Chapter 2

Applications: Algorithms,
Primality and Factorization,
Codes

“Elle est retrouvée.
Quoi ? - L’Eternité.
C’est la mer allée
Avec le soleil.”

ARTHUR RIMBAUD

This chapter describes some industrial applications of number theory, via
computer science. We succinctly describe the main algorithms as well as
their theoretical complexity or computation time. We use the notation
O(f(n)) to denote a function < Cf(n); furthermore, the unimportant—at
least from a theoretical point of view—constants which appear will be ig-
nored. In the following sections, we introduce the basics of cryptography
and of the “RSA” system, which motivates the study of primality tests and
factorization methods. We finish the chapter with an introduction to error-
correcting codes, which will lead us into the study of cyclotomic polynomials.

1. Basic Algorithms

Let n be an integer. Once we have chosen a base b > 2, we write n in base
b, in other words, with the digits a; € [0,b — 1]:

b
n=ag+ab+---+a.b" =a.a,_1...a1ay , where a, #0

(the two most standard base choices are b = 10 for usual decimal notation
and b = 2 for binary notation, which is especially well-adapted to computer

M. Hindry, Arithmetics, Universitext, 35
DOI 10.1007/978-1-4471-2131-2 2,
(© Springer-Verlag London Limited 2011

http://dx.doi.org/10.1007/978-1-4471-2131-2_2

36 2. Applications: Algorithms, Primality and Factorization, Codes

programming). We will consider an operation on the digits to be a single
operation (or an operation which needs O(1) computation time). It is
natural to refer to the number of digits necessary in order to describe n,
in other words 7 + 1, as its complezity. Since we can see that b” < a,b" <
n < U™, we know that

logn
" logb

and can therefore describe the complexity as proportional to logn. It is
clear that the manipulation of random numbers of size n requires at least
log n elementary operations. We consider, as much from a practical point of
view as from a theoretical one, an algorithm to be “good” if it is a polynomial
algorithm; that is to say, it uses O ((logn)"*) elementary operations. Con-
versely, we consider an exponential algorithm, meaning that its execution
time or required number of operations is greater than exp(x logn) = n”, to
be infeasible (for large n, of course).

<r+1

Addition. In order to add two numbers m and n with at most r digits, we
must perform at most r additions of two digits and (possibly) carry a digit.
The cost is therefore O (logmax(n,m)) = O(r). The number of operations
used in subtraction is similar.

Multiplication. In order to calculate n x m, where n and m are two
numbers with at most r digits (with the usual elementary school algorithm),
we must perform at most r? elementary multiplications and r additions,
and possibly carry a digit, and therefore, the cost is O ((log max(n, m))2) =
O (r?).

Remark. The addition algorithm is (up to constants) optimal, but some
more sophisticated methods (notably the “fast Fourier transform”) lets us

perform multiplications at a much better cost, for example in O (r(log r)z).
See Exercises 2-7.3 and 2-7.4.

Division algorithm. Given a and b > 1, if we compute (g,r) such that
a=¢gb+rand 0 <r <b—1 with (a variation of) the algorithm learned in
elementary school, we perform a number of elementary operations similar to
that of multiplication, i.e., O(log max(a, b)?). In order to give an example of
a turtle algorithm (do not use!), we could perform the following procedure.
We start by setting ¢ = 0 and 9 = a. Then we have a = qob+r¢; if 7o < b,
we stop, and if not, we compute ¢; = gp + 1 and r; = ry — b in such a way
that a = ¢1b+ 1, and we get the result by iteration and by stopping when
rn, < band a = ¢;b+r,. If a > b, we must perform approximately a/b
subtractions, therefore the cost is O((loga) x (a/b)) (which is exponential).

Euclidean algorithm. Given two integers, a and b, the goal is to compute
d := ged(a,b) and (u,v) € Z* such au 4+ bv = d (Bézout’s lemma). The

§1. Basic Algorithms 37

principle is the following: we divide a by b, a = bgq; + r1; then divide b
by r1, b = r1g2 + r2, and in subsequent steps divide r, by 7,41, rn =
Tn+1qn+2 + Tnt2. Keep in mind that the sequence 7, is strictly decreasing
and stops when r,, .1 = 0, and therefore ged(a,b) = r,. In fact,

ged(a, b) = ged(b,r1) = ged(ry,re) = -+ - = ged(rn, Tnt1) = Tn.

In order to compute (u,v), we could proceed as follows: we set ug = 1,
u1; = 0, vg = 0 and v; = 1 and then recursively define u,, = up_2 — grUn_1
and v, = Vp_2 — ¢nVUn_1. One can immediately check by induction that
aly,+bv, = r,. We will now estimate the maximal number of times we need
to use the division algorithm. We can assume that rg = a > r; = b and see
that r, = "n41Gnt2 + Tnao = g1 + Tnge. frg >ry > - > 1, =dis the
sequence which gives the ged, set d; = r,,—;. We then have d; ;5 > d;4+1+d;.
Let o := (1 + v/5)/2 be the positive root of X2 = X + 1; it follows that
d; > o'. This is true because dg =d > 1=0a,d; > dy+1> 2> o' and if
the inequality is true until i+1, we have d; o > d;y1+d; > o' 14+af = ait2.
From this we conclude that a = d,, > o™, and the number of steps is
bounded above by log(a)/log(a) = O(loga). We should point out that
this argument implies that the longest computation happens when a and
b are terms in Fibonacci sequence (see Exercise 2-7.5). The total cost is
therefore O (log max{|al, [b|}?).

Computations in Z/NZ. The goal is to perform addition and multipli-
cation of two integers smaller than N, then to take the remainder gotten
from dividing by N in the division algorithm. In order to calculate the
inverse of ¢ modulo N, we proceed as follows: if a is an integer, the Eu-
clidean algorithm tells us that either ged(a, N) > 1—in which case a is not
invertible modulo N—or there exist u, v (gotten from the algorithm) such
that au + Nv = 1 and therefore the inverse of a is the class of u modulo
N. The cost is therefore the same as that of the Euclidean algorithm.

Exponentiation. In order to calculate a'™, we could of course calculate
axax - Xxa, but this will force us to perform m — 1 multiplications; we
could do a lot better by performing the computation in O(logm) multipli-
cations. For example, if m = 2" we would carry out r multiplications. In
the general case, we write m in binary notation m = ¢y + €12 + - - - + €,.2"
and we would calculate

2

) 2
a™ = ((aer) aET‘l) a=2... | g.

Or we could do the calculation in the other direction; the algorithm can be
defined iteratively. In order to do this, we start with the initial data chosen
to be (u,v,n) := (1,a,m) and we iterate as follows: if n is even, we replace

(u,v,n) by (u,v?,n/2) and if is n odd, we replace (u,v,n) by (uv,v?, (n —

38 2. Applications: Algorithms, Primality and Factorization, Codes

1)/2); we stop when n = 0, and we therefore have u = a™. Since n is at
least divisible by 2 in each step, the number of steps r satisfies 2" < m, and
hence we must perform O(logm) multiplications. If we calculate mod N,
we reduce each result mod IV, and so in each step we multiply integers < N.
The total cost to compute a”™ mod N is therefore O (log m(log N)z).

Computations in F; and Fj. We will assume that the finite field
F, = F,; is defined by an irreducible monic polynomial S(X) = X7 +
spo1 X 714+ 59 € Fy[X] of degree f. We therefore identify F, with
F,[X]/SF,[X], which can be seen as the vector space over F,, with basis
1,z,2%,...,2f~1 with addition on the individual coordinates and multi-
plication defined by % - 27 = z**J and 2/ = —sf,le_l — - —58p. An
element of F is therefore seen as an f-tuple of integers modulo p or as a
polynomial of degree < f — 1. To perform an addition, we must perform
f additions in F,, so at a cost of O(flogp) = O(logq). To carry out a
multiplication, we take the product of two polynomials, or essentially f2
multiplications in F,, then divide the result by S(X) using the division
algorithm, or essentially O(f) divisions and O(f?) multiplications in F,,.
The cost of a multiplication in F, is therefore O(f?(logp)?) +O(f(logp)?).
Let us point out that this cost is still O((logg)?), but that if we choose
q = 2/ for example, it is O(f2) = O((log ¢)?).

2. Cryptography, RSA

We are only interested here in one aspect of cryptography and in one system
of “public keys”, known as RSA from the name of its three inventors, Rivest,
Shamir and Adleman [61], and which is one of the most widely used.

Cryptography is the art (or science) of secret messages: we want to send
information so that only one other person, the recipient, can see it. A
related problem is to be able to identify with certainty the sender of the
message. We generally think that the only method is to use a “secret code”;
in fact the originality of “public key” cryptography comes precisely from
the fact that the code is not secret, but is known (for the most part) by
everybody! This is not only a mathematical curiosity, it is also the principle
governing credit cards, internet transactions, etc.

The general principle is the following. We call .# the set of messages (in
practice we take .# = [0,N — 1] or Z/NZ). Two people, A and B, who
wish to exchange messages in such a way that a third person, C, cannot
decipher them each choose bijections fa, fg : # — . The set A (say
the integer N) is known to everybody, as well as fa and fg, however—and
this is the key idea—the inverse function fy' (resp. fz') is only known
by A (resp. by B). This does not mean of course that, knowing fa, it is

§2. Cryptography, RSA 39

theoretically impossible to compute fgl, but this calculation would be so
long, that it would be out of the question to carry out in a reasonable time
frame. We will later see how to construct such functions.

When A wants to send B a message m € . (say an integer modulo N), he
or she simply sends m’ = fg o f, ! (m); remember that A knows fp (which
is public) and f5* (which only he or she knows). In order to decode this
message, B computes fa o fg'(m’), which will give m; remember that
B knows fa (which is public) and fg' (which only he or she knows).
The system has two advantages: not only can C not decipher the message
without computing fg ! (which we assume to be out of the question), but
B can be sure that it is A who sent the message since it must have been
encoded using f;17 which only A knows!

This procedure is a simplified form of the known methods under the name
of the Diffie-Hellman protocol (1976); its security relies on the choice of
the “one-way” functions f, in other words such that f is quick and easy to
compute, but f~! is in practice impossible to determine. Many construc-
tions of functions have been suggested, but one of the most hardy and most
widely used, relies on the fact that if p and ¢ are very large prime numbers
(say 100 or more digits), then their product N := pgq can be calculated very
quickly (say 10,000 elementary operations), whereas if you only know N,
it is an extremely long calculation to factor it, impossible in practice.

We now construct the functions f4 of the RSA system. We choose two
very large prime numbers, p and ¢, compute N := pg and also choose a
medium-sized integer d which is relatively prime to ¢(N) = (p —1)(¢ — 1).
The public key is therefore (IV,d); however, p and ¢ are secret and we set,
for a any integer smaller than IV,

f(a) := a®mod N.

To decode a message, we calculate the inverse e of d modulo ¢(N) and we
observe that

1) = b*mod N,

since (ad)e = a° = amod N, because a®™) = 1mod N.

2.1. Remarks. 1) There is one little constraint on the “message” a: it
should be relatively prime to N'. Nonetheless, observe that the proportion
of integers which are relatively prime to NV is ¢(N)/N = (1—-1/p)(1—1/q);
so if p, q are for example > 10°°, the proportion of integers which are not
relatively prime to NV is < 21070,

1If by mistake, a message a = pa’ was sent, we could certainly still decode it by
fla)e = pdea’®® = peda/ = q, but C, or whoever else, would only have to compute
ged(a, N) to discover p and crack the code!

40 2. Applications: Algorithms, Primality and Factorization, Codes

2) Once p, g and d have been chosen, the computation of N, ¢(N) and e
is performed in polynomial time (fast); likewise, the operation a — f(a) is
just as fast as a +— f~1(a) if we know e.

3) We can see, at least heuristically, that knowing the number e allows
us to factor N: if we write de — 1 = 2"M (with M odd), by computing

gcd(asz +1,N) for j = 1,2,... and some values of a, we have a good
chance of quickly factoring N.

4) Therefore, if someone knows only the public key (NN, d), they should a
priori factor N in order to compute ¢(N) then e. In fact, the knowledge
of ¢(N) is equivalent to that of p and ¢, because ¢(N) =N — (p+¢q) +1
(the knowledge of the product and the sum of two integers lets you easily
determine the integer pair).

This system gives rise to many problems, the solutions to which are more
or less satisfactory.

i) How do you construct (very) large prime numbers?
ii) What methods do we have for factoring an integer?

iii) How should you choose p and ¢ in RSA that resist factorization meth-
ods?

Since it is clear from question i) that the prime numbers should not be
too “special”, question 7) is essentially equivalent to the following problem.

e (I) (Primality Test) Give a fast algorithm which determines whether a
number N is prime.

If we had access to such an algorithm &2, we could in fact decide on the
size of the integer (for example N ~ 105°), randomly choose an odd integer
N of this size, and test &?(N;) then P(Ny+2), 2(N; +4) until we find a
prime number. By the theorems on the distribution of prime numbers, the
number of primes in an interval [Ny, N + H] is approximately H/log(Ny);
so we expect to find a prime number in O(log(Ny)) tries.

We will see that satisfactory answers to problem i) are available, but we
only know partial answers to the other questions.

3. Primality Test (I)

We consider an odd integer N and the problem of determining whether
N is prime. We denote by (M, N) the ged of M and N. The letter p is
reserved for a number which we already know is prime. The first of all of
the primality tests, and in some sense the “grandfather”, is the following
lemma.

§3. Primality Test (I) 41

3.1. Lemma. (Fermat) If N is prime and (a, N) = 1, then aV~! =
1mod N.

Proof. The group Z/NZ* has order N — 1 and the lemma follows from the
Lagrange’s theorem.? O

This is a “good” test, in the sense that computing a’¥ ' mod N requires
O(log N) multiplications (under the condition of course that you use the
binary notation for N — 1). However, it is also a “bad” test, because there
are numbers, called Carmichael numbers, which satisfy the test without
being prime. We even know that there are infinitely many of them [11],
the smallest being 561 = 3-11-17. We can easily see that a number N
is a Carmichael number if and only if N is square-free and p — 1 divides
N —1 for every p which divides N. In general, we could introduce A(N), the
exponent of the group (Z/NZ)*, sometimes called the Carmichael function:
it is the smallest positive integer (in the sense of divisibility or the usual
order) such that for all a relatively prime to N, a*™) = 1mod N. By what
we have seen, we know that if N = pi"* ---p/"* is odd, we have

AN) = lem (p M p1r — 1), .,pp Hpr — 1)) (2.1)

It is always true that A(/V) divides ¢(V) and the equality holds if and only
if (Z/NZ)* is cyclic, i.e., if N = p® or 2p® or 4.

3.2. Lemma. (Euler®) If N is prime and (a,N) = 1, then

N-1 a
a 2 :<W) mod N.

Proof. This is simply a restatement of assertion %) from Theorem 1-3.3.0]

The Solovay-Strassen test is an algorithm which checks the congruences
given below for a randomly chosen a. This test is always polynomial (for
any value of a, we can always quickly calculate the Jacobi symbol thanks
to the quadratic reciprocity law, see Exercise 2-7.7) and is better than
Fermat’s test.

N-1
3.3. Lemma. Let H := {a €(Z/nZ)*|a 2 = (%) modN}, then

H = (Z/nZ)* if and only if N is a prime number.

2To prove Fermat’s little theorem by using Lagrange’s theorem is obviously an
anachronism.

3Calling a statement which uses the Legendre or Jacobi symbol “Euler’s criterion” is
also an anachronism.

42 2. Applications: Algorithms, Primality and Factorization, Codes

Proof. We have seen that if N is prime, then H = (Z/nZ)*. If p? divides
N, there exists a of order p(p—1), and p does not divide N — 1. Therefore,
a7l #£ 1. If N = ppy---p, with 7 > 2, choose (by the Chinese remainder

theorem) a = 1 modulo ps,...,p, and which is not a square modulo p;
hence (%) = —1, but a®™¥=1/2 = 1modpy---p, and thus aN-1/2 £
—1mod N. O
Applications.

i) Probabilistic polynomial test. If N is composite then (Z/NZ* : H) > 2
and hence by randomly choosing a, we have at least a one in two chance
that a ¢ H. Hence if N successively passes k tests, we can say that it
is prime with a probability greater than 1 — 2%,

ii) Deterministic polynomial test (assuming GRH). Analytic theory has
provided a proof that if the Dirichlet L(y,s) functions do not vanish
on Re(s) > 1/2 (generalized Riemann hypothesis, GRH), then for every
nontrivial character y : (Z/NZ)* — C*, there exists an a < 2(log N)?
such that x(a) # 0,1. We can deduce from this that if N were compos-

ite, there would exist a < 2(log N)? which would not pass the Solovay-

N-1
Strassen test. If N = pi"*---p;"*, we introduce f(a) :=a 2 (%)
and

Xi : (Z/NZ)* L (Z/NZ)* — (Z/p"Z)" — C.

We see that H is the intersection of the kernels of x;. By trying all
of the a € [2,2(log N)?], we therefore get a primality certificate (i.e., a
proof of primality), under the condition that the Riemann hypothesis
is true.

We could improve the Solovay-Strassen test and algorithm.

3.4. Lemma. (Rabin-Miller) Let N be odd. Set N —1 = 2°M, with M
odd. If N is prime and (a,N) = 1, then either a™ = 1mod N or there
erists 0 < r < s —1 such that a> ™ = —1mod N.

Proof. The order of @ modulo N is 2¢M’, where 0 < t < s and M’ is an
odd integer which divides M. If t = 0, then a™' =1 hence a™ = 1. If
t > 1, then, since N is prime, a® ™' = —1, and therefore a2 M = —1.00

This test is better than Euler’s test, because, for one thing, if the pair a,
N passes the Rabin-Miller test, then it also must pass Euler’s test. Fur-
thermore, if N is composite, the proportion of a which pass the refined test

§3. Primality Test (I) 43

is < 1/4 and often smaller than that. Of course there exists a probabilis-
tic polynomial version of the refined test and a deterministic polynomial
version, assuming that the Riemann hypothesis is true.

3.5. Remark. If N = 3mod4, then “Rabin-Miller” is identical to
“Solovay-Strassen”, and even equivalent to aV=1/2 = +1mod N. We know

that (N —1)/2 is odd, and we can observe that if € = 1, then (%) =,
and if W~1/2 = +1mod N, then

(g2)(N=3)/4 _
(%) = (%) = (W} = aN=Y/2 mod N.

Proof. (“Rabin-Miller” > “Solovay-Strassen”, in the general case) Now, we
know that aV-1/2 = 42" 'M equals —1 mod N if »r = s — 1 and equals

1 mod N in all of the other cases. Therefore, we need to compute (%)

M M N1
If a™ =1 mod N, then (%) = (%) = (%) =1, hencea 2 =

(%) mod N. Now assume that a2 = —1mod N. Let p; divide N and

write p; —1 = 2% M;. Then, since > ™ = —1 mod p;, the order of a modulo
p; is of the form 271 L; (with L; odd). Therefore, modulo p;, we get

(L) =alrb/z= g2 = 1 ifs >r+1,
o) =a =a = .
" -1 ifs;=r+1.

Now notice that » +1 < s;. Let h be the number of indices ¢ such that

s; = r + 1. Therefore, we have (%) = (—1)". Modulo 272, we have

N =1+2M = [[,pi = [L,(1+2%) = 1+h2 ' mod2" 2. In the

case where r < s — 1, h must be even, so that (%) = 1, and we get

a™W=1/2 = 1mod N. In the case where r = s — 1, then h is odd and

(%):—15@<N_1)/2m0dN. O

We can summarize the previous discussion by introducing the following
sets:

Go = (Z/NZ)",
Gi1:={a€(Z/NZ)* | a" "' =1mod N},
Gy = {a € (Z/NZ)* | aN-1/2 = :l:lmodN},

Gs = {a € (Z/NZ)* | aN-1D/2 = (%) modN},

44 2. Applications: Algorithms, Primality and Factorization, Codes

S:={a€(Z/NZ)* | a™ =1mod N or Ir € [0, s — 1] such that
@M= —lmodN}.

We always have the inclusions S C Gs C G C Gy C Gy, and these
are equalities if and only if N is prime, or also if and only if G5 = Gj.
Furthermore, G1, G2 and G3 are subgroups, but in general S is not, even
though in the case N = 3mod 4 we have seen that Go = G3 = S. In fact, S
is stable under inversion, and if a,b € S do not satisfy the same congruence
or both a™ = bM =1, then ab € S. But if a®> ™ = »*"M = —1, it could
happen that ab ¢ S. For example, if €2 = 1 but € # +1 and if a®M =
—1 (which would force N = 1mod4), then a € S and ae € S, because
(ae)*M = —1. However, (ea®)M = Ma?M = —¢ # 41 and (ea?)*M =1,
hence ea® ¢ S. By considering a +— (%) aN=1/2 from Gy to {£1}, we

see that (G2 : G3) =1 or 2. We are now going to compute the cardinality
of the set S and, in particular, verify the following statement.

3.6. Proposition. Let N be an odd, composite number. If N # 9, then
5] _1
< -
|Go| 4

3.7. Definition. Let A, B be integers. We define
¢(A; B) = card {a € (Z/AZ)* | a” = 1mod A} .
3.8. Lemma. Lett >0 and N =14 2°M = p{"* ---p* (with M odd).
We set p; — 1 = 2% M;, s, = min(t,s;) and t; := ged(M, M;). Then
G(N, 2t M) = 251+ H5igy oty
Moreover, the cardinality of the set
{a € (Z/NZ)" | a®M = —1modN}
is 0 if t > min, s;, and equal to ¢(N,2tM) = 2%ty - -ty if t < min, s;.

Proof. We know that a2 M = 1mod N if and only if a?M =1 modp?j for

j=1,...,k Now, the group (Z/p;”Z)* is cyclic of order (p; — l)p?jfl, SO

the number of solutions is
ged(2'M, (p; — 1)p" ") = ged(2!M, 2% M;) = 2min(teig .
By the Chinese remainder theorem, the number of solutions modulo N

is therefore the product of these numbers, and hence we have proven the
first claim. For the second claim, we see right away that either there does

§3. Primality Test (I) 45

not exist any solution, or there does exist a solution and therefore the set
of solutions is in bijection with the solutions of the previous congruence.
2PM

The congruence a —1mod p?J is solvable if and only if 21 divides

(pj — 1)p;”_1, in other words if and only if ¢ + 1 < s;, hence we have the
desired result. g

Proof. (of Proposition 2-3.6) Assume that s; < so < ... < s;. By
decomposing the set S into Sy := {a € (Z/NZ)* | a™ =1mod N} and

T, = {a € (Z/NZ)* | a?M = —1modN} for 0 < j < s;7 — 1 and by ap-

plying Lemma 2-3.8 to each one of these sets, we have

kSl k _
card(S) =ty -ty (1 14284+t 2’“51—1)) =ty -ty (22:#)
—1

The ratio of a € Gy which pass the Rabin-Miller test is therefore

card(S) ty---ty 9—(s14-+sk) (oks1 4 ok _ 9) (2.2)

card(Go) ~ My -+ My poaTl pet ok _ 1 ’ '
If £ =1, the ratio is equal to al - < 1 T and is therefore < l7

Mypi*™ P

except when N = 32 in which case we have |S|/|Go| = 1/3. If k > 2, we
can assume that o3 = -+ = ai = 1, if not, the ratio is < 1/p;, which in

practice we can assume to be arbitrarily small. If one of the M; is different
from ¢;, then ¢y ...tx/M; ... My < 1/3. Furthermore,

97 S1 7 TSk w < 27}651 2k —2 + 1 < 2171C
k k k
9k 1 9k 1 9b 1

so the ratiois < 1/8 if k >4 and < 1/4if k = 3.

If £ = 2 and if one of the M; is distinct from all of the ¢;, then the ratio is
< 1/6 If k =2 and M1 = tl (i.e., M1 divides M) and M2 = tg (i.e., M2
divides M), we see that My = Mp, hence s1 < s (if not p1 = p2). We then
< 951-52 1 + 217251 1 +217251 1

.. . <1
have that the ratio is < 3 < 5 <7 O

)

3.9. Remark. By looking at the upper bounds above, we can prove that
the two “worst” cases are the following.

i) The number N is equal to pg with ¢ = 2p — 1 and p = 3mod4. For
example, N = 3-5, N = 7-13, etc. It follows that p = 1 + 2M; and
qg=1+4M; and N = (1+2M;)(1+4M;) = 14+ 2M;(3+4M;), hence
t1:t2:M1:M2 and so

card(S) 1

card(Gy) 4

46 2. Applications: Algorithms, Primality and Factorization, Codes

ii) The number N is equal to pgr = 1 + 2M, where p = 1+ 2M;, g =
1+ 2Ms, r = 1+ 2M3 and M; divides M. It follows from this that
the ratio is also 1/4. Take for example: N = 8911 = 7-19-67 (where
My =3, My =9, M3 =33 and M = 4455 = 3*.5-11).

4. Primality Test (II)

In this section we present the Agrawal-Kayal-Sazena algorithm [10], which
dates back to July 2002, and was introduced in their article “PRIMES is in
P” It gives a primality test in polynomial time.

The original idea was to perform tests in Z[X]. For example, we easily see
that if N is prime, then (X —a)¥ = X» —amod N, but this test has the
major default of requiring the computation of N coefficients. That will just
not do!

4.1. Lemma. Let N be prime and h(X) € Z[X]| a polynomial of degree r.
Then
(X —a)V = XN — a mod(N, h(X)).

Recall that in a ring, the notation a = bmod I means that a — b belongs to
the ideal I and that (a1, ..., a,) is the notation used for the ideal generated

by ai,...,a,. Thus the congruence in the lemma can be restated as: there
exists P, Q € Z[X] such that (X —a) —(X¥ —a) = NP(X)+h(X)Q(X).
It should be noted that if 7 is O((log N)¥), then this test remains poly-
nomial. The problem is to choose pairs a, h(X) in such a way that they
detect non-primality. The solution proposed by Agrawal, Kayal and Sax-
ena is to choose h(X) = X" — 1 with r being a “very well-chosen” prime,
in particular 7 = O((log N)¥), and to prove that it is then sufficient to test
the a € [1, L] with L = O(y/rlog N) in order to ensure that N is prime, or
possibly a prime power, which is not so bad.

The argument is essentially algebraic and combinatorial, but nevertheless
uses a result on the distribution of prime numbers, in fact a weak form
of the prime number theorem (see Chap. IV, (4.10)), which says that the
sum of the log p for p prime and smaller than x is > c¢;z for some constant
c1 > 0. We summarize what we are going to use in a lemma.

4.2. Lemma. LetY > 1 and let N > 2 be an integer. There exists a
prime number r which satisfies the following two properties.

i) The order of N modulo r is at least Y.

i) Furthermore, r = O (Y?log N).

§4. Primality Test (II) 47

Proof. Set A =[], <y (NY —1). Let r be the smallest prime number
which does not divide A. Then for y < Y, we have N¥ Z 1 mod r, and hence
condition 7). Moreover, every p < r divides A, whereas A < NY (¥ +1)/2
and consequently

Y(Y +1)

01T<Zlogp<10gA< 5 log N.
p<r
From this we have that 7 = O (Y?log N). O

Remark. We could add that, since the order of N modulo r divides r — 1,
we necessarily have r > Y.

We will also use the following elementary combinatorial lemma.

4.3. Lemma. The cardinality of the set of monomials in L variables of
degree < k is

L
card {(mq,...,mr) |mi20(mdm1+...+mL<k}:(;:k)

Furthermore, we have the estimate

(L Z k) > omin(L.k),

Proof. The first formula is classical and can be proven, for example, by
induction (call the cardinality in question f(L,k), check that f(L,0) =1
and f(1,k) = k+1, and then prove that f(L,k) = f(L,k—1)+ f(L—1,k)).
For the lower bound, observe that if k¥ < L, then

L+k\ (L4+k)@L+k—=1)---(L+2)(L+1) _kfl Lth—i
(k) k(k—1)---2-1 _H(ﬁ>>2’“,

=0

and if L > k, reverse the roles of L and k. O

Remark. We can often improve this inequality; for example, if 1 < k < L,
then (L;gk) > 2F(L +1)/2, and thus if L > 5, we have (sz) > ok+1,

We will now state a version of the main theorem of Agrawal-Kayal-Saxena.

4.4. Theorem. Let N > 2 and let r be a prime number satisfying:

i) no prime number < r divides N;
i) we have ord(N modr) > (2log N/log2)? + 1;

48 2. Applications: Algorithms, Primality and Factorization, Codes

iit) for 1 <a<r—1, we have
(X —a)¥ =XY —a mod (N, X" —1).

Then N is a prime power.

Remarks. In order to prove this theorem, we only assume that hypothesis
1i1) is satisfied for 1 < a < L and we will see that we can take L smaller
than 7 — 1. By Lemma 2-4.2, we can choose r = O ((log N)?) such that i)
is satisfied, and it would necessarily follow that r > (2log N/log2)? + 1.
Thus it is clear that the theorem implies that the following algorithm is
correct and polynomial.

ALGORITHM. [10] We put in N and the algorithm returns “Prime” or
“Composite”.

1) We check to see if N = a® where b > 2; if so, then N is “Composite”.

2) We try the prime numbers » = 2,3.... If r divides N, N is “Com-
posite”. If not, we check whether r is relatively prime NY — 1 for
y=1,2,...,Y, where Y = |(2log N/log2)?] + 1; if so we keep 7 and
go to the next step, if not we look for a larger 7.

3) For a = 1,2,3,4,... (stop at r — 1), we check whether (X — a)V #
XN —a mod(N, X" —1). If so, then N is “Composite”, if not, we
proceed to a + 1.

4) If the algorithm keeps going until @ = r — 1, then N is “Prime”.

Let us briefly discuss its complexity (without trying to optimize it). We
easily see that the longest step is step (3), which requires O(rlog N) mul-
tiplications in the ring Z[X]/ (N, X" — 1), where each one uses at most
O((rlog N)?) elementary operations. We thus have O((rlog N)3) in all.
If we add that r = O ((log N)®), we obtain a complexity of at most
O ((log N)'8).

We now proceed to the proof of the theorem. Let p be a prime divisor of N.
We denote by dy := ord(N modr), ds = ord(p modr) and d := lem(dy, da).
It should be noted that d; (resp. dz) is the order of the subgroup generated
by N (resp. by p) in (Z/rZ)* and that d is therefore the order of the
subgroup generated by N and p in (Z/rZ)*. We then choose h(X) to be
an irreducible factor of ®,(X) := (X" —1)/(X —1) in F,[X]. Let us point
out, even if we do not need it, that deg(h) = dz (see Theorem 2-6.2.8). We
will work in the field K := F,[X]/(h(X)), which is a finite field (isomorphic
to Fpa,) and which we obtain by adding a primitive rth root of unity to
F,. By construction, z := X mod h(X) is of order r in K*. It is natural
to look at the subgroup G of K* generated by the classes of (X — a) for
1 < a < L. The heart of the proof consists of finding an upper and lower
bound for the order of G.

§4. Primality Test (II) 49

4.5. Lemma. We have the lower bound

L+d-1 :
card(G) > (;;) > > 2m1n(L,d71)'

From the remark immediately following the combinatorial lemma (Lemma
2-4.3), we have for example that if 1 < d —1 < L, then card(G) > 2¢ and
if L < d, then card(G) > 2L+1L.

Proof. In light of the combinatorial lemma mentioned above, it suffices to
show that the classes of elements,

L
H (X —a)™e, formg >0 and Zma <d-1,
1<a<L a=1

are all distinct in K. First of all, the a are distinct modulo p, because if
not, then p < L < r and we assumed that N was not divisible by any prime
number smaller than 7, so p > r. Thus our polynomials are all distinct in
F,[X]. Now we bring in the key point that if P = [[,., (X —a)™,
then we have, on one hand, P(X)" = P(X")mod(N, X" — 1), but also
P(X)P = P(XP?)modp, so the two congruences are valid mod(p, X" — 1).
For m = N'p?, it therefore follows that

P(X)™=P(X™) mod(p,X" —1) or even mod(p, h(X)).

In fact, the set of m such that P(X)™ = P(X™)mod(p, X" — 1) is multi-
plicative (the fairly simple proof is given in detail in part i) of 2-4.7 below).
Now let P and @ be two polynomials of the form given above (considered
in F,,[X]), and suppose that they are in the same class in K, i.e., suppose
P = Qmod(p, h(X)). Let x be the class of X, which is an rth primitive
root of unity in K, and therefore

(P—Q)(™) =0, for m e (N,p) C (Z/rZ)".

But we know that N and p generate a subgroup of order d in (Z/rZ)*, thus
the polynomial P — @ has at least d roots, and since deg(P — Q) < d — 1,
we see that P = @ (first in F,,[X], then, if we want, in Z[X]). O

In order to find an upper bound for |G|, we choose a generator of G (it is
a subgroup of K* and is thus cyclic) and define the following set.

4.6. Definition. Let g be a generator of G. We define
I =Sy ={meN|g(X)" =g(X™) mod(X" —1,p)}.

The main properties of .# are summarized in the following lemma.

50 2. Applications: Algorithms, Primality and Factorization, Codes

4.7. Lemma. The set . satisfies the following properties.
i) N andp are in &.
it) 7 is multiplicative, i.e., if mi and mo € I, then mymq € &
iii) Ifmy and ma € & satisfy mi; = mg modr, then my = mz mod card(G).
Proof. The first property has already been established. For i), write
g(X)™7 = (g(X)™)™ = (g(X™))"™ mod(p, X" ~ 1),

and notice that since mg € #, we have g(Y)™2 = g(Y™2) mod(p,Y" — 1).
Therefore, by substituting Y = X™1 | we obtain

(g(X™)™ = g(X™™2) 4 pQy(X™) + (X717 — 1)Qa(X™)
= g(X"™™2)mod(p, X" — 1).

In order to prove i), suppose that m; and mg € .#; and that my = m+kr,
where k£ > 0. It follows from this that

g(X)™ = g(X™?) mod(X" —1,p) and thus mod(h(X),p);

hence g(X)™+k" = g(X™+F) in K. But X™+F = X™ mod(X" — 1)
and therefore mod(h(X)). Thus we obtain the equality in K*

g(X)™Mg(X)F = g(X™) = g(X)™,

where the last equality comes from the hypothesis that m; € . From
this, we of course have that g(X)*” = 1 € K* and hence card(G) divides
kr = mg —mq. O

Proof. (end of the proof of Theorem 2-4.4) In order to apply the lemma,
we use that IV, p and hence all of the products of powers Nip’ are in .#.
Recall that these elements generate a subgroup of order d in (Z/rZ)*. If
we set

E:={(i,j) e NxN|0<i,j<Vd},

then the cardinality of E is (|v/d| +1)? > d. By the pigeonhole principle?,
there are two elements N%p/t and N*2p/2, which are congruent modulo 7,
and such that (i1,71) and (i2,j2) are distinct in E. These two elements
Niipit and N%2p’2 are therefore congruent modulo card(G). First suppose
that Nt pit £ N?2pi2 which implies that

card(G) < |Ni1pj1 _ Nizpj2| < N2Vd

If we combine this upper bound with the lower bound gotten above, we see
that
min(L + 1, d) log 2 < (2V/d) log N.

4The pigeonhole principle says that if we put n+ 1 pigeons into n boxes, at least one
of the boxes will contain at least two pigeons.

§5. Factorization 51

We will prove that this inequality is impossible.

1) If we had L > d, we could deduce that v/d < 2log N/log2 or moreover
that d < (2log N/log?2)?. But this inequality is a contradiction since,
by construction, d > dy, and we assumed that d; > (2log N/ log 2)2.

2) Now if L < d, we deduce that (L + 1)log2 < (2v/d)log N, and since
d < r — 1, this would give us (L + 1)log?2 < 2y/7 — 1log N.

It is therefore a sufficient condition that L > 2v/r — 1log N/log?2 is large
enough in order to conclude that N%pit = N%2pi2. The choice L = r — 1
is suitable® since then the desired equality would be equivalent to the
inequality v/r —1 > 2log N/log2, which is where the hypothesis r >
(2log N/log2)? + 1 comes from. We finish the proof by pointing out that
the inequality N p’t = N*2p/2 immediately implies that N = p*. O

4.8. Remark. One variation of this proof consists of abandoning the
constraint that r is a prime number; we choose a factor, h(X), of ®, €
F,[X] where ®, is the rth cyclotomic polynomial (cf. Sect. 6 of this
chapter), and we could then omit every analytic estimate of the distribution
of prime numbers (see [33] for this version, as well as a finer estimate of
the complexity).

5. Factorization

We briefly consider, and necessarily very unsatisfactorily, the problem of
factorization: having established, by a primality test, that an integer N is
not prime, how could we go about factoring it? We start by pointing out
that the (complete) factorization problem is essentially equivalent to the
problem of finding one factor, because of course, by iterating this procedure,
we would achieve a complete factorization.

The naive factorization method consists of checking if 2 divides IV, then if
3 divides N, etc. If N = pg where p and q are roughly of the same size, i.e.,
p ~ q ~ VN, we see that we would need to perform O(\/N) divisions before
arriving at a factorization of N. The naive algorithm is thus exponential.

There do exist more efficient algorithms. In fact, one of the best algorithms
known [49] (using elliptic curves) has a number of operations estimated by
exp(Cv/log ploglogp), where p is the smallest prime factor of N. In the
case where N = pg where p ~ ¢ ~ VN, we therefore get an algorithm
with an order of complexity exp(C’(log N)*) (where k < 1), which grows

5We point out however that we could take L = O(y/7log N), which would allow us
to slightly improve the estimate of the complexity.

52 2. Applications: Algorithms, Primality and Factorization, Codes

less quickly than N* but more quickly than (log N)*. We say that such an
algorithm is subexponential. Another algorithm [19] (“number field sieve”)
has a complexity on the order of exp (C/(log N)*/?(loglog N)?/3). In 2006,
it was known in practice how to factor an integer with 100 digits in a couple
of hours, and by using many computers over many months, how to factor
an integer with 150 digits. But we still cannot factor, over the course of
a human lifetime, an RSA number, with say 300 digits. A surprising fact
is that the complexity of various algorithms (proven probabilistically or
heuristically) tends to take the form of a function (see [48]):

L(b,N) := exp (C(log N)®(loglog N)* 7).

The case b = 0, in other words (log N)®, corresponds to polynomial al-
gorithms, the case b = 1, in other words N¢, corresponds to exponential
algorithms and the cases 0 < b < 1 correspond to subexponential algo-
rithms; the two algorithms cited above have a complexity estimated at
L(1/2,N) and L(1/3, N).

We are not going to present the most powerful algorithms right away, since
they use tools which surpass the level of this chapter; the algorithms which
use elliptic curves and the number field sieve are presented in Appendix A,
which is about factorization. For the moment, we will settle for describing
an algorithm which improves on the naive algorithm by providing an even
more efficient one.

From now on, we use the convention that the letter p is reserved for a factor
of N.

Pollard’s p algorithm. We proceed as follows. We choose ag between 1
and N and we compute the sequence given by a;+1 = f(a;), where f(a) :=
a’ + 1mod N. We then choose k “big enough, but not too big” and we
calculate ged(agy — ag, N), hoping that it is nontrivial; if that is the case,
we have found a factorization, if not, we try again with larger k. We
will explain below why, at least statistically, there exists k of size O(,/p),
where p divides ged(asg — ag, N). Assuming that, we see that the average
complexity of the algorithm is O(/p), thus O(V/N).

The analysis of the complexity is based on the hypothesis that the sequence
a; modulo p is sufficiently “random”; which has been satisfactorily confirmed
in practice. Now, the probability that r numbers modulo p chosen “at
random” are all distinct is®

P (- 3)(-3) 0 55 <o (- 52).

If we take r on the order of ,/p, say r > 2,/p, the probability that two

SExample. If n > 23, the probability that, among n people, two have the same
birthday is greater than 1/2.

§5. Factorization 53

of the numbers are equal (modulo p) will be > 1/2, thus we have a good
chance to have two indices i < j < r such that a; = a; mod p. Considering
the construction that follows, we would have a; 4, = a;4n, modp for every
m > 0, and in particular, by taking m = j — 2i and k = j — ¢, we would
have aj, = ag mod p (see [22] for more details).

“Difference of squares” algorithm. The second algorithm, that we will
only sketch, is based on the fact that the number of elements a € (Z/NZ)*
such that a? = 1 is at least equal to 4 if N has at least two distinct prime
factors. If we knew how to compute a square root in (Z/NZ)*, say < (z),
with a fast algorithm o7, then we could factor NV like this: take a at random
and calculate b = &7 (a?). Then we of course have that a? = b? mod N, or
even that N divides (a + b)(a — b). Now, there is (at least) a one in two
chance that £amod N is not the square root calculated by &/ and, in
this case, the calculation of ged(N,a + b) or of ged(N,a — b) would give
us a factorization. Unfortunately, or luckily, we do not know of any fast
algorithm ¢ (it is even possible that one does not exist). One extension
of this idea is the following: instead of directly looking for an equality
a’® = b>mod N, we try to construct one. In order to do this, we randomly
take a close to VN, we reduce a?> modulo N (taking care to take the
representative in [—N/2, N/2]) and we try to factor it with small prime
numbers. In this way, we get a family of congruences a? = Hpe gpmPa.
We therefore look for a combination of these numbers which provides an
equality of the type [], a? =T] j b? mod N (this is a linear algebra problem
over Fy). This idea, presented very vaguely here, is expanded on in more
detail in Appendix A, when we describe the number field sieve algorithm.
Property quantified, this algorithm has an average (heuristic) complexity on
the order of L(1/2, N)—which is already remarkable, even if it is insufficient
for very large numbers.

Examples of precautions to take when choosing p and ¢ for the
RSA method. We will only give some very elementary indications, since
the question is fairly complex, and in fact largely open.

1) The absolute value, |p — ¢g|, must be large. We can see why by writing
¢ = p+ 6 where ¢ is much smaller than p. Since N = pq, then VN =
pyV/1+6/p ~ p+ /2 and we could find p with the “naive” algorithm in
O(9) steps!

2) It must be that p — 1 (resp. ¢ — 1) are not too smooth, in other words,
cannot be factored too quickly, for example the product of small prime
numbers. To see why this is true, choose C' > 0, and let py,...,pr be the
prime numbers smaller than C; the set S := {s = p{"* ---p"* | s < N} has
cardinality O((log N)¥), and we can therefore calculate ged(a® — 1, N) for
some values of a and s € S in polynomial time. If p—1 € S (in other words

54 2. Applications: Algorithms, Primality and Factorization, Codes

if p — 1 only has prime factors < C), then we have a very good chance of
being able to factor N.

3) A less obvious constraint is that it must be that the “secret” exponent
e is not too small. It is clear that if e = O(log N) for example, then by
trying O(log N) times, we will find e, but in fact it can be shown that you
must avoid having e < N'/* (see Exercise 3-6.12 of Chap. IV).

These relatively trivial remarks could cast doubt the security of the RSA
system (see [17] for a more precise description of the catalogued attacks
on the RSA system). However, theoretical support for it is provided by
the following considerations. Let us call P the class of problems for which
there exists a polynomial algorithm (for example the problem of deciding
whether a number is prime is in P, by Agrawal-Kayal-Saxena). We can de-
fine a class NP, a priori much larger than P, which is the class of problems
for which there exists a polynomial verification (for example, the problem
of factorization of a number is clearly in NP, since if we are given a factor-
ization, we can verify it in polynomial time). However, the factorization
problem has a subexponential solution. The security of the RSA system
rests, from a theoretical point of view, on the hypothesis that the factor-
ization problem is not in P. In fact, it is a special case of a large problem
in complexity theory”:

Is it true that P # NP?

6. Error-Correcting Codes

We give a glimpse of another industrial application of algebra and arith-
metic: the construction of “error-correcting codes”, which can, to a certain
degree, reconstruct a message if its transmission was slightly defective. This
technique is for example needed to produce CD readers, to transmit images
by space probes, etc. If this introduction leaves you hungry to learn more,
I recommend Demazure’s book, Cours d’algébre [3].

6.1. Generalities about Error-Correcting Codes

In order to transmit information, we assume that we are using a finite
alphabet 2, containing ¢ symbols or letters and that we are sending words
of a fixed length n; a word is therefore and element of 2. We can think
of binary language, i.e., 2 := {0, 1}, or of genetic codes, for example 2 :=
{A,C,G,U} (the bases found in RNA are A for adenine, C for cytosine,
G for guanine and U for uracil). We will most often take the example of

"This problem P # NP is one of the seven problems, for the solution of which a
million dollars is offered by the Clay Mathematics Institute.

§6. Error-Correcting Codes 55

2 = F,, which has the disadvantage of limiting the possible values of ¢
but the advantage of providing a richer structure.

The set of words 2" can be endowed with a Hamming distance, defined as
follows. If © = (z1,...,2,) € 2" and 2’ = (2,...,2}) € 2", then

d(z,2") := card{i € [1,n] | z; # x}}.
It can easily be checked that is in fact a distance.

A code is a subset € C 2™ containing at least two distinct elements in 2";
we define the distance of a code as
- ; !
d(¥) .= z;r;}rel%d(x,x).

Once we have chosen a code %, the principle consists of only sending those
messages which belong to €. If we know that at most d (¢')—1 transmission
errors have been committed, then using the error-correcting code will enable
us to establish the existence of one or more errors. Furthermore, if ¢ errors
have been committed during the transition of a word and if 2t +1 < d (%),
we see that there exists one single word in % located at a distance < ¢ from
the received word. In conclusion, the code allows us to correct ¢ errors and
we say that it is ¢-correcting. If we denote by d = d (%) the distance of the
code and t = ¢ (%) the number of errors that are systematically corrected
by the code, we easily see that relationship between the two is given by

t= {%J and conversely d = 2t+1 or 2t+2. Except for some examples,

we leave aside the question of decoding, which is essentially the study of
algorithms which allow you to find the word of the code located at a minimal
distance from a given word (it should be noted that you cannot in general
guarantee the uniqueness of this word except under certain conditions).
One of the properties required of a code is obviously that it corrects or
finds the most possible errors (we could also insist that the decoding be
the simplest possible). An intuitively obvious requirement is that it uses
the least amount of space; we could formalize this idea by introducing
the code rate t/n, and the information rate that we define as the ratio
log card (%) /nlogq. Information theory, developed by Shannon (see the
founding article [67]), says that if we are willing to send longer and longer
messages (i.e., to let n be very large), then there exist codes as safe we
want them to be, with an information rate close to 1. Shannon’s theorem
is however an existence theorem, it does not specify how to construct such
codes.

We are actually going to exclusively concentrate on linear codes, where the
alphabet is (in bijection with) F,, the space of words is (in bijection with)
the vector space (Fy)™ and ¥ is a subspace. In the case of ¢ = 2, we are

56 2. Applications: Algorithms, Primality and Factorization, Codes

talking about binary codes, in the case ¢ = 3, we are talking about ternary
codes, etc.

The most important parameters of a linear code are the cardinality of the
alphabet ¢ = card 2, its length say n, its dimension say k := dim €, its
distance d (%), its code rate and its information rate k/n.

Remark. Let ¢ C Fy be a linear code. We define the weight of an element
w(z) as the number of non-zero components of x. We can easily see that

d(¥¢) = oﬁ_}gg d(0,z) = O;I;iél(gw(x).

6.1.1. Examples. 1) The most basic example of a code is the use of a

parity bit: in order to transmit a word = (x1,...,7,-1) € (F2)"71, we
send & = (z1,...,&p-1,21 + -+ + xn_1) € (F2)™. To see if the received
message ' = (1, ...,Ty) is correct, we check whether x,, = x1+---+x,_1.

This code has length n and dimension n — 1. It allows us to find an error
but not to correct it. Its distance is 2.

2) Hamming code. Take the set of words with seven binary digits, ¢ = 2,
n =17, and let € be the code with basis

1 0 0 0

1 1 0 0

0 1 1 0

€y = 1 s €1 = 0 5 €y = 1 s €3 = 1

0 1 0 1

0 0 1 0

0 0 0 1
The coding principle is simple: in order to transmit a message m =
(mg, m1, ma, mg), we transmit © = moeg + mie; + moeg + mses. For

this simple example, we will explain the decoding under the hypothesis that
at most one error was committed. Equations of the vector subspace € are
given by

L(x) = (w0 + 3 + o5 + 26, 21 + T3 + 4 + T6, T2 + 24 + 5 + 26) = 0.

For each vector e of weight 1, we then calculate the triplet L(e). From
this, we obtain the following algorithm of correction and decoding. After
having received the message x = (z, ..., zs), we check whether L(z) = 0.
If L(z) = 0, the message is correct, if L(x) = (1,0,0), then xy must be
corrected, if L(z) = (0,1,0), then z; must be corrected and if L(x) =
(1,0,1), then x5 must be corrected. Finally, if L(z) = (1,1,1), then xg
must be corrected. Thus we have m = (zg, zo + 21, T5, Tg)-

We denote by T'(x1,...,27) := (x7,21,...,26) the “shift”, so we have that
T(ep) = e1, T(e1) = ea, T(e2) = ez and T'(e3) = ep + 1 + €. Thus

§6. Error-Correcting Codes 57

T(€) = € (€ is then called cyclic). It is easy to see that each non-zero
vector in ¢ has at least three non-zero coordinates, and therefore d (¢’) = 3.
Therefore, this code is 1-correcting and allows us to identify two errors but
not to correct them.

An amusing example. The previous code suggests that it is possible to
recover an element of F3 (or say an integer between 0 and 15) starting
with an element of F7 (or say seven yes/no pieces of information) if at
most one error has been committed (granted at most one of the bits of
information is false). One version of this is the seven following questions
which allow us to determine an integer N between 0 and 15.
1) Is the integer N > 8?

) Is the integer N in the set {4,5,6,7,12,13,14,15}7

) Is the integer N in the set {2,3,6,7,10,11,14,15}7?

) Is the integer N odd?
)
)

QU = W N

Is the integer N in the set {1,2,4,7,9,10,12,15}7
Is the integer N in the set {1,2,5,6,8,11,12,15}7
7) Is the integer N in the set {1,3,4,6,8,10,13,15}?

We leave as an exercise the justification of the following algorithm. We
denote the answers to the above questions by m = (mq,...,m7) (m; =1
if the ith answer is yes, m; = 0 if not), and we compute a1 = my4 + ms +
me + m7, as = mo + m3 + mg + my and ag = my + mz + ms + my. If
a1 = az = az = 0, we conclude that there is not an error, if not we change
the rth answer m, into r = @jazaz (binary numeral notation), and the
number we are looking for is therefore written

=)

N = mimomsmey.

We will now show how to characterize and construct codes and how to
deduce new codes from the given ones by using elementary linear algebra.
We denote by n the length of the codes and by k their dimension, unless
specified otherwise.

6.1.2. Definition. A generator matrix of a code % is a matrix whose
rows form a basis of €. (It is therefore a matrix of rank k having k rows
and n columns.) A parity-check matrix of a code % is a matrix whose rows
form a basis for the linear forms which are zero over €. (It is therefore a
matrix of rank n — k having n — k rows and n columns.)

6.1.3. Remarks. Being given a generator matrix is of course equivalent
to being given a basis of the vector space %, and given a parity-check
matrix is of course equivalent to being given a basis of linear equations
which define ¢ in Fj;. If A is a generator matrix and B a parity-check

58 2. Applications: Algorithms, Primality and Factorization, Codes

matrix, we easily see that A'B = 0, or also B'A = 0. Moreover, we can
recognize the distance of the code as the smallest number d such that there
exist d dependent column vectors in B.

Assume that we are given a code ¢ with parity-check matrix B and assume
that the code is 1-correcting. We show you how to decode a received
message, x’, which is different in at least one coordinate from the sent
message, x. First of all, if we denote the error committed by € = 2’ — z, we
see that B(z") = B(e). We will therefore compute B(z’); if this is non-zero,
then no error has been committed, if not, we compute the images of the
vectors e; in the canonical basis f; = B(e;). If only one error has been
committed, we find a unique ¢ such that B(z') is proportional to f;, say
B(z') = a;f;, and therefore € = a;e; and x = 2’ — a;e;.

If € is a code of length n over the field F = F,, we can associate to it the
following codes.

i) Shortened code. Let d(%) < ¢ < n. We set € = {z € Ff; |
(2;0,...,0) € €}. It is a code of length ¢, and we easily see that
d(¢Y) > d(?).

ii) Extended code. We can create the analogue of the “parity bit” by con-
structing € := {(z1,...,%n41) € FPF | (21,...,2,) €F and z; +
“+ Ty + T4 = 0}. We can easily see that d (¢) < d (%) < d(€)+1.
One variation is the even subcode defined as €' = {x € € | x1 + - -+
2y, = 0}. We have d (€) < d(%").

iii) Dual code. We define the scalar product (z,y) := x1y1 + -+ + TpYn,
and we set €% := {2’ € F} | Vo € ¢, (x,2") = 0}. We have that
dim%* = n — dim%. An interesting category of binary codes is that
of self-dual codes, i.e., such that €* = €’; such codes have dimension
n/2, and the weight of an element is even since w(z) = (z, z) mod 2.

As an exercise, you could try to figure out how to construct a parity-check
(or generator) matrix of each of these codes, starting with the parity-check
(or generator) matrix of the original code.

6.1.4. Lemma. Let € be a code of dimension k and of length n over F.
The following inequalities hold:

i) d€)<n+1—k;

it) if € is t-correcting 1+ (1) (q—1)+ (5) (¢—1)2+- -+ (}) (¢— 1) < ¢"*.
Proof. i) The vectors of the form (z1,...,2p+1-%,0,...,0) form a vector

subspace 2 of (F,;)". Since dim 2+dim ¢ = n+1, we see that ZN% # {0},
hence the existence of a non-zero vector of € of weight < n+1— k. For

§6. Error-Correcting Codes 59

i1), we can observe that for every = € Fjand 0 <t <n,

card (B(z, 1)) = 1 + C‘) (@—1)+ (Z) (G—1)2+ -+ <7Z> (q— 1)

If the code t-correcting, the balls B(z,t) with center x € € are disjoint and
thus
card (Upew B(z,t)) = ¢" card (B(0,t)) < ¢". O

6.1.5. Definition. A code such that d(¢) = n+ 1 — k is called MDS
maximal distance separable. A t-correcting code such that € = U,co B(x,t)
(forcibly a disjoint union) is called perfect t-correcting,.

The Hamming code of length 7 studied in the examples is perfect 1-correcting
since, in this case, we can show that card B(z,1) = 1+7 = 8 and 8 card ¢ =
27. We could also notice that this code is not MDS, because d (%) = 3 <
4=n—-k+1.

6.2. Linear Cyclic Codes

We will explicitly describe an interesting class of codes which in particu-
lar contains some of the classical codes, such as that of Hamming, Reed-
Solomon and Golay and which will lead us into the study of cyclotomic
polynomials.

6.2.1. Definition. A linear cyclic code is a linear code, %, of length n,
which is stable under the transformation T'(ag, a1, . .., an—1)=(an-1,aq, - - -,
an,g).

We can give a nice algebraic characterization of cyclic codes by introducing
the natural isomorphism of vector spaces F = F([X], = F [X]/QF ,[X],
where F,[X],, represents the polynomials of degree < n and where @ is
a polynomial of degree n. Since the characteristic (or minimal) polyno-
mial of the endomorphism T is Q = X" — 1, we therefore choose this
value. Hence we denote by ¢ : Fy — F [X], = F[X]/(X" — 1) defined
as Y(ag,a1,...,an_1) — ag + a1 X + -+ + a1 X" *mod(X™ — 1). We
immediately see that

YoT(ag,ay,... a0 1) = X(ag+ a1 X +---4a,_1 X") mod(X" —1).

Thus a vector subspace ¢ C Fy is stable under T if and only if its image
under ¥ is stable under multiplication by X. We should point out that an
F, vector subspace of Fy[X]/(X™ — 1) which is stable under multiplication
by X is nothing other than an ideal of F;[X]/(X™ — 1). Finally, the ideals
of Fy[X]/(X™ — 1) correspond to the ideals of F,[X] which contain the

60 2. Applications: Algorithms, Primality and Factorization, Codes

polynomial X™ — 1 and therefore are of the form PF,[X]| where P divides
X™ — 1. We summarize this discussion in the following theorem.

6.2.2. Theorem. Let K:=F, and let € be a cyclic code of length n. We
identify K™ with K[X]/(X™ — 1) via (ag,a1,...,an-1) — ag+ a1 X +---+
an, X" L. There exist natural bijections between the following objects:

i) a cyclic code of length n;
i) an ideal K[X]/(X™ —1);
)

i11) a monic polynomial which divides X™ — 1 in K[X].

One of the bijections associates P, which divides X™ — 1, to the ideal € of
K[X]/(X™—1) generated by its class modulo X™—1, and another associates
an ideal of K[X]/(X™ — 1) to the vector subspace corresponding to € of
K™. Furthermore, dim % = n — deg(P).

This leads to the following problem: how to decompose the polynomial
X" —1in F,[X]?

It is of course better to start with a decomposition in Z[X] (or Q[X]),
which is provided by cyclotomic polynomials. In order to define these, we
denote by p, = {¢ € C | (" = 1} the group of nth roots of unity and
(i the subset of nth primitive roots of unity, and hence card y,, = n and
card i, = ¢(n).

We will need Gauss’s lemma.

6.2.3. Lemma. If P = py+ p1 X + -+ paX? € Z[X] is a non-zero
polynomial, we define its content as ¢(P) := ged(po, - . .,pda). We therefore
have that

c(PQ) = c(P)c(Q).

Proof. By factoring P = ¢(P)P* and Q = ¢(Q)Q™*, we see that ¢(PQ) =
c(P)e(Q)e(P*Q*). So we have reduced the proof to showing that if P and
@ are primitive (i.e., ¢(P) = ¢(Q) = 1), then ¢(PQ) = 1. If p is a prime
number, we denote by P the image of P in F,[X]. We have that P # 0
and Q # 0, thus P-Q = PQ # 0 because F,[X] is integral. So no p divides
¢(PQ), which implies that it is invertible. O

6.2.4. Corollary. Let P € Z[X]. Suppose that there exist Q, R € Q[X]
such that P = QR. Then there exists A € Q* such that \Q and A™'R have
integer coefficients.

Proof. We can write Q = %Ql (resp. R = %Rl), where a,b,c,d are

integers and where (Q; and R; are primitive polynomials with integer co-
efficients. We can deduce from this that bd P = acQ R, and, since the

§6. Error-Correcting Codes 61

equality is in Z[X], we can deduce, using Gauss’s lemma, that bd ¢(P) = ac
and, in particular, that bd divides ac. Thus P = ¢(P)Q1R;. O

6.2.5. Corollary. If a € C is a root of a monic polynomial with in-
teger coefficients, then the minimal (monic) polynomial of o has integer
coefficients.

Proof. Let P, a priori in Q[X], be the minimal polynomial of a and let
@ be monic with integer coefficients such that Q(«a) = 0. Then Q = PR,
where R is in Q[X]. Gauss’s lemma says that there exists A € Q* such
that Ry = AR and Py = A~!' P have integer coefficients. By observing that
Q = PyRy, it follows that the leading coefficient of Py is invertible, and
hence P = + P, has integer coeflicients. O

6.2.6. Definition. The nth cyclotomic polynomial, denoted ®,,, is defined
as

Ceps,

These polynomials, a priori with complex coefficients, in fact have integer
coefficients and moreover provide a decomposition of X™—1 into irreducible
factors, as shown in the following theorem.

6.2.7. Theorem. The polynomials ®,, have the following properties.

i) @, € Z[X] and deg ®,, = ¢(n).
i) X" —1=[1y), Pa(X).
iii) The polynomials ®,, are irreducible in Z[X] and in Q[X].

Proof. With the given definition, ®,, € C[X]. Formula ii) is clear, as well as
the fact that deg(®,,) = ¢(n); however it is less clear that in fact ®,, € Z[X]
and that ®,, is irreducible in Q[X] (or Z[X]). We shall start by showing
that the coefficients of ®,, are integers. It is clear that ®1(X) =X —1 €
Z[X], and formula 4i) leads us to try induction on n. The polynomial
B = Hd|n, dzn ®a(X) is monic and, by applying induction, has integer
coefficients. We can therefore carry out the division algorithm in Z[X], and
obtain X™ —1 = BQ+ R. Formula 47) then guarantees that B divides R (in
Q[X]), so R=0 and Q = ®,,. We will now show that ®,, is irreducible in
Z[X]. Let ¢ be a primitive nth root of unity and P its minimal polynomial
over Q. We therefore need to show that P = &,,. First, observe that
P € Z[X]. Then choose a prime number p which does not divide n, so ¢?
is still an nth primitive root of unity. Let @) be its minimal polynomial,
which is also in Z[X]. If P and @ were distinct, the product PQ would

62 2. Applications: Algorithms, Primality and Factorization, Codes

divide ®,,. But since Q(¢P) = 0, we see that (is a root of Q(XP) and thus
Q(XP?) = P(X)R(X), for some R € Z[X]. By reducing the coefficients
modulo p, we have

Q(X?) = Q(X)" = P(X)R(X),
and so P(X) divides Q(X)? in (Z/pZ)[X]. Moreover, the factors of X" —1,
and hence of P(X), are simple in (Z/pZ)[X] (the derivative of X™ — 1 is
nX"~! and we made a point of choosing p so that it does not divide n): the
polynomial P(X) in fact divides Q(X). But then, P(X)? divides ®,,(X)
in (Z/pZ)[X], which contradicts the fact that the factors of ®,(X) are
simple. To summarize, we have established that if p is a prime number
which does not divide n, the minimal polynomial of ¢ kills (P. We easily
deduce from this that if m is relatively prime to n, then P({"™) = 0. Thus
deg(P) > ¢(n) and since P divides ®,,, we have that P = ®,,, and it is
therefore irreducible. 0

Since ®,, has integer coefficients, we can reduce its coefficients modulo p
and consider it as a polynomial in F,,[X] (or in F,[X] with ¢ = p¥).

6.2.8. Theorem. The decomposition into irreducible factors of the poly-
nomial ®, € F,[X] (with ¢ = p’) depends on whether n modulo p is zero

or not.
1

i) If n = p*m where p fm, we have ®,,(X) = &, (X)P" P,

it) If ged(n,q) = 1 and if r is the order of qmodn in (Z/nZ)*, then O,
can be decomposed into the product of ¢p(n)/r distinct irreducible factors
of degree r.

Proof. Assume first that n = p"m. By Fermat’s little theorem and
the formulas from Exercise 2-7.12, it follows that @,,(X)? = ®,,(X?) =
D, (X)P, (X), hence D,,,,(X) = @,,,(X)P~!, and subsequently that

r—

(meT(X) = (I)m;ll (Xp7‘71> = (I>7np(X)p ' = q)WL()()pTil(pil)7

which proves the first assertion. From now on, suppose that p is relatively
prime to n. Let 8 be an nth primitive root in an extension of F,. Every
factor of ®,, can be written as Q = [],.,(X — "), with I C (Z/nZ)*. The
polynomial @ has coefficients in F if and only if

QX" = Q(X). ()
In fact, (E; anj)q = Zj(aj)quj and a € F if and only if a? = a. Thus

the polynomial @ has coefficients in F if and only if

[[xe=p9 =[x -pY=]](x*- 5,

i€l iel iel

§6. Error-Correcting Codes 63

or even if and only if I is stable under multiplication by ¢ (in (Z/nZ)*).
The smallest stable subset is clearly of the form I := {i,iq,iq¢?,...,ig""1}.
Also, the irreducible factors of ®,,(X) in Fy[X] are of the form

Q= H - B
and, in particular, all have degree r. O

6.2.9. Examples. 1) Take n = 11 and ¢ = 3; we see that the order
of 3mod 11 is equal to 5. Thus X! —1 = (X — 1)®11(X) in Z[X] and
®1; = PP, € F3[X], where deg(P;) = 5. We can check that, in F3[X],

XU 1=X-D)X° - X+ X2 - X -)X+ X - X3+ X% -1).

2) Take n = 23 and g = 2; we see that the order of 2mod 23 is equal to 11.
Thus X23 -1 = (X - 1)(1323(X) in Z[X} and (I)Qg = P1P2 € FQ[X], with
deg(P;) = 11. We can check that, in Fo[X],

XB _1=(X-1)X"+ X104 x4 x5+ X'+ X2 41)
X (X" + X+ X"+ X+ X+ X +1).

3) Take n = 15 and ¢ = 2; thus X5 — 1 = (X — 1)®3(X)®5(X)®15(X) in
Z[X], with 15 = X® — X7+ X° — X%+ X3 — X + 1. The order of 2mod 3
is equal to 2, the order of 2mod 5 is equal to 4 and the order of 2mod 15 is
equal to 4. The polynomials ®3 = X2+ X +1 and &5 = X* + X3 + X2 +
X + 1 are therefore irreducible in Fy[X], and ®15 = P, P, € F5[X], where
deg(P;) = 4. We can check that, in Fo[X],

XB 1 = (X-D)(X 2+ X+ (XXX X 1) (XX H1) (XX +).

4) More generally, if ged(q,n) = 1, a cyclic code of length n corresponds, by
Theorem 2-6.2.2, to a subset I C Z/nZ, which is stable under multiplica-
tion by ¢. More explicitly, the associated code is the ideal of F,[X]/(X"—1)
generated by the polynomial @ = [, (X — (%), where 3 is an nth primi-
tive root of unity. To estimate the distance of such a code, we can use the
following result.

6.2.10. Theorem. Let ¢ by a linear cyclic code of length n over F,
associated to I C (Z/nZ). If there exist i and s such that {i + 1,i +
2,...,i+s} C1I, thend(¥) > s+ 1.

Proof. Let 8 be an nth primitive root in an extension of F, and let @) be a
polynomial modulo X™ —1 which belongs to 4. We know that Q(3+7) = 0
for j =1,...,s. Assume that the weight w of @) (viewed as an element of
F!) is < s, which means that Q@ = a; X" + -+ + a, X" with 0 < i1 <

64 2. Applications: Algorithms, Primality and Factorization, Codes

ig < -+ < iy < n. We need to show that @ is in fact zero. Now, we
have the equations a; 31 (+7) + ... 4 q, B0+ =0 for j =1,...,s. Let

ay = a1, ..., al, = a,[". The equations can be rewritten as

ﬂilja,1+...+ﬂiw'ja{w:0’ forj=1,...,s.

The matrix of the 377 can be extracted from a Vandermonde matrix with
B # %', because 3 has order n, and its rank therefore equals w =
min{w, s}. This means that aj =---=a,, =0, and hence a1 = -+ = a,, =
0. O

6.2.11. Remark. The bound given in the theorem is generally not opti-
mal. We can see this below in the example of Golay codes.

6.2.12. Examples. (Linear cyclic codes.)

We will now describe in detail some examples gotten from choosing ¢, n
and a subset I C Z/nZ which is stable under multiplication by ¢. To be
rigorous, we should clarify that the code that we construct also depends on
the nth primitive root 8 that we choose. However, it is not difficult to see
that the various codes gotten from the choices of 3 are all isomorphic. We
will therefore omit f3.

Hamming codes. One first interesting choice of parameters is n = (¢" —
1)/(g — 1), and we can easily check that the order of gmodn is r. We set
I:={1,q,¢% ...,q" 1}, which defines a code € of dimension n —r (once
0, a primitive nth root of unity, is chosen). We will now directly verify
that d(¢) > 3. A polynomial of weight 2 can be written f = a X’ + bX/
with say 0 < ¢ < 57 < n — 1, and the condition that it is killed by ﬁqz
for 0 < ¢ < r — 1 is therefore written as a + bﬂ(j’i)qe = 0. Since S is
of order n, we see that this is impossible except when a = b = 0. Thus
the code € is l-correcting, and since card B(z,1) = 1+ n(¢— 1) = ¢",
we see that € is perfect 1-correcting, and thus d(%) = 3 or 4 (we show
below that the distance is 3 and that the code is therefore MDS if and only
if r = 2). Binary Hamming codes are obtained by taking ¢ = 2 and by
choosing I := {1,2,4,...,2"7 '} and hence k = n —r = 2" —r — 1. Since
{1,2} C I, we see that d(€) > 3. For r =3, ¢ =2, n =7, we get the code
studied in the first example (2-6.1.1).

In order to see that the distance of a Hamming code is equal to d(%) = 3,
we write a parity-check matrix A for the code (a matrix with r rows and n
columns). The columns e, ...,e, of A are vectors in (F,;)", and we have
just shown that any pair of them is linearly independent. Now, there are
n = (¢"—1)/(¢—1) of them, and they therefore represent exactly one vector
from each line in (F,)". Since two of the vectors e; are never dependent,

§6. Error-Correcting Codes 65

but of course there exists triples of linearly dependent vectors, we see that
d(¥) = 3.

Reed-Solomon codes. These codes correspond to the choice n = ¢ — 1,
most often with ¢ = 2. Let a be a generator of F;. Once we have chosen
k, we set

g(X) := H (X—ai).

q—1—k
1

7

It follows of course that k = dim € and, since I = {1,2,3,...,q—1—k}, we
have d(%) > q—k. But we know that for every linear code, d(¥¢) < n+1—k,
hence d(%) = ¢—k, and the code constructed in this way is therefore MDS.
Now suppose that ¢ = 2f. We can consider € as a binary code €’, with
the parameters n’ = (27 — 1)f, ¥’ = kf and distance d(%¢”) > 2f — k. One
special feature of this code is that it can correct large numbers of errors:
if ¢ satisfies 2t + 1 < d(¥¢) = q — k, the code can correct t elements of
F,s, hence tf binary errors if these errors are distributed in bunches! This
feature explains why this type of code is used in the technology of compact
discs.

Ternary Golay code. We know that 3° — 1 = 11-23. We choose
g =3, n =11 and the subset of (Z/11Z)* generated by 3, in other words
I := {1,3,4,5,9}; this code, denoted by %, is therefore of dimension
6. We point out (but do not use) that I = F}?. By Theorem 2-6.2.10
on the distance of a cyclic code, we see that d(4;) > 4 and, by con-
sidering the factorization of ®1; in F3[X] (cf. Examples 2-6.2.9), we see
that %1 contains a polynomial of weight 5, hence d (%41) < 5. An exten-
sive calculation (which is postponed to Exercise 2-7.22 below) allows us
to establish that actually d(%11) = 5. Thus % is 2-correcting, and since
card B(z,2) = 1+2(Y') +22(})) = 3%, it is clear that the code % is perfect
2-correcting (but notice that it is not MDS).

Binary Golay code. We know that 2'! — 1 = 23-89 (it is actually the
smallest number of the form 2P — 1 which is not prime). We therefore
choose ¢ = 2, n = 23 and I as the subset of (Z/23Z)* generated by 2,
in other words I := {1,2,3,4,6,8,9,12,13,16, 18}, and we denote by %3
the associated code. Observe also that I = F3%. By Theorem 2-6.2.10 on
the distance of a cyclic code, we see that d(%3) > 5 and, by considering
the factorization of @53 in Fao[X] (cf. Examples 2-6.2.9), we see that %3
contains a polynomial of weight 7, hence d (%3) < 7. An extensive calcu-
lation (which is postponed to Exercise 2-7.22, suggested below) allows us
to determine that actually d (%3) = 7. Thus %; is 3-correcting, and since
card B(z,3) = 1+ (213) + (223) + (233) = 21 it follows that the code %3 is
perfect 3-correcting (but notice that it is not MDS).

66 2. Applications: Algorithms, Primality and Factorization, Codes

6.2.13. Remark. We can show that if we exclude trivial codes (i.e., of
dimension 1, n — 1 or n), the only perfect t-correcting codes are those that
we have already constructed: the Hamming 1-correcting codes and the two
Golay binary and ternary codes [73].

7. Exercises

7.1. Exercise. (Newton’s method) Recall that Newton’s iterative method
(for approzimating the zeros of a function) is applicable to differentiable
functions. Let f be a function with a unique zero at «; the iteration is
given by

f'(xn) .

The rate of convergence of this approzimation is quadratic, i.e., |xp+1—a| <
Clz,—al?. Clarify and prove this assertion for the function f(x) := 2™ —a,
and deduce a fast calculation algorithm for approximating %/a from this.

Tpn+l = Tp —

7.2. Exercise. 1) Give a fast algorithm which checks if a given integer N
s a power a™, where m > 2.

2) If we now want to test whether N = p™ where p is prime and m > 2,
we take a € [2, N — 1] and we test if ged(a, N) = 1. If that is the case,
we compute d = ged(a™ 1 — 1, N). Prove in this case that p divides d and
that, with a high probability, d # N and also that d = p. Deduce from this
an algorithm to check whether N = p™.

7.3. Exercise. (Multiplication algorithm—see [42]) Suppose that the
integers m and n are written in at most 2t binary digits, n = n12t +ng and
m = mi2t + mg. Observe that

mn = myny (2% — 2%) + 28 (my + mo)(n1 + no) + mong(1 — 2Y)

and can therefore be calculated with three multiplications of numbers of
size t and some additions and shifts (multiplication by 2 consists of one
shift of digits). Deduce from this an algorithm, where the cost T(r) of the
multiplication of two numbers with r digits satisfies

T(2r) < 3T(r) + cr,

for some appropriate constant c¢. Deduce from this that T'(r) = O (r%),
where o > log 3/ log 2. (Notice that, asymptotically, this algorithm is better
that the usual algorithm, whose complexity is O(r?).)

§7. Exercises 67

7.4. Exercise. (Multiplication by fast Fourier transform) In this exercise,
we will give a theoretical presentation of the finite Fourier transform, which
will allow us to multiply very large numbers faster than the usual algorithm.
The hints are fairly brief, so you could also use a specialized reference, [42]
Sect. 4.83.3., to help you finish this exercise.

Let N > 2 be an integer and let A be a ring. We identify the set E of
functions from Z/NZ to A with the set of polynomials with coefficients in
A of degree < N, in other words, to polynomials associated to the ring
AIX]/(XN —1). If a = (ai)o<i<n—1 45 a sequence indexed by Z/NZ, we
denote by P, the corresponding polynomial. We define a “convolution” by
(axb); = Zj+h:i a;bn, and we can easily check that Py = PoPy.

If C is cm Nth primitive root of um'ty in A, we define the “Fourier trans-

form”, F : E — E and its conjugate ¥ : E — E by the formulas
(Za);= Y (a;=Pu()) and (Fa)j= > ¢ Pa;=Pu((T).
i€Z/NZ I€Z/NZ

1) Prove that the following formulas hold: .7 (axb) =% (a)-Z (b), F (Fa) =
Na and F (Za) = Na.

2) Whenever N = 2N', we set ¢’ := (% and E' := A[X]/(XN —1), and we
define F',. 7' : E' — E' with the help of {'. For a € E, we define a°,a' €
E’ by setting a? = ag; and a} = agiy1. Check that, for 0 < j < N’ —1, the
following formulas hold:

(Fa), = (ﬁ'ao)j—f—fj (f'al)j and (Fa)y,, ;= (?’ao)j—@ (ﬁ'al)j.

3) Now suppose that N = 2. Use the previous arguments to derive a recur-
sive procedure for calculating a Fourier transform. If we denote by M (r)
the number of multiplications and A(r) the number of additions necessary
to carry out this procedure, show that A(r)+M(r) = O(r2") = O(Nlog N).
4) By using the first formula (convolution transformation and ordinary
product) and the preceding results, derive a multiplication algorithm for
polynomials with coefficients in A.

5) The choice of a numeral basis b lets us write integers in the form P,(b) =
ag+arb+---+agb?. Using the polynomial multiplication algorithm, derive
an algorithm for multiplying integers.

7.5. Exercise. A Fibonacci sequence of integers is defined by uy = a,
up =b and uy = Up—1 + Up—2 forn =2, where 1 < a < b are integers (the
classical Fibonacci sequence corresponds to a =b=1).

1) Prove that log |uy,| ~ nlog (1?/5)

68 2. Applications: Algorithms, Primality and Factorization, Codes

2) Prove that ged(unv1,u,) = ged(b,a) and that the Euclidean algorithm
gives this result in n steps. Deduce from this that the complexity estimation
given at the beginning of this chapter is generally optimal.

7.6. Exercise. Prove that following algorithm allows us to calculate the
ged of two integers, and estimate its complexity. If n and m are even,
factor out 2; if n is even and m is odd (or conversely), replace n by n/2;
if m and n are odd, replace n by (n —m)/2.

7.7. Exercise. Let M € Z and let N be an odd positive integer. Prove that
the Fuclidean algorithm, together with the quadratic reciprocity law, gives
a fast algorithm (and estimate its complexity) for calculating the Jacobi

symbol (%) .

7.8. Exercise. Let M := 85; we define the sets Gy = (Z/MZ)*,
Gy :={a € Gy | aM ' =1}, Gy = {a € Gy | aM~D/2 = 41},
Gz :={a € Gy | aM~1/2 = (ﬁ)(}} and finally S = {a € Go | a*' =
1 ora® = —1 ora* = —1}.

3.a) Prove that if a € S, then —a € S, and use this to deduce that the
cardinality of S is even.

3.b) Calculate the cardinality of Go, G1, G2 and S.

3.c) Use this to find the cardinality of Gs.

3.d) Is the set S a subgroup of Go?

7.9. Exercise. Forn > 2, we denote by ®,, the nth cyclotomic polynomial.
1) Recall how to decompose ®,, in Fp[X].

2) Let a € Z and let p be a prime number which does not divide n but which
divides ®,,(a). Prove that p = 1modn (you could start by observing that
the class of a modulo p is a root of ®,,).

3) Prove that ©,(0) = 1 and deduce from this that for allm > 2, ®,(m) is
relatively prime to m. Also prove that there are only finitely many a € Z
such that ®,(a) = +1.

4) Deduce from this (without using Dirichlet’s theorem on arithmetic pro-
gressions) that there exist infinitely many prime numbers, p such that p =
1modn (resp. infinitely many prime numbers p such that p % 1modn).

7.10. Exercise. Let G be a finite abelian group.

§7. Exercises 69

1) Prove that there exists an integer N such that G is isomorphic to a
subgroup (resp. a quotient) of (Z/NZ)*.

Hint.— We can reduce to the case where G = Z/n1Zx---xZ/nsZ. By using
the result proven in the previous exercise, we can choose prime numbers
p; = lmodn;, and show that N := p1 ---ps works.

2) (This question requires some knowledge of Galois theory, see for example
Appendiz C, in particular Examples C-1.1.) Prove that there exists a finite
Galois extension, K/Q, such that Gal(K/Q) = G

7.11. Exercise. Let P = X* 4+ 1. We will study its factorization over
various fields.

1) Prove that P is irreducible in Q[X] and calculate its factorization over
the fields Q(i), Q(v2) and Q(iv/2).
2) Show that for every prime number p, P is not irreducible over Fy.

Hint.— Construct a factorization by using the fact that —1, 2 or —2 is a
square. Variation: observe that P = ®g and invoke Theorem 2-6.2.8.

7.12. Exercise. 1) Prove that the following relations hold (you could
compare the degrees and the roots of both sides):

D, (X) if p divides n,

d,(XP) =
n(XF) {@np(X)(I)n(X) if p does not divide n.

2) Prove that ®,r = X?' =D 4 X702 4.4 XPT 41 (forr > 1).

7.13. Exercise. Forn > 3, we denote by ®}(X) the monic polynomial
with the property that (0} (X))* = [ee,. (X —¢—=¢71).

1) Compute ®5, ®F and &7 .

2) Prove that deg ®} = ¢(n)/2 and ®,,(X) = X?M/20+H(X + X~ 1). De-
duce from this that ®(2) = ®,(1) = p.
3) Prove that ® is in Z[X] and is irreducible (in particular, it is the

minimal polynomial of 2 cos(2m/n)).

7.14. Exercise. Let P = [[[_;(X — a;) and Q = [[_,(X — ;) be two
polynomials in K[X]. We define their resultant by the formula

res(P, Q) : H Q) H H(a
i=1j=1

We refer you to a classical algebra text (cf. for example [43]) to see how

70 2. Applications: Algorithms, Primality and Factorization, Codes

res(P, Q) can be expressed as a determinant in the coefficients of P and @,
which shows in particular that res(P, Q) € K and, more generally, that if
P,Q € A[X], then res(P,Q) € A.

1) Prove that res(Q, P) = (—1)" res(P, Q).

2) We will assume from now on that P,Q € Z[X], and we choose q to be an
odd prime. We denote by P (resp. Q) the reduction modulo q of P (resp.
of Q). Prove that the class of res(P, Q) modulo q is equal to res(]s, Q).

3) Prove that &); = (X —2)(a=V/2 jn F [X] (9} is defined in Ezercise
2-7.13).

4) Use the previous questions and question 2) of Ezercise 2-7.13 to show
that if p and q are distinct odd primes, then

res(®), ®F) = pli=1/2 = (%) mod q.

5) Prove that res(®f, @) = H’IG#Z n~P=V/28,(n) and deduce from this
that res(®), @) € {+1,—1}.
6) Prove that the following formula holds,

q

and use this to give a proof of the quadratic reciprocity law.

res(q);,(l);) = (£> ,

7.15. Exercise. Let N be an odd integer.

1) If its factorization can be written as N = p"* ---py"*, where p; — 1 =
2% L; and L; are odd, prove that

card{a € (Z/NZ)* | ord(amod N) is odd}
card{a € (Z/NZ)*}

— 2—81'”—5k

2) Deduce from this that if we had a fast algorithm, &, which calculates the
period (the order of amod N), then we have a fast probabilistic factorization
algorithm.

Hint.— Randomly choose a, test to see whether ged(a, N) = 1, then whether
the period P(a) is even; in this case compute ged(a?(®)/?2 + 1, N).

7.16. Exercise. Prove that 2™ + 1 can only be prime if m = 2". Set

F,:=22" 11 (known as a Fermat number). Prove that F,, is prime if and
Fn—1

only if F,, divides3 2 +1. Check that Fy, F1, F5, F3 and Fy are prime,
but not Fs (which is divisible by 641).

§7. Exercises 71

7.17. Exercise. (Lucas test and Mersenne numbers) Start by proving
that M, := 2™ — 1 can only be prime if n is itself prime. Check that
My, M3, Ms, My are prime, but that My; is not prime. The numbers M), =
2P — 1 are called Mersenne numbers. In this exercise, we ask you to prove
the Lucas primality test for these numbers.

a) We define a sequence with values in a ring A by Vo = 2, Vi = a and
Vi1 —aVy,+ Va1 = 0. Verify the following formulas: Va1 = Vi, Viu_1—a,
Von = Vn2 — 2, and also V,Vi, = Vit — Ve -

b) Let M be odd, a an integer such that ged(a® — 4, M) = 1 and V,, the
sequence defined above. If Vyry1 = 2mod M and if for every prime number

q which divides M + 1 we have ged(V pr41 — 2, M) = 1, prove that M is
q

prime.

c) We define the following sequence by Ly := 4 and L;y1 := L? — 2. Prove
that the Mersenne number M, is prime if and only if L,—1 = 0 mod M,.

7.18. Exercise. (Perfect numbers) This nice problem has been handed
down to us from Euclid: we say that an integer is perfect if it is equal to
the sum of its proper divisors, symbolically:

n= Z d or 2n = o(n) ::Zd.

d|n dln
d#n
a) Show that if M, = 2P — 1 is a prime Mersenne number (cf. previous

exercise), then P, := 2P~ M, is a perfect number (this fact as well as the
examples Py = 6, Py = 28, Ps = 496 were known to Fuclid).

b) Prove the following result due to Euler: an even perfect number n is of
the form P,.

Hint.— Write n = 2™ M with M odd and m > 1; prove that 2n = o(2™)o (M)
and deduce from this that M must be prime, then finish the exercise.
Remark. Nobody knows whether there exists an odd perfect number; it

is generally conjectured that there do mot exist any and that the perfect
numbers are in bijection with the prime Mersenne numbers.

7.19. Exercise. (Pocklington-Lehmer test or certificate) Let N > 2.
Suppose that N — 1 is (partially) factored as N — 1 = p{*---pi* M, with
M < /N, and moreover that for each p;, we have an a; such that

aﬁv_l = 1mod N,

N-1
ged (ai pi 1,N> =1.

72 2. Applications: Algorithms, Primality and Factorization, Codes

Use this to show that if ¢ divides N, then ¢ = 1modp;*, and also that N
1S prime.

7.20. Exercise. Let 3 be a 17th primitive root of unity in an extension
of Fo. We let I := F32 and set

F)=1T1x-8).
i€l
Prove that the polynomial f(X) defines a cyclic code € of length 17, and

calculate its dimension and bounds on its distance d(€), for example 3 <
d(€) < 6. Then give the exact value of d(€).

7.21. Exercise. I.a) Describe the degrees of the decomposition into irre-
ducible factors of X® — 1 in Q[X].
1.b) Give the number of irreducible factors, as well as their degrees, of the
decomposition of X% —1 in Fa[X].

1.¢) Explain how to construct a binary cyclic code of length 85 and dimen-
sion 64. It is possible to construct such a code with dimension 63?

7.22. Exercise. (Where we show that d(%1) = 5 and d(%s3) = 7 and
use the notion of a self-dual code.)

A) Let € be a cyclic code of length n generated by the polynomial g = g(X)
of degree d. Let €' be its even subcode €* its dual code.

1) Prove that €' =€ if and only if g(1) = 0. If g(1) # 0, check that €' is
cyclic and generated by the polynomial (X — 1)g(X).

2) Prove that €* is cyclic and generated by the polynomial h*(X) = X"~¢
h(1/X) where g(X)h(X) = X" —1.

Hint.— You can show that if deg(f) < n—d —1 and deg(e) < d — 1, then
(fg,eh*) is equal to the coefficient of X"~ in the product f(X)g(X)e*(X)
h(X) = f(X)e*(X)(X™—1), and is therefore zero.

B) Suppose that € C €* (i.e., for all x,y € €, we have (x,y) =0).

1) If ¢ = 2, prove that for all x,y € €, we have w(z + y) = w(x) +
w(y) mod 4.

2) If ¢ = 3, prove that for all z,y € €, we have w(x +y) = w(x) +
w(y) mod 3.

C) We introduce the subcode 9 of %11, composed of vectors whose sum of
the coordinates equals zero (the “even” subcode).

1) Prove that if g(X) is the generating polynomial of %1, the code 2 is
cyclic and its generator is (X — 1)g(X).

§7. Exercises 73

2) Prove that 2 C 2* (i.e., for every x,y € 9 we have {(x,y) = 0). Deduce
from this that for every x € 9, we have w(x) = 0mod 3.

3) We denote by 9 and 9, the extended codes. Set ey = (1,...,1) ¢ Fit
and ez = (1,...,1) € F12. Prove that e1; € %1, e12 € %1 and hence
%1 =92 @ Fsern.

4) Prove that 9, is self-dual. Deduce from this that for every T,y € 4,
we have w(z + y) = w(x) + w(y) mod 3, and hence that d(%11) = 0mod 3.

5) Knowing that 4 < d(%11) < 5 and d(C) < d(C) < d(C) + 1, conclude
that d(gll) =5andd (gll) =6.

D) Let p be an odd prime such that (%) =1, 8 := F;Q and € a binary

code of length p which corresponds to the set S (wfzich, by hypothesis, is
stable under multiplication by 2). We denote by € the extended code of
length p+ 1.

1) If g = g(X) is a generator of € and if g*(X) = XP=D/2g(1/X) is its

reciprocal polynomial, show that g(X) = ¢g*(X) if p = 1 mod8, and that
®,(X) =g9(X)g*(X) if p=—1 mod8.

2) We suppose from now on that p = —1mod8. Prove that % is self-dual
(i.e., € =€*, or for all T,y € €, we have (Z,y) =0).

8) Let x =% ,c; X" and y = >, ; X*. Show that (x,y) = |I N J|mod 2
and that w(z+y) = |I|+|J|—2|INJ|. Conclude from this that if (x,y) = 0,
then w(z +y) = w(z) + w(y) mod 4.

4) Use the previous question to show that if 2 is a self-dual code generated
by the elements whose weight is a multiple of 4, then every element of &
has weight which is a multiple of 4, and in particular, d (2) = 0mod 4.

5) Apply the preceding questions to the case p = 23. Observe that if g is the
generator of € = %a3, we have w(g) =7, so w(g) = 8. Conclude from this

that d(C) = Omod4. Knowing that 5 < d(%3) < 7 and d(C) < d(C) <
d(C) + 1, deduce that d (%3) =7 and d (%) = 8.

2 Springer
http://www.springer.com/978-1-4471-2130-5

Arithmetics

Hindry, M.

2011, XV, 322 p. S illus., Softcover
ISEMN: 978-1-4471-2130-5

	Chapter 2 Applications: Algorithms, Primality and Factorization, Codes
	1 Basic Algorithms
	2 Cryptography, RSA
	3 Primality Test (I)
	4 Primality Test (II)
	5 Factorization
	6 Error-Correcting Codes
	6.1 Generalities about Error-Correcting Codes
	6.2 Linear Cyclic Codes

	7 Exercises

