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Basic Concepts and Facts

The following is a list of the most basic concepts and theorems frequently used in
this book. We encourage the reader to become familiar with them and perhaps read
up on them further in other literature.

2.1 Algebra

2.1.1 Polynomials

Theorem 2.1. The quadratic equation ax2 +bx+ c = 0 (a,b,c ∈ R, a 6= 0) has solu-
tions

x1,2 =
−b±

√
b2 −4ac

2a
.

The discriminant D of a quadratic equation is defined as D = b2−4ac. For D < 0 the
solutions are complex and conjugate to each other, for D = 0 the solutions degenerate
to one real solution, and for D > 0 the equation has two distinct real solutions.

Definition 2.2. Binomial coefficients
(n

k

)
, n,k ∈ N0, k ≤ n, are defined as

(
n
i

)
=

n!
i!(n− i)!

.

They satisfy
(n

i

)
+
( n

i−1

)
=
(n+1

i

)
for i > 0 and also

(n
0

)
+
(n

1

)
+ · · ·+

(n
n

)
= 2n,

(n
0

)
−(n

1

)
+ · · ·+(−1)n

(n
n

)
= 0,

(n+m
k

)
= ∑k

i=0

(n
i

)( m
k−i

)
,
(n+r

n

)
= ∑r

j=0

(n+ j−1
n−1

)
.

Theorem 2.3 ((Newton’s) binomial formula). For x,y ∈ C and n ∈ N,

(x + y)n =
n

∑
i=0

(
n
i

)
xn−iyi.

Theorem 2.4 (Bézout’s theorem). A polynomial P(x) is divisible by the binomial
x−a (a ∈ C) if and only if P(a) = 0.
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6 2 Basic Concepts and Facts

Theorem 2.5 (The rational root theorem). If x = p/q is a rational zero of a poly-
nomial P(x) = anxn + · · ·+a0 with integer coefficients and (p,q) = 1, then p | a0 and
q | an.

Theorem 2.6 (The fundamental theorem of algebra). Every nonconstant polyno-
mial with coefficients in C has a complex root.

Theorem 2.7 (Eisenstein’s criterion (extended)). Let P(x) = anxn + · · ·+ a1x + a0

be a polynomial with integer coefficients. If there exist a prime p and an integer
k ∈ {0,1, . . . ,n−1} such that p | a0,a1, . . . ,ak, p ∤ ak+1, and p2 ∤ a0, then there exists
an irreducible factor Q(x) of P(x) whose degree is greater than k. In particular, if p
can be chosen such that k = n−1, then P(x) is irreducible.

Definition 2.8. Symmetric polynomials in x1, . . . ,xn are polynomials that do not
change on permuting the variables x1, . . . ,xn. Elementary symmetric polynomials
are σk(x1, . . . ,xn) = ∑xi1 · · ·xik (the sum is over all k-element subsets {i1, . . . , ik} of
{1,2, . . . ,n}).

Theorem 2.9. Every symmetric polynomial in x1, . . . ,xn can be expressed as a poly-
nomial in the elementary symmetric polynomials σ1, . . . ,σn.

Theorem 2.10 (Viète’s formulas). Let α1, . . . ,αn and c1, . . . ,cn be complex numbers
such that

(x−α1)(x−α2) · · · (x−αn) = xn + c1xn−1 + c2xn−2 + · · ·+ cn .

Then ck = (−1)kσk(α1, . . . ,αn) for k = 1,2, . . . ,n.

Theorem 2.11 (Newton’s formulas on symmetric polynomials). Let σk = σk(x1,
. . . , xn) and let sk = xk

1 + xk
2 + · · ·+ xk

n, where x1, . . . ,xn are arbitrary complex num-
bers. Then

kσk = s1σk−1 − s2σk−2 + · · ·+(−1)ksk−1σ1 +(−1)k−1sk .

2.1.2 Recurrence Relations

Definition 2.12. A recurrence relation is a relation that determines the elements of a
sequence xn, n ∈ N0, as a function of previous elements. A recurrence relation of the
form

(∀n ≥ k) xn + a1xn−1 + · · ·+ akxn−k = 0

for constants a1, . . . ,ak is called a linear homogeneous recurrence relation of order
k. We define the characteristic polynomial of the relation as P(x) = xk + a1xk−1 +
· · ·+ ak.

Theorem 2.13. Using the notation introduced in the above definition, let P(x) factor-
ize as P(x) = (x−α1)

k1(x−α2)
k2 · · ·(x−αr)

kr , where α1, . . . ,αr are distinct complex
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numbers and k1, . . . ,kr are positive integers. The general solution of this recurrence
relation is in this case given by

xn = p1(n)αn
1 + p2(n)αn

2 + · · ·+ pr(n)αn
r ,

where pi is a polynomial of degree less than ki. In particular, if P(x) has k distinct
roots, then all pi are constant.

If x0, . . . ,xk−1 are set, then the coefficients of the polynomials are uniquely deter-
mined.

2.1.3 Inequalities

Theorem 2.14. The squaring function is always positive; i.e., (∀x ∈ R) x2 ≥ 0. By
substituting different expressions for x, many of the inequalities below are obtained.

Theorem 2.15 (Bernoulli’s inequalities).

1. If n ≥ 1 is an integer and x > −1 a real number, then (1 + x)n ≥ 1 + nx.

2. If α > 1 or α < 0, then for x > −1, the following inequality holds: (1 + x)α ≥
1 + αx.

3. If α ∈ (0,1) then for x > −1 the following inequality holds: (1 + x)α ≤ 1 + αx.

Theorem 2.16 (The mean inequalities). For positive real numbers x1, x2, . . . ,xn it
is always the case that QM ≥ AM ≥ GM ≥ HM, where

QM =

√
x2

1 + · · ·+ x2
n

n
, AM =

x1 + · · ·+ xn

n
,

GM = n
√

x1 · · ·xn, HM =
n

1
x1

+ · · ·+ 1
xn

.

Each of these inequalities becomes an equality if and only if x1 = x2 = · · · = xn.
The numbers QM, AM, GM, and HM are respectively called the quadratic mean, the
arithmetic mean, the geometric mean, and the harmonic mean of x1,x2, . . . ,xn.

Theorem 2.17 (The general mean inequality). Let x1, . . . ,xn be positive real num-
bers. For each p ∈ R we define the mean of order p of x1, . . . ,xn by

Mp =

(
xp

1 + · · ·+ xp
n

n

)1/p

for p 6= 0, and Mq = limp→q Mp for q ∈ {±∞,0}. Then

Mp ≤ Mq whenever p ≤ q.

Remark. In particular, maxxi, QM, AM, GM, HM, and minxi are M∞, M2, M1, M0,
M−1, and M−∞ respectively.
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Theorem 2.18 (Cauchy–Schwarz inequality). Let ai,bi, i = 1,2, . . . ,n, be real num-
bers. Then (

n

∑
i=1

aibi

)2

≤
(

n

∑
i=1

a2
i

)(
n

∑
i=1

b2
i

)
.

Equality occurs if and only if there exists c ∈ R such that bi = cai for i = 1, . . . ,n.

Theorem 2.19 (Hölder’s inequality). Let ai,bi, i = 1,2, . . . ,n, be nonnegative real
numbers, and let p,q be positive real numbers such that 1/p + 1/q = 1. Then

n

∑
i=1

aibi ≤
(

n

∑
i=1

ap
i

)1/p( n

∑
i=1

bq
i

)1/q

.

Equality occurs if and only if there exists c ∈R such that bi = cai for i = 1, . . . ,n. The
Cauchy–Schwarz inequality is a special case of Hölder’s inequality for p = q = 2.

Theorem 2.20 (Minkowski’s inequality). Let ai,bi (i = 1,2, . . . ,n) be nonnegative
real numbers and p any real number not smaller than 1. Then

(
n

∑
i=1

(ai + bi)
p

)1/p

≤
(

n

∑
i=1

ap
i

)1/p

+

(
n

∑
i=1

bp
i

)1/p

.

For p > 1 equality occurs if and only if there exists c ∈ R such that bi = cai for
i = 1, . . . ,n. For p = 1 equality occurs in all cases.

Theorem 2.21 (Chebyshev’s inequality). Let a1 ≥ a2 ≥ ·· · ≥ an and b1 ≥ b2 ≥
·· · ≥ bn be real numbers. Then

n
n

∑
i=1

aibi ≥
(

n

∑
i=1

ai

)(
n

∑
i=1

bi

)
≥ n

n

∑
i=1

aibn+1−i.

The two inequalities become equalities at the same time when a1 = a2 = · · · = an or
b1 = b2 = · · · = bn.

Definition 2.22. A real function f defined on an interval I is convex if f (αx+β y) ≤
α f (x)+ β f (y) for all x,y ∈ I and all α,β > 0 such that α + β = 1. A function f is
said to be concave if the opposite inequality holds, i.e., if − f is convex.

Theorem 2.23. If f is continuous on an interval I, then f is convex on that interval
if and only if

f

(
x + y

2

)
≤ f (x)+ f (y)

2
for all x,y ∈ I.

Theorem 2.24. If f is differentiable, then it is convex if and only if the derivative f ′

is nondecreasing. Similarly, differentiable function f is concave if and only if f ′ is
nonincreasing.
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Theorem 2.25 (Jensen’s inequality). If f : I → R is a convex function, then the
inequality

f (α1x1 + · · ·+ αnxn) ≤ α1 f (x1)+ · · ·+ αn f (xn)

holds for all αi ≥ 0, α1 + · · ·+αn = 1, and xi ∈ I. For a concave function the opposite
inequality holds.

Theorem 2.26 (Muirhead’s inequality). Given x1,x2, . . . ,xn ∈ R+ and an n-tuple
a = (a1, . . . ,an) of positive real numbers, we define

Ta(x1, . . . ,xn) = ∑ya1
1 · · ·yan

n ,

the sum being taken over all permutations y1, . . . ,yn of x1, . . . ,xn. We say that an n-
tuple a majorizes an n-tuple b if a1 + · · ·+ an = b1 + · · ·+ bn and a1 + · · ·+ ak ≥
b1 + · · ·+ bk for each k = 1, . . . ,n−1. If a nonincreasing n-tuple a majorizes a non-
increasing n-tuple b, then the following inequality holds:

Ta(x1, . . . ,xn) ≥ Tb(x1, . . . ,xn).

Equality occurs if and only if x1 = x2 = · · · = xn.

Theorem 2.27 (Schur’s inequality). Using the notation introduced for Muirhead’s
inequality,

Tλ+2µ,0,0(x1,x2,x3)+ Tλ ,µ,µ(x1,x2,x3) ≥ 2Tλ+µ,µ,0(x1,x2,x3),

where λ ∈ R, µ > 0. Equality occurs if and only if x1 = x2 = x3 or x1 = x2, x3 = 0
(and in analogous cases). An equivalent form of the Schur’s inequality is

xλ (xµ − yµ)(xµ − zµ)+ yλ (yµ − xµ)(yµ − zµ)+ zλ (zµ − xµ)(zµ − yµ) ≥ 0.

2.1.4 Groups and Fields

Definition 2.28. A group is a nonempty set G equipped with a binary operation ∗
satisfying the following conditions:

(i) a∗ (b ∗ c) = (a∗ b)∗ c for all a,b,c ∈ G.

(ii) There exists a (unique) identity e ∈ G such that e∗a = a ∗ e = a for all a ∈ G.

(iii) For each a ∈ G there exists a (unique) inverse a−1 = b ∈ G such that a ∗ b =
b∗ a = e.

If n ∈ Z, we define an as a∗ a∗ · · ·∗a (n times) if n ≥ 0, and as (a−1)−n otherwise.

Definition 2.29. A group G = (G,∗) is commutative or abelian if a∗b = b∗a for all
a,b ∈ G.

Definition 2.30. A set A generates a group (G,∗) if every element of G can be ob-
tained using powers of the elements of A and the operation ∗. In other words, if A is
the generator of a group G, then every element g ∈ G can be written as ai1

1 ∗ · · · ∗ain
n ,

where a j ∈ A and i j ∈ Z for every j = 1,2, . . . ,n.
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Definition 2.31. The order of an element a ∈ G is the smallest n ∈N, if it exists such
that an = e. If no such n exists then the element a is said to be of infinite order. The
order of a group is the number of its elements, if it is finite. Each element of a finite
group has finite order.

Theorem 2.32 (Lagrange’s theorem). In a finite group, the order of an element
divides the order of the group.

Definition 2.33. A ring is a nonempty set R equipped with two operations + and ·
such that (R,+) is an abelian group and for any a,b,c ∈ R,

(i) (a ·b) · c = a · (b · c);
(ii) (a + b) · c = a · c + b · c and c · (a + b) = c ·a + c ·b.

A ring is commutative if a ·b = b ·a for any a,b ∈ R and with identity if there exists
a multiplicative identity i ∈ R such that i ·a = a · i = a for all a ∈ R.

Definition 2.34. A field is a commutative ring with identity in which every element
a other than the additive identity has a multiplicative inverse a−1 such that a ·a−1 =
a−1 ·a = i.

Theorem 2.35. The following are common examples of groups, rings, and fields:

Groups: (Zn,+), (Zp \{0}, ·), (Q,+), (R,+), (R\{0}, ·).
Rings: (Zn,+, ·), (Z,+, ·), (Z[x],+, ·), (R[x],+, ·).
Fields: (Zp,+, ·), (Q,+, ·), (Q(

√
2),+, ·), (R,+, ·), (C,+, ·).

2.2 Analysis

Definition 2.36. A sequence {an}∞
n=1 of real numbers has a limit a = limn→∞ an

(also denoted by an → a) if

(∀ε > 0)(∃nε ∈ N)(∀n ≥ nε) |an −a|< ε.

A function f : (a,b) → R has a limit y = limx→c f (x) if

(∀ε > 0)(∃δ > 0)(∀x ∈ (a,b)) 0 < |x− c|< δ ⇒ | f (x)− y| < ε.

Definition 2.37. A sequence {xn} converges to x ∈ R if limn→∞ xn = x. A series
∑∞

n=1 xn converges to s ∈ R if and only if limm→∞ ∑m
n=1 xn = s. A sequence or series

that does not converge is said to diverge.

Theorem 2.38. A sequence {an} of real numbers is convergent if it is monotonic and
bounded.
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Definition 2.39. A function f is continuous on [a,b] if the following three relations
hold:

lim
x→x0

f (x) = f (x0), for every x0 ∈ (a,b),

lim
x→a+

f (x) = f (a),

and lim
x→b−

f (x) = f (b).

Definition 2.40. A function f : (a,b) → R is differentiable at a point x0 ∈ (a,b) if
the following limit exists:

f ′(x0) = lim
x→x0

f (x)− f (x0)

x− x0
.

A function is differentiable on (a,b) if it is differentiable at every x0 ∈ (a,b). The
function f ′ is called the derivative of f . We similarly define the second derivative f ′′

as the derivative of f ′, and so on.

Theorem 2.41. A differentiable function is also continuous. If f and g are differen-
tiable, then f g, α f + β g (α,β ∈ R), f ◦ g, 1/ f (if f 6= 0), f−1 (if well defined) are
also differentiable. It holds that (α f +β g)′ = α f ′+β g′, ( f g)′ = f ′g+ f g′, ( f ◦g)′ =
( f ′ ◦g) ·g′, (1/ f )′ = − f ′/ f 2, ( f/g)′ = ( f ′g− f g′)/g2, ( f−1)′ = 1/( f ′ ◦ f−1).

Theorem 2.42. The following are derivatives of some elementary functions (a de-
notes a real constant): (xa)′ = axa−1, (lnx)′ = 1/x, (ax)′ = ax lna, (sinx)′ = cosx,
(cosx)′ = −sinx.

Theorem 2.43 (Fermat’s theorem). Let f : [a,b]→ R be a continuous function that
is differentiable at every point of (a,b). The function f attains its maximum and
minimum in [a,b]. If x0 ∈ (a,b) is a number at which the extremum is attained (i.e.,
f (x0) is the maximum or minimum), then f ′(x0) = 0.

Theorem 2.44 (Rolle’s theorem). Let f (x) be a continuous function defined on
[a,b], where a,b ∈ R, a < b, and f (a) = f (b). If f is differentiable in (a,b), then
there exists c ∈ (a,b) such that f ′(c) = 0.

Definition 2.45. Differentiable functions f1, f2, . . . , fk defined on an open subset D
of Rn are independent if there is no nonzero differentiable function F : Rk → R such
that F( f1, . . . , fk) is identically zero on some open subset of D.

Theorem 2.46. Functions f1, . . . , fk : D → R are independent if and only if the k×n
matrix [∂ fi/∂x j]i, j is of rank k, i.e., when its k rows are linearly independent at some
point.
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Theorem 2.47 (Lagrange multipliers). Let D be an open subset of Rn and f , f1, f2,
. . . , fk : D → R independent differentiable functions. Assume that a point a in D is
an extremum of the function f within the set of points in D for which f1 = f2 = · · · =
fk = 0. Then there exist real numbers λ1, . . . ,λk (so-called Lagrange multipliers)
such that a is a stationary point of the function F = f + λ1 f1 + · · ·+ λk fk, i.e., such
that all partial derivatives of F at a are zero.

Definition 2.48. Let f be a real function defined on [a,b] and let a = x0 ≤ x1 ≤ ·· · ≤
xn = b and ξk ∈ [xk−1,xk]. The sum S = ∑n

k=1(xk − xk−1) f (ξk) is called a Darboux
sum. If I = limδ→0 S exists (where δ = maxk(xk − xk−1)), we say that f is integrable
and that I is its integral. Every continuous function is integrable on a finite interval.

2.3 Geometry

2.3.1 Triangle Geometry

Definition 2.49. The orthocenter of a triangle is the common point of its three alti-
tudes.

Definition 2.50. The circumcenter of a triangle is the center of its circumscribed
circle (i.e., circumcircle). It is the common point of the perpendicular bisectors of
the sides of the triangle.

Definition 2.51. The incenter of a triangle is the center of its inscribed circle (i.e.,
incircle). It is the common point of the internal bisectors of its angles.

Definition 2.52. The centroid of a triangle (median point) is the common point of
its medians.

Theorem 2.53. The orthocenter, circumcenter, incenter, and centroid are well de-
fined (and unique) for every nondegenerate triangle.

Theorem 2.54 (Euler’s line). The orthocenter H, centroid G, and circumcenter O
of an arbitrary triangle lie on a line and satisfy

−→
HG = 2

−→
GO.

Theorem 2.55 (The nine-point circle). The feet of the altitudes from A, B, C and the
midpoints of AB, BC, CA, AH, BH, CH lie on a circle.

Theorem 2.56 (Feuerbach’s theorem). The nine-point circle of a triangle is tangent
to the incircle and all three excircles of the triangle.

Theorem 2.57 (Torricelli’s point). Given a triangle △ABC, let △ABC′, △AB′C,
and △A′BC be equilateral triangles constructed outward. Then AA′, BB′, CC′ inter-
sect in one point.

Definition 2.58. Let ABC be a triangle, P a point, and X , Y , Z respectively the feet of
the perpendiculars from P to BC, AC, AB. Triangle XYZ is called the pedal triangle
of △ABC corresponding to point P.
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Theorem 2.59 (Simson’s line). The pedal triangle XYZ is degenerate, i.e., X, Y , Z
are collinear, if and only if P lies on the circumcircle of ABC. Points X, Y , Z are in
this case said to lie on Simson’s line.

Theorem 2.60. If M is a point on the circumcircle of △ABC with orthocenter H,
then the Simson’s line corresponding to M bisects the segment MH.

Theorem 2.61 (Carnot’s theorem). The perpendiculars from X ,Y,Z to BC,CA,AB
respectively are concurrent if and only if

BX2 −XC2 +CY 2 −YA2 + AZ2 −ZB2 = 0.

Theorem 2.62 (Desargues’s theorem). Let A1B1C1 and A2B2C2 be two triangles.
The lines A1A2, B1B2, C1C2 are concurrent or mutually parallel if and only if the
points A = B1C1 ∩B2C2, B = C1A1 ∩C2A2, and C = A1B1 ∩A2B2 are collinear.

Definition 2.63. Given a point C in the plane and a real number r, a homothety with
center C and coefficient r is a mapping of the plane that sends each point A to the

point A′ such that
−→
CA′ = k

−→
CA.

Theorem 2.64. Let k1, k2, and k3 be three circles. Then the three external similitude
centers of these three circles are collinear (the external similitude center is the center
of the homothety with positive coefficient that maps one circle to the other). Similarly,
two internal similitude centers are collinear with the third external similitude center.

All variants of the previous theorem can be directly obtained from the Desar-
gues’s theorem applied to the following two triangles: the first triangle is determined
by the centers of k1, k2, k3, while the second triangle is determined by the points of
tangency of an appropriately chosen circle that is tangent to all three of k1, k2, k3.

2.3.2 Vectors in Geometry

Definition 2.65. For any two vectors −→a ,
−→
b in space, we define the scalar product

(also known as dot product) of −→a and
−→
b as −→a ·−→b = |−→a ||−→b |cosϕ , and the vector

product (also known as cross product) as −→a ×−→
b = −→p , where ϕ = ∠(−→a ,

−→
b ) and

−→p is the vector with |−→p | = |−→a ||−→b ||sinϕ | perpendicular to the plane determined by
−→a and

−→
b such that the triple of vectors −→a ,

−→
b ,−→p is positively oriented (note that

if −→a and
−→
b are collinear, then −→a ×−→

b =
−→
0 ). Both these products are linear with

respect to both factors. The scalar product is commutative, while the vector product is
anticommutative, i.e., −→a ×−→

b = −−→
b ×−→a . We also define the mixed vector product

of three vectors −→a ,
−→
b ,−→c as [−→a ,

−→
b ,−→c ] = (−→a ×−→

b ) ·−→c .

Remark. The scalar product of vectors −→a and
−→
b is often denoted by 〈−→a ,

−→
b 〉.

Theorem 2.66 (Thales’ theorem). Let lines AA′ and BB′ intersect in a point O, A′ 6=
O 6= B′. Then AB ‖ A′B′ ⇔

−→
OA−−→
OA′ =

−→
OB−−→
OB′ (Here

−→a−→
b

denotes the ratio of two nonzero

collinear vectors).
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Theorem 2.67 (Ceva’s theorem). Let ABC be a triangle and X, Y , Z points on lines
BC, CA, AB respectively, distinct from A,B,C. Then the lines AX, BY , CZ are con-
current if and only if

−→
BX
−→
XC

·
−→
CY
−→
YA

·
−→
AZ
−→
ZB

= 1, or equivalently,
sin∡BAX
sin∡XAC

sin∡CBY
sin∡YBA

sin∡ACZ
sin∡ZCB

= 1

(the last expression being called the trigonometric form of Ceva’s theorem).

Theorem 2.68 (Menelaus’s theorem). Using the notation introduced for Ceva’s
theorem, points X ,Y,Z are collinear if and only if

−→
BX
−→
XC

·
−→
CY
−→
YA

·
−→
AZ
−→
ZB

= −1.

Theorem 2.69 (Stewart’s theorem). If D is an arbitrary point on the line BC, then

AD2 =

−→
DC
−→
BC

BD2 +

−→
BD
−→
BC

CD2 −−→
BD ·−→DC.

Specifically, if D is the midpoint of BC, then 4AD2 = 2AB2 + 2AC2−BC2.

2.3.3 Barycenters

Definition 2.70. A mass point (A,m) is a point A that is assigned a mass m > 0.

Definition 2.71. The center of mass (barycenter) of the set of mass points (Ai,mi),

i = 1,2, . . . ,n, is the point T such that ∑i mi
−→
TAi =

−→
0 .

Theorem 2.72 (Leibniz’s theorem). Let T be the mass center of the set of mass
points {(Ai,mi) | i = 1,2, . . . ,n} of total mass m = m1 + · · ·+ mn, and let X be an
arbitrary point. Then

n

∑
i=1

miXA2
i =

n

∑
i=1

miTA2
i + mXT2.

Specifically, if T is the centroid of △ABC and X an arbitrary point, then

AX2 + BX2 +CX2 = AT 2 + BT 2 +CT 2 + 3XT2 .

2.3.4 Quadrilaterals

Theorem 2.73. A quadrilateral ABCD is cyclic (i.e., there exists a circumcircle of
ABCD) if and only if ∠ACB = ∠ADB and if and only if ∠ADC +∠ABC = 180◦.



2.3 Geometry 15

Theorem 2.74 (Ptolemy’s theorem). A convex quadrilateral ABCD is cyclic if and
only if

AC ·BD = AB ·CD+ AD ·BC.

For an arbitrary quadrilateral ABCD we have Ptolemy’s inequality (see 2.3.7, Geo-
metric Inequalities).

Theorem 2.75 (Casey’s theorem). Let k1, k2, k3, and k4 be four circles that all touch
a given circle k. Let ti j be the length of a segment determined by an external common
tangent of circles ki and k j (i, j ∈ {1,2,3,4}) if both ki and k j touch k internally, or
both touch k externally. Otherwise, ti j is set to be the internal common tangent. Then
one of the products t12t34, t13t24, and t14t23 is the sum of the other two.

Some of the circles k1, k2, k3, k4 may be degenerate, i.e., of 0 radius, and thus
reduced to being points. In particular, for three points A, B, C on a circle k and a
circle k′ touching k at a point on the arc of AC not containing B, we have AC · b =
AB · c + a ·BC, where a, b, and c are the lengths of the tangent segments from points
A, B, and C to k′. Ptolemy’s theorem is a special case of Casey’s theorem when all
four circles are degenerate.

Theorem 2.76. A convex quadrilateral ABCD is tangent (i.e., there exists an incircle
of ABCD) if and only if

AB +CD = BC + DA.

Theorem 2.77. For arbitrary points A,B,C,D in space, AC ⊥ BD if and only if

AB2 +CD2 = BC2 + DA2.

Theorem 2.78 (Newton’s theorem). Let ABCD be a quadrilateral, AD∩BC = E,
and AB∩DC = F (such points A,B,C,D,E,F form a complete quadrilateral). Then
the midpoints of AC, BD, and EF are collinear. If ABCD is tangent, then the incenter
also lies on this line.

Theorem 2.79 (Brocard’s theorem). Let ABCD be a quadrilateral inscribed in a
circle with center O, and let P = AB∩CD, Q = AD∩BC, R = AC∩BD. Then O is
the orthocenter of △PQR.

2.3.5 Circle Geometry

Theorem 2.80 (Pascal’s theorem). If A1,A2,A3,B1,B2,B3 are distinct points on a
conic γ (e.g., circle), then points X1 = A2B3 ∩A3B2, X2 = A1B3 ∩A3B1, and X3 =
A1B2 ∩A2B1 are collinear. The special result when γ consists of two lines is called
Pappus’s theorem.

Theorem 2.81 (Brianchon’s theorem). Let ABCDEF be a convex hexagon. If a
conic (e.g., circle) can be inscribed in ABCDEF, then AD, BE, and CF meet in a
point.
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Theorem 2.82 (The butterfly theorem). Let AB be a chord of a circle k and C its
midpoint. Let p and q be two different lines through C that, respectively, intersect k
on one side of AB in P and Q and on the other in P′ and Q′. Let E and F respectively
be the intersections of PQ′ and P′Q with AB. Then it follows that CE = CF.

Definition 2.83. The power of a point X with respect to a circle k(O,r) is defined
by P(X) = OX2 − r2. For an arbitrary line l through X that intersects k at A and B

(A = B when l is a tangent), it follows that P(X) =
−→
XA ·−→XB.

Definition 2.84. The radical axis of two circles is the locus of points that have
equal powers with respect to both circles. The radical axis of circles k1(O1,r1) and
k2(O2,r2) is a line perpendicular to O1O2. The radical axes of three distinct circles
are concurrent or mutually parallel. If concurrent, the intersection of the three axes
is called the radical center.

Definition 2.85. The pole of a line l 6∋ O with respect to a circle k(O,r) is a point A
on the other side of l from O such that OA ⊥ l and d(O, l) ·OA = r2. In particular, if l
intersects k in two points, its pole will be the intersection of the tangents to k at these
two points.

Definition 2.86. The polar of the point A from the previous definition is the line l.
In particular, if A is a point outside k and AM, AN are tangents to k (M,N ∈ k), then
MN is the polar of A.
Poles and polars are generally defined in a similar way with respect to arbitrary
nondegenerate conics.

Theorem 2.87. If A belongs to the polar of B, then B belongs to the polar of A.

2.3.6 Inversion

Definition 2.88. An inversion of the plane π about the circle k(O,r) (which belongs
to π) is a transformation of the set π\{O} onto itself such that every point P is
transformed into a point P′ on the ray (OP such that OP ·OP′ = r2. In the following
statements we implicitly assume exclusion of O.

Theorem 2.89. The fixed points of an inversion about a circle k are on the circle k.
The inside of k is transformed into the outside and vice versa.

Theorem 2.90. If A, B transform into A′, B′ after an inversion about a circle k, then
∠OAB = ∠OB′A′, and also ABB′A′ is cyclic and perpendicular to k. A circle perpen-
dicular to k transforms into itself. Inversion preserves angles between continuous
curves (which includes lines and circles).

Theorem 2.91. An inversion transforms lines not containing O into circles contain-
ing O, lines containing O into themselves, circles not containing O into circles not
containing O, circles containing O into lines not containing O.
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2.3.7 Geometric Inequalities

Theorem 2.92 (The triangle inequality). For any three points A, B, C, AB + BC ≥
AC. Equality occurs when A, B, C are collinear and B is between A and C. In the
sequel we will use B(A,B,C) to emphasize that B is between A and C.

Theorem 2.93 (Ptolemy’s inequality). For any four points A, B, C, D,

AC ·BD ≤ AB ·CD+ AD ·BC.

Theorem 2.94 (The parallelogram inequality). For any four points A, B, C, D,

AB2 + BC2 +CD2 + DA2 ≥ AC2 + BD2.

Equality occurs if and only if ABCD is a parallelogram.

Theorem 2.95. For a given triangle △ABC the point X for which AX + BX +CX is
minimal is Toricelli’s point when all angles of △ABC are less than or equal to 120◦,
and is the vertex of the obtuse angle otherwise. The point X2 for which AX2

2 +BX2
2 +

CX2
2 is minimal is the centroid (see Leibniz’s theorem).

Theorem 2.96 (The Erdős–Mordell inequality). Let P be a point in the interior of
△ABC and X ,Y,Z projections of P onto BC,AC,AB, respectively. Then

PA + PB + PC ≥ 2(PX + PY + PZ).

Equality holds if and only if △ABC is equilateral and P is its center.

2.3.8 Trigonometry

Definition 2.97. The trigonometric circle is the unit circle centered at the origin O of
a coordinate plane. Let A be the point (1,0) and P(x,y) a point on the trigonometric
circle such that ∡AOP = α . We define sinα = y, cosα = x, tanα = y/x, and cotα =
x/y.

Theorem 2.98. The functions sin and cos are periodic with period 2π . The func-
tions tan and cot are periodic with period π . The following simple identities hold:
sin2 x+cos2 x = 1, sin0 = sinπ = 0, sin(−x) = −sinx, cos(−x) = cosx, sin(π/2) =
1, sin(π/4) = 1/

√
2, sin(π/6) = 1/2, cosx = sin(π/2− x). From these identities

other identities can be easily derived.

Theorem 2.99. Additive formulas for trigonometric functions:

sin(α ±β ) = sinα cosβ ± cosα sinβ , cos(α ±β ) = cosα cosβ ∓ sinα sinβ ,

tan(α ±β ) = tanα±tanβ
1∓tanα tanβ , cot(α ±β ) = cotα cotβ∓1

cotα±cotβ .
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Theorem 2.100. Formulas for trigonometric functions of 2x and 3x:

sin 2x = 2sinxcosx, sin3x = 3sinx−4sin3 x,
cos2x = 2cos2 x−1, cos3x = 4cos3 x−3cosx,

tan2x = 2 tanx
1−tan2 x

, tan3x = 3 tanx−tan3 x
1−3 tan2 x

.

Theorem 2.101. For any x ∈ R, sinx = 2t
1+t2 and cosx = 1−t2

1+t2 , where t = tan x
2 .

Theorem 2.102. Transformations from product to sum:

2cosα cosβ = cos(α + β )+ cos(α −β ),
2sinα cosβ = sin(α + β )+ sin(α −β ),
2sinα sinβ = cos(α −β )− cos(α + β ).

Theorem 2.103. The angles α,β ,γ of a triangle satisfy

cos2 α + cos2 β + cos2 γ + 2cosα cosβ cosγ = 1,
tanα + tanβ + tanγ = tanα tanβ tanγ.

Theorem 2.104 (De Moivre’s formula). If i2 = −1, then

(cosx + isinx)n = cosnx + isinnx.

2.3.9 Formulas in Geometry

Theorem 2.105 (Heron’s formula). The area of a triangle ABC with sides a,b,c
and semiperimeter s is given by

S =
√

s(s−a)(s−b)(s− c) =
1
4

√
2a2b2 + 2a2c2 + 2b2c2 −a4 −b4 − c4.

Theorem 2.106 (The law of sines). The sides a,b,c and angles α,β ,γ of a triangle
ABC satisfy

a
sinα

=
b

sinβ
=

c
sinγ

= 2R,

where R is the circumradius of △ABC.

Theorem 2.107 (The law of cosines). The sides and angles of △ABC satisfy

c2 = a2 + b2−2abcosγ.

Theorem 2.108. The circumradius R and inradius r of a triangle ABC satisfy R =
abc
4S and r = 2S

a+b+c = R(cosα +cosβ +cosγ −1). If x,y,z denote the distances of the
circumcenter in an acute triangle to the sides, then x+ y + z = R + r.

Theorem 2.109 (Euler’s formula). If O and I are the circumcenter and incenter of
△ABC, then OI2 = R(R−2r), where R and r are respectively the circumradius and
the inradius of △ABC. Consequently, R ≥ 2r.



2.4 Number Theory 19

Theorem 2.110. If a, b, c, d are lengths of the sides of a convex quadrilateral, p its
semiperimeter, and α and γ two non-adjacent angles of the quadrilateral, then its
area S is given by

S =

√
(p−a)(p−b)(p− c)(p−d)−abcd cos2 α + γ

2
.

If the quadrilateral is cyclic, the above formula reduces to

S =
√

(p−a)(p−b)(p− c)(p−d).

Theorem 2.111 (Euler’s theorem for pedal triangles). Let X ,Y,Z be the feet of
the perpendiculars from a point P to the sides of a triangle ABC. Let O denote the
circumcenter and R the circumradius of △ABC. Then

SXY Z =
1
4

∣∣∣∣1−
OP2

R2

∣∣∣∣SABC .

Moreover, SXY Z = 0 if and only if P lies on the circumcircle of △ABC (see Simson’s
line).

Theorem 2.112. If −→a = (a1,a2,a3),
−→
b = (b1,b2,b3),

−→c = (c1,c2,c3) are three vec-
tors in coordinate space, then

−→a ·−→b = a1b1 + a2b2 + a3b3,
−→a ×−→

b = (a1b2 −a2b1,a2b3 −a3b2,a3b1 −a1b3),

[−→a ,
−→
b ,−→c ] = det




a1 a2 a3

b1 b2 b3

c1 c2 c3


 .

Here detM denotes the determinant of the square matrix M.

Theorem 2.113. The area of a triangle ABC and the volume of a tetrahedron ABCD

are equal to 1
2 |
−→
AB×−→

AC| and 1
6

∣∣∣
[−→
AB,

−→
AC,

−→
AD
]∣∣∣, respectively.

Theorem 2.114 (Cavalieri’s principle). If the sections of two solids by the same
plane always have equal area, then the volumes of the two solids are equal.

2.4 Number Theory

2.4.1 Divisibility and Congruences

Definition 2.115. The greatest common divisor (a,b) = gcd(a,b) of a,b ∈ N is the
largest positive integer that divides both a and b. Positive integers a and b are coprime
or relatively prime if (a,b) = 1. The least common multiple [a,b] = lcm(a,b) of
a,b ∈ N is the smallest positive integer that is divisible by both a and b. It holds
that [a,b](a,b) = ab. The above concepts are easily generalized to more than two
numbers; i.e., we also define (a1,a2, . . . ,an) and [a1,a2, . . . ,an].
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Theorem 2.116 (Euclidean algorithm). Since (a,b) = (|a− b|,a) = (|a− b|,b), it
follows that starting from positive integers a and b one eventually obtains (a,b) by
repeatedly replacing a and b with |a− b| and min{a,b} until the two numbers are
equal. The algorithm can be generalized to more than two numbers.

Theorem 2.117 (Corollary to Euclidean algorithm). For each a,b ∈ N there exist
x,y ∈Z such that ax+by = (a,b). The number (a,b) is the smallest positive number
for which such x and y can be found.

Theorem 2.118 (Second corollary to Euclid’s algorithm). For a,m,n ∈ N and a >
1 it follows that (am −1,an−1) = a(m,n)−1.

Theorem 2.119 (Fundamental theorem of arithmetic). Every positive integer can
be uniquely represented as a product of primes, up to their order.

Theorem 2.120. The fundamental theorem of arithmetic also holds in some other
rings, such as Z[i] = {a+bi | a,b∈Z}, Z[

√
2], Z[

√
−2], Z[ω ] (where ω is a complex

third root of 1). In these cases, the factorization into primes is unique up to the order
and divisors of 1.

Definition 2.121. Integers a,b are congruent modulo n∈N if n | a−b. We then write
a ≡ b (mod n).

Theorem 2.122 (Chinese remainder theorem). If m1,m2, . . . ,mk are positive in-
tegers pairwise relatively prime and a1, . . . ,ak, c1, . . . ,ck are integers such that
(ai,mi) = 1 (i = 1, . . . ,k), then the system of congruences

aix ≡ ci (mod mi), i = 1,2, . . . ,k ,

has a unique solution modulo m1m2 · · ·mk.

2.4.2 Exponential Congruences

Theorem 2.123 (Wilson’s theorem). If p is a prime, then p | (p−1)! + 1.

Theorem 2.124 (Fermat’s (little) theorem). Let p be a prime number and a an
integer with (a, p) = 1. Then ap−1 ≡ 1 (mod p). This theorem is a special case of
Euler’s theorem.

Definition 2.125. Euler’s function ϕ(n) is defined for n∈N as the number of positive
integers less than or equal to n and coprime to n. It holds that

ϕ(n) = n

(
1− 1

p1

)
· · ·
(

1− 1
pk

)
,

where n = pα1
1 · · · pαk

k is the factorization of n into primes.

Theorem 2.126 (Euler’s theorem). Let n be a natural number and a an integer with
(a,n) = 1. Then aϕ(n) ≡ 1 (mod n).
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Theorem 2.127 (Existence of primitive roots). Let p be a prime number. There
exists g ∈ {1,2, . . . , p − 1} (called a primitive root modulo p) such that the set
{1,g,g2, . . . ,gp−2} is equal to {1, 2, . . . , p−1} modulo p.

Definition 2.128. Let p be a prime and α a nonnegative integer. We say that pα is
the exact power of p that divides an integer a (and α the exact exponent) if pα | a
and pα+1 ∤ a.

Theorem 2.129. Let a and n be positive integers and p an odd prime. If pα (α ∈ N)
is the exact power of p that divides a−1, then for any integer β ≥ 0, pα+β | an −1
if and only if pβ | n. (See (SL97-14).)

A similar statement holds for p = 2. If 2α (α ∈ N) is the exact power of 2 that
divides a2 −1, then for any integer β ≥ 0, 2α+β | an −1 if and only if 2β+1 | n. (See
(SL89-27).)

2.4.3 Quadratic Diophantine Equations

Theorem 2.130. The solutions of a2+b2 = c2 in integers are given by a = t(m2−n2),
b = 2tmn, c = t(m2 + n2) (provided that b is even), where t,m,n ∈ Z. The triples
(a,b,c) are called Pythagorean (or primitive Pythagorean if gcd(a,b,c) = 1).

Definition 2.131. Given D ∈ N that is not a perfect square, a Pell’s equation is an
equation of the form x2 −Dy2 = 1, where x,y ∈ Z.

Theorem 2.132. If (x0,y0) is the least (nontrivial) solution in N of the Pell’s equation
x2 −Dy2 = 1, then all the nontrivial integer solutions (x,y) are given by x+ y

√
D =

±(x0 + y0
√

D)n, where n ∈ Z.

Definition 2.133. An integer a is a quadratic residue modulo a prime p if there exists
x ∈ Z such that x2 ≡ a (mod p). Otherwise, a is a quadratic nonresidue modulo p.

Definition 2.134. The Legendre symbol for an integer a and a prime p is defined by

(
a
p

)
=





1 if a is a quadratic residue mod p and p ∤ a;
0 if p | a;
−1 otherwise.

Clearly
(

a
p

)
=
(

a+p
p

)
and

(
a2

p

)
= 1 if p ∤ a. The Legendre symbol is multiplicative,

i.e.,
(

a
p

)(
b
p

)
=
(

ab
p

)
.

Theorem 2.135 (Euler’s criterion). For each odd prime p and integer a not divisible

by p, a
p−1

2 ≡
(

a
p

)
(mod p).

Theorem 2.136. For a prime p > 3,
(
−1
p

)
,
(

2
p

)
, and

(
−3
p

)
are equal to 1 if and

only if p ≡ 1 (mod 4), p ≡±1 (mod 8) and p ≡ 1 (mod 6), respectively.
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Theorem 2.137 (Gauss’s reciprocity law). For any two distinct odd primes p and
q, we have that (

p
q

)(
q
p

)
= (−1)

p−1
2 · q−1

2 .

Definition 2.138. Jacobi symbol for an integer a and an odd positive integer b is
defined as (a

b

)
=

(
a
p1

)α1

· · ·
(

a
pk

)αk

,

where b = pα1
1 · · · pαk

k is the factorization of b into primes.

Theorem 2.139. If
(

a
b

)
= −1, then a is a quadratic nonresidue modulo b, but the

converse is false. All the above identities for Legendre symbols except Euler’s crite-
rion remain true for Jacobi symbols.

2.4.4 Farey Sequences

Definition 2.140. For any positive integer n, the Farey sequence Fn is the sequence
of rational numbers a/b with 0 ≤ a ≤ b ≤ n and (a,b) = 1 arranged in increasing
order. For instance, F3 = { 0

1 , 1
3 , 1

2 , 2
3 , 1

1}.

Theorem 2.141. If p1/q1, p2/q2, and p3/q3 are three successive terms in a Farey
sequence, then

p2q1 − p1q2 = 1 and
p1 + p3

q1 + q3
=

p2

q2
.

2.5 Combinatorics

2.5.1 Counting of Objects

Many combinatorial problems involving the counting of objects satisfying a given
set of properties can be properly reduced to an application of one of the following
concepts.

Definition 2.142. A variation of order n over k is a 1–to–1 mapping of {1,2, . . . ,k}
into {1,2, . . . ,n}. For a given n and k, where n≥ k, the number of different variations
is V k

n = n!
(n−k)! .

Definition 2.143. A variation with repetition of order n over k is an arbitrary map-
ping of {1,2, . . . ,k} into {1,2, . . . ,n}. For a given n and k the number of different

variations with repetition is V
k
n = kn.

Definition 2.144. A permutation of order n is a bijection of {1,2, . . . ,n} into itself (a
special case of variation for k = n). For a given n the number of different permutations
is Pn = n!.
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Definition 2.145. A combination of order n over k is a k-element subset of {1, 2, . . . ,
n}. For a given n and k the number of different combinations is Ck

n =
(n

k

)
.

Definition 2.146. A permutation with repetition of order n is a bijection of {1, 2, . . . ,
n} into a multiset of n elements. A multiset is defined to be a set in which certain
elements are deemed mutually indistinguishable (for example, as in {1,1,2,3}).

If {k1,k2, . . . ,ks} denotes the set of distinct elements in a multiset and the ele-
ment ki appears αi times in the multiset, then number of different permutations with
repetition is Pn,α1,...,αs = n!

α1!·α2!···αs! . A combination is a special case of permutation
with repetition for a multiset with two different elements.

Theorem 2.147 (The pigeonhole principle). If a set of nk + 1 different elements is
partitioned into n mutually disjoint subsets, then at least one subset will contain at
least k + 1 elements.

Theorem 2.148 (The inclusion–exclusion principle). Let S1,S2, . . . ,Sn be a family
of subsets of the set S. The number of elements of S contained in none of the subsets
is given by the formula

|S\(S1∪·· ·∪Sn)| = |S|−
n

∑
k=1

∑
1≤i1<···<ik≤n

(−1)k−1|Si1 ∩·· ·∩Sik | .

2.5.2 Graph Theory

Definition 2.149. A graph G = (V,E) is a set of objects, i.e., vertices, V paired with
the multiset E of some pairs of elements of V , i.e., edges. When (x,y) ∈ E , for x,y ∈
V , the vertices x and y are said to be connected by an edge; i.e., the vertices are the
endpoints of the edge.

A graph for which the multiset E reduces to a proper set (i.e., each pair of vertices
are connected by at most one edge) and for which no vertex is connected to itself is
called a simple graph.

A finite graph is one in which |E| and |V | are finite.

Definition 2.150. An oriented graph is one in which the pairs in E are ordered.

Definition 2.151. The simple graph Kn consisting of n vertices and in which each
pair of vertices is connected is called a complete graph.

Definition 2.152. A k-partite graph (bipartite for k = 2) Ki1,i2,...,ik is a graph whose
set of vertices V can be partitioned into k nonempty disjoint subsets of cardinalities
i1, i2, . . . , ik such that each vertex x in a subset W of V is connected only with the
vertices not in W .

Definition 2.153. Given a bipartite graph (V,E), let W and M be a partition of its
set of vertices (you can think of W as a set of women and M a set of men). Assume
that |W | ≤ |M|. A marriage is an injective map f : W → M for which (w, f (w)) ∈ E
for every w ∈W .
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Theorem 2.154 (Hall’s marriage theorem). Let W, M be a partition of the set of
vertices of a bipartite graph. There exists a marriage f : W → M if and only if for
every U ⊆W the number |U | is not greater than the total number of neighbors of U
inside M.

Definition 2.155. The degree d(x) of a vertex x is the number of times x is the end-
point of an edge (thus, self-connecting edges are counted twice for corresponding
vertices). An isolated vertex is one with degree 0.

Theorem 2.156. For a graph G = (V,E) the following identity holds:

∑
x∈V

d(x) = 2|E|.

As a consequence, the number of vertices of odd degree is even.

Definition 2.157. A trajectory (path) of a graph is a finite sequence of vertices, each
connected to the previous one. The length of a trajectory is the number of edges
through which it passes. A circuit is a path that ends in the starting vertex. A cycle is
a circuit in which no vertex appears more than once (except the initial/final vertex).

A graph is connected if there exists a trajectory between any two vertices.

Definition 2.158. A subgraph G′ = (V ′,E ′) of a graph G = (V,E) is a graph such that
V ′ ⊆V and E ′ contains exactly the edges of E connecting points in V ′. A connected
component of a graph is a connected subgraph such that no vertex of the subgraph is
connected with any vertex outside of the subgraph.

Definition 2.159. A tree is a connected graph that contains no cycles.

Theorem 2.160. A tree with n vertices has exactly n−1 edges and at least two ver-
tices of degree 1.

Definition 2.161. An Euler path is a path in which each edge appears exactly once.
Likewise, an Euler circuit is an Euler path that is also a circuit.

Theorem 2.162. The following conditions are necessary and sufficient for a finite
connected graph G to have an Euler path:

• The graph contains an Euler circuit if and only if each vertex has even degree.
• The graph contains an Euler path if and only if the number of vertices of odd

degree is either 0 or 2 (in the latter case the path starts and ends in the two odd
vertices).

Definition 2.163. A Hamiltonian circuit is a circuit that contains each vertex of G
exactly once (trivially, it is also a cycle).

A simple rule to determine whether a graph contains a Hamiltonian circuit has
not yet been discovered.
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Theorem 2.164 (Ore’s theorem). Let G be a graph with n vertices. If the sum of the
degrees of any two nonadjacent vertices in G is greater than or equal to n, then G
has a Hamiltonian circuit.

Theorem 2.165 (Ramsey’s theorem). Let r ≥ 1 and q1,q2, . . . ,qs ≥ r. There exists
a minimal positive integer N(q1,q2, . . . ,qs;r) such that for n ≥ N, if all subgraphs
Kr of Kn are partitioned into s different sets, labeled A1,A2 . . . ,As, then for some i
there exists a complete subgraph Kqi whose subgraphs Kr all belong to Ai. For r = 2
this corresponds to coloring the edges of Kn with s different colors and looking for a
monochromatic subgraph Kqi in color i.

Theorem 2.166. N(p,q;r) ≤ N(N(p−1,q;r),N(p,q−1;r);r−1)+ 1, and in par-
ticular, N(p,q;2) ≤ N(p−1,q;2)+ N(p,q−1;2).

The following values of N are known: N(p,q;1) = p + q− 1, N(2, p;2) = p,
N(3,3;2) = 6, N(3,4;2) = 9, N(3,5;2) = 14, N(3,6;2) = 18, N(3,7;2) = 23,
N(3,8;2) = 28, N(3,9;2) = 36, N(4,4;2) = 18, N(4,5;2) = 25.

Theorem 2.167 (Turán’s theorem). If a simple graph on n = t(p− 1)+ r vertices

(0 ≤ r < p−1) has more than f (n, p) = (p−2)n2−r(p−1−r)
2(p−1) edges, then it contains Kp

as a subgraph. The graph containing f (n, p) edges that does not contain Kp is the
complete multipartite graph with r parts with t +1 vertices, and p−1− r parts with
t vertices.

Definition 2.168. A planar graph is one that can be embedded in a plane such that
its vertices are represented by points and its edges by lines (not necessarily straight)
connecting the vertices such that no two edges intersect each other.

Theorem 2.169. A planar graph with n vertices has at most 3n−6 edges.

Theorem 2.170 (Kuratowski’s theorem). Graphs K5 and K3,3 are not planar. Every
nonplanar graph contains a subgraph that can be obtained from one of these two
graphs by a subdivison of its edges.

Theorem 2.171 (Euler’s formula). For a given convex polyhedron let E be the
number of its edges, F the number of faces, and V the number of vertices. Then
E + 2 = F +V. The same formula holds for a connected planar graph (F is in this
case equal to the number of planar regions).
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