Preface

The statistics profession is at a unique point in history. The need for valid statistical
tools is greater than ever; data sets are massive, often measuring hundreds of thou-
sands of measurements for a single subject. The field is ready for a revolution, one
driven by clear, objective benchmarks under which tools can be evaluated.

Statisticians must be ready to take on this challenge. They have to be dynamic
and thoroughly trained in statistical concepts. More than ever, statisticians need to
work effectively in interdisciplinary teams and understand the immense importance
of objective benchmarks to evaluate statistical tools developed to learn from data.
They have to produce energetic leaders who stick to a thorough a priori road map,
and who also break with current practice when necessary.

Why do we need a revolution? Can we not keep doing what we have been doing?
Sadly, nearly all data analyses are based on the application of so-called parametric
(or other restrictive) statistical models that assume the data-generating distributions
have specific forms. Many agree that these statistical models are wrong. That is,
everybody knows that linear or logistic regression in parametric statistical models
and Cox proportional hazards models are specified incorrectly. In the early 1900s,
when R.A. Fisher developed maximum likelihood estimation, these parametric sta-
tistical models were suitable since the data structures were very low dimensional.
Therefore, saturated parametric statistical models could be applied. However, today
statisticians still use these models to draw conclusions in high-dimensional data and
then hope these conclusions are not too wrong.

It is too easy to state that using methods we know are wrong is an acceptable
practice: it is not!

The original purpose of a statistical model is to develop a set of realistic assump-
tions about the probability distribution generating the data (i.e., incorporating back-
ground knowledge). However, in practice, restrictive parametric statistical models
are essentially always used because standard software is available. These statistical
models also allow the user to obtain p-values and confidence intervals for the tar-
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get parameter of the probability distribution, which are desired to make sense out
of data. Unfortunately, these measures of uncertainty are even more susceptible to
bias than the effect estimator. We know that for large enough sample sizes, every
study, including one in which the null hypothesis of no effect is true, will declare a
statistically significant effect.

Some practitioners will tell you that they have extensive training, that they are
experts in applying these tools and should be allowed to choose the statistical models
to use in response to the data. Be alarmed! It is no accident that the chess computer
beats the world chess champion. Humans are not as good at learning from data and
are easily susceptible to beliefs about the data.

For example, an investigator may be convinced that the probability of having a
heart attack has a particular functional form — a function of the dose of the studied
drug and characteristics of the sampled subject. However, if you bring in another
expert, his or her belief about the functional form may differ. Or, many statistical
model fits may be considered, dropping variables that are nonsignificant, resulting
in a particular selection of a statistical model fit. Ignoring this selection process,
which is common, leaves us with faulty inference.

With high-dimensional data, not only is the correct specification of the paramet-
ric statistical model an impossible challenge, but the complexity of the parametric
statistical model also may increase to the point that there are more unknown pa-
rameters than observations. The true functional form also might be described by a
complex function not easily approximated by main terms.

For these reasons, allowing humans to include only their true, realistic knowl-
edge (e.g., treatment is randomized, such as in a randomized controlled trial, and
our data set represents n independent and identically distributed observations of a
random variable) is essential. That is, instead of assuming misspecified parametric
or heavily restrictive semiparametric statistical models, and viewing the (regression)
coeflicients in these statistical models as the target parameters of interest, we need
to define the statistical estimation problem in terms of nonparametric or semipara-
metric statistical models that represent realistic knowledge, and in addition we must
define the target parameter as a particular function of the true probability distribu-
tion of the data. This changes the game in a dramatic way relative to current practice;
one starts thinking about real knowledge in terms of the underlying experiment that
generated the data set and what the real questions of interest are in terms of a feature
of the data-generating probability distribution.

The concept of a statistical model is very important, but we need to go back to
its true meaning. We need to be able to incorporate true knowledge in an effective
way. In addition, we need to develop and use data-adaptive tools for all parameters
of the data-generating distribution, including parameters targeting causal effects of
interventions on the system underlying the data-generating experiment. The latter
typically represent our real interest. We are not only trying to sensibly observe, but
also to learn how the world operates.

What about machine learning, which is concerned with the development of black-
box algorithms that map data (and few assumptions) into a desired object? For ex-
ample, an important topic in machine learning is prediction. Here the goal is to
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map the data, consisting of multiple records with a list of input variables and an
output variable, into a prediction function that can be used to map a new set of
input variables into a predicted outcome. Indeed, this is in sharp contrast to using
misspecified parametric statistical models. However, the goal is often a whole pre-
diction function, and the machines are tailored to fit this whole prediction function.
As a consequence, these methods are too biased (and not grounded by efficiency
theory) for a particular effect of interest. Typical complexities in the data such as
missingness or censoring have also received little attention in machine learning. In
addition, statistical inference in terms of assessment of uncertainty (e.g., confidence
intervals) is typically lacking in this field.

Even in machine learning there is often unsupported devotion to beliefs, in this
case, to the belief that certain algorithms are superior. No single algorithm (e.g.,
random forests, support vector machines, etc.) will always outperform all others in
all data types, or even within specific data types (e.g., SNP data from genomewide
association studies). One cannot know a priori which algorithm to choose. It’s like
picking the student who gets the top grade in a course on the first day of class.

The tools we develop must be grounded in theory, such as an optimality theory,
that shows certain methods are more optimal than others and, in addition, should be
evaluated with objective benchmark simulation studies. For example, one can com-
pare methods based on mean squared error with respect to the truth. It is not enough
to have tools that use the data to fit the truth well. We also require an assessment
of uncertainty (e.g., confidence intervals), the very backbone of statistical learning.
That is, we cannot give up on the reliable assessment of uncertainty in our estimates.

Examples of new methodological directions in statistical learning satisfying these
requirements include (1) the full generalization and utilization of cross-validation as
an estimator selection tool so that the subjective choices made by humans are now
made by the machine and (2) targeting the fitting of the probability distribution of the
data toward the target parameter so that the mean squared error of the substitution
estimator of the target parameter with respect to the target parameter is optimized.
Important and exciting statistical research areas where new developments are taking
place in response to the nonvalidity of the previous generation of tools are: adaptive
designs in clinical trials and observational studies, multiple and group sequential
testing, causal inference, and Bayesian learning in realistic semiparametric statisti-
cal models, among others.

Statisticians cannot be afraid to go against standard practice. Remaining open to,
interested in, and a developer of newer, sounder methodology is perhaps the one
key thing each statistician can do. We must all continue learning, questioning, and
adapting as new statistical challenges are presented.

The science of learning from data (i.e., statistics) is arguably the most beautiful
and inspiring field — one in which we try to understand the very essence of human
beings. However, we should stop fooling ourselves and actually design and develop
powerful machines and statistical tools that can carry out specific learning tasks.
There is no better time to make a truly meaningful difference.!

' A version of this content originally appeared in the September 2010 issue of Amstat News, the
membership magazine of the American Statistical Association (van der Laan and Rose 2010).
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The Journey

Mark: I view targeted maximum likelihood estimation (TMLE), presented in this
book, as the result of a long journey, starting with my Ph.D. research up to now. We
hope that the following succinct summary of this path towards a general toolbox
for statistical learning from data will provide the reader with useful perspective and
understanding.

During my Ph.D. work (1990-1993) under the guidance of Dr. Richard Gill,
I worked on the theoretical understanding of the maximum likelihood estimator
for semiparametric statistical models, with a focus on the nonparametric maxi-
mum likelihood estimator of the bivariate survival distribution function for bi-
variate right-censored survival times and a nonparametric statistical model for the
data-generating distribution. This challenging bivariate survival function estimation
problem demonstrated that the nonparametric maximum likelihood estimator easily
fails to be uniquely defined, or fails to approximate the true data-generating distri-
bution for large sample sizes. That is, for realistic statistical models for the data-
generating distribution, and even for relatively low-dimensional data structures, the
maximum likelihood estimator is often ill defined and inconsistent for target param-
eters, and regularization through smoothing or stratification is necessary to repair it.
It also demonstrated that, for larger dimensional data structures, the repair of max-
imum likelihood estimation in nonparametric statistical models through smoothing
comes at an unacceptable price with respect to finite sample performance.

Right after completing my Ph.D., I met Dr. James M. Robins, whose research
focused on estimation with censored data and, in particular, estimation of causal ef-
fects of time-dependent treatment regimens on an outcome of interest based on ob-
serving replicates of high-dimensional longitudinal data structures in the presence of
informative missingness and dropout and time-dependent confounding of the treat-
ment. This was an immensely exciting time, and a whole new world opened up for
me. Instead of working on toy extractions of real-world problems, Robins and his
colleagues worked on solving the actual estimation problems as they occur in prac-
tice, avoiding convenient simplifications or assumptions. The work of Robins’ group
made clear that statistical learning was far beyond the world of standard software
and the corresponding practice of statistics based on restrictive parametric statisti-
cal models, and also far beyond the world of maximum likelihood estimation for
semiparametric statistical models.

Concepts such as coarsening at random, orthogonal complement of the nuisance
tangent space of a target parameter, estimating functions for the target parameter
implied by the latter, double robustness of these estimating functions and their cor-
responding estimators, locally efficient estimators of the target parameter, and so on,
became part of my language. As a crown on our collaborations, in 2003 we wrote a
book called Unified Methods for Censored Longitudinal Data and Causality. This
book provided a comprehensive treatment of the estimating equation methodol-
ogy for estimation of target parameters of the data-generating distribution in semi-
parametric statistical models, demonstrated on complex censored and longitudinal
(causal inference) data structures.
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From a person trying to repair maximum likelihood estimation, I had become
a proponent for estimating equation methodology, a methodology that targets the
parameter of interest instead of the maximum likelihood estimation methodology,
which aims to estimate the whole distribution of the data. When writing the book in
2003, some nonnatural hurdles occurred and we proposed no solutions for them. To
start with, the optimal estimating function for the target parameter might not exist
since the efficient influence curve, though a function of the distribution of the data on
the unit, cannot necessarily be represented as an (estimating) function in the target
parameter of interest and a variation-independent nuisance parameter. If we ignored
this first hurdle, we were still left with the following hurdles. Estimators defined by
a solution of an estimating equation (1) might not exist, (2) might be nonunique due
to the existence of multiple solutions, (3) are not substitution estimators and thus
do not respect known statistical model constraints, and (4) are sensitive to how the
nuisance parameter (that the estimating function depends on) is estimated, while a
good fit of the nuisance parameter itself is not a good measure for its role in the
mean squared error of the estimator of the target parameter.

These hurdles, which also affect the practical performance and robustness of the
estimators, made it impossible to push this impressive estimating equation method-
ology forward as a general statistical tool to replace current practice. It made me
move back towards substitution estimators using methods based on maximizing or
minimizing an empirical criterion such as the maximum likelihood estimator, and
plugging in the resulting estimator in the target parameter mapping that maps a
probability distribution of the data into the desired target parameter.

Specifically, additional research we conducted in 2003 proposed a unified loss-
based learning methodology (van der Laan and Dudoit 2003). The methodology
was based on defining a (typically infinite-dimensional) parameter of the probability
distribution of the data as a minimizer of the expectation of a loss function (e.g.,
log-likelihood or squared error loss function) and the aggressive utilization of cross-
validation as a tool to select among candidate estimators. The loss function for the
desired part of the probability distribution of the data was also allowed to be indexed
by an unknown nuisance parameter, thereby making this methodology very general,
including prediction or density estimation based on general censored data structures.

The general theoretical optimality result for the cross-validation selector among
candidate estimators generated a new concept called “loss-based super learning,”
which is a general system for fitting an infinite-dimensional parameter of the proba-
bility distribution of the data that allows one to map a very large library of candidate
estimators into a new improved estimator. It made it clear that, given some global
bounds on the semiparametric statistical model, humans should not choose the esti-
mation procedure for fitting the probability distribution of the data, or a relevant part
thereof, but an a priori defined estimator (i.e., the super learner) should fully utilize
the data to make sound informed choices based on cross-validation. That is, the the-
ory of super learning allows us to build machines that remove human intervention
as much as possible.

Even though the theory teaches us that the super learner of the probability dis-
tribution does make the optimal bias—variance tradeoff with respect to the prob-
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ability distribution as a whole (i.e., with respect to the dissimilarity between the
super learner and the truth, as implied by the loss function), it is too biased for
low-dimensional target features of the probability distribution, such as an effect of
a variable/treatment/exposure on an outcome. The super learner is instructed to do
well estimating the probability distribution, but the super learner was not told that
it was going to be used to evaluate a one-dimensional feature of the probability
distribution such as an effect of a treatment. As a consequence, the substitution esti-
mator of a target parameter obtained by plugging in the super learner into the target
parameter mapping is too biased.

By definition of an efficient estimator, it was clear that the efficient influence
curve needed to play a role for these substitution estimators to become less biased
and thereby asymptotically linear and efficient estimators of the target parameter.
But how? The current literature on efficient estimation had used the efficient influ-
ence curve as an estimating function (van der Laan and Robins 2003), and one either
completely solved the corresponding estimating equation or one used the first step
of the Newton—Raphson method for solving the estimating equation (e.g., Bickel
et al. 1997) in case one already had a root-n-consistent initial estimator available. A
new way of utilizing the efficient influence curve within the framework of loss-based
learning needed to be determined.

The super learner had to be modified so that its excess bias was removed. The
idea of the two-stage targeted maximum likelihood estimator was born: (1) use, for
example, the super learner as the initial estimator, (2) propose a clever parametric
statistical working model through the super learner, providing a family of candidate
fluctuations of the super learner and treating the super learner as fixed offset, (3)
choose the fluctuation that maximizes the likelihood (or whatever loss function was
used for the super learner), and (4) iterate so that the resulting modified super learner
solves the efficient influence curve estimating equation. This resulted in the original
TMLE paper with Daniel B. Rubin (van der Laan and Rubin 2006), which provides
a general recipe for defining a TMLE for any given data structure, semiparametric
statistical model for the probability distribution, and target parameter mapping, and
thereby served as the basis of this book.

TMLE:s can also be represented as loss-based learning. Here, the loss function is
defined as a targeted version of the loss function used by the initial estimator, where
the nuisance parameter of this targeted loss function plays the role of the unknown
fluctuation parameters in the TMLE steps. TMLEs are a special case of loss-based
learning.

TMLEs solved the above mentioned remaining issues that the estimating equa-
tion methodology suffered from: a TMLE does not require that the efficient influence
curve be an estimating function, a TMLE solves the efficient influence curve esti-
mating equation but is not defined by it (just like a maximum likelihood estimator
solves a score equation but is uniquely defined as a maximum of the log-likelihood),
a TMLE is a substitution estimator and thus respects the global constraints of the
statistical model, a TMLE naturally integrates loss-based super learning (i.e., gen-
eralized machine learning based on cross-validation) and can utilize the same loss
function to select among different TMLEs indexed by different nuisance parameter
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estimators that are needed to carry out the targeting update step. That is, even the
choice of nuisance parameter estimator can now be tailored toward the target param-
eter of interest (van der Laan and Gruber 2010). Finally, under conditions that allow
efficient estimation of the target parameter, a TMLE is an asymptotically efficient
substitution estimator. O

Sherri: My methodological contributions have largely focused on adapting TMLE
for case-control studies. Additionally, I’ve spent significant time with Mark formu-
lating a general framework for teaching TMLE, with comprehensive notation and
language, in a way that is accessible for researchers and students in fields such as
epidemiology.

I received my B.S. in statistics in 2005 with the goal of going to graduate school
for a career in medical research. Thus, I thought this meant I would be an “applied”
statistician using existing tools. Then I took one of Mark’s upper division courses
during the first year of my Ph.D. program at UC Berkeley. Even though I didn’t
immediately understand all of the technical aspects of what he was teaching, the
concepts made complete sense. I contacted him and projects took off immediately.

My point in this addendum to Mark’s journey is that you need not be a fully
trained theoretical statistician to start understanding and using these methods. The
work is driven by real-world problems, and thus is immediately applicable in prac-
tice. It is theoretical because new methods needed to be developed based on effi-
ciency theory, but it is also very applied. You see this in the many examples that
permeate this text. We don’t present anything that isn’t based on a real data set that
we’ve encountered. In short, this book is not meant to sit on a shelf. 0O

The book: The book itself also went through a journey of its own. We started seri-
ously writing for the book in January 2010 and for many months went back and forth
debating the level we were trying to target. Should we generate a textbook that was
more like an epidemiology text and would be broadly accessible to a greater number
of applied readers with less formal statistical training? Should we develop a purely
theoretical text that would mostly be of interest to a certain subset of statisticians?
Ultimately, we struck a level that is somewhere in between these two extremes.
Since there is no other book on targeted learning, we could not escape the inclusion
of statistical formalism. However, we also did not want to lose all accessibility for
nontheoreticians.

This led to a book that begins with six chapters that should be generally readable
by most applied researchers familiar with basic statistical concepts and traditional
data analysis. That is not to say many topics won’t be new and challenging, but
these chapters are peppered with intuition and explanations to help readers along.
The book progresses to more challenging topics and data structures, and follows a
recognizable pattern via a road map for targeted learning and the general description
of each targeted estimator. Thus, applied readers less interested in why it works and
more interested in implementation can tease out those parts. Yet, mathematicians
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and theoretical statisticians will not get bored, as extensive rigor is included in many
chapters, as well as a detailed appendix containing proofs and derivations.

Lastly, this book is unique in that it also contains wonderful contributions from
multiple invited authors, yet it is not a traditional edited text. As the authors of
Targeted Learning, we have spent significant time crafting and reworking each of
the contributed chapters to have consistent style, content, format, and notation as
well as a familiar road map. This yields a truly cohesive book that reads easily as
one text. 0O

Intended Readership

We imagine a vast number of readers will be graduate students and researchers in
statistics, biostatistics, and mathematics. This book was also written with epidemiol-
ogists, medical doctors, social scientists, and other applied researchers in mind. The
first six chapters of the book, which comprise Part I, are a complete introduction to
super learning and TMLE, including related concepts necessary to understand and
apply these methods. Part I is designed to be accessible on many levels, and chap-
ters that deal with more advanced statistical concepts feature guides that direct the
reader to key information if they’d rather skip certain details. Additionally, these
chapters could easily be used for a one-semester introductory course. The remain-
ing chapters can be digested in any order that is useful to the reader, although we
attempted to order them according to ease and subject matter. Parts II-IX handle
more complex data structures and topics, but applied researchers will immediately
recognize these data problems from their own research (e.g., continuous outcomes,
case-control studies, time-dependent covariates, HIV data structures).

Outline

Introduction. The book begins with an introduction written by Richard J.C.M. Star-
mans titled “Models, Inference, and Truth: Probabilistic Reasoning in the Informa-
tion Era.” This introduction puts the present state of affairs in statistical data analyis
in a historical and philosophical perspective for the purpose of clarifying, under-
standing, and accounting for the current situation and to underline the relevance of
topics addressed by TMLE for both the philosophy of statistics and the epistemol-
ogy/philosophy of science. It identifies three major developments in the history of
ideas that provide a context for the emergence of the probabilistic revolution and
it discusses some important immanent developments in the history of statistics that
have led to the current situation or at least may help to understand it.
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Part I — Targeted Learning: The Basics

The chapters in Part I of the book can stand alone as material for a complete intro-
ductory course on super learning and TMLE in realistic nonparametric and semi-
parametric models. They cover essential information crucial to understanding this
methodology, encapsulated in the convenient road map for targeted learning. We
present in detail the TMLE of an additive causal effect of treatment on a binary or
continuous outcome based on observing n independent and identically distributed
random variables defined by the following type of experiment: randomly sample a
subject from a population, measure baseline covariates, subsequently assign a treat-
ment, and finally measure an outcome of interest. This TMLE is demonstrated in
the estimation of the effect of vigorous exercise on survival in an elderly cohort.

Chapter 1. This chapter introduces the open problem of targeted statistical learn-
ing. We discuss, in general terms, the traditional approach to effect estimation as
well as the concepts of data, data-generating distribution, model, and the target pa-
rameter of the data-generating distribution. We also motivate the need for estimators
that are targeted and present the road map for targeted learning that will be explained
in depth in Chaps. 2-5.

Chapter 2. In this chapter, readers will learn about structural causal models
(SCMs), causal graphs, causal assumptions, counterfactuals, identifiability of the
target parameter, and interpretations of the target parameter (i.e., causal or purely
statistical). This material is essential background before moving on to the estima-
tion steps in the road map for targeted learning. The chapter is based on the methods
pioneered by Judea Pearl and are given thorough treatment in the recently published
second edition of Causality (Pearl 2009).

Chapter 3. The first step in the TMLE is an initial estimate of the data-generating
distribution Py, or the relevant part Q of Py that is needed to evaluate the target pa-
rameter. Estimation of Q incorporating the flexible ensemble learner super learner
is presented in this chapter. Cross-validation is an essential component of super
learning and is also presented. Simulation studies and multiple data analysis exam-
ples illustrate the advantages of super learning.

Chapters 4 and 5. In these two chapters, the TMLE methodology is presented
in detail, including a conceptual overview, implementation, and theory. TMLE is a
two-step procedure where one first obtains an estimate of the relevant portion Qg
of Py. The second stage updates this initial fit in a step targeted toward making an
optimal bias—variance tradeoff for the parameter of interest (i.e., target parameter),
instead of the overall density Py. It does this by proposing a parametric submodel
through the initial fit of Qy, and estimating the unknown parameter of this submodel
that represents the amount of fluctuation of the initial fit. The submodel typically
depends on a fit of a nuisance parameter such as a treatment or censoring mecha-
nism. Finally, one evaluates the target parameter of this TMLE fit of Qgy, which is
called the TMLE of the target parameter. The TMLE of the target parameter is dou-
ble robust and can incorporate data-adaptive likelihood-based estimation procedures
to estimate Qy and the nuisance parameter. Inference (i.e., confidence intervals) and
interpretation are also explained, concluding the road map for targeted learning.
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Chapter 6. The many attractive properties of TMLE include the fact that it pro-
duces well-defined, loss-based, consistent, efficient substitution estimators of the
target parameter. These topics are explained in depth, and the TMLE is compared
to other estimators of a target parameter of the data-generating distribution, with
respect to these properties.

Part I — Additional Core Topics

Part IT delves deeper into some core topics: the choice of submodel and loss function
that defines the TMLE, causal parameters defined by marginal structural working
models, and an in-depth coverage of methods dealing with violations of the posi-
tivity assumption. It focuses on experiments involving the measurement of baseline
covariates, a treatment, possibly an intermediate random variable, and a final out-
come.

Chapter 7. The TMLE of a parameter of a data-generating distribution, known
to be an element of a semiparametric statistical model, involves constructing a para-
metric statistical working model through an initial density estimator with parame-
ter € representing an amount of fluctuation of the initial density estimator, where
the score of this fluctuation model at € = 0 equals or spans the efficient influence
curve/canonical gradient. The latter constraint can be satisfied by many parametric
fluctuation models, since it represents only a local constraint of its behavior at zero
fluctuation. However, it is very important that the fluctuations stay within the semi-
parametric statistical model for the observed data distribution, even if the parameter
can be defined on fluctuations that fall outside the assumed observed data model. In
particular, in the context of sparse data, a violation of this property can heavily affect
the performance of the estimator. We demonstrate this in the context of estimation
of a causal effect of a binary treatment on a continuous outcome that is bounded. It
results in a TMLE that inherently respects known bounds and, consequently, is more
robust in sparse data situations than the TMLE using a naive fluctuation model. The
TMLE is based on a quasi-log-likelihood loss function and a logistic regression
fluctuation model.

Chapter 8. In this chapter we consider estimation of a direct effect of treatment
on an outcome in the presence of an intermediate variable. The causal model, the
direct effect, the estimand defined by the identifiability result for the direct effect,
and the TMLE of the target parameter are presented. As an illustration we estimate
the direct effect of gender on salary in a gender-inequality study. It is shown that
the same TMLE can be used to estimate the estimand defined by the identifiability
result for the causal effect of a treatment on an outcome among the treated within
an appropriate (different) causal model.

Chapter 9. One is often interested in assessing how the effect of a treatment is
modified by some baseline covariates. For this purpose, we present marginal struc-
tural models that model the causal effect of treatment as a function of such effect
modifiers. The TMLE of the unknown coefficients in the marginal structural model
is presented. The marginal structural models are used as working models to define
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the desired effect modification parameters, so that they do not make unrealistic as-
sumptions in the causal model and thereby on the data-generating distribution. As
an example, we assess the effect of missing doses on virologic failure as a function
of the number of months of past viral suppression in an HIV cohort.

Chapter 10. The estimand that is defined by the identifiability result for the
causal quantity of interest defines the target parameter of the data-generating dis-
tribution. The definition of the estimand itself often requires a particular support
condition, which is called the positivity assumption. For example, the estimand
that defines the additive causal effect of treatment on an outcome is only defined
if for each value of the covariates (representing the confounders) there is a posi-
tive probability on both treatment and control. This chapter provides an in-depth
discussion of the positivity assumption, and the detrimental effect of the practical or
theoretical violation of this assumption on the statistical inference, due to the sparse-
data bias induced by this violation. In addition, this chapter presents a parametric
bootstrap-based diagnostic tool that allows one to diagnose this sparse-data bias. Its
performance is demonstrated on simulated data sets and in assessing the effect of
a mutation in the HIV virus on drug resistance in an HIV data application. Finally,
the chapter presents common approaches to dealing with positivity violations and
concludes with the presentation of a systematic general approach.

Part ITII - TMLE and Parametric Regression in Randomized Controlled Trials

Part III still considers an experiment that generates baseline covariates, treatment,
and a final outcome, as highlighted in Parts I and II, but it delves deeper into the
special case where treatment is randomized. In this case, the TMLE is always con-
sistent and asymptotically linear, thereby allowing the robust utilization of covariate
information. We demonstrate that a TMLE that uses as initial estimator a maximum
likelihood estimator according to a parametric regression model does not update the
initial estimator, proving a remarkable robustness property of maximum likelihood
estimation in randomized controlled trials (RCTs). In addition, we show how the fit
of the parametric regression model (i.e., the initial estimator in the TMLE) can be
optimized with respect to the asymptotic variance of the resulting TMLE, thereby
guaranteeing improvement over existing practice.

Chapter 11. The TMLE of a causal effect of treatment on a continuous or binary
outcome in an RCT is presented. It is shown that the TMLE can be based on a
maximum likelihood estimator according to a generalized linear working model,
where the maximum likelihood estimation fit is inputted in the target parameter
mapping defined by the so-called g-formula for the desired causal effect.

Chapter 12. As in Chap. 11, the TMLE in this chapter is based on a parametric
regression model, but the coefficients of the initial estimator in the TMLE are fit-
ted so that the resulting TMLE has minimal asymptotic variance. This results in a
TMLE that is guaranteed to outperform current practice (i.e., unadjusted estimator),
even if the parametric model is heavily misspecified. Other estimators presented in
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the literature are also discussed, and a simulation study is used to evaluate the small
sample performance of these estimators.

Part IV — Case-Control Studies

The data-generating experiment now involves an additional complexity called bi-
ased sampling. That is, one assumes the underlying experiment that randomly sam-
ples a unit from a target population, measures baseline characteristics, assigns a
treatment/exposure, and measures a final binary outcome, but one samples from the
conditional probability distribution, given the value of the binary outcome. One still
wishes to assess the causal effect of treatment on the binary outcome for the target
population. The TMLE of a causal effect of treatment on the binary outcome based
on such case-control studies is presented. Matched case-control studies are consid-
ered as well. It is also shown how to apply super learning to risk prediction in a
nested case-control study.

Chapter 13. Case-control study designs are frequently used in public health and
medical research to assess potential risk factors for disease. These study designs
are particularly attractive to investigators researching rare diseases, as they are able
to sample known cases of disease, vs. following a large number of subjects and
waiting for disease onset in a relatively small number of individuals. Our proposed
case-control-weighted TMLE for case-control studies relies on knowledge of the
true prevalence probability, or a reasonable estimate of this probability, to eliminate
the bias of the case-control sampling design. We use the prevalence probability in
case-control weights, and our case-control weighting scheme successfully maps the
TMLE for a random sample into a method for case-control sampling.

Chapter 14. Individually matched case-control study designs are commonly im-
plemented in the field of public health. While matching is intended to eliminate
confounding, the main potential benefit of matching in case-control studies is a gain
in efficiency. This chapter investigates the use of the case-control-weighted TMLE
to estimate causal effects in matched case-control study designs. We compare the
case-control-weighted TMLE in matched and unmatched designs in an effort to de-
termine which design yields the most information about the causal effect. In many
practical situations where a causal effect is the parameter of interest, researchers
may be better served using an unmatched design.

Chapter 15. Using nested case-control data from a large Kaiser Permanente
database, we generate a function for mortality risk prediction with super learning.
The ensemble super learner for predicting death (risk score) outperformed all single
algorithms in the collection of algorithms, although its performance was similar to
several included algorithms. Super learner improved upon the worst algorithms by
17% with respect to estimated risk.
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Part V — RCTs with Survival Outcomes

In Part V we consider the following experiment: one randomly samples a unit from
a target population, measures baseline characteristics, randomly assigns a treatment,
and follows the subject to the minimum of dropout, the time to event of interest, and
time to the end of study. The dropout time is allowed to be affected by the baseline
covariates. We present the TMLE of the causal effect of treatment on survival, and
we also consider effect modification by discrete baseline factors.

Chapter 16. In most RCTs, the primary outcome is a time-to-event outcome
that may not be observed due to dropout or end of follow-up. The dropout or right
censoring time may depend on the baseline characteristics of the study subject. The
TMLE of a causal effect of treatment on the survival function of such a time-to-event
outcome requires estimation of the conditional failure time hazard as a function
of time, treatment, and the baseline covariates. The super learner of this hazard
function is presented and is demonstrated with a lung cancer RCT.

Chapter 17. The TMLE of a causal effect of treatment on a survival function in
an RCT is presented. This requires an update of the initial estimator of the condi-
tional hazard function (e.g., super learner), where the update relies on an estimator
of the right censoring mechanism and the treatment assignment mechanism (where
the latter is known in an RCT). The statistical properties of the TMLE are dis-
cussed showing that it provides a superior alternative to current practice in terms of
unadjusted Cox proportional hazards estimators or multiple imputation (maximum
likelihood estimation)-based estimators.

Chapter 18. It is often of interest to assess if the causal effect of treatment on sur-
vival is modified by some baseline factors. In this chapter, we define the appropriate
causal model and the target parameters that quantify effect modification by a dis-
crete baseline factor. We present the TMLE of these effect modification parameters.
The TMLE is demonstrated on an HIV clinical trial to assess effect modification by
gender and by baseline CD4 in an HIV study. The results are contrasted with current
practice, demonstrating the great utility of targeted learning.

Part VI - C-TMLE

Collaborative TMLE (C-TMLE) provides a further advance within the framework of
TMLE by tailoring the fit of the nuisance parameter required in the TMLE-step for
the purpose of the resulting TMLE of the target parameter. That is, the C-TMLE in-
troduces another level of targeting beyond a regular TMLE. This part demonstrates
the C-TMLE for the causal effect of treatment on an outcome, including time-to-
event outcomes that are subject to right censoring. Simulation studies as well as
data analyses are provided to demonstrate the practical utility of C-TMLE.
Chapter 19. The C-TMLE of the additive causal effect of treatment on an out-
come is presented, allowing an a priori-specified algorithm to decide what covariates
to include in the treatment mechanism fit, where the decisions are based on a loss-
function that measures the fit of the corresponding TMLE instead of the fit of the
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treatment mechanism itself. The TMLE and C-TMLE are compared in simulation
studies. The C-TMLE is also applied to assess the effect of all mutations in the HIV
virus on drug-resistance, controlling for the history of the patient, dealing with the
many strong correlations between mutations resulting in practical violations of the
positivity assumption.

Chapter 20. The C-TMLE of the causal effect of treatment on a survival time that
is subject to right censoring is developed. A simulation study is used to evaluate its
practical performance in the context of different degrees of violation of the positivity
assumption.

Chapter 21. This chapter uses simulation studies proposed in the literature to
evaluate a variety of estimators for estimating the mean of an outcome under miss-
ingness, and the additive effect of treatment when treatment is affected (i.e., con-
founded) by baseline covariates. These simulations are tailored to result in serious
practical violations of the positivity assumption, causing a lot of instability and chal-
lenges for double robust efficient estimators such as the TMLE. These simulations
have been extensively debated in the literature. This chapter includes TMLE and C-
TMLE in the debate. We contrast the C-TMLE to the TMLE and other estimators,
showing that the C-TMLE is able to deal with sparsity (i.e., violations of positivity)
in a sensible and robust way, while still preserving the optimal asymptotic properties
of TMLE.

Part VII — Genomics

In Part VII we consider the experiment in which one randomly samples a unit from
a target population, one measures a whole genomic profile on the unit, beyond other
baseline characteristics, one possibly measures a treatment, and one measures a fi-
nal outcome. In such studies one is often interested in assessing the effect of each
genomic variable on the outcome or on the effect of the treatment. TMLE targets
the effect of each genomic variable separately, contrary to current practice in vari-
able importance analysis. These genomic variables are often continuous, so that
one needs to define an effect of a continuous marker on the outcome of interest.
For that purpose we employ semiparametric regression models. The TMLE of the
effect measures defined by these semiparametric regression models are presented,
and demonstrated in genomic data analyses.

Chapter 22. The TMLE for assessing the effect of biomarkers is presented and
compared with other methods for variable importance analysis, such as random for-
est, in a comprehensive simulation study, and a breast cancer gene expression study.

Chapter 23. We present the TMLE and C-TMLE for assessing the effect of a
marker on a quantitative trait, across a very large number of markers along the whole
genome. Simulations and genomic data analyses are used to demonstrate the TMLE
and C-TMLE.
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Part VIII - Longitudinal Data Structures

In Part VI, we consider experiments that generate the full complexity of current
day longitudinal data structures: one randomly samples a unit from a target popula-
tion, measures baseline characteristics, and at regular or irregular monitoring times
collects measurements on time-dependent treatments or exposures, time-dependent
covariates, and intermediate outcomes, until the minimum of right-censoring or time
to the event of interest. Observing such longitudinal data structures on a unit allows
the identification of causal effects of multiple time point treatment regimens as well
as individualized treatment rules. In this part, we demonstrate the roadmap for ad-
dressing the scientific questions of interest and the corresponding TMLE for three
such longitudinal case studies. Technically-inclined readers may first wish to read
the longitudinal sections of Appendix A before digesting these chapters.

Chapter 24. A longitudinal HIV cohort is presented and three scientific ques-
tions of interest are formulated. The road map is applied. It starts out with the def-
inition of the causal model, the definition of the target causal parameters that rep-
resent the answers to the scientific questions, and the identifiability result resulting
in the estimand of interest. The statistical model and the estimand/target parameter
of the data-generating distribution define the estimation problem. Different meth-
ods for estimation are reviewed and presented: maximum likelihood estimation,
inverse probability of censoring weighted estimation (IPCW), targeted maximum
likelihood estimation, and inefficient practically appealing TMLEs referred to as
IPCW reduced-data TMLEs.

Chapter 25. A longitudinal study is presented which involves the follow up of
women going through an in vitro fertilization (IVF) program. One is interested in
assessing the probability of success of a complete IVF program. The road map is
applied as in all chapters. The TMLE of the probability of success of a complete
IVF program is developed, and applied to the study. Simulations are also presented.

Chapter 26. In this chapter, targeted maximum likelihood learning is illustrated
with a data analysis from a longitudinal observational study to investigate the ques-
tion of “when to start” antiretroviral therapy to reduce the incidence of AIDS defin-
ing cancer in a population of HIV infected patients. Two treatment rules are con-
sidered: (1) start when CD4 count drops below 350, and (2) start when CD4 count
drops below 200. The TMLE of the corresponding causal contrast is developed and
applied to the database maintained by Kaiser Permanente.

Part IX — Advanced Topics

We deal with the following explicit questions. Is the utilization of machine learning
in the TMLE a concern for establishing asymptotic normality? Can we develop a
TMLE for group sequential adaptive designs in which the treatment assignment
probabilities are set in response to the data collected in previously observed groups?
What are the asymptotics of this TMLE for such a complex experiment in which all
subjects are correlated due to treatment assignment being a function of the outcomes
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of previously observed subjects? Does sequential testing still apply? Since Bayesian
learning is nontargeted and suffers from the same drawbacks as maximum likelihood
based estimation, can we employ the principles of TMLE to construct a targeted
Bayesian learning method?

Chapter 27. The cross-validated TMLE (CV-TMLE) is presented where asymp-
totic linearity and efficiency can be established under minimal conditions. A formal
theorem is presented for the CV-TMLE of the additive causal effect, demonstrating
that it is able to fully utilize all the machine learning power in the world while still
allowing, and, in fact, enhancing, valid statistical inference.

Chapter 28. It is shown that the TMLE procedure naturally lends itself to tar-
geted Bayesian learning in which a prior probability distribution on the target pa-
rameter of interest is mapped into a posterior distribution of the target parameter of
interest. The frequentist properties of the mean and spread of the posterior distri-
bution are established showing that the proposed procedure is completely valid: the
mean of the posterior distribution is a double robust efficient estimator of the target
parameter, and the posterior distribution yields valid credible intervals.

Chapter 29. We consider targeted group sequential adaptive designs that adapt
the randomization probabilities in response to all the data collected in previous
stages. The TMLE of the desired causal effect of the treatment is developed and
presented. Asymptotics of the TMLE are based on martingale central limit theo-
rems. It is shown that sequential testing can still be naturally embedded in such
adaptive group sequential designs.

Part X — Appendices

Part X consists of two appendices providing important supplementary material in
support of the central text. The core of the first appendix is a theoretical guide cov-
ering essential topics, derivations, and proofs. This is followed by a brief introduc-
tion to R code for super learning and TMLE. Additional R code is available on the
book’s website: www.targetedlearningbook.com.

Appendix A. This appendix provides a succinct but comprehensive review of
the empirical process, asymptotic linearity, influence curves, and efficiency theory.
This theory establishes the theoretical underpinnings of TMLE, C-TMLE, and CV-
TMLE. In addition, Appendix A provides a generic approach that allows one to
compute a TMLE on a new estimation problem in terms of the definition of the data
structure, data-generating distribution, the statistical model, and the target parame-
ter mapping that maps a probability distribution in its target parameter value. The
TMLE for general longitudinal data structures is presented. A variety of examples
are used to demonstrate the power of this generic machinery for computing a TMLE.
Appendix A can be used to teach an advanced class about the theory of estimation
and, in particular, of TMLE.

Appendix B. This brief appendix provides R code and links to R code for each
of the implementations of the TMLE as presented in this book.
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