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Looking at Multivariate Data: Visualisation

2.1 Introduction

According to Chambers, Cleveland, Kleiner, and Tukey (1983), “there is no
statistical tool that is as powerful as a well-chosen graph”. Certainly graphical
presentation has a number of advantages over tabular displays of numerical
results, not least in creating interest and attracting the attention of the viewer.
But just what is a graphical display? A concise description is given by Tufte
(1983):

Data graphics visually display measured quantities by means of the
combined use of points, lines, a coordinate system, numbers, symbols,
words, shading and color.

Graphs are very popular; it has been estimated that between 900 billion
(9×1011) and 2 trillion (2×1012) images of statistical graphics are printed each
year. Perhaps one of the main reasons for such popularity is that graphical
presentation of data often provides the vehicle for discovering the unexpected;
the human visual system is very powerful in detecting patterns, although the
following caveat from the late Carl Sagan (in his book Contact) should be
kept in mind:

Humans are good at discerning subtle patterns that are really there,
but equally so at imagining them when they are altogether absent.

Some of the advantages of graphical methods have been listed by Schmid
(1954):

� In comparison with other types of presentation, well-designed charts are
more effective in creating interest and in appealing to the attention of the
reader.

� Visual relationships as portrayed by charts and graphs are more easily
grasped and more easily remembered.

� The use of charts and graphs saves time since the essential meaning of
large measures of statistical data can be visualised at a glance.
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� Charts and graphs provide a comprehensive picture of a problem that
makes for a more complete and better balanced understanding than could
be derived from tabular or textual forms of presentation.

� Charts and graphs can bring out hidden facts and relationships and can
stimulate, as well as aid, analytical thinking and investigation.

Schmid’s last point is reiterated by the legendary John Tukey in his ob-
servation that “the greatest value of a picture is when it forces us to notice
what we never expected to see”.

The prime objective of a graphical display is to communicate to ourselves
and others, and the graphic design must do everything it can to help people
understand. And unless graphics are relatively simple, they are unlikely to
survive the first glance. There are perhaps four goals for graphical displays of
data:

� To provide an overview;
� To tell a story;
� To suggest hypotheses;
� To criticise a model.

In this chapter, we will be largely concerned with graphics for multivari-
ate data that address one or another of the first three bulleted points above.
Graphics that help in checking model assumptions will be considered in Chap-
ter 8.

During the last two decades, a wide variety of new methods for display-
ing data graphically have been developed. These will hunt for special ef-
fects in data, indicate outliers, identify patterns, diagnose models, and gener-
ally search for novel and perhaps unexpected phenomena. Graphical displays
should aim to tell a story about the data and to reduce the cognitive effort
required to make comparisons. Large numbers of graphs might be required to
achieve these goals, and computers are generally needed to supply them for
the same reasons that they are used for numerical analyses, namely that they
are fast and accurate.

So, because the machine is doing the work, the question is no longer “shall
we plot?” but rather “what shall we plot?” There are many exciting possibil-
ities, including interactive and dynamic graphics on a computer screen (see
Cook and Swayne 2007), but graphical exploration of data usually begins at
least with some simpler static graphics. The starting graphic for multivariate
data is often the ubiquitous scatterplot , and this is the subject of the next
section.

2.2 The scatterplot

The simple xy scatterplot has been in use since at least the 18th century and
has many virtues–indeed, according to Tufte (1983):
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The relational graphic–in its barest form the scatterplot and its
variants–is the greatest of all graphical designs. It links at least two
variables, encouraging and even imploring the viewer to assess the
possible causal relationship between the plotted variables. It confronts
causal theories that x causes y with empirical evidence as to the actual
relationship between x and y.

The scatterplot is the standard for representing continuous bivariate data
but, as we shall see later in this chapter, it can be enhanced in a variety of
ways to accommodate information about other variables.

To illustrate the use of the scatterplot and a number of other techniques
to be discussed, we shall use the air pollution in US cities data introduced in
the previous chapter (see Table 1.5).

Let’s begin our examination of the air pollution data by taking a look at a
basic scatterplot of the two variables manu and popul. For later use, we first
set up two character variables that contain the labels to be printed on the two
axes:

R> mlab <- "Manufacturing enterprises with 20 or more workers"

R> plab <- "Population size (1970 census) in thousands"

The plot() function takes the data, here as the data frame USairpollution,
along with a “formula” describing the variables to be plotted; the part left of
the tilde defines the variable to be associated with the ordinate, the part right
of the tilde is the variable that goes with the abscissa:

R> plot(popul ~ manu, data = USairpollution,

+ xlab = mlab, ylab = plab)

The resulting scatterplot is shown in Figure 2.2. The plot clearly uncovers
the presence of one or more cities that are some way from the remainder, but
before commenting on these possible outliers we will construct the scatterplot
again but now show how to include the marginal distributions of manu and
popul in two different ways. Plotting marginal and joint distributions together
is usually good data analysis practise. In Figure 2.2, the marginal distributions
are shown as rug plots on each axis (produced by rug()), and in Figure 2.3
the marginal distribution of manu is given as a histogram and that of popul

as a boxplot. And also in Figure 2.3 the points are labelled by an abbreviated
form of the corresponding city name.

The necessary R code for Figure 2.3 starts with dividing the device into
three plotting areas by means of the layout() function. The first plot basically
resembles the plot() command from Figure 2.1, but instead of points the ab-
breviated name of the city is used as the plotting symbol. Finally, the hist()

and boxplots() commands are used to depict the marginal distributions. The
with() command is very useful when one wants to avoid explicitly extracting
variables from data frames. The command of interest, here the calls to hist()

and boxplot(), is evaluated “inside” the data frame, here USairpollution

(i.e., variable names are resolved within this data frame first).
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Fig. 2.1. Scatterplot of manu and popul.

From this series of plots, we can see that the outlying points show them-
selves in both the scatterplot of the variables and in each marginal distribu-
tion. The most extreme outlier corresponds to Chicago, and other slightly less
extreme outliers correspond to Philadelphia and Detroit. Each of these cities
has a considerably larger population than other cities and also many more
manufacturing enterprises with more than 20 workers.

2.2.1 The bivariate boxplot

In Figure 2.3, identifying Chicago, Philadelphia, and Detroit as outliers is un-
likely to invoke much argument, but what about Houston and Cleveland? In
many cases, it might be helpful to have a more formal and objective method
for labelling observations as outliers, and such a method is provided by the
bivariate boxplot , which is a two-dimensional analogue of the boxplot for uni-
variate data proposed by Goldberg and Iglewicz (1992). This type of graphic
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R> plot(popul ~ manu, data = USairpollution,

+ xlab = mlab, ylab = plab)

R> rug(USairpollution$manu, side = 1)

R> rug(USairpollution$popul, side = 2)
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Fig. 2.2. Scatterplot of manu and popul that shows the marginal distribution in
each variable as a rug plot.

may be useful in indicating the distributional properties of the data and in
identifying possible outliers. The bivariate boxplot is based on calculating “ro-
bust” measures of location, scale, and correlation; it consists essentially of a
pair of concentric ellipses, one of which (the “hinge”) includes 50% of the data
and the other (called the “fence”) of which delineates potentially troublesome
outliers. In addition, resistant regression lines of both y on x and x on y are
shown, with their intersection showing the bivariate location estimator. The
acute angle between the regression lines will be small for a large absolute value
of correlations and large for a small one. (Using robust measures of location,
scale, etc., helps to prevent the possible “masking” of multivariate outliers if
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R> layout(matrix(c(2, 0, 1, 3), nrow = 2, byrow = TRUE),

+ widths = c(2, 1), heights = c(1, 2), respect = TRUE)

R> xlim <- with(USairpollution, range(manu)) * 1.1

R> plot(popul ~ manu, data = USairpollution, cex.lab = 0.9,

+ xlab = mlab, ylab = plab, type = "n", xlim = xlim)

R> with(USairpollution, text(manu, popul, cex = 0.6,

+ labels = abbreviate(row.names(USairpollution))))

R> with(USairpollution, hist(manu, main = "", xlim = xlim))

R> with(USairpollution, boxplot(popul))
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Fig. 2.3. Scatterplot of manu and popul that shows the marginal distributions by
histogram and boxplot.
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the usual measures are employed when these may be distorted by the pres-
ence of the outliers in the data.) Full details of the construction are given in
Goldberg and Iglewicz (1992). The scatterplot of manu and popul including
the bivariate boxplot is shown in Figure 2.4. Figure 2.4 clearly tells us that
Chicago, Philadelphia, Detroit, and Cleveland should be regarded as outliers
but not Houston, because it is on the “fence” rather than outside the “fence”.

R> outcity <- match(lab <- c("Chicago", "Detroit",

+ "Cleveland", "Philadelphia"), rownames(USairpollution))

R> x <- USairpollution[, c("manu", "popul")]

R> bvbox(x, mtitle = "", xlab = mlab, ylab = plab)

R> text(x$manu[outcity], x$popul[outcity], labels = lab,

+ cex = 0.7, pos = c(2, 2, 4, 2, 2))
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Fig. 2.4. Scatterplot of manu and popul showing the bivariate boxplot of the data.

Suppose now that we are interested in calculating the correlation between
manu and popul. Researchers often calculate the correlation between two vari-
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ables without first looking at the scatterplot of the two variables. But scat-
terplots should always be consulted when calculating correlation coefficients
because the presence of outliers can on occasion considerably distort the value
of a correlation coefficient, and as we have seen above, a scatterplot may help
to identify the offending observations particularly if used in conjunction with
a bivariate boxplot. The observations identified as outliers may then be ex-
cluded from the calculation of the correlation coefficient. With the help of
the bivariate boxplot in Figure 2.4, we have identified Chicago, Philadelphia,
Detroit, and Cleveland as outliers in the scatterplot of manu and popul. The
R code for finding the two correlations is

R> with(USairpollution, cor(manu, popul))

[1] 0.9553

R> outcity <- match(c("Chicago", "Detroit",

+ "Cleveland", "Philadelphia"),

+ rownames(USairpollution))

R> with(USairpollution, cor(manu[-outcity], popul[-outcity]))

[1] 0.7956

The match() function identifies rows of the data frame USairpollution cor-
responding to the cities of interest, and the subset starting with a minus sign
removes these units before the correlation is computed. Calculation of the cor-
relation coefficient between the two variables using all the data gives a value
of 0.96, which reduces to a value of 0.8 after excluding the four outliers–a not
inconsiderable reduction.

2.2.2 The convex hull of bivariate data

An alternative approach to using the scatterplot combined with the bivariate
boxplot to deal with the possible problem of calculating correlation coeffi-
cients without the distortion often caused by outliers in the data is convex
hull trimming , which allows robust estimation of the correlation. The convex
hull of a set of bivariate observations consists of the vertices of the smallest
convex polyhedron in variable space within which or on which all data points
lie. Removal of the points lying on the convex hull can eliminate isolated
outliers without disturbing the general shape of the bivariate distribution. A
robust estimate of the correlation coefficient results from using the remaining
observations. Let’s see how the convex hull approach works with our manu

and popul scatterplot. We first find the convex hull of the data (i.e., the
observations defining the convex hull) using the following R code:

R> (hull <- with(USairpollution, chull(manu, popul)))

[1] 9 15 41 6 2 18 16 14 7
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R> with(USairpollution,

+ plot(manu, popul, pch = 1, xlab = mlab, ylab = plab))

R> with(USairpollution,

+ polygon(manu[hull], popul[hull], density = 15, angle = 30))
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Fig. 2.5. Scatterplot of manu against popul showing the convex hull of the data.

Now we can show this convex hull on a scatterplot of the variables using the
code attached to the resulting Figure 2.5.

To calculate the correlation coefficient after removal of the points defining
the convex hull requires the code

R> with(USairpollution, cor(manu[-hull],popul[-hull]))

[1] 0.9225

The resulting value of the correlation is now 0.923 and thus is higher compared
with the correlation estimated after removal of the outliers identified by using
the bivariate boxplot, namely Chicago, Philadelphia, Detroit, and Cleveland.
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2.2.3 The chi-plot

Although the scatterplot is a primary data-analytic tool for assessing the re-
lationship between a pair of continuous variables, it is often difficult to judge
whether or not the variables are independent–a random scatter of points is
hard for the human eye to judge. Consequently it is sometimes helpful to aug-
ment the scatterplot with an auxiliary display in which independence is itself
manifested in a characteristic manner. The chi-plot suggested by Fisher and
Switzer (1985, 2001) is designed to address the problem. Under independence,
the joint distribution of two random variables X1 and X2 can be computed
from the product of the marginal distributions. The chi-plot transforms the
measurements (x11, . . . , xn1) and (x12, . . . , xn2) into values (χ1, . . . , χn) and
(λ1, . . . , λn), which, plotted in a scatterplot, can be used to detect deviations
from independence. The χi values are, basically, the root of the χ2 statistics
obtained from the 2×2 tables that are obtained when dichotomising the data
for each unit i into the groups satisfying x·1 ≤ xi1 and x·2 ≤ xi2. Under inde-
pendence, these values are asymptotically normal with mean zero; i.e., the χi
values should show a non-systematic random fluctuation around zero. The λi
values measure the distance of unit i from the “center” of the bivariate distri-
bution. An R function for producing chi-plots is chiplot(). To illustrate the
chi-plot, we shall apply it to the manu and popul variables of the air pollution
data using the code

R> with(USairpollution, plot(manu, popul,

+ xlab = mlab, ylab = plab,

+ cex.lab = 0.9))

R> with(USairpollution, chiplot(manu, popul))

The result is Figure 2.6, which shows the scatterplot of manu plotted against
popul alongside the corresponding chi-plot. Departure from independence is
indicated in the latter by a lack of points in the horizontal band indicated on
the plot. Here there is a very clear departure since there are very few of the
observations in this region.

2.3 The bubble and other glyph plots

The basic scatterplot can only display two variables. But there have been
a number of suggestions as to how extra variables may be included on a
scatterplot. Perhaps the simplest is the so-called bubble plot , in which three
variables are displayed; two are used to form the scatterplot itself, and then the
values of the third variable are represented by circles with radii proportional
to these values and centred on the appropriate point in the scatterplot. Let’s
begin by taking a look at the bubble plot of temp, wind, and SO2 that is given
in Figure 2.7. The plot seems to suggest that cities with moderate annual
temperatures and moderate annual wind speeds tend to suffer the greatest air
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R> plot(blood_pcacor$sdev^2, xlab = "Component number",

+ ylab = "Component variance", type = "l", main = "Scree diagram")
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pollution, but this is unlikely to be the whole story because none of the other
variables in the data set are used in constructing Figure 2.7. We could try to
include all variables on the basic temp and wind scatterplot by replacing the
circles with five-sided “stars”, with the lengths of each side representing each
of the remaining five variables. Such a plot is shown in Figure 2.8, but it fails
to communicate much, if any, useful information about the data.

R> ylim <- with(USairpollution, range(wind)) * c(0.95, 1)

R> plot(wind ~ temp, data = USairpollution,

+ xlab = "Average annual temperature (Fahrenheit)",

+ ylab = "Average annual wind speed (m.p.h.)", pch = 10,

+ ylim = ylim)

R> with(USairpollution, symbols(temp, wind, circles = SO2,

+ inches = 0.5, add = TRUE))
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Fig. 2.7. Bubble plot of temp, wind, and SO2.
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R> plot(wind ~ temp, data = USairpollution,

+ xlab = "Average annual temperature (Fahrenheit)",

+ ylab = "Average annual wind speed (m.p.h.)", pch = 10,

+ ylim = ylim)

R> with(USairpollution,

+ stars(USairpollution[,-c(2,5)], locations = cbind(temp, wind),

+ labels = NULL, add = TRUE, cex = 0.5))
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Fig. 2.8. Scatterplot of temp and wind showing five-sided stars representing the
other variables.

In fact, both the bubble plot and “stars” plot are examples of symbol or
glyph plots, in which data values control the symbol parameters. For example,
a circle is a glyph where the values of one variable in a multivariate observation
control the circle size. In Figure 2.8, the spatial positions of the cities in
the scatterplot of temp and wind are combined with a star representation
of the five other variables. An alternative is simply to represent the seven
variables for each city by a seven-sided star and arrange the resulting stars in
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a rectangular array; the result is shown in Figure 2.9. We see that some stars,
for example those for New Orleans, Miami, Jacksonville, and Atlanta, have
similar shapes, with their higher average annual temperature being distinctive,
but telling a story about the data with this display is difficult.

Stars, of course, are not the only symbols that could be used to represent
data, and others have been suggested, with perhaps the most well known being
the now infamous Chernoff’s faces (see Chernoff 1973). But, on the whole,
such graphics for displaying multivariate data have not proved themselves to
be effective for the task and are now largely confined to the past history of
multivariate graphics.

R> stars(USairpollution, cex = 0.55)
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St. Louis

Washington
Wichita

Wilmington

Fig. 2.9. Star plot of the air pollution data.
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2.4 The scatterplot matrix

There are seven variables in the air pollution data, which between them gen-
erate 21 possible scatterplots. But just making the graphs without any coor-
dination will often result in a confusing collection of graphs that are hard to
integrate visually. Consequently, it is very important that the separate plots
be presented in the best way to aid overall comprehension of the data. The
scatterplot matrix is intended to accomplish this objective. A scatterplot ma-
trix is nothing more than a square, symmetric grid of bivariate scatterplots.
The grid has q rows and columns, each one corresponding to a different vari-
able. Each of the grid’s cells shows a scatterplot of two variables. Variable j
is plotted against variable i in the ijth cell, and the same variables appear in
cell ji, with the x- and y-axes of the scatterplots interchanged. The reason for
including both the upper and lower triangles of the grid, despite the seeming
redundancy, is that it enables a row and a column to be visually scanned to
see one variable against all others, with the scales for the one variable lined up
along the horizontal or the vertical. As a result, we can visually link features
on one scatterplot with features on another, and this ability greatly increases
the power of the graphic.

The scatterplot matrix for the air pollution data is shown in Figure 2.10.
The plot was produced using the function pairs(), here with slightly enlarged
dot symbols, using the arguments pch = "." and cex = 1.5.

The scatterplot matrix clearly shows the presence of possible outliers in
many panels and the suggestion that the relationship between the two aspects
of rainfall, namely precip, predays, and SO2 might be non-linear. Remem-
bering that the multivariable aspect of these data, in which sulphur dioxide
concentration is the response variable, with the remaining variables being ex-
planatory, might be of interest, the scatterplot matrix may be made more
helpful by including the linear fit of the two variables on each panel, and such
a plot is shown in Figure 2.11. Here, the pairs() function was customised by
a small function specified to the panel argument: in addition to plotting the
x and y values, a regression line obtained via function lm() is added to each
of the panels.

Now the scatterplot matrix reveals that there is a strong linear relationship
between SO2 and manu and between SO2 and popul, but the (3, 4) panel shows
that manu and popul are themselves very highly related and thus predictive
of SO2 in the same way. Figure 2.11 also underlines that assuming a linear
relationship between SO2 and precip and SO2 and predays, as might be the
case if a multiple linear regression model is fitted to the data with SO2 as the
dependent variable, is unlikely to fully capture the relationship between each
pair of variables.

In the same way that the scatterplot should always be used alongside the
numerical calculation of a correlation coefficient, so should the scatterplot
matrix always be consulted when looking at the correlation matrix of a set of
variables. The correlation matrix for the air pollution data is
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R> pairs(USairpollution, pch = ".", cex = 1.5)

SO2
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20 100 0 2500 6 9 40 140
40

14
0

predays

Fig. 2.10. Scatterplot matrix of the air pollution data.

R> round(cor(USairpollution), 4)

SO2 temp manu popul wind precip predays

SO2 1.0000 -0.4336 0.6448 0.4938 0.0947 0.0543 0.3696

temp -0.4336 1.0000 -0.1900 -0.0627 -0.3497 0.3863 -0.4302

manu 0.6448 -0.1900 1.0000 0.9553 0.2379 -0.0324 0.1318

popul 0.4938 -0.0627 0.9553 1.0000 0.2126 -0.0261 0.0421

wind 0.0947 -0.3497 0.2379 0.2126 1.0000 -0.0130 0.1641

precip 0.0543 0.3863 -0.0324 -0.0261 -0.0130 1.0000 0.4961

predays 0.3696 -0.4302 0.1318 0.0421 0.1641 0.4961 1.0000

Focussing on the correlations between SO2 and the six other variables, we
see that the correlation for SO2 and precip is very small and that for SO2

and predays is moderate. But relevant panels in the scatterplot indicate that
the correlation coefficient that assesses only the linear relationship between
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R> pairs(USairpollution,

+ panel = function (x, y, ...) {

+ points(x, y, ...)

+ abline(lm(y ~ x), col = "grey")

+ }, pch = ".", cex = 1.5)
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Fig. 2.11. Scatterplot matrix of the air pollution data showing the linear fit of each
pair of variables.

two variables may not be suitable here and that in a multiple linear regres-
sion model for the data quadratic effects of predays and precip might be
considered.
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2.5 Enhancing the scatterplot with estimated bivariate
densities

As we have seen above, scatterplots and scatterplot matrices are good at
highlighting outliers in a multivariate data set. But in many situations an-
other aim in examining scatterplots is to identify regions in the plot where
there are high or low densities of observations that may indicate the pres-
ence of distinct groups of observations; i.e., “clusters” (see Chapter 6). But
humans are not particularly good at visually examining point density, and
it is often a very helpful aid to add some type of bivariate density estimate
to the scatterplot. A bivariate density estimate is simply an approximation
to the bivariate probability density function of two variables obtained from a
sample of bivariate observations of the variables. If, of course, we are willing
to assume a particular form of the bivariate density of the two variables, for
example the bivariate normal, then estimating the density is reduced to esti-
mating the parameters of the assumed distribution. More commonly, however,
we wish to allow the data to speak for themselves and so we need to look for
a non-parametric estimation procedure. The simplest such estimator would
be a two-dimensional histogram, but for small and moderately sized data sets
that is not of any real use for estimating the bivariate density function simply
because most of the “boxes” in the histogram will contain too few observa-
tions; and if the number of boxes is reduced, the resulting histogram will be
too coarse a representation of the density function.

Other non-parametric density estimators attempt to overcome the deficien-
cies of the simple two-dimensional histogram estimates by “smoothing” them
in one way or another. A variety of non-parametric estimation procedures
have been suggested, and they are described in detail in Silverman (1986) and
Wand and Jones (1995). Here we give a brief description of just one popular
class of estimators, namely kernel density estimators.

2.5.1 Kernel density estimators

From the definition of a probability density, if the random variable X has a
density f ,

f(x) = lim
h→0

1

2h
P(x− h < X < x+ h). (2.1)

For any given h, a näıve estimator of P(x− h < X < x+ h) is the proportion
of the observations x1, x2, . . . , xn falling in the interval (x− h, x+ h),

f̂(x) =
1

2hn

n∑
i=1

I(xi ∈ (x− h, x+ h)); (2.2)

i.e., the number of x1, . . . , xn falling in the interval (x− h, x+ h) divided by
2hn. If we introduce a weight function W given by
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W (x) =


1
2 |x| < 1

0 else,

then the näıve estimator can be rewritten as

f̂(x) =
1

n

n∑
i=1

1

h
W

(
x− xi
h

)
. (2.3)

Unfortunately, this estimator is not a continuous function and is not par-
ticularly satisfactory for practical density estimation. It does, however, lead
naturally to the kernel estimator defined by

f̂(x) =
1

hn

n∑
i=1

K

(
x− xi
h

)
, (2.4)

where K is known as the kernel function and h is the bandwidth or smoothing
parameter . The kernel function must satisfy the condition∫ ∞

−∞
K(x)dx = 1.

Usually, but not always, the kernel function will be a symmetric density func-
tion; for example, the normal. Three commonly used kernel functions are

rectangular,

K(x) =


1
2 |x| < 1

0 else.

triangular,

K(x) =

 1− |x| |x| < 1

0 else,

Gaussian,

K(x) =
1√
2π
e−

1
2x

2

.

The three kernel functions are implemented in R as shown in Figure 2.12.
For some grid x, the kernel functions are plotted using the R statements in
Figure 2.12.

The kernel estimator f̂ is a sum of “bumps” placed at the observations.
The kernel function determines the shape of the bumps, while the window
width h determines their width. Figure 2.13 (redrawn from a similar plot in
Silverman 1986) shows the individual bumps n−1h−1K((x−xi)/h) as well as

the estimate f̂ obtained by adding them up for an artificial set of data points
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R> rec <- function(x) (abs(x) < 1) * 0.5

R> tri <- function(x) (abs(x) < 1) * (1 - abs(x))

R> gauss <- function(x) 1/sqrt(2*pi) * exp(-(x^2)/2)

R> x <- seq(from = -3, to = 3, by = 0.001)

R> plot(x, rec(x), type = "l", ylim = c(0,1), lty = 1,

+ ylab = expression(K(x)))

R> lines(x, tri(x), lty = 2)

R> lines(x, gauss(x), lty = 3)

R> legend("topleft", legend = c("Rectangular", "Triangular",

+ "Gaussian"), lty = 1:3, title = "kernel functions",

+ bty = "n")
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Fig. 2.12. Three commonly used kernel functions.

R> x <- c(0, 1, 1.1, 1.5, 1.9, 2.8, 2.9, 3.5)

R> n <- length(x)

For a grid

R> xgrid <- seq(from = min(x) - 1, to = max(x) + 1, by = 0.01)

on the real line, we can compute the contribution of each measurement in x,
with h = 0.4, by the Gaussian kernel (defined in Figure 2.12, line 3) as follows:
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R> h <- 0.4

R> bumps <- sapply(x, function(a) gauss((xgrid - a)/h)/(n * h))

A plot of the individual bumps and their sum, the kernel density estimate f̂ ,
is shown in Figure 2.13.

R> plot(xgrid, rowSums(bumps), ylab = expression(hat(f)(x)),

+ type = "l", xlab = "x", lwd = 2)

R> rug(x, lwd = 2)

R> out <- apply(bumps, 2, function(b) lines(xgrid, b))

−1 0 1 2 3 4

0.
00

0.
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20
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30

x

f̂(x
)

Fig. 2.13. Kernel estimate showing the contributions of Gaussian kernels evaluated
for the individual observations with bandwidth h = 0.4.

The kernel density estimator considered as a sum of “bumps” centred at
the observations has a simple extension to two dimensions (and similarly for
more than two dimensions). The bivariate estimator for data (x1, y1), (x2, y2),
. . . , (xn, yn) is defined as
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f̂(x, y) =
1

nhxhy

n∑
i=1

K

(
x− xi
hx

,
y − yi
hy

)
. (2.5)

In this estimator, each coordinate direction has its own smoothing parameter,
hx or hy. An alternative is to scale the data equally for both dimensions and
use a single smoothing parameter.

For bivariate density estimation, a commonly used kernel function is the
standard bivariate normal density

K(x, y) =
1

2π
e−

1
2 (x

2+y2).

Another possibility is the bivariate Epanechnikov kernel given by

K(x, y) =


2
π (1− x2 − y2) x2 + y2 < 1

0 else,

which is implemented and depicted in Figure 2.14 by using the persp function
for plotting in three dimensions.

According to Venables and Ripley (2002), the bandwidth should be chosen
to be proportional to n−1/5; unfortunately, the constant of proportionality
depends on the unknown density. The tricky problem of bandwidth estimation
is considered in detail in Silverman (1986).

Our first illustration of enhancing a scatterplot with an estimated bivari-
ate density will involve data from the Hertzsprung-Russell (H-R) diagram of
the star cluster CYG OB1, calibrated according to Vanisma and De Greve
(1972). The H-R diagram is the basis of the theory of stellar evolution and
is essentially a plot of the energy output of stars as measured by the loga-
rithm of their light intensity plotted against the logarithm of their surface
temperature. Part of the data is shown in Table 2.1. A scatterplot of the data
enhanced by the contours of the estimated bivariate density (Wand and Ripley
2010, obtained with the function bkde2D() from the package KernSmooth) is
shown in Figure 2.15. The plot shows the presence of two distinct clusters of
stars: the larger cluster consists of stars that have high surface temperatures
and a range of light intensities, and the smaller cluster contains stars with low
surface temperatures and high light intensities. The bivariate density estimate
can also be displayed by means of a perspective plot rather than a contour
plot, and this is shown in Figure 2.16. This again demonstrates that there are
two groups of stars.

Table 2.1: CYGOB1 data. Energy output and surface temperature of
star cluster CYG OB1.

logst logli logst logli logst logli

4.37 5.23 4.23 3.94 4.45 5.22
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Table 2.1: CYGOB1 data (continued).

logst logli logst logli logst logli

4.56 5.74 4.42 4.18 3.49 6.29
4.26 4.93 4.23 4.18 4.23 4.34
4.56 5.74 3.49 5.89 4.62 5.62
4.30 5.19 4.29 4.38 4.53 5.10
4.46 5.46 4.29 4.22 4.45 5.22
3.84 4.65 4.42 4.42 4.53 5.18
4.57 5.27 4.49 4.85 4.43 5.57
4.26 5.57 4.38 5.02 4.38 4.62
4.37 5.12 4.42 4.66 4.45 5.06
3.49 5.73 4.29 4.66 4.50 5.34
4.43 5.45 4.38 4.90 4.45 5.34
4.48 5.42 4.22 4.39 4.55 5.54
4.01 4.05 3.48 6.05 4.45 4.98
4.29 4.26 4.38 4.42 4.42 4.50
4.42 4.58 4.56 5.10

For our next example of adding estimated bivariate densities to scatter-
plots, we will use the body measurement data introduced in Chapter 1 (see
Table 1.2), although there are rather too few observations on which to base
the estimation. (The gender of each individual will not be used.) And in this
case we will add the appropriate density estimate to each panel of the scat-
terplot matrix of the chest, waist, and hips measurements. The resulting
plot is shown in Figure 2.17. The waist/hips panel gives some evidence that
there might be two groups in the data, which, of course, we know to be true,
the groups being men and women. And the Waist histogram on the diagonal
panel is also bimodal , underlining the two-group nature of the data.

2.6 Three-dimensional plots

The scatterplot matrix allows us to display information about the univariate
distributions of each variable (using histograms on the main diagonal, for
example) and about the bivariate distribution of all pairs of variables in a
set of multivariate data. But we should perhaps consider whether the use of
three-dimensional plots offers any advantage over the series of two-dimensional
scatterplots used in a scatterplot matrix. To begin, we can take a look at the
three-dimensional plot of the body measurements data; a version of the plot
that includes simply the points along with vertical lines dropped from each
point to the x-y plane is shown in Figure 2.18. The plot, produced with the
scatterplot3d package (Ligges 2010), suggests the presence of two relatively
separate groups of points corresponding to the males and females in the data.
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R> epa <- function(x, y)

+ ((x^2 + y^2) < 1) * 2/pi * (1 - x^2 - y^2)

R> x <- seq(from = -1.1, to = 1.1, by = 0.05)

R> epavals <- sapply(x, function(a) epa(a, x))

R> persp(x = x, y = x, z = epavals, xlab = "x", ylab = "y",

+ zlab = expression(K(x, y)), theta = -35, axes = TRUE,

+ box = TRUE)

x

y

K
(x, y)

Fig. 2.14. Epanechnikov kernel for a grid between (−1.1,−1.1) and (1.1, 1.1).

As a second example of using a three-dimensional plot, we can look at
temp, wind, and SO2 from the air pollution data. The points and vertical lines
versions of the required three-dimensional plot are shown in Figure 2.19. Two
observations with high SO2 levels stand out, but the plot does not appear to
add much to the bubble plot for the same three variables (Figure 2.7).

Three-dimensional plots based on the original variables can be useful in
some cases but may not add very much to, say, the bubble plot of the scat-
terplot matrix of the data. When there are many variables in a multivariate
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R> library("KernSmooth")

R> CYGOB1d <- bkde2D(CYGOB1, bandwidth = sapply(CYGOB1, dpik))

R> plot(CYGOB1, xlab = "log surface temperature",

+ ylab = "log light intensity")

R> contour(x = CYGOB1d$x1, y = CYGOB1d$x2,

+ z = CYGOB1d$fhat, add = TRUE)
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Fig. 2.15. Scatterplot of the log of light intensity and log of surface temperature
for the stars in star cluster CYG OB1 showing the estimated bivariate density.

data set, there will be many possible three-dimensional plots to look at and
integrating and linking all the plots may be very difficult. But if the dimension-
ality of the data could be reduced in some way with little loss of information,
three-dimensional plots might become more useful, a point to which we will
return in the next chapter.
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R> persp(x = CYGOB1d$x1, y = CYGOB1d$x2, z = CYGOB1d$fhat,

+ xlab = "log surface temperature",

+ ylab = "log light intensity",

+ zlab = "density")
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Fig. 2.16. Perspective plot of estimated bivariate density.

2.7 Trellis graphics

Trellis graphics (see Becker, Cleveland, Shyu, and Kaluzny 1994) is an ap-
proach to examining high-dimensional structure in data by means of one-,
two-, and three-dimensional graphs. The problem addressed is how observa-
tions of one or more variables depend on the observations of the other vari-
ables. The essential feature of this approach is the multiple conditioning that
allows some type of plot to be displayed for different values of a given variable
(or variables). The aim is to help in understanding both the structure of the
data and how well proposed models describe the structure. An example of
the application of trellis graphics is given in Verbyla, Cullis, Kenward, and
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Fig. 2.17. Scatterplot matrix of body measurements data showing the estimated
bivariate densities on each panel.

Welham (1999). With the recent publication of Sarkar’s excellent book (see
Sarkar 2008) and the development of the lattice (Sarkar 2010) package, trel-
lis graphics are likely to become more popular, and in this section we will
illustrate their use on multivariate data.

For the first example, we return to the air pollution data and the temp,
wind, and SO2 variables used previously to produce scatterplots of SO2 and
temp conditioned on values of wind divided into two equal parts that we shall
creatively label “Light” and “High”. The resulting plot is shown in Figure 2.20.
The plot suggests that in cities with light winds, air pollution decreases with
increasing temperature, but in cities with high winds, air pollution does not
appear to be strongly related to temperature.

A more complex example of trellis graphics is shown in Figure 2.21. Here
three-dimensional plots of temp, wind, and precip are shown for four levels of
SO2. The graphic looks pretty, but does it convey anything of interest about
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R> library("scatterplot3d")

R> with(measure, scatterplot3d(chest, waist, hips,

+ pch = (1:2)[gender], type = "h", angle = 55))
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Fig. 2.18. A three-dimensional scatterplot for the body measurements data with
points corresponding to male and triangles to female measurements.

the data? Probably not, as there are few points in each of the three, three-
dimensional displays. This is often a problem with multipanel plots when the
sample size is not large.

For the last example in this section, we will use a larger data set, namely
data on earthquakes given in Sarkar (2008). The data consist of recordings of
the location (latitude, longitude, and depth) and magnitude of 1000 seismic
events around Fiji since 1964.

In Figure 2.22, scatterplots of latitude and longitude are plotted for three
ranges of depth. The distribution of locations in the latitude-longitude space
is seen to be different in the three panels, particularly for very deep quakes. In
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R> with(USairpollution,

+ scatterplot3d(temp, wind, SO2, type = "h",

+ angle = 55))
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Fig. 2.19. A three-dimensional scatterplot for the air pollution data.

Figure 2.23 (a tour de force by Sarkar) the four panels are defined by ranges
of magnitude and depth is encoded by different shading.

Finally, in Figure 2.24, three-dimensional scatterplots of earthquake epi-
centres (latitude, longitude, and depth) are plotted conditioned on earthquake
magnitude. (Figures 2.22, 2.23, and 2.24 are reproduced with the kind per-
mission of Dr. Deepayan Sarkar.)

2.8 Stalactite plots

In this section, we will describe a multivariate graphic, the stalactite plot,
specifically designed for the detection and identification of multivariate out-
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R> plot(xyplot(SO2 ~ temp| cut(wind, 2), data = USairpollution))
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Fig. 2.20. Scatterplot of SO2 and temp for light and high winds.

liers. Like the chi-square plot for assessing multivariate normality, described
in Chapter 1, the stalactite plot is based on the generalised distances of ob-
servations from the multivariate mean of the data. But here these distances
are calculated from the means and covariances estimated from increasing-
sized subsets of the data. As mentioned previously when describing bivariate
boxplots, the aim is to reduce the masking effects that can arise due to the
influence of outliers on the estimates of means and covariances obtained from
all the data. The central idea of this approach is that, given distances using,
say, m observations for estimation of means and covariances, the m+ 1 obser-
vations to be used for this estimation in the next stage are chosen to be those
with the m+1 smallest distances. Thus an observation can be included in the
subset used for estimation for some value of m but can later be excluded as m
increases. Initially m is chosen to take the value q+ 1, where q is the number
of variables in the multivariate data set because this is the smallest number
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R> pollution <- with(USairpollution, equal.count(SO2,4))

R> plot(cloud(precip ~ temp * wind | pollution, panel.aspect = 0.9,

+ data = USairpollution))
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Fig. 2.21. Three-dimensional plots of temp, wind, and precip conditioned on levels
of SO2.

allowing the calculation of the required generalised distances. The cutoff dis-
tance generally employed to identify an outlier is the maximum expected value
from a sample of n random variables each having a chi-squared distribution on
q degrees of freedom. The stalactite plot graphically illustrates the evolution
of the outliers as the size of the subset of observations used for estimation in-
creases. We will now illustrate the application of the stalactite plot on the US
cities air pollution data. The plot (produced via stalac(USairpollution)) is
shown in Figure 2.25. Initially most cities are indicated as outliers (a“*” in the
plot), but as the number of observations on which the generalised distances
are calculated is increased, the number of outliers indicated by the plot de-
creases. The plot clearly shows the outlying nature of a number of cities over
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R> plot(xyplot(lat ~ long| cut(depth, 3), data = quakes,

+ layout = c(3, 1), xlab = "Longitude",

+ ylab = "Latitude"))
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Fig. 2.22. Scatterplots of latitude and longitude conditioned on three ranges of
depth.

nearly all values of m. The effect of masking is also clear; when all 41 ob-
servations are used to calculate the generalised distances, only observations
Chicago, Phoenix, and Providence are indicated to be outliers.

2.9 Summary

Plotting multivariate data is an essential first step in trying to understand
the story they may have to tell. The methods covered in this chapter provide
just some basic ideas for taking an initial look at the data, and with software
such as R there are many other possibilities for graphing multivariate obser-
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Fig. 2.23. Scatterplots of latitude and longitude conditioned on magnitude, with
depth coded by shading.

vations, and readers are encouraged to explore more fully what is available.
But graphics can often flatter to deceive and it is important not to be seduced
when looking at a graphic into responding “what a great graph” rather than
“what interesting data”. A graph that calls attention to itself pictorially is al-
most surely a failure (see Becker et al. 1994), and unless graphs are relatively
simple, they are unlikely to survive the first glance. Three-dimensional plots
and trellis plots provide great pictures, which may often also be very informa-
tive (as the examples in Sarkar 2008, demonstrate), but for multivariate data
with many variables, they may struggle. In many situations, the most useful
graphic for a set of multivariate data may be the scatterplot matrix, perhaps
with the panels enhanced in some way; for example, by the addition of bivari-
ate density estimates or bivariate boxplots. And all the graphical approaches
discussed in this chapter may become more helpful when applied to the data



58 2 Looking at Multivariate Data: Visualisation

R> plot(cloud(depth ~ lat * long | Magnitude, data = quakes,

+ zlim = rev(range(quakes$depth)),

+ screen = list(z = 105, x = -70), panel.aspect = 0.9,

+ xlab = "Longitude", ylab = "Latitude", zlab = "Depth"))

Longitude
Latitude

Depth

Magnitude

Longitude
Latitude

Depth

Magnitude

Longitude
Latitude

Depth

Magnitude

Longitude
Latitude

Depth

Magnitude

Fig. 2.24. Scatterplots of latitude and longitude conditioned on magnitude.

after their dimensionality has been reduced in some way, often by the method
to be described in the next chapter.
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Number of observations used for estimation
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Nashville
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Fig. 2.25. Stalactite plot of US cities air pollution data.
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2.10 Exercises

Ex. 2.1 Use the bivariate boxplot on the scatterplot of each pair of variables
in the air pollution data to identify any outliers. Calculate the correlation
between each pair of variables using all the data and the data with any
identified outliers removed. Comment on the results.

Ex. 2.2 Compare the chi-plots with the corresponding scatterplots for each
pair of variables in the air pollution data. Do you think that there is any
advantage in the former?

Ex. 2.3 Construct a scatterplot matrix of the body measurements data that
has the appropriate boxplot on the diagonal panels and bivariate boxplots
on the other panels. Compare the plot with Figure 2.17, and say which
diagram you find more informative about the data.

Ex. 2.4 Construct a further scatterplot matrix of the body measurements
data that labels each point in a panel with the gender of the individual,
and plot on each scatterplot the separate estimated bivariate densities for
men and women.

Ex. 2.5 Construct a scatterplot matrix of the chemical composition of
Romano-British pottery given in Chapter 1 (Table 1.3), identifying each
unit by its kiln number and showing the estimated bivariate density on
each panel. What does the resulting diagram tell you?

Ex. 2.6 Construct a bubble plot of the earthquake data using latitude and
longitude as the scatterplot and depth as the circles, with greater depths
giving smaller circles. In addition, divide the magnitudes into three equal
ranges and label the points in your bubble plot with a different symbol
depending on the magnitude group into which the point falls.
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