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2.1  �Introduction: Spatial Separation of Electric Charge

The electrodeposition of metals or alloys occurs within a spatial region of finite 
thickness at the interface (or, more precisely, an interphase) between the growing 
material and the solution. The structure of this region, in particular the distribution 
of ions, solvent molecules and other uncharged species, and the resulting distribu-
tion of electric charges and potential, has an important bearing on the interface en-
ergy of the system, the nature and rate of charge transfer processes, and on the pro-
cesses of nucleation and growth of metallic crystals. In general, charge separation 
occurs at this interface as a result of the different nature of the mobile charges in the 
two regions considered: electrons in the solid and ions in the electrolytic solution. 
The electronic charge distribution in the electrode extends into the solution farther 
than the charges generated by the ionic cores, and this excess of charges must be 
balanced by an opposite charge in the electrolyte. In the simplest approximation 
this separation of charges can be thought of as a parallel arrangement of opposite 
charges; for this reason, this region is also called double layer.

Many comprehensive and thorough discussions of the double layer are available 
in the literature [1]; our objective in this chapter is limited to a discussion of how 
and why the double layer influences the deposition process and how quantitative 
calculations of the properties of interest can be performed using experimental data. 
Practitioners in the area of electrodeposition often underestimate the role of double 
layer and surface phenomena in the electrode processes; here we try to highlight 
this role.

The presence of a metal/electrolyte interface not only results in charge separa-
tion, but also makes it possible for the exchange of charged particles between the 
two phases to occur: electrons and metallic ions may enter the solution, while ions 
transfer to the metal surface and may adsorb there. As a result of these processes an 
interfacial region is generated, which includes both charged and uncharged (dipolar 
or multipolar) species. The name electrical double layer (for brevity Double Layer, 
DL) underlines that the positively and negatively charged layers become spatially 
separated. More precisely, regions are formed having predominantly positive or 
negative charges.
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Upon immersion of an electrode in an electrolyte, the DL forms by rearrange-
ments of surface charges. An important characteristic of the DL is the potential drop 
Δφ between the solid and electrolyte phases. Experimentally the presence of a DL 
is manifested as an electrical capacitance at the interface. In other words, the rear-
rangement of charges can be modeled as an electrical capacitor made up of oppo-
sitely charged conductors placed at the metallic and electrolyte sides, respectively, 
which generate a potential drop. The capacitance of the DL is usually of the order of 
CDL ≈ 0.1Fm−2 . Since maximum values of Δφ are about 1 V, this corresponds to a 
charge density of about 0.1 C/m2 or 10 μC/cm2.

It is necessary to distinguish between the real interface structure and the various 
models developed to simplify quantitative calculations of the DL properties. Usu-
ally the real system is modeled by replacing the discrete charge distribution with a 
continuous medium, and the dipole layer of the solvent with a continuous dielectric.

In order to describe current flow through the electrochemical cell, the compli-
cated system of atoms, electrons, ions and molecules is replaced by a set of capaci-
tors and resistors connected in a predetermined order ( equivalent circuit), Fig. 2.1, 
which reproduces the electrical response of the real system. In this equivalent cir-
cuit, each element has its real equivalent; refinement and improvement of the model 
circuit can be achieved by comparison of the theoretical and experimental electrical 
responses at different frequencies. The overall impedance (i.e. complex resistance) 
of the system is measured in a wide range of frequencies (from 10−2  to 106 Hz), and 
the analysis of the data set permits to extract substantial amount of information on 
CDL and other electrochemical quantities [2].

The value of capacitance CDL is of immediate practical importance when impos-
ing currents or voltages at the interface. For example, a step-like variation of the 
voltage applied at an electrode results in an exponential transient of the resulting 
current, which achieves a new steady state value only after a time of the order of 
the time constant τ = R⋅CDL, where R is the equivalent resistance of the interface. In 
other processes of interest, an Alternating Current (AC) I (t) = I 0cos (2πft) may 
be superimposed to a constant current during metal deposition. At high frequencies 
this superimposed current does not influence the electrode processes. The reason is 
that DL charging by the superimposed AC current occurs over a finite time, of the 
order of:

� (2.1)τ = (RT/nF) · CDL/I 0

Fig. 2.1   Equivalent circuit of the electrode. The double layer capacitance ( 2), charge transfer 
resistance ( 3) and diffusion impedance ( 4) along with the Ohmic electrolyte resistance ( 1) are 
taken into account
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where RT/nF = 25.7/n mV at 25°C. The quantity τ must be less than 1/f, otherwise 
the alternate current will be damped due to DL charging and discharging. It follows 
that the condition

� (2.2)

determines the upper frequency limit that can be utilized to study double layer pro-
cesses.

A change in the potential drop across the DL by using an external power source 
results in a change of the charge density at both the liquid and solid surfaces; under 
certain conditions the charge may even change sign, from negative to positive or 
vice versa. The electrode potential ϕ0

M  at which this change in the sign of surface 
charge occurs is termed Potential of Zero Charge (PZC); its value depends on the 
chemical identity of the electrode and on the chemistry of the solution. This situa-
tion corresponds to the absence of free charges on the surface. Among other con-
tributions, the difference between the actual electrode potential and the PZC deter-
mines the nature of the species adsorbing at the surface: at more negative potentials 
positively charged species are adsorbed, and vice versa. It is essential in practical 
electrodeposition processes to predict which species adsorb at various electrode po-
tentials since these substances may influence the process. Values of PZC for some 
metals are given in the Table 2.1.

From the experimental viewpoint, the DL may be characterized by measuring its 
capacitance as a function of electrode voltage. Various models of the DL have been 

f < (nF/RT ) · I 0/CDL

Table 2.1   Zero charge potentials
Metal Solution ZCP, Volts
Ag 0.0025 М Na2SO4 −0.67
Au Calculated value +0.20
Bi 0.002 М KF −0.39
Cd 0.001 М NaF −0.75
Co Calculated value −0.40
Cr Calculated value −0.45
Cu 0.01 М NaF +0.09
Fe Calculated value −0.35
Ga 0.01 М HClO4 −0.69
Hg 0.01 М NaF −0.193
In 0.003 М NaF −0.65
Ni Calculated value −0.25
Pb 0.001 М NaF −0.56
Pd 0.05 М Na2SO4 + 0.001 M H2SO4 +0.26 (full charge)
Pd 0.05 М Na2SO4 + 0.001 M H2SO4 +0.10 (free charge)
Pt 0.03 М HF + 0.12 М KF +0.235 (full charge)
Pt 0.03 М HF + 0.12 М KF +0.185 (free charge)
Sb 0.002 М KClO4 −0.15
Sn 0.00125 М Na2SO4 −0.43
Zn Calculated value −0.60

2.1 Introduction: Spatial Separation of Electric Charge
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developed to describe the observed experimental behavior; they are discussed in the 
following. These models are able to describe and predict also other DL characteris-
tics, such as volume and surface charge density, potential distribution and interface 
energy. Capacitance data in particular enable the determination of the extent of ad-
sorption of ions and organic substances (Sect. 2.4).

2.2  �Compact Part of the Double Layer: Helmholtz Layer

An electric charge qm at the metal surface in contact with the solution is induced by 
the excess or deficiency of electrons in the surface layer. This charge must be com-
pensated by an equal and opposite charge q2 = −qm at the solution side; q2 is provided 
by ions present in the solution layer adjacent to metal surface.

The simplest model of DL consists of two charges qm and q2 distributed on two 
parallel planes, separated by a dielectric layer of solvent molecules (dipoles); in this 
model the charges are assumed to be point-like and spaced by a distance xo, deter-
mined by the size of the solvation sheath generated by the solvent dipoles between 
the ionic layer and the metal surface; this region is of the order of 0.3 nm.

This model is referred to as compact DL or Helmholtz layer. It describes rigor-
ously the DL structure at the interface of concentrated solutions and normal metals. 
It is similar to the familiar electric capacitor with one of the “plates” being liquid. 
The development of this concept is due to Helmholtz and Kohlrausch. 

The capacitance per unit area of said capacitor is

� (2.3)

where d is the distance between the charged planes; if the origin is placed at the 
metallic surface, then d = xo; ε0 is the permittivity of free space.

In Eq. (2.3) ε1 is the relative permittivity in the region between the two charged 
layers; this space is filled by dipole molecules of the solvent but, due to the limited 
mobility of these dipoles, its permittivity is much less than that of the free solvent 
and assumed to be constant in 0 < x < d.

The electric potential within the DL varies linearly since no volume charge is 
present. At each point x

� (2.4)

where φ0 is the potential at the plane where the ionic charges are located.
The outlined model is a strong simplification of the real structure and severely 

limited in its predictive capabilities. In order to improve on this model it is impor-
tant to list such limitations, as follows.

1.	 The actual electron density in the metal near the interface cannot change sharply 
but does so gradually. As a result, the charged metal layer has a finite thickness 
of about 0.1 nm, and the charge distribution depends on the nature of the metal; 
semimetals and semiconductors for example are characterized by a much wider 

C1 = ε0ε1/d

ϕ (x) = ϕ0 + q (x0 − x) /ε0ε1

2 The Structure of the Metal-Solution Interface
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distribution of the electronic charge. Moreover, the electron density decreases 
exponentially in the solution region adjacent to the metal surface, causing a non-
linear drop of potential in the DL.

	 The penetration depth of the electric field into the metal (the Thomas–Fermi 
length lTF) is given by 

	
� (2.5)

	 where EF is the Fermi energy of the metal, and ne its electronic density. Typical 
values are 5 eV and 1029 m−3, respectively, giving for lTF ≈ 0.05 nm. In the case 
of semiconductors lTF can be 2–4 orders of magnitude higher. It is apparent from 
this result that the metallic plate of the capacitor is not localized at the interface 
but has a finite thickness; this will affect the actual value of the capacitance.

2.	  The value of the relative dielectric constant ε1 depends on the properties of metal 
and solvent and on the electric field in the DL, and is in fact a function of both 
metal and solution. Also, the thickness d in Eq. (2.3) is obviously not identical 
to xo; whereas xo is the minimum distance of the ions centers from the metallic 
surface, d corresponds to the thickness of the layer having said specific value of 
ε1 [3, 4].

	 Interestingly, the overall C1 does not depend on solution concentration [5] (up to 
concentrations of about 0.1 M) but only on q: a change in q implies a change in 
ε1/d.

3.	  Finally, the Helmholtz model assumes that the ions in the solution are frozen in 
a predetermined configuration; this is true only at the absolute zero temperature. 
At any other temperature, thermal motion should be considered; this is discussed 
in the next section.

2.3  �Diffuse Layer: Gouy-Chapman Layer

At any finite temperature, the thermal motion of the ions results in a shift of the cen-
ter of charges from the fixed plane considered above, thus delocalizing the charge 
distribution. Part of the ions move from the surface into the bulk of solution, gener-
ating a volume charge distribution, or a diffuse layer.

The diffuse layer consists of ions of both signs, with one sign being present in 
some excess, which gradually reduces with increasing distance from the electrode 
(Fig. 2.2). It is common to represent the ionic atmosphere as a continuum character-
ized by a charge density ρ function of position, its integral value (the overall charge) 
being q2. The permittivity of this medium is equal to the bulk value of the solvent. 
This region conventionally starts at a distance xo from the electrode; closer to the 
electrode charged particles are absent.

The interface between the compact and diffuse layers is called Outer Helmholtz 
Plane (OHP). This plane can be thought of as the location where the point-like 

lTF ≈
(
ε0EF /e2ne

)1/2

2.3 Diffuse Layer: Gouy-Chapman Layer
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charges adsorbed on the electrode at zero temperature are concentrated; while some 
models assume that a certain charge is located at this plane also at finite tempera-
ture, other models consider that the surface charge is zero at the plane itself, and 
that the OHP represents the boundary between the double layer, where no charge is 
present, and the diffuse layer, with a finite volume charge density qv. In this latter 
depiction, for x < xoqv = 0 while for x ≥ xo|qv| > 0, gradually decreasing in the direc-
tion of the solution bulk. Due to the sharp change in the medium properties at the 
OHP, this model requires a discontinuous jump in permittivity. This discontinuity 
in permittivity is unrealistic; as a consequence, while the model often describes 
adequately the potential and charge distributions in the DL, such description cannot 
be completely rigorous.

The overall capacitance CDL (or, for simplicity, C) of the system consisting of 
the compact and diffuse layers is determined by the series capacitances of the two 
layers, C1 and C2 as [6]:

� (2.6)

From the electrostatic standpoint this picture is analogous to placing in the plane xo 
a conductive non-charged plate. This introduces no changes to the charge and po-
tential distribution and is needed only to develop a model with two capacitors. Actu-
ally these two capacitors model the dense layer and the diffuse layer, respectively 
(Fig. 2.2). The charge of the latter is distributed across a finite thickness.

C−1 = C−1
1 + C−1

2 , or C = C1C2/ (C1 + C2)

Fig. 2.2   Distribution of the 
electrical charge and potential 
in the case of diluted solu-
tion. a compact and diffuse 
layers: M – metal, D – 
dielectric, S – solution; b the 
electric model of the double 
layer with compact and dif-
fuse parts
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The capacitance C2 can be determined by calculating the potential distribution 
in the diffuse layer. This was first accomplished independently by Gouy and Chap-
man, approximately 100 years ago; the calculation is based on the assumption that 
the position of the ions is determined by a Poisson–Boltzmann distribution and has 
an important standing in electrochemistry; this is why we include here the corre-
sponding derivation.

Assuming point-like ionic charges, the volume charge density can be written as 
an algebraic sum of all the ionic charges:

� (2.7)

When ci is expressed in moles per liter, ρ is in Coulombs/liter. The local concentra-
tion of ions i is assumed to depend on the local potential as ci (ϕ) = c0

i exp (−z1f ϕ); 
this corresponds to assuming that i) only electrostatic forces are important, and ii) 
the electrostatic field is not influenced by the ion under consideration.

The volume charge density ρ is related to the potential φ by the Poisson equation 
d2ϕ/dx2 = −ρ/ε0ε; together with Eq. (2.7) this gives

� (2.8)

Here, f = F/RT.
We consider here a one-dimensional configuration, where the field changes only 

normal to the surface. Contrary to Eq. (2.3), ε is now the bulk dielectric permittivity 
of the solution. Equation (2.8) has the form ϕ′′ = f (ϕ)(φ); it can be integrated using a 
standard method, by multiplying both sides with 2ϕ′dx = 2dϕ , therefore obtaining 
exact differentials.

As a result of the integration two quantities are obtained. The first is the potential 
φ as a function of distance from the OHP; for a symmetrical z, z-charged electrolyte 
(that is, an electrolyte obtained by dissolution of a Az+Bz−  salt), φ(x) is given for 
x > xo by the Stern formula [7]:

� (2.9)

φo is the potential at the OHP, λD = |z|−1F−1(RT εε0/2c)
1
2  has the dimensions of 

a length and is termed Debye length. When qm = 0 this is the length at which the 
potential falls by e ≈ 2.7 times (for x > 2xo Eq.  (2.9) corresponds practically to an 
exponential decrease as shown in Fig. 2.3).

For nonsymmetrical electrolytes the solutions of Eq. (2.8) can also be derived by 
the method of the auxiliary functions of φ [8].

The second result of the integration is a relationship between φo and q2:

� (2.10)

ρ = �ciziF = F�c0
i zi exp (−z1f ϕ)

d2ϕ/dx2 = − (F/ε0ε) �c0
i zi exp (−z1f ϕ) .

ϕ = 4z−1f −1 arctan {tan (zf ϕo/4) · exp [(xo − x)/λD}

(q2)2 = 2RT εε0�c0
i

[
exp (−z1f ϕo) − 1

]

2.3 Diffuse Layer: Gouy-Chapman Layer
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or for a z,z-electrolyte

� (2.11)

where qD = (8RT cεε0)
1/2 = 2εε0/(λ0 |z| f ); this quantity has the dimensions of a 

charge per square meter and can be called Debye charge. In other reference books a 
different notation is often used: A = 1/2qD.

The overall charge consists in the sum of cationic charges

� (2.12)

and of anionic charges

� (2.13)

Furthermore, φo can also be expressed in terms of q:

� (2.14)

This very important expression has two limiting cases: when q2 � qD

� (2.15)

and when q2 � qD

� (2.16)

Equation (2.16) permits to find the capacitance of the diffuse layer as C2 = dq2/dφo:

� (2.17)

or, as a function of charge:

� (2.18)

q2 = qD sinh (zf ϕo/2)

q
(+)
2 = qD

[
exp (−zf ϕo/2) − 1

]

q
(−)
2 = qD

[
exp (−zf ϕo/2) − 1

]
.

ϕo = 2z−1f −1 arcsin h (q2/qD) .

ϕo = 2q2/ |z| f qD = q2λD/εε0

|ϕo| = const + (2/zf ) ln |q2| − (1/zf ) lnc

C2 = 1/2 |z| f q2cosh (1/2zf ϕo) = (εε0/λD) cosh (1/2zf ϕo)

C2 = 1/2 |z| f (q2 + qD)
1/2

Fig. 2.3   Potential decay in 
the diffuse layer. λ0 – Debye 
length, M – metal, D – 
compact layer (dielectric), 
S – solution
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We can see from Eq.  (2.15) that φo = 0 when q2 = 0. Under these conditions also 
qm = 0, i.e. the metal surface is at its zero charge potential. At qm = 0, C2 goes through 
its minimum:

� (2.19)

This minimum becomes deeper the more diluted is the solution.
The above formulae give the capacitance of the diffuse layer; the total CDL may be 

measured experimentally, and then the capacitance of the dense layer is obtained as

� (2.20)

If C1 does not depend on potential then CDL has its minimum at the same potential as 
C2, i.e. at the PZC. In reality, in symmetric electrolytes as c → 0 the minimum in CDL 
is obtained at the PZC [6]. In most cases the minimum is somewhat shifted from the 
PZC (Fig. 2.4). Curves of this sort are obtained with low melting metal electrodes 
such as Hg, Pb, Cd, Bi, Ga etc.

Considering the diffuse layer as a conventional capacitor with C = C2 and per-
mittivity ε it is possible to determine its equivalent thickness λ; i.e., by placing the 
overall charge at this distance from the OHP we obtain a capacitor with the same 
capacitance. When q2 = 0 this thickness is equal to

� (2.21)

This coincides with the Debye length λD. At q2 ≠ 0

� (2.22)

C2 = 1/2 |z| f qD = |z| F(2εε0c/RT )
1/2 = εε0/λD

C−1
1 = C−1 − C−1

2 ,

λ = εε0/C2 = |z|−1F−1(RT εε0/2c)
1/2

λ = λD/ch (|z| f ϕ)

Fig. 2.4   Differential DL 
capacity at mercury in 
NaF solutions: 1 0.1 M, 2 
0.001 M. The minima are 
close to PZC
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As the concentration and/or q increase, λD diminishes. In concentrated solutions 
λD → 0 and the overall volume charge concentrates near the OHP; in this case the 
model of two capacitors in series simplifies to that of a compact layer. In this limit-
ing case the charge of the “liquid plate” is attributed to the OHP.

2.4  �Adsorption at Electrodes

Before proceeding further, it is necessary to discuss the process of adsorption of 
electrolyte species at the electrode. Several types of adsorption phenomena and 
the corresponding interactions should be considered, namely: (a) the adsorption of 
surface-active substances, (b) the adsorption of ions (including specific adsorption), 
(c) the adsorption of electroactive species: reagents, products and intermediates, 
and (d) the formation of adsorbed ionic or molecular layers. 

The thermodynamic analysis of adsorption is based on the Gibbs adsorption 
equation; this description is most general and is independent of any model of the in-
terface. At the boundary between two phases 1 and 2, the thermodynamic properties 
of these two phases change gradually across the boundary. Assume that this transi-
tion occurs within a narrow region 3 between 1 and 2 (Fig. 2.5), which is bounded 
by the planes I and II; the thickness of this region is of molecular dimensions. In this 
region the concentrations of the various species differ from those in the regions 1 
and 2. For each species i we define the “surface excess” Гi as the excess of the sur-
face concentration (number of moles ni per unit area A) of component i in the region 
3 relative to 1 or 2. The planes I and II are named the Gibbs planes, and Гi = ni/A is 
referred to as “adsorption” (moles per unit surface). In the case of adsorption at a 
metal electrode from solution only one Gibbs plane is necessary since the second 
one coincides with the metal surface.

Under conditions of constant temperature and pressure (conditions characteris-
tics of electrochemical systems) the Gibbs adsorption equation has the form

Fig. 2.5   Intermediate region 
(3) between the phases 1 
and 2

interfaceC
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model system
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� (2.23)

In particular, for a two-component system

� (2.24)

Another important equation is the Gibbs–Duhem equation for the chemical poten-
tial:

� (2.25)

In these equations γ is the solid/electrolyte interface energy, and xi is the molar frac-
tion of the component i in the solution. The Gibbs Eq. (2.23) may be considered as 
the surface analogue of Eq. (2.25).

If we consider Eq. (2.23) for the case of a solute (sol) and the solvent (water) it 
is possible to write

� (2.23’)

and, assuming that Γw is zero, this simplifies further to

� (2.23”)

This equation relates the adsorption of a solute species to the change in interface 
energy of the electrode; the driving force for adsorption is therefore a decrease in 
interface energy.

The extent of adsorption of the various species in general depends on the con-
centration of the species in solution and on the interactions between these species. 
A different set of assumptions will therefore result in different forms for the adsorp-
tion isotherms, describing the dependence of adsorption of a certain species on the 
above variables.

2.4.1  �Model Adsorption Isotherms

2.4.1.1  �The Langmuir Isotherm

The simplest and most commonly used adsorption equation, suitable for the descrip-
tion of both gas adsorption and adsorption from solutions is the Langmuir isotherm

� (2.26)

which relates the electrode coverage θ = Г/Г∞ by a certain species to the concentra-
tion of that species in solution, c. Г∞ is the limiting adsorption when c → ∞, and B 
is a constant. This equation can also be written as:

� (2.27)

In many cases the limiting adsorption Г∞ is equal to the number of active elec-
trode sites per unit surface ns/NA, but this correspondence may not always be cor-

dγ = −�i�idµi,

dγ = −�1dµ1 − �2dµ2.

x1dµ1 + x2dµ2 = 0

dγ = −�soldµsol−�wdµw

dγ = −�soldµsol

Bc = θ/ (1 − θ) ,

Bc = �/ (�∞ − �) .

2.4 Adsorption at Electrodes



38

rect; a large molecule for example may occupy several active centers, and then 
�∞ �= ns/NA . The adsorption constant B depends on temperature, and in the case 
of electrochemical systems also on the electrode potential.

The kinetic derivation of the Langmuir isotherm equation is well known; the 
constant В is derived as the ratio of the rate constants for adsorption and desorption. 
Both rates are equal at equilibrium, therefore:

and:

� (2.28)

or

� (2.29)

The Langmuir equation however can also be derived without resorting to any ki-
netic considerations, only on the basis of thermodynamic and statistical methods. In 
this way, it can be found that the value of B depends on the adsorption energy ΔGads:

;� (2.30)

this expression separates explicitly the temperature dependence from the depen-
dence on the electrode potential (as will be seen later, ΔGads depends on potential).

Obviously, in the Langmuir isotherm the value of B does not depend on the 
coverage θ. This isotherm is usually considered valid only for localized adsorption, 
i.e. when the species are adsorbed at fixed sites; in the case of adsorption from solu-
tion however this feature has limited significance because adsorption is actually a 
replacement process: the solute substitutes for the molecules of the solvent at the 
surface. At low concentrations this isotherm becomes the linear Henry isotherm, 
whereas at sufficiently high concentrations of the adsorbed substance θ → 1.

The adsorption isotherm corresponds to a two-dimensional equation of state 
for the interface energy: Δγ = f(T, θ), that generalizes the usual three-dimensional 
equation of state P = f(T,V). The quantity Δγ is the change in interface energy upon 
adsorption. This two-dimensional equation of state can be derived using the Gibbs 
adsorption isotherm for one component. By approximating the thermodynamic ac-
tivity with the concentration:

� (2.31)

Combining this equation with the Langmuir equation leads to

� (2.32)

(В = const, and then d lnB = 0).
After integration, and taking γ o = γ (θ = 0)

� (2.33)

Kadsc (1 − θ) = Kdesθ

Kadsc/Kdes = θ/ (1 − θ) ,

B = Kads/Kdes.

B = Bo exp (−�Gads/RT)

dγ = −�dµ = −RT · �dlnc.

dγ = −RT�θdln (θ/ (1 − θ))

γ − γo = �γ = −RT�∞ln (1 − θ) ,

2 The Structure of the Metal-Solution Interface
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This result is obtained through a change of variables: θ/(1 − θ) = z, or θ = z/(1 + z), 
from which

and then

� (2.34)

� (2.35)

This two-dimensional equation of state for the Langmuir isotherm describes the ideal 
two-dimensional adsorbed layer, whose behavior corresponds to that of the ideal gas.

2.4.1.2  �The Frumkin Isotherm

In the three-dimensional case a deviation from the ideal gas law is usually taken into 
account by the Van der Waals equation of state, in which two coefficients a and b are 
included. For N particles in the system this equation has the form:

� (2.36)

The coefficient a takes into account interparticle interactions. A statistical analysis 
shows that a can be expressed as

� (2.37)

where u (rik) is the interaction energy between particle pairs, and the integration is 
carried out for all the pairs in the system. Then the total variation of potential energy 
(as compared with that of the ideal gas) is proportional to N(N − 1), which at high N 
can be approximated by N2.

The same procedure can be generalized to take into account pair-wise interac-
tions in the two-dimensional case. The resulting correction must be proportional to 
the square of the number of the adsorbed species, and it can therefore be expressed 
in terms of coverage as аθ2.

This derivation was first performed by Frumkin in 1926. He wrote the corrected 
equation as:

� (2.38)

the quadratic dependence resulting from taking into account all the interacting par-
ticle pairs. 

The combination of this new equation of state with the Gibbs adsorption equa-
tion results in the Frumkin adsorption isotherm:

� (2.39)

dγ = −RT�∞z/ (1 + z) · dz/z = −RT�∞dz/ (1 + z) ,

∫dγ = −RT�∞∫dz/ (1 + z) , or

γ = γo + RT�∞ln (1 + z) = γo − RT�∞ln (1 − θ) .

(
p + aN2/V2

)
(V − bN) = NkBT.

a = 2π ∫ |u| r2dr,

�γ = −RT�∞ln (1 − θ) + aθ2,

Bc = [θ/ (1 − θ)] exp (−2aθ) .
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The quantity B, as in the Langmuir isotherm, depends on temperature and electric 
potential. As experiments have shown, this is true also for the value of a, which is 
called attraction constant. a < 0 describes repulsive interactions, whereas a > 0 cor-
responds to attractive interactions between the adsorbed species.

The Frumkin isotherm is most frequently used in the coverage range 0.2 < θ < 0.8. 
This is one of the most widely used adsorption isotherms in electrochemistry, partic-
ularly to describe the adsorption of surface-active organic molecules at electrodes. 
This isotherm takes into account the variation of the adsorption energy (enthalpy) 
at varying coverage, the reason for this dependence being the lateral interactions 
existing in the adsorbed layer.

2.4.1.3  �The Stern Isotherm

The Stern isotherm generalizes the Langmuir isotherm to the case of electrically 
charged species. It does not take into account any lateral or dipolar interactions, but 
includes the work done on the charged species to transfer them from φ = 0 to the 
potential φ. In this case the adsorption energy ΔGads can be written as

� (2.40)

Thus the “adsorption constant” B depends in this case not only on temperature and 
on the specific chemical energy of adsorption ΔG0 but also on the potential φ. The 
resulting isotherm takes the form

� (2.41)

� (2.42)

This equation is a simplified form of a more complicated expression originally de-
rived by Stern for the adsorption of two different species.

2.4.1.4  �Adsorption, Double Layer Capacitance and Interfacial Tension

The Gibbs adsorption isotherm does not consider explicitly any effect linked to 
charges and electrostatic fields. These effects can be included however by substitut-
ing the chemical with the electrochemical potential, or, equivalently, by taking into 
account the work zsFφi, in a similar way as it was done in the derivation of the Stern 
isotherm:

� (2.43)

where q = dγ /dϕ .
This relates the dependence of the interface energy on potential to the surface 

charge and can be rewritten in terms of the interface capacitance CDL:

� (2.44)

�Gads = �G0 + zsFϕ.

Boexp (−�G0/RT + zsFϕi/RT) c = θ/ (1 − θ) , or

Bc = θ/ (1 − θ) exp(−zsFϕ/RT)

dγ = −�dµ − qdϕ

d2γ /dϕ2 = −dq/dϕ = −CDL

2 The Structure of the Metal-Solution Interface
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Assume CDL is constant (this is valid under the Helmholtz or the linear Gouy-Chap-
man approximation, or far away from the PZC). Integrating this relationship we 
obtain:

� (2.45)

� (2.46)

� (2.47)

This shows that γ is maximum at the PZC, and that under the approximation of 
constant CDL, it changes quadratically with potential. Experimental results agree 
with this prediction, as shown for example in Fig. 2.6, depicting the capacitance and 
interfacial tension vs. applied potential for NaF solutions. In this figure, it should 
also be noted that the PZC remains approximately unchanged with electrolyte con-
centration.

These predictions however fail when adsorption of anions occurs at the surface. 
Figure 2.7 shows for example the measured capacitance and interface energy for 
KBr solutions. In this case, no clear minimum in the capacitance is observed, and 
at potentials positive with respect to the PZC the capacitance increases to very high 
values, of the order of 200 μF/cm2. The interface energy still follows an approxi-
mately parabolic behavior, but the PZC shifts to negative values with increasing 
electrolyte concentration.

Finally, Fig. 2.8 illustrates an example of adsorption of neutral molecules. Neu-
tral molecules can adsorb due to their polar nature or due to local, specific inter-
actions. The capacitance is very small in the range of potentials corresponding to 
the adsorption of the neutral molecule, due to the fact that no change in surface 
charge occurs at potentials where the molecule is adsorbed. Peaks in capacitance 
are observed at the potentials where the molecules desorb. The interface energy 
correspondingly shows a deformed parabolic behavior.

q = −CDL (ϕ − ϕPZC)

γ = −CDL(ϕ − ϕPZC)2/2 + γPZC, or

γPZC − γ = CDL(ϕ − ϕPZC)2/2.

Fig. 2.6   Capacitance (a) and 
surface energy (interfacial 
tension) measured for NaF 
solutions
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Fig. 2.7   Differential capacitance and interfacial tension for aqueous KBr solutions. (Adapted from 
E. Gileadi “Interfacial electrochemistry: an experimental approach” Addison-Wesley (1975))

Potential (Volts vs SCE)

IN
T

E
R

F
A

C
IA

L 
T

E
N

S
IO

N
 (

dy
n/

cm
)

0.0 –0.4 –0.8 –1.2 –1.6

420

400

380

360

340

320

0.01M
0.1M

1.0M

C
A

P
A

C
IT

A
N

C
E

 (
F

/c
m

 2 )

Potential (Volts vs SCE)

240

200

160

120

80

40

0
0 –0.4 –0.8 –1.2 –1.6

0.01M

0.10M

1.0M

Fig. 2.8   Adsorption of neu-
tral molecules: electrocapil-
lary curve and capacity Ed1 Ed1 –E

c

σ

2 The Structure of the Metal-Solution Interface

                  

                  



43

2.5  �Specific Adsorption

Now we return to the Gouy–Chapman model and consider ion adsorption in detail. 
Most ions upon adsorption can approach the electrode surface only up to the Outer 
Helmholtz Plane (OHP). Some of the ions in solution however actually approach 
the metal surface at a distance closer than the OHP; this may occur as a consequence 
of partial dehydration or when the ion interacts with the surface not only through 
electrostatic forces but also for example by forces of chemical origin. In such case 
these species form a specifically adsorbed layer; under the assumption of point-like 
species, this is located at a distance xi from the electrode surface, where xi < xo. This 
distance determines the Inner Helmholtz Plane (IHP), hence the index i. Different 
species may in principle have different xi, but usually only one inner plane is consid-
ered. This extended model of the double layer was introduced by Grahame.

In the following chapters we will discuss the process of charge transfer through 
the interface. During this process, the species that undergo charge transfer (the elec-
troactive species) are located within the compact (Helmholtz) layer, either at the 
OHP, the IHP or somewhere in between. For this reason, a precise description of the 
potential distribution in this region is important in electrochemical kinetics.

Said system is schematically shown in Fig. 2.9. The charge at the metallic sur-
face qm is equal to the sum of charge q1 at the IHP, and the remaining charge in the 
diffuse layer, q2; this provides for the electroneutrality of the overall system:

� (2.48)

The value of q1 is determined by the quantity of specifically adsorbed species Г: 
q1 = zsFГ where zs is the charge of the specifically adsorbed ions and Г their surface 
concentration (moles per area unit), as determined by the Stern adsorption isotherm, 
where the potential is that of the inner Helmholtz plane φi:

� (2.49)

In this equation Г∞ is the limiting adsorption and the potential φi is equal to the 
sum of the potential at the OHP φ0 which was found earlier and the potential drop 
between the two Helmholtz planes. This potential drop is determined by the charges 

qm + q1 + q2 = 0

Boexp (−�G0/RT + zsFϕi/RT) c = �/ (�∞ − �) ,

Fig. 2.9   Charge distribution 
at specific adsorption
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(1) on the metal surface and (2) at the IHP. The former contributes the amount 
qm( xo − xi)/ε0ε1 while the latter adds a term q1( xo − xi)/ε0ε1. Consequently,

� (2.50)

One can see that the amount of specifically adsorbed species Г depends on the po-
tential at the IHP, but in addition this potential is also determined by the charge q1 
which is equal to zsFГ.

This result shows that the calculation of charge and potential distribution in the 
DL for a specific adsorption is not simple. Nevertheless, experimental data enable 
determination of the charge and potential distribution in this case. Several specific 
experimental and mathematical methods have been developed for their determina-
tion [9]. Here we only state that the simultaneous solution of Eqs. (2.49) and (2.50) 
can give in implicit form the dependence of q1 (and consequently of φi) on the 
concentration of the specifically adsorbed species. The value of φ0 was found in 
Sect. 2.3, in the discussion of the Gouy–Chapman model. 

The overall potential difference between the solution bulk and the metal surface is

� (2.51)

The equations reported in Sects.  2.2–2.5 give the distribution of charge and po-
tential at the Helmholtz planes and in the diffuse layer; a complete description of 
the system requires in addition knowledge of the parameters B0, xi, xo etc., and al-
lows a fit of most experimental data. These parameters may be estimated by using 
experimental data of DL capacitance over a wide range of potentials and of ionic 
concentrations (see Sect. 2.8).

It is necessary to note that the specific adsorption of ions can change signifi-
cantly the potential distribution in the double layer. For example, at potentials more 
positive than PZC the value of φo is positive; however, if anions do adsorb specifi-
cally, their overall charge |q1| exceeds the metal charge |φm|. This leads consequently 
to a positive adsorption of the cations, as seen from Eq. (2.48). Then, the diffuse 
layer contains an excess of cations, leading to the potential distribution shown in 
Fig. 2.10. Phenomena of this sort explain the shift of PZC shown in Fig. 2.7, result-
ing from specific adsorption (in this case of Br−).

ϕi = ϕ0 + [qm(xo − xi) + q1(xo − xi)] /ε0ε1.

ϕm = ϕ0 + [qmxo + q1(xo − xi)] /ε0ε1.

Fig. 2.10   One type of the 
potential distribution in the 
double at specific adsorption
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A complete theory gives an explicit expression for this potential shift: dφZCP/d ln c = 
RT/zF for the specific adsorption of z-charged ions (c is the concentration of the 
said ions); in reality the actual shift is often larger than this value. This is due to the 
discrete character of the charge distribution at the IHP.

2.6  �Adsorption of Uncharged Organic Species

The structure of the DL is determined not only by the distribution of charged species 
but also by the presence of neutral surface-active, predominantly organic, substanc-
es. Such substances are usually employed in practical electrodeposition processes. 
Surface adsorption of these species does not change radically the electrical potential 
configuration, but influences the distribution of the charged species and also the 
permittivity in the dense layer. Adsorbed molecules may be modeled as electric 
dipoles oriented by the DL field; consequently, these do not contribute to the overall 
charge, but re-distribute it in the vicinity of the sites where they are adsorbed. The 
charge at free sites on the other hand does not change, leading to a model of two 
parallel capacitors for the interface [6]. In this model one capacitor is originated by 
the charge distributed over free sites (filled by the solvent molecules), and the other 
by the charge distribution at the sites covered by organic molecules. The overall 
charge is thus obtained as a sum over the two regions:

� (2.52)

Here qθ = 0 is the charge (per area unit) of the free sites and qθ = 1 is that for covered 
sites; θ is the fractional coverage by organic molecules as it was introduced earlier. 
We will indicate these two contributions as C0 and C′. The value of θ is governed 
by the adsorption isotherm which in this case depends on potential (or charge) of 
the electrode. As it was noted in Sect. 2.4, the Frumkin isotherm is best suited to 
describe the adsorption of organic species:

� (2.53)

In most cases in fact it adequately describes experimental data. In this formula how-
ever the value of B is dependent on potential because the effects of replacing water 
in the DL with organics must be included into the treatment. When the DL capaci-
tance changes from C0 to C′ the electrostatic work expended for this replacement 
(per mole of adsorbed species) is

� (2.54)

At the PZC this work is equal to zero, ant therefore B must have its maximum at 
this potential. In reality, the adsorbed species may have a non-zero dipole moment, 
thus shifting the potential of maximum adsorption to some point φPZC + Δφ just as 
a polarized dielectric volume produces a potential drop at an uncharged capacitor.

q = qθ=0 (1 − θ) + qθ=1θ

Bc = θ(1 − θ)−1 exp(−2aθ) .

W =
(
C0 − C ′) (ϕ − ϕPZC)2/2�∞

2.6 Adsorption of Uncharged Organic Species
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As a result,

� (2.55)

The PZCs for different metals are rather different, thus leading to the adsorption of 
the same organics within different potential ranges.

The shape of the adsorption isotherm slightly varies with a potential shift; this ef-
fect can be usually accounted for by including a linear dependence of the parameter 
a on potential.

Thus, by measurements of the DL capacitance as a function of electric potential 
and of the concentration of organic species it is possible to determine all the param-
eters describing the adsorption of organics. An interesting phenomenon is observed 
when performing these measurements: this consists in the presence of capacitance 
maxima at the edges of the adsorption region (Fig. 2.8), which is related to the sharp 
decay of adsorption in these regions.

Indeed, if the charge of the surface fraction partially covered by organics is 
q( φ,θ), then the differential capacitance is equal to

� (2.56)

The first contribution (the conventional capacitance) is equal, as seen from (2.52), 
to

�
� (2.57)

The second contribution is, as seen from (2.52)

� (2.58)

which allows to rewrite (2.56) as

� (2.59)

This differs from the simple model of two capacitors in parallel by the third term, 
which is always positive (since both factors have the same sign). This term becomes 
important at the edges of the adsorption region due to the high value of dθ/dφ; this 
explains the origin of the said maxima in Fig. 2.8.

Finally, it should be stressed that the discussion in this section concerns not only 
inert species simply blocking the surface but also neutral electroactive species, the 
surface concentration of which may govern the rate of the electrochemical process 
of interest.

2.7  �Double Layer on Polycrystalline Solid Surfaces

Up to this point the surface was assumed to be macroscopically uniform. This is 
indeed the case for a liquid or monocrystalline electrode; in a polycrystalline elec-
trode instead the various crystallographic facets have different properties, and at the 

B = B0exp
[
−

(
C0 − C ′) (ϕ − ϕPZC − �ϕ)2/ (2RT �∞)

]
.

C = dq/dϕ = (dq/dϕ)θ + (dq/dθ)ϕ (dθ/dϕ)

(dq/dϕ)θ = (dqθ=0/dϕ) (1 − θ) + (dqθ=1/dϕ) θ = q = C0 (1 − θ) + C ′θ ,

(qθ=1 − qθ=0) dθ/dϕ,

C = C0 (1 − θ) + C ′θ + (qθ=1 − qθ=0) dθ/dϕ.

2 The Structure of the Metal-Solution Interface
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same potential the charges and capacitances of these facets may by different. These 
effects are particularly important for the compact layer. The diffuse layer on the 
contrary can be considered to be the same for the overall surface when the crystal 
grains are sufficiently small; with coarse grains having a size larger than the Debye 
length however each facet should also have its own diffuse layer.

There are attempts in the literature to describe a polycrystalline surface as uni-
form but having a finite roughness kr (Sect. 1.4). In this case the roughness thus de-
termined does not reflect an actual geometric roughness, but rather crystallographic 
features of the real surface, for example the existence of particular crystal facets, 
dislocations and other defects responsible for surface inhomogeneities.

Upon transition from the liquid to the solid state the double layer of the same 
electrode changes moderately; this was established by measuring the DL proper-
ties of a Ga electrode slightly below and above its melting point (about 30°C). 
Most studies of the double layer at solid surfaces require the use of well character-
ized structures such as dislocation-free monocrystalline surfaces, or surfaces with 
well-known step density. The opposite case however may also be of interest: very 
important information is found in fact through the use of a highly imperfect, liquid-
type surface. This can be achieved by shearing or grinding. A freshly cut surface 
relaxes very quickly; therefore one should perform the measurements of interest 
very quickly. The cylindrical “cutting” electrode specifically designed for these in-
vestigations [10] is a very convenient electrochemical tool. The cutting of a thin 
metallic layer can be made immediately in the solution (with the potential applied), 
and measurements can be performed at any moment after surface renewal.

At sufficiently negative potentials CDL depends weakly both on the surface state 
(solid or liquid) and on the chemical identity of the metal; under these conditions 
the roughness coefficient may be determined by correlating the results for a solid 
electrode with those measured on a mercury or amalgam electrode. For this process 
to be accurate however it is necessary that no adsorption of surface-active species 
occurs; this depends strongly on the metal identity. 

In general, adsorption over dissimilar metal electrodes is significantly different; 
we have already noted that this is partly connected with the change of PZC; this can 
shift the region of adsorption up to 1 V. Additionally, the interaction of various met-
als with water may vary widely, resulting in a different width of the adsorption re-
gion. Finally, the adsorption energy as expressed by the parameter B0 is determined 
by the electronic structure of both metal and adsorbate; in this respect, it has been 
established that maximum values of B0 belong to species having definite ionization 
potentials I, which are specific for each metal (“resonance potentials” [11]). This 
statement is based mostly on the statistical treatment of the experimental data and 
has no deep theoretical foundation.

The most typical magnitude of I is 7.70–7.90 eV; this is characteristic for Cd, 
Sn, Bi, Pb and Cr. The approximate characteristic values experimentally found for 
copper, mercury, silver and zinc are correspondingly 7.2, 8.8, 9.0 and 9.4 eV; these 
values are close but not identical to the first ionization potentials of the metals. 
Oxidized areas of the surfaces have different “resonance potentials”. Unfortunately, 
no data are available in the literature for other metals. The reported data provide a 

2.7 Double Layer on Polycrystalline Solid Surfaces
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guideline in choosing which substances may be strongly adsorbing at definite metal 
electrodes. 

In comparing the compact parts of the double layer on different metals we rec-
ommend to divide the values of the corresponding capacitance into two contribu-
tions, one depending on the metal Cm and the other depending on the solvent Cs [12] 
as it is done for two capacitors in series (since the corresponding potential drops are 
additive):

� (2.60)

In this formula Cm does not depend on the electrical charge qm nor on the solution 
properties, but, as the experiment shows, varies with the metal identity as

� (2.61)

the constant depending on the metal considered; m1 (e.g. mercury) can be taken as 
the standard.

Cs depends also on the charge, as follows

� (2.62)

As a first approximation, f (q) = K(q − q1); K depends on the metal identity, and the 
charge q1 corresponds to f (q) = 0, i.e. at the potential when all the solvent dipoles 
have the same orientation on all metals. Such analysis has no firm theoretical base 
but it provides a method to correlate available data on the behavior of surface-active 
compounds at different metal surfaces, a very important task in electrodeposition.

2.8  �Some Calculations of Double Layer Parameters

Experimental data on CDL as a function of potential allow determination of the 
charge q by integration:

� (2.63)

If the measurement is made in a given potential scale E (relatively to a definite 
reference electrode)

� (2.64)

This is the analogue of the expression (2.45) for a variable CDL. Integration is per-
formed from the PZC to a generic potential value and gives the charge of the metal 
surface as a function of potential. Sometimes it is more convenient to integrate in 
the reverse direction from some negative potential (at which no adsorption takes 
place); in this case however one has to find the integration constant.

C−1
1 = C−1

m + C−1
s

C−1
m2 = C−1

m1 + const ,

C−1
s (m2) = C−1

s (m1) + f (q)

q(ϕ) = ∫CDLdϕ,

q(E) = ∫CDLdE
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The surface/interface energy γ is a significant quantity in the field of electrocrys-
tallization because it determines the character of nucleation processes. As shown 
in Sect. (2.4), its value is related to the electrode potential as q = dγ/dφ; in a given 
potential scale E

� (2.65)

at constant activities of the components. This is Lippman’s electrocapillarity equa-
tion.

It is therefore possible to calculate the surface energy by double integration:

� (2.66)

The constant γ0 corresponds to PZC. At this potential the surface energy has its 
maximum. Approximate values of γ for different metals at room temperature are 
given in Table 2.2. It should be noted that Eq.  (2.65) is not completely general. 
First, it must be corrected by the contribution from the adsorption of the electrolyte 
components (Eq. 2.43):

� (2.67)

where Гi is the adsorption (surface excess) of component i, and μi its chemical po-
tential. The effect of interface energy change is most pronounced in presence of 
specific adsorption, especially when covalent bonding of the adsorbed species with 
the metal occurs. 

In the case of a solid electrode the reversible surface work σ does not coincide 
with the overall surface energy γ; instead:

� (2.68)

the second term being the work done against the crystal bonds to change the elec-
trode surface S; this term may be minimized by performing a very slow plastic 
deformation. As a consequence of this additional work term, Eq. (2.65) becomes:

� (2.69)

Based on Eq. (2.69), it is additionally possible to determine the characteristics of 
the compact layer. Equations (2.17–2.18) allow calculation of the capacitance of 
the diffuse layer C2 at any concentration, charge or potential; the value of C is ex-
perimentally measured, and by use of Eq. (2.20) we can find the capacitance of the 
compact layer C1, and therefore ε1/d = C1/ε0.

The plot of 1/C vs. 1/C2 for solutions of different concentrations at constant 
charge is a straight line with slope equal to 1 (Fig. 2.11) intercepting the y-axis at 
the value of 1/C2 corresponding to the given charge. This value does not depend on 

dγ /dE = −q

γ = γ0 − ∫ ∫ CDLdE2.

dγ = −qdE − ��idµi ,

γ = σ + dσ/dlnS,

(dγ /dE) = −q − dq/dlnS.

Table 2.2   Specific surface energies of metals (in J/m2)
Ag Al Au Bi Co Cu Fe Hg Mg Ni Pb Pt W Zn
1.0 0.95 1.3 0.42 2.0 1.5 2.0 0.51 0.60 2.0 0.51 2.0 2.8 0.97

2.8 Some Calculations of Double Layer Parameters
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concentration, being only charge dependent. This plot (Parsons and Zobel [13]) is 
often used to determine the roughness coefficient kf; for the case of a rough elec-
trode the slope is kf instead of 1.

Once the total charges are known, one may find the partial charges of the anions 
and cations in the diffuse layer. The dependence of such charges on electrode poten-
tial is shown in Fig. 2.12. Then, from the data for the electrolytes with and without 
surface-active species and specifically adsorbed species it is possible to calculate 
the variations in C, q and σ introduced by their presence.

For example, one can verify the validity of the DL model presented earlier for a 
given system by the following method [14]. The difference C−1

DL(q, c1) − C−1
DL(q, c2)  

found from experimental data acquired at two different concentrations c (but at the 
same charge q) must be equal to the difference C−1

2 (q, c1) − C−1
2 (q, c2)  between 

the capacitances of the diffuse parts of the DL. This follows from Eq. (2.6) if we take 
into account that the capacitance of the compact layer depends only on q and not on 
the concentration. The latter difference can be easily calculated with Eq. (2.18) for 
any combination of c and q. Then if the two differences closely coincide one can 
conclude that the overall model is adequate.

There is one further important thermodynamic formula which is used to calcu-
late the adsorption, derived from the expression for the chemical potential in an 
ideal solution dµ = RTlnc:

� (2.70)

The methods of calculation of the various charge components and potential drops in 
the double layer have been extensively developed; these methods enable the deter-

� = −(1/RT) (∂γ /∂lnc)E

Fig. 2.11   Parsons–Zobel plot 
of 1/C on 1/C2
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mination of the set of parameters corresponding to the above models starting from 
experimental data. Details of these methods can be found elsewhere [15].
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