convex function. Let

Zn = f(Xn).

(a) If{X,} is a reverse martingale, then {Z,} is a reverse submartingale.

(b) If {X,} is a reverse submartingale, and f is also nondecreasing, then {Z,} is
a reverse submartingale.

(c) If{Xpnm}.m = 1,2,...is acountable family of reverse submartingales, defined
on the same space Q2 and all adapted to the same sequence, then {sup,, X, m}
is also a reverse submartingale, adapted to the same sequence.

Example 14.27 (A Paradoxical Statistical Consequence). Suppose Y is some real-
valued random variable with mean 7, and that we do not know the true value of 7.
Thus, we would like to estimate n. But, suppose that we cannot take any observa-
tions on the variable Y (for whatever reason). We can, however, take observations
on a completely unrelated random variable X, where E (] X|) < co. Suppose we do
take n iid observations on X . Call them X;, X», ..., X,, and let X,, be their mean.
Then, by part (a) of the second convex function theorem, |X,, — 7| forms a reverse
submartingale, and hence E(|X, — n|) is monotone nonincreasing in 7. In other
words, E(|Xn+1 —n|) < E(|X, — n|) for all n, and so taking more observations
on the useless variable X is going to be beneficial for estimating the mean of Y, a
comical conclusion.

Note that there is really nothing special about using the absolute difference
| X, — n| as the criterion for the accuracy of estimation of 7. The standard termi-
nology in statistics for the criterion to be used is a loss function, and loss functions
L (X, n) with a convexity property with respect to X ,, for any fixed 1 will result in
the same paradoxical conclusion. One needs to make sure that E[L(X ,, n)] is finite.
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Reverse martingales possess a universal special property that is convenient in
applications. The property is that a reverse martingale always converges almost
surely to some finite random variable. The convergence property also holds for re-
verse submartingales, but the limiting random variable may equal 400 or —oo with
a positive probability. An important and interesting consequence of this universal
convergence property is a proof of the SLLN in the iid case by using martingale
techniques. This is shown seen below as an example. The convergence property of
reverse martingales is stated below.

Theorem 14.21 (Reverse Martingale Convergence Theorem). (a) Let {X,} be
a reverse martingale adapted to some sequence. Then it is necessarily uniformly
integrable, and there exists a random variable X, almost surely finite, such that
X, 3 X, and E|X, — X|) = 0 as n — oo.

(b) Let {X,} be a reverse submartingale adapted to some sequence. Then there

. . . . a.s.
exists a random variable X taking values in [—o00, 00] such that X,, — X.

See Fristedt and Gray (1997, pp. 483—484) for a proof using uniform integrability
techniques. Here is an important application of this theorem.

Example 14.28 (Proof of Kolmogorov’s SLLN). Let X1, X», ... beiid random vari-
ables, with E(] X;|) < oo, and let E(X1) = p. The goal of this example is to show
that the sequence of sample means, X ,, converges almost surely to .

We use the reverse martingale convergence theorem to obtain a proof. Because
we have already shown that {X,} forms a reverse martingale sequence, by the re-
verse martingale convergence theorem we are assured of a finite random variable Y
such that X ,, converges almost surely to ¥, and we are also assured that E(Y) = .
The only task that remains is to show that Y equals p with probability one.

This is achieved by establishing that P(Y > y) = [P(Y > y)]? for all real y
(i.e., P(Y > y)is O or 1 for any y), which would force Y to be degenerate and
therefore degenerate at jt. To prove that P(Y > y) = [P(Y > y)]? for all real y,
define the double sequence

Yo — Xm+1 + Xmt2 + -+ Xongn
m,n — n ’

m,n > 1. Note that Yk and Y, , are independent for any m, k < m, and any 7, and
that, furthermore, for any fixed m, Yy, , converges almost surely to Y (the same Y
as above) as n — oo. These two facts together imply

P(Yzy, max Ykzy) =P(Y2y)P(maX ykiy)
1<k<m

1<k<m

= P(Y >y)=P 2 y)PY =y) =[PY =y

which is what we needed to complete the proof.
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14.6 Martingale Central Limit Theorem

For an iid mean zero sequence of random variables Z;, Z5, ... with variance one,

the central limit theorem says that for large n, Zﬁ—ﬂ is approximately standard

normal. Suppose now that we consider a mean zero martingale (adapted to some
sequence {Y,}) {X,,n > 0} with Xo = 0 and write Z; = X; — X;—1,7 > 1. Then,
obviously we can write

n n
Xo=Xo—Xo=) (Xi=Xim1) =) Zi.

i=1 i=1

The summands Z; are certainly no longer independent; however, they are un-
correlated (see the chapter exercises). The martingale central limit theorem
says that under certain conditions on the growth of the conditional variances
Var(Z, | Yo, ---, Yn-1), % will still be approximately normally distributed for
large n.

The area of martingale central limit theorems is a bit confusing due to an over-
whelming variety of central limit theorems, each known as a martingale central
limit theorem. In particular, the normalization of X, can be deterministic or ran-
dom. Also, there can be a double array of martingales and central limit theorems
for them, analogous to Lyapounov’s central limit theorem for the independent case.
The best source and exposition of martingale central limit theorems is the classic
book by Hall and Heyde (1980). We present two specific martingale central limit
theorems in this section.

First, we need some notation. Let { X;,, n > 0} be a zero mean martingale adapted
to some sequence {Y,}, with Xo = 0. Let

Zi=Xi—Xi—1,i > 1
07 =Var(Z;|Yo.....Yj—1) = E(Z7 |Yo.....Yj1):

n
2 2.
V= E o5

j=1
s2 = E(V2) = E(X?) = Var(X,);

(see Section 14.3.2 for the fact that £(V,?) and E(X?2) are equal if Xo = 0).

The desired result is that ‘f—: converges in distribution to N (0, 1). The question is
under what conditions can one prove such an asymptotic normality result. The con-
ditions that we use are very similar to the corresponding Lindeberg-Lévy conditions
in the independent case. Here are the two conditions we assume.

(A) Concentration Condition

v: vz op
s E(2)
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(B) Martingale Lindeberg Condition

n 2
Zj:lE(ZjZI{IZj\ZGSn}) £>O.
sn

For any e > 0,

Under condition (A), the Lindeberg condition (B) is nearly equivalent to the uni-

maxj<;<pO0;

P
form asymptotic negligibility condition that —2’ — 0. We commonly see

such uniform asymptotic negligibility conditions in the independent case central
limit theorems. See Hall and Heyde (1980) and Brown (1971) for much additional
discussion on the exact role of the Lindeberg condition in martingale central limit
theorems. Here is our basic martingale CLT.

Theorem 14 22 (Basic Martingale CLT). Suppose conditions (A) and (B) hold.

Then Xz :> Z, where Z ~ N(0, 1).

The proof of the Lindeberg—Lévy theorem for the independent case has to be
suitably adapted to the martingale structure in order to prove this theorem. The
two references above can be consulted for a proof. The Lindeberg condition can be
difficult to verify. The following simpler version of martingale central limit theorems
suffices for many applications. For this, we need the additional notation

n
7; = inf n>0:20fzt
j=1
Here is our simpler version of the martingale CLT.
Theorem 14.23. Assume that

|Zi| < K < oo foralli and some K ;

Z 0} = oo almost surely;

j=1
— B2 for some finite and positive constant 5.
Tt
X, & 2
Then =~ = W, where W ~ N(0,07).
N
Exercises

Exercise 14.1. Suppose {X,,n > 1} is a martingale adapted to some sequence
{Y,}. Show that E(Xy4m |Y1,...,Yn) = X, forallm,n > 1.
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Exercise 14.2. Suppose {X,,n > 1} is a martingale adapted to some sequence
{Y,}. Fix m > 1 and define Z, = X, — X;,n > m + 1. Is it true that {Z,} is also
a martingale?

Exercise 14.3 (Product Martingale). Let X, X», ... be iid nonnegative random
variables with a finite positive mean . Identify a sequence of constants ¢, such that
Zn = cn([172; Xi),n > 1 forms a martingale.

Exercise 14.4. Let {U,}, {V,,} be martingales, adapted to the same sequence {Y,}.
Identify, with proof, which of the following are also submartingales, and for those
that are not necessarily submartingales, give a counterexample.

(a) |Un - Vn|-
(b) U2+ V2.
) Uy —V,.

(d) min(Uy, Vy,).

Exercise 14.5 (Bayes Problem). Suppose given p, X1, X5, ... are iid Bernoulli
variables with a parameter p, and the marginal distribution of p is UJ0, 1]. Let
Spn=X1+---+X,,n>1,and Z, = %%1 Show that {Z,} is a martingale with
respect to the sequence { X, }.

Exercise 14.6 (Bayes Problem). Suppose given A, X, X,,... are iid Poisson
variables with some mean A, and the marginal density of A is %, where

a,f > 0are constants. Let S, = X1 +---+ X,,,n > 1l,and Z, = i’q_—JrB“ Show
that {Z,} is a martingale with respect to the sequence { X}, }.

Exercise 14.7 (Bayes Problem). Suppose given u, X1, X»,... are iid N(u,1)
variables, and that the marginal distribution of p is standard normal. Let S, =
Xi1++Xp,n>1,and Z, = nsﬁ Show that {Z, } is a martingale with respect
to the sequence { X}, }.

Exercise 14.8. Suppose { X, } is known to be a submartingale with respect to some
sequence {Y;}. Show that { X}, } is also a martingale if and only if E(X,) = E(Xy)
for all m, n.

Exercise 14.9. Let X, X»,... be a sequence of iid random variables such that
E(|X1]) < co.Forn > 1, let X,,., = max(Xy,...,X,). Show that {X,.,} is a
submartingale adapted to itself.

Exercise 14.10 (Random Walk). Consider a simple asymmetric random walk
with iid steps distributed as P(X; = 1) = p, P(X; =—-1) =1—p,p < % Let
Sp = X1+ -+ X,,n > 1, Show that

(a) Vp = (1=2)5n is a martingale.
(b) Show that with probability one, sup,, S, < oo.
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Exercise 14.11 (Branching Process). Let {Z;;} be a double array of iid random

variables with mean p and variance 0?% < 00.Let Xo = 1 and Xn+1 = Z;(il Znj.
Show that

(a) W, = ff—,’; is a martingale.
(b) supn E(W,) < oo.
(c) Is {W,} uniformly integrable? Prove or disprove it.

Remark. The process W, is commonly called a branching process and is important
in population studies.

Exercise 14.12 (A Time Series Model). Let Zy, Z;,... be iid standard normal
variables. Let Xog = Zp, and forn > 1, X, = X,—1 + Z,hn(Xo, ..., Xu-1),
where for each n, hy, (xg, ..., X,—1) is an absolutely bounded function.

Show that {X,} is a martingale adapted to some sequence {Y;}, and explicitly
identify such a sequence {Y;}.

Exercise 14.13 (Another Time Series Model). Let Zy, Z;, ... be a sequence of
random variables such that E(Z,+1|Z¢o,..., Zn) = cZn + (1 —¢)Zy—1,n > 1,
where 0 < ¢ < 1. Let Xog = Zo, X, = oZ, + Z,—1,n > 1. Show that @ may be
chosen to make {X,,n > 0} a martingale with respect to {Z,}.

Exercise 14.14 (Conditional Centering of a General Sequence). Let Zy, Z1, ...
be a general sequence of random variables, not necessarily independent, such that
E(|Zy]) < coforall k. Let V,, = ZLI[Z,- —E(Zi|Zy,...,Zi—1)],n > 1. Show
that {V},} is a martingale with respect to the sequence {Z,}.

Exercise 14.15 (The Cross-Product Martingale). Let X;, X»,... be indepen-
dent random variables, with E£(|X;|) < oo and E(X;) = 0 for all i. For a fixed
k> 1 let Viw = 3 i<iy<iy<w<ip<n Xiy -+ Xig,n = k. Show that {Vi } is a
martingale with respect to { X}, }.

Exercise 14.16 (The Wright-Fisher Markov Chain). Consider the Wright-Fisher
Markov chain of Example 14.7. Let

_ Xu(N — Xp)

v
BERCES L

, n>0.

Show that {V}, }{)V is a martingale.

Exercise 14.17 (An Example of Samuel Karlin). Let f be a continuous function

defined on [0, 1] and U ~ U|0, 1]. Let X,, = J-Z;'—,,Ui, and V,, = (X”+22__n,,)_ Xn)
Show that {V},} is a martingale with respect to the sequence { X, }.

Exercise 14.18. Let X1, X5, ... be iid symmetric random variables with mean zero,
and let S, = Z:'l=1 Xi,n > 1,and So = 0. Let ¥ (¢) be the characteristic function

of X1, and V,, = [y (t)]"e*S7,n > 0. Show that the real part as well as the
imaginary part of {1}, } is a martingale.
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Exercise 14.19 (Stopping Times). Consider the simple symmetric random walk
S, with So = 0. Identify, with proof, which of the following are stopping times,
and which among them have a finite expectation.

(a) inf{n > 0:|S,| > 5}.
(b) inf{n > 0: Sy < Sni1l).
(c) inf{n > 0:|S,| = 1}.
(d) inf{n >0:|S,| > 1}.

Exercise 14.20. Let ¢t be a nonnegative integer-valued random variable, and
{Xn,n > 0} a sequence of random variables, all defined on a common sample
space 2. Prove or disprove that 7 is a stopping time adapted to { X}, } if and only if
for every n > 0, Iz is a function of only Xo, ..., Xj.

Exercise 14.21. Suppose 11, 72 are both stopping times with respect to some se-
quence {Xy}. Is |11 — 12| necessarily a stopping time with respect to { X, }?

Exercise 14.22 (Condition for Optional Stopping Theorem). Suppose {X;,,n >
0} is a martingale, and t a stopping time, both adapted to a common sequence
{Yn}. Show that the equality E(X;) = E(Xo) holds if E(J]X;]) < oo, and
E(Xmin(z,n) liz>ny) = 0asn — oo.

Exercise 14.23 (The Random Walk). Consider the asymmetric random walk
Sp=>"_1Xi,where P(X; = 1) = p.P(X; =—1)=q=1—p,p> 1, and
So = 0. Let x be a fixed positive integer, and t = inf{n > 0: S, = x}. Show that

forO0<s < 1,E(s%) = (1_— ‘1_41””2))‘.

2qs

Exercise 14.24 (The Random Walk; continued). For the stopping time t of the
previous exercise, show that

x[1—(p—q)?]

X
E(r) = ﬂ and Var(r) = =)

Exercise 14.25 (Gambler’s Ruin). Consider the general random walk S, = Z?=1
Xi,where P(X; = 1) =p # 1. P(X; =—1)=¢q =1—p,and So = 0. Leta.b
be fixed positive integers, and t = inf{n > 0: S, = b or S,, = —a}. Show that

b a+b [1—(5)1’]
p—q p—qll— (&)t

E(r) =

and that by an application of L'Hospital’s rule, this gives the correct formula for
E(7) even when p = %

Exercise 14.26 (Martingales for Patterns). Consider the following martingale
approach to a geometric distribution problem. Let X;, X», ... be iid Bernoulli vari-
ables, with P(X; =1)=p, P(X; =0)=¢g = 1l—p.Lett = min{k > 1 : X3 = 0},
and 7, = min(t,n),n > 1.
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Define V,, = 52;;1 Iix,—op.n > 1.

(a) Show that {V;,, — n} is a martingale with respect to the sequence {X,}.
(b) Show that E(V7,) = E(ty) for all n.
(c) Hence, show that E(t) = E(V7) = é.

Exercise 14.27 (Martingales for Patterns). Let X, X», ... be iid Bernoulli vari-
ables, with P(X; = 1) = p, P(X; = 0) = g = 1 — p. Let t be the first k such that
Xx—2, Xx—1, X are each equal to one (e.g., the number of tosses of a coin necessary
to first obtain three consecutive heads), and 7, = min(z,n),n > 3.

Define

1 =2 1

1
Vo = F ZI{Xi=Xi+1=Xi+2=1} + FI{X,,=X,,,1=1} + ;I{Xn=1}5 n>3.

i=1

(a) Show that {V}, — n} is a martingale with respect to the sequence { X}, }.
(b) Show that E(Vy,) = E(z,) for all n.

(c) Hence, show that

11
+ =S+

E(x)=E(V,) = R

N | =

(d) Generalize to the case of the expected waiting time for obtaining r consecu-
tive 1s.

Exercise 14.28. Let {X,,n > 0} be a martingale.

(a) Show that lim,_,o E(|Xy]) exists.
(b) Show that for any stopping time t, E (| X¢|) < lim,—co E(|Xn])-
(c) Show that if sup,, E(|X»|) < oo, then E(]X|) < oo for any stopping time 7.

Exercise 14.29 (Inequality for Stopped Martingales). Let {X,,n > 0} be a
martingale, and 7 a stopping time adapted to {X,}. Show that E(|X;|) <
2sup, E(X,5) — E(X1) < 3sup, E(|Xa|).

Exercise 14.30. Let X1, X5, ... be iid random variables such that E(|X1|) < oo.
Consider the random walk S,, = Z?:l X;,n > 1and Sy = 0. Let t be a stopping
time adapted to {S,}. Show that if E(|S;|) = oo, then E(7) must also be infinite.

Exercise 14.31. Let {X,,,n > 0} be a martingale, with Xo = 0. Let V; = X; —
Xi_1,1 > 1. Show that for any i # j, V; and V; are uncorrelated.

Exercise 14.32. Let {X,,n > 1} be some sequence of random variables. Suppose
Sy = Z;l=1 Xi,n > 1, and that {S,,n > 1} forms a martingale. Show that for any
i #Jj,E(X;X;)=0.

Exercise 14.33. Let {X,,n > 0} and {Y,,n > 0} both be square integrable
martingales, adapted to some common sequence. Let Xo = Y, = 0. Show that
E(XnYn) =Y 7_ E[(X; — X;—1)(Y; = Yi_y)] forany n > 1.
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Exercise 14.34. Give an example of a submartingale {X,,} and a convex function
f such that { f(X,)} is not a submartingale.

Remark. Such a function f cannot be increasing.

Exercise 14.35 (Characterization of Uniformly Integrable Martingales). Let
{X,} be uniformly integrable and a martingale with respect to some sequence {Y;}.
Show that there exists a random variable Z such that £(|Z|) < oo and such that for
eachn, E(Z |Y1,...,Yn) = X, with probability one.

Exercise 14.36 (L,-Convergence of a Martingale). Let {X,,n > 0} be a martin-
gale, or a nonnegative submartingale. Suppose for some p > 1, sup, E(|X,|?) < oo.
Show that there exists a random variable X, almost surely finite, such that

E(Xn—X|P) — 0and X, == X as n — oo.
Exercise 14.37. Let {X,} be a nonnegative martingale. Suppose E(X,) — 0 as
n — oo. Show that X, 2.

Exercise 14.38. Let X1, X, ... be iid normal variables with mean zero and vari-
ance 0. Show that > oo, WX » converges with probability one for any given
real number Xx.

Exercise 14.39 (Generalization of Maximal Inequality). Let {X,,n > 0} be a
nonnegative submartingale, and {b,,n > 0} a nonnegative nonincreasing sequence

of constants such that b, — 0 as n — 0o, and Y _pe o [bn — but1] E(X,) converges.

(a) Show that for any x > 0,

1 oo
P(supbyXy = x) < — 3 [bn = bu-11E(Xn).
X

n=0 n=0
(b) Derive the Kolmogorov maximal inequality for nonnegative submartingales as
a corollary to part (a).

Exercise 14.40 (Decomposition of an L {-Bounded Martingale). Let {X,} be an
L -bounded martingale adapted to some sequence {Y, }, thatis, sup,, E(|X,|) < oo.

(a) Define Z,, , = E[|X;n+1]|Y1, ..., Ys]. Show that Z,, ,, is nondecreasing in m.

(b) Show that for fixed n, Z,, , converges almost surely.

(¢) Let U, = limy, Z,,,,. Show that {U,} is an L-bounded martingale.

(d) Show that X, admits the decomposition X, = U, — V;,, where both U,, V,, are
nonnegative L;-bounded martingales.
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