
Chapter 14
Discrete Time Martingales and Concentration
Inequalities

For an independent sequence of random variables X1; X2; : : : ; the conditional
expectation of the present term of the sequence given the past terms is the same
as its unconditional expectation. Martingales let the conditional expectation depend
on the past terms, but in a special way. Thus, similar to Markov chains, martingales
act as natural models for incorporating dependence into a sequence of observed
data. But the value of the theory of martingales is much more than simply its mod-
eling value. Martingales arise, as natural byproducts of the mathematical analysis
in an amazing variety of problems in probability and statistics. Therefore, results
from martingale theory can be immediately applied to all these situations in order
to make deep and useful conclusions about numerous problems in probability and
statistics. A particular modern set of applications of martingale methods is in the
area of concentration inequalities, which place explicit bounds on probabilities of
large deviations of functions of a set of variables from their mean values. This chap-
ter gives a glimpse into some important concentration inequalities, and explains
how martingale theory enters there. Martingales form a nearly indispensable tool
for probabilists and statisticians alike.

Martingales were introduced into the probability literature by Paul Lévy, who
was interested in finding situations beyond the iid case where the strong law of
large numbers holds. But its principal theoretical studies were done by Joseph Doob.
Two extremely lucid expositions on martingales are Doob (1971) and Heyde (1972).
Some other excellent references for this chapter are Karlin and Taylor (1975), Chung
(1974), Hall and Heyde (1980), Williams (1991), Karatzas and Shreve (1991),
Fristedt and Gray (1997), and Chow and Teicher (2003). Other references are pro-
vided in the sections.

14.1 Illustrative Examples and Applications in Statistics

We start with a simple example, which nevertheless captures the spirit of the idea of
a martingale sequence of random variables.
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464 14 Discrete Time Martingales and Concentration Inequalities

Example 14.1 (Gambler’s Fortune). Consider a gambler repeatedly playing a fair
game in a casino. Thus, a fair coin is tossed. If heads show, the player wins
$1; if it is tails, the house wins $1. He plays repeatedly. Let X1; X2; : : : be the
players’s sequence of wins. Thus, the Xi are iid with the common distribution
P.Xi D ˙1/ D 1

2
. The player’s fortune after n plays is Sn D S0CPn

iD1Xi ; n � 1.
If we take the player’s initial fortune S0 to be just zero, then Sn D Pn

iD1Xi . Sup-
pose now the player has finished playing for n times, and he is looking ahead to
what his fortunes will be after he plays the next time. In other words, he wants to
find E.SnC1 jS1; : : : ; Sn/. But,

E.SnC1 jS1; : : : ; Sn/

D E.Sn CXnC1 jS1; : : : ; Sn/ D Sn C E.XnC1 jS1; : : : ; Sn/

D Sn C E.XnC1/ D Sn C 0 D Sn:

In the above, E.XnC1 jS1; : : : ; Sn/ equals the unconditional expectation of XnC1

because XnC1 is independent of .X1; X2; : : : ; Xn/, and hence, independent of
.S1; : : : ; Sn/.

Notice that the sequence of fortunes S1; S2; : : : is not an independent sequence.
There is information in the past sequence of fortunes for predicting the current for-
tune. But the players’s forecast for what his fortune will be after the next round of
play is simply what his fortunes are right now, no more and no less. This is basically
what the martingale property means, and is the reason for equating martingales with
fair games.

Here is the definition. Rigorous treatment of martingales requires use of measure
theory. For the most part, our treatment avoids measure-theory terminology.

Definition 14.1. Let Xn; n � 1 be a sequence of random variables defined on a
common sample space� such that E.jXnj/ < 1 for all n � 1. The sequence fXng
is called a martingale adapted to itself if for each n � 1, E.XnC1 jX1; X2; : : : ;

Xn/ D Xn with probability one.
The sequence fXng is called a supermartingale if for each n � 1, E.XnC1 jX1;

X2; : : : ; Xn/ � Xn with probability one. The sequence fXng is called a submartin-
gale if for each n � 1, E.XnC1 jX1; X2; : : : ; Xn/ � Xn with probability one.

Remark. We generally do not mention the adapted to itself qualification when that
is indeed the case. It is sometimes useful to talk about the martingale property with
respect to a different sequence of random variables. This concept is defined below
and Example 14.8 is an example of such a martingale sequence.

Note that Xn is a submartingale if and only if �Xn is a supermartingale, and that
it is a martingale if and only if it is both a supermartingale and a submartingale. Also
notice that for a martingale sequence Xn; E.XnCm/ D E.Xn/ for all n;m � 1; in
other words, E.Xn/ D E.X1/ for all n.

Definition 14.2. Let Xn; n � 1 and Yn; n � 1 be sequences of random variables
defined on a common sample space � such that E.jXnj/ < 1 for all n � 1.
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The sequence fXng is called a martingale adapted to the sequence fYng if for each
n � 1;Xn is a function of Y1; : : : ; Yn, and E.XnC1 jY1; Y2; : : : ; Yn/ D Xn with
probability one.

Some elementary examples are given first.

Example 14.2 (Partial Sums). Let Z1; Z2; : : : be independent zero mean ran-
dom variables, and let Sn denote the partial sum

Pn
iD1Zi . Then, clearly,

E.SnC1jS1; : : : ; Sn/ D Sn C E.ZnC1jS1; : : : ; Sn/ D Sn C E.ZnC1/ D Sn,
and so fSng forms a martingale. More generally, if the common mean of the Zi is
some number �, then Sn � n� is a martingale.

Example 14.3 (Sums of Squares). Let Z1; Z2; : : : be iid N.0; 1/ random variables,
and let Xn D .Z1 C � � � CZn/

2 � n D S2
n � n, where Sn D Z1 C � � � CZn. Then,

E.XnC1jX1; X2; : : : ; Xn/

D EŒ.Z1 C � � � CZn/
2 C 2ZnC1.Z1 C � � � CZn/

CZ2
nC1jX1; X2; : : : ; Xn� � .nC 1/

D Xn C nC 2.Z1 C � � � CZn/E.ZnC1jX1; X2; : : : ; Xn/

C E.Z2
nC1jX1; X2; : : : ; Xn/� .nC 1/

D Xn C nC 0C 1 � .nC 1/ D Xn;

and so fXng forms a martingale sequence.
Actually, we did not use the normality of the Zi at all, and the martingale prop-

erty holds without the normality assumption. That is, ifZ1; Z2; : : : are iid with mean
zero and variance �2, then S2

n � n�2 is a martingale.

Example 14.4. Suppose X1; X2; : : : are iid N.0; 1/ variables and Sn D Pn
iD1Xi .

Because Sn � N.0; n/, its mgf E.etSn/ D ent2=2. Now let Zn D etSn�nt2=2,
where t is a fixed real number. Then, E.ZnC1jZ1; : : : ; Zn/ D e�.nC1/t2=2E.etSn

etXnC1 jSn/ D e�.nC1/t2=2etSnet2=2 D Zn. Therefore, for any real t , the sequence
etSn�nt2=2 forms a martingale.

Once again, a generalization beyond the normal case is possible; see the chapter
exercises for a general result.

Example 14.5 (Matching Problem). Consider the matching problem. For example,
suppose N people, each wearing a hat, have gathered in a party and at the end of
the party, the N hats are returned to them at random. Those that get their own hats
back then leave the room. The remaining hats are distributed among the remaining
guests at random, and so on. The process continues until all the hats have been given
away. Let Xn denote the number of guests still present after the nth round of this
hat returning process.
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At each round, we expect one person to get his own hat back and leave the room.
In other words, E.Xn �XnC1/ D 1 8n. In fact, with a little calculation, we even
have

E.XnC1jX1; : : : ; Xn/ D E.XnC1 � Xn CXnjX1; : : : ; Xn/

D E.XnC1 � XnjX1; : : : ; Xn/CXn D �1CXn:

This immediately implies thatE.XnC1CnC1 jX1; : : : ; Xn/ D �1C.nC1/CXn D
Xn C n. Hence the sequence fXn C ng is a martingale.

Example 14.6 (Pólya’s Urn). The Pólya urn scheme is defined as follows. Initially,
an urn contains a white and b black balls, a total of a C b balls. One ball is drawn
at random from among all the balls in the urn. It, together with c more balls of its
color is returned to the urn, so that after the first draw, the urn has a C b C c balls.
This process is repeated.

Suppose Xi is the indicator of the event Ai that a white ball is drawn at the i th
trial, and for given n � 1; Sn D X1 C � � � C Xn, which is the total number of
times that a white ball has been drawn in the first n trials. For the sake of notational
simplicity, we take c D 1. Then, the proportion of white balls in the urn just after
the nth trial has been completed is Rn D aCSn

aCbCn
.

Elementary arguments show that

P.XnC1 D 1 jX1 D x1; : : : ; Xn D xn/ D aC x1 C � � � C xn

a C b C n
:

Thus,

E.SnC1 jS1; : : : ; Sn/ D E.SnC1 jSn/ D Sn C a C Sn

a C b C n

) E.RnC1 jR1; : : : ; Rn/ D a

a C b C nC 1
C 1

a C b C nC 1

Œ.a C b C n/Rn � aCRn� D Rn:

We therefore have the interesting result that in the Pólya urn scheme, the sequence
of proportions of white balls in the urn forms a martingale.

Example 14.7 (The Wright–Fisher Markov Chain). Consider the stationary Markov
chain fXng on the state space f0; 1; 2; : : : ; N g with the one-step transition pro-
babilities

pij D
 
N

j

!�
i

N

�j �

1 � i

N

�N �j

:
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This is the Wright–Fisher chain in population genetics (see Chapter 10). We show
that Xn is a martingale adapted to itself. Indeed, by direct calculation,

E.XnC1 jX1; : : : ; Xn/ D E.XnC1 jXn/

D
NX

j D0

j

 
N

j

!�
Xn

N

�j �

1 � Xn

N

�N �j

D N
Xn

N
D Xn:

Example 14.8 (Likelihood Ratios). SupposeX1; X2; : : : ; Xn are iid with a common
density function f , which is one of f0, and f1, two different density functions. The
statistician is supposed to choose from the two densities f0; f1, the one that is truly
generating the observed data x1; x2; : : : ; xn. One therefore has the null hypothesis
H0 that f Df0, and the alternate hypothesis that f D f1. The statistician’s decision
is commonly based on the likelihood ratio

ƒn D
nY

iD1

f1.Xi /

f0.Xi /
:

If ƒn is large for the observed data, then one concludes that the data values come
from a high-density region of f1 and a low-density region of f0, and therefore con-
cludes that the true f generating the observed data is f1.

Suppose now the null hypothesis is actually true; that is, truly,X1; X2; : : : are iid
with the common density f0. Now,

Ef0
ŒƒnC1 jƒ1; : : : ; ƒn� D Ef0

�
f1.XnC1/

f0.XnC1/
ƒn jƒ1; : : : ; ƒn

�

D ƒnEf0

�
f1.XnC1/

f0.XnC1/
jƒ1; : : : ; ƒn

�

D ƒnEf0

�
f1.XnC1/

f0.XnC1/

�

(because the sequence X1; X2; : : : are independent)

D ƒn

Z

R

f1.x/

f0.x/
f0.x/dx D ƒn

Z

R
f1.x/dx

D ƒn � 1 D ƒn:

Therefore, the sequence of likelihood ratios forms a martingale under the null hy-
pothesis (i.e., if the true f is f0).

Example 14.9 (Bayes Estimates). Suppose random variables Y;X1; X2; : : : are de-
fined on a common sample space �. For given n � 1; .X1; X2; : : : ; Xn/ has the
joint conditional distribution P�;n given that Y D � . From a statistical point of
view, Y is supposed to stand for an unknown parameter, which is formally treated
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as a random variable, and X .n/ D .X1; X2; : : : ; Xn/ for some specific n, namely
the actual sample size, is the data that the statistician has available to estimate the
unknown parameter. The Bayes estimate of the unknown paramter is the posterior
mean E.Y jX .n// (see Chapter 3).

Denote for each n � 1;E.Y jX .n// D Zn. We show that Zn forms a martin-
gale sequence with respect to the sequence X .n/; that is, E.ZnC1 jX .n// D Zn.
However, this follows on simply observing that by the iterated expectation formula,

Zn D E
�
Y jX .n/

�
D EXnC1 jX.n/

h
E
�
Y jX .n/; XnC1

�i
D E

�
ZnC1 jX .n/

�
:

Example 14.10 (Square of a Martingale). Suppose Xn, defined on some sample
space � is a positive submartingale sequence. For simplicity, let us consider the
case when it is adapted to itself. Thus, for any n � 1;E.XnC1 jX1; : : : ; Xn/ � Xn

(with probability one). Therefore, for any n � 1,

E.X2
nC1 jX1; : : : ; Xn/ � ŒE.XnC1 jX1; : : : ; Xn/�

2

� X2
n :

Therefore, if we let Zn D X2
n , then Zn is a submartingale sequence.

If we inspect this example carefully, then we realize that we have only used a very
special case of Jensen’s inequality to establish the needed submartingale property
for the Zn sequence. Furthermore, if the original fXng sequence is a martingale,
rather than a submartingale, then the positivity restriction on the Xn is no longer
necessary. Thus, by simply following the steps of this example, we in fact have the
following simple but widely useful general result.

Theorem 14.1 (Convex Function Theorem). Let Xn; n� 1 be defined on a
common sample space �. Let f be a convex function on R, and let Zn D f .Xn/.

(a) Suppose fXng is a martingale adapted to some sequence fYng. Then fZng is a
submartingale adapted to fYng.

(b) Suppose fXng is a submartingale adapted to some sequence fYng. Assume that
f is in addition nondecreasing. Then fZng is a submartingale adapted to fYng.

14.2 Stopping Times and Optional Stopping

The optional stopping theorem is one of the most useful results in martingale theory.
It can be explained in gambling terms. Consider a gambler playing a fair game
repeatedly, so that her sequence of fortunes forms a martingale. One might think that
by gaining experience as the game proceeds, and by quitting at a cleverly chosen
opportune time based on the gambler’s experience, a fair game could be turned
into a favorable game. The optional stopping theorem says that this is in fact not
possible, if the gambler does not have unlimited time on her hands and the house
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has limits on how much she can put up on the table. Mathematical formulation of the
optional stopping theorem requires use of stopping times, which were introduced in
Chapter 11 in the context of random walks. We redefine stopping times and give
additional examples below before introducing optional stopping.

14.2.1 Stopping Times

Definition 14.3. Let X1; X2; : : : be a sequence of random variables, all defined on
a common sample space �. Let � be a nonnegative integer-valued random vari-
able, also defined on �. We call � a stopping time adapted to the sequence fXng if
P.� < 1/ D 1, and if for each n � 1; If��ng is a function of onlyX1; X2; : : : ; Xn.

In other words, � is a stopping time adapted to fXng if for any n � 1, whether or
not � � n can be determined by only knowingX1; X2; : : : ; Xn, and provided that �
cannot be infinite with a positive probability.

We have seen some examples of stopping times in Chapter 11. We start with a
few more illustrative examples.

Example 14.11 (Sequential Tests in Statistics). Suppose to start with we have an
infinite sequence of random variables X1; X2; : : : on a common sample space �,
and let Sn denote the nth partial sum, Sn D Pn

iD1Xi ; n � 1. The Xn need not be
independent. Fix numbers �1 < l < u < 1. Then � defined as

� D inffn W Sn < l orSn > ug;

and � D 1 if l � Sn � u 8n � 1, is a stopping time adapted to the sequence fSng.
A particular case of this arises in sequential testing of hypotheses in statistics.

Suppose an original sequenceZ1; Z2; : : : is iid from some density f , which equals
either f0 or f1. Then, as we have seen above, the likelihood ratio is

ƒn D
Qn

iD1 f1.Zi /
Qn

iD1 f0.Zi /
:

The Wald sequential probability ratio test (SPRT) continues sampling as long asƒn

remains between two specified numbers a and b; a < b, and stops and decides in
favor of f1 or f0 the first time ƒn > b or < a. If we denote l D log a; u D logb,
then Wald’s test waits till the first time logƒn D Pn

iD1 log f1.Zi /
f0.Zi /

D Pn
iD1Xi (say)

goes above u or below l , and thus the sampling number of Wald’s SPRT is a stopping
time.

Example 14.12 (Combining Stopping Times). This example shows a few ways that
we can make new stopping times out of given ones. Suppose � is a stopping time
(adapted to some sequence fXng) and n is a prespecified positive integer. Then �n D
min.�;n/ is a stopping time (adapted to the same sequence). This is because

f�n � kg D f� � kg [ fn � kg;



470 14 Discrete Time Martingales and Concentration Inequalities

and therefore, � being a stopping time adapted to fXng, for any given k, deciding
whether �n � k requires the knowledge of only X1; : : : ; Xk .

Suppose �1; �2 are both stopping times, adapted to some sequence fXng. Then
�1 C �2 is also a stopping time adapted to the same sequence. To prove this, note
that

f�1 C �2 � kg D [k
iD0 [i

j D0 f�1 D j; �2 D i � j g D [k
iD0 [i

j D0 Aij :

and whether any Aij occurs depends only on X1; : : : ; Xk .
For the sake of reference, we collect a set of such facts about stopping times in

the next result. They are all easy to prove.

Theorem 14.2. (a) Let � be a stopping time adapted to some sequence fXng. Then,
for any given n � 1;min.�; n/ is also a stopping time adapted to fXng.

(b) Let �1; �2 be stopping times adapted to fXng. Then each of �1 C �2;min.�1; �2/;

max.�1; �2/ is a stopping time adapted to fXng.
(c) Let f�k; k � 1g be a countable family of stopping times, each adapted to fXng.

Let
� D inf

k
�kI � D sup

k

�k I � D lim
k!1

�k ;

where �; � , and � are defined pointwise, and it is assumed that the limit � exists
almost surely. Then each of �; � and � is a stopping time adapted to fXng.

14.2.2 Optional Stopping

The most significant derivative of introducing the concept of stopping times is the
optional stopping theorem. At the expense of using some potentially hard to verify
conditions, stronger versions of our statement of the optional stopping theorem can
be stated. We choose to opt for simplicity of the statement over greater generality,
and refer to more general versions (which are useful!). The main message of the op-
tional stopping theorem is that a gambler cannot convert a fair game into a favorable
one by using clever quitting strategies.

Theorem 14.3 (Optional Stopping Theorem). Let fXn; n � 0g be a submartin-
gale adapted to some sequence fYng, and � a stopping time adapted to the same
sequence. For n � 0, let �n D min.�; n/. Then fX�n

g is also a submartingale
adapted to fYng, and for each n � 0,

E.X0/ � E.X�n
/ � E.Xn/:

In particular, if

fXng is a martingale; E.jX� j/ < 1; and lim
n!1E.X�n

/ D E.X� /;
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then
E.X�/ D E.X0/:

Remark. It is of course unsatisfactory to simply demand that E.jX� j/ < 1 and
limn!1E.X�n

/ D E.X� /. What we need are simple sufficient conditions that a
user can verify relatively easily. This is addressed following the proof of the above
theorem.

Proof of Theorem. For simplicity, we give the proof only for the case when fXng is
adapted to itself. The main step involved is to notice the identity

Wn D X�n
D

n�1X

iD0

XiIf�Dig CXnIf��ng; .�/

for all n � 0. It follows from this identity and the submartingale property of the
fXng sequence that

E.WnC1 jX0; : : : ; Xn/

D
nX

iD0

E.XiIf�Dig jX0; : : : ; Xn/C E.XnC1If�>ng jX0; : : : ; Xn/

D
nX

iD0

XiIf�Dig C If�>ngE.XnC1 jX0; : : : ; Xn/

�
nX

iD0

XiIf�Dig CXnIf�>ng D X�n
D Wn:

Thus, as claimed, Wn D fX�n
g is a submartinagle adapted to the original fXng

sequence. It follows that

E.X�n
/ D E.Wn/ � E.W0/ D E.X0/:

To complete the proof of the theorem, we need the reverse inequality E.Wn/ �
E.Xn/. This too follows from the same identity .�/ given at the beginning of the
proof of this theorem, and on using the additional inequality

E.XnIf�Dig jX0; : : : ; Xi /

D If�DigE.Xn jX0; : : : ; Xi / � If�DigXi ;

because fXng is a submartingale. If this bound onXiIf�Dig is plugged into our basic
identity .�/ above, the reverse inequality follows.

The remaining claim, when fXng is in fact a martingale, follows immediately
from the two inequalities E.X0/ � E.Wn/ � E.Xn/. ut
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14.2.3 Sufficient Conditions for Optional Stopping Theorem

Easy examples show that the assertion E.X� / D E.X0/ for a martingale sequence
fXng cannot hold without some control on the stopping time � . We first provide
a simple example where the assertion of the optional stopping theorem fails. In
looking for such counterexamples, it is useful to construct the stopping time in a
way that when we stop, the value of the stopped martingale is a constant; that is, X�

is a constant.

Example 14.13 (An Example Where the Optional Stopping Theorem Fails). Con-
sider again the gambling example, or what really is the simple symmetric random
walk, with Xi iid having the common distribution P.Xi D ˙1/ D 1

2
, and

Sn D Pn
iD1Xi ; n � 1. We define S0 D 0. We know Sn to be a martingale. Consider

now the stopping time
� D inffn > 0 W Sn D 1g:

We know from Chapter 11 that the one-dimensional simple symmetric random walk
is recurrent; thus, P.� < 1/ D 1. Note that S� D 1, and so, E.S� / D 1. However,
E.S0/ D E.Sn/ D 0. So, the assertion of the optional stopping theorem does not
hold.

What is going on in this example is that we do not have enough control on the
stopping time � . Although the random walk visits all its states (infinitely often) with
probability one, the recurrence times are infinite on the average. Thus, � can be
uncontrollably large. Indeed, the assumption

lim
n!1E.Smin.�;n// D E.S� /.D 1/

does not hold. Roughly speaking, P.� > n/ goes to zero at the rate 1p
n

and if the
random walk still has not reached positive territory by time n, then it has traveled
to some distance roughly of the order of �p

n. These two now exactly balance
out, so that E.Smin.�;n//If�>ng does not go to zero. This causes the assumption
limn!1E.Smin.�;n// D E.S� / D 1 to fail.

Thus, our search for sufficient conditions in the optional stopping theorem should
be directed at finding nice enough conditions that ensure that the stopping time �
cannot get too large with a high probability. The next two theorems provide such a
set of aesthetically attractive sufficient conditions. It is not hard to prove these two
theorems. We refer the reader to Fristedt and Gray (1997, Chapter 24) for proofs of
these two theorems.

Theorem 14.4. Suppose fXn; n � 0g is a martingale, adapted to itself, and � a
stopping time adapted to the same sequence. Suppose any one of the following con-
ditions holds.

(a) For some n < 1; P.� � n/ D 1.
(b) For some nonnegative random variable Z with E.Z/ < 1, the martingale

sequence fXng satisfies jXnj � Z for all n � 0.
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(c) For some positive and finite c; jXnC1 � Xnj � c for all n � 0, E.jX0j/ < 1,
and E.�/ < 1.

(d) For some finite constant c;E.X2
n/ � c for all n � 0.

Then E.X� / D E.X0/.

Remark. It is important to keep in mind that none of these four conditions is
necessary for the equality E.X� / D E.X0/ to hold. We recall from our discussion
of uniform integrability in Chapter 7 that conditions (b) and (d) in Theorem 14.4
each imply that the sequence fXng is uniformly integrable. In fact, it may be shown
that under the weaker condition that our martingale sequence fXng is uniformly
integrable, the equality E.X� / D E.X0/ holds. The important role played by uni-
form integrability in martingale theory reappears when we discuss convergence of
martingales.

An important case where the equality holds with essentially the minimum re-
quirements is the special case of a random walk. We precisely describe this im-
mediately below. The point is that the four sufficient conditions are all-purpose
conditions. But if the martingale has a special structure, then the conditions can
sometimes be weakened. Here is such a result for a special martingale, namely the
random walk.

Theorem 14.5. Let Z1; Z2; : : : be an iid sequence such that E.jZ1j/ < 1. Let
Sn D Pn

iD1Zi ; n � 1. Let � be any stopping time adapted to fSng such that
E.�/ < 1. Consider the martingale sequence Xn D Sn � n�; n � 1, where
� D E.Z1/. Then the equality E.X� / D E.X1/ D 0 holds.

Remark. The special structure of the random walk martingale allows us to conclude
the assertion of the optional stopping theorem, without requiring the bounded incre-
ments condition jXnC1 �Xnj � c, which was included in the all-purpose sufficient
condition in Theorem 14.4.

Example 14.14 (Weighted Rademacher Series). LetX1; X2; : : : be a sequence of iid
Rademacher variables with common distribution P.Xi D ˙1/ D 1

2
. For n � 1, let

Sn D Pn
iD1

Xi

i˛ , where ˛ > 1
2

. Because Xi are independent and E.Xi

i˛ / D 0 for all
i; Sn forms a martingale sequence (see Example 14.2). On the other hand,

E.S2
n/ D Var.Sn/ D

nX

iD1

Var.Xi /

i2˛

D
nX

iD1

1

i2˛
�

1X

iD1

1

i2˛
D �.2˛/ < 1;

where �.z/ is the Riemann zeta function �.z/ D P1
nD1

1
nz ; z > 1. Therefore, if

˛ > 1
2
; E.S2

n/ � c D �.2˛/ for all n, and hence by our theorem above,E.S� / D 0

holds for any stopping time � adapted to fSng.
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Example 14.15 (The Simple Random Walk). Consider the one-dimensional random
walk with iid steps Xi , having the common distribution P.Xi D 1/ D p;P.Xi D
�1/ D q; 0 < p < 1; p C q D 1. Then, E.Xi / D p � q D � (say), and Sn � n�,
where Sn D Pn

iD1Xi , is a martingale. We also have, for any n,

jSnC1 � .nC 1/�� .Sn � n�/j D jXnC1 � �j � 2:

Furthermore, E.jS1 � �j/ is clearly finite. Therefore, for any stopping time � with
a finite expectation, by using our theorem above, the equality E.S� � ��/ D 0, or
equivalently, E.S� / D �E.�/ holds. Recall from Chapter 11 that this is a special
case of Wald’s identity. Wald’s identity is revisited in the next section.

14.2.4 Applications of Optional Stopping

We provide a few applications of the optional stopping theorem. The optional stop-
ping theorem also has important applications to martingale inequalities, which is
our topic in the next section.

Perhaps the two best general applications of the optional stopping theorem are
two identities, known as Wald identities. Of these, the first Wald identity is already
known to us; see Chapter 11. We connect that identity to martingale theory and
present a second identity, which was not presented in Chapter 11.

Theorem 14.6 (Wald’s First and Second Identity). Let X1; X2; : : : be a se-
quence of iid random variables, defined on a common sample space �. Let
Sn D Pn

iD1Xi ; n � 1. Let � be a stopping time adapted to the sequence fSng
and suppose that E.�/ < 1.

(a) Suppose E.jX1j/ < 1 and E.X1/ D � (which need not be zero). Then
E.S� / D �.E�/.

(b) SupposeE.X1/ D 0;E.X2
1 / D �2 < 1. Then Var.S�/ D �2.E�/.

Proof. Both parts of this theorem follow from Theorem 14.5. For part (a), apply
Theorem 14.5 to the martingale sequence Sn � n� to conclude that E.S� � ��/ D
0 ) E.S�/ D �.E�/. For part (b), because � D E.X1/ has now been assumed to
be zero, by applying part (a) of this theorem,

Var.S� / D E.S� �EŒS� �/
2 D E.S� � 0/2 D E.S2

� /:

Next note that because the Xi are independent,

Var.SnC1 jS1; : : : ; Sn/ D Var.XnC1/ D �2

) E.S2
nC1 jS1; : : : ; Sn/ D S2

n C �2

) E.S2
nC1 � .nC 1/�2 jS1; : : : ; Sn/ D S2

n � n�2I
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that is, S2
n � n�2 is a martingale sequence adapted to the Sn sequence. From here,

it follows that E.S2
� � ��2/ D E.S2

1 � �2/ D 0, which means

Var.S�/ D E.S2
� / D �2.E�/;

which is what part (b) says. ut
Example 14.16 (Expected Hitting Times for a Random Walk). The Wald identity
may be used to evaluate the expected hitting time of a given level by a random walk.
Specifically, let Sn be the one-dimensional simple symmetric random walk with the
iid steps having the common distribution P.Xi D ˙1/ D 1

2
, Let x be any given

positive integer and consider the first passage time

�x D inffn > 0 W Sn D xg:

We know from general random walk theory (Chapter 11) that P.�x < 1/ D 1.
Also, obviously E.jX1j/ D 1 < 1, and � D E.X1/ D 0. Therefore, if E.�x/

is finite, Wald’s identity E.S�x
/ D �E.�x/ will hold. However, S�x

D x with
probability one, and hence,E.S�x

/ D x. It follows that the equality x D 0�E.�x/

cannot hold for any finite value of E.�x/. In other words, for any positive x, the
expected hitting time of x must be infinite for the simple symmetric random walk.
The same argument also works for negative x.

Example 14.17 (Gambler’s Ruin). Now let us revisit the so-called gambler’s ruin
problem, wherein the gambler quits when he either goes broke, or attains a prespec-
ified amount of fortune (see Chapter 10). In other words, the gambler waits for the
random walk Sn to hit one of two integers 0; b; b > 0. Suppose a < b is the amount
of money with which the gambler walked in, so that the gambler’s sequence of for-
tunes is the random walk Sn D Pn

iD1Xi C S0, where S0 D a, and the steps are
still iid with P.Xi D ˙1/ D 1

2
. Formally, let

� D �fa;bg D inffn > 0 W Sn 2 f0; bgg:

By applying the optional stopping theorem,

E.S� / D 0 � P.S� D 0/C bŒ1 � P.S� D 0/� D E.S0/ D aI

note that we have implicitly assumed the validity of the optional stopping theorem
in the last step (which is true in this example; why?). Rearranging terms, we deduce
that P.S� D 0/ D b�a

b
, or equivalently, P.S� D b/ D a

b
.

Example 14.18 (Generalized Wald Identity). The two identities of Wald given above
assume only the existence of the first and the second moment of Xi , respectively.
If we make the stronger assumption that the Xi have a finite mgf, then a more
embracing martingale identity can be proved, from which the two Wald identities
given above fall out as special cases. This generalized Wald identity is presented in
this example.
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The basic idea is the same as before, which is to think of a suitable martingale,
and apply the optional stopping theorem to it. Suppose then that X1; X2; : : : is an
iid sequence, with the mgf  .t/ D E.etXi /, which we assume to be finite in some
nonempty interval containing zero. The martingale that works for our purpose in
this example is

Zn D Œ .t/��netSn ; n � 0;

where, as usual, Sn D Pn
iD1Xi , and we take S0 D 0. The number t is fixed, and is

often cleverly chosen in specific applications.
The special normal case of this martingale was seen in Example 14.4. Exactly

the same proof works in order to show that Zn as defined above is a martingale in
general, not just the normal case. Formally, therefore, whenever we have a stopping
time � such that the optional stopping theorem is valid for this martingale sequence
Zn, we have the identity

E.Z� / D EŒ. .t//�� etS� � D E.Z0/ D 1:

Once we have this general identity, we can manipulate it for special stopping times
� to make useful conclusions in specific applications.

Example 14.19 (Error Probabilities of Wald’s SPRT). As a specific application of
historical importance in statistics, consider again the example of Wald’s SPRT
(Example 14.11). The setup is that we are acquiring iid observations Z1; Z2; : : :

from a parametric family of densities f .xj�/, and we have to decide between the
two hypothesesH0 W � D �0 (the null hypothesis), andH1 W � D �1 (the alternative
hypothesis). As was explained in Example 14.11, we continue sampling as long as
l < Sn < u for some l; u; l < u, and stop and decide in favor ofH1 orH0 when for
the first time Sn � u or Sn � l ; here, Sn is the log likelihood ratio

Sn D logƒn D log

Qn
iD1 f .Zi j�1/

Qn
iD1 f .Zi j�0/

D
nX

iD1

log
f .Zi j�1/

f .Zi j�0/
D

nX

iD1

Xi say:

Therefore, in this particular case, the relevant stopping time is

� D inffn > 0 W Sn 62 .l; u/g:

The type I error probability of our test is the probability that the test would reject
H0 if H0 happened to be true. Denoting the type I error probability as ˛, we have
˛ D P�D�0

.S� � u/. We use Wald’s generalized identity to approximate ˛. Exact
calculation of ˛ is practically impossible except in stray cases.
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To proceed with this approximation, suppose there is a number t ¤ 0 such that
E�D�0

.etXi / D 1. In our notation for the generalized Wald identity, this makes
 .t/ D 1 for this judiciously chosen t . If we now make the assumption (of some
faith) that when Sn leaves the interval .l; u/, it does not overshoot the limits l; u by
too much, we should have

S� 	 uIfS� �ug C lIfS� �lg:

Therefore, by applying Wald’s generalized identity,

1 D E�D�0
.etS� / 	 etu˛ C et l.1 � ˛/

) ˛ 	 1 � et l

etu � et l
:

This is the classic Wald approximation to the type I error probability of the SPRT
(sequential probability ratio test). A similar approximation exists for the type II
error probability of the SPRT, which is the probability that the test will acceptH0 if
H0 happens to be false.

14.3 Martingale and Concentration Inequalities

The optional stopping theorem is also the main tool in proving a collection of impor-
tant inequalities involving martingales. To provide a little context for such inequali-
ties, consider the special martingale of a random walk, namely Sn D Pn

iD1Xi ; n �
1, where we assume the Xi to be iid mean zero random variables with a fi-
nite variance �2. If we take any fixed n, and any fixed 	 > 0, then simply by

Chebyshev’s inequality,P.jSnj � 	/ � E.S2
n/

�2 . Kolmogorov’s inequality (see Chap-

ter 8) makes the stronger assertionP.max1�k�n jSkj � 	/ � E.S2
n/

�2 . A fundamental
inequality in martingale theory says that such an inequality holds for more general
martingales, and not just the special martingale of a random walk.

14.3.1 Maximal Inequality

Theorem 14.7 (Martingale Maximal Inequality).

(a) Let fXn; n � 0g be a nonnegative submartingale adapted to some sequence
fYng, and 	 any fixed positive number. Then, for any n � 0,

P

�

max
0�k�n

Xk � 	

�

� E.Xn/

	
:
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(b) Let fXn; n � 0g be a martingale adapted to some sequence fYng, and 	 any
fixed positive number. Suppose p � 1 is such that E.jXkjp/ < 1 for any
k � 0. Then, for any n � 0,

P

�

max
0�k�n

jXkj � 	

�

� E
�jXnjpIfmax0�k�n jXk j��g

	

	p
� E.jXnjp/

	p
:

Proof. Note that the final inequality in part (b) follows from part (a) by use of
Theorem 14.1 because f .z/ D jzjp is a nonnegative convex function, and therefore
if fXng is a martingale adapted to some sequence fYng, then for p � 1, fjXnjpg is a
nonnegative submartingale (adapted to that same sequence fYng). The first inequal-
ity in part (b) is proved by partitioning the event fmax0�k�n jXkj � 	g into disjoint
events of the form fjX0j < 	; : : : jXi j < 	; jXiC1j � 	g, and then using simple
bounds on each of these partitioning sets. This is left as an exercise.

For proving part (a) of this theorem, define the stopping time

� D inffk � 0 W Xk > 	g;

and �n D min.�; n/.
Then, by the optional stopping theorem,

E.Xn/ � E.X�n
/ D E

�
X�n

Ifmax0�k�n Xk��g
	C E.X�n

Ifmax0�k�n Xk<�g/

� E
�
X�n

Ifmax0�k�n Xk��g
	

(since the fXng sequence has been assumed to be nonnegative)

� 	E


Ifmax0�k�n Xk��g

� D 	P

�

max
0�k�n

Xk � 	

�

;

which is what part (a) of this theorem says. ut
Part (a) of the theorem above assumes the submartingale fXng to be nonnega-

tive. This assumption is in fact not needed. In addition, the inequality itself can be
somewhat strengthened. The following improved version of the maximal inequality
can be proved by minor modifications of the argument given above; we record the
stronger version, which is important for applications.

Theorem 14.8 (A Better Maximal Inequality). Let fXn; n � 0g be a submartin-
gale adapted to some sequence fYng, and 	 any fixed positive number. Then, for any
n � 0,

P

�

max
0�k�n

Xk � 	

�

� E.XC
n /

	
� E.jXnj/

	
;

where for any real number x; xC D max.x; 0/ � jxj.
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Example 14.20 (Sharper Bounds Near Zero). The bounds in Theorem 14.7 and
Theorem 14.8 are not useful unless 	 is large, because the upper bounds blow up
as 	 ! 0. However, if we work a little harder, then useful bounds can be derived
at least in some cases even when 	 is near zero. This example illustrates such a
calculation.

Let fXng be a zero mean martingale, and suppose �2
k

D Var.Xk/ < 1 for
all k. For n � 0, denote Mn D max0�k�nXk . Fix a constant c > 0; the constant
c is chosen later suitably. By Theorem 14.1, f.Xk C c/2g is a submartingale, and
therefore, by Theorem 14.8,

P.Mn � 	/ D P.Mn C c � 	C c/ D P

�

max
0�k�n

.Xk C c/ � 	C c

�

� E.Xn C c/2

.	C c/2
D c2 C �2

n

c2 C 2c	C 	2
:

Therefore,

P.Mn � 	/ � inf
c>0

c2 C �2
n

c2 C 2c	C 	2
:

The function c2C�2
n

c2C2c�C�2 is uniquely minimized at the root of the derivative equation

c

c2 C �2
n

� c C 	

c2 C 2c	C 	2
D 0

, c2	C c.	2 � �2
n / � 	�2

n D 0 , c D �2
n

	
:

Plugging this value of c, we get

P.Mn � 	/ � inf
c>0

c2 C �2
n

c2 C 2c	C 	2

D �2
n

	2 C �2
n

;

for any 	 > 0. Clearly, this bound is strictly smaller than one for any 	 > 0.

Example 14.21 (Bounds on the Moments of the Maximum). Here is a clever applica-
tion of Theorem 14.7 to bounding the moments of Mn D max0�k�n jXkj in terms
of the same moment of jXnj for a martingale sequence fXng. The example is a very
nice illustration of the art of putting simple things together to get a pretty end result.

Suppose that fXn; n � 0g is a martingale sequence, and p > 1 is such that
E.jXkjp/ < 1 for every k. The proof of the result in this example makes use
of Holder’s inequality E.jXY j/ � .EjX j˛/1=˛.EjY jˇ /1=ˇ , where ˛; ˇ > 1, and
ˇ D ˛

˛�1
(see Chapter 1).
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Proceeding,

E.M p
n / D

Z 1

0

p	p�1P.Mn > 	/d	

�
Z 1

0

p	p�1
E
�jXnjIfMn��g

	

	
d	

(by using part (b) of Theorem 14.7)

D
Z 1

0

p	p�2E
�jXnjIfMn��g

	
d	 D E

"

pjXnj
 Z Mn

0

	p�2d	

!#

(by Fubini’s theorem)

D E

"

pjXnjM
p�1
n

p � 1

#

D p

p � 1E
�jXnjM p�1

n

	

� p

p � 1 ŒEjXnjp�1=p ŒE.M p
n /�

.p�1/=p

(by using Holder’s inequality with ˛ D p; ˇ D p
p�1

).

Transferring ŒE.M p
n /�

.p�1/=p to the left side,

ŒE.M p
n /�

1=p � p

p � 1
ŒEjXnjp�1=p :

In particular, for a square integrable martingale, by using p D 2 in the inequality
we just derived,

ŒE.M 2
n /�

1=2 � 2ŒE.X2
n/�

1=2 ) E.M 2
n / � 4E.X2

n/;

a very pretty and useful inequality.

14.3.2 � Inequalities of Burkholder, Davis, and Gundy

The previous two examples indicated applications of various versions of the
maximal inequality to obtaining bounds on the moments of the maximum
Mn D max0�k�n jXkj for a martingale sequence fXng. The maximal inequality
tells us how to obtain bounds on the moments from bounds on the tail probability.
In particular, if the martingale is square integrable, that is, if E.X2

k
/ < 1 for any

k, then the maximal inequality leads to a bound on the second moment of Mn in
terms of the second moment of the last term, namely E.X2

n/.
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There is a useful connection between E.X2
n/ and E.D2

n/ for a general square
integrable martingale fXng, where D2

n D Pn
iD1.Xi � Xi�1/

2. The connection,
which we prove below, is the neat identity E.X2

n/ � E.X2
0 / D E.D2

n/, so that if
X0 D 0, thenE.X2

n/ and E.D2
n/ are equal. Therefore, we can think of the maximal

inequality and the implied moment bounds in terms of E.D2
n/, because E.D2

n/ and
E.X2

n/ are, after all, equal. It was shown in Burkholder (1973), Davis (1970), and
Burkholder, Davis, and Gundy (1972) that one can bound expectations of far more
general functions of Mn in terms of expectations of the same functions of Dn; in
particular, one can bound the pth moment of Mn from both directions by multiples
of the pth moment of Dn for general p � 1. In some sense, the moments of Mn

and the moments ofDn grow in the same order; if one can control the increments of
the martingale sequence, then one can control the maximum. Three such important
bounds are presented in this section for reference and completeness. But first, we
demonstrate the promised connection between E.X2

n/ and E.D2
n/, an interesting

result in its own right.

Proposition. Suppose fXn; n � 0g is a martingale. Let Vi D Xi � Xi�1; i � 1,
andD2

n D Pn
iD1 V

2
i . SupposeE.X2

k
/ < 1 for each k � 0. Then, for any n � 1,

E.D2
n/ D E.X2

n/� E.X2
0 /:

Proof.

E.D2
n/ D

nX

iD1

EŒ.Xi �Xi�1/
2� D

nX

iD1

EŒXi .Xi �Xi�1/� Xi�1.Xi �Xi�1/�

D
nX

iD1

E.EŒXi .Xi �Xi�1/ jX0; : : : ; Xi�1�/

�
nX

iD1

E.EŒXi�1.Xi �Xi�1/ jX0; : : : ; Xi�1�/

D
nX

iD1

fE.EŒX2
i jX0; : : : ; Xi�1�/ �E.Xi�1EŒXi jX0; : : : ; Xi�1�/g

�
nX

iD1

E.Xi�1EŒXi jX0; : : : ; Xi�1� � X2
i�1/

D
nX

iD1

fE.X2
i /� E.X2

i�1/g �
nX

iD1

E.X2
i�1 �X2

i�1/

D E.X2
n/� E.X2

0 /: ut
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Remark. In view of this result, we can restate part (b) of Theorem 14.7 for the case
p D 2 in the following manner.

Theorem 14.9. Let fXn; n � 0g be a martingale such that X0 D 0 and E.X2
k
/ <

1 for all k � 1. Let 	 be any fixed positive number, and for any n � 1;Mn D
max0�k�n jXkj. Then,

P.Mn � 	/ � E.D2
n/

	2
:

The inequalities of Burkholder, Davis, and Gundy show how to establish bounds
on moments of Mn in terms of the same moments of Dn. To describe some of these
bounds, we first need a little notation.

Given a real-valued random variable X , and a positive number p, the Lp norm

of X is defined as jjX jjp D ŒE.jX jp/� 1
p , assuming that E.jX jp/ < 1. Obviously,

if X is already a nonnegative random variable, then jjX jjp D ŒE.Xp/�
1
p , Here

are two specific bounds on the Lp norms of Mn in terms of the Lp norms of Dn.
Of these, the case p > 1 was considered in works of Donald Burkholder (e.g.,
Burkholder (1973)); the case p D 1 needed a separate treatment, and was dealt with
in Davis (1970).

Theorem 14.10. (a) Suppose fXn; n � 0g is a martingale, with X0 D 0. Suppose
for some given p > 1; jjXkjjp < 1 for all k � 1. Then, for any n � 1,

p � 1

18p3=2
jjDnjjp � jjMnjjp � 18p3=2

.p � 1/3=2
jjDnjjp:

(b) There exist universal positive constants c1; c2 such that

c1jjDnjj1 � jjMnjj1 � c2jjDnjj1:

Moreover, the constant c2 may be taken to be
p
3.

For p � 1, the functions x ! jxjp are convex. It was shown in Burkholder,
Davis, and Gundy (1972) that bounds of the same nature as in the theorem above
hold for general convex functions. The exact result says the following.

Theorem 14.11. Suppose fXn; n � 0g is a martingale with X0 D 0 and

 W R ! R a convex function. Then there exist universal positive constants
c� ; C�; c� � C� , depending only on the function 
, such that for any n � 1,

c�E.
.Dn// � E.
.Mn// � C�E.
.Dn//:

Remark. Note that apart from the explicit constants, both parts of Theorem 14.10
follow as special cases of this theorem. To our knowledge, no explicit choices of
c� ; C� are known.
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14.3.3 Inequalities of Hoeffding and Azuma

The classical inequality of Hoeffding (Hoeffding (1963); see Chapter 8) gives
bounds on the probability of a large deviation of a partial sum of bounded iid ran-
dom variables from its mean value. The message of that inequality is that if the
iid summands can be controlled, then the deviations of the sum from its mean can
be controlled. Inequalities on probabilities of the form P.jf .X1; X2; : : : ; Xn/ �
E.f .X1; X2; : : : ; Xn//j > t/ are called concentration inequalities. An equally
classic concentration inequality of K. Azuma (Azuma (1967)) shows that a Ho-
effding type inequality holds for a martingale sequence, provided that the incre-
ments Xk � Xk�1 vary in bounded intervals. The analogy between the iid case
and the martingale case is then clear. In the iid case, we can control Sn DPn

iD1Xi if we can control the summands Xi ; in the martingale case, we can con-
trol Xn � X0 D Pn

iD1.Xi � Xi�1/ if we can control the summands Xi � Xi�1.
Here is Azuma’s inequality in its classic form; a more general form is given
afterwards.

Theorem 14.12 (Azuma’s Inequality). Suppose fXn; n � 0g is a martingale such
that Vi D jXi �Xi�1j � ci , where ci are positive constants. Then, for any positive
number t and any n � 1,

(a) P.Xn � X0 � t/ � e
� t2

2
Pn

iD1
c2

i :

(b) P.Xn � X0 � �t/ � e
� t2

2
Pn

iD1
c2

i :

(c) P.jXn � X0j � t/ � 2e
� t2

2
Pn

iD1
c2

i :

The proof of part (b) is exactly the same as that of part (a), and part (c) is an im-
mediate consequence of parts (a) and (b). So only part (a) requires a proof. For this,
we need a classic convexity lemma, originally used in Hoeffding (1963), and then a
generalized version of it. Here is the first lemma.

(Hoeffding’s Lemma). Let X be a zero mean random variable such that P.a �
X � b/ D 1, where a; b are finite constants. Then, for any s > 0,

E.esX / � e
s2.b�a/2

8 :

Remark. It is important to note that the bound in this lemma depends only on b � a
and the mean zero assumption, but not on the individual values of a; b.

Proof of Hoeffding’s Lemma. The proof uses convexity of the function x ! esx ,
and a calculus inequality on the function 
.u/ D �pu C log.1 � p C peu/; u � 0,
where p is a fixed number in .0; 1/.
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First, by the convexity of x ! esx , for a � x � b,

esx � x � a

b � a
esb C b � x

b � a
esa:

Taking an expectation,

E.esX / � pesb C .1 � p/esa: .�/

where p D �a
b�a

; note that p belongs to Œ0; 1�. It now remains to show that pesb C
.1 � p/esa � e

s2.b�a/2

8 . Towards this, write

pesb C .1 � p/esa D esa
h
1 � p C pes.b�a/

i
D e�sp.b�a/

h
1 � p C pes.b�a/

i

D e�sp.b�a/Clog.1�pCpes.b�a// D e�puClog.1�pCpeu/;

writing u for s.b � a/.
A relatively simple calculus argument shows that the function 
.u/ D �pu C

log.1 � p C peu/ is bounded above by u2

8
for all u > 0. Plugging this bound in .�/

results in the bound in the lemma.

(Generalized Hoeffding Lemma). Let V;Z be two random variables such that

E.V jZ/ D 0; andP.f .Z/ � V � f .Z/C c/ D 1

for some function f .Z/ of Z and some positive constant c. Then, for any s > 0,

E.esV jZ/ � e
s2c2

8 :

The generalized Hoeffding lemma has the same proof as Hoeffding’s lemma itself.
Refer to the remark that we made just before the proof of Hoeffding’s lemma. It is
the generalized Hoeffding lemma that gives us Azuma’s inequality.

Proof of Azuma’s Inequality. Still using the notation Vi D Xi � Xi�1, then, with
s > 0,

P.Xn � X0 � t/ D P
�
es.Xn�X0/ � est

�
� e�stE

�
es.Xn�X0/

�

D e�stE
�
es
Pn

iD1 Vi

�
D e�stE

�
es
Pn�1

iD1 Vi CsVn

�

D e�stE
�
es
Pn�1

iD1 ViE
h
esVn jX0; : : : ; Xn�1

i�

� e�stE

�

es
Pn�1

iD1 Vi e
s2.2cn/2

8

�
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(because E.Vn jX0; : : : ; Xn�1/ D 0 by the martingale property of fXng, and then
by applying the generalized Hoeffding lemma)

D e�ste
s2c2

n
2 E

�
es
Pn�1

iD1 Vi

�
� e�ste

s2 Pn
iD1

c2
i

2 ;

by repeating the same argument.
This latest inequality is true for any s > 0. Therefore, by minimizing the bound

over s > 0,

P.Xn � X0 � t/ � inf
s>0

e�ste
s2 Pn

iD1
c2

i
2 D e

� t2

2
Pn

iD1
c2

i ;

where the infimum over s is easily established by a simple calculus argument. This
proves Azuma’s inequality. ut

14.3.4 � Inequalities of McDiarmid and Devroye

McDiarmid (1989) and Devroye (1991) use novel martingale techniques to derive
concentration inequalities and variance bounds for potentially complicated func-
tions of independent random variables. The only requirement is that the function
should not change by arbitrarily large amounts if all but one of the coordinates
remain fixed. The first result below says that functions of certain types are concen-
trated near their mean value with a high probability.

Theorem 14.13. Suppose X1; : : : ; Xn are independent random variables, and
f .x1; : : : ; xn/ is a function such that for each i; 1 � i � n, there exist finite
constant ci D ci;n such that

jf .x1; : : : ; xi�1; xi ; xiC1; : : : ; xn/� f .x1; : : : ; xi�1; x
0
i ; xiC1; : : : ; xn/j � ci

for all x1; : : : ; xi ; x
0
i ; : : : ; xn. Let t be any positive number. Then,

(a) P.f �E.f / � t/ � e
� 2t2
Pn

iD1
c2

i :

(b) P.f �E.f / � �t/ � e
� 2t2
Pn

iD1
c2

i :

(c) P.jf � E.f /j � t/ � 2e
� 2t2
Pn

iD1
c2

i :

Proof. Once again, only part (a) is proved, because (b) is proved exactly analo-
gously, and (c) follows by adding the inequalities in (a) and (b). For notational
convenience, we takeE.f / to be zero; this allows us to write f in place of f �E.f /
below.
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The trick is to decompose f as f D Pn
kD1 Vk , where fVkg is a martingale

difference sequence such that it can be bounded in both directions,Zk � Vk � Wk ,
in a manner so that Wk � Zk � ck; k D 1; 2; : : : ; n. Then, Azuma’s inequality
applies and the inequality of this theorem falls out. Construct the random variables
Vk; Zk ;Wk as follows.

Define

�.x1; : : : ; xk/ D EŒf .X1; : : : ; Xn/ jX1 D x1; : : : ; Xk D xk �I
Vk D �.X1; : : : ; Xk/ � �.X1; : : : ; Xk�1/ for k � 2; andV1 D �.X1/I
Zk D inf

xk

�.X1; : : : ; Xk�1; xk/� �.X1; : : : ; Xk�1/ fork � 2;

andZ1 D inf
x1

�.x1/I

Wk D sup
xk

�.X1; : : : ; Xk�1; xk/� �.X1; : : : ; Xk�1/ fork � 2;

andW1 D sup
x1

�.x1/:

Now observe the following facts.

(a) By construction,Zk � Vk � Wk for each k.
(b) By hypothesis,Wk �Zk � ck for each k.
(c) f .X1; : : : ; Xn/ D Pn

kD1 Vk .
(d) fVkgn

1 forms a martingale difference sequence.

Therefore, we can once again apply the generalized Hoeffding lemma and simply
repeat the proof of Azuma’s inequality to obtain the inequality in part (a) of this
theorem. ut

An interesting feature of McDiarmid’s inequality is that martingale methods were
used to derive a probability inequality involving independent random variables. It
turns out that martingale methods may also be used to derive variance bounds for
functions of independent random variables. The following variance bound is taken
from Devroye (1991).

Theorem 14.14. Suppose X1; : : : ; Xn are independent random variables and
f .x1; : : : ; xn/ is a function that satisfies the conditions of Theorem 14.13. Then,

Var.f .X1; : : : ; Xn// �
Pn

iD1 c
2
i

4
:

Proof. We use the same notation as in the proof of Theorem 14.13. The proof con-
sists of showing Var.f / D E.

Pn
iD1 V

2
i / and E.V 2

i / � �
c2

i =4
	
.
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To prove the first fact, we use the martingale decomposition as in Theorem 14.13
to get

Var.f / D Var

 
nX

iD1

Vi

!

D E

2

4

 
nX

iD1

Vi

!2
3

5

D
nX

iD1

EŒV 2
i �C 2

XX

i<j

EŒViVj �

D
nX

iD1

EŒV 2
i �C 2

XX

i<j

E.ViEŒVj jX1; : : : ; Xj �1�/

D
nX

iD1

EŒV 2
i �C 2

XX

i<j

E.Vi � 0/ D
nX

iD1

EŒV 2
i �:

To prove the second fact, we use an extremal property of two-point distribu-
tions, namely that the two-point distribution placing probability 1

2
at each of a; b

maximizes the variance among all distributions supported on Œa; b�, and that this

two-point distribution has variance .b�a/2

4
. From the proof of Theorem 14.13,

Zi � Vi � Wi � Zi C ci . Therefore, the conditional variance of Vi given

X1; : : : ; Xi�1 is at most
c2

i

4
, and the conditional mean is zero. Putting these two

facts together, we get our desired bound E.V 2
i / � c2

i

4
, which gives the variance

bound stated in this theorem. ut
The two theorems in this section give useful probability and variance bounds

in many complicated problems in which direct evaluation would be essentially
impossible.

Example 14.22 (The Kolmogorov–Smirnov Statistic). Suppose X1; X2; : : : ; Xn are
iid observations from some continuous CDF F.x/ on the real line. It is some-
times of interest in statistics to test the hypothesis that F D F0, some specific
CDF on the real line. By the Glivenko–Cantelli theorem (see Chapter 7), the em-
pirical CDF Fn converges uniformly to the true CDF with probability one. So
a measure of discrepancy of the observed data from the postulated CDF F0 is
�n D supx jFn.x/ � F0.x/j. The Kolmogorov–Smirnov statistic is Dn D p

n�n.
Exact calculations withDn are very cumbersome, because of the complicated nature
of its distribution for given n. The purpose of this example is to use the inequalities
of McDiarmid and Devroye to get useful bounds on its tail probabilities and the
variance.

The function f to which we would apply the inequalities of McDiarmid and De-
vroye is f .X1; : : : ; Xn/ D supx jFn.x/ � F0.x/j. We need to show that if just one
data value changes, then the function f cannot change by too large an amount.
Indeed, consider two datasets, fX1; : : : ; Xi ; : : : ; Xng and fX1; : : : ; X

0
i ; : : : ; Xng,

where in the second set the X 0
i value is different from Xi . Let the corresponding
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empirical CDFs be Fn; F
0
n. Fix an x. The number of observations � x in the two

datasets can differ by at most one, and therefore jFn.x/ � F 0
n.x/j � 1

n
. This holds

for any x. By the triangular inequality,

j sup
x

jFn.x/ � F0.x/j � sup
x

jF 0
n.x/ � F0.x/jj � sup

x
jFn.x/ � F 0

n.x/j � 1=n:

Thus, we may use ci D ci;n D 1
n

in the inequalities of McDiarmid and Devroye.
First, by simply plugging ci D 1

n
in Theorem 14.13, we get

P.j�n � E.�n/j � t/ � 2e�2nt2

) P.jDn �E.Dn/j � t/ � 2e�2t2

:

This concentration inequality holds for every fixed n and t > 0, and we do not need
to deal with the exact distribution ofDn to arrive at this inequality.

Again plugging ci D 1
n

in Theorem 14.14, we get

Var.�n/ � 1

4n
) Var.Dn/ � 1

4
;

for all n � 1. Once again, this is an attractive variance bound that is valid for every
n, and we do not need to work with the exact distribution of Dn to arrive at this
bound.

14.3.5 The Upcrossing Inequality

A final key inequality in martingale theory that we present is Doob’s upcrossing
inequality. The inequality is independently useful for studying fluctuations in the
trajectory of a martingale (submartingale) sequence. It is also the result we need in
the next section for establishing the fundamental convergence theorem for martin-
gales (submartingales).

Given the discrete time process fXn; n � 0g, fix an integer N > 0, and two
numbers a; b; a < b. We now track the time instants at which this process crosses b
from below, or a from above. Formally, let T0 D inffk � 0 W Xk � ag. If X0 > a,
then this is the first downcrossing of a. IfX0 � a, then T0 D 0. Now we wait for the
first upcrossing of b after the time T0. Formally, T1 D inffk > T0 W Xk � bg. We
continue tracking the down and the upcrossings of the two levels a; b in this fashion.
Here then is the formal definition for the entire sequence of stopping times Tn:

T0 D inffk � 0 W Xk � agI
T2nC1 D inffk > T2n W Xk � bg; n � 0I
T2nC2 D inffk > T2nC1 W Xk � ag; n � 0:
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The times T1; T3; : : : are then the instants of upcrossing, and the times T0; T2; : : :

are the instants of downcrossing. The upcrossing inequality places a bound on the
expected value of Ua;b;N , the number of upcrossings up to the time N . Note that
this is simply the number of odd labels 2nC 1 for which T2nC1 � N .

Theorem 14.15. Let fXn; n � 0g be a submartingale. Then for any a; b;N.a < b/,

EŒUa;b;N � � EŒ.XN � a/C�� EŒ.X0 � a/C�
b � a � E.jXN j/C jaj

b � a
:

Proof. The second inequality follows from the first inequality by the pointwise in-
equality .x�a/C � xC Cjaj � jxjCjaj, and so, we prove only the first inequality.

First make the following reduction. Define a new nonnegative submartingale as
Yn D .Xn � a/C; n � 0. This shifting by a is going to result in a useful reduction.
There is a functional identity between the upcrossing variable that we are interested
in, namely Ua;b;N and the number of upcrossings V0;b�a;N of this new process
fYngN

0 of the two new levels 0 and b � a. Indeed, Ua;b;N D V0;b�a;N . So we need
to show that EŒV0;b�a;N � � E.YN �Y0/

b�a
.

The key to proving this inequality is to write a clever decomposition

YN � Y0 D
NX

iD0

.Y�i
� Y�i�1

/;

such that three things happen:

(i) The �i are increasing stopping times, so that the submartingale property is in-
herited by the Y�i

sequence.
(ii) The sum over the odd labels in this decomposition satisfy the pointwise in-

equality X

i W0�i�N; i odd

.Y�i
� Y�i�1

/ � .b � a/V0;b�a;N :

(iii) The sum over the even labels satisfy the inequality

E

2

4
X

i W0�i�N; i even
.Y�i

� Y�i�1
/

3

5 � 0:

If we put (ii) and (iii) together, we immediately get

E.YN � Y0/ � .b � a/EŒV0;b�a;N �;

which is the needed result.
What are these stopping times �i , and why are (ii) and (iii) true? The stopping

times �0 � �1 � : : : are defined in the following way. Analogous to the down-
crossing and upcrossing times T0; T1; : : : of .a; b/ for the original fXng process, let
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T 0
0; T

0
1; : : : be the downcrossing and upcrossing times of .0; b � a/ for the new fYng

process. Now define �i D min.T 0
i ; N /. The �i are increasing, that is, �0 � �1 � : : :,

because the T 0
i are. Note that these �i are stopping times adapted to fYng.

Now look at the sum over the odd labels, namely .Y�1
�Y�0

/C .Y�3
�Y�2

/C� � � .
Break this sum further into two subsets of labels, i � V D V0;b�a;N , and i > V .
For each label i in the first subset, .Y�2iC1

�Y�2i
/ � b�a, because Y�2iC1

� b and
Y�2i

� a. Adding over these labels, of which there are V many, we get the sum to
be � .b � a/V . The labels in the other subset can be seen to give a sum � 0 (just
think of what V means, and a little thinking shows that the rest of the labels produce
a sum � 0). So, now adding over the two subsets of labels, we get our claimed
inequality in (ii) above.

The claim in (iii) is automatic by the optional stopping theorem, because for each
individual i , we will have E.Y�i�1

/ � E.Y�i
/ (actually, this is a slightly stronger

demand than what the optional stopping theorem says; but it is true).
As was explained above, this completes the argument for the upcrossing

inequality. ut

14.4 Convergence of Martingales

14.4.1 The Basic Convergence Theorem

Paul Lévy initiated his study of martingales in his search for laws of large numbers
beyond the case of means in the iid case. It turns out that martingales often con-
verge to a limiting random variable, and even convergence of the means or higher
moments can be arranged, provided that our martingale sequence is not allowed to
fluctuate or grow out of control. To see why some such conditions would be needed,
consider the case of the simple symmetric random walk Sn D Pn

iD1Xi , where the
Xi are iid taking the values ˙1 with probability 1

2
each. We know that the simple

symmetric random walk is recurrent, and therefore it comes back infinitely often
to every integer value x with probability one. So Sn, although a martingale, does
not converge to some S1. The expected value of jSnj in the simple symmetric ran-
dom walk case is of the order of c

p
n for some constant c, and c

p
n diverges as

n ! 1. A famous result in martingale theory says that if we can keep E.jXnj/ in
control (i.e., bounded away from 1), then a martingale sequence fXng will in fact
converge to some suitableX1. Furthermore, some such condition is also essentially
necessary for the martingale to converge. We start with an example.

Example 14.23 (Convergence of the Likelihood Ratio). Consider again the likeli-
hood ratio ƒn D Qn

iD1
f1.Xi /
f0.Xi /

, where f0; f1 are two densities and the sequence
X1; X2; : : : is iid from the density f0. We have seen that ƒn is a martingale (see
Example 14.8).

The likelihood ratio ƒn gives a measure of the support in the first n data values
for the density f1. We know f0 to be the true density from which the data values
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are coming, therefore we would like the support for f1 to diminish as more data are
accumulated. Mathematically, we would like ƒn to converge to zero as n ! 1.
We recognize that this is therefore a question about convergence of a martingale
sequence, becauseƒn, after all, is a martingale if the true density is f0.

Does ƒn indeed converge (almost surely) to zero? Indeed, it does, and we can
verify it directly, without using any martingale convergence theorems that we have
not yet encountered. Here is why we can verify the convergence directly.

Assume that f0; f1 are strictly positive for the same set of x values; that is,
fx W f1.x/ > 0g D fx W f0.x/ > 0g. Since u ! log u is a strictly concave function
on .0;1/, by Jensen’s inequality,

m D Ef0

�

log
f1.X/

f0.X/

�

< log

�

Ef0

�
f1.X/

f0.X/

��

D log 1 D 0:

Because Zi D log f1.Xi /
f0.Xi /

are iid with mean m, by the usual SLLN for iid random
variables,

1

n
logƒn D 1

n

nX

iD1

Zi
a:s:! m < 0 ) logƒn

a:s:! �1

) ƒn
a:s:! 0:

So, in this example, the martingale ƒn does converge with probability one to a
limiting random variable ƒ1, and ƒ1 happens to be a constant random variable,
equal to zero. We remark that the martingale ƒn satisfies E.jƒnj/ D E.ƒn/ D 1

and so, a fortiori, supnE.jƒnj/ < 1. This has something to do with the fact that
ƒn converges in this example, although the random walk, also a martingale, failed
to converge. This is borne out by the next theorem, a famous result in martingale
theory. The proof of this next theorem requires the use of two basic facts in measure
theory, which we state below.

Theorem 14.16 (Fatou’s Lemma). Let Xn; n � 1 and X be random variables
defined on a common sample space �. Suppose each Xn is nonnegative with prob-

ability one, and suppose Xn
a:s:! X . Then, lim infnE.Xn/ � E.X/.

Theorem 14.17 (Monotone Convergence Theorem). Let Xn; n � 1 and X be
random variables defined on a common sample space �. Suppose each Xn is non-

negative with probability one, that X1 � X2 � X3 � : : :, and Xn
a:s:! X . Then

E.Xn/ " E.X/.
Theorem 14.18 (Submartingale Convergence Theorem). (a) Let fXng be a

submartingale such that supnE.X
C
n / D c < 1. Then there exists a random

variable X D X1, almost surely finite, such that Xn
a:s:! X .

(b) Let fXng be a nonnegative supermartingale, or a nonpositive submartingale.
Then there exists a random variable X D X1, almost surely finite, such that

Xn
a:s:! X .
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Proof. The proof uses the upcrossing inequality, the monotone convergence theo-
rem, and Fatou’s lemma. The key idea is first to show that under the hypothesis
of the theorem, the process fXng cannot fluctuate indefinitely between two given
numbers a; b; a < b. Then a standard analytical technique of approximation by ra-
tionals, and use of the monotone convergence theorem and Fatou’s lemma produces
the submartingale convergence theorem. Here are the steps of the proof. Define

Ua;b;N D Number of upcrossings of (a,b) byX0; X1; : : : ; XN I
Ua;b D Number of upcrossings of (a,b) byX0; X1; : : : I
‚a;b D f! 2 � W lim inf

n
Xn � a < b � lim sup

n
XngI

‚ D f! 2 � W lim inf
n
Xn < lim sup

n
Xng:

First, by the monotone convergence theorem, EŒUa;b;N � ! EŒUa;b� as N ! 1,
because Ua;b;N converges monotonically to Ua;b as N ! 1. Therefore, by the
upcrossing inequality,

EŒUa;b;N � � E.jXN j/C jaj
b � a

) EŒUa;b� D lim
N
EŒUa;b;N �

� lim supN E.jXN j/C jaj
b � a < 1:

This means that Ua;b must be finite with probability one (i.e., it cannot equal 1
with a positive probability).

Next, note that ‚ 
 [fa<b; a; b rationalg‚a;b , and because we now have that
P.‚a;b/ D 0 for any specific pair a; b; P.[fa<b; a; b rationalg‚a;b/ must also be
zero. This then implies that P.‚/ D 0, which establishes the existence of an almost
sure limit for the sequence Xn.

However, a subtle point still remains. The limit, X , could be 1 or �1 with a
positive probability. We use Fatou’s lemma to rule out that possibility. Indeed, by
Fatou’s lemma,

E.jX j/ � lim inf
n
E.jXnj/ � sup

n
E.jXnj/ < 1;

and so X must be finite with probability one. This finishes the proof of part (a) of
the submartingale convergence theorem.

Part (b) is an easy consequence of part (a). For example, if fXng is a nonpositive
submartingale, then

sup
n
E.jXnj/ D sup

n
E.�Xn/ D � inf

n
E.Xn/ D �E.X1/ < 1;

and so convergence of Xn to an almost surely finite X follows from part (a). ut
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14.4.2 Convergence in L1 and L2

The basic convergence theorem that we just proved says that an L1 bounded sub-
martingale converges to some random variable X . It is a bit disappointing that the
apparently strong hypothesis that the submartingale is L1 bounded is not strong
enough to ensure convergence of the expectations: E.Xn/ need not converge to
E.X/ in spite of the L1 bounded assumption. A slightly stronger control on the
growth of the submartingale sequence is needed to ensure convergence of expec-
tations, in addition to the convergence of the submartingale itself. For example,
supnE.jXnjp/ < 1 for some p > 1 will suffice. A condition of this sort immedi-
ately reminds us of uniform integrability. Indeed, if supnE.jXnjp/ < 1 for some
p > 1, then fXng will be uniformly integrable. It turns out that uniform integrability
will be enough to assure us of convergence of the expectations in the basic conver-
gence theorem, and it is almost the minimum that we can get away with. Statisticians
are often interested in convergence of variances also. That is a stronger demand, and
requires a stronger hypothesis. The next theorem records the conclusions on these
issues. For reasons of space, this next theorem is not proved. One can see a proof in
Fristedt and Gray (1997, p. 480).

Theorem 14.19. Let fXn; n � 0g be a submartingale.

(a) Suppose fXng is uniformly integrable. Then there exists an X such that Xn
a:s:!

X , and E.jXn � X j/ ! 0 as n ! 1.
(b) Conversely, suppose there exists an X such that E.jXn � X j/ ! 0 as n ! 1.

Then fXng must be uniformly integrable, and moreover, Xn necessarily con-
verges almost surely to this X .

(c) If fXng is a martingale, and is L2 bounded (i.e., supnE.X
2
n/ < 1), then there

exists an X such that Xn
a:s:! X , and E.jXn � X j2/ ! 0 as n ! 1.

Example 14.24 (Pólya’s Urn). We previously saw that the proportion of white balls
in Pólya’s urn, namely Rn D aCSn

aCbCn
forms a martingale (see Example 14.6). This

is an example in which the various convergences that we may want come easily. Be-
cause Rn is obviously a uniformly bounded sequence, by the theorem stated above,
Rn converges almost surely and in L2 (and therefore, in L1) to a limiting random
variable R, taking values in Œ0; 1�.

Neither the basic (sub)martingale convergence theorem nor the theorem in this
section helps us in any way to identify the ditribution of R. In fact, in this case,
R has a nondegenerate distribution, which is a Beta distribution with parameters a
and b. As a consequence of this, E.Rn/ ! a

aCb
and Var.Rn/ ! ab

.aCb/2.aCbC1/
as

n ! 1. A proof that R has a Beta distribution with parameters a; b is available in
DasGupta (2010).

Example 14.25 (Bayes Estimates). We saw in Example 14.9 that the sequence of
Bayes estimates (namely, the mean of the posterior distribution of the parameter)
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is a martingale adapted to the sequence of data values fXng. Continuing with the
same notation as in Example 14.9, Zn D E.Y jX .n// is our martingale sequence.
Assume that the prior distribution for the parameter has a finite variance; that is,
E.Y 2/ < 1. Then, by using Jensen’s inequality for conditional expectations,

E.Z2
n/ D EŒ.E.Y jX .n///2� � EŒE.Y 2 jX .n//� D E.Y 2/:

Hence, by the theorem above in this section, the sequence of Bayes estimates Zn

converges to some Z almost surely, and moreover the mean and the variance of Zn

converge to the mean and the variance of Z.
A natural followup question is what exactly is this limiting random variable Z.

We can only give partial answers in general. For example, for each n;E.Z jX .n// D
Zn with probability one. It is tempting to conclude from here that Z is the same as
Y with probability one. This will be the case if knowledge of the entire infinite data
sequence X1; X2; : : : pins down Y completely, that is, if it is the case that someone
who knows the infinite data sequence also knows Y with probability one.

14.5 � Reverse Martingales and Proof of SLLN

Partial sums of iid random variables are of basic interest in many problems in proba-
bility, such as the study of random walks, and as we know, the sequence of centered
partial sums forms a martingale. On the other hand, the sequence of sample means is
of fundamental interest in statistics; but the sequence of means does not form a mar-
tingale. Interestingly, if we measure time backwards, then the sequence of means
does form a martingale, and then the rich martingale theory once again comes into
play. This motivates the concept of a reverse martingale.

Definition 14.4. A sequence of random variables fXn; n � 0g defined on a com-
mon sample space � is called a reverse submartingale adapted to the sequence
fYn; n � 0g, defined on the same sample space �, if E.jXnj/ < 1 for all n and
E.Xn jYnC1; YnC2; : : :/ � XnC1 for each n � 0. The sequence fXng is called a
reverse supermartingale if E.Xn jYnC1; YnC2; : : :/ � XnC1 for each n.

The sequence fXng is called a reverse martingale if it is both a reverse submartin-
gale and a reverse supermartingale with respect to the same sequence fYng, that is,
if E.Xn jYnC1; YnC2; : : :/ D XnC1 for each n.

Example 14.26 (Sample Means). Let X1; X2; : : : be an infinite exchangeable
sequence of random variables: for any n � 2 and any permutation 
n of
.1; 2; : : : ; n/; .X1; X2; : : : ; Xn/ and .X�n.1/; X�n.2/; : : : ; X�n.n// have the same
joint distribution. For n � 1, let Xn D X1C���CXn

n
D Sn

n
be the sequence of sample

means.
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Then, by the exchanageability property of the fXng sequence, for any given n,
and any k; 1 � k � n,

Xn D E.Xn jSn; SnC1; : : :/ D 1

n

nX

iD1

E.Xi jSn; SnC1; : : :/

D 1

n
nE.Xk jSn; SnC1; : : :/ D E.Xk jSn; SnC1; : : :/:

Consequently,

E.Xn�1 jSn; SnC1; : : :/ D 1

n � 1

n�1X

kD1

E.Xk jSn; SnC1; : : :/

D 1

n � 1
.n � 1/Xn D Xn;

which shows that the sequence of sample means is a reverse martingale (adapted to
the sequence of partial sums).

There is a useful convex function theorem for reverse martingales as well, which
is straightforward to prove.

Theorem 14.20 (Second Convex Function Theorem). Let fXng be a sequence of
random variables defined on some sample space �, and f a convex function. Let
Zn D f .Xn/.

(a) If fXng is a reverse martingale, then fZng is a reverse submartingale.
(b) If fXng is a reverse submartingale, and f is also nondecreasing, then fZng is

a reverse submartingale.
(c) If fXn;mg; m D 1; 2; : : : is a countable family of reverse submartingales, defined

on the same space � and all adapted to the same sequence, then fsupmXn;mg
is also a reverse submartingale, adapted to the same sequence.

Example 14.27 (A Paradoxical Statistical Consequence). Suppose Y is some real-
valued random variable with mean �, and that we do not know the true value of �.
Thus, we would like to estimate �. But, suppose that we cannot take any observa-
tions on the variable Y (for whatever reason). We can, however, take observations
on a completely unrelated random variable X , where E.jX j/ < 1. Suppose we do
take n iid observations on X . Call them X1; X2; : : : ; Xn and let Xn be their mean.
Then, by part (a) of the second convex function theorem, jXn � �j forms a reverse
submartingale, and hence E.jXn � �j/ is monotone nonincreasing in n. In other
words, E.jXnC1 � �j/ � E.jXn � �j/ for all n, and so taking more observations
on the useless variable X is going to be beneficial for estimating the mean of Y , a
comical conclusion.

Note that there is really nothing special about using the absolute difference
jXn � �j as the criterion for the accuracy of estimation of �. The standard termi-
nology in statistics for the criterion to be used is a loss function, and loss functions
L.Xn; �/ with a convexity property with respect to Xn for any fixed � will result in
the same paradoxical conclusion. One needs to make sure thatEŒL.Xn; �/� is finite.
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Reverse martingales possess a universal special property that is convenient in
applications. The property is that a reverse martingale always converges almost
surely to some finite random variable. The convergence property also holds for re-
verse submartingales, but the limiting random variable may equal C1 or �1 with
a positive probability. An important and interesting consequence of this universal
convergence property is a proof of the SLLN in the iid case by using martingale
techniques. This is shown seen below as an example. The convergence property of
reverse martingales is stated below.

Theorem 14.21 (Reverse Martingale Convergence Theorem). (a) Let fXng be
a reverse martingale adapted to some sequence. Then it is necessarily uniformly
integrable, and there exists a random variable X , almost surely finite, such that

Xn
a:s:! X , and EjXn �X j/ ! 0 as n ! 1.

(b) Let fXng be a reverse submartingale adapted to some sequence. Then there

exists a random variable X taking values in Œ�1;1� such that Xn
a:s:! X .

See Fristedt and Gray (1997, pp. 483–484) for a proof using uniform integrability
techniques. Here is an important application of this theorem.

Example 14.28 (Proof of Kolmogorov’s SLLN). LetX1; X2; : : : be iid random vari-
ables, with E.jX1j/ < 1, and let E.X1/ D �. The goal of this example is to show
that the sequence of sample means, Xn, converges almost surely to �.

We use the reverse martingale convergence theorem to obtain a proof. Because
we have already shown that fXng forms a reverse martingale sequence, by the re-
verse martingale convergence theorem we are assured of a finite random variable Y
such thatXn converges almost surely to Y , and we are also assured thatE.Y / D �.
The only task that remains is to show that Y equals � with probability one.

This is achieved by establishing that P.Y � y/ D ŒP.Y � y/�2 for all real y
(i.e., P.Y � y/ is 0 or 1 for any y), which would force Y to be degenerate and
therefore degenerate at �. To prove that P.Y � y/ D ŒP.Y � y/�2 for all real y,
define the double sequence

Ym;n D XmC1 CXmC2 C � � � CXmCn

n
;

m; n � 1. Note thatXk and Ym;n are independent for anym, k � m, and any n, and
that, furthermore, for any fixed m;Ym;n converges almost surely to Y (the same Y
as above) as n ! 1. These two facts together imply

P

�

Y � y; max
1�k�m

Xk � y

�

D P.Y � y/P

�

max
1�k�m

Xk � y

�

) P.Y � y/ D P.Y � y/P.Y � y/ D ŒP.Y � y/�2;

which is what we needed to complete the proof.
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14.6 Martingale Central Limit Theorem

For an iid mean zero sequence of random variables Z1; Z2; : : : with variance one,
the central limit theorem says that for large n; Z1C���CZnp

n
is approximately standard

normal. Suppose now that we consider a mean zero martingale (adapted to some
sequence fYng) fXn; n � 0g with X0 D 0 and write Zi D Xi � Xi�1; i � 1. Then,
obviously we can write

Xn D Xn � X0 D
nX

iD1

.Xi � Xi�1/ D
nX

iD1

Zi :

The summands Zi are certainly no longer independent; however, they are un-
correlated (see the chapter exercises). The martingale central limit theorem
says that under certain conditions on the growth of the conditional variances
Var.Zn jY0; : : : ; Yn�1/,

Xnp
n

will still be approximately normally distributed for
large n.

The area of martingale central limit theorems is a bit confusing due to an over-
whelming variety of central limit theorems, each known as a martingale central
limit theorem. In particular, the normalization of Xn can be deterministic or ran-
dom. Also, there can be a double array of martingales and central limit theorems
for them, analogous to Lyapounov’s central limit theorem for the independent case.
The best source and exposition of martingale central limit theorems is the classic
book by Hall and Heyde (1980). We present two specific martingale central limit
theorems in this section.

First, we need some notation. Let fXn; n � 0g be a zero mean martingale adapted
to some sequence fYng, with X0 D 0. Let

Zi D Xi � Xi�1; i � 1I
�2

j D Var.Zj jY0; : : : ; Yj �1/ D E.Z2
j jY0; : : : ; Yj �1/I

V 2
n D

nX

j D1

�2
j I

s2
n D E.V 2

n / D E.X2
n/ D Var.Xn/I

(see Section 14.3.2 for the fact that E.V 2
n / and E.X2

n/ are equal if X0 D 0).
The desired result is that Xn

sn
converges in distribution toN.0; 1/. The question is

under what conditions can one prove such an asymptotic normality result. The con-
ditions that we use are very similar to the corresponding Lindeberg–Lévy conditions
in the independent case. Here are the two conditions we assume.

(A) Concentration Condition

V 2
n

s2
n

D V 2
n

E.V 2
n /

P! 1:
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(B) Martingale Lindeberg Condition

For any � > 0;

Pn
j D1E.Z

2
j IfjZj j��sng/
s2

n

P! 0:

Under condition (A), the Lindeberg condition (B) is nearly equivalent to the uni-

form asymptotic negligibility condition that
max1�j �n �2

j

s2
n

P! 0. We commonly see

such uniform asymptotic negligibility conditions in the independent case central
limit theorems. See Hall and Heyde (1980) and Brown (1971) for much additional
discussion on the exact role of the Lindeberg condition in martingale central limit
theorems. Here is our basic martingale CLT.

Theorem 14.22 (Basic Martingale CLT). Suppose conditions (A) and (B) hold.

Then Xn

sn

L) Z, where Z � N.0; 1/.
The proof of the Lindeberg–Lévy theorem for the independent case has to be

suitably adapted to the martingale structure in order to prove this theorem. The
two references above can be consulted for a proof. The Lindeberg condition can be
difficult to verify. The following simpler version of martingale central limit theorems
suffices for many applications. For this, we need the additional notation

�t D inf

8
<

:
n > 0 W

nX

j D1

�2
j � t

9
=

;
:

Here is our simpler version of the martingale CLT.

Theorem 14.23. Assume that

jZi j � K < 1 for all i and someKI
1X

j D1

�2
j D 1 almost surelyI

t

�t

a:s:! �2 for some finite and positive constant�2:

Then Xnp
n

L) W , where W � N.0; �2/.

Exercises

Exercise 14.1. Suppose fXn; n � 1g is a martingale adapted to some sequence
fYng. Show that E.XnCm jY1; : : : ; Yn/ D Xn for all m; n � 1.
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Exercise 14.2. Suppose fXn; n � 1g is a martingale adapted to some sequence
fYng. Fix m � 1 and define Zn D Xn �Xm; n � mC 1. Is it true that fZng is also
a martingale?

Exercise 14.3 (Product Martingale). Let X1; X2; : : : be iid nonnegative random
variables with a finite positive mean �. Identify a sequence of constants cn such that
Zn D cn.

Qn
iD1Xi /; n � 1 forms a martingale.

Exercise 14.4. Let fUng; fVng be martingales, adapted to the same sequence fYng.
Identify, with proof, which of the following are also submartingales, and for those
that are not necessarily submartingales, give a counterexample.

(a) jUn � Vnj.
(b) U 2

n C V 2
n .

(c) Un � Vn.
(d) min.Un; Vn/.

Exercise 14.5 (Bayes Problem). Suppose given p, X1; X2; : : : are iid Bernoulli
variables with a parameter p, and the marginal distribution of p is U Œ0; 1�. Let
Sn D X1 C � � � CXn; n � 1, and Zn D SnC1

nC2
. Show that fZng is a martingale with

respect to the sequence fXng.

Exercise 14.6 (Bayes Problem). Suppose given 	, X1; X2; : : : are iid Poisson

variables with some mean 	, and the marginal density of 	 is ˇ˛e�ˇ��˛�1

	.˛/
, where

˛; ˇ > 0 are constants. Let Sn D X1 C � � � C Xn; n � 1, and Zn D SnC˛
nCˇ

. Show
that fZng is a martingale with respect to the sequence fXng.

Exercise 14.7 (Bayes Problem). Suppose given �, X1; X2; : : : are iid N.�; 1/

variables, and that the marginal distribution of � is standard normal. Let Sn D
X1 C � � � CXn; n � 1, and Zn D Sn

nC1
. Show that fZng is a martingale with respect

to the sequence fXng.

Exercise 14.8. Suppose fXng is known to be a submartingale with respect to some
sequence fYng. Show that fXng is also a martingale if and only if E.Xn/ D E.Xm/

for all m; n.

Exercise 14.9. Let X1; X2; : : : be a sequence of iid random variables such that
E.jX1j/ < 1. For n � 1, let XnWn D max.X1; : : : ; Xn/. Show that fXnWng is a
submartingale adapted to itself.

Exercise 14.10 (Random Walk). Consider a simple asymmetric random walk
with iid steps distributed as P.Xi D 1/ D p;P.Xi D �1/ D 1 � p; p < 1

2
. Let

Sn D X1 C � � � CXn; n � 1, Show that

(a) Vn D .1�p
p
/Sn is a martingale.

(b) Show that with probability one, supn Sn < 1.
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Exercise 14.11 (Branching Process). Let fZij g be a double array of iid random
variables with mean � and variance �2 < 1. Let X0 D 1 and XnC1 D PXn

j D1Znj .
Show that

(a) Wn D Xn


n is a martingale.
(b) supnE.Wn/ < 1.
(c) Is fWng uniformly integrable? Prove or disprove it.

Remark. The process Wn is commonly called a branching process and is important
in population studies.

Exercise 14.12 (A Time Series Model). Let Z0; Z1; : : : be iid standard normal
variables. Let X0 D Z0, and for n � 1;Xn D Xn�1 C Znhn.X0; : : : ; Xn�1/,
where for each n; hn.x0; : : : ; xn�1/ is an absolutely bounded function.

Show that fXng is a martingale adapted to some sequence fYng, and explicitly
identify such a sequence fYng.

Exercise 14.13 (Another Time Series Model). Let Z0; Z1; : : : be a sequence of
random variables such that E.ZnC1 jZ0; : : : ; Zn/ D cZn C .1 � c/Zn�1; n � 1,
where 0 < c < 1. Let X0 D Z0; Xn D ˛Zn C Zn�1; n � 1. Show that ˛ may be
chosen to make fXn; n � 0g a martingale with respect to fZng.

Exercise 14.14 (Conditional Centering of a General Sequence). LetZ0; Z1; : : :

be a general sequence of random variables, not necessarily independent, such that
E.jZkj/ < 1 for all k. Let Vn D Pn

iD1ŒZi � E.Zi jZ0; : : : ; Zi�1/�; n � 1. Show
that fVng is a martingale with respect to the sequence fZng.

Exercise 14.15 (The Cross-Product Martingale). Let X1; X2; : : : be indepen-
dent random variables, with E.jXi j/ < 1 and E.Xi / D 0 for all i . For a fixed
k � 1, let Vk;n D P

1�i1<i2<���<ik�nXi1 : : : Xik ; n � k. Show that fVk;ng is a

martingale with respect to fXng.

Exercise 14.16 (The Wright–Fisher Markov Chain). Consider the Wright-Fisher
Markov chain of Example 14.7. Let

Vn D Xn.N �Xn/

.1 � 1
N
/n

; n � 0:

Show that fVngN
0 is a martingale.

Exercise 14.17 (An Example of Samuel Karlin). Let f be a continuous function
defined on Œ0; 1� and U � U Œ0; 1�. Let Xn D b2nU c

2n , and Vn D f .XnC2�n/�f .Xn/
2�n .

Show that fVng is a martingale with respect to the sequence fXng.

Exercise 14.18. LetX1; X2; : : : be iid symmetric random variables with mean zero,
and let Sn D Pn

iD1Xi ; n � 1, and S0 D 0. Let  .t/ be the characteristic function
of X1, and Vn D Œ .t/��nei tSn ; n � 0. Show that the real part as well as the
imaginary part of fVng is a martingale.
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Exercise 14.19 (Stopping Times). Consider the simple symmetric random walk
Sn with S0 D 0. Identify, with proof, which of the following are stopping times,
and which among them have a finite expectation.

(a) inffn > 0 W jSnj > 5g.
(b) inffn � 0 W Sn < SnC1g.
(c) inffn > 0 W jSnj D 1g.
(d) inffn > 0 W jSnj > 1g.

Exercise 14.20. Let � be a nonnegative integer-valued random variable, and
fXn; n � 0g a sequence of random variables, all defined on a common sample
space �. Prove or disprove that � is a stopping time adapted to fXng if and only if
for every n � 0; If�Dng is a function of only X0; : : : ; Xn.

Exercise 14.21. Suppose �1; �2 are both stopping times with respect to some se-
quence fXng. Is j�1 � �2j necessarily a stopping time with respect to fXng?

Exercise 14.22 (Condition for Optional Stopping Theorem). Suppose fXn; n �
0g is a martingale, and � a stopping time, both adapted to a common sequence
fYng. Show that the equality E.X�/ D E.X0/ holds if E.jX� j/ < 1, and
E.Xmin.�;n/If�>ng/ ! 0 as n ! 1.

Exercise 14.23 (The Random Walk). Consider the asymmetric random walk
Sn D Pn

iD1Xi , where P.Xi D 1/ D p;P.Xi D �1/ D q D 1 � p; p > 1
2

, and
S0 D 0. Let x be a fixed positive integer, and � D inffn > 0 W Sn D xg. Show that

for 0 < s < 1;E.s� / D .
1�

p
1�4pqs2

2qs
/x .

Exercise 14.24 (The Random Walk; continued). For the stopping time � of the
previous exercise, show that

E.�/ D x

p � q and Var.�/ D xŒ1 � .p � q/2�

.p � q/3
:

Exercise 14.25 (Gambler’s Ruin). Consider the general random walk Sn D Pn
iD1

Xi , where P.Xi D 1/ D p ¤ 1
2
; P.Xi D �1/ D q D 1 � p, and S0 D 0. Let a; b

be fixed positive integers, and � D inffn > 0 W Sn D b or Sn D �ag. Show that

E.�/ D b

p � q
� aC b

p � q

Œ1 � .p
q
/b�

Œ1 � .p
q
/aCb�

;

and that by an application of L’Hospital’s rule, this gives the correct formula for
E.�/ even when p D 1

2
.

Exercise 14.26 (Martingales for Patterns). Consider the following martingale
approach to a geometric distribution problem. Let X1; X2; : : : be iid Bernoulli vari-
ables, withP.Xi D 1/Dp;P.Xi D 0/D q D 1�p. Let � D minfk � 1 W Xk D 0g,
and �n D min.�; n/; n � 1.



502 14 Discrete Time Martingales and Concentration Inequalities

Define Vn D 1
q

Pn
iD1 IfXi D0g; n � 1.

(a) Show that fVn � ng is a martingale with respect to the sequence fXng.
(b) Show that E.V�n

/ D E.�n/ for all n.
(c) Hence, show that E.�/ D E.V� / D 1

q
.

Exercise 14.27 (Martingales for Patterns). Let X1; X2; : : : be iid Bernoulli vari-
ables, with P.Xi D 1/ D p;P.Xi D 0/ D q D 1�p. Let � be the first k such that
Xk�2; Xk�1; Xk are each equal to one (e.g., the number of tosses of a coin necessary
to first obtain three consecutive heads), and �n D min.�; n/; n � 3.

Define

Vn D 1

p3

n�2X

iD1

IfXi DXiC1DXiC2D1g C 1

p2
IfXnDXn�1D1g C 1

p
IfXnD1g; n � 3:

(a) Show that fVn � ng is a martingale with respect to the sequence fXng.
(b) Show that E.V�n

/ D E.�n/ for all n.
(c) Hence, show that

E.�/ D E.V� / D 1

p
C 1

p2
C 1

p3
:

(d) Generalize to the case of the expected waiting time for obtaining r consecu-
tive 1s.

Exercise 14.28. Let fXn; n � 0g be a martingale.

(a) Show that limn!1E.jXnj/ exists.
(b) Show that for any stopping time �; E.jX� j/ � limn!1E.jXnj/.
(c) Show that if supnE.jXnj/ < 1, then E.jX� j/ < 1 for any stopping time � .

Exercise 14.29 (Inequality for Stopped Martingales). Let fXn; n � 0g be a
martingale, and � a stopping time adapted to fXng. Show that E.jX� j/ �
2 supnE.X

C
n / �E.X1/ � 3 supnE.jXnj/.

Exercise 14.30. Let X1; X2; : : : be iid random variables such that E.jX1j/ < 1.
Consider the random walk Sn D Pn

iD1Xi ; n � 1 and S0 D 0. Let � be a stopping
time adapted to fSng. Show that if E.jS� j/ D 1, then E.�/ must also be infinite.

Exercise 14.31. Let fXn; n � 0g be a martingale, with X0 D 0. Let Vi D Xi �
Xi�1; i � 1. Show that for any i ¤ j; Vi and Vj are uncorrelated.

Exercise 14.32. Let fXn; n � 1g be some sequence of random variables. Suppose
Sn D Pn

iD1Xi ; n � 1, and that fSn; n � 1g forms a martingale. Show that for any
i ¤ j;E.XiXj / D 0.

Exercise 14.33. Let fXn; n � 0g and fYn; n � 0g both be square integrable
martingales, adapted to some common sequence. Let X0 D Y0 D 0. Show that
E.XnYn/ D Pn

iD1EŒ.Xi � Xi�1/.Yi � Yi�1/� for any n � 1.
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Exercise 14.34. Give an example of a submartingale fXng and a convex function
f such that ff .Xn/g is not a submartingale.

Remark. Such a function f cannot be increasing.

Exercise 14.35 (Characterization of Uniformly Integrable Martingales). Let
fXng be uniformly integrable and a martingale with respect to some sequence fYng.
Show that there exists a random variableZ such that E.jZj/ < 1 and such that for
each n;E.Z jY1; : : : ; Yn/ D Xn with probability one.

Exercise 14.36 (Lp-Convergence of a Martingale). Let fXn; n � 0g be a martin-
gale, or a nonnegative submartingale. Suppose for somep > 1; supnE.jXnjp/ < 1.
Show that there exists a random variable X , almost surely finite, such that

E.jXn �X jp/ ! 0 and Xn
a:s:! X as n ! 1.

Exercise 14.37. Let fXng be a nonnegative martingale. Suppose E.Xn/ ! 0 as

n ! 1. Show that Xn
a:s:! 0.

Exercise 14.38. Let X1; X2; : : : be iid normal variables with mean zero and vari-
ance �2. Show that

P1
nD1

sin.n�x/
n

Xn converges with probability one for any given
real number x.

Exercise 14.39 (Generalization of Maximal Inequality). Let fXn; n � 0g be a
nonnegative submartingale, and fbn; n � 0g a nonnegative nonincreasing sequence
of constants such that bn ! 0 as n ! 1, and

P1
nD0Œbn � bnC1�E.Xn/ converges.

(a) Show that for any x > 0,

P.sup
n�0

bnXn � x/ � 1

x

1X

nD0

Œbn � bnC1�E.Xn/:

(b) Derive the Kolmogorov maximal inequality for nonnegative submartingales as
a corollary to part (a).

Exercise 14.40 (Decomposition of an L1-Bounded Martingale). Let fXng be an
L1-bounded martingale adapted to some sequence fYng, that is, supnE.jXnj/ < 1.

(a) Define Zm;n D EŒjXmC1j jY1; : : : ; Yn�. Show thatZm;n is nondecreasing inm.
(b) Show that for fixed n;Zm;n converges almost surely.
(c) Let Un D limmZm;n. Show that fUng is an L1-bounded martingale.
(d) Show that Xn admits the decompositionXn D Un � Vn, where both Un; Vn are

nonnegativeL1-bounded martingales.
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