
Chapter 2

Applications: Algorithms,
Primality and Factorization,
Codes

“Elle est retrouvée.
Quoi ? - L’Éternité.

C’est la mer allée
Avec le soleil.”

Arthur Rimbaud

This chapter describes some industrial applications of number theory, via
computer science. We succinctly describe the main algorithms as well as
their theoretical complexity or computation time. We use the notation
O(f(n)) to denote a function � Cf(n); furthermore, the unimportant—at
least from a theoretical point of view—constants which appear will be ig-
nored. In the following sections, we introduce the basics of cryptography
and of the “RSA” system, which motivates the study of primality tests and
factorization methods. We finish the chapter with an introduction to error-
correcting codes, which will lead us into the study of cyclotomic polynomials.

1. Basic Algorithms
Let n be an integer. Once we have chosen a base b � 2, we write n in base
b, in other words, with the digits ai ∈ [0, b − 1]:

n = a0 + a1b + · · · + arb
r = arar−1 . . . a1a0

b

, where ar �= 0

(the two most standard base choices are b = 10 for usual decimal notation
and b = 2 for binary notation, which is especially well-adapted to computer

M. Hindry, Arithmetics, Universitext,
DOI 10.1007/978-1-4471-2131-2_2,
© Springer-Verlag London Limited 2011

35

http://dx.doi.org/10.1007/978-1-4471-2131-2_2

36 2. Applications: Algorithms, Primality and Factorization, Codes

programming). We will consider an operation on the digits to be a single
operation (or an operation which needs O(1) computation time). It is
natural to refer to the number of digits necessary in order to describe n,
in other words r + 1, as its complexity. Since we can see that br � arb

r <
n � br+1, we know that

r � log n

log b
< r + 1

and can therefore describe the complexity as proportional to log n. It is
clear that the manipulation of random numbers of size n requires at least
log n elementary operations. We consider, as much from a practical point of
view as from a theoretical one, an algorithm to be “good” if it is a polynomial
algorithm; that is to say, it uses O ((log n)κ) elementary operations. Con-
versely, we consider an exponential algorithm, meaning that its execution
time or required number of operations is greater than exp(κ log n) = nκ, to
be infeasible (for large n, of course).

Addition. In order to add two numbers m and n with at most r digits, we
must perform at most r additions of two digits and (possibly) carry a digit.
The cost is therefore O (log max(n, m)) = O(r). The number of operations
used in subtraction is similar.

Multiplication. In order to calculate n × m, where n and m are two
numbers with at most r digits (with the usual elementary school algorithm),
we must perform at most r2 elementary multiplications and r additions,
and possibly carry a digit, and therefore, the cost is O

(
(log max(n, m))2

)
=

O
(
r2
)
.

Remark. The addition algorithm is (up to constants) optimal, but some
more sophisticated methods (notably the “fast Fourier transform”) lets us
perform multiplications at a much better cost, for example in O

(
r(log r)2

)
.

See Exercises 2-7.3 and 2-7.4.

Division algorithm. Given a and b � 1, if we compute (q, r) such that
a = qb + r and 0 � r � b− 1 with (a variation of) the algorithm learned in
elementary school, we perform a number of elementary operations similar to
that of multiplication, i.e., O(log max(a, b)2). In order to give an example of
a turtle algorithm (do not use!), we could perform the following procedure.
We start by setting q0 = 0 and r0 = a. Then we have a = q0b+r0; if r0 < b,
we stop, and if not, we compute q1 = q0 + 1 and r1 = r0 − b in such a way
that a = q1b + r1, and we get the result by iteration and by stopping when
rn < b and a = qnb + rn. If a > b, we must perform approximately a/b
subtractions, therefore the cost is O((log a)× (a/b)) (which is exponential).

Euclidean algorithm. Given two integers, a and b, the goal is to compute
d := gcd(a, b) and (u, v) ∈ Z2 such au + bv = d (Bézout’s lemma). The

§1. Basic Algorithms 37

principle is the following: we divide a by b, a = bq1 + r1; then divide b
by r1, b = r1q2 + r2, and in subsequent steps divide rn by rn+1, rn =
rn+1qn+2 + rn+2. Keep in mind that the sequence rn is strictly decreasing
and stops when rn+1 = 0, and therefore gcd(a, b) = rn. In fact,

gcd(a, b) = gcd(b, r1) = gcd(r1, r2) = · · · = gcd(rn, rn+1) = rn.

In order to compute (u, v), we could proceed as follows: we set u0 = 1,
u1 = 0, v0 = 0 and v1 = 1 and then recursively define un = un−2 − qnun−1

and vn = vn−2 − qnvn−1. One can immediately check by induction that
aun+bvn = rn. We will now estimate the maximal number of times we need
to use the division algorithm. We can assume that r0 = a � r1 = b and see
that rn = rn+1qn+2 + rn+2 � rn+1 + rn+2. If r0 > r1 > · · · > rn = d is the
sequence which gives the gcd, set di = rn−i. We then have di+2 � di+1+di.
Let α := (1 +

√
5)/2 be the positive root of X2 = X + 1; it follows that

di � αi. This is true because d0 = d � 1 = α0, d1 � d0 +1 � 2 � α1 and if
the inequality is true until i+1, we have di+2 � di+1+di � αi+1+αi = αi+2.
From this we conclude that a = dn � αn, and the number of steps is
bounded above by log(a)/ log(α) = O(log a). We should point out that
this argument implies that the longest computation happens when a and
b are terms in Fibonacci sequence (see Exercise 2-7.5). The total cost is
therefore O

(
log max{|a|, |b|}3

)
.

Computations in Z/NZ. The goal is to perform addition and multipli-
cation of two integers smaller than N , then to take the remainder gotten
from dividing by N in the division algorithm. In order to calculate the
inverse of a modulo N , we proceed as follows: if a is an integer, the Eu-
clidean algorithm tells us that either gcd(a, N) > 1—in which case a is not
invertible modulo N—or there exist u, v (gotten from the algorithm) such
that au + Nv = 1 and therefore the inverse of a is the class of u modulo
N . The cost is therefore the same as that of the Euclidean algorithm.

Exponentiation. In order to calculate am, we could of course calculate
a×a× · · ·×a, but this will force us to perform m − 1 multiplications; we
could do a lot better by performing the computation in O(log m) multipli-
cations. For example, if m = 2r we would carry out r multiplications. In
the general case, we write m in binary notation m = ε0 + ε12 + · · · + εr2r

and we would calculate

am =
((

(aεr)2 aεr−1

)2

aεr−2 · · ·
)2

aε0.

Or we could do the calculation in the other direction; the algorithm can be
defined iteratively. In order to do this, we start with the initial data chosen
to be (u, v, n) := (1, a, m) and we iterate as follows: if n is even, we replace
(u, v, n) by (u, v2, n/2) and if is n odd, we replace (u, v, n) by (uv, v2, (n−

38 2. Applications: Algorithms, Primality and Factorization, Codes

1)/2); we stop when n = 0, and we therefore have u = am. Since n is at
least divisible by 2 in each step, the number of steps r satisfies 2r � m, and
hence we must perform O(log m) multiplications. If we calculate mod N ,
we reduce each result mod N , and so in each step we multiply integers � N .
The total cost to compute am mod N is therefore O

(
log m(log N)2

)
.

Computations in Fq and F∗
q. We will assume that the finite field

Fq = Fpf is defined by an irreducible monic polynomial S(X) = Xf +
sf−1X

f−1 + · · · + s0 ∈ Fp[X] of degree f . We therefore identify Fq with
Fp[X]/SFp[X], which can be seen as the vector space over Fp with basis
1, x, x2, . . . , xf−1 with addition on the individual coordinates and multi-
plication defined by xi · xj = xi+j and xf = −sf−1x

f−1 − · · · − s0. An
element of Fq is therefore seen as an f -tuple of integers modulo p or as a
polynomial of degree � f − 1. To perform an addition, we must perform
f additions in Fp, so at a cost of O(f log p) = O(log q). To carry out a
multiplication, we take the product of two polynomials, or essentially f2

multiplications in Fp, then divide the result by S(X) using the division
algorithm, or essentially O(f) divisions and O(f2) multiplications in Fp.
The cost of a multiplication in Fq is therefore O(f2(log p)2)+O(f(log p)3).
Let us point out that this cost is still O((log q)3), but that if we choose
q = 2f for example, it is O(f2) = O((log q)2).

2. Cryptography, RSA
We are only interested here in one aspect of cryptography and in one system
of “public keys”, known as RSA from the name of its three inventors, Rivest,
Shamir and Adleman [61], and which is one of the most widely used.

Cryptography is the art (or science) of secret messages: we want to send
information so that only one other person, the recipient, can see it. A
related problem is to be able to identify with certainty the sender of the
message. We generally think that the only method is to use a “secret code”;
in fact the originality of “public key” cryptography comes precisely from
the fact that the code is not secret, but is known (for the most part) by
everybody! This is not only a mathematical curiosity, it is also the principle
governing credit cards, internet transactions, etc.

The general principle is the following. We call M the set of messages (in
practice we take M = [0, N − 1] or Z/NZ). Two people, A and B, who
wish to exchange messages in such a way that a third person, C, cannot
decipher them each choose bijections fA, fB : M → M . The set M (say
the integer N) is known to everybody, as well as fA and fB, however—and
this is the key idea—the inverse function f−1

A (resp. f−1
B) is only known

by A (resp. by B). This does not mean of course that, knowing fA, it is

§2. Cryptography, RSA 39

theoretically impossible to compute f−1
A , but this calculation would be so

long, that it would be out of the question to carry out in a reasonable time
frame. We will later see how to construct such functions.

When A wants to send B a message m ∈ M (say an integer modulo N), he
or she simply sends m′ = fB ◦ f−1

A (m); remember that A knows fB (which
is public) and f−1

A (which only he or she knows). In order to decode this
message, B computes fA ◦ f−1

B (m′), which will give m; remember that
B knows fA (which is public) and f−1

B (which only he or she knows).
The system has two advantages: not only can C not decipher the message
without computing f−1

B (which we assume to be out of the question), but
B can be sure that it is A who sent the message since it must have been
encoded using f−1

A , which only A knows!

This procedure is a simplified form of the known methods under the name
of the Diffie-Hellman protocol (1976); its security relies on the choice of
the “one-way” functions f , in other words such that f is quick and easy to
compute, but f−1 is in practice impossible to determine. Many construc-
tions of functions have been suggested, but one of the most hardy and most
widely used, relies on the fact that if p and q are very large prime numbers
(say 100 or more digits), then their product N := pq can be calculated very
quickly (say 10,000 elementary operations), whereas if you only know N ,
it is an extremely long calculation to factor it, impossible in practice.

We now construct the functions fA of the RSA system. We choose two
very large prime numbers, p and q, compute N := pq and also choose a
medium-sized integer d which is relatively prime to φ(N) = (p− 1)(q − 1).
The public key is therefore (N, d); however, p and q are secret and we set,
for a any integer smaller than N ,

f(a) := ad mod N.

To decode a message, we calculate the inverse e of d modulo φ(N) and we
observe that

f−1(b) = be mod N,

since
(
ad
)e = aed ≡ a mod N , because aφ(N) ≡ 1 mod N .

2.1. Remarks. 1) There is one little constraint on the “message” a: it
should be relatively prime to N1. Nonetheless, observe that the proportion
of integers which are relatively prime to N is φ(N)/N = (1−1/p)(1−1/q);
so if p, q are for example � 1050, the proportion of integers which are not
relatively prime to N is � 2 · 10−50.

1If by mistake, a message a = pa′ was sent, we could certainly still decode it by
f(a)e = pdea′ed = peda′ = a, but C, or whoever else, would only have to compute
gcd(a, N) to discover p and crack the code!

40 2. Applications: Algorithms, Primality and Factorization, Codes

2) Once p, q and d have been chosen, the computation of N , φ(N) and e
is performed in polynomial time (fast); likewise, the operation a �→ f(a) is
just as fast as a �→ f−1(a) if we know e.

3) We can see, at least heuristically, that knowing the number e allows
us to factor N : if we write de − 1 = 2rM (with M odd), by computing
gcd(a2jM ± 1, N) for j = 1, 2, . . . and some values of a, we have a good
chance of quickly factoring N .

4) Therefore, if someone knows only the public key (N, d), they should a
priori factor N in order to compute φ(N) then e. In fact, the knowledge
of φ(N) is equivalent to that of p and q, because φ(N) = N − (p + q) + 1
(the knowledge of the product and the sum of two integers lets you easily
determine the integer pair).

This system gives rise to many problems, the solutions to which are more
or less satisfactory.

i) How do you construct (very) large prime numbers?
ii) What methods do we have for factoring an integer?
iii) How should you choose p and q in RSA that resist factorization meth-

ods?

Since it is clear from question iii) that the prime numbers should not be
too “special”, question i) is essentially equivalent to the following problem.

• (I) (Primality Test) Give a fast algorithm which determines whether a
number N is prime.

If we had access to such an algorithm P, we could in fact decide on the
size of the integer (for example N ∼ 1050), randomly choose an odd integer
N1 of this size, and test P(N1) then P(N1 +2), P(N1 +4) until we find a
prime number. By the theorems on the distribution of prime numbers, the
number of primes in an interval [N1, N1 +H] is approximately H/ log(N1);
so we expect to find a prime number in O(log(N1)) tries.

We will see that satisfactory answers to problem i) are available, but we
only know partial answers to the other questions.

3. Primality Test (I)
We consider an odd integer N and the problem of determining whether
N is prime. We denote by (M, N) the gcd of M and N . The letter p is
reserved for a number which we already know is prime. The first of all of
the primality tests, and in some sense the “grandfather”, is the following
lemma.

§3. Primality Test (I) 41

3.1. Lemma. (Fermat) If N is prime and (a, N) = 1, then aN−1 ≡
1 mod N .

Proof. The group Z/NZ∗ has order N − 1 and the lemma follows from the
Lagrange’s theorem.2 �

This is a “good” test, in the sense that computing aN−1 mod N requires
O(log N) multiplications (under the condition of course that you use the
binary notation for N − 1). However, it is also a “bad” test, because there
are numbers, called Carmichael numbers, which satisfy the test without
being prime. We even know that there are infinitely many of them [11],
the smallest being 561 = 3 ·11 ·17. We can easily see that a number N

is a Carmichael number if and only if N is square-free and p − 1 divides
N−1 for every p which divides N . In general, we could introduce λ(N), the
exponent of the group (Z/NZ)∗, sometimes called the Carmichael function:
it is the smallest positive integer (in the sense of divisibility or the usual
order) such that for all a relatively prime to N , aλ(N) ≡ 1 mod N . By what
we have seen, we know that if N = pm1

1 · · · pmk

k is odd, we have

λ(N) = lcm
(
pm1−1
1 (p1 − 1), . . . , pmk−1

k (pk − 1)
)
. (2.1)

It is always true that λ(N) divides φ(N) and the equality holds if and only
if (Z/NZ)∗ is cyclic, i.e., if N = pα or 2pα or 4.

3.2. Lemma. (Euler3) If N is prime and (a, N) = 1, then

a
N−1

2 ≡
(

a
N

)
mod N.

Proof. This is simply a restatement of assertion ii) from Theorem 1-3.3.�

The Solovay-Strassen test is an algorithm which checks the congruences
given below for a randomly chosen a. This test is always polynomial (for
any value of a, we can always quickly calculate the Jacobi symbol thanks
to the quadratic reciprocity law, see Exercise 2-7.7) and is better than
Fermat’s test.

3.3. Lemma. Let H :=
{

a ∈ (Z/nZ)∗ | a
N−1

2 ≡
(

a
N

)
mod N

}
, then

H = (Z/nZ)∗ if and only if N is a prime number.
2To prove Fermat’s little theorem by using Lagrange’s theorem is obviously an

anachronism.
3Calling a statement which uses the Legendre or Jacobi symbol “Euler’s criterion” is

also an anachronism.

42 2. Applications: Algorithms, Primality and Factorization, Codes

Proof. We have seen that if N is prime, then H = (Z/nZ)∗. If p2 divides
N , there exists a of order p(p−1), and p does not divide N −1. Therefore,
aN−1 �= 1. If N = pp2 · · · pr with r � 2, choose (by the Chinese remainder
theorem) a ≡ 1 modulo p2, . . . , pr and which is not a square modulo p;

hence
(

a
N

)
= −1, but a(N−1)/2 ≡ 1 mod p2 · · · pr and thus a(N−1)/2 �≡

−1 mod N . �

Applications.

i) Probabilistic polynomial test. If N is composite then (Z/NZ∗ : H) � 2
and hence by randomly choosing a, we have at least a one in two chance
that a /∈ H. Hence if N successively passes k tests, we can say that it
is prime with a probability greater than 1 − 2−k.

ii) Deterministic polynomial test (assuming GRH). Analytic theory has
provided a proof that if the Dirichlet L(χ, s) functions do not vanish
on Re(s) > 1/2 (generalized Riemann hypothesis, GRH), then for every
nontrivial character χ : (Z/NZ)∗ → C∗, there exists an a � 2(log N)2

such that χ(a) �= 0, 1. We can deduce from this that if N were compos-
ite, there would exist a � 2(log N)2 which would not pass the Solovay-

Strassen test. If N = pm1
1 · · · pmk

k , we introduce f(a) := a
N−1

2

(
a
N

)

and
χi : (Z/NZ)∗

f→ (Z/NZ)∗ → (Z/pmi
i Z)∗ ↪→ C∗.

We see that H is the intersection of the kernels of χi. By trying all
of the a ∈ [2, 2(log N)2], we therefore get a primality certificate (i.e., a
proof of primality), under the condition that the Riemann hypothesis
is true.

We could improve the Solovay-Strassen test and algorithm.

3.4. Lemma. (Rabin-Miller) Let N be odd. Set N − 1 = 2sM , with M

odd. If N is prime and (a, N) = 1, then either aM ≡ 1 mod N or there
exists 0 � r � s − 1 such that a2rM ≡ −1 mod N .

Proof. The order of a modulo N is 2tM ′, where 0 � t � s and M ′ is an
odd integer which divides M . If t = 0, then aM ′

= 1 hence aM = 1. If
t � 1, then, since N is prime, a2t−1M ′

= −1, and therefore a2t−1M = −1.�

This test is better than Euler’s test, because, for one thing, if the pair a,
N passes the Rabin-Miller test, then it also must pass Euler’s test. Fur-
thermore, if N is composite, the proportion of a which pass the refined test

§3. Primality Test (I) 43

is � 1/4 and often smaller than that. Of course there exists a probabilis-
tic polynomial version of the refined test and a deterministic polynomial
version, assuming that the Riemann hypothesis is true.

3.5. Remark. If N ≡ 3 mod 4, then “Rabin-Miller” is identical to
“Solovay-Strassen”, and even equivalent to a(N−1)/2 ≡ ±1 mod N . We know
that (N − 1)/2 is odd, and we can observe that if ε = ±1, then

(
ε
N

)
= ε,

and if a(N−1)/2 ≡ ±1 mod N , then

(
a
N

)
=

(
a · (a2)(N−3)/4

N

)

=
(

a(N−1)/2

N

)
= a(N−1)/2 mod N.

Proof. (“Rabin-Miller” > “Solovay-Strassen”, in the general case) Now, we
know that a(N−1)/2 = a2s−1M equals −1 mod N if r = s − 1 and equals
1 mod N in all of the other cases. Therefore, we need to compute

(
a
N

)
.

If aM ≡ 1 mod N , then
(

a
N

)
=
(

a
N

)M

=
(

aM

N

)
= 1, hence a

N−1

2 ≡
(

a
N

)
mod N . Now assume that a2rM ≡ −1 mod N . Let pi divide N and

write pi−1 = 2siMi. Then, since a2rM ≡ −1 mod pi, the order of a modulo
pi is of the form 2r+1Li (with Li odd). Therefore, modulo pi, we get

(
a
pi

)
≡ a(pi−1)/2 ≡ a2si−1Mi ≡

{
1 if si > r + 1,

−1 if si = r + 1 .

Now notice that r + 1 � si. Let h be the number of indices i such that
si = r + 1. Therefore, we have

(
a
N

)
= (−1)h. Modulo 2r+2, we have

N = 1 + 2sM =
∏

i pi =
∏

i(1 + 2si) ≡ 1 + h2r+1 mod 2r+2. In the

case where r < s − 1, h must be even, so that
(

a
N

)
= 1, and we get

a(N−1)/2 ≡ 1 mod N . In the case where r = s − 1, then h is odd and(
a
N

)
= −1 ≡ a(N−1)/2 mod N . �

We can summarize the previous discussion by introducing the following
sets:

G0 := (Z/NZ)∗,

G1 :=
{
a ∈ (Z/NZ)∗ | aN−1 ≡ 1 mod N

}
,

G2 :=
{
a ∈ (Z/NZ)∗ | a(N−1)/2 ≡ ±1 mod N

}
,

G3 :=
{

a ∈ (Z/NZ)∗ | a(N−1)/2 ≡
(

a
N

)
mod N

}
,

44 2. Applications: Algorithms, Primality and Factorization, Codes

S :=
{
a ∈ (Z/NZ)∗ | aM ≡ 1 mod N or ∃r ∈ [0, s − 1] such that

a2rM ≡ −1 mod N
}

.

We always have the inclusions S ⊂ G3 ⊂ G2 ⊂ G1 ⊂ G0, and these
are equalities if and only if N is prime, or also if and only if G3 = G0.
Furthermore, G1, G2 and G3 are subgroups, but in general S is not, even
though in the case N ≡ 3 mod 4 we have seen that G2 = G3 = S. In fact, S
is stable under inversion, and if a, b ∈ S do not satisfy the same congruence
or both aM = bM = 1, then ab ∈ S. But if a2rM = b2rM = −1, it could
happen that ab /∈ S. For example, if ε2 = 1 but ε �= ±1 and if a2M =
−1 (which would force N ≡ 1 mod 4), then a ∈ S and aε ∈ S, because
(aε)2M = −1. However, (εa2)M = εMa2M = −ε �= ±1 and (εa2)2M = 1,
hence εa2 /∈ S. By considering a �→

(
a
N

)
a(N−1)/2 from G2 to {±1}, we

see that (G2 : G3) = 1 or 2. We are now going to compute the cardinality
of the set S and, in particular, verify the following statement.

3.6. Proposition. Let N be an odd, composite number. If N �= 9, then

|S|
|G0|

� 1
4
·

3.7. Definition. Let A, B be integers. We define

φ(A; B) = card
{
a ∈ (Z/AZ)∗ | aB ≡ 1 mod A

}
.

3.8. Lemma. Let t � 0 and N = 1 + 2sM = pα1
1 · · · pαk

k (with M odd).
We set pi − 1 = 2siMi, s′i = min(t, si) and ti := gcd(M, Mi). Then

φ(N, 2tM) = 2s′
1+···+s′

kt1 · · · tk.

Moreover, the cardinality of the set
{

a ∈ (Z/NZ)∗ | a2tM ≡ −1 mod N
}

is 0 if t � mini si, and equal to φ(N, 2tM) = 2tkt1 · · · tk if t < mini si.

Proof. We know that a2tM ≡ 1 mod N if and only if a2tM ≡ 1 mod p
αj

j for
j = 1, . . . , k. Now, the group (Z/p

αj

j Z)∗ is cyclic of order (pj − 1)pαj−1
j , so

the number of solutions is

gcd(2tM, (pj − 1)pαj−1
j) = gcd(2tM, 2sj Mj) = 2min(t,sj)tj .

By the Chinese remainder theorem, the number of solutions modulo N
is therefore the product of these numbers, and hence we have proven the
first claim. For the second claim, we see right away that either there does

§3. Primality Test (I) 45

not exist any solution, or there does exist a solution and therefore the set
of solutions is in bijection with the solutions of the previous congruence.
The congruence a2tM ≡ −1 mod p

αj

j is solvable if and only if 2t+1 divides
(pj − 1)pαj−1

j , in other words if and only if t + 1 � sj , hence we have the
desired result. �
Proof. (of Proposition 2-3.6) Assume that s1 � s2 � . . . � sk. By
decomposing the set S into S0 :=

{
a ∈ (Z/NZ)∗ | aM ≡ 1 mod N

}
and

Tj :=
{

a ∈ (Z/NZ)∗ | a2jM ≡ −1 mod N
}

for 0 � j � s1 − 1 and by ap-
plying Lemma 2-3.8 to each one of these sets, we have

card(S)= t1 · · · tk
(
1 + 1 + 2k + · · · + 2k(s1−1)

)
= t1 · · · tk

(
2ks1 + 2k − 2

2k − 1

)
.

The ratio of a ∈ G0 which pass the Rabin-Miller test is therefore

card(S)
card(G0)

= t1 · · · tk
M1 · · ·Mk

2−(s1+···+sk)

pα1−1
1 · · · pαk−1

k

(
2ks1 + 2k − 2

2k − 1

)
. (2.2)

If k = 1, the ratio is equal to t1

M1p
α1−1
1

� 1
pα1−1
1

, and is therefore � 1
5

,

except when N = 32 in which case we have |S|/|G0| = 1/3. If k � 2, we
can assume that α1 = · · · = αk = 1, if not, the ratio is � 1/pi, which in
practice we can assume to be arbitrarily small. If one of the Mi is different
from ti, then t1 . . . tk/M1 . . . Mk � 1/3. Furthermore,

2−s1−···−sk

(
2ks1 + 2k − 2

2k − 1

)
� 2−ks1 2k − 2

2k − 1
+ 1

2k − 1
� 21−k,

so the ratio is � 1/8 if k � 4 and � 1/4 if k = 3.

If k = 2 and if one of the Mi is distinct from all of the ti, then the ratio is
� 1/6. If k = 2 and M1 = t1 (i.e., M1 divides M) and M2 = t2 (i.e., M2

divides M), we see that M1 = M2, hence s1 < s2 (if not p1 = p2). We then

have that the ratio is � 2s1−s2 1 + 21−2s1

3
� 1 + 21−2s1

6
� 1

4
· �

3.9. Remark. By looking at the upper bounds above, we can prove that
the two “worst” cases are the following.

i) The number N is equal to pq with q = 2p − 1 and p ≡ 3 mod 4. For
example, N = 3 ·5, N = 7 ·13, etc. It follows that p = 1 + 2M1 and
q = 1 + 4M1 and N = (1 + 2M1)(1 + 4M1) = 1 + 2M1(3 + 4M1), hence
t1 = t2 = M1 = M2 and so

card(S)
card(G0)

= 1
4
·

46 2. Applications: Algorithms, Primality and Factorization, Codes

ii) The number N is equal to pqr = 1 + 2M , where p = 1 + 2M1, q =
1 + 2M2, r = 1 + 2M3 and Mi divides M . It follows from this that
the ratio is also 1/4. Take for example: N = 8911 = 7 ·19 ·67 (where
M1 = 3, M2 = 9, M3 = 33 and M = 4455 = 34 ·5·11).

4. Primality Test (II)
In this section we present the Agrawal-Kayal-Saxena algorithm [10], which
dates back to July 2002, and was introduced in their article “PRIMES is in
P”. It gives a primality test in polynomial time.

The original idea was to perform tests in Z[X]. For example, we easily see
that if N is prime, then (X − a)N ≡ XN − a mod N , but this test has the
major default of requiring the computation of N coefficients. That will just
not do!

4.1. Lemma. Let N be prime and h(X) ∈ Z[X] a polynomial of degree r.
Then

(X − a)N ≡ XN − a mod(N, h(X)).

Recall that in a ring, the notation a ≡ b mod I means that a− b belongs to
the ideal I and that (a1, . . . , am) is the notation used for the ideal generated
by a1, . . . , am. Thus the congruence in the lemma can be restated as: there
exists P, Q ∈ Z[X] such that (X −a)N − (XN −a) = NP (X)+h(X)Q(X).

It should be noted that if r is O((log N)k), then this test remains poly-
nomial. The problem is to choose pairs a, h(X) in such a way that they
detect non-primality. The solution proposed by Agrawal, Kayal and Sax-
ena is to choose h(X) = Xr − 1 with r being a “very well-chosen” prime,
in particular r = O((log N)k), and to prove that it is then sufficient to test
the a ∈ [1, L] with L = O(

√
r log N) in order to ensure that N is prime, or

possibly a prime power, which is not so bad.

The argument is essentially algebraic and combinatorial, but nevertheless
uses a result on the distribution of prime numbers, in fact a weak form
of the prime number theorem (see Chap. IV, (4.10)), which says that the
sum of the log p for p prime and smaller than x is � c1x for some constant
c1 > 0. We summarize what we are going to use in a lemma.

4.2. Lemma. Let Y > 1 and let N � 2 be an integer. There exists a
prime number r which satisfies the following two properties.

i) The order of N modulo r is at least Y .
ii) Furthermore, r = O

(
Y 2 log N

)
.

§4. Primality Test (II) 47

Proof. Set A :=
∏

1�y�Y (Ny − 1). Let r be the smallest prime number
which does not divide A. Then for y � Y , we have Ny �≡ 1 mod r, and hence
condition i). Moreover, every p < r divides A, whereas A � NY (Y +1)/2

and consequently

c1r �
∑

p<r

log p � log A � Y (Y + 1)
2

log N.

From this we have that r = O
(
Y 2 log N

)
. �

Remark. We could add that, since the order of N modulo r divides r − 1,
we necessarily have r > Y .

We will also use the following elementary combinatorial lemma.

4.3. Lemma. The cardinality of the set of monomials in L variables of
degree � k is

card {(m1, . . . , mL) | mi � 0 and m1 + · · · + mL � k} =
(

L + k

k

)
.

Furthermore, we have the estimate
(

L + k

k

)
� 2min(L,k).

Proof. The first formula is classical and can be proven, for example, by
induction (call the cardinality in question f(L, k), check that f(L, 0) = 1
and f(1, k) = k+1, and then prove that f(L, k) = f(L, k−1)+f(L−1, k)).
For the lower bound, observe that if k � L, then
(

L + k

k

)
=

(L + k)(L + k − 1) · · · (L + 2)(L + 1)
k(k − 1) · · · 2 · 1

=
k−1∏

i=0

(
L + k − i

k − i

)
�2k,

and if L � k, reverse the roles of L and k. �

Remark. We can often improve this inequality; for example, if 1 � k � L,
then

(
L+k

k

)
� 2k(L + 1)/2, and thus if L � 5, we have

(
L+k

k

)
� 2k+1.

We will now state a version of the main theorem of Agrawal-Kayal-Saxena.

4.4. Theorem. Let N � 2 and let r be a prime number satisfying:

i) no prime number � r divides N ;
ii) we have ord(N mod r) � (2 log N/ log 2)2 + 1;

48 2. Applications: Algorithms, Primality and Factorization, Codes

iii) for 1 � a � r − 1, we have

(X − a)N ≡ XN − a mod (N, Xr − 1) .

Then N is a prime power.

Remarks. In order to prove this theorem, we only assume that hypothesis
iii) is satisfied for 1 � a � L and we will see that we can take L smaller
than r− 1. By Lemma 2-4.2, we can choose r = O

(
(log N)5

)
such that ii)

is satisfied, and it would necessarily follow that r � (2 log N/ log 2)2 + 1.
Thus it is clear that the theorem implies that the following algorithm is
correct and polynomial.

ALGORITHM. [10] We put in N and the algorithm returns “Prime” or
“Composite”.

1) We check to see if N = ab where b � 2; if so, then N is “Composite”.
2) We try the prime numbers r = 2, 3 If r divides N , N is “Com-

posite”. If not, we check whether r is relatively prime Ny − 1 for
y = 1, 2, . . . , Y , where Y = �(2 log N/ log 2)2
 + 1; if so we keep r and
go to the next step, if not we look for a larger r.

3) For a = 1, 2, 3, 4, . . . (stop at r − 1), we check whether (X − a)N �≡
XN − a mod(N, Xr − 1). If so, then N is “Composite”, if not, we
proceed to a + 1.

4) If the algorithm keeps going until a = r − 1, then N is “Prime”.

Let us briefly discuss its complexity (without trying to optimize it). We
easily see that the longest step is step (3), which requires O(r log N) mul-
tiplications in the ring Z[X]/ (N, Xr − 1), where each one uses at most
O((r log N)2) elementary operations. We thus have O((r log N)3) in all.
If we add that r = O

(
(log N)5

)
, we obtain a complexity of at most

O
(
(log N)18

)
.

We now proceed to the proof of the theorem. Let p be a prime divisor of N .
We denote by d1 := ord(N mod r), d2 = ord(p mod r) and d := lcm(d1, d2).
It should be noted that d1 (resp. d2) is the order of the subgroup generated
by N (resp. by p) in (Z/rZ)∗ and that d is therefore the order of the
subgroup generated by N and p in (Z/rZ)∗. We then choose h(X) to be
an irreducible factor of Φr(X) := (Xr − 1)/(X − 1) in Fp[X]. Let us point
out, even if we do not need it, that deg(h) = d2 (see Theorem 2-6.2.8). We
will work in the field K := Fp[X]/(h(X)), which is a finite field (isomorphic
to Fpd2) and which we obtain by adding a primitive rth root of unity to
Fp. By construction, x := X mod h(X) is of order r in K∗. It is natural
to look at the subgroup G of K∗ generated by the classes of (X − a) for
1 � a � L. The heart of the proof consists of finding an upper and lower
bound for the order of G.

§4. Primality Test (II) 49

4.5. Lemma. We have the lower bound

card(G) �
(

L + d − 1
d − 1

)
� 2min(L,d−1).

From the remark immediately following the combinatorial lemma (Lemma
2-4.3), we have for example that if 1 � d − 1 � L, then card(G) � 2d, and
if L � d, then card(G) � 2L+1.

Proof. In light of the combinatorial lemma mentioned above, it suffices to
show that the classes of elements,

∏

1�a�L

(X − a)ma , for ma � 0 and
L∑

a=1

ma � d − 1,

are all distinct in K. First of all, the a are distinct modulo p, because if
not, then p � L < r and we assumed that N was not divisible by any prime
number smaller than r, so p > r. Thus our polynomials are all distinct in
Fp[X]. Now we bring in the key point that if P =

∏
1�a�L(X − a)ma ,

then we have, on one hand, P (X)N ≡ P (XN)mod(N, Xr − 1), but also
P (X)p ≡ P (Xp)mod p, so the two congruences are valid mod(p, Xr − 1).
For m = N ipj , it therefore follows that

P (X)m ≡ P (Xm) mod(p, Xr − 1) or even mod(p, h(X)).

In fact, the set of m such that P (X)m ≡ P (Xm)mod(p, Xr − 1) is multi-
plicative (the fairly simple proof is given in detail in part ii) of 2-4.7 below).
Now let P and Q be two polynomials of the form given above (considered
in Fp[X]), and suppose that they are in the same class in K, i.e., suppose
P ≡ Q mod(p, h(X)). Let x be the class of X, which is an rth primitive
root of unity in K, and therefore

(P − Q)(xm) = 0, for m ∈ 〈N, p〉 ⊂ (Z/rZ)∗.

But we know that N and p generate a subgroup of order d in (Z/rZ)∗, thus
the polynomial P − Q has at least d roots, and since deg(P − Q) � d − 1,
we see that P = Q (first in Fp[X], then, if we want, in Z[X]). �

In order to find an upper bound for |G|, we choose a generator of G (it is
a subgroup of K∗ and is thus cyclic) and define the following set.

4.6. Definition. Let g be a generator of G. We define

I = Ig := {m ∈ N | g(X)m ≡ g(Xm) mod(Xr − 1, p)}.

The main properties of I are summarized in the following lemma.

50 2. Applications: Algorithms, Primality and Factorization, Codes

4.7. Lemma. The set I satisfies the following properties.

i) N and p are in I .
ii) I is multiplicative, i.e., if m1 and m2 ∈ I , then m1m2 ∈ I .
iii) If m1 and m2 ∈ I satisfy m1 ≡ m2 mod r, then m1 ≡ m2 mod card(G).

Proof. The first property has already been established. For ii), write

g(X)m1m2 = (g(X)m1)m2 ≡ (g(Xm1))m2 mod(p, Xr − 1),

and notice that since m2 ∈ I , we have g(Y)m2 ≡ g(Y m2)mod(p, Y r − 1).
Therefore, by substituting Y = Xm1 , we obtain

(g(Xm1))m2 = g(Xm1m2) + pQ1(Xm1) + (Xm1r − 1)Q2(Xm1)

≡ g(Xm1m2)mod(p, Xr − 1).

In order to prove iii), suppose that m1 and m2 ∈ Ig and that m2 = m1+kr,
where k � 0. It follows from this that

g(X)m2 ≡ g(Xm2) mod(Xr − 1, p) and thus mod(h(X), p);

hence g(X)m1+kr = g(Xm1+kr) in K. But Xm1+kr ≡ Xm1 mod(Xr − 1)
and therefore mod(h(X)). Thus we obtain the equality in K∗

g(X)m1g(X)kr = g(Xm1) = g(X)m1 ,

where the last equality comes from the hypothesis that m1 ∈ I . From
this, we of course have that g(X)kr = 1 ∈ K∗ and hence card(G) divides
kr = m2 − m1. �
Proof. (end of the proof of Theorem 2-4.4) In order to apply the lemma,
we use that N , p and hence all of the products of powers N ipj are in I .
Recall that these elements generate a subgroup of order d in (Z/rZ)∗. If
we set

E := {(i, j) ∈ N × N | 0 � i, j �
√

d},

then the cardinality of E is (�
√

d
+ 1)2 > d. By the pigeonhole principle4,
there are two elements N i1pj1 and N i2pj2 , which are congruent modulo r,
and such that (i1, j1) and (i2, j2) are distinct in E. These two elements
N i1pj1 and N i2pj2 are therefore congruent modulo card(G). First suppose
that N i1pj1 �= N i2pj2 , which implies that

card(G) � |N i1pj1 − N i2pj2 | � N2
√

d.

If we combine this upper bound with the lower bound gotten above, we see
that

min(L + 1, d) log 2 � (2
√

d) log N.

4The pigeonhole principle says that if we put n +1 pigeons into n boxes, at least one
of the boxes will contain at least two pigeons.

§5. Factorization 51

We will prove that this inequality is impossible.

1) If we had L � d, we could deduce that
√

d � 2 log N/ log 2 or moreover
that d � (2 log N/ log 2)2. But this inequality is a contradiction since,
by construction, d � d1, and we assumed that d1 > (2 log N/ log 2)2.

2) Now if L < d, we deduce that (L + 1) log 2 � (2
√

d) log N , and since
d � r − 1, this would give us (L + 1) log 2 � 2

√
r − 1 log N .

It is therefore a sufficient condition that L � 2
√

r − 1 log N/ log 2 is large
enough in order to conclude that N i1pj1 = N i2pj2 . The choice L = r − 1
is suitable5 since then the desired equality would be equivalent to the
inequality

√
r − 1 � 2 log N/ log 2, which is where the hypothesis r �

(2 log N/ log 2)2 + 1 comes from. We finish the proof by pointing out that
the inequality N i1pj1 = N i2pj2 immediately implies that N = pα. �

4.8. Remark. One variation of this proof consists of abandoning the
constraint that r is a prime number; we choose a factor, h(X), of Φr ∈
Fp[X] where Φr is the rth cyclotomic polynomial (cf. Sect. 6 of this
chapter), and we could then omit every analytic estimate of the distribution
of prime numbers (see [33] for this version, as well as a finer estimate of
the complexity).

5. Factorization
We briefly consider, and necessarily very unsatisfactorily, the problem of
factorization: having established, by a primality test, that an integer N is
not prime, how could we go about factoring it? We start by pointing out
that the (complete) factorization problem is essentially equivalent to the
problem of finding one factor, because of course, by iterating this procedure,
we would achieve a complete factorization.

The naive factorization method consists of checking if 2 divides N , then if
3 divides N , etc. If N = pq where p and q are roughly of the same size, i.e.,
p ∼ q ∼

√
N , we see that we would need to perform O(

√
N) divisions before

arriving at a factorization of N . The naive algorithm is thus exponential.

There do exist more efficient algorithms. In fact, one of the best algorithms
known [49] (using elliptic curves) has a number of operations estimated by
exp(C

√
log p log log p), where p is the smallest prime factor of N . In the

case where N = pq where p ∼ q ∼
√

N , we therefore get an algorithm
with an order of complexity exp(C ′(log N)κ) (where κ < 1), which grows

5We point out however that we could take L = O(
√

r log N), which would allow us
to slightly improve the estimate of the complexity.

52 2. Applications: Algorithms, Primality and Factorization, Codes

less quickly than Nκ but more quickly than (log N)κ. We say that such an
algorithm is subexponential. Another algorithm [19] (“number field sieve”)
has a complexity on the order of exp

(
C(log N)1/3(log log N)2/3

)
. In 2006,

it was known in practice how to factor an integer with 100 digits in a couple
of hours, and by using many computers over many months, how to factor
an integer with 150 digits. But we still cannot factor, over the course of
a human lifetime, an RSA number, with say 300 digits. A surprising fact
is that the complexity of various algorithms (proven probabilistically or
heuristically) tends to take the form of a function (see [48]):

L(b, N) := exp
(
C(log N)b(log log N)1−b

)
.

The case b = 0, in other words (log N)C , corresponds to polynomial al-
gorithms, the case b = 1, in other words NC , corresponds to exponential
algorithms and the cases 0 < b < 1 correspond to subexponential algo-
rithms; the two algorithms cited above have a complexity estimated at
L(1/2, N) and L(1/3, N).
We are not going to present the most powerful algorithms right away, since
they use tools which surpass the level of this chapter; the algorithms which
use elliptic curves and the number field sieve are presented in Appendix A,
which is about factorization. For the moment, we will settle for describing
an algorithm which improves on the naive algorithm by providing an even
more efficient one.
From now on, we use the convention that the letter p is reserved for a factor
of N .
Pollard’s ρ algorithm. We proceed as follows. We choose a0 between 1
and N and we compute the sequence given by ai+1 = f(ai), where f(a) :=
a2 + 1 mod N . We then choose k “big enough, but not too big” and we
calculate gcd(a2k − ak, N), hoping that it is nontrivial; if that is the case,
we have found a factorization, if not, we try again with larger k. We
will explain below why, at least statistically, there exists k of size O(

√
p),

where p divides gcd(a2k − ak, N). Assuming that, we see that the average
complexity of the algorithm is O(

√
p), thus O(4

√
N).

The analysis of the complexity is based on the hypothesis that the sequence
ai modulo p is sufficiently “random”, which has been satisfactorily confirmed
in practice. Now, the probability that r numbers modulo p chosen “at
random” are all distinct is6

Pr =
(
1 − 1

p

)(
1 − 2

p

)
· · ·
(
1 − r − 1

p

)
� exp

(
− r(r − 1)

2p

)
.

If we take r on the order of √
p, say r � 2

√
p, the probability that two

6Example. If n � 23, the probability that, among n people, two have the same
birthday is greater than 1/2.

§5. Factorization 53

of the numbers are equal (modulo p) will be > 1/2, thus we have a good
chance to have two indices i < j < r such that ai ≡ aj mod p. Considering
the construction that follows, we would have ai+m ≡ aj+m mod p for every
m � 0, and in particular, by taking m = j − 2i and k = j − i, we would
have ak ≡ a2k mod p (see [22] for more details).

“Difference of squares” algorithm. The second algorithm, that we will
only sketch, is based on the fact that the number of elements a ∈ (Z/NZ)∗

such that a2 = 1 is at least equal to 4 if N has at least two distinct prime
factors. If we knew how to compute a square root in (Z/NZ)∗, say A (x),
with a fast algorithm A , then we could factor N like this: take a at random
and calculate b = A (a2). Then we of course have that a2 ≡ b2 mod N , or
even that N divides (a + b)(a − b). Now, there is (at least) a one in two
chance that ±a mod N is not the square root calculated by A and, in
this case, the calculation of gcd(N, a + b) or of gcd(N, a − b) would give
us a factorization. Unfortunately, or luckily, we do not know of any fast
algorithm A (it is even possible that one does not exist). One extension
of this idea is the following: instead of directly looking for an equality
a2 ≡ b2 mod N , we try to construct one. In order to do this, we randomly
take a close to

√
N , we reduce a2 modulo N (taking care to take the

representative in [−N/2, N/2]) and we try to factor it with small prime
numbers. In this way, we get a family of congruences a2

j ≡
∏

p∈S pnp,j .
We therefore look for a combination of these numbers which provides an
equality of the type

∏
i a2

i ≡
∏

j b2
j mod N (this is a linear algebra problem

over F2). This idea, presented very vaguely here, is expanded on in more
detail in Appendix A, when we describe the number field sieve algorithm.
Property quantified, this algorithm has an average (heuristic) complexity on
the order of L(1/2, N)—which is already remarkable, even if it is insufficient
for very large numbers.

Examples of precautions to take when choosing p and q for the
RSA method. We will only give some very elementary indications, since
the question is fairly complex, and in fact largely open.

1) The absolute value, |p − q|, must be large. We can see why by writing
q = p + δ where δ is much smaller than p. Since N = pq, then

√
N =

p
√

1 + δ/p ∼ p + δ/2 and we could find p with the “naive” algorithm in
O(δ) steps!

2) It must be that p − 1 (resp. q − 1) are not too smooth, in other words,
cannot be factored too quickly, for example the product of small prime
numbers. To see why this is true, choose C > 0, and let p1, . . . , pk be the
prime numbers smaller than C; the set S := {s = pm1

1 · · · pmk

k | s � N} has
cardinality O((log N)k), and we can therefore calculate gcd(as − 1, N) for
some values of a and s ∈ S in polynomial time. If p−1 ∈ S (in other words

54 2. Applications: Algorithms, Primality and Factorization, Codes

if p − 1 only has prime factors � C), then we have a very good chance of
being able to factor N .

3) A less obvious constraint is that it must be that the “secret” exponent
e is not too small. It is clear that if e = O(log N) for example, then by
trying O(log N) times, we will find e, but in fact it can be shown that you
must avoid having e � N1/4 (see Exercise 3-6.12 of Chap. IV).

These relatively trivial remarks could cast doubt the security of the RSA
system (see [17] for a more precise description of the catalogued attacks
on the RSA system). However, theoretical support for it is provided by
the following considerations. Let us call P the class of problems for which
there exists a polynomial algorithm (for example the problem of deciding
whether a number is prime is in P, by Agrawal-Kayal-Saxena). We can de-
fine a class NP, a priori much larger than P, which is the class of problems
for which there exists a polynomial verification (for example, the problem
of factorization of a number is clearly in NP, since if we are given a factor-
ization, we can verify it in polynomial time). However, the factorization
problem has a subexponential solution. The security of the RSA system
rests, from a theoretical point of view, on the hypothesis that the factor-
ization problem is not in P. In fact, it is a special case of a large problem
in complexity theory7:

Is it true that P �= NP?

6. Error-Correcting Codes
We give a glimpse of another industrial application of algebra and arith-
metic: the construction of “error-correcting codes”, which can, to a certain
degree, reconstruct a message if its transmission was slightly defective. This
technique is for example needed to produce CD readers, to transmit images
by space probes, etc. If this introduction leaves you hungry to learn more,
I recommend Demazure’s book, Cours d’algèbre [3].

6.1. Generalities about Error-Correcting Codes

In order to transmit information, we assume that we are using a finite
alphabet Q, containing q symbols or letters and that we are sending words
of a fixed length n; a word is therefore and element of Qn. We can think
of binary language, i.e., Q := {0, 1}, or of genetic codes, for example Q :=
{A, C, G, U} (the bases found in RNA are A for adenine, C for cytosine,
G for guanine and U for uracil). We will most often take the example of

7This problem P �= NP is one of the seven problems, for the solution of which a
million dollars is offered by the Clay Mathematics Institute.

§6. Error-Correcting Codes 55

Q := Fq, which has the disadvantage of limiting the possible values of q

but the advantage of providing a richer structure.

The set of words Qn can be endowed with a Hamming distance, defined as
follows. If x = (x1, . . . , xn) ∈ Qn and x′ = (x′

1, . . . , x
′
n) ∈ Qn, then

d(x, x′) := card{i ∈ [1, n] | xi �= x′
i}.

It can easily be checked that is in fact a distance.

A code is a subset C ⊂ Qn containing at least two distinct elements in Qn;
we define the distance of a code as

d (C) := min
x�=x′∈C

d(x, x′).

Once we have chosen a code C , the principle consists of only sending those
messages which belong to C . If we know that at most d (C)−1 transmission
errors have been committed, then using the error-correcting code will enable
us to establish the existence of one or more errors. Furthermore, if t errors
have been committed during the transition of a word and if 2t+1 � d (C),
we see that there exists one single word in C located at a distance � t from
the received word. In conclusion, the code allows us to correct t errors and
we say that it is t-correcting. If we denote by d = d (C) the distance of the
code and t = t (C) the number of errors that are systematically corrected
by the code, we easily see that relationship between the two is given by

t =
⌊

d − 1
2

⌋
and conversely d = 2t+1 or 2t+2. Except for some examples,

we leave aside the question of decoding, which is essentially the study of
algorithms which allow you to find the word of the code located at a minimal
distance from a given word (it should be noted that you cannot in general
guarantee the uniqueness of this word except under certain conditions).
One of the properties required of a code is obviously that it corrects or
finds the most possible errors (we could also insist that the decoding be
the simplest possible). An intuitively obvious requirement is that it uses
the least amount of space; we could formalize this idea by introducing
the code rate t/n, and the information rate that we define as the ratio
log card (C) /n log q. Information theory, developed by Shannon (see the
founding article [67]), says that if we are willing to send longer and longer
messages (i.e., to let n be very large), then there exist codes as safe we
want them to be, with an information rate close to 1. Shannon’s theorem
is however an existence theorem, it does not specify how to construct such
codes.

We are actually going to exclusively concentrate on linear codes, where the
alphabet is (in bijection with) Fq, the space of words is (in bijection with)
the vector space (Fq)n and C is a subspace. In the case of q = 2, we are

56 2. Applications: Algorithms, Primality and Factorization, Codes

talking about binary codes, in the case q = 3, we are talking about ternary
codes, etc.

The most important parameters of a linear code are the cardinality of the
alphabet q = card Q, its length say n, its dimension say k := dim C , its
distance d (C), its code rate and its information rate k/n.

Remark. Let C ⊂ Fn
q be a linear code. We define the weight of an element

w(x) as the number of non-zero components of x. We can easily see that

d (C) = min
0 �=x∈C

d(0, x) = min
0 �=x∈C

w(x).

6.1.1. Examples. 1) The most basic example of a code is the use of a
parity bit: in order to transmit a word x = (x1, . . . , xn−1) ∈ (F2)n−1, we
send x̄ = (x1, . . . , xn−1, x1 + · · · + xn−1) ∈ (F2)n. To see if the received
message x′ = (x1, . . . , xn) is correct, we check whether xn = x1+· · ·+xn−1.
This code has length n and dimension n − 1. It allows us to find an error
but not to correct it. Its distance is 2.

2) Hamming code. Take the set of words with seven binary digits, q = 2,
n = 7, and let C be the code with basis

e0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
1
0
1
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, e1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
1
1
0
1
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, e2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
1
1
0
1
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, e3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
1
1
0
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The coding principle is simple: in order to transmit a message m =
(m0, m1, m2, m3), we transmit x = m0e0 + m1e1 + m2e2 + m3e3. For
this simple example, we will explain the decoding under the hypothesis that
at most one error was committed. Equations of the vector subspace C are
given by

L(x) = (x0 + x3 + x5 + x6, x1 + x3 + x4 + x6, x2 + x4 + x5 + x6) = 0.

For each vector e of weight 1, we then calculate the triplet L(e). From
this, we obtain the following algorithm of correction and decoding. After
having received the message x = (x0, . . . , x6), we check whether L(x) = 0.
If L(x) = 0, the message is correct, if L(x) = (1, 0, 0), then x0 must be
corrected, if L(x) = (0, 1, 0), then x1 must be corrected and if L(x) =
(1, 0, 1), then x5 must be corrected. Finally, if L(x) = (1, 1, 1), then x6

must be corrected. Thus we have m = (x0, x0 + x1, x5, x6).

We denote by T (x1, . . . , x7) := (x7, x1, . . . , x6) the “shift”, so we have that
T (e0) = e1, T (e1) = e2, T (e2) = e3 and T (e3) = e0 + e1 + e2. Thus

§6. Error-Correcting Codes 57

T (C) = C (C is then called cyclic). It is easy to see that each non-zero
vector in C has at least three non-zero coordinates, and therefore d (C) = 3.
Therefore, this code is 1-correcting and allows us to identify two errors but
not to correct them.

An amusing example. The previous code suggests that it is possible to
recover an element of F4

2 (or say an integer between 0 and 15) starting
with an element of F7

2 (or say seven yes/no pieces of information) if at
most one error has been committed (granted at most one of the bits of
information is false). One version of this is the seven following questions
which allow us to determine an integer N between 0 and 15.
1) Is the integer N � 8?
2) Is the integer N in the set {4, 5, 6, 7, 12, 13, 14, 15}?
3) Is the integer N in the set {2, 3, 6, 7, 10, 11, 14, 15}?
4) Is the integer N odd?
5) Is the integer N in the set {1, 2, 4, 7, 9, 10, 12, 15}?
6) Is the integer N in the set {1, 2, 5, 6, 8, 11, 12, 15}?
7) Is the integer N in the set {1, 3, 4, 6, 8, 10, 13, 15}?

We leave as an exercise the justification of the following algorithm. We
denote the answers to the above questions by m = (m1, . . . , m7) (mi = 1
if the ith answer is yes, mi = 0 if not), and we compute a1 = m4 + m5 +
m6 + m7, a2 = m2 + m3 + m6 + m7 and a3 = m1 + m3 + m5 + m7. If
a1 = a2 = a3 = 0, we conclude that there is not an error, if not we change
the rth answer mr into r = a1a2a3 (binary numeral notation), and the
number we are looking for is therefore written

N = m1m2m3m4.

We will now show how to characterize and construct codes and how to
deduce new codes from the given ones by using elementary linear algebra.
We denote by n the length of the codes and by k their dimension, unless
specified otherwise.

6.1.2. Definition. A generator matrix of a code C is a matrix whose
rows form a basis of C . (It is therefore a matrix of rank k having k rows
and n columns.) A parity-check matrix of a code C is a matrix whose rows
form a basis for the linear forms which are zero over C . (It is therefore a
matrix of rank n − k having n − k rows and n columns.)

6.1.3. Remarks. Being given a generator matrix is of course equivalent
to being given a basis of the vector space C , and given a parity-check
matrix is of course equivalent to being given a basis of linear equations
which define C in Fn

q . If A is a generator matrix and B a parity-check

58 2. Applications: Algorithms, Primality and Factorization, Codes

matrix, we easily see that A tB = 0, or also B tA = 0. Moreover, we can
recognize the distance of the code as the smallest number d such that there
exist d dependent column vectors in B.

Assume that we are given a code C with parity-check matrix B and assume
that the code is 1-correcting. We show you how to decode a received
message, x′, which is different in at least one coordinate from the sent
message, x. First of all, if we denote the error committed by ε = x′−x, we
see that B(x′) = B(ε). We will therefore compute B(x′); if this is non-zero,
then no error has been committed, if not, we compute the images of the
vectors ei in the canonical basis fi = B(ei). If only one error has been
committed, we find a unique i such that B(x′) is proportional to fi, say
B(x′) = aifi, and therefore ε = aiei and x = x′ − aiei.

If C is a code of length n over the field F = Fq, we can associate to it the
following codes.

i) Shortened code. Let d(C) � � � n. We set C (�) :=
{
x ∈ F�

q |
(x; 0, . . . , 0) ∈ C }. It is a code of length �, and we easily see that

d
(
C (�)

)
� d (C).

ii) Extended code. We can create the analogue of the “parity bit” by con-
structing C̄ := {(x1, . . . , xn+1) ∈ Fn+1

q | (x1, . . . , xn) ∈ C and x1 +
· · ·+xn +xn+1 = 0}. We can easily see that d (C) � d

(
C̄
)

� d (C)+1.
One variation is the even subcode defined as C ′ = {x ∈ C | x1 + · · · +
xn = 0}. We have d (C) � d (C ′).

iii) Dual code. We define the scalar product 〈x, y〉 := x1y1 + · · · + xnyn,
and we set C ∗ := {x′ ∈ Fn

q | ∀x ∈ C , 〈x, x′〉 = 0}. We have that
dim C ∗ = n − dim C . An interesting category of binary codes is that
of self-dual codes, i.e., such that C ∗ = C ; such codes have dimension
n/2, and the weight of an element is even since w(x) ≡ 〈x, x〉mod 2.

As an exercise, you could try to figure out how to construct a parity-check
(or generator) matrix of each of these codes, starting with the parity-check
(or generator) matrix of the original code.

6.1.4. Lemma. Let C be a code of dimension k and of length n over Fq.
The following inequalities hold:

i) d(C) � n + 1 − k ;
ii) if C is t-correcting 1+

(
n
1

)
(q−1)+

(
n
2

)
(q−1)2+ · · ·+

(
n
t

)
(q−1)t � qn−k.

Proof. i) The vectors of the form (x1, . . . , xn+1−k, 0, . . . , 0) form a vector
subspace D of (Fq)n. Since dim D+dim C = n+1, we see that D∩C �= {0},
hence the existence of a non-zero vector of C of weight � n + 1 − k. For

§6. Error-Correcting Codes 59

ii), we can observe that for every x ∈ Fn
q and 0 � t � n,

card (B(x, t)) = 1 +
(

n

1

)
(q − 1) +

(
n

2

)
(q − 1)2 + · · · +

(
n

t

)
(q − 1)t.

If the code t-correcting, the balls B(x, t) with center x ∈ C are disjoint and
thus

card (∪x∈C B(x, t)) = qk card (B(0, t)) � qn. �

6.1.5. Definition. A code such that d(C) = n + 1 − k is called MDS
maximal distance separable. A t-correcting code such that C = ∪x∈C B(x, t)
(forcibly a disjoint union) is called perfect t-correcting.

The Hamming code of length 7 studied in the examples is perfect 1-correcting
since, in this case, we can show that cardB(x, 1) = 1+7 = 8 and 8 card C =
27. We could also notice that this code is not MDS, because d (C) = 3 <
4 = n − k + 1.

6.2. Linear Cyclic Codes

We will explicitly describe an interesting class of codes which in particu-
lar contains some of the classical codes, such as that of Hamming, Reed-
Solomon and Golay and which will lead us into the study of cyclotomic
polynomials.

6.2.1. Definition. A linear cyclic code is a linear code, C , of length n,
which is stable under the transformation T (a0, a1, . . . , an−1)=(an−1, a0, . . . ,
an−2).

We can give a nice algebraic characterization of cyclic codes by introducing
the natural isomorphism of vector spaces Fn

q
∼= Fq[X]n ∼= Fq[X]/QFq[X],

where Fq[X]n represents the polynomials of degree < n and where Q is
a polynomial of degree n. Since the characteristic (or minimal) polyno-
mial of the endomorphism T is Q = Xn − 1, we therefore choose this
value. Hence we denote by ψ : Fn

q → Fq[X]n ∼= Fq[X]/(Xn − 1) defined
as ψ(a0, a1, . . . , an−1) �→ a0 + a1X + · · · + an−1X

n−1 mod(Xn − 1). We
immediately see that

ψ ◦ T (a0, a1, . . . , an−1) = X(a0 + a1X + · · · + an−1X
n−1) mod(Xn − 1).

Thus a vector subspace C ⊂ Fn
q is stable under T if and only if its image

under ψ is stable under multiplication by X. We should point out that an
Fq vector subspace of Fq[X]/(Xn −1) which is stable under multiplication
by X is nothing other than an ideal of Fq[X]/(Xn − 1). Finally, the ideals
of Fq[X]/(Xn − 1) correspond to the ideals of Fq[X] which contain the

60 2. Applications: Algorithms, Primality and Factorization, Codes

polynomial Xn − 1 and therefore are of the form PFq[X] where P divides
Xn − 1. We summarize this discussion in the following theorem.

6.2.2. Theorem. Let K := Fq and let C be a cyclic code of length n. We
identify Kn with K[X]/(Xn − 1) via (a0, a1, . . . , an−1) �→ a0 + a1X + · · ·+
an1X

n−1. There exist natural bijections between the following objects:

i) a cyclic code of length n;
ii) an ideal K[X]/(Xn − 1);
iii) a monic polynomial which divides Xn − 1 in K[X].

One of the bijections associates P , which divides Xn − 1, to the ideal C of
K[X]/(Xn−1) generated by its class modulo Xn−1, and another associates
an ideal of K[X]/(Xn − 1) to the vector subspace corresponding to C of
Kn. Furthermore, dimC = n − deg(P).

This leads to the following problem: how to decompose the polynomial
Xn − 1 in Fq[X]?
It is of course better to start with a decomposition in Z[X] (or Q[X]),
which is provided by cyclotomic polynomials. In order to define these, we
denote by μn = {ζ ∈ C | ζn = 1} the group of nth roots of unity and
μ∗

n the subset of nth primitive roots of unity, and hence cardμn = n and
card μ∗

n = φ(n).
We will need Gauss’s lemma.

6.2.3. Lemma. If P = p0 + p1X + · · · + pdX
d ∈ Z[X] is a non-zero

polynomial, we define its content as c(P) := gcd(p0, . . . , pd). We therefore
have that

c(PQ) = c(P)c(Q).

Proof. By factoring P = c(P)P ∗ and Q = c(Q)Q∗, we see that c(PQ) =
c(P)c(Q)c(P ∗Q∗). So we have reduced the proof to showing that if P and
Q are primitive (i.e., c(P) = c(Q) = 1), then c(PQ) = 1. If p is a prime
number, we denote by P̄ the image of P in Fp[X]. We have that P̄ �= 0
and Q̄ �= 0, thus P̄ · Q̄ = PQ �= 0 because Fp[X] is integral. So no p divides
c(PQ), which implies that it is invertible. �

6.2.4. Corollary. Let P ∈ Z[X]. Suppose that there exist Q, R ∈ Q[X]
such that P = QR. Then there exists λ ∈ Q∗ such that λQ and λ−1R have
integer coefficients.

Proof. We can write Q = a
b

Q1 (resp. R = c
d

R1), where a, b, c, d are
integers and where Q1 and R1 are primitive polynomials with integer co-
efficients. We can deduce from this that bdP = ac Q1R1 and, since the

§6. Error-Correcting Codes 61

equality is in Z[X], we can deduce, using Gauss’s lemma, that bd c(P) = ac
and, in particular, that bd divides ac. Thus P = c(P)Q1R1. �

6.2.5. Corollary. If α ∈ C is a root of a monic polynomial with in-
teger coefficients, then the minimal (monic) polynomial of α has integer
coefficients.

Proof. Let P , a priori in Q[X], be the minimal polynomial of α and let
Q be monic with integer coefficients such that Q(α) = 0. Then Q = PR,
where R is in Q[X]. Gauss’s lemma says that there exists λ ∈ Q∗ such
that R0 = λR and P0 = λ−1P have integer coefficients. By observing that
Q = P0R0, it follows that the leading coefficient of P0 is invertible, and
hence P = ±P0 has integer coefficients. �

6.2.6. Definition. The nth cyclotomic polynomial, denoted Φn, is defined
as

Φn(X) :=
∏

ζ∈μ∗
n

(X − ζ).

These polynomials, a priori with complex coefficients, in fact have integer
coefficients and moreover provide a decomposition of Xn−1 into irreducible
factors, as shown in the following theorem.

6.2.7. Theorem. The polynomials Φn have the following properties.

i) Φn ∈ Z[X] and deg Φn = φ(n).
ii) Xn − 1 =

∏
d |n Φn(X).

iii) The polynomials Φn are irreducible in Z[X] and in Q[X].

Proof. With the given definition, Φn ∈ C[X]. Formula ii) is clear, as well as
the fact that deg(Φn) = φ(n); however it is less clear that in fact Φn ∈ Z[X]
and that Φn is irreducible in Q[X] (or Z[X]). We shall start by showing
that the coefficients of Φn are integers. It is clear that Φ1(X) = X − 1 ∈
Z[X], and formula ii) leads us to try induction on n. The polynomial
B :=

∏
d |n, d�=n Φd(X) is monic and, by applying induction, has integer

coefficients. We can therefore carry out the division algorithm in Z[X], and
obtain Xn−1 = BQ+R. Formula ii) then guarantees that B divides R (in
Q[X]), so R = 0 and Q = Φn. We will now show that Φn is irreducible in
Z[X]. Let ζ be a primitive nth root of unity and P its minimal polynomial
over Q. We therefore need to show that P = Φn. First, observe that
P ∈ Z[X]. Then choose a prime number p which does not divide n, so ζp

is still an nth primitive root of unity. Let Q be its minimal polynomial,
which is also in Z[X]. If P and Q were distinct, the product PQ would

62 2. Applications: Algorithms, Primality and Factorization, Codes

divide Φn. But since Q(ζp) = 0, we see that ζ is a root of Q(Xp) and thus
Q(Xp) = P (X)R(X), for some R ∈ Z[X]. By reducing the coefficients
modulo p, we have

Q̄(Xp) = Q̄(X)p = P̄ (X)R̄(X),

and so P̄ (X) divides Q̄(X)p in (Z/pZ)[X]. Moreover, the factors of Xn−1,
and hence of P̄ (X), are simple in (Z/pZ)[X] (the derivative of Xn − 1 is
nXn−1, and we made a point of choosing p so that it does not divide n): the
polynomial P̄ (X) in fact divides Q̄(X). But then, P̄ (X)2 divides Φ̄n(X)
in (Z/pZ)[X], which contradicts the fact that the factors of Φ̄n(X) are
simple. To summarize, we have established that if p is a prime number
which does not divide n, the minimal polynomial of ζ kills ζp. We easily
deduce from this that if m is relatively prime to n, then P (ζm) = 0. Thus
deg(P) � φ(n) and since P divides Φn, we have that P = Φn, and it is
therefore irreducible. �

Since Φn has integer coefficients, we can reduce its coefficients modulo p
and consider it as a polynomial in Fp[X] (or in Fq[X] with q = pf).

6.2.8. Theorem. The decomposition into irreducible factors of the poly-
nomial Φn ∈ Fq[X] (with q = pf) depends on whether n modulo p is zero
or not.

i) If n = psm where p � |m, we have Φn(X) = Φm(X)ps−ps−1
.

ii) If gcd(n, q) = 1 and if r is the order of q mod n in (Z/nZ)∗, then Φn

can be decomposed into the product of φ(n)/r distinct irreducible factors
of degree r.

Proof. Assume first that n = prm. By Fermat’s little theorem and
the formulas from Exercise 2-7.12, it follows that Φm(X)p ≡ Φm(Xp) =
Φmp(X)Φm(X), hence Φmp(X) ≡ Φm(X)p−1, and subsequently that

Φmpr(X) = Φmp

(
Xpr−1

)
≡ Φmp(X)pr−1

≡ Φm(X)pr−1(p−1),

which proves the first assertion. From now on, suppose that p is relatively
prime to n. Let β be an nth primitive root in an extension of Fq. Every
factor of Φn can be written as Q =

∏
i∈I(X − βi), with I ⊂ (Z/nZ)∗. The

polynomial Q has coefficients in Fq if and only if

Q(X)q = Q(Xq). (∗)

In fact,
(∑

j ajX
j
)q

=
∑

j(aj)qXqj and a ∈ Fq if and only if aq = a. Thus
the polynomial Q has coefficients in Fq if and only if

∏

i∈I

(Xq − βiq) =
∏

i∈I

(X − βi)q =
∏

i∈I

(Xq − βi),

§6. Error-Correcting Codes 63

or even if and only if I is stable under multiplication by q (in (Z/nZ)∗).
The smallest stable subset is clearly of the form I := {i, iq, iq2, . . . , iqr−1}.
Also, the irreducible factors of Φn(X) in Fq[X] are of the form

Q =
r−1∏

s=0

(X − βiqs

),

and, in particular, all have degree r. �

6.2.9. Examples. 1) Take n = 11 and q = 3; we see that the order
of 3 mod 11 is equal to 5. Thus X11 − 1 = (X − 1)Φ11(X) in Z[X] and
Φ11 = P1P2 ∈ F3[X], where deg(Pi) = 5. We can check that, in F3[X],

X11 − 1 = (X − 1)(X5 − X3 + X2 − X − 1)(X5 + X4 − X3 + X2 − 1).

2) Take n = 23 and q = 2; we see that the order of 2 mod 23 is equal to 11.
Thus X23 − 1 = (X − 1)Φ23(X) in Z[X] and Φ23 = P1P2 ∈ F2[X], with
deg(Pi) = 11. We can check that, in F2[X],

X23 − 1 = (X − 1)(X11 + X10 + X6 + X5 + X4 + X2 + 1)

× (X11 + X9 + X7 + X6 + X5 + X + 1).

3) Take n = 15 and q = 2; thus X15 − 1 = (X − 1)Φ3(X)Φ5(X)Φ15(X) in
Z[X], with Φ15 = X8 −X7 +X5 −X4 +X3 −X +1. The order of 2 mod 3
is equal to 2, the order of 2 mod 5 is equal to 4 and the order of 2 mod 15 is
equal to 4. The polynomials Φ3 = X2 + X + 1 and Φ5 = X4 + X3 + X2 +
X + 1 are therefore irreducible in F2[X], and Φ15 = P1P2 ∈ F2[X], where
deg(Pi) = 4. We can check that, in F2[X],

X15−1 = (X−1)(X2+X+1)(X4+X3+X2+X+1)(X4+X3+1)(X4+X+1).

4) More generally, if gcd(q, n) = 1, a cyclic code of length n corresponds, by
Theorem 2-6.2.2, to a subset I ⊂ Z/nZ, which is stable under multiplica-
tion by q. More explicitly, the associated code is the ideal of Fq[X]/(Xn−1)
generated by the polynomial Q =

∏
i∈I(X − βi), where β is an nth primi-

tive root of unity. To estimate the distance of such a code, we can use the
following result.

6.2.10. Theorem. Let C by a linear cyclic code of length n over Fq

associated to I ⊂ (Z/nZ). If there exist i and s such that {i + 1, i +
2, . . . , i + s} ⊂ I, then d(C) � s + 1.

Proof. Let β be an nth primitive root in an extension of Fq and let Q be a
polynomial modulo Xn−1 which belongs to C . We know that Q(βi+j) = 0
for j = 1, . . . , s. Assume that the weight w of Q (viewed as an element of
Fn

q) is � s, which means that Q = a1X
i1 + · · · + awXiw with 0 � i1 <

64 2. Applications: Algorithms, Primality and Factorization, Codes

i2 < · · · < iw < n. We need to show that Q is in fact zero. Now, we
have the equations a1β

i1(i+j) + · · · + awβiw(i+j) = 0 for j = 1, . . . , s. Let
a′
1 := a1β

i1i, . . . , a′
w := awβiwi. The equations can be rewritten as

βi1ja′
1 + · · · + βiwja′

w = 0, for j = 1, . . . , s.

The matrix of the βirj can be extracted from a Vandermonde matrix with
βir �= βir′ , because β has order n, and its rank therefore equals w =
min{w, s}. This means that a′

1 = · · · = a′
w = 0, and hence a1 = · · · = aw =

0. �

6.2.11. Remark. The bound given in the theorem is generally not opti-
mal. We can see this below in the example of Golay codes.

6.2.12. Examples. (Linear cyclic codes.)

We will now describe in detail some examples gotten from choosing q, n
and a subset I ⊂ Z/nZ which is stable under multiplication by q. To be
rigorous, we should clarify that the code that we construct also depends on
the nth primitive root β that we choose. However, it is not difficult to see
that the various codes gotten from the choices of β are all isomorphic. We
will therefore omit β.

Hamming codes. One first interesting choice of parameters is n = (qr −
1)/(q − 1), and we can easily check that the order of q mod n is r. We set
I := {1, q, q2, . . . , qr−1}, which defines a code C of dimension n − r (once
β, a primitive nth root of unity, is chosen). We will now directly verify
that d(C) � 3. A polynomial of weight 2 can be written f = aXi + bXj

with say 0 � i < j � n − 1, and the condition that it is killed by βq�

for 0 � � � r − 1 is therefore written as a + bβ(j−i)q�

= 0. Since β is
of order n, we see that this is impossible except when a = b = 0. Thus
the code C is 1-correcting, and since card B(x, 1) = 1 + n(q − 1) = qr,
we see that C is perfect 1-correcting, and thus d(C) = 3 or 4 (we show
below that the distance is 3 and that the code is therefore MDS if and only
if r = 2). Binary Hamming codes are obtained by taking q = 2 and by
choosing I := {1, 2, 4, . . . , 2r−1} and hence k = n − r = 2r − r − 1. Since
{1, 2} ⊂ I, we see that d(C) � 3. For r = 3, q = 2, n = 7, we get the code
studied in the first example (2-6.1.1).

In order to see that the distance of a Hamming code is equal to d(C) = 3,
we write a parity-check matrix A for the code (a matrix with r rows and n
columns). The columns e1, . . . , en of A are vectors in (Fq)r, and we have
just shown that any pair of them is linearly independent. Now, there are
n = (qr−1)/(q−1) of them, and they therefore represent exactly one vector
from each line in (Fq)r. Since two of the vectors ei are never dependent,

§6. Error-Correcting Codes 65

but of course there exists triples of linearly dependent vectors, we see that
d(C) = 3.

Reed-Solomon codes. These codes correspond to the choice n = q − 1,
most often with q = 2f . Let α be a generator of F∗

q . Once we have chosen
k, we set

g(X) :=
q−1−k∏

i=1

(
X − αi

)
.

It follows of course that k = dim C and, since I = {1, 2, 3, . . . , q−1−k}, we
have d(C) � q−k. But we know that for every linear code, d(C) � n+1−k,
hence d(C) = q−k, and the code constructed in this way is therefore MDS.
Now suppose that q = 2f . We can consider C as a binary code C ′, with
the parameters n′ = (2f − 1)f , k′ = kf and distance d(C ′) � 2f − k. One
special feature of this code is that it can correct large numbers of errors:
if t satisfies 2t + 1 � d(C) = q − k, the code can correct t elements of
F2f , hence tf binary errors if these errors are distributed in bunches! This
feature explains why this type of code is used in the technology of compact
discs.

Ternary Golay code. We know that 35 − 1 = 11 · 23. We choose
q = 3, n = 11 and the subset of (Z/11Z)∗ generated by 3, in other words
I := {1, 3, 4, 5, 9}; this code, denoted by G11, is therefore of dimension
6. We point out (but do not use) that I = F∗2

11. By Theorem 2-6.2.10
on the distance of a cyclic code, we see that d (G11) � 4 and, by con-
sidering the factorization of Φ11 in F3[X] (cf. Examples 2-6.2.9), we see
that G11 contains a polynomial of weight 5, hence d (G11) � 5. An exten-
sive calculation (which is postponed to Exercise 2-7.22 below) allows us
to establish that actually d (G11) = 5. Thus G11 is 2-correcting, and since
card B(x, 2) = 1+2

(
11
1

)
+22

(
11
2

)
= 35, it is clear that the code G11 is perfect

2-correcting (but notice that it is not MDS).

Binary Golay code. We know that 211 − 1 = 23 ·89 (it is actually the
smallest number of the form 2p − 1 which is not prime). We therefore
choose q = 2, n = 23 and I as the subset of (Z/23Z)∗ generated by 2,
in other words I := {1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18}, and we denote by G23

the associated code. Observe also that I = F∗2
23. By Theorem 2-6.2.10 on

the distance of a cyclic code, we see that d (G23) � 5 and, by considering
the factorization of Φ23 in F2[X] (cf. Examples 2-6.2.9), we see that G23

contains a polynomial of weight 7, hence d (G23) � 7. An extensive calcu-
lation (which is postponed to Exercise 2-7.22, suggested below) allows us
to determine that actually d (G23) = 7. Thus G23 is 3-correcting, and since
card B(x, 3) = 1 +

(
23
1

)
+
(
23
2

)
+
(
23
3

)
= 211, it follows that the code G23 is

perfect 3-correcting (but notice that it is not MDS).

66 2. Applications: Algorithms, Primality and Factorization, Codes

6.2.13. Remark. We can show that if we exclude trivial codes (i.e., of
dimension 1, n− 1 or n), the only perfect t-correcting codes are those that
we have already constructed: the Hamming 1-correcting codes and the two
Golay binary and ternary codes [73].

7. Exercises

7.1. Exercise. (Newton’s method) Recall that Newton’s iterative method
(for approximating the zeros of a function) is applicable to differentiable
functions. Let f be a function with a unique zero at α; the iteration is
given by

xn+1 = xn − f(xn)
f ′(xn)

.

The rate of convergence of this approximation is quadratic, i.e., |xn+1−α| �
C|xn−α|2. Clarify and prove this assertion for the function f(x) := xm−a,
and deduce a fast calculation algorithm for approximating m

√
a from this.

7.2. Exercise. 1) Give a fast algorithm which checks if a given integer N

is a power am, where m � 2.

2) If we now want to test whether N = pm where p is prime and m � 2,
we take a ∈ [2, N − 1] and we test if gcd(a, N) = 1. If that is the case,
we compute d = gcd(aN−1 − 1, N). Prove in this case that p divides d and
that, with a high probability, d �= N and also that d = p. Deduce from this
an algorithm to check whether N = pm.

7.3. Exercise. (Multiplication algorithm—see [42]) Suppose that the
integers m and n are written in at most 2t binary digits, n = n12t +n0 and
m = m12t + m0. Observe that

mn = m1n1(22t − 2t) + 2t(m1 + m0)(n1 + n0) + m0n0(1 − 2t)

and can therefore be calculated with three multiplications of numbers of
size t and some additions and shifts (multiplication by 2 consists of one
shift of digits). Deduce from this an algorithm, where the cost T (r) of the
multiplication of two numbers with r digits satisfies

T (2r) � 3T (r) + cr,

for some appropriate constant c. Deduce from this that T (r) = O (rα),
where α > log 3/ log 2. (Notice that, asymptotically, this algorithm is better
that the usual algorithm, whose complexity is O(r2).)

§7. Exercises 67

7.4. Exercise. (Multiplication by fast Fourier transform) In this exercise,
we will give a theoretical presentation of the finite Fourier transform, which
will allow us to multiply very large numbers faster than the usual algorithm.
The hints are fairly brief, so you could also use a specialized reference, [42]
Sect. 4.3.3., to help you finish this exercise.

Let N � 2 be an integer and let A be a ring. We identify the set E of
functions from Z/NZ to A with the set of polynomials with coefficients in
A of degree < N , in other words, to polynomials associated to the ring
A[X]/(XN − 1). If a = (ai)0�i�N−1 is a sequence indexed by Z/NZ, we
denote by Pa the corresponding polynomial. We define a “convolution” by
(a ∗ b)i =

∑
j+h=i ajbh, and we can easily check that Pa∗b = PaPb.

If ζ is an N th primitive root of unity in A, we define the “Fourier trans-
form”, F : E → E and its conjugate F̄ : E → E by the formulas

(Fa)j =
∑

i∈Z/NZ

ζijai = Pa(ζj) and (F̄a)j =
∑

i∈Z/NZ

ζ−ijai = Pa(ζ−j).

1) Prove that the following formulas hold: F (a∗b)=F (a)·F (b), F
(
F̄a
)

=
Na and F̄ (Fa) = Na.

2) Whenever N = 2N ′, we set ζ ′ := ζ2 and E′ := A[X]/(XN ′ − 1), and we
define F ′, F̄ ′ : E′ → E′ with the help of ζ ′. For a ∈ E, we define a0, a1 ∈
E′ by setting a0

i = a2i and a1
i = a2i+1. Check that, for 0 � j � N ′ − 1, the

following formulas hold:

(Fa)j =
(
F ′a0

)
j
+ζj

(
F ′a1

)
j

and (Fa)N ′+j =
(
F ′a0

)
j
−ζj

(
F ′a1

)
j
.

3) Now suppose that N = 2r. Use the previous arguments to derive a recur-
sive procedure for calculating a Fourier transform. If we denote by M(r)
the number of multiplications and A(r) the number of additions necessary
to carry out this procedure, show that A(r)+M(r) = O(r2r) = O(N log N).

4) By using the first formula (convolution transformation and ordinary
product) and the preceding results, derive a multiplication algorithm for
polynomials with coefficients in A.

5) The choice of a numeral basis b lets us write integers in the form Pa(b) =
a0 +a1b+ · · ·+adb

d. Using the polynomial multiplication algorithm, derive
an algorithm for multiplying integers.

7.5. Exercise. A Fibonacci sequence of integers is defined by u0 = a,
u1 = b and un = un−1 + un−2 for n � 2, where 1 � a � b are integers (the
classical Fibonacci sequence corresponds to a = b = 1).

1) Prove that log |un| ∼ n log
(

1 +
√

5
2

)
.

68 2. Applications: Algorithms, Primality and Factorization, Codes

2) Prove that gcd(un+1, un) = gcd(b, a) and that the Euclidean algorithm
gives this result in n steps. Deduce from this that the complexity estimation
given at the beginning of this chapter is generally optimal.

7.6. Exercise. Prove that following algorithm allows us to calculate the
gcd of two integers, and estimate its complexity. If n and m are even,
factor out 2; if n is even and m is odd (or conversely), replace n by n/2;
if m and n are odd, replace n by (n − m)/2.

7.7. Exercise. Let M ∈ Z and let N be an odd positive integer. Prove that
the Euclidean algorithm, together with the quadratic reciprocity law, gives
a fast algorithm (and estimate its complexity) for calculating the Jacobi

symbol
(

M
N

)
.

7.8. Exercise. Let M := 85; we define the sets G0 := (Z/MZ)∗,
G1 := {a ∈ G0 | aM−1 = 1}, G2 := {a ∈ G0 | a(M−1)/2 = ±1},
G3 := {a ∈ G0 | a(M−1)/2 =

(
a
M

)

J
} and finally S := {a ∈ G0 | a21 =

1 or a21 = −1 or a42 = −1}.
3.a) Prove that if a ∈ S, then −a ∈ S, and use this to deduce that the
cardinality of S is even.

3.b) Calculate the cardinality of G0, G1, G2 and S.

3.c) Use this to find the cardinality of G3.

3.d) Is the set S a subgroup of G0?

7.9. Exercise. For n � 2, we denote by Φn the nth cyclotomic polynomial.

1) Recall how to decompose Φn in Fp[X].

2) Let a ∈ Z and let p be a prime number which does not divide n but which
divides Φn(a). Prove that p ≡ 1 mod n (you could start by observing that
the class of a modulo p is a root of Φn).

3) Prove that Φn(0) = 1 and deduce from this that for all m � 2, Φn(m) is
relatively prime to m. Also prove that there are only finitely many a ∈ Z
such that Φn(a) = ±1.

4) Deduce from this (without using Dirichlet’s theorem on arithmetic pro-
gressions) that there exist infinitely many prime numbers, p such that p ≡
1 mod n (resp. infinitely many prime numbers p such that p �≡ 1 mod n).

7.10. Exercise. Let G be a finite abelian group.

§7. Exercises 69

1) Prove that there exists an integer N such that G is isomorphic to a
subgroup (resp. a quotient) of (Z/NZ)∗.

Hint.– We can reduce to the case where G = Z/n1Z×· · ·×Z/nsZ. By using
the result proven in the previous exercise, we can choose prime numbers
pi ≡ 1 mod ni, and show that N := p1 · · · ps works.

2) (This question requires some knowledge of Galois theory, see for example
Appendix C, in particular Examples C-1.1.) Prove that there exists a finite
Galois extension, K/Q, such that Gal(K/Q) ∼= G.

7.11. Exercise. Let P = X4 + 1. We will study its factorization over
various fields.

1) Prove that P is irreducible in Q[X] and calculate its factorization over
the fields Q(i), Q(

√
2) and Q(i

√
2).

2) Show that for every prime number p, P is not irreducible over Fp.

Hint.– Construct a factorization by using the fact that −1, 2 or −2 is a
square. Variation: observe that P = Φ8 and invoke Theorem 2-6.2.8.

7.12. Exercise. 1) Prove that the following relations hold (you could
compare the degrees and the roots of both sides):

Φn(Xp) =

{
Φnp(X) if p divides n,

Φnp(X)Φn(X) if p does not divide n.

2) Prove that Φpr = Xpr−1(p−1) +Xpr−1(p−2) + · · ·+Xpr−1
+1 (for r � 1).

7.13. Exercise. For n � 3, we denote by Φ+
n (X) the monic polynomial

with the property that (Φ+
n (X))2 =

∏
ζ∈μ∗

n

(
X − ζ − ζ−1

)
.

1) Compute Φ+
3 , Φ+

5 and Φ+
7 .

2) Prove that deg Φ+
n = φ(n)/2 and Φn(X) = Xφ(n)/2Φ+

n (X + X−1). De-
duce from this that Φ+

p (2) = Φp(1) = p.

3) Prove that Φ+
n is in Z[X] and is irreducible (in particular, it is the

minimal polynomial of 2 cos(2π/n)).

7.14. Exercise. Let P =
∏r

i=1(X − αi) and Q =
∏s

j=1(X − βj) be two
polynomials in K[X]. We define their resultant by the formula

res(P,Q) :=
r∏

i=1

Q(αi) =
r∏

i=1

s∏

j=1

(αi − βj).

We refer you to a classical algebra text (cf. for example [43]) to see how

70 2. Applications: Algorithms, Primality and Factorization, Codes

res(P, Q) can be expressed as a determinant in the coefficients of P and Q,
which shows in particular that res(P, Q) ∈ K and, more generally, that if
P, Q ∈ A[X], then res(P, Q) ∈ A.

1) Prove that res(Q, P) = (−1)rs res(P, Q).

2) We will assume from now on that P, Q ∈ Z[X], and we choose q to be an
odd prime. We denote by P̃ (resp. Q̃) the reduction modulo q of P (resp.
of Q). Prove that the class of res(P, Q) modulo q is equal to res(P̃ , Q̃).

3) Prove that Φ̃+
q = (X − 2)(q−1)/2 in Fq[X] (Φ+

n is defined in Exercise
2-7.13).

4) Use the previous questions and question 2) of Exercise 2-7.13 to show
that if p and q are distinct odd primes, then

res(Φ̃+
q , Φ̃+

p) ≡ p(q−1)/2 ≡
(p

q

)
mod q.

5) Prove that res(Φ+
q , Φ+

p) =
∏

η∈μ∗
q
η−(p−1)/2Φp(η) and deduce from this

that res(Φ+
q , Φ+

p) ∈ {+1,−1}.
6) Prove that the following formula holds,

res(Φ+
q , Φ+

p) =
(p

q

)
,

and use this to give a proof of the quadratic reciprocity law.

7.15. Exercise. Let N be an odd integer.

1) If its factorization can be written as N = pm1
1 · · · pmk

k , where pi − 1 =
2siLi and Li are odd, prove that

card{a ∈ (Z/NZ)∗ | ord(a mod N) is odd}
card{a ∈ (Z/NZ)∗}

= 2−s1···−sk .

2) Deduce from this that if we had a fast algorithm, P, which calculates the
period (the order of a mod N), then we have a fast probabilistic factorization
algorithm.

Hint.– Randomly choose a, test to see whether gcd(a, N) = 1, then whether
the period P(a) is even; in this case compute gcd(aP(a)/2 ± 1, N).

7.16. Exercise. Prove that 2m + 1 can only be prime if m = 2n. Set
Fn := 22n

+ 1 (known as a Fermat number). Prove that Fn is prime if and

only if Fn divides 3
Fn−1

2 + 1. Check that F0, F1, F2, F3 and F4 are prime,
but not F5 (which is divisible by 641).

§7. Exercises 71

7.17. Exercise. (Lucas test and Mersenne numbers) Start by proving
that Mn := 2n − 1 can only be prime if n is itself prime. Check that
M2, M3, M5, M7 are prime, but that M11 is not prime. The numbers Mp =
2p − 1 are called Mersenne numbers. In this exercise, we ask you to prove
the Lucas primality test for these numbers.

a) We define a sequence with values in a ring A by V0 = 2, V1 = a and
Vn+1−aVn+Vn−1 = 0. Verify the following formulas: V2n−1 = VnVn−1−a,
V2n = V 2

n − 2, and also VnVm = Vn+m − Vn−m.

b) Let M be odd, a an integer such that gcd(a2 − 4, M) = 1 and Vn the
sequence defined above. If VM+1 ≡ 2 mod M and if for every prime number
q which divides M + 1 we have gcd(V M+1

q

− 2, M) = 1, prove that M is

prime.

c) We define the following sequence by L1 := 4 and Li+1 := L2
i − 2. Prove

that the Mersenne number Mp is prime if and only if Lp−1 ≡ 0 mod Mp.

7.18. Exercise. (Perfect numbers) This nice problem has been handed
down to us from Euclid: we say that an integer is perfect if it is equal to
the sum of its proper divisors, symbolically:

n =
∑

d |n
d �= n

d or 2n = σ(n) :=
∑

d |n
d.

a) Show that if Mp = 2p − 1 is a prime Mersenne number (cf. previous
exercise), then Pp := 2p−1Mp is a perfect number (this fact as well as the
examples P2 = 6, P3 = 28, P5 = 496 were known to Euclid).

b) Prove the following result due to Euler: an even perfect number n is of
the form Pp.

Hint.– Write n = 2mM with M odd and m � 1; prove that 2n = σ(2m)σ(M)
and deduce from this that M must be prime, then finish the exercise.

Remark. Nobody knows whether there exists an odd perfect number; it
is generally conjectured that there do not exist any and that the perfect
numbers are in bijection with the prime Mersenne numbers.

7.19. Exercise. (Pocklington-Lehmer test or certificate) Let N � 2.
Suppose that N − 1 is (partially) factored as N − 1 = pe1

1 · · · pek

k M , with
M <

√
N , and moreover that for each pi, we have an ai such that

⎧
⎪⎨

⎪⎩

aN−1
i ≡ 1 mod N,

gcd

(

a

N−1
pi

i − 1, N

)

= 1.

72 2. Applications: Algorithms, Primality and Factorization, Codes

Use this to show that if q divides N , then q ≡ 1 mod pei
i , and also that N

is prime.

7.20. Exercise. Let β be a 17th primitive root of unity in an extension
of F2. We let I := F∗2

17 and set

f(X) =
∏

i∈I

(
X − βi

)
.

Prove that the polynomial f(X) defines a cyclic code C of length 17, and
calculate its dimension and bounds on its distance d(C), for example 3 �
d(C) � 6. Then give the exact value of d(C).

7.21. Exercise. 1.a) Describe the degrees of the decomposition into irre-
ducible factors of X85 − 1 in Q[X].

1.b) Give the number of irreducible factors, as well as their degrees, of the
decomposition of X85 − 1 in F2[X].

1.c) Explain how to construct a binary cyclic code of length 85 and dimen-
sion 64. It is possible to construct such a code with dimension 63?

7.22. Exercise. (Where we show that d (G11) = 5 and d (G23) = 7 and
use the notion of a self-dual code.)

A) Let C be a cyclic code of length n generated by the polynomial g = g(X)
of degree d. Let C ′ be its even subcode C ∗ its dual code.

1) Prove that C ′ = C if and only if g(1) = 0. If g(1) �= 0, check that C ′ is
cyclic and generated by the polynomial (X − 1)g(X).

2) Prove that C ∗ is cyclic and generated by the polynomial h∗(X) = Xn−d

h(1/X) where g(X)h(X) = Xn − 1.

Hint.– You can show that if deg(f) � n − d − 1 and deg(e) � d − 1, then
〈fg, eh∗〉 is equal to the coefficient of Xn−1 in the product f(X)g(X)e∗(X)
h(X) = f(X)e∗(X)(Xn − 1), and is therefore zero.

B) Suppose that C ⊂ C ∗ (i.e., for all x, y ∈ C , we have 〈x, y〉 = 0).

1) If q = 2, prove that for all x, y ∈ C , we have w(x + y) ≡ w(x) +
w(y)mod 4.

2) If q = 3, prove that for all x, y ∈ C , we have w(x + y) ≡ w(x) +
w(y)mod 3.

C) We introduce the subcode D of G11, composed of vectors whose sum of
the coordinates equals zero (the “even” subcode).

1) Prove that if g(X) is the generating polynomial of G11, the code D is
cyclic and its generator is (X − 1)g(X).

§7. Exercises 73

2) Prove that D ⊂ D∗ (i.e., for every x, y ∈ D we have 〈x, y〉 = 0). Deduce
from this that for every x ∈ D , we have w(x) ≡ 0 mod 3.

3) We denote by D̄ and Ḡ11 the extended codes. Set e11 = (1, . . . , 1) ∈ F11
3

and e12 = (1, . . . , 1) ∈ F12
3 . Prove that e11 ∈ G11, e12 ∈ Ḡ11 and hence

Ḡ11 = D̄ ⊕ F3e12.

4) Prove that Ḡ11 is self-dual. Deduce from this that for every x, y ∈ Ḡ11,
we have w(x + y) ≡ w(x) + w(y)mod 3, and hence that d(Ḡ11) ≡ 0 mod 3.

5) Knowing that 4 � d (G11) � 5 and d(C) � d(C̄) � d(C) + 1, conclude
that d (G11) = 5 and d

(
Ḡ11

)
= 6.

D) Let p be an odd prime such that
(

2
p

)
= 1, S := F∗2

p and C a binary
code of length p which corresponds to the set S (which, by hypothesis, is
stable under multiplication by 2). We denote by C̄ the extended code of
length p + 1.

1) If g = g(X) is a generator of C and if g∗(X) = X(p−1)/2g(1/X) is its
reciprocal polynomial, show that g(X) = g∗(X) if p ≡ 1 mod 8, and that
Φp(X) = g(X)g∗(X) if p ≡ −1 mod 8.

2) We suppose from now on that p ≡ −1 mod 8. Prove that C̄ is self-dual
(i.e., C̄ = C̄ ∗, or for all x̄, ȳ ∈ C̄ , we have 〈x̄, ȳ〉 = 0).

3) Let x =
∑

i∈I Xi and y =
∑

i∈J Xi. Show that 〈x, y〉 = |I ∩ J |mod 2
and that w(x+y) = |I|+|J |−2|I∩J |. Conclude from this that if 〈x, y〉 = 0,
then w(x + y) ≡ w(x) + w(y)mod 4.

4) Use the previous question to show that if D is a self-dual code generated
by the elements whose weight is a multiple of 4, then every element of D
has weight which is a multiple of 4, and in particular, d (D) ≡ 0 mod 4.

5) Apply the preceding questions to the case p = 23. Observe that if g is the
generator of C = G23, we have w(g) = 7, so w(ḡ) = 8. Conclude from this
that d(C̄) ≡ 0 mod 4. Knowing that 5 � d (G23) � 7 and d(C) � d(C̄) �
d(C) + 1, deduce that d (G23) = 7 and d

(
Ḡ23

)
= 8.

http://www.springer.com/978-1-4471-2130-5

	Chapter 2 Applications: Algorithms, Primality and Factorization, Codes
	1 Basic Algorithms
	2 Cryptography, RSA
	3 Primality Test (I)
	4 Primality Test (II)
	5 Factorization
	6 Error-Correcting Codes
	6.1 Generalities about Error-Correcting Codes
	6.2 Linear Cyclic Codes

	7 Exercises

