
Chapter 2

Defining the Model and Parameter

Sherri Rose, Mark J. van der Laan

Targeted statistical learning from data is often concerned with the estimation of
causal effects and an assessment of uncertainty for the estimator. In Chap. 1, we
identified the road map we will follow to solve this estimation problem. Now, we
formalize the concepts of the model and target parameter. We will introduce addi-
tional topics that may seem abstract. While we attempt to elucidate these abstrac-
tions with tangible examples, depending on your background, the material may be
quite dense compared to other textbooks you have read. Do not get discouraged.
Sometimes a second reading and careful notes are helpful and sufficient to illumi-
nate these concepts. Researchers and students at UC Berkeley have also had great
success discussing these topics in groups. If this is your assigned text for a course
or workshop, meet outside of class with your fellow classmates. We guarantee you
that the effort is worth it so you can move on to the next step in the targeted learning
road map. Once you have a firm understanding of the core material in Chap. 2, you
can begin the estimation steps.

This chapter is based on methods pioneered by Judea Pearl, and we consider his
text Causality, recently published in a second edition (Pearl 2009), a companion
book to our book. Causal inference requires both a causal model to define the causal
effect as a target parameter of the distribution of the data and robust semiparametric
efficient estimation, with his book covering the former and ours the latter. We start
by succinctly summarizing the open problem:

The statistical estimation problem begins by defining a statistical modelM for
P0. The statistical modelM is a collection of possible probability distributions
P of O. P0 is the true distribution of O. The estimation problem requires the
description of a target parameter of P0 one wishes to learn from the data. This
definition of a target parameter requires specification of a mapping Ψ one can
then apply to P0. Clearly, this mapping Ψ needs to be defined on any possible
probability distribution in the statistical modelM. Thus Ψ maps any P ∈ M
into a vector of numbers Ψ (P). We write the mapping as Ψ : M → R
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d-dimensional parameter. We introduce ψ0 as the evaluation of Ψ (P0), i.e., the
true value of our parameter. The statistical estimation problem is now to map
the observed data O1, . . . ,On into an estimator of Ψ (P0) that incorporates the
knowledge that P0 ∈ M, accompanied by an assessment of the uncertainty in
the estimator.

In the following sections, we will define a model that goes beyond a statistical
model by incorporating nontestable assumptions, define a parameter of interest in
that model that can be interpreted as a causal effect, determine the assumptions to
establish the identifiability of the causal parameter from the distribution of the ob-
served data, and, finally, based on this modeling and identifiability exercise, commit
to a statistical model (i.e.,M) and target parameter (i.e., Ψ ).

Recall that the data O1, . . . ,On consist of n i.i.d. copies of a random variable O
with probability distribution P0. For a data structure, such as O = (W, A, Y) with
covariates W, exposure A, and outcome Y discrete, which we use as a simple ex-
ample in this chapter, uppercase letters represent random variables and lowercase
letters are a specific value for that variable. For example, if all variables are discrete,
P0(W = w, A = a, Y = y) assigns a probability to any possible outcome (w, a, y) for
O = (W, A, Y).

2.1 Defining the Structural Causal Model

We first specify a set of endogenous variables X = (Xj : j). Endogenous variables
are those variables for which the structural causal model (SCM) will state that it
is a (typically unknown) deterministic function of some of the other endogenous
variables and an exogenous error. Typically, the endogenous variables X include the
observables O, but might also include some nonobservables that are meaningful and
important to the scientific question of interest. Perhaps there was a variable you did
not measure, but would have liked to, and it plays a crucial role in defining the sci-
entific question of interest. This variable would then be an unobserved endogenous
variable. For example, if you are studying the effect of hepatitis B on liver cancer,
you might also want to measure hepatitis C and aflatoxin exposure. However, sup-
pose you know the role aflatoxin plays in the relationships between hepatitis B and
liver cancer, but you were unable to measure it. Aflatoxin exposure is, therefore,
an unobserved endogenous variable. Liver cancer, hepatitis B, and hepatitis C are
observed endogenous variables.

In a very simple example, we might have j = 1, . . . , J, where J = 3. Thus,
X = (X1, X2, X3). We can rewrite X as X = (W, A, Y) if we say X1 = W, X2 = A, and
X3 = Y . Let W represent the set of baseline covariates for a subject, A the treatment
or exposure, and Y the outcome. All the variables in X are observed. Suppose we
are interested in estimating the effect of leisure-time physical activity (LTPA) on
mortality in an elderly population. A study is conducted to estimate this effect where
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we sample individuals from the population of interest. The hypothesis is that LTPA
at or above current recommended levels decreases mortality risk. Let us say that
LTPA is a binary variable A ∈ {0, 1} defined by the recommended level of energy
expenditure. For all subjects meeting this level, A = 1 and all those below have
A = 0. The mortality outcome is also binary Y ∈ {0, 1} and defined as death within
5 years of the beginning of the study, with Y = 1 indicating death. W includes
variables such as age, sex, and health history.

For each endogenous variable Xj one specifies the parents of Xj among X, de-
noted Pa(Xj). In our mortality study example above, the parent of A is the set of
baseline covariates W. Thus, Pa(A) = W. The specification of the parents might be
known by the time ordering in which the Xj were collected over time: the parents of
a variable collected at time t could be defined as the observed past at time t. This is
true for our study of LTPA; W = {age, sex, health history} all occur before the single
measurement of LTPA. Likewise, LTPA was generated after the baseline covariates
and before death but depends on the baseline covariates. Death was generated last
and depends on both LTPA and the baseline covariates. We can see the time ordering
involved in this process: the baseline covariates occurred before the exposure LTPA,
which occurred before the outcome of death: W → A→ Y .

We denote a collection of exogenous variables by U = (UXj : j). These variables
in U are never observed and are not affected by the endogenous variables in the
model, but instead they affect the endogenous variables. They may also be referred
to as background or error variables. One assumes that Xj is some function of Pa(Xj)
and an exogenous UXj :

Xj = fX j (Pa(Xj),UXj ), j = 1 . . . , J.

The collection of functions fX j indexed by all the endogenous variables is repre-
sented by f = ( fX j : j). Together with the joint distribution of U, these functions
fX j , specify the data-generating distribution of (U, X) as they describe a deterministic
system of structural equations (one for each endogenous variable Xj) that determin-
istically maps a realization of U into a realization of X. In an SCM one also refers
to some of the endogenous variables as intervention variables. The SCM assumes
that intervening on one of the intervention variables by setting their value, thereby
making the function for that variable obsolete, does not change the form of the other
functions. The functions fX j are often unspecified, but in some cases it might be rea-
sonable to assume that these functions have to fall in a certain more restrictive class
of functions. Similarly, there might be some knowledge about the joint distribution
of U. The set of possible data-generating distributions of (U, X) can be obtained by
varying the structural equations f over all allowed forms, and the distribution of the
errors U over all possible error distributions defines the SCM for the full-data (U, X),
i.e., the SCM is a statistical model for the random variable (U, X). An example of a
fully parametric SCM would be obtained by assuming that all the functions fX j are
known up to a finite number of parameters and that the error distribution is a mul-
tivariate normal distribution with mean zero and unknown covariance matrix. Such
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parametric structural equation models are not recommended, for the same reasons
as outlined in Chap. 1.

The corresponding SCM for the observed data O also includes specifying the
relation between the random variable (U, X) and the observed data O, so that the
SCM for the full data implies a parameterization of the probability distribution of
O in terms of f and the distribution PU of U. This SCM for the observed data also
implies a statistical model for the probability distribution of O.

Let’s translate these concepts into our mortality study example. We have the func-
tions f = ( fW , fA, fY ) and the exogenous variables U = (UW ,UA,UY ). The values of
W, A, and Y are deterministically assigned by U corresponding to the functions f .
We specify our structural equation models, based on investigator knowledge, as

W = fW (UW ),
A = fA(W,UA),
Y = fY (W, A,UY ), (2.1)

where no assumptions are made about the true shape of fW , fA, and fY . These func-
tions f are nonparametric as we have not put a priori restrictions on their functional
form. We may assume that UA is independent of UY , given W, which corresponds
with believing that there are no unmeasured factors that predict both A and the out-
come Y: this is often called the no unmeasured confounders assumption. This SCM
represents a semiparametric statistical model for the probability distribution of the
errors U and endogenous variables X = (W, A, Y). We assume that the observed data
structure O = (W, A, Y) is actually a realization of the endogenous variables (W, A, Y)
generated by this system of structural equations. This now defines the SCM for the
observed data O. It is easily seen that any probability distribution of O can be ob-
tained by selecting a particular data-generating distribution of (U, X) in this SCM.
Thus, the statistical model for P0 implied by this SCM is a nonparametric model.
As a consequence, one cannot determine from observing O if the assumptions in the
SCM contradict the data. One states that the SCM represents a set of nontestable
causal assumptions we have made about how the data were generated in nature.

Specifically, with the SCM represented in (2.1), we have assumed that the under-
lying data were generated by the following actions:

1. Drawing unobservable U from some probability distribution PU ensuring that UA

is independent of UY , given W,
2. Generating W as a deterministic function of UW ,
3. Generating A as a deterministic function of W and UA,
4. Generating Y as a deterministic function of W, A, and UY .

What if, instead, our SCM had been specified as follows:

W = fW (UW ),
A = fA(UA),
Y = fY (W, A,UY ). (2.2)
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What different assumption are we making here? If you compare (2.1) and (2.2), you
see that the only difference between the two is the structural equation for fA. In (2.2),
A is evaluated as a deterministic function of UA only. The baseline variables W play
no role in the generation of variable A. We say that (2.2) is a more restrictive SCM
than (2.1) because of this additional assumption about data generation. When might
a researcher make such an assumption? In Chap. 1, we discussed RCTs. RCTs are
studies where the subjects are randomized to treatment in the study. If our study of
LTPA had been an RCT, it would make sense to assume the SCM specified in (2.2)
given our knowledge of the study design. However, since it would be unethical to
randomize subjects to levels of exercise, given the known health benefits, our study
of LTPA on mortality is observational and we assume the less restrictive (2.1).

Causal assumptions made by the SCM for the full data:

• For each endogenous Xj, Xj = f j(Pa(Xj),UXj ) only depends on the other
endogenous variables through its parents Pa(Xj).

• The exogenous variables have a particular joint distribution PU .

The SCM for the observed data includes the following additional assumption:

• The probability distribution of observed data structure O is implied by the
probability distribution of (U, X).

After having specified the parent sets Pa(Xj) for each endogenous variable Xj,
one might make an assumption about the joint distribution of U, denoted PU , rep-
resenting knowledge about the underlying random variable (U, X) as accurately as
possible. This kind of assumption would typically not put any restrictions on the
probability distribution of O. The underlying data (U, X) are comprised of the ex-
ogenous variables U and the endogenous variables X, which is why we use the nota-
tion (U, X). In a typical SCM, the endogenous variables are the variables for which
we have some understanding, mostly or fully observed, often collected according to
a time ordering, and are very meaningful to the investigator. On the other hand, typ-
ically much of the distribution of U is poorly understood. In particular, one would
often define UXj as some surrogate of potential unmeasured confounders, collapsing
different poorly understood phenomena in the real world in one variable. The latter
is reflected by the fact that we do not even measure these confounders, or know how
to measure them. However, in some applications something about the joint distribu-
tion of U might be understood, and some components of U might be measured. For
example, it might be known that treatment was randomized as in an RCT, implying
that the error UA for that treatment variable is independent of all other errors. On
the other hand, in an observational study, one might feel uncomfortable making the
assumption that UA is independent of UY , given W, since one might know that some
of the true confounders were not measured and are thereby captured by UA.
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Relationship of X and O. Our observed random variable O is related to X, and has
a probability distribution that is implied by the distribution of (U, X). Specification
of this relation is an important assumption of the SCM for the observed data O. A
typical example is that O = Φ(X) for someΦ, i.e., O is a function of X. This includes
the special case that O ⊂ X, i.e., with O being a simple subset of X. Because of this
relationship O = Φ(X), the marginal probability distribution of X,

PX(x) =
∑

u

P f (X = x | U = u)PU(U = u),

also identifies the probability distribution of O through the functions f = ( fX j : j)
and the distribution of the exogenous errors U. [Note that the conditional probability
distribution Pf (X = x | U = u) of X, given a realization U = u, is indeed completely
determined by the functions f , which explains our notation Pf .] For example, if
X = O, then:

P(o) =
∑

u

P f (X = o | U = u)PU(U = u).

In order to make explicit that the probability distribution P of O is implied by the
probability distribution of (U, X), we use the notation P = P(PU,X). The true prob-
ability distribution PU,X,0 of (U, X) implies the true probability distribution P0 of O
through this relation: P0 = P(PU,X,0). Since the assumed SCM often does not put any
restrictions on the functions fX j , and the selection of the parent sets Pa(Xj) might
be purely based on time ordering (thereby not implying conditional independencies
among the Xjs), for many types of restrictions one would put on PU , the resulting
SCM for (U, X) would still not provide any restriction on the distribution of O. In
that case, these causal assumptions provide no restriction on the distribution of O
itself and thus imply a nonparametric statistical modelM for the distribution P0 of
O. This statistical modelM implied by the SCM for the observed data is given by
M = {P(PU,X) : PU,X}, where PU,X varies over all possible probability distributions
of (U, X) in the SCM.

Each possible probability distribution PU,X of (U, X) in the SCM for the full
data, indexed by a choice of error distribution PU and a set of deterministic
functions ( fX j : j), implies a probability distribution P(PU,X) of O. In this
manner the SCM for the full data implies a parameterization of the true prob-
ability distribution of O in terms of a true probability distribution of (U, X),
so that the statistical model M for the probability distribution P0 of O can
be represented asM = {P(PU,X) : PU,X}, where PU,X varies over all allowed
probability distributions of (U, X) in the SCM. If this statistical modelM im-
plied by the SCM is nonparametric, then it follows that none of the causal
assumptions encoded by the SCM are testable from the observed data.
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2.2 Causal Graphs

SCMs provide a system for assigning values to a set of variables from random input.
They are also an effective and straightforward means for explicitly specifying causal
assumptions and the identifiability of the causal parameter of interest based on the
observed data. We can draw a causal graph from our SCM, which is a visual way to
describe some of the assumptions made by the model and the restrictions placed on
the joint distribution of the data (U, X). However, in this text we do not place heavy
emphasis on causal graphs as their utility is limited in many situations (e.g., compli-
cated longitudinal data structures), and simpler visual displays of time ordering may
provide more insight. Causal graphs also cannot encode every assumption we make
in our SCM, and, in particular, the identifiability assumptions derived from causal
graphs alone are not specific for the causal parameter of interest. Identifiability as-
sumptions derived from a causal graph will thus typically be stronger than required.
In addition, the link between the observed data and the full-data model represented
by the causal graph is often different than simply stating that O corresponds with
observing a subset of all the nodes in the causal graph. In this case, the causal graph
itself cannot be used to assess the identifiability of a desired causal parameter from
the observed data distribution.

2.2.1 Terminology

Figure 2.1 displays a possible causal graph for (2.1). The graph is drawn based on
the relationships defined in f . The parents Pa(Xj) of each Xj are connected to each
Xj with an arrow directed toward Xj. Each Xj also has a directed arrow connecting
its UXj . For example, the parents of Y , those variables in X on the right-hand side of
the equation fY , are A and W. In Fig. 2.1, A and W are connected to Y , the child, with
directed arrows, as is the exogenous UY . The baseline covariates W are represented
with one variable. All the variables X and U in the graph are called nodes, and the
lines that connect nodes are edges. All ancestors of a node occur before that node
and all descendants occur after that node. This is a directed graph, meaning that
each edge has only one arrow.

A path is any sequence of edges in a graph connecting two nodes. An example of
a directed path in Fig. 2.1 is W → A→ Y . This path connects each node with arrows
that point in the direction of the path. In this figure there are several backdoor paths,
which are paths that start with a node that has a directed arrow pointing into that
node. The path can then be followed without respect to the direction of the arrows.
For example, the path from Y to A through W is a backdoor path. Likewise, the path
from Y to W through A is a backdoor path. These graphs are also acyclic; you cannot
start at a node in a directed path and then return back to the same node through a
closed loop. A collider is a node in a path where both arrows are directed toward the
node. There are no colliders in Fig. 2.1. A blocked path is any path with at least one
collider. A direct effect is illustrated by a directed arrow between two nodes, with
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Fig. 2.1 A possible causal graph for (2.1).
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Fig. 2.2 A possible causal graph for (2.2)
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Fig. 2.3 A causal graph for (2.1) with no assumptions on the distribution of PU
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Fig. 2.4 A causal graph for (2.2) with no assumptions on the relationship between UW and UY
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no nodes mediating the path. Any unblocked path from A to Y other than the direct
effect connecting A and Y represents an indirect effect of A on Y . One must block
all unblocked backdoor paths from A to Y in order to isolate the causal effect of A
on Y .

2.2.2 Assumptions

In Sect. 2.1, we discussed the typically nontestable causal assumptions made by
an SCM. We make the first assumption by defining the parents Pa(Xj) for each
endogenous Xj. The second is any set of assumptions about the joint distribution
PU of the exogenous variables.

The assumptions made based on actual knowledge concerning the relationships
between variables [i.e., defining the parents Pa(Xj) for each endogenous Xj] are
displayed in our causal graph through the presence and absence of directed arrows.
The explicit absence of an arrow indicates a known lack of a direct effect. In many
cases all arrows are included as it is not possible to exclude a direct effect based
on a priori knowledge. In Fig. 2.1, the direction of the arrows is defined by the
assignment of the parents to each node, including the time ordering assumed during
the specification of (2.1). There is no explicit absence of any arrows; no direct effects
are excluded. However, if we were to draw a graph for (2.2), it could look like
Fig. 2.2. The direct effect between W and A is excluded because A is evaluated as a
deterministic function of UA only.

The assumptions on the distribution PU are reflected in causal graphs through
dashed double-headed arrows between the variables U. In Figs. 2.1 and 2.2, there are
no arrows between the U = (UW ,UA,UY ). Therefore, (2.1) and (2.2) included the
assumption of joint independence of the endogenous variables U, which is graphi-
cally displayed by the lack of arrows. This is not an assumption one is usually able
to make based on actual knowledge. More likely, we are able to make few or no
assumptions about the distribution of PU .

For (2.1), with no assumptions about the distribution of PU , our causal graph
would appear as in Fig. 2.3. For (2.2), our causal graph based on actual knowledge
may look like Fig. 2.4. Since A is randomized, this implies that UA is independent
of UY and UW , and we remove the arrows connecting UA to UY and UA to UW .
However, we have no knowledge to indicate the independence of UY and UW , thus
we cannot remove the arrows between these two variables.

The causal graph encodes some of the information and assumptions described
by the SCM. It is an additional tool to visually describe assumptions encoded by
the SCM. In more complex longitudinal data structures, it may be simpler to work
with the SCM over the causal graph, as the intricacies of the causal relationships
and abundance of arrows can limit the utility of the graphic.
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2.3 Defining the Causal Target Parameter

Now that we have a way of modeling the data-generating mechanism with an SCM,
we can focus on what we are trying to learn from the observed data. That is, we
can define a causal target parameter of interest as a parameter of the distribution
of the full-data (U, X) in the SCM. Formally, we denote the SCM for the full-data
(U, X) by MF , a collection of possible PU,X as described by the SCM. In other
words, MF , a model for the full data, is a collection of possible distributions for
the underlying data (U, X). ΨF is a mapping applied to a PU,X giving ΨF(PU,X) as
the target parameter of PU,X . This mapping needs to be defined for each PU,X that is
a possible distribution of (U, X), given our assumptions coded by the posed SCM.
In this way, we state ΨF : MF → R

d, where R
d indicates that our parameter is a

vector of d real numbers. The SCMMF consists of the distributions indexed by the
deterministic function f = ( fX j : j) and distribution PU of U, where f and this joint
distribution PU are identifiable from the distribution of the full-data (U, X). Thus the
target parameter can also be represented as a function of f and the joint distribution
of U.

Recall our mortality example with data structure O = (W, A, Y) and SCM
given in (2.1) with no assumptions about the distribution PU . We can define
Ya = fY (W, a,UY ) as a random variable corresponding with intervention A = a
in the SCM. The marginal probability distribution of Ya is thus given by

PU,X(Ya = y) = PU,X( fY (W, a,UY ) = y).

The causal effect of interest for a binary A (suppose it is the causal risk difference)
could then be defined as a parameter of the distribution of (U, X) given by

ΨF(PU,X) = EU,XY1 − EU,XY0.

In other words, ΨF(PU,X) is the difference of marginal means of counterfactuals Y1
and Y0. We discuss this in more detail in the next subsection.

2.3.1 Interventions

We will define our causal target parameter as a parameter of the distribution of
the data (U, X) under an intervention on one or more of the structural equations in
f . The intervention defines a random variable that is a function of (U, X), so that
the target parameter is ΨF(PU,X). In Chap. 1, we discussed the “ideal experiment”
which we cannot conduct in practice, where we observe each subject’s outcome at
all levels of A under identical conditions. Intervening on the system defined by our
SCM describes the data that would be generated from the system at the different
levels of our intervention variable (or variables). For example, in our study of LTPA
on mortality, we can intervene on the exposure LTPA in order to observe the results
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of this intervention on the system. By assumption, intervening and changing the
functions fX j of the intervention variables does not change the other functions in f .
With the SCM given in (2.1) we can intervene on fA and set a = 1:

W = fW (UW ),
a = 1,

Y1 = fY (W, 1,UY ).

We can also intervene and set a = 0:

W = fW (UW ),
a = 0,

Y0 = fY (W, 0,UY ).

The intervention defines a random variable that is a function of (U, X), namely,
Ya = Ya(U) for a = 1 and a = 0. The notation Ya(U) makes explicit that Ya is ran-
dom only through U. The probability distribution of the (X,U) under an intervention
is called the postintervention distribution. Our target parameter is a parameter of the
postintervention distribution of Y0 and Y1, i.e., it is a function of these two postin-
tervention distributions, namely, some difference. Thus, the SCM for the full data
allows us to define the random variable Ya = fY (W, a,UY ) for each a, where Ya

represents the outcome that would have been observed under this system for a par-
ticular subject under exposure a. Thus, with the SCM we can carry out the “ideal
experiment” and define parameters of the distribution of the data generated in this
perfect experiment, even though our observed data are only the random variables
O1, . . . ,On.

Formally, and more generally, the definition of the target parameter involves first
specifying a subset of the endogenous nodes Xj playing the role of intervention
nodes. Let As denote the intervention nodes, s = 0, . . . , S , so that A = (As : s =
1, . . . , S ), which, in shorthand notation, we also denote by A = (As : s). We will de-
note the other endogenous nodes in X by L = (Lr : r). Thus, X = ((As : s), (Lr : r)).
Static interventions on the A-nodes correspond with setting A to a fixed value a,
while dynamic interventions deterministically set As according to a fixed rule ap-
plied to the parents of As. Static interventions are a subset of the dynamic interven-
tions. We will denote such a rule for assigning d to the intervention nodes, but it
should be observed that d defines a rule for each As. Thus d = (ds : s = 1, . . . , S ) is
a set of S rules. Such rules d are also called dynamic treatment regimens.

For a particular intervention d on the A nodes, and for a given realization u, the
SCM generates deterministically a corresponding value for L, obtained by erasing
the fAs functions, and carrying out the intervention d on A in the parent sets of the re-
maining equations. We denote the resulting realization by Ld(u) and note that Ld(u)
is implied by f and u. The actual random variable Ld(U) is called a postintervention
random variable corresponding with the intervention that assigns the intervention
nodes according to rule d. The probability distribution of Ld(U) can be described as



32 Sherri Rose, Mark J. van der Laan

P(Ld(U) = l) =
∑

u

P f (Ld(u) = l | U = u)PU(u) =
∑

u

I(Ld(u) = l)PU(u).

In other words, it is the probability that U falls in the set of u-realizations under
which the SCM system deterministically sets Ld(u) = l. Indicator I(Ld(u) = l) is
uniquely determined by the function specifications fX j for the Xj nodes that com-
prise L. This shows explicitly that the distribution of Ld(U) is a parameter of f and
the distribution of U, and thus a well-defined parameter on the full-data SCMMF

for the distribution of (U, X). We now define our target parameter ΨF(PU,X) as some
function of (PLd : d) for a set of interventions d. Typically, we define our target
parameter as a so-called causal contrast that involves a difference between two of
such d-specific postintervention probability distributions. This target parameter is
referred to as a causal parameter since it is a parameter of the postintervention dis-
tribution of L as a function of an intervention choice on A = (As : s) across one or
more interventions.

2.3.2 Counterfactuals

We would ideally like to see each individual’s outcome at all possible levels of
exposure A. The study is only capable of collecting Y under one exposure, the expo-
sure the subject experiences. We discussed interventions on our SCM in Sect. 2.3.1
and we intervened on A to set a = 1 and a = 0 in order to generate the outcome
for each subject under A = a in our mortality study. Recall that Ya represents the
outcome that would have been observed under this system for a particular subject
under exposure a. For our binary exposure LTPA , we have (Ya : a), with a ∈ A,
and where A is the set of possible values for our exposure LTPA. Here, this set is
simply {0, 1}, but in other examples it could be continuous or otherwise more com-
plex. Thus, in our example, for each realization u, which might correspond with an
individual randomly drawn from some target population, by intervening on (2.1),
we can generate so-called counterfactual outcomes Y1(u) and Y0(u). These coun-
terfactual outcomes are implied by our SCM; they are consequences of it. That is,
Y0(u) = fY (W, 0, uY ), and Y1(u) = fY (W, 1, uY ), where W = fW (uW ) is also implied
by u. The random counterfactuals Y0 = Y0(U) and Y1 = Y1(U) are random through
the probability distribution of U. Now we have the expected outcome had everyone
in the target population met or exceeded recommended levels of LTPA, and the ex-
pected outcome had everyone had levels of LTPA below health recommendations.
For example, the expected outcome of Y1 is the mean of Y1(u) with respect to the
probability distribution of U. Our target parameter is a function of the probability
distributions of these counterfactuals: E0Y1 − E0Y0.



2 Defining the Model and Parameter 33

2.3.3 Establishing Identifiability

Are the assumptions we have already made enough to express the causal parameter
of interest as a parameter of the probability distribution P0 of the observed data? We
want to be able to write ΨF(PU,X,0) as Ψ (P0) for some parameter mapping Ψ , where
we remind the reader that the SCM also specifies how the distribution P0 of the
observed data structure O is implied by the true distribution PU,X,0 of (U, X). Since
the true probability distribution of (U, X) can be any element in the SCMMF , and
each such choice PU,X implies a probability distribution P(PU,X) of O, this requires
that we show that ΨF(PU,X) = Ψ (P(PU,X)) for all PU,X ∈ MF .

This step involves establishing possible additional assumptions on the distribu-
tion of U, or sometimes also on the deterministic functions f , so that we can identify
the target parameter from the observed data distribution. Thus, for each probability
distribution of the underlying data (U, X) satisfying the SCM with these possible
additional assumptions on PU , we have ΨF(PU,X) = Ψ (P(PU,X)) for some Ψ . O is
implied by the distribution of (U, X), such as O = X or O ⊂ X, and P = P(PX,U),
where P(PU,X) is a distribution of O implied by PU,X .

Let us denote the resulting full-data SCM by MF∗ ⊂ MF to make clear that
possible additional assumptions were made that were driven purely by the identifia-
bility problem, not necessarily reflecting reality. To be explicit,MF is the full-data
SCM under the assumptions based on real knowledge, and MF∗ is the full-data
SCM under possible additional causal assumptions required for the identifiability of
our target parameter. We now have that for each PU,X ∈ MF∗, ΨF(PU,X) = Ψ (P),
with P = P(PU,X) the distribution of O implied by PU,X (whereas P0 is the true
distribution of O implied by the true distribution PU,X,0).

Theorems exist that are helpful to establish such a desired identifiability result.
For example, if O = X, and the distribution of U is such that, for each s, As is
independent of Ld, given Pa(As), then the well-known g-formula expresses the dis-
tribution of Ld in terms of the distribution of O:

P(Ld = l) =
R∏

r=1

P(Lr = lr | Pad(Lr)) = Pad(lr)),

where Pad(Lr) are the parents of Lr with the intervention nodes among these parent
nodes deterministically set by intervention d.

This so-called sequential randomization assumption can be established for a par-
ticular independence structure of U by verifying the backdoor path criterion on the
corresponding causal graph implied by the SCM and this independence structure on
U. The backdoor path criterion states that for each As, each backdoor path from As

to an Lr node that is realized after As is blocked by one of the other Lr nodes.
In this manner, one might be able to generate a number of independence struc-

tures on the distribution of U that provide the desired identifiability result. That is,
the resulting model for U that provides the desired identifiability might be repre-
sented as a union of models for U that assume a specific independence structure.
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Fig. 2.5 Causal graphs for (2.1) with various assumptions about the distribution of PU

If there is only one intervention node, i.e., S = 1, so that O = (W, A, Y), the se-
quential randomization assumption reduces to the randomization assumption. The
randomization assumption states that treatment node A is independent of counter-
factual Ya, conditional on W: Ya⊥A | Pa(A) = W. You may be familiar with the
(sequential) randomization assumption by another name, the no unmeasured con-
founders assumption. For our purposes, confounders are those variables in X one
needs to observe in O in order to establish the identifiability of the target parameter
of interest. We note that different such subsets of X may provide a desired identifia-
bility result.

If we return to our mortality example and the structural equation models found
in (2.1), the union of several independence structures allows for the identifiability of
our causal target parameter E0Y1−E0Y0 by meeting the backdoor path criterion. The
independence structure in Fig. 2.3 does not meet the backdoor path criterion, but the
two in Fig. 2.5 do. Thus in these two graphs the randomization assumption holds:
A and Ya are conditionally independent given W, which is implied by UA being
independent of UY , given W. It should be noted that Fig. 2.1 is a special case of the
first graph in Fig. 2.5, so the union model for the distribution of U only represents
two conditional independence models.

2.3.4 Commit to a Statistical Model and Target Parameter

The identifiability result provides us with a purely statistical target parameter Ψ (P0)
on the distribution P0 of O. The full-data modelMF∗ implies a statistical observed
data model M = {P(PX,U) : PX,U ∈ MF∗} for the distribution P0 = P(PU,X,0) of
O. This now defines a target parameter Ψ : M → R

d. The statistical observed data
model for the distribution of O might be the same forMF andMF∗. If not, then one
might consider extending the Ψ to the larger statistical observed data model implied
by MF , such as possibly a fully nonparametric model allowing for all probability
distributions. In this way, if the more restricted SCM holds, our target parameter
would still estimate the target parameter, but one now also allows the data to con-
tradict the more restricted SCM based on additional doubtful assumptions.
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We can return to our example of the effect of LTPA on mortality and define
our parameter, the causal risk difference, in terms of the corresponding statistical
parameter Ψ (P0):

ΨF(PU,X,0) = E0Y1 − E0Y0 = E0[E0(Y | A = 1,W) − E0(Y | A = 0,W)] ≡ Ψ (P0),

where the outer expectation in the definition of Ψ (P0) is the mean across the strata
for W. This identifiability result for the additive causal effect as a parameter of the
distribution P0 of O required making the randomization assumption stating that A
is independent of the counterfactuals (Y0, Y1) within strata of W. This assumption
might have been included in the original SCMMF , but, if one knows there are un-
measured confounders, then the modelMF∗ would be more restrictive by enforcing
this “known to be wrong” randomization assumption.

Another required assumption is that P0(A = 1,W = w) > 0 and P0(A = 0,W =
w) > 0 are positive for each possible realization w of W. Without this assumption,
the conditional expectations of Y in Ψ (P0) are not well defined. This positivity as-
sumption is often called the experimental treatment assignment (ETA) assumption.
Here we are assuming that the conditional treatment assignment probabilities are
positive for each possible w: P0(A = 1 | W = w) > 0 and P0(A = 0 | W = w) > 0 for
each possible w. However, the positivity assumption is a more general name for the
condition that is necessary for the target parameter Ψ (P0) to be well defined, and it
often requires the censoring or treatment mechanism to have certain support.

So, to be very explicit about how this parameter corresponds with mapping P0
into a number, as presented in Chap. 1:

Ψ (P0) =
∑

w

[∑
y

yP0(Y = y | A = 1,W = w)

−
∑

y

yP0(Y = y | A = 0,W = w)
]
P0(W = w),

where

P0(Y = y | A = a,W = w) =
P0(W = w, A = a, Y = y)∑
y P0(W = w, A = a, Y = y)

is the conditional probability distribution of Y = y, given A = a,W = w, and

P0(W = w) =
∑
y,a

P0(Y = y, A = a,W = w)

is the marginal probability distribution of W = w. This statistical parameter Ψ is
defined on all probability distributions of (W, A, Y). The statistical modelM is non-
parametric and Ψ :M→ R.
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We note again that we use the term statistical model for the collection of pos-
sible probability distributions, while we use the word model for the statistical
model augmented with the nontestable causal assumptions coded by the un-
derlying SCM and its relation to the observed data distribution of O. In our
LTPA example, the model is the nonparametric statistical model augmented
with the nontestable SCM. If this model includes the randomization assump-
tion, and the experimental treatment assignment assumption, then this model
allows the identifiability of the additive causal effect E0Y1 − E0Y0 through the
statistical target parameter Ψ (P0) = E0(E0(Y | A = 1,W)−E0(Y | A = 0,W)).

2.3.5 Interpretation of Target Parameter

The observed data parameter Ψ (P0) can be interpreted in two possibly distinct
ways:

1. Ψ (P0) with P0 ∈ M augmented with the truly reliable additional non-
statistical assumptions that are known to hold (e.g., MF). This may in-
volve bounding the deviation of Ψ (P0) from the desired target causal effect
ΨF(PU,X,0) under a realistic causal modelMF that is not sufficient for the
identifiability of this causal effect.

2. The truly causal parameter ΨF(PU,X) = Ψ (P0) under the more restricted
SCMMF∗, thereby now including all causal assumptions that are needed to
make the desired causal effect identifiable from the probability distribution
P0 of O.

The purely statistical (noncausal) parameter given by interpretation 1 is often of in-
terest, such as EW [E0(Y | A = 1,W) − E0(Y | A = 0,W)], which can be interpreted
as the average of the difference in means across the strata for W. With this parameter
we can assume nothing, beyond the experimental treatment assignment assumption,
except perhaps time ordering W → A → Y , to have a meaningful interpretation of
the difference in means. Since we do not assume an underlying system, the SCM
for (U, X) and thereby Ya, or the randomization assumption, the parameter is a sta-
tistical parameter only. This type of parameter is sometimes referred to as a variable
importance measure.

For example, if A = age, the investigator may not be willing to assume an SCM
defining interventions on age (a variable one cannot intervene on and set in practice).
Thus, if one does not assume MF , the statistical parameter Ψ (P0) under interpre-
tation 1 can still be very much of interest. In some cases, however, these two in-
terpretations coincide. What is known about the generation of data and distribution
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PU may imply the assumptions necessary to interpret Ψ (P0) as the causal parame-
ter ΨF(PU,X): for example, in an RCT, by design, assuming full compliance and no
missingness or censoring, the causal assumptions required will hold.

2.4 Revisiting the Mortality Example

For the sake of presentation, we intentionally assumed that the exposure LTPA
was binary and worked with an SCM that generated a binary exposure A. In the
actual mortality study A is continuous valued. Consider the more realistic SCM
W = fW (UW ), A = fA(W,UA), Y = fY (W, A,UY ), where A is now continuous valued.
Let Ya(u) be the counterfactual obtained by setting A = a and U = u, so that Ya is
the random variable representing survival at 5 years under LTPA at level a. Suppose
one wishes to consider a cut-off value δ for LTPA level so that one can recommend
that the population at least exercise at this level δ. A causal quantity of interest is
now

ψF
0 =

∑
a

w1(a)E0Ya −
∑

a

w0(a)E0Ya,

where w1(a) is a probability distribution on excercise levels larger than δ, and w0(a)
is a probability distribution on exercise levels smaller than or equal to δ. This cor-
responds to E0Y1 − E0Y0, where Y1 is defined by the random intervention on the
SCM in which one randomly draws A from w1, and similarly Y0 is defined by ran-
domly drawing A from w0. This causal effect E0Y1−E0Y0 can be identified from the
probability distribution P0 of O = (W, A, Y) as follows:

ψF
0 =

∑
a

(w1 − w0)(a)E0E0(Y | A = a,W) ≡ ψ0.

2.5 Road Map for Targeted Learning

In Chap. 1, we introduced the road map for targeted learning. In this chapter we
have discussed defining the research question, which involved describing the data
and committing to a statistical model and target parameter. The estimation problem
we wish to solve is now fully defined. The next stage of the road map addresses
estimation of the target parameter, which will be covered in the next three chapters.

The statistical estimation problem. We observe n i.i.d. copies O1, ..,On from a
probability distribution P0 known to be in a statistical modelM, and we wish to
infer statistically about the target parameter Ψ (P0). Often, this target parameter
only depends on P0 through a relevant (infinite-dimensional) parameter Q0 =

Q0(P0) of P0, so that we can also write Ψ (Q0).
Targeted substitution estimator. We construct a substitution estimator Ψ (Q∗n)

obtained by plugging in an estimator Q∗n of Q0. This involves super learning and
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probability distribution P0.
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The statistical model M is a set of possible probability distributions 
of O. P0 is in M. The model is a statistical model for P0 augmented 

with possible additional nontestable causal assumptions.
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Fig. 2.6 Road map for targeted learning
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TMLE, so that we obtain, under regularity conditions, an asymptotically linear,
double robust, and efficient normally distributed estimator of ψ0 = Ψ (Q0), and,
in general, put in the maximal effort to minimize the mean squared error with
respect to the true value ψ0. In addition, we provide statistical inference about ψ0
based on the estimation of the normal limit distribution of

√
n(Ψ (Q∗n) − ψ0).

2.6 Conceptual Framework

This section provides a rigorous conceptual framework for the topics covered in this
chapter. If you find it too abstract on your initial reading, we advise you to come
back as you become more familiar with the material. It is meant for more advanced
readers.

Data are meaningless without knowledge about the experiment that generated the
data. That is, data are realizations of a random variable with a certain probability
distribution on a set of possible outcomes, and statistical learning is concerned with
learning something about the probability distribution of the data. Typically, we are
willing to view our data as a realization of n independent identical replications of the
experiment, and we accept this as our first modeling assumption. If we denote the
random variable representing the data generated by the experiment by O, having a
probability distribution P0, then the data set corresponds with drawing a realization
of n i.i.d. copies O1, . . . ,On with some common probability distribution P0.

A statistical estimation problem corresponds with defining a statistical modelM
for P0, where the statistical modelM is a collection of possible probability distri-
butions of O. The estimation problem also requires a mapping Ψ on this statistical
model M, where Ψ maps any P ∈ M into a vector of numbers Ψ (P). We write
Ψ : M → R

d for a d-dimensional parameter. We introduce ψ0, and the interpreta-
tion of ψ0 as Ψ (P0), i.e., a well-defined feature of P0, is called the pure statistical
interpretation of the parameter value ψ0. The statistical estimation problem is now to
map the data set O1, . . . ,On into an estimator of Ψ (P0) that incorporates the knowl-
edge that P0 ∈ M, accompanied by an assessment of the uncertainty in the estimator
of ψ0.

When thinking purely about the construction of an estimator, the only concern is
to construct an estimator of ψ0 that has small mean squared error (MSE), or some
other measure of dissimilarity between the estimator and the true ψ0. This does not
require any additional knowledge (or nontestable causal assumptions). As a con-
sequence, for the construction of a targeted maximum likelihood estimator, which
we introduce in Chaps. 4 and 5, the only input is the statistical model M and the
mapping Ψ representing the target parameter.

Making assumptions about P0 that do not change the statistical model, so-called
nontestable assumptions, will not change the statistical estimation problem. How-
ever, such assumptions allows one to interpret a particular parameter Ψ (P0) in a new
way. If such nontestable assumptions are known to be true, it enriches the interpre-
tation of the number ψ0. If they are wrong, then it results in misinterpretation of ψ0.
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This is called causal modeling when it involves nontestable assumptions that allow
Ψ (P0) to be interpreted as a causal effect, and, in general, it is modeling with non-
testable assumptions with the goal of providing an enriched interpretation of this
parameter Ψ (P0).

It works as follows. One proposes a parameterization θ → Pθ for θ varying over
a set Θ so that the statistical model M can be represented as M = {Pθ : θ ∈ Θ},
where θ represents PU,X in our SCM framework, but it can represent any underly-
ing structure (not necessarily causal). That is, we provide a parameterization for the
statistical modelM. In addition, since P0 ∈ M, there exists a θ0 such that P0 = Pθ0 .
Assume that this θ0 is actually uniquely identified by P0. θ0 has its own interpreta-
tion, such as the probability distribution of counterfactual random variables in the
SCM. Suddenly, the P0 allows us to infer θ0 = Θ(P0) for a mapping Θ. As a con-
sequence, with this “magic trick” of parameterizing P0 we succeeded in providing
a new interpretation of P0 and, in particular, of any parameter Ψ (P0) = Ψ (Pθ0 ) as a
function of θ0.

As one can imagine, there are millions of possible magic tricks one can carry out,
each one creating a new interpretation of P0 by having it mapped into an interpreta-
tion of a θ0 implied by a particular parameterization. The data cannot tell you if one
magic trick will provide a more accurate description of reality than another magic
trick, since data can only provide information about P0 itself. As a consequence,
which magic trick is applied, or if any trick is applied at all, should be driven by
true knowledge about the underlying mechanism that resulted in the generation of
O. In that case, the selection of the parameterization is not a magic trick but repre-
sents the incorporation of true knowledge allowing us to interpret the parameter ψ0
for what it is. Note that this modeling could easily correspond with a nonparametric
statistical modelM for P0.

Two important mistakes can occur in statistical practice, before the selection
of an estimator, given that one has specified a statistical model M and parameter
Ψ : M → R

d. The first mistake is that one specifies the statistical model M in-
correctly so that P0 � M, resulting in misinterpretation of Ψ (P0), even as a purely
statistical parameter, i.e., as a mapping Ψ applied to P0. The second mistake is that
one misspecifies additional nontestable assumptions as coded by the selected pa-
rameterization forM that were used to provide an enriched interpretation of Ψ (P0),
again resulting in misinterpretation of Ψ (P0). These two mistakes can be collapsed
into one, namely, misspecification of the model for P0. By the model we now mean
the statistical model for P0 augmented with the additional nontestable structural
assumptions, even though these do not change the statistical model.

So a model now includes the additional parameterization, such that two identical
statistical models that are based on different parameterizations are classified as dif-
ferent models. Thus, a model is defined by a mapping P· : Θ → M, θ → Pθ, and
the statistical model implied by this model is given by the range M = {Pθ : θ} of
this mapping. Regarding statistical vocabulary, we will use the word model for the
parameterization mapping P· : Θ→M, and statistical model for the set of possible
probability distributions, i.e., the range of this mapping. Note, that if the parame-
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terization is simply the identity mapping defined onM, then the model equals the
statistical model.

Even though it is healthy to be cynical about modeling and extremely aware of its
dangers and its potential to lie with data, it is of fundamental importance to statisti-
cal learning that we can incorporate structural knowledge about the data-generating
process and utilize that in our interpretation. In addition, even if these structural
assumptions implied by the model/parameterization are uncertain, it is worthwhile
to know that, if these were true, then our parameter would allow its corresponding
interpretation. One could then report both the statistical interpretation, or the reli-
able statistical model interpretation, as well as the if also, then interpretation to our
target ψ0.

In addition, this structural modeling allows one to create truly interesting param-
eters in an underlying world and one can then establish under what assumptions one
can identify these truly interesting parameters from the observed data. This itself
teaches us how to generate new data so that these parameters will be identifiable.
The identifiability results for these truly interesting parameters provide us with sta-
tistical parameters Ψ (P0) that might be interesting as statistical parameters anyway,
without these additional structural assumptions, and have the additional flavor of
having a particularly powerful interpretation if these additional structural assump-
tions happen to be true. In particular, one may be able to interpret Ψ (P0) as the best
possible approximation of the wished causal quantity of interest based on the avail-
able data. Overall, this provides us with more than enough motivation to include
(causal) modeling as an important component in the road map of targeted learning
from data.

2.7 Notes and Further Reading

As noted in the introduction, a thorough presentation of SCMs, causal graphs, and
related identifiability theory can be found in Pearl (2009). We also direct the inter-
ested reader to Judea Pearl’s Web site (http://bayes.cs.ucla.edu/jp_home.html) for
easily organized references and presentations on these topics. The g-formula for
identifying the distribution of counterfactuals from the observed data distribution,
under the sequential randomization assumption, was originally published in Robins
(1986). The simplified data example we introduce in this chapter, a mortality study
examining the effect of LTPA, is based on data presented in Tager et al. (1998). We
carry this example through the next three chapters, and in Chap. 4, we analyze this
data using super learning and targeted maximum likelihood estimation.

In our road map we utilize causal models, such as SCMs and the Neyman–Rubin
model, to generate statistical effect parameters ψ0 = Ψ (P0) of interest. The inter-
pretation of the estimand ψ0, beyond its pure statistical interpretation, depends on
the required causal assumptions necessary for identifiability of the desired causal
quantity ψF

0 (defined as target quantity in causal model for full data or counterfac-
tuals) from the observed data distribution. Such an interpretation might be further

http://bayes.cs.ucla.edu/jp_home.html
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enriched if one could define an actual experiment that would reproduce this causal
quantity. Either way, our road map poses these causal models as working models
to derive these statistical target parameters that can be interpreted as causal effects
under explicitly stated causal assumptions. The latter assumptions are fully exposed
and for anybody to criticize.

We wish to stress that the learning of these estimands with their pure statistical
interpretation already represents progress in science. In addition, the required causal
assumptions that would allow a richer interpretation of the estimand teach us how
to improve our design of the observational or RCT.

Somehow, we think that a statistical target parameter that has a desired causal
interpretation under possibly unrealistic assumptions is a “best” approximation of
the ideal causal quantity, given the limitations set by the available data. For example,
E0(E0(Y | A = 1,W) − E0(Y | A = 0,W)) is an effect of treatment, controlling for
the measured covariates, with a clear statistical interpretation, and, if people feel
comfortable talking about E0Y1 − E0Y0, then we think that this statistical estimand
represents a “best” effort to target this additive causal effect under the constraints
set by the available data.

Instead of making a hard decision regarding the causal assumptions necessary for
making the estimand equal to the causal quantity, one may wish to investigate the
potential distance between the estimand and the causal quantity. In this manner, one
still allows for a causal interpretation of the estimand (such as that the asymptotic
bias of the estimand with respect to the desired causal quantity is bounded from
above by a certain number), even if the causal assumptions required for making
the estimand equal to the causal quantity are violated. Such an approach relies on
the ability to bound this distance by incorporation of realistic causal knowledge.
Such a sensitivity analysis will require input from subject matter people such as a
determination of an upper bound of the effect of unmeasured confounders beyond
the measured time-dependent confounders. Even a highly trained statistician will
have an extremely hard time getting his/her head around such a question, making
such sensitivity analyses potentially unreliable and extremely hard to communicate.
Still, this is an important research area since it allows for a continuous range from
pure statistical interpretation of the estimand to a pure causal effect interpretation.

Either way, we should not forget that using poor methods for estimation with the
actual observed data, while investing enormous effort in such a sensitivity analysis.
makes no sense. By the same token, estimation of the estimand is a separate prob-
lem from determining the distance between the estimand and the causal quantity
of interest and is obviously as important as carefully defining and interpreting the
estimand: the careful definition and interpretation of an estimand has little value if
one decides to use a misspecified parametric model to fit it!
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