Chapter 1
First-Order Logic

In this chapter we introduce a calculus of logical deduction, called first-order logic,
that makes it possible to formalize mathematical proofs. The main theorem about
this calculus that we shall prove is Godel’s completeness theorem (1.5.2), which
asserts that the unprovability of a sentence must be due to the existence of a coun-
terexample. From the finitary character of a formalized proof we then immediately
obtain the Finiteness Theorem (1.5.6), which is fundamental for model theory, and
which asserts that an axiom system possesses a model provided that every finite
subsystem of it possesses a model.

In (1.6) we shall axiomatize a series of mathematical (in particular, algebraic)
theories. In order to show the extent of first-order logic, we shall also give within
this framework the Zermelo—Fraenkel axiom system for set theory, a theory that
allows us to represent all of ordinary mathematics in it.

1.1 Analysis of Mathematical Proofs

In this section we try, by means of an example, to come closer to an answer to the
question, “What is a mathematical proof?”. For the example to be considered, we
assume that we find ourselves in an undergraduate mathematics course in which the
field of all real numbers is being introduced axiomatically. Let us further assume
that the field properties have already been covered and the order properties are just
now being introduced by the following axioms:

(0) <is a partial order;

(1) for all x,y, eitherx <yory <ux;

(2) for all x,y with x <y, we have x +z < y+z for all z; and

3) if0<xand 0 <y, thenalso 0 <x-y.

Then we want to give a proof for the following

Claim: 0 <x-x for all x.

A. Prestel, C.N. Delzell, Mathematical Logic and Model Theory, Universitext, 5
DOI 10.1007/978-1-4471-2176-3_2, © Springer-Verlag London Limited 2011


http://dx.doi.org/10.1007/978-1-4471-2176-3_2

6 1 First-Order Logic
A proof of this could look something like the following:

Proof: From (1) we obtain 0 < x or x < 0.

1.
2. If 0 <x, then (3) gives 0 < x-x.

3. If, however, x < 0, then from (2) follows 0 < —x (where we set z = —x).
4. Now (3) again gives 0 < (—x) - (—x) = x-x.

5. Therefore O < x-x holds for all x. O

In view of this example of a proof, several remarks are now in order with regard
to an exact definition of the concept of “mathematical proof”.

Remark 1.1.1 (on the level of detail in a proof). The level of detail of a proof is as
a rule geared toward the background of those for whom the proof is intended. In
our example, this was the background of undergraduate mathematics students. For
experts, a proof at this level of detail would not be necessary — usually a proof in
such a case would consist of the single word “trivial”. For nonmathematicians, on
the other hand, the above proof might be too short, hence hard to understand. A
nonmathematician might not be able to follow it, since certain intermediate steps
that are clear to the mathematician are simply omitted, or certain conventions are
used that only mathematicians are familiar with. For example, the mathematician
writes 0 < (—x) - (—x) = x - x, and actually means the expression:

0<(—x)-(—x)and (—x)- (—x) =x-ximply 0 < x-x.

It should be clear that for an exact definition of proof, we must strive for the great-
est possible fullness of detail, so that the question of whether a given sequence of
sentences is a proof is checkable by anyone who knows this definition. Moreover, it
should even be possible for a suitably programmed computer to make this determi-
nation.

Remark 1.1.2 (on the choice of a formal language). The language used to write a
proof out is, as a rule, likewise chosen according to the intended audience. In math-
ematics it is common to care less about good linguistic style, and much more about
unique readability. The example of a proof above can well be taken as typical. From
the standpoint of unique readability, however, let us attempt some improvements.
Thus, the words “also” (in Axiom 3) or “however” (in line 3 of the proof) can be
viewed as purely ornamental. They possess no additional informational content. On
the contrary, such ornamental words often cause ambiguities. In the above proof one
could also complain that sometimes a generalization “for all x” is missing from the
beginning of a sentence, and sometimes it appears at the end of such a sentence.
This especially can easily lead to ambiguities. In order to be able to give an exact
definition for the concept of proof, it is therefore indispensable to agree once and
for all upon linguistic conventions that guarantee unique readability.

Remark 1.1.3 (on the layout of a proof). Normally a proof consists of a finite se-
quence of statements. Often additional hints are given, as, for example, in line 4 of
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the above proof. An exact definition of proof should, however, make such things
superfluous. Such hints should serve only to promote readability, and should have
no influence on whether a given sequence of sentences is a proof or not. As to the
utilization of the given space for writing out the proof, it should also be immaterial
whether the sequence of these sentences is arranged in a series within one line, or (as
in the example above) there is only one sentence per line. For the sake of readability,
we shall stick to the latter form.

Considering the criticisms in Remark 1.1.2 above, and using symbolism that is
widespread in mathematics (which we shall make precise in the next section), we
shall now repeat the above proof. First, however, we want to “formalize” those ax-
ioms that occur in the proof:

(1) Yxy (x<y Vy<x)

() Vayz(x<y — x+z<y+2)

B) Vay(0<xA0<y — 0<x-y)

Now to the claim and the proof:
Claim: Vx 0<x-x

Proof: 1. (1) - (0<xV x<0)

2. 0<x N3 = 0<Zx-x

3. x<0AQ2)—-0<—x

4. 0<—=xNQB) - 0<(—x) - (—x)=x-x

5. Vx 0<x-x O
In order to take the criticism in Remark 1.1.1 into account somewhat, we could

formulate the proof in more detail — say, as follows:

. (1) — (0<xVx<0)

2. 0<xAN@B) —0<x-x

3. 0<x - 0<x-x

4. x<O0OA Q) — x+(—x) <0+ (—x)

5. x+(—x) <0+ (—x) Ax+(—x)=0 — 0<0+(—x)
6. 0<0+(—x) ANO+(—x)=—x — 0< —x

7. 0<—xA@B) = 0<(—x)(—x)

8. 0<(=x)(=x) A (=x)-(=x)=x-x = 0<x-x

9. x<0 - 0<x-x

10 (0<xVx<0) —0<x-x

1. ¥Yx 0<x-x O

Now we can discuss several typical characteristics of our by now already some-
what formalized proof.

A proof is a sequence of expressions, each of which either contains a universally
valid, logical fact, or follows purely logically (with the help of the axioms) from
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earlier sentences in the proof. Thus, the first line contains a universally valid fact.
Namely, it has (if we suppress the variable x for a moment) the form

Yy o(y) — ¢(0),

where ¢(y) is an expression that, in our case, speaks about arbitrary elements y of
the real number field. Likewise, lines 2, 4, 5, 6, 7 and 8 represent universally valid
implications. Using the axioms (1)—(3) and also the identities x + (—x) = 0, 0+
(—=x) = —x and (—x) - (—x) = x - x (which are also to be used as axioms), lines 3 and
9 result from previous statements by purely logical deductions. Thus, for example,
we obtain line 3 from the rule of inference that says: if we have already proved
(ot AB) — y and, in addition, 3, then we have also thereby proved o¢ — ¥. In our
case, f3 is axiom (3), which, as an axiom, needs no proof, or, in other words, can be
assumed to have been proved. We obtain line 10 by applying to lines 3 and 9 the
rule of inference: from ¢ — 3 and y — f3 follows (o V y) — B. From lines 1 and 10
we actually obtain, at first, only 0 < x-x. However, since this has been proved for a
“fixed but arbitrary” x, we deduce Vx 0 < x-x. Thus, line 11 is likewise a universally
valid logical inference.

In the next two sections we want, first, to fix the linguistic framework exactly,
and, second, to give an exact definition of proof. Since we shall later have very much
to say about formulae and proofs, and must often use induction to prove metatheo-
rems about them, it behooves us to proceed very economically in our definitions of
formula and proof. Therefore, we shall not take a large number of rules of inference
as a basis, but rather try to get by with a minimum. This has a consequence that gap-
free (formal) proofs become very long. Thus the above proof, for example, would,
in gap-free form, swell to about 50 lines. However, once we give an exact definition
of proof, we shall agree to relax that definition so as to allow the use, in proofs,
of so-called “derived” rules of inference. These methods correspond exactly with
mathematical practice: in new proofs one refers back, possibly, to already known
proofs, without having to repeat them. All that is important is that all gaps could, if
necessary, be filled (at least theoretically!).

1.2 Construction of Formal Languages

For the definition of proof, it is necessary to describe the underlying formal lan-
guage more precisely; this is the goal of the present section. The objects of our
consideration will be an alphabet, and the words and statements formed therefrom.
The formal language itself therefore becomes an object of our investigation. On the
other hand, we use informal (mathematical) colloquial language (which we might
describe as “mathematical English”) to formulate everything that we establish in
this investigation of the formal language. This is necessary in order for us to com-
municate these stipulations and results to the reader. Therefore we must deal with
two languages, one being the object of our considerations (which we therefore call



1.2 Construction of Formal Languages 9

the object language, or, in other contexts, the formal language), and the other being
the language in which we talk about the object language (we call this second one
the metalanguage).

The metalanguage will always be the mathematical colloquial language, in
which, for example, we occasionally use common abbreviations (such as “iff” for
“if and only if”). In the metalanguage, we shall also use the set theoretical concep-
tual apparatus, as is usual in mathematics. And especially in the second part of this
book (the model theoretic part, Chapters 2 and 3), we shall reason in set theory.
When the considerations make it necessary, it is, however, also possible to return to
the “finitist standpoint”, in which one speaks only of finite sequences (or “strings”)
of symbols (built up from the alphabet of the object language) or of finite sequences
of such strings of symbols.

The object language will depend on the subject being considered at the time. For
example, if we want to talk about the consistency of mathematics, then we adopt
the finitist standpoint and therefore require that the alphabet of the object language
considered be finite. If, however, we adopt the model theoretic standpoint, then the
alphabet may be an arbitrary set.

Before we come to the definitions, we give yet another hint, this time about a fun-
damental difficulty. The issues that we pursue here are not common in mathematics.
Ordinarily one utilizes only one language: the language in which one communicates
something, such as a proof. For a mathematician, writing out a sentence is usually
tantamount to claiming that that sentence is true. Thinking about the real numbers,
for example, one might write (using the usual abbreviations)

Vx3dy x <y,
rather than

the statement Vx Jy x <y holds.

But if we want to speak about a language, then we must necessarily distinguish
between the symbol-sequence Vx Jy x < y and its possible meaning. This and the
next section will deal only with syntactical questions, i.e. questions such as whether
a string of symbols is correctly formed with reference to certain rules of formation.

The alphabet of the object language that we consider consists of the following
fundamental symbols:

logical symbols: - (not) A (and) V (forall) = (equals)

variables: vo vi V2 ... vy ... (meN:={0,1,2,...})
relation symbols: R; (fori€l) (1.2.0.1)
function symbols:  f; (for j € J) (1.2.0.2)
constant symbols: ¢, (fork € K) (1.2.0.3)

punctuation: , ) (
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Here I, J and K are arbitrary index sets, which may even be empty. If we wish to
adopt the finitist standpoint, we can generate the infinitely many variables v, (n € N)
by means of finitely many basic symbols, say, v and ' : then instead of the symbol

v, we would write
"ni---1

n times

One could rewrite the relation, function and constant symbols in an analogous way,
in which case the index sets /, J, K would naturally be at most countable.

From these basic symbols we now want to construct certain strings of symbols,
which we call terms. Terms will, via a semantical interpretation given later, des-
ignate things; they are, therefore, possible names. If one keeps this in mind, the
following definition of terms becomes understandable:

(a) All variables v, and all constant symbols ¢ are terms.
(b) Ifty,...,1,(;) are terms, then so is fj(tl,...,t“(j)).
(c) No other strings of symbols are terms.

Here u is a function that, to each j € J, assigns the “arity” (= number of arguments)
(j) of the function symbol f;; thus, u(j) > 1.

Then Tm, the set of all terms, is the smallest set of strings of symbols that con-
tains all v, and ¢; and that, for each j € J, contains f j(tl,...,t“(j)) whenever it
contains 71,...,f;(j)-

By convention, we may sometimes write #; f;r, instead of the official f;(t1,1),
in case U(j) = 2; for example, #; +1, instead of +(#1,#,), if + is a binary function
symbol.

Next, we construct formulae:

(a) If t; and 1, are terms, then #; = £, is a formula.
(b) Ift1,...,1,(; are terms, then R;(#1, ..., (;)) is a formula.

(c) If ¢ and y are formulae and v is a variable,
then —¢ and (@ A y) and Vv ¢ are formulae.

(d) No other strings of symbols are formulae.

Here A is a function that, to each i € I, assigns the “arity” A (i) of the relation symbol
R;; again, A (i) > 1.

Then Fml, the set of all formulae, is the smallest set of strings of symbols that
contains all strings of the form #; = #, and R;(¢y,. .. 7t/1(i)) (these are also called the
atomic formulae), and that contains —~¢ and (¢ A y) as well as Vv ¢ whenever it
contains ¢ and y.

From now on, the notations

t,t,... will denote terms,
o, v,p,T,0, 3,7 (possibly with subscripts) will denote formulae, and

U,V,w,x,y,2 (possibly with subscripts) will denote variables.

We further employ the following abbreviations:
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(pVy) stands for —(—@A-y) (or)

(p — y) standsfor —( @A-Y) (implies) (1.2.04)
(p < y) standsfor (—(@A-yY)A=(yA—@)) (equivalent)

Fve stands for —Vv-¢@ (there exists)

And we adopt the following conventions, which are customary:

V and A bind more strongly than — and < ;

— binds more strongly than V and A ;

t| # tp stands for = 1] = ty; (1.2.0.5)
t1 R; tp often stands for R;(t1,2), in case A (i) = 2;

Yu,v,w,... stands for VuVvVvw...;

dx,y,... stands for dxdy...;

(@1 A @y A @3) stands for ((@1 A @2) A @3) (1.2.0.6)
(i.e. we group left parentheses together);

8. (yiVya VsV yy) stands for (w1 V ye)Vys)Vys); and (1.2.0.7)
9. we drop outside parentheses when this can lead to no ambiguity.

NV s v Db =

Thus, according to these conventions, the string of symbols
X,y (C@e Ay — aVVY)

stands for

VxVy (moAy) — (Vv B)Vy)).

Now we wish to enter into the role of variables in formulae. As an example, we
consider a formal language (object language) with a relation symbol and a constant
symbol. Thus I = {0}, J = 0 and K = {0}, say. For Ry we write <, and for ¢y we
write 0, for short. Let ¢ denote the formula

3V0(0<V0 A V()<V1) AN VVO<V0<O — V0<V1>.

If we think of the usual ordering on the real numbers, then we see that the variables
vo and v; play different roles in ¢. First, it makes little sense to ask whether ¢ is
true in the real numbers. This would begin to make sense only if for v; we think of a
particular real number. Obviously ¢ is true if we think of a positive real number for
v1. Consider the case where we think of vy as 1; then ¢ remains true if we replace
vo by, say, vi3. The “truth value” of ¢ does not change if we replace the vgs in the
first part of the formula by v3 and the vgs in the second part by v{7. This is so not
only in the case where v; is 1, but also in every case. On the other hand, we may
not replace the two occurrences of vy in @ by two distinct variables; this would alter
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the “sense” of ¢ in an essential way. This distinction involving the occurrence of a
variable in a formula is captured formally by the following definitions.

In the recursive construction of a “for all” (or “universal”) formula Vv ¢, we refer
to the subformula ¢ as the scope (or effective range) of the “quantifier” Vv. We call
an occurrence of a variable v in a formula W bound if this occurrence lies within
the scope of a quantifier Vv used in the construction of . Every other occurrence'
of the variable v in the formula v is called free. We denote by Fr(y) the set of
variables that possess at least one free occurrence in Y. The following equations are
easily checked:

The elements of Fr(¢) are called the free variables of ¢.
For example, in the formula

VV()(V()<0 — v0<v1) A\ 3112(0<VZ N 1/2<V())7

the variable v, has only bound occurrences, the variable v; has only free occurrences
and the variable vy occurs both bound (in the first half) and free (in the second half).
Note that the scope of Vg is only (vo <0 — vy < v;), and not everything after that
vy symbol.

Later we shall need yet another syntactic operation: the replacement of a variable
v in a string of symbols { by a term . Let

cv/t) (1.2.0.8)

denote the string obtained by replacing each free occurrence of v in { by ¢. If a free
occurrence of v in the formula ¢ falls within the scope of a quantifier Vu, and if
u occurs somewhere in ¢, then after replacement of v in ¢ by ¢, the variable u will
obviously fall within the scope of Vu. If this does not happen for any variable u in ¢,
then ¢ is called free for v in ¢. In other words, ¢ is free for v in @ if no free occurrence
of v in ¢ lies within the scope of a quantifier Vu used in the construction of ¢, where
u occurs in 7.

By analogy with the replacement of a variable, we define the replacement of a
constant ¢y in § by a variable v to mean that every occurrence of ¢ in { is replaced
by v. We denote the result of this replacement by

C(er/v). (1.2.0.9)

This, too, is a syntactic operation, i.e. a manipulation of strings of symbols.

1 ' We do not count the “occurrence” of v in Vv as a true occurrence.
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If the formula ¢ possesses no free variables (i.e. if Fr(¢) = 0), then we call ¢ a
sentence. We write Sent for the set of sentences:

Sent={¢@ € Fml | Fr(¢)=0}.

The following syntactic operation transforms a given formula ¢ into a sentence:
letting n denote the greatest natural number such that v, occurs free in ¢, we write
V ¢ for the formula Vvg,v1,...,v, @, which we call the universal closure of ¢. Ob-
viously, then, V¢ is a sentence.

The concepts of our formal language that we have introduced in this section
depend upon three quantities, which we fixed earlier in this section:

the “arity” function A : [ — N,
the “arity” function y : J — N, and (1.2.0.10)
the index set K.

The entire construction of the language depends, therefore, on the triple
L=(A,u,K). (1.2.0.11)

(Observe that the index sets I and J can be recovered as the domains of definition of
A and p.) When we wish to emphasize this dependence on L, we write

Tm(L), Fml(L), Sent(L)
instead of

Tm, Fml, Sent.

Since all of these concepts are already determined by L, we shall often refer to L
itself as the “language.” By an extended language L' of L we mean a triple

I = (l’,u’,K’)
such that

1. The function A" : I’ — Nextends A, i.e. I C I’ and A'(i) = A (i) forall i € 1.
2. The function y’ : J — N extends U.
3. KCK'.

The following inclusions follow immediately from the definitions:
Tm(L) C Tm(L'), Fml(L) C Fml(L"), Sent(L) C Sent(L).

Observe further that the variables are the same in both languages. We write Vbl for
the set of variables. We shall write L C L’ to indicate that L’ is an extended language
of L.
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In the following chapters we shall often use the following abbreviations: For a
finite conjunction

n
(@1 A~ A@,) we write /\ i,
i=1
and for a finite disjunction
(viVe-Vy) wewrte \/ (1.2.0.12)
j=1

(recall (1.2.0.6) and (1.2.0.7), respectively). If a formula ¢ has the forms

n m; n m;
AV ej o \/ Aoy
i=1j=1 i=1j=1

where each m; > 1 and each ¢;; is an atomic or a negated atomic formula, then @ is
said to be in conjunctive normal form or in disjunctive normal form, respectively. A
formula ¢ is in prenex normal form if @ is of the form

lel e ann l[/,

where each Q; is either the symbol V or the symbol 3, and y is quantifier-free.

1.3 Formal Proofs

Given a (formal) language L = (A, 1,K), we now want to define the concept of a
(formal) proof.

Let X be a set of formulae: ¥ C Fml(L). In a proof, we shall allow the elements
of this set to appear as “axioms” so to speak. A sequence @y, ..., @, of formulae is
called a proof (or deduction) of @, from X if, for eachi € {1,2,...,n}:

¢; belongs to X, (1.3.0.1)
or @;is alogical axiom, (1.3.0.2)

or (; arises from the application of a logical rule

R 1.3.0.3
to members of the sequence with indices < i. ( )

The last line, ¢, is sometimes called the end-formula of the proof.
The concepts “logical axiom” and “logical rule” used in this definition must now
be made precise. We subdivide the logical axioms into three categories:

tautologies,
quantifier axioms and
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equality axioms.
As logical rules, we shall allow:

modus ponens and
the generalization rule.
We shall now define these various axioms and rules one by one.

In order to be able to define the concept of a tautology precisely, we must first
give a brief introduction the language of sentential logic. Its alphabet consists of

— A ) ( Ay Ay ... A, ... (HGN)
From this alphabet we construct sentential forms:

(a) Ag,Ay,... are sentential forms.
(b) If @, ¥ are sentential forms, then so are =@ and (P AP).
(c) No other strings of symbols are sentential forms.

The symbols Ag,A1,... are called sentential variables. By a truth assignment 7€
of the variables Ag,Aj,... we mean a function from the set {Ag,Aj,...} to the set
{T,F} of truth values T (= true) and F (= false). Thus, for every n € N, either
H(Ay) =T or £ (A,) = F. This truth assignment extends canonically from the set
of variables to the set of all sentential forms, as follows:

H(~D) = —H (D) (1.3.0.4)
H( DY) = (D) N A (V). (1.3.0.5)

Here — and N are operations defined on the set {7, F' } by the following tables:
—|TF N|TF
FT T|TF
F|FF

A sentential form @ is called a tautological form if @ receives the value T for every
truth assignment JZ. If the sentential form @ contains exactly n distinct sentential
variables, then for a proof that @ is a tautological form, there are exactly 2" cases to
consider: for each variable there are just the two values T and F to “plug in”. This
calculation can be carried out in general according to the schema of the following
example. We test the sentential form

~((AoAA1) A—A) (1.3.0.6)

by means of the following table:
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Ao | Aj | (Ao /\A]) | —Ap | (A() /\A])/\_‘AO | _‘((AO /\A])/\—\Ao)
T|T T F F T
T | F F F F T
F | T F T F T
F | F F T F T

Here the first line says that for each truth assignment .72 with J#(Ag) = 7 (A;) =
T, the above sentential form receives the value T'. The subsequent lines are to be read
similarly. Since the last column has all T's (and no F's), we conclude that (1.3.0.6)
is, indeed, a tautological form.

Returning to our formal language L, an instance of a tautological form, or simply
a tautology, is the formula obtained from a tautological form @ by simply replacing
each sentential variable in @ by a formula of L. It should go without saying that
different occurrences of the same sentential variable in @ must be replaced by the
same formula. Thus, if @,y € Fml(L), then the formula

—((eAY)A—p)

is an example of a tautology (in view of (1.3.0.6)), and hence of a logical axiom. If
we still employ the abbreviations introduced in Section 1.2 (specifically, (1.2.0.1)),
then this axiom takes the form

(PAY) — 0.

It is advisable to utilize such abbreviations whenever one has to check for a tauto-
logical form. The following table follows from the definitions:

olv|(evy) | (e—w) | (e—w)
T|T T T T
T|F T F F
F\|T T T F
F|F F T T

With the help of this table, the calculations needed to test for tautological forms are
shortened considerably. Another reason to employ such abbreviations is that they
enable mathematicians (who are already familiar with most tautologies) to see them
in their well-known form.

Next, the quantifier axioms are:

(Al)  Vx@ — @(x/t), incaser is free for x in @ (1.3.0.7)
(A2)  Vx(p— y)— (¢ — Vxvy), in case x ¢ Fr(¢) (1.3.0.8)

Here ¢ and y are formulae, x is any variable and ¢ is any term. Actually, (A1) and
(A2) each represent infinitely many axioms (just as each tautological form gives rise
to infinitely many tautologies).

Next, the equality axioms are:
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I1) X=X

(12) x=y—>(x=z—y=2)

13) x=y— (Ri(v,...,x,...,u) = Ri(v,....y,...,u))
14) x=y— filv,..., x5, u) = fi(v,..p.u0)

(1.3.0.9)

Note that (I3) and (I4) are actually families of axioms, one for each i € [ and j € J,
respectively. The arity of R; is A (i), and that of f; is u(j) (recall p. 10). In (I3) and
(I4), x (which is an arbitrary variable) may be the variable in any position (even the
first or last) in the list of variables of R; or f;, respectively; the variables in the other
positions remain unchanged when x gets replaced by y.

Having thus completed our description of the logical axioms, we now describe
the logical rules. First, modus ponens is a logical rule that can be applied to two
lines of a proof in the event that one of those two lines has the form ¢ — y and the
other has the form ¢, where @, y € Fml(L). The result of the application is then the
formula y. We display this rule in the following form:

-V
e
v (MP)
The line ¢@; of a proof ¢y,..., @, arises from application of modus ponens in case

there are indices ji, j> <isuch that ¢;, has the form ¢@;, — ¢;.

The generalization rule allows us to pass from a line of the form ¢ to a line
Vx ¢, where x is an arbitrary variable. The line ¢; of a proof ¢y,..., @, arises from
application of the generalization rule in case there is an index j < i such that ¢; has
the form Vx ¢;. We display this rule in the following form:

¢
Ve (V)

Here, finally, the definition of a formal proof (from an axiom system X) is con-
cluded. To elucidate this concept, we give a series of examples. The first examples
all have the form of derived rules (with a single premise); that is, given a proof with
a certain end-formula, these rules show how one could, independent of how the end-
formula was obtained, append additional lines to the proof so as to obtain a proof of
a certain new line.

First we prove the following derived rule:

oAy
®  (ABy)

Assume we have a proof of (¢ A y) (from some set X); let this proof be, say,
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(]

(Pn—l
(oAy)

then we extend this proof in the following manner:

(]

On—1

(pAW)

((p/\q/)—>(p (1.3.0.10)
0] (1.3.0.11)

(1.3.0.10) above is an instance of a tautological form. (1.3.0.11) arises from its two
predecessors via an application of modus ponens.

By the same argumentation one obtains, in succession, the following derived
rules:

(pA W) from the tautology
v (A Ba) (PAY) =y
[0) from the tautology
(eVy) (VB ¢ —(pVy)
v from the tautology
(eVy) (VB v —(eVy)
a4 from the tautology
“y—oe (CP) (¢ —v) = (~v—-9)
Oy from the tautology
¢—v (= By (p=v)—=(9—y)
Vx @
o(x/t) (VB) if ¢ is free for x in @
Vx( — )
o—-Yxy  (KV) if x ¢ Fr(o)

The last two derived rules above are obtained using the logical axioms (Al) and
(A2), respectively, in just the same way that we obtained (A By)

The following derived rules each have two premises; i.e. we assume that we have
already proved two lines — the premises. First we consider the important rule of
“chain implication”:
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-y
Yy—0
Qo —0 (KS)
This derived rule can be established as follows.
Suppose

®1 Y1

: and -

Pn—1 Yin—1

(o —y) (y — o)

are proofs (say, from X; and X, respectively). Then we obtain the following proof
(from X, U X,):

(]

On—1

(p—vy) (1.3.0.12)
Vi

Yn—1

(y — o) (1.3.0.13)
(@—vy)—=(y—o0)=(p—o0)) (1.3.0.14)
(y—o0)—(p—o0) (1.3.0.15)
(¢ —o0) (1.3.0.16)

Here (1.3.0.14) is a tautology, (1.3.0.15) is obtained by applying modus ponens to
(1.3.0.12) and (1.3.0.14), and (1.3.0.16) is obtained by applying modus ponens to
(1.3.0.13) and (1.3.0.15).

In a similar way one obtains the following derived rules (each with two premises):

-y

Y — @ from the tautology

oy (<) (e—=v)=((v—0)=(p=y)
¢
v from the tautology

(pAy) (A o= (y— (oY)

¢—0

Y — 0 from the tautology

(pVy)—o (V) (¢ —0)—=(y—o0)=((pVy)—o0))
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One could extend the list of derived rules arbitrarily. In fact, this is the method
to make proofs more “bearable”. Again and again, arguments crop up that one does
not want to repeat every time; rather, one incorporates them gradually into the log-
ical system (as derived rules). The more advanced a mathematician is, the more he
masters such rules, and the shorter his proofs become.

Before we give a formal proof of our example in Section 1.1, we wish to state,
finally, the following derived rules:

n=n n=n

="t (S) =1 (1.3.0.17)
1=t (Tl")

PR

R,’([l,...,t/,...,tk(i))—>R,’([l,...,l‘”,...,l‘l(i)) (Ri) (1.3.0.18)

t/ = t”

f,‘([] yeee ,t/, A vt,u(j)) = fi(tl yeen ,t”, . ’tli(j)) (fJ)
We leave the proofs of (S), (Tr) and (fj) to the reader; we now present that of (R;).
We shall carry out the replacement of ¢’ by ¢’ in the first argument of R;. It will be

clear that we shall be able to carry out the replacement of every arbitrary argument
of R; by the same method. Thus we assume that we are given a proof of ¢’ =¢":

t =t (1.3.0.19)

We extend this proof by the following lines, where we choose the variables x,y, u»,
-+, U3,(j) so that they do not appear in any of the terms #',¢" 12, ... .13 (;y:

x=y — (Ri(x,up,us,...) = Ri(y,uz,u3,...)) (1.3.0.20)
Vx(x=y — (Ri(x,up,u3,...) > Ri(y,up,us,...)))
1=y — Rt uo,u3,...) — Ri(y,u2,u3,..))
Vy(t' =y — (Ri(t ,uz,u3,...) — Ri(y,uz,u3,...)))
¢ =t"— (Ri(t' uz,u3,...) — Ri(t" uz,u3,...))
Vup (t' =1" — (Ri(t ,ua,u3,...) — Ri(t" uz,us,...)))
! =t"— (Rt tr,u3,...) = Ri(t" 12 ,u3,...))

=" — R, 0, t3,...) = Ri(t" 12, 15,...)) (1.3.0.21)

Rt tr,t3,...) = R(t" 1, 13,...) (1.3.0.22)
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Here (1.3.0.20) is an equality axiom (I3) (1.3.0.9). Thereafter we alternatingly used
the rules (V) and (V B), until (1.3.0.21). We applied modus ponens to this line and
(1.3.0.19) to obtain (1.3.0.22).

Now we want to give a formal proof of Vx 0 < x-x from the axiom system X =

{(1),....(5)}:

(1) Vxy (x<yVy<yx)

2) Vay,z(x<y — x+z<y+2)

B3) Vx,y (0<xAN0<y — 0<x-y)
4 VYx,y (x+(—x)=0A0+y=y)
B) ¥x  (=x)-(—x)=x-x

These axioms are sentences of a language L whose symbols are specified as follows:

The index set I contains only one element (say, I = {0}), and A(0) = 2; i.e. Ry
is a binary relation symbol. For the sake of readability we write < for Ry. Here one
thinks instinctively of the “less-than-or-equal-to” relation between real numbers,
which brings with it the temptation to reason semantically. As agreed, however, we
wanted to give a purely formal proof whose correctness could be checked even by a
computer.

We want to retain for the function symbols the suggestive notation that we have
begun to use for the relation symbol. Here J has three elements, say, J = {0,1,2},
and u(0) =1, pu(1) = u(2) = 2. For fo, f1, f» we write —, +, -, respectively. Fur-
thermore, we make use of the convention that x 4 y is written for the term +(x,y).
Without these agreements, Axiom (2) would take the following form:

() Vx,y,z(Ro(x,y) — Ro(f1(x,2), f1(3,2)))-

The index set K is again a singleton — say, K = {7}. For ¢ we write 0, for short.

When we now finally give a formal proof of Vx 0 < x-x from X, we shall number
the lines, and at the end of each line point out how it arose. Thus, for example,
“(MP 3, 29)” in line 30 indicates that this line came about via an application of
modus ponens to lines 3 and 29.

L Wy (x<yVvy<x (Ax(1))
2. Vy (x<yVy<ux) (VB 1)
3, (x<0V 0<x) (VB 2)
4. Vx,y (0<xA0<y — 0<x-y) (Ax(3))
5. Yy (0<xA0<y = 0<x-y) (VB 4)
6. 0<xAN0<x — 0<x-x) (VB 5)
7. 0<x - 0<xAN0<x (Taut.)
8. 0<x —- 0<x-x (KS, 6,7)
9. Vx,y,z (x<y — x+z<y+2z) (AX(2))
10.  Vyz (x<y — x+z<y+72) (VB9)
11. Vz (x<0 — x+z2<0+2) (VB 10)
12. Xx<0 — x+(—x) <0+ (—x) (VB 11)
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13, Vay (x+(—x) =0 A O+y=y) (Ax(4))

14. ¥y (x4 (—x) =0 A O+y=y) (VB 13)
15. (x4 (—x) =0 A 0+ (—x) = —x) (VB 14)
16. x+(—x)=0 (AB1 15)
17. x+(—x) <0+ (—x) - 0<0+(—x) (Rp 16)

18. Xx<0 — 0<0+(—x (KS 12, 17)
19. 04 (—x) = —x (ABy 15)
20. 0<0+(—x) - 0<—x R 19)

21. x<0 — 0< —x (KS 18, 20)
22. Vx (0<x — 0<x-x) (¥ 8)

23. 0<—x — 0<(—x)-(—x)) (VB 22)

24. Vx (—x)-(—x) =x-x (Ax(5))
25. (=x) (—x)=x-x (VB 24)
26. 0<(—x)-(—x) - 0<x-x (Rp 25)

27. 0<—x —-0<x-x (KS 23, 26)
28. X<0 — 0<x-x (KS 21, 27)
29. x<0VO0<x) - 0<xx (Vv 8,28)
30. 0<xx (MP 3, 29)
31. Y 0<x-x (v 30)

We have thus, finally, transformed the proof given in the usual mathematical
style in Section 1.2, into a formal proof. That this transformation has substantially
increased the length of the proof is, as already explicitly mentioned earlier, due to
the fact that we have presented derived rules only to a limited extent. Our ambition
now, however, is not to gain further familiarity with formal proofs or to simplify
them step by step until they are, finally, practicable. We want to leave this example
as it is. Instead, we now occupy ourselves with the “reach” of such proofs. This will
lead us to make claims in our metalanguage about formal proofs, which we then
have to prove. The proofs will be carried out in the usual, informal mathematical
style. In this section we wish to prove only a couple of small claims and the so-
called deduction theorem.

First another definition. Let ¢ be an L-formula and X a set of L-formulae. Then
we say that ¢ is provable (or derivable) from X, and write

X+,

if there is a proof @1, . .., @, from X whose last formula ¢, is identical with ¢.

It is clear that if X ¢ holds, then for every set X’ of formulae with ¥ C X',
X' ¢ also holds. In the following claims and their proofs, we become acquainted
with further properties of the metalinguistic relation |-.

Lemma 1.3.1. Ler ¢,y € Fml(L), ¥ C Fml(L) and x € Vbl. Then the following
hold:
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(a) ZF @ ifandonly if X+ Vx¢
(b) ZU{w}t+ @ifand only if ZU{Vxy} I o.

Proof: (a) One reasons from left to right, thusly:

If : is a proof from X, then so is (p
¢ Vx @

From right to left we use (V B):

If is a proof from X, then so is V)é )
Vx @ o

Observe here that @(x/x) is identical with ¢, and that (¥ B) may be used, since x is
naturally free for x in ¢.
(b) One reasons from left to right, thusly:

Vxy
is a proof from X U{wy},then ¥  isa proof from XU {Vxy}.

If

< ---

hS)

¢

Here the rule (V B) is again used. The reasoning from right to left goes as follows:

v v
If x_l// is a proof from XU {Vxy}, then Vxy¥ isaproof fromXU{y}. O

¢

9

By repeated use of Lemma 1.3.1(a), we see that the derivability of a formula ¢
from X is equivalent to the derivability of its universal closure V¢ (p. 13) from X.
Similarly, repeated use of Lemma 1.3.1(b) permits us to replace all formulae in ¥
by their universal closures. On the basis of this, we shall often, in the future, limit
ourselves to the case where X is a set of sentences, and ¢ is a sentence.

Now, however, again let ¢, y € Fml(L) and £ C Fml(L). If

ZH(p—v)

holds, then one obtains immediately via (MP):
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ZU{o}Fvy.
Indeed, if
-y
is a proof from X, then
o—vy
¢
v

is a proof from ¥ U {¢}. Here it is immaterial whether ¢ contains free variables
or not. If, however, one knows that Fr(¢) = 0, then the above implication can be
reversed. We have the following theorem, which is very important for applications:

Theorem 1.3.2 (Deduction Theorem). Let £ C Fml(L), ¢, y € Fml(L) and Fr(¢p) =
0. Then from XU {@} b v we obtain £+ (¢ — ).

Proof: 'We shall show, by induction on n:

¢ Q= 01
if 1 isaproof from XU {¢}, then the sequence of formulae

On Q— Oy

can be completed so as to become a proof from X whose last line remains ¢ — @,.
It is clear that the claim of the Deduction Theorem will follow from this.

Induction basis step: Since n = 1, we are given a one-line proof from X, consist-
ing of the line ¢.

Case 1: @y is a logical axiom or a member of X. In this case,

1
@1 — (¢ — ¢1)
o — ¢
is clearly a proof from X. Here we obtained the last line from ¢; and the tautology
¢1 — (¢ — ¢1) via (MP).
Case 2: ¢ is identical with ¢. In this case the implication ¢ — ¢ is a tautology,
and hence in particular a proof from X.
Step from n to n+ 1: Assume that

Q1 o — ¢
is a proof from Z U {¢}, and the sequence of formulae

On O — @y

has already been completed to a proof from X, with end-formula ¢ — @,.
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Case I: @,y is a logical axiom or a member of X. In this case we extend the
right-hand proof with the lines

(Pn+l
o1 — (@ = @ut1)
(P - (Pn+17

and again obtain a proof from X.

Case 2: @41 is identical with ¢@. In this case we simply add the tautology ¢ —
¢n+1 as the last line.

Case 3: @, is obtained by (MP). In this case there are i, j < n such that the
formula ¢; has the form ¢; — ¢,.1. But then the lines ¢ — ¢; and ¢ — (¢; — @,41)
occur in the right-hand proof. We extend the right-hand proof with the following
lines:

(@ = (i — @us1)) — (@ = @) — (@ = @ur1))  (1.3.2.1)
(@ —¢) = (@ — Q1) (1.3.2.2)
¢®— Quil- (1.3.2.3)

Here (1.3.2.1) is a tautology, and (1.3.2.2) and (1.3.2.3) are obtained via applications
of (MP).

Case 4: @, is obtained via (V). In this last case there exists i < n such that @,
has the form Vx ¢;, where x is a variable. If we extend the right-hand proof with the
lines Vx (@ — ¢@;) and @ — @, (in that order), then we shall again obtain a proof
of @ — @, from X, since these two new lines are justified by the rule (V) and the
derived rule (K V), respectively. This application of (K V) is correct, since obviously
x ¢ Fr(¢) (by the hypothesis that Fr(¢) = 0) and ¢, is Vx ;. O

1.4 Completeness of First-Order Logic

The preceding sections have shown that it is possible to give a strict, formal defi-
nition of the concept of a mathematical proof. It remains to clarify the question of
whether this definition really captures what one ordinarily understands by a proof.
The unwieldiness that came to light in our earlier example (proving 0 < x - x from
the axioms for ordered fields) can, in principle, be eliminated by the introduction
of more and more derived rules. Thus, this unwieldiness is no genuine argument
against our formal system. A further possible objection could be that the formal
languages we use have inadequate expressive power. But this objection can also be
refuted: in Section 1.6 we shall formalize set theory in such a language. Set theory
has enough expressive power to express every reasonable mathematical concept.

A completely different objection could be brought against the strength of such
formal proofs. It is conceivable that the definition of proof that we gave in the previ-
ous section overlooks some valid form of logical reasoning. We wish to show now
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that this is not the case — i.e. that our concept of proof completely comprehends all
valid forms of logical reasoning. A heuristic reflection should elucidate this claim.
Let ¥ C Sent(L) and @ € Sent(L). We ask:

How might it happen that @ is not provable from X —i.e. Zt/ @? (1.4.0.1)

One possibility could be that there is a “‘counterexample”. This should mean that a
domain (a mathematical structure — cf. Section 1.5) could exist in which all axioms
o € X hold, but not ¢. Here we implicitly assume that formal proofs are sound, i.e.
that everything that is provable holds wherever the axioms hold. (In Section 1.5 we
shall make this precise and prove it.) Another possible reason for the unprovability
of ¢ from X could be that we forgot some method of reasoning when we defined
“proof”, in which case ¢ could be unprovable even though there is no “counterex-
ample”. We shall show that this second case cannot arise:

Any unprovability rests necessarily on a counterexample. (1.4.0.2)

We shall prove this claim in Theorem 1.5.2 (Godel’s Completeness Theorem) in
the next section, but we shall need several technical preparations, which we would
like to carry out in this section. Although we postpone to the next section a precise
description of the concept of a structure, and of the definition of the satisfaction of
a formula in such a structure, the “counterexample” that we shall construct from the
assumption that X t/ ¢ will take on a clear form already by the end of this section.

First we would like to undertake a small reformulation of the hypothesis. For this
we call a set ¥ C Sent(L) consistent if there is no L-sentence o for which both

2Fa and X F o

hold simultaneously. If there is such an ¢, then X is called inconsistent. Then obvi-
ously:

X is inconsistent if and only if one can prove every sentence 8 from X. (1.4.0.3)

Indeed, if X is inconsistent, then there is a proof of (ot A —¢¢) from X, by rule (A).
We extend this proof by the lines

(o A—at) — B (1.4.0.4)
B. (1.4.0.5)

Here (1.4.0.4) is a tautology, and (1.4.0.5) is obtained with (MP). Using (1.4.0.3)
we now show:

Lemma 1.4.1. Ler X C Sent(L) and ¢ € Sent(L). Then Xt/ ¢ if and only if ZU{—¢}
is consistent.

Proof: We show that X | ¢ is equivalent to X U {—¢@} being inconsistent. First
suppose X F . Then XU{—¢@} I ¢ on the one hand, and in any case XU{—@} - —¢
on the other, whence £ U {—¢} is inconsistent.
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Now suppose X U {—¢} is inconsistent. Then XU {—¢} - ¢, by (1.4.0.3). Using
the Deduction Theorem (1.3.2) we obtain

IE(-p—9).
We take some particular proof of (—¢ — ¢) from X, and extend it with the lines

(mp—0)—0¢ (1.4.1.1)
0. (1.4.1.2)

Here (1.4.1.1) is a tautology, and (1.4.1.2) is obtained via (MP). Thus X - ¢ holds.
O

Our assumption X I ¢ is therefore equivalent to the consistency of the set XU
{—¢} of sentences. On the other hand, a “counterexample” to X I~ ¢ is exactly a
domain in which all 0 € XU {-¢} hold. (If ¢ does not hold, then obviously —¢
holds.) In order to produce the “completeness proof” of (1.4.0.2) that we seek, it
therefore clearly suffices to do the following:

to construct, for any consistent set> X of sentences,
a domain in which all ¢ € X hold. (1.4.1.3)

This is what we would like to do now. For this, we shall pursue the following strat-
egy. By means of a systematic, consistent expansion of the set X, we wish to deter-
mine the desired domain as far as possible. The steps toward this goal are of a rather
technical nature and will be completely motivated and clear only later.

In the first step of (1.4.1.3) (which is also the most difficult), we wish to arrive
at a stage in which, whenever an existence sentence holds in the domain to be con-
structed, this can be verified by an example. One such example should be capable
of being named by a constant symbol ¢ in our language. To achieve this, we shall
be forced to extend the given language L by the addition of new constant symbols.
We prove the following:

Theorem 1.4.2. Let X C Sent(L) be consistent. Then there is a language L' O L with
I'=1andJ =J, and there is a consistent set X' C Sent(L') with £ C X', such that
to each L'-existence sentence® 3x @, there exists a k € K’ such that

(3x@ — @(x/ck)) is a member of X'
For the proof of this theorem we need the following:

Lemma 1.4.3. Let L) C L be two languages with 10 = 1@ g = j@) gpg
K@ = KW U {0}, where 0 ¢ K\). Further, let @y,..., ¢, be a proof in L'® from
X:={0Q1,...,0n}, withm < n. Then, if y is a variable not occurring in any ¢; (1 <
i <n), then @1(co/y), ..., 0u(co/y) is a proofin LV from {@y(co/y), ..., @m(co/y)}.

2 Previously TU {-¢}.
3 Note that this notion differs from that of an “J-sentence” introduced in Theorem 2.5.4.
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Proof (of Lemma 1.4.3): We apply induction on the length » of the given formal
proof.

Basis step: If, in the case n = 1, also m = 1, then there is nothing to show. If,
on the other hand, m = 0 (i.e. ¥ = 0), then ¢, must be a logical axiom. In the case
of an equality axiom, there is again nothing to show, since such an axiom contains
no constant symbols. If ¢, is an instance of a tautological form, then @,(co/y) is,
likewise, clearly an instance of the same tautological form. There remains the case
where ¢, is a quantifier axiom. So let ¢, be of the form (A1) (1.3.0.7):

Vxy — y(x/t),

where ¢ is a term free for x in Y. Now one can easily convince oneself that:

w(x/t)(co/y) isjust w(co/y)(x/t(co/y))-

Since y does not occur in ¢, by hypothesis, #(co/y) is free for x in y(co/y). There-
fore @,(co/y) takes the form of an axiom (A1), namely,

Yxy(co/y) — wlco/y)(x/t(co/y))-

If ¢, has the form of (A2) (1.3.0.8), one may convince oneself just as easily that
©n(co/y) is again an axiom of type (A2).

Step from n— 1 to n: Already we know that @y (co/y), - .., @n—1(co/y) is a proof in
LW from @y (co/y), .., Pm(co/y), where we can assume, without loss of generality,
that m < n— 1. Now if ¢, is a logical axiom, then, as we saw above, @,(co/y) is
again a logical axiom. Two cases remain, in which ¢, is obtained by a rule.

Case I: @, is obtained by (MP). In this case there are 7, j < n— 1 such that ¢; has
the form (¢; — ¢,). Then @;(co/y) has the form @;(co/y) — @a(co/y). Therefore
©n(co/y) is likewise obtained by (MP).

Case 2: @, is obtained via (V). In this case there is an i < n — 1 such that ¢,
has the form Vx @;. Then @,(co/y) has the form Vx @;(co/y). Therefore ¢, (co/y) is
likewise obtained via (V).

We observe, finally, that for every L®)-formula v, the replacement of ¢y by a
variable leads to an L(!)-formula. Thus it is clear that the resulting proof is in L(1).

O

Proof (Theorem 1.4.2): We shall obtain the language L’ and the set X’ of sentences
by a countable process. For each n € N, we recursively construct a language L, in
the following way: let Ly be the language L. For n > 1, if L, has already been
constructed, then we obtain L, by setting I,, = I,—1, J, = J,—1 and K, = K,,—1 UM,,.
Here M, is a set disjoint from K,,_; such that there is a bijection

gn: M, — {3x¢@ | Ix¢@ is a member of Sent(L,_;) } (1.4.3.1)

from M, to the set of all existence sentences in the language L,_;. This means
nothing more than that we “enumerate” all existence sentences in L,_; with new
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indices in a one-to-one and onto manner. Sets M,, and bijections g, of the required
kind always exist.
We thereby obtain an ascending chain

LycLiC--CL1CL, S (1.4.3.2)

of languages. Finally we set L' = U,ey Ly, i€ we set I' =1, J' =J and K' =
Unen K. From this one sees immediately that

Sent(L') = | J Sent(L,)

neN

also holds. Therefore if 3x @ is an L'-sentence, then it lies already in a set Sent(L,_1)
for some n € N.
Suppose
2=%C%C--C% 1C%C (1.4.3.3)

is an ascending chain of sets such that for each n € N:

(1) %, C Sent(L,), and

1434
(2) foreach k € M,;, (Ixp — @(x/c)) is a member of X, ¢ )

where Ax ¢ is g,(k). Once we have such a chain, we shall be able to take X’ to be
Unen Zn- Then it will remain only to check that X’ is consistent.
We obtain a chain (1.4.3.3) with satisfying (1.4.3.4) by setting

X, =2, 1 U{(3xo — o(x/ck)) | kEM,, g,(k)is Ixp}. (1.4.3.5)

Since g, is surjective, each existence sentence Jx @ in Sent(L,_1) gets counted in
(1.4.3.5) = Ix @ is, say, g, (k). Since Fr(¢) C {x}, ¢(x/cy) is again a sentence (but
now in L,, not L,,_). Therefore X, C Sent(L,). The most important property of X,
is now its consistency. This results by induction on 7.

For n = 0, the consistency of X is the hypothesis. For n > 1, suppose that X, _;
is consistent, but not X,,. Then we would obtain an o in Sent(L,) with

2, F (OC/\ﬁOC).

Since any single proof from X, can be traced back to only finitely many axioms of
%, (o0 A—a) would already be provable from X,_, together with finitely many
sentences

(Fx1 o1 — @1(x1/cxy))s -5 (I @ — @r(xr /), (1.4.3.6)

where g, (k;) is 3x; ¢;, which is a member of Sent(L,_;) for 1 <i < r. We briefly
write o1, ..., O, for the r sentences in (1.4.3.6). Then we have

DI U{G],...,Gr} = (OC/\"OC).
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By means of a possible (still finite) expansion of the set {07,...,0,} we can ensure,
in addition, that there is a proof of (o A —a:) already in the sublanguage L@ of L,
defined by

1 =1, JO = J,, and K =K, , U{g;l(ﬂxl q)l),...,g;l(Elxr o)}

Note that r > 1, since otherwise X,,_; would be inconsistent. Thus, by the Deduction
Theorem 1.3.2, we obtain

Zi1U{o2,...,0:,} F (01 = (aA—a)),
and, by use of the tautology
(B—=7) — (an-a)) = (BA=Y)
and (MP) it follows, finally, that
Zi1U{02,...,0:} F (x1o1 Ao (x1/ck,))-

If one bears in mind that Jx; is an abbreviation for —Vx;—, then we obtain via
(A By), on the one hand,

Z,1U{0o2,...,0:} B —Vx; -0y, (1.4.3.7)
and, via (AB;) on the other hand,
En_lU{Gz,...,Gr} F ﬁ(pl(xl/ckl). (1.4.3.8)

The provabilities asserted in (1.4.3.7) and (1.4.3.8) are meant in the language L?.
If we now define L(!) by

W=r, JY=y, and KY=K,_1U{g, ' @), ...g, (x0)},
then we recognize that —=Vx; —¢; as well as the set of sentences

1=, U{O'z,...,O'r}

already lie in Sent (L(l)). Applying (a suitable version of) Lemma 1.4.3 to the proofs
whose existence is asserted by (1.4.3.7) and (1.4.3.8), we obtain, on the one hand, a
deduction

IT + ﬁVxl —Qq

in Lm, and, on the other hand, a deduction
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IT = =i (x1/ex)(cr /)
likewise in L(1). Here y is a suitably chosen “new” variable (i.e. a variable not oc-

curring in the proof of —¢;(x1/ck,) or in the proof of —Vx; =¢; from I, to which
we applied Lemma 1.4.3). Now it is obvious that

P1(x1/ck )(ex, /) is @i(x1/y),
since ¢ is a member of Fml(L,_). We therefore have
IT = =i(x1/y).
Via an application of (V) on y and (VB) we obtain, first,
IT = Vy=¢i(xi/y)
and then

I E =i (x1/y)(y/x1).

If one considers that y is new for ¢y, then one understands immediately that
@1(x1/y)(v/x1) is @1

Thus we have IT = —¢; and thus we finally obtain
IT F Vx;—q.

This derivability, together with the derivability

IT + —|V)C1 -
shows that IT is inconsistent in L),
Just as we have reduced the inconsistency of X,_; U{0y,...,0,} to that of X,_; U
{02,...,0,}, we can, through iteration, finally deduce a contradiction already in

XY,—1. Since this contradicts our hypothesis, the consistency of X, follows. In this
way, all the ¥, are recognized as consistent.

Now the consistency of X' = (J,cn 2, is seen as follows: since the proof of a
contradiction from X’ is a finite sequence of formulae, and both the languages L, as
well as the sets X, form ascending chains, there is an n € N such that this proof is
already a proof from X, in the language L,. This is, however, impossible, because
of the previously proved consistency of X,,. a
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We shall carry out the second step in determining a domain in which all sentences
in our consistent set X will hold (1.4.1.3), in the extension language L’ constructed
just above. For this we shall apply the following theorem, which we formulate for
an arbitrary language (again denoted by L).

Theorem 1.4.4. To each consistent set X C Sent(L) there is a maximal consistent
extension * C Sent(L) of X; this means that £ C X*, £* is consistent, and when-
ever * C Xy C Sent(L) and X is consistent, * = X.

Proof: We consider the system
M ={Z; CSent(L) | X C X, X consistent }.

Since X € M, M is not empty. If we are given a subsystem M’ C IN that is linearly
ordered by inclusion (i.e. for X1, X, € M, either X; C X, or X, C X)), then the set

= =

X e’

is clearly an upper bound for 0’ in 9. To see this, note first that for each X; € MV,
X, C X/, trivially. The consistency of X’ rests simply on the finiteness of a proof
of a hypothetical contradiction from X’: such a proof can utilize only finitely many
axioms o1,...,0, € X'. Each of the o; lies in a member of the system 2, say,
o; € X;. Since, however, the sets Xi,...,%, are comparable, one of them, say %,,
must contain all the others as subsets. Then the hypothetical contradiction would be
deducible already from X,,, which is impossible.

We have therefore shown that the system 90U fulfils the hypotheses of Zorn’s
lemma. Therefore there is a maximal element £* in 9. Then, according to the
definition of 91, ¥ C X* and X* is consistent. O

Remark 1.4.5 If the language L is countable, i.e. the sets I, J and K are (finite or)
countable, then Zorn’s lemma can be avoided in the proof of the above lemma.

Proof (of 1.4.5): In this case we can start with an enumeration (¢, ),cn of all
L-sentences. Then we recursively define

=3

. {En in case X, U{@,} is inconsistent, and (1.4.5.1)

2,U{@,} otherwise.
Thus we obtain an ascending chain
2pC%C--C2CX T

of consistent sets of sentences. From this it follows, as before, that also

=z

neN
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is consistent. Because of ¥ = Xy C X*, it remains only to show the maximality of
2*. Assume there were a @ € Sent(L) such that * U {¢} were still consistent. This
sentence @ occurs in the enumeration (@, ),cn of all L-sentences. Let us say ¢ is ¢,.
From the consistency of X* U {¢} follows that of Z* U {@,} and, a fortiori, that of
%, U{@,}. Therefore

Zn ) {(Pn} = Zn«(»l c E*a

by (1.4.5.1). From this follows ¢, € £*. Thus X* is maximal (as well as consistent).
O

Now we apply Theorem 1.4.4 to the consistent set X’ C Sent(L’) obtained in
Theorem 1.4.2, in order to obtain a maximal consistent extension X* C Sent(L') of
X', For such a X* we have:

(I) X* is maximal consistent in Sent(L’);
(I) for each Ix @ in Sent(L’) there is a k € K’ with (Ix@ — @(x/c;)) in Z*.
These two properties of ~* canonically determine a domain in which all sentences

0 € X" hold, as we shall see. In particular, all ¢ € X will hold there.
We first consider the set of constant L'-terms:

CT:= {t € Tm(L') | no variable occurs in ¢ }. (14.5.2)

CT contains, in particular, all ¢; with k € K’. We define a binary relation ~ on CT:
for t;,1, € CT, we set
H~t iff ¥t =t (1.4.5.3)

With the help of axiom (I1) (1.3.0.9) and Rules (S) and (Tr), we recognize immedi-
ately that ~ is an equivalence relation on CT, i.e. for t1,#,,13 € CT:

H n=n,
(i) ift; =1, thent, ~t1, and
(iii) ift =t and #p = 13, then 1] =~ 13.

Now the sought-for domain is the set
A:=CT/~ (1.454)
of all equivalence classes f of constant terms. Here, as usual, we define for t € CT:
i={neCT|t~n}. (1.45.5)

Then
h=n iff 1=t (1.4.5.6)

In order to be able to speak meaningfully of the truth of a sentence in the domain
(something that we shall make precise only in the next section), we must say which
relations, functions and individuals the symbols R;, f; and c; name — i.e. we must
give an interpretation of these symbols.

To each i € I we define a A (i)-place relation Z%; on the domain A, by declaring,
for term-classes 71, . .. ,1; ;), that
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Zi(T1, - .- ,1),(;)) holds if and only if X = Ri(t1,...,033))- (1.4.5.7)

Here the notation %;(71, ... ,m) means, as usual, that the relation %; holds at the
A(i)-tuple (1, ...,f;(;)) of term-classes; i.e. that (71,...,7;(;)) € %:. One should ob-
serve, however, that the above definition of %; refers back to a particular choice of
representatives t, of the term-classes 7,. It must be shown that a choice of other
representatives leads to the same definition. Thus, suppose 1 =11, ..., L) = t/’l (i)
then we must show:

TUERi(t ) I ZTER 1) (1.4.5.8)
By symmetry, it obviously suffices to show only one direction. So let us assume that
IRt -5t ))-
Along with this deducibility we have, according to the hypothesis, the deducibilities
I* bk ty=t,, forl<v<A(>i).

By piecing these A (i) + | deductions together, we assemble a deduction from X*
that ends with the following lines:

=t

06 =)
Ri(t1, . t33i))-
Now we extend this proof with the following lines:
Ri(t1,t2,- 1)) = Ri(th, 12, 1)

(
i1, 103))
(

(

!
if at2at3a"'7tl(i))

Ri(tivtév“-ata(i)flatk(i)) "Ri(tivtéw"7ti(i)fl’t/{L(i))
Rl-(t{,té,...,tjl(iH,tjl(i)).
These lines arise from alternating application of (R;) (p. 20) and (MP). Altogether

we obtain
x* '_Ri(tiv' .. 7ti(i))a

proving (1.4.5.8).
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Next, for each j € J we define a u(j)-place function F; : A*U) — A by defining,
for term-classes 71, ..., 7 ),

%(ﬁ,,m) Zij(ll,...,t#(j)). (1.4.5.9)

Here, too, we must show that this definition does not depend on the choice of rep-
resentative #, of the class #,. By application of the Rules (F;) and (Tr) (p. 20), we
obtain, following the above pattern of argument, a proof from X* of

fj(th...,t”(j)) ifj(li7---7tll(j))7

if one assumes
¥kt =1, for1<v<u(j).

Finally, for every k € K,
we take the class ¢ to be the interpretation of ci. (1.4.5.10)

The content of the next theorem is that, under the above interpretations, all L'-
sentences ¢ € X*, and only those, hold in the domain A. This will become con-
clusively clear, however, only after we have, in the next section, made the notion of
satisfaction precise. We place a small technical lemma before the promised theorem.

Lemma 1.4.6. The maximal consistent set X* of sentences is deductively closed; i.e.
for each o, € Sent(L') with * F a, o € X*.

Proof: In view of the maximal consistency of X*, it suffices to show that X* U
{a} is consistent whenever X* | .. But this is clear: namely, if Z* U{a} were
inconsistent, then we would have, in particular,

Z*u{a} + —a,
which, together with the Deduction Theorem 1.3.2, would lead to
2 (00— —o).

Because of the tautology
(OC — —\O() — 2,

this would lead, finally, to £* + —a, contrary to the assumption that X* is consis-

tent. O

Theorem 1.4.7. Suppose X* is an arbitrary subset of Sent(L') possessing properties
(D) and () (p. 33). Then, for every a, B, and ¥x @ in Sent(L'), we have:

(a) 0 eX iff ad¢X';
(b) (xAB)eZ iff (x€eX*andPB €X*); and
(¢) Vxp e X iff @(x/t)€ X" forallt € CT (1.4.5.2).
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Proof: (a) (=) Since X* is consistent (I), & and — o cannot both lie in X*.

(<) From o ¢ X* we deduce immediately that * I/ o, by Lemma 1.4.6. From
this it follows that X* U {—a} is consistent, by Lemma 1.4.1. But since £* is maxi-
mal consistent (I), Z* U {—-a} = X*, whence ~a € X*.

(b) (=) From (a A B) € Z* it follows trivially that Z* F (a A 8). Then Z* F o
and 2* - f3, by Rules (A By) and (A B;). Now use Lemma 1.4.6.

(<) Use Rule (A) (p. 19) followed by Lemma 1.4.6.

(©) (=) If Vx¢@ € X*, then £* - Vx¢. Then for any ¢ € CT, * - ¢(x/t), by
Rule (V B) (p. 18), which applies here since every constant term ¢ is, vacuously, free
for x in @. By (1.4.6), we get @(x/t) € Z*.

(<) Assume Vx¢@ ¢ X*. Then —Vx¢ € XZ*, by (a). From this we would like to
deduce Ix—¢ € Z*. Z* - (—=—¢@ — @), since =@ — @ is a tautology. From this,
Z*U{-—¢} F ¢ follows immediately, and thence (with Lemma 1.3.1)

ZrU{Vx——@} FVxo.

Since Vx ¢ is a sentence by hypothesis, so is Vx——¢. Therefore we may apply the
Deduction Theorem 1.3.2 to obtain

2 (Vx—me — VX o).
From this we obtain, using (CP) (p. 18),
Z*E (=Vx e — —Vx——),

and, using —Vx ¢ € X*, finally 3x—¢ € X*. By hypothesis (II) there is at least one
t € CT (in fact, t may even be taken to be a constant symbol) such that

I (Fx— — —(x/1)).

Therefore for this ¢ we conclude —@(x/t) € X*. But then @(x/f) ¢ X*, by (). O

1.5 First-Order Semantics

In this section we want to define what it means for a formula ¢ of a formal language
L to hold in, or to be satisfied by, a particular mathematical structure, and, more gen-
erally, what it should mean for such a structure to be a model of an axiom system X.
In order to be able to carry this out meaningfully, we must first fix the boundaries of
a domain of objects to which our quantifiers Yu and Jv should refer, i.e. over which
the variables vy, vy, ... should “vary”. After that we must define the interpretation of
each relation symbol R; (i € I), each function symbol f; (j € J), and each constant
symbol ¢, (k € K).
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Suppose we are given a formal language L = (A, 1, K). An L-structure 2 is de-
termined by the following data:

|2(]: anonempty set, the universe of ;

R¥: a A(i)-place relation on || (i.e. a subset of |2|*()), for each i € I;

l

fjm: a 1 (j)-place function defined on all of |2|
(i.e. a function |A[*() — |A|), for each j € J;

¢ afixed element of |2, for each k € K.

We summarize this with the notation

A= (Al (RY),p5 (fjm)jeﬁ () ke

If we again consider the language L (p. 21) used in our example of a formal proof
in Section 1.3, with the relation symbol <, the function symbols —, +, -, and the
constant symbol 0, then the following is an L-structure:

R=(R; <F; —F 4F R OR), (1.5.0.1)

Here R is the set of real numbers; <X is the usual “less-than-or-equal-to” relation
on R; —&, 4R and -® are the usual operations “negative” (unary), “plus” (binary),
and “times” (binary) on R; and OR is the real number “zero”.

Let us pursue this example further by considering the formula

T (0 <vp A vo <vy). (1.5.0.2)

Then the question whether this formula holds in (or is satisfied by) R — presup-
posing for now a definition of satisfaction that agrees with our intuition — can be
meaningfully answered only after we assign to v a definite value in R: for a nega-
tive value of vy, the answer is no; for other values, the answer is yes. Thus we see in
this example that for a meaningful definition of the satisfaction of a formula ¢ in R,
each of the free variables of ¢ must be assigned a value in R. For certain technical
reasons we assign values not only to the free variables of one formula, but to the
free variables of all formulae; i.e. to all variables. However, in the definition of sat-
isfaction we must make sure that in the case of the bound variables of the formula
¢ under consideration, the fixed assignment by £ is “unfixed”.

An assignment of values in |2(| for all variables will be called an evaluation of
the variables in 2. Thus, an evaluation in 2 is a function

h: Vbl — 2.

If & is an evaluation in 2I, then the value h(x) € |2l| is assigned to the variable x.
For each a € |2, each x € Vbl, and each evaluation #, the function h(z) , defined as
follows, is again an evaluation:
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h(5) (v) = {h(v) forv 7 x (1.5.0.3)

a forv =1x.

The evaluations /# and h(;) agree with each other at all variables other than x. At x,
the value of / is h(x), while that of 4(%) is a. Obviously, h(héc)) =h.

Next we define, by recursion on the construction of a term, the value t® [h] of the
term t under the evaluation h (or simply the h-value of t) in 2:

V3 [h] == h(v)
)=
Filtn, ooty ) = f Aot (D). (1.5.0.4)

It is clear that these equations determine the A-value (in |2(]) of each term, by starting
the recursive process with the s-values of its simplest subterms — the variables and
constant symbols occurring in it.

The satisfaction of a formula ¢ under an evaluation h in 2 will be a ternary
relation of our metatheory. If this relation between 2, ¢, and & holds, then we shall
write 2 = @[h] (pronounced: “¢ holds in 2 under 4”7, “@ is true in 2 under A",
or “¢@ is satisfied by 2 under 4”); if this relation does not hold, then we shall write
A & @ [h]. This relation will likewise be defined by recursion on the construction
of formulae, starting with the simplest formulae, the atomic formulae, and indeed
simultaneously for all evaluations.

For atomic formulae #; = t, and R;(¢1, . .. ,tl(l-)), we declare, for an arbitrary eval-
uation 4 in A:

A = 1=t [k iff  f[h]) =13 [h]; (1.5.0.5)
A = Ri(nr,....000) [A] iff R (i} [h],...,t%l(i) (h]). (1.5.0.6)

Thereafter, for formulae ¢ and y we continue our recursive definition as follows:

A = - (] iR lh); (15.0.7)
A= (eAy) (A iff (A= @[h] and A |= ylh]); (1.5.0.8)
A = Vxo [A] iff A= o@[h(})], forallac |l (1.5.0.9)

Observe that in the last case, where x is certainly bound, the prescription by & of
a particular value in |2/| for x is unfixed, since in this case we consider, instead of
h itself, an alteration of & at the point x; here every such alteration is taken into
consideration. In this way we ensure that the definition of satisfaction really agrees
with our intuition.

Using the definitions of V, —, <>, and 3 from Section 1.2, and the definition of
satisfaction, one obtains immediately the following equivalences:
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A= (eVy) (A iff (A= o@lh] or A= ylh);
Ak (p—y)[h]  ff (A @[] impliesA = wk)); (1.5.0.10)
AR (poy)[p]  iff A efr] iff A= yih]);
2 = Ixo [A] iff there is an a € || such that A = ¢ [A(F)]. (1.5.0.11)

CEINT3 EEINT3

Here, the words “and”, “or”, “implies”, “iff”, “for all a”” and “there exists an a” are
to be understood in the usual mathematical sense; in particular, “or” is not used in
the exclusive sense, and “implies” is regarded as false only when the premise is true
and the conclusion is false; cf. the truth table on page 16.

For the structure R in (1.5.0.1) above (with the set of real numbers as universe),
and the formula Jvy (0 < vy A vo < v;) (1.5.0.2), we have the following translation:

R |= o (0 <vp A vo<vp) [/’l]
iff there exists an a € R such that R = (0 < vo A vo < vp) [2(*?)]
iff there exists an a € R such that (O <Pana<? h(vl)).

This example shows yet again that the definition of satisfaction has fulfilled its pur-
pose: it translates, using the prescription of values of the free variables given by
an evaluation A, a string ¢ of symbols into an assertion in the metalanguage — the
interpretation of ¢ in R under A.

In this example we see, in addition, that for the relation |= to hold, the only
variables whose h-values are material are the free variables of ¢. This can be shown
in general:

Lemma 1.5.1. Let ' and 1" be evaluations in the L-structure . Then:

(a) If ' and K" agree on the variables in the L-term t, then t* [1'] = t% [1"].
(b) If ' and W' agree on the free variables occurring in the L-formula @, then

A= @] iff AE o[l (15.1.1)

Proof: (a) The following equations prove this by induction on the recursive con-
struction of terms:

VAR = (v) =K' (v) = v [K]
W=t =g "]
fj(t17~ atu(j))m[hl} :fjgl(l‘lQl h/]’ 7tﬁl(j) [h/])

(b) We prove (1.5.1.1) similarly, using (a) and induction on the recursive construc-
tion of formulae:
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A= n=nl[k] iff FK]=65"[n
iff 2] =13 [h]
iff A ): H=n [h”}.

A = Rity,...) [H]iff RF(2 '],
iff R (e "],
iff A = Ri(r,.

A = o] iff 2 @[n']
iff A ¥ @[h"] (ind. hyp.)
iff A = —plh).

A (pAy)[H] iff (A = @[h'] and A |= y[h'])
iff (A = @[h"] and A = w[r"]) (ind. hyp.)
it 2 (oA )]

A = Vxo[H] iff A= @[r'(})] forallaec |2

a

iff A @[h"(})] forallae |2 (15.1.2)
iff A = Vxo[n"].

)
)
)

("],

In (1.5.1.2) we applied the inductive hypothesis to the shorter formula ¢ and the
evaluations /(%) and 2"(¥). Note that these two evaluations agree with each other
on all free variables of ¢, due to the common alteration of 4’ and 4" at x. O

From Lemma 1.5.1 we see, in particular, that the satisfaction of a sentence ¢
in 2 does not depend on the evaluation /4 considered. That is, for ¢ € Sent(L) and
evaluations 4’ and h” in 2, we always have

AL o] iff AR on"]. (1.5.1.3)

We say that a formula ¢ holds in, or is true in, or is satisfied by, 2l (and we write
A = @), in case 2 = @ [h] holds for all evaluations /4 in 2. One easily sees that

A= iff AEVe (p.13).
This follows, by induction, from the equivalence

AL @ iff AEVre (1.5.1.4)

(for any variable x), which is proved as follows:
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A= iff A= @[]  forevery evaluation h
iff 2 = ¢ [h(F)] for every evaluation & and every a € |2|
iff 2 = Vxel[h] forevery evaluation i
iff 2 = Vxo.

If X is a set of L-sentences, then an L-structure 2 is called a model of X if every
o € X holdsin 2, ie. A = o forall o € X. In this case we write 2 |= X.

Now we come back to the starting point (1.4.0.1) of our inquiry in Section 1.4:
How can an “undeducibility” X I/ ¢ occur? The answer is given by the following
theorem (which is the promised, precise version of (1.4.0.2)):

Theorem 1.5.2 (Gddel’s completeness theorem). Ler X C Sent(L) and ¢ € Sent(L).
Then from Xt/ @ follows the existence of a “counterexample”, i.e. an L-structure 2
that is a model of X but in which ¢ does not hold (thus 2l is a model of XU {—¢}).

Proof: By Lemma 1.4.1, the condition X I/ ¢ is equivalent to the condition that
the set X := X U {—¢} is consistent. Thus we must show that every consistent set
Z C Sent(L) possesses a model. (Here we have replaced X U{—¢} by X.)

So let X C Sent(L) be consistent. We apply first Theorem 1.4.2 and then Theo-
rem 1.4.4 to this X. We obtain thereby a X* C Sent(L’) with properties (I) and (II)
on page 33. Here, L' is the extension language of L constructed in Theorem 1.4.2.
Let

A=CT/~ (1.5.2.1)

be the set of equivalence classes of constant terms of the language L', constructed
in (1.4.5.4). Further, let %; (for i € I), .%; (for j € J) and ¢ (for k € K’) be the
interpretations of the relation symbols R;, the function symbols f; and the constant
symbols ¢y, given in (1.4.5.7), (1.4.5.9) and (1.4.5.10), respectively. Then

A= (A; (Z)icr; (F))jers (cr)rek’) (1.5.2.2)
is, finally, an L'-structure. By definition,
Zi=RY,  Fi=f @w=c. (1.5.2.3)
From our special definition of functions, we even have
2 h) =1 (15.2.4)

for all # € CT and all evaluations 4 in 2. Indeed, by induction on the construction of
a constant term we have

Filtns ooty ] = fR (AL, ot [R]) by (1.5.0.4)
=ZFi(f1, 5 u(j)) by (1.5.2.3) and ind. hyp.

= filti, - tu(j) by (1.4.5.9).

Now we show that for every ¢ € Sent(L’) and every evaluation / in 2,
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AL @lh] iff ez (15.2.5)

Then, in particular, 2 will be a model of X*. We shall prove (1.5.2.5) by induction
on the construction of ¢ — more precisely, by induction on the number of logical
symbols -, A and V used in the construction of ¢.

If this number is O, then we are dealing with an atomic formula. But in this case
the definitions furnish us with the required equivalence, since for constant terms
t1,t,... we have, first,

A=ty =t[h] iff tf[h] =13 [h] by (1.5.0.5)
iff 77 =1, by (1.5.2.4)
iff 11 =1, € =¥ by (1.4.5.6), (1.4.5.3),
and (1.4.6),
and, second,
A = Ri(tr,...) (] iff RF (e} [A),...) by (1.5.0.6)
itf 2,(t7,...) by (1.5.2.3) and (1.5.2.4)
iff Ri(ty,...) € X* by (1.4.5.7) and (1.4.6).

Next, if the sentence ¢ is of the form —or or (cx A 3), then o and f are likewise
sentences. We have:

A= ~aln] iff AW ol by (1.5.0.7)
iff oo ¢ X" by ind. hyp. (1.5.2.5)
iff —xeX* by (1.4.7)(a), and

A = (anB)[h] iff (A= afh] and A= B[A]) by (1.5.0.8)
iff (o €X*and B € %) by ind. hyp. (1.5.2.5)
iff (aAB) e by (1.4.7)(b).

Finally, if the sentence ¢ is of the form Vx y, then for t € CT, w(x/f) is obviously
again a sentence, since Fr(y) C {x}. And y(x/r) is more simply built than ¢, as far
as the number of logical symbols. Therefore, using Lemma 1.5.3, proved just below,
we have:

A Vxy[h] iff A=yh(])] forallacA by (1.5.0.9)
iff 2 = k()] forall € CT by (1.5.2.1) & (14.5.5)
i 2 = y(x/r)[H] forall 1 € CT by (1.53)for L’ (1.5.2.6)
iff w(x/r) € Z* forall 1€ CT by ind. hyp. (1.5.2.5)
iff Vxy € 3* by (1.4.7)(c).
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We have proved, finally (modulo Lemma 1.5.3 below), that all L'-sentences ¢ €
X* (and only those) hold in the L'-structure 24 (1.5.2.2). It is therefore clear that all
L-sentences ¢ € X hold in the L-structure

AL = (A; (Zi)iers (F)jers (cr)rek)-
Thus, X possesses a model. a
The following lemma (used in (1.5.2.6) above) is of a technical nature.

Lemma 1.5.3. Let U be L-structure, h an evaluation in A, ¢ an L-formula, x a
variable and t an L-term that is free for x in @. Then, writing a = t* [h] (1.5.0.4),
we have:

A o[r()] iff A o(x/t)[h). (1.5.3.1)

Proof: For terms t; one shows easily, by induction on their construction, that
i [h ()] =0 (/)™ [A). (15.3.2)

Now we shall prove (1.5.3.1) by induction on the construction of the formula ¢.
In the atomic formula #; = t,, for example, we have:

AEn=nhQ)] if & [#0)] =4"[r()] by (1.5.05)
iff 1 (x/0)*[h] =2 (x/0)*[h] by (1.5.3.2)
iff A= (1 =n)(x/t)[h] by(1505). (1.53.3)

In (1.5.3.3) we have enclosed #; = #; in parentheses in order to indicate the scope of
application of the syntactic operation (x/t). (Note that the notation (x/¢) (1.2.0.8)
belongs not to the object language, but to the metalanguage!) It is clear that (r; =
) (x/t)is 1y (x/t) =1 (x/1).

The other case (1.5.0.6) of atomic formulae ¢ is handled analogously.

The cases in which ¢ is of the form —¢ or (ot A B) are likewise easily handled,
by referring back to the components o, or o and f3, respectively.

There remains only the case where ¢ is of the form Vy y. Here we distinguish
two (sub)cases:

Case I: Either y is x, or x ¢ Fr(y). Under either of these assumptions, x ¢
Fr(Vy y). Therefore, using Lemma 1.5.1,

A = Vyy [h(3)] iff A = Vyy [h].

This, however, is (1.5.3.1), since (Vyy) (x/¢) is clearly Yy y.

Case 2: y is not x, and x € Fr(y). In this case y cannot occur in ¢, since, by
hypothesis, ¢ is free for x in Vy y (p. 12). It follows, using Lemma 1.5.1(a), that for
every a’ € |2

[l

a=t*[n=1*[n(})]. (15.3.4)

a

Writing &' = h(), we then have
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ARyy [h()]iff A=y [h(E) ()] foralld €| by (1.5.0.9)
iff AE=wy[H ()] forall @’ € |2A| since y is not x
iff A=y [ (ay)] foralla €A by (1.5.3.4)
iff A= w(x/t)[W] foralld €|A| ind. hyp.(1.5.3.1) for A’
iff A=y (x/r) [h())]foralld € |2A| def. of i
i A =y w(x/t) ] by (1.5.0.9)
iff A= (Yyy) (x/t)[A] since y is not x. O

The next theorem assures us of the correctness or soundness of the concept of
proof developed in Section 1.3. It asserts that everything that can be proved from
an axiom system X also holds in every model of X. Thus, if we have a model of
X U{—¢}, then obviously ¢ cannot be proved from X. Considered formally, this is
the converse of the implication asserted in Godel’s Completeness Theorem (1.5.2).

Theorem 1.5.4 (Soundness Theorem). Suppose £ C Sent(L), ¢ € Sent(L) and X |-
¢@. Then @ holds in every model of X.

Proof: Let 2 be a model of X, and ¢y, ..., @, be a proof from X. We shall show
that 2 = @; fori € {1,2,...,n}, by induction on i. This will, in particular, prove the
theorem.

Basis step of the induction: Let i = 1. Then either ¢; € ¥ (1.3.0.1), or ¢; is a
logical axiom (1.3.0.2). In the first case, ¢; holds in by hypothesis.

In the second case, suppose, first, that ¢; is an instance of a tautological form
@ in the sentential variables Ay,...,Ay, arising by the replacement of A; by the
L-formula y;, for 0 < j < m (p. 16). Let & be any evaluation in 2. Define a truth
assignment JZ on the variables Ay, . ..,A,, as follows:

_ T if A=y,
%(Aj)_{F ilebéy/;[h}.

Then 7 (®) = T iff A |= @; [h], since the equations (1.3.0.4) and (1.3.0.5) giving
the recursive definition of .7Z on arbitrary sentential forms @ agree, respectively,
with the equations (1.5.0.7) and (1.5.0.8) giving (the relevant part of) the recursive
definition of 2 |= ¢;[h]. But 72 (®) = T, since @ is tautological; therefore A =
@; [h]. Since h was arbitrary, we conclude that 2 = @; (p. 40).

In the case where ¢; is one of the equality axioms (1.3.0.9), one may convince
oneself just as easily that 2 = ¢;.

There remain the cases where ¢; is an instance of the quantifier axioms (A1)
(1.3.0.7) or (A2) (1.3.0.8).

First let @; be of the form

Va (o — ) = (o —Vxp),

where x is not free in . According to the definition of satisfaction (p. 40), we must
show, for every evaluation A, that:
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the hypothesis

foralla € 2], A= (00— B) [a()] (154.1)
implies

if 2 = o [h], then foralla € ||, A= P [A()]. (1.5.4.2)

So assume (1.5.4.1), and suppose 2 = ¢ [h] and a € |2]. Then A = o [1(})] by
Lemma 1.5.1(b), since x ¢ Fr(a). (1.5.4.1) and (1.5.0.10) then give A = 3 [h(j)],
proving (1.5.4.2), as required in this “(A2)” case.

Second, let ¢; be of the form

Vxo — a(x/t),

where ¢ is free for x in o. For each evaluation 7 we must show that:
the hypothesis

AE=o [h(;‘)] forall a € || (1.5.4.3)
implies
A = ox/t)[h]. (1.5.4.4)

By Lemma 1.5.3, (1.5.4.4) is equivalent to A = o [h(*)] with a = * []. But this is
a special case of (1.5.4.3).

Induction step: Assume, for all j < i, that we have already proved = ¢;. We
must show A = ;.

If @; is a member of X or a logical axiom, then we obtain 2 = ¢; as in the basis
step of the induction, above. If ¢; comes about by means of (MP), then there are
Jj.-k <iwith ¢ being ¢; — ¢;. For each evaluation 4 we then have 2 |= (¢; — ¢;) [
and 2 = ¢; [h]. This immediately gives 2 |= ¢; [h], using (1.5.0.10). Since h was
arbitrary, 2 = ¢;.

Finally, if ¢; comes about by means of (), then there exists a j < i and a variable
x such that ¢; is Vx ¢;. The inductive hypothesis is that 2 = ¢;. From this follows
A E=Vxp; (1.5.1.4). O

Corollary 1.5.5. A set X C Sent(L) is consistent if and only if it possesses a model.

Proof: 1If X is consistent, then X possesses a model by Godel’s Completeness Theo-
rem 1.5.2. Conversely, if ¥ possesses a model, then no contradiction can be deduced
from X, according to Theorem 1.5.4. a

From this corollary, which actually summarizes Theorems 1.5.2 and 1.5.4, we
obtain the most important theorem of model theory (later named the Compactness
Theorem):
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Theorem 1.5.6 (Finiteness Theorem). A set X C Sent(L) possesses a model if and
only if every finite subset Il of X possesses a model.

Proof: If X possesses a model, then every finite subset of X possesses the same
model. It remains to show the converse. Assume that X possesses no model. Then ¥
would be inconsistent, by (1.5.5). However, since only finitely many elements of X
can occur in any proof of any contradiction from ¥, some finite subset IT C ¥ would
already be inconsistent. By (1.5.5) again, IT would have no model. This proves the
converse. O

Remark 1.5.7 (Model theoretic proofs of the Finiteness Theorem). The above proof
of the Finiteness Theorem made essential use of Godel’s Completeness Theorem,
and hence of the concept of proof. In the above argument we see immediately how
the finiteness of the concept of proof has an impact. Observe, however, that the
statement of the Finiteness Theorem makes no reference to the concept of proof.
In fact, there are other proofs of this theorem, which are purely model theoretic.
They can be expressed using only the concepts of “formal language” and “model.”
In Section 2.6 we shall carry out such a proof, by means of ultraproducts. For a
deeper understanding of the Finiteness Theorem, however, the proof using Goédel’s
Completeness Theorem seems to us to be better.

1.6 Axiomatization of Several Mathematical Theories

In this section we wish to axiomatize several mathematical theories in the frame-
work of the formal languages introduced here. In particular, we shall give an axiom
system (in a suitable language) for set theory. First, however, we shall clarify what
we mean by a mathematical theory.

The word “theory” in mathematics has many uses, and cannot easily be defined
comprehensively. Consider “number theory”, as an example: what can be said with
certainty is that in this “theory” one investigates the set N of natural numbers (or
also the set Z of integers) and the properties of the operations “addition” and “mul-
tiplication” defined on those numbers. Usually one also associates with a certain
mathematical “theory”, implicitly or explicitly, the methods that are applied in it;
for example, one speaks of “analytic number theory” or “algebraic number theory”
or even “modern number theory”. In the case of the attribute “modern”, other or
new methods are not necessarily meant; often it is just a matter of a representation
in a new, “modern” language. All these methods of investigation have one goal in
common:

One wishes to produce, as far as possible, all sentences true in N (or in 7).

Analogously, in “group theory” one wants to produce, as far as possible, all sen-
tences true in a specified class of groups. We take this goal as the motivation for the
following definition.
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Let L= (A,u,K) be a formal language and .# a nonempty class of L-structures.
Then we define the L-theory of . to be the set

Th(#):={aecSent(L) | A=, forall A e .4 }. (1.6.0.1)

Thus, Th(.#) consists exactly of all L-sentences that hold in all structures in ..
The set Th(.#) of sentences possesses two important properties:

(1) Th(.#) is consistent, and
(2) Th(.#) is deductively closed.

Here, a subset £ C Sent(L) is called deductively closed (cf. Lemma 1.4.6) if, for
every L-sentence , X - o implies o € X. Property (1) follows from Corollary 1.5.5
and the nonemptiness of .# . Property (2) is derived as follows: Suppose Th(.#) -
. Since every 2 € .# is obviously a model of Th(.#), 2 is also a model of o, by
Theorem 1.5.4. Therefore o belongs to Th(.#), by (1.6.0.1).

More generally, we call a subset T of Sent(L) an L-theory if T is consistent and
deductively closed. Every L-theory in this sense is actually the L-theory of a class
of L-structures, namely, just the class .# of all models of T, i.e. the class

A = {2 |Ais an L-structure and A =T }.

This is easy to see: by (1.6.0.1), T C Th(.#) holds trivially, since each o € T nat-
urally holds in all models of 7. If, conversely, ¢ holds in all models of T, then the
Completeness Theorem 1.5.2 immediately yields T - o. Therefore o € T, by the
deductive closedness of T'.

While for any given nonempty class .# of L-structures we can, indeed, define the
set T = Th(.#) purely abstractly, as a rule this set will be completely intractable.
We shall return to this problem in Appendix A. Sometimes, however, it is possible
to give a reasonable system X of axioms for 7. Here we call X an axiom system for
T if

T={ocSent(L) | Z+o}.

Observe that the set { o € Sent(L) | £ - a}, which we wish to denote also by
Ded(X), is deductively closed. Indeed, if o1, ..., 0, € Ded(X) and { oy, ..., 0} F @,
then we have n proofs of o, ..., o, from X, and a proof of « from {c,...,0,};
from these n+ 1 proofs we can easily assemble a proof of o directly from X. By
a “reasonable” axiom system X for 7 we mean one that is effectively enumerable,
e.g. finite. Appendix A will explain more precisely how the concept of “effective
enumerability” can be given a definition. In the following examples we shall write
down the corresponding axiom systems concretely.

Usually the most interesting case of a possible axiomatization of the L-theory of
a class . is that in which .# has exactly one L-structure 2. In this case we also
write Th(2() for Th(.#), and (1.6.0.1) simplifies to

Th(2) = {a € Sent(L) | A |= o }.
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Here we also speak of the “L-theory of 2. For example, if
N = (N; +15 1),

then Th(91) is what we want to be understood by the phrase “number theory”,
namely, simply the set of all sentences (of the formal language L appropriate for
20) that are true in 1.

For an L-structure 2, the L-theory T := Th(2() has an excellent property: since
for every L-sentence o,

Ao or AE-a,
we obtain, correspondingly,
aeT or ~axeT.

We call an arbitrary L-theory T with this property complete. More generally we
want to call an arbitrary set X of L-sentences complete if, for every L-sentence o,

Shta or Xk -a. (1.6.0.2)

The latter definition does not clash with the former in the case where X itself is
already an L-theory, since in that case X would be deductively closed. And the latter
definition is more general, as one sees by considering either the consistency, or the
deductive closedness, of an L-theory T. If X is consistent and 7 = Ded(X), then
clearly T is complete in the first sense if and only if X is in the second sense.

With this we have finally arrived at a purely syntactical concept, which is then
also meaningful when one adopts the finitist standpoint. If L is a language permitting
us to express all reasonable mathematical concepts, and if some set X is a concrete,
consistent axiom system in L (we shall, further below, present the Zermelo—Fraenkel
axiom system for set theory as one such system), then the completeness of X would
mean that one could prove (from X) every “true” mathematical sentence. Then the
truth of a sentence would be nothing other than its provability. In Appendix A we
explain that such an axiom system cannot exist. There we shall see that, for example,
the Zermelo—Fraenkel axiom system is incomplete, i.e. that there exist sentences o
that are neither provable nor refutable from it (where “o is refutable” means that
- is provable).

Just below we shall introduce a series of axiom systems whose completeness we
shall prove in Chapter 3. If £ C Sent(L) is complete, and 2 is a model of X, then,
in particular,

Th(2A) = Ded(X), (1.6.0.3)

i.e. Ded(X) is the theory of the L-structure 2. Indeed, since 2l is a model of X, we
have, on the one hand, X C Th(2() and hence Ded(X) C Th(2l). On the other hand,
both 7} := Ded(X) and 75 := Th(2) are, first, L-theories (for 7} this requires notic-
ing that X is consistent), and second, complete; and whenever we have an inclusion
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T) C T; between two complete L-theories, we even have equality. Indeed, if @ € T>
and o ¢ Ty, then —o¢ € T and thence —o € T3, contradicting the consistency of 75.
We record this as a Lemma:

Lemma 1.6.1. If T and T> are complete L-theories with Ty C Ty, then Ty =T,. O

Now we want to introduce a series of L-theories; for each one, we shall, either
in this section or in Chapters 3 or 4, investigate whether it is complete. Each the-
ory considered here will be presented as the deductive closure of a concrete axiom
system. While setting up this axiom system, we shall usually have a particular L-
structure 2 in view. We usually begin with several general properties of 2, which
we make into axioms, and then we try, by a systematic enlargement of this system,
to arrive, finally, at an axiomatization of Th(2(), i.e. at a complete axiom system.

1. Dense linear orderings with no extrema

The first structure whose theory we want to axiomatize is
R = <R; <R>.

This is a structure in the language L, for which J = @, K = @ and [ consists of a
single element / with A (i) = 2 (recall (1.2.0.10)—(1.2.0.11)). For the relation symbol
R; we write <. The following are L-sentences that hold in fR:

Op: Wx —x<x

0 Vx,y,z (x<yAy<z — x<32)
O3: Vx,y (x<yVx=y V y<x)
O4: Vx,y  (x<y — Jz(x<z A z<Y))
Os: Vx3dyz y<x Ax<z)

O; and O; are called the axioms of a partial ordering; O1—0O3 are the axioms of a
linear ordering. The addition of O4 says that this linear ordering is dense; and the
addition of Os says that it possesses no extrema.

In Section 3.2 we shall see that O1—Oj is complete. O1—Oy4 is not complete, since,
for example, the sentence Os is true in R, but not in R+ := (R*; <R+>, where R
denotes the set of nonnegative real numbers.

2. Torsion-free, divisible, Abelian groups

Next, let us consider the structure
R=(R; +7; 0F),

which we have, for the sake of simplicity, again denoted by *R. This time, L has a
binary function symbol + and the constant symbol 0. The following L-sentences
hold in fR:
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Gi: Vxyz(x+y)+z=x+(y+z)
Gy: Vx x+0=x
Gs: Vxdyx+y=0
Gy: Vx,y x+y=y+x
Gsp: Vx  (mx=0—-x=0)
Gep: VxJyny=x
Here, for each natural number n > 1, the (informal) expression nx abbreviates the
term x+x+ - - - +x, the n-fold sum of x.* G;—Gj3 are usually called the group axioms,
Gy says that this group is Abelian. The set {Gs,, | n > 1} of axioms expresses the

torsion free property of a group; the set { G, | n > 1} expresses its divisibility. In
Section 3.2 we shall prove the completeness of the axiom system

{G1,G2,G3,G4} U{Gs,, |n > 1}U{Gg, |n>1}U{Zxx#0}

of nontrivial, torsion-free, divisible, Abelian groups.

3. Ordered, divisible, Abelian groups

If we consider both the additive group structure and the ordering on R simultane-
ously, then one arrives, in the correspondingly extended language, at the structure

R = <R; <R, 4R OR>.

This is an ordered, divisible, Abelian group, i.e. it is a model of all of the above-
listed O-axioms, all G-axioms, and additionally the axiom

0G: Vx,y,z(x<y — x+z<y+2).

The totality of all these axioms is, as we shall show in Chapter 4, complete. One sees
easily that here the axioms O4 and Gs,, are superfluous, and Os can be replaced by
Jx x # 0. We shall also show that the axiom system

{01,02,03,G1,G2,G3,G4,0G}U{Gﬁ_’n | n> 1}U{3)€)€7é 0}

is complete. Models of the first part of the above union are called ordered Abelian
groups.

4 More precisely, this term should be written as (- - - ((x+x) +x) +--- ) +x, since the arity of + is
2. No ambiguity will result from dropping these parentheses, thanks to Gj.
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4. Discrete ordered Abelian groups

Another ordered Abelian group whose theory interests us is
3=(2Z; <% +%; 0%).

In order to axiomatize its theory, we observe, first, that it is not divisible: it possesses
a smallest, positive element, namely the natural number 1. An ordered Abelian
group, which, like 3, satisfies the axiom

DO: Ix(0<x AVy(0<y — x=yVx<y))

is called discrete ordered. The element x whose existence DO asserts is unique, by
O; and Os.

5. Z-groups

To obtain a complete axiomatization of 3, it is advisable to add to the language of
ordered groups a constant symbol for the smallest positive element. Let this constant
symbol be 1. Thus, we now consider the structure

3=(z; <% +% 0%, 17%).

Besides the axioms for discrete ordered Abelian groups, 3 satisfies the following
family of axioms:

n

D,: Vxﬂy(\/x—i—vliny). (1.6.1.1)
v=1

Here n =1,2,..., and for 1 < v < n, the (informal) expression v1 abbreviates the

term 1+ 1+ .-+ 1, the n-fold sum of 1. As in (1.2.0.12), the (informal) expression
(Vy—1 @v) is an abbreviation for the formula

(Q1V--V ).

A discrete ordered Abelian group that is, in addition, a model of {D, |n > 1} is
called a Z-group. The reason for this name is the fact (proven later, in Chapter 4)
that the axiom system for Z-groups is complete, and 3 is a model of it.

6. Ordered fields, real closed fields

Next we consider the structure
., R R R.HR R
R=(R; +%, =& B 0f 1F),

which we wish again to denote by the letter R, even though this structure extends
previous structures by the same name. Now ‘R satisfies the following axioms:
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the field axioms:

K 041 (1.6.1.2)
Ky: Va,y,z x+(y+2z)=(x+y)+z

Kz: Vx x+0=x

K4 Vx x+(—x)=0

Ks: Vx,y,z x-(y-2)=(xy)z

Kg: Vx x-1=x

K7: ¥xdy (x=0Vux-y=1)

Kg: Vx,y Xy=y-x

Ko: Vx,y,z (x+y)-z=x-2+y-z2;

the order axioms Oy, O,, O3, together with:

OK;: Vx,y,z (x<y — x+z<y+2z)
OK;: Vx,y (0<xAO0O<y — 0<x-y);

and finally, in addition,

RK;: Yxdy (x<0Vx=)y?)
RKon: VX0, x1,- ., %00 3y v b x0p v 4 x1 - y+x0 = 0.

In RK; and RKjy, (where n=1,2,...), the (informal) expression y”, form=1,2,...,
abbreviates the term y-y---- -y, the m-fold product of y.> And in RKj, we utilize
the convention in algebra that the operation - is performed before the operation +,
unless parentheses indicate otherwise. A model of the axioms K;—Ky, O;-03, OK;
and OKj is called an ordered field. If the axioms RK; and RKj, join in (for all
n > 1), then one speaks of a real closed field. The reason for this name is the fact
(to be proved in Section 4.2) that the theory of real closed fields is complete, and R
is a model of it. It is easy to see that RK; and RK3, hold in ‘R, by reflecting on the
fact that a polynomial with real coefficients that has a sign-change in R also has a
zero in R, by the intermediate-value theorem for continuous functions.

7. Algebraically closed fields

We wish to close out the round of structures for whose theories we explicitly give
an axiom system, by considering the field

¢ = <(C’ +Ca 7([:3 '(C; 0C7 1C>

3 More precisely, this term should be written as (---((y-y)-y)----) -y, since the arity of - is 2. No
ambiguity will result from dropping these parentheses, thanks to Ks.
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of complex numbers. € satisfies not only the field axioms K;—Kg, but also the family
of axioms

AK,: Vxo, X1, % 3y Y x4 4x =0, (1.6.1.3)

for n = 1,2,.... The satisfaction of AK,, by € is equivalent to the “Fundamental
Theorem of Algebra”, which asserts that every non-constant polynomial with co-
efficients in C has a zero in C. Fields that satisfy AK, for all n > 1 are called
algebraically closed fields. The axiom system for algebraically closed fields is not
yet complete. But, as we shall show in Chapter 3, it will become complete as soon
as we specify the characteristic of the field, i.e. when we adjoin as further axioms
either, for some single prime number p, the sentence

Cp: pl=0 (1.6.1.4)
(where pl again denotes the p-fold sum 1+ --- 4 1), or the set

{~Cy|g €N, gprime}.

In the latter case one obtains a complete axiomatization of the theory of €.

8. The natural numbers

For all hitherto considered structures 2, we were able to give an axiom system
X C Sent(L) that, first, axiomatized Th(2() (i.e. had the property that Ded(X) =
Th(l)), and, second, was “decidable”. This should mean that there is an effective
procedure that allows us, for an arbitrary, given L-sentence o, to decide whether o
is an axiom in X or not. A glance at the various axiom systems we have given will
easily convince the reader of the truth of this statement.

As we shall explain in Appendix A, there can be no decidable system of axioms

for the structure
o= (N; +, N o 1),

This means, in other words, that every “decidable” system X C Sent(L) of sentences
that hold in 9T must necessarily be incomplete. One such system is the following:

Pi: ¥x  x+1#0

Py: Vx,y (x+1=y+1 — x=y)

P3: Vx x+0=x

Py Vx,y x4+ (+1)=(x+y)+1

Ps: Vx x-0=0

Ps: Vx,y x-(y+1)=x-y+x

Po: @(vo/0) A Vo (@(vo/vo) — @(vo/vo+1)) — Wvo@(vo/vo).

The axiom system
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Zpa ={P1,...,P} U{VPy | ¢ € Fml(L) }

is usually called the system of Peano axioms of arithmetic. The fact that ¥ P, holds
in 91 simply means that for every evaluation 4 in 91, the set

{aeN|nNE=o[n(9)]}

has the following property: if O belongs to this set, and if whenever n belongs to it,
so does n + 1, then every natural number belongs to it.

9. Set theory

Finally, we wish to present an axiom system for set theory — in fact, for Zermelo—
Fraenkel set theory. The underlying language L has (as in our first axiom system
above, namely, in the case of orderings) only one, single relation symbol, of arity
2, which we write here as £.° The following axioms are oriented toward the mem-
bership relation between sets. In order to prevent the axioms from becoming too
unreadable, we shall at times introduce common abbreviations:

ZF;: Axiom of extensionality

Vx,y (Vz(zex < zey) — x=y)

If we write x C y for Vz(z € x — z€y), then ZF] is clearly equivalent to
Va,y xSy AyCx — x=y).

ZF says that two sets possessing the same elements are equal.

ZF>: Null set axiom
IxVz —zex.

This axiom says that a set possessing no elements exists.

ZF3: Pair set axiom
Vu,v3xVz (z€x < (z=uVz=v))

ZF4: Union set axiom
YuaxVz (zex < Jv(veuAnzev))

6 Note the distinction between the symbol &, which belongs to the object language of set theory,
and the symbol €, which we reserve for the metalanguage.
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ZF5: Power set axiom

YudxVz (zex « zCu)

These last four axioms assert the existence of certain sets x. By ZF, each of these
sets is uniquely determined, though in the case of ZF3—ZFs, x depends on one or
two other sets (or “parameters”) u and v. The x in ZF,, ZF3, ZF, and ZF5 is usually
“denoted” by 0 (the “empty set” or “null set”), {u,v}, |Ju and P(u), respectively.
This means that one adjoins to the language names (i.e. a constant symbol in the
case of ZF,, and function symbols in the cases of ZF;—ZF5s) for these uniquely de-
termined objects. This corresponds exactly to the usual progression in mathematics;
it contributes to a faster and better understanding of formulae. But it is, in principle,
not necessary. Instead of using the name of such a set, one could simply utilize a
uniquely characterizing property of it, as follows.

Let v be a formula in which x occurs free, and for which we can prove from the
axioms that y holds for exactly one x (though possibly depending on other variables
occurring free in y, as mentioned above). For this uniquely determined set we in-
troduce a new symbol, such as @ or {u,v}, as above. But we do not adjoin this new
symbol to the language of set theory — the €-language. Then, if ¢ is an e-formula
with free variable y, we shall write ¢ (y/0) to stand for the following e-formula:

A (y(x) A o(y/x)),

where y(x) is the formula Vz —z € x. Here we assume that x is free for y in ¢;
otherwise, instead of x we would utilize some variable that occurs in neither ¥ nor
¢. Inthe case of {u,v}, y wouldbe Vz (zex < (z=uV z=v)). As the last example
shows, ¥ can have, besides x, additional free variables, as mentioned above. In the
following axioms we shall make use of these abbreviations.

From the previous axioms it follows that if x and y are sets, then so are {x,x} and
U{x,y}. In the case of {x,x} we also write {x}, and in the case of J{x,y} we also
write xUy. Furthermore, it is customary to write x’ for xU {x}. Now the next axiom
can be formulated using these notations:

ZFg: Infinity axiom
Ix (0ex A Vz(zex — Z €x)).

This axiom ensures the existence of an infinite set. This set is, however, not uniquely
determined.

The next axiom says that the image of a set under a function is again a set.
Here the function is described (implicitly) by a formula ¢, in which the variables
u and v occur free. Here and elsewhere we shall use notation such as @(u,v) to
emphasize the possibility that # and v occur free in ¢; this notation does not exclude
the possibility that other variables might also occur free in ¢.
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ZF7: Replacement axiom

vy (Vu (uey — Il Po(u,v)) — IkVw(vex < Ju(ueynou,v)))).

Thus x is the image of y under the mapping described by ¢. By ZF, this x is
uniquely determined. If y is a formula in which the variable v occurs free, then
the abbreviation 3=1v y(v), used in ZF7 above, stands for

T (W) AV (y(v/u) — u=v)),

where u is a variable not occurring in .
The last axiom of Zermelo—Fraenkel set theory is usually

ZFg: Foundation axiom
Vx(x#0 — Jz(zex A zNx=0)).

Here the notation z N x (for “intersection”) denotes a set whose existence is proved
using ZF7, and whose uniqueness is guaranteed by ZF;.

Usually the so-called Axiom of Choice is added to the above ZF-axioms; we
present it in the following form.

ZFy: Axiom of Choice
Vy,u(ugP(y)/\Vzl,ZQ(zl eulNzeu—z1 20N (z1 =2Vz1 Nz =0))
— I (xCyAVz(zeu— Ivxnz={v}))).

This axiom says that to every system u of nonempty, pairwise disjoint subsets of
a given set y, there exists a “system x of representatives”, i.e. x contains, for every
element z of u, exactly one element v € z, the representative for z.7

By consulting the appropriate literature (e.g. [Levy, 1979-2002]), the reader
should be able to convince himself that the entirety of mathematics may actually
be built up in Zermelo—Fraenkel set theory.

1.7 Exercises for Chapter 1

1.7.1. Notation: F(x) xisfemale
C(x,y) xisachildofy
M(x,y) x and y are married.

Formalize the following statements:
(a) xis single.

(b) x is the brother-in-law of y.

7 The system x may also contain other elements of y, not belonging to any z € u.



1.7 Exercises for Chapter 1 57

(c) No two of the three grandchildren of x are siblings.
Here, the variables x,y, ... range over all people.

1.7.2. Notation: ~ P(x) xis a point
G(x) xis a straight line
E(x) xisaplane
x

I(x,y) xliesony

Formalize the following statements:
(a) For every two points, there is a straight line on which these two points lie.
(b) Through two distinct points there is at most one straight line.

(c) For every three points that do not lie on a common line,
there is exactly one plane on which these three points lie.

Here, the variables x,y, ... range over all points, lines and planes simultaneously.

1.7.3. Notation: R(x,y) x is less than or equal to y
b(x)  absolute value of x
p(x,y) xtimesy
s(x,y) xplusy
d(x,y) x minusy
f(x)  one-place function of x

e one
n Z€10

Formalize the following statements:

(a) f 1is differentiable at 1.

(b) f is uniformly continuous on the interval [0, 1].
Here, the variables x,y, ... vary over R.

1.7.4. Let L be a formal language with the one-place function symbol | - |, the two-
place function symbols f,+, -, —, the two-place relation symbol < and the constant
symbols 0, 1,xq, yo.

Formalize in L the Implicit Function Theorem: If the function f vanishes at the
point (xo,yo), but the partial derivative of f with respect to the second variable does
not, then there are open neighbourhoods U of xy and V of yg such that, for each
x € U, there is exactly one y € V with f(x,y) =0.

1.7.5. Which of the following implications are tautologies?

@ (= B—=7)—(@rB—=7)

® (a—=B-7)—=(avB—7)
© (a=PB—=71)—-(a—=p)—7
(d) (an(B—7)—(anB—7)
@ (a@—=7APB—y) —(avB—7)
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1.7.6. Let L be a formal language with the one-place function symbol —, the two-
place function symbols 4 and -, and the constant symbols 0 and 1. Let X be the set
of the following four axioms:

Vx,y,z (x+y)+z=x++2)
Vx,y,z (x+y)-z=x-z2+y-z2
Vx x+0=x

Vx x4+ (—x)=0

Show that £ F (0-0 = 0).

1.7.7. Show:
(i) 0Fvx(@ — y) — (Vxo — Vxy).
Hint: It could be helpful to apply the tautologies
(a—= (=)= (B—9¢)—(aAB—Vy)) and
(@AB—y)— (= (B—y))

with suitable formulae o and 3.

(i) OF Vx(¢@ — y) — (3x@ — ) in case x ¢ Fr(y).

1.7.8. Show that for every quantifier-free formula ¢ there is a likewise quantifier-
free formula y, with the same free variables, in conjunctive (respectively, disjunc-
tive) normal form, for which @ - (¢ < y) holds.

1.7.9. Show that
ZH(p—v)
does not follow from XU {¢@} - y.
Hint: In order to show that a formula is not provable from an axiom system, one can give a
mathematical domain (such as the real numbers) in which all the axioms hold, but not the formula

in question. Furthermore, by the Deduction Theorem, ¢ must contain a free variable, so that one
can construct such a counterexample.

1.7.10. For formulae ¢ and v, prove:
(@ 0F (xeoVixy) < Ix(pVy)
® 0+ (VxoVVyy) — Vx(eVy)
© 0 Vx(pVy)— (Vxo VVxy)

1.7.11. Show that for every formula ¢ there is a formula v, in prenex normal form,
for which Fr(¢) = Fr(y) and 0 F (¢ < y).

1.7.12. Give a formula ¢ in the language (+,-,0,1) of field theory, with Fr(¢) =
{x0,...,%n}, such that an (n+ 1)-tuple (ao,...,a,) of elements of an arbitrary infi-
nite field satisfies the formula if and only if the polynomial ag +a1 X + - - - +a,X" is
irreducible over that field.
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1.7.13. Let L = (+,-,0, 1) be the language of field theory.
For which fields .« is the universe |.<7| equal to the set

{t”d | t 1s a constant term }?

1.7.14. Let L be a formal language. We say that a class .# of L-structures is (finitely)
axiomatized by a (finite) set X of L-sentences if .# consists exactly of the models

of X, i.e. ./ is the model class of X as defined in Section 3.1.

(i) Show that the class .# of all finite L-structures cannot be axiomatized with
L-sentences.

Hint: Suppose that there were an axiomatization. Add suitable additional sentences to these
axioms, and apply the Finiteness Theorem to obtain a contradiction.

(i1) Show that the class of infinite L-structures can be axiomatized with infinitely
many L-sentences, but not, however, with only finitely many.

1.7.15. Let the language L consist only of the two-place relation symbol >. We call
an L-structure 2 a well-ordered set if >% is a strict linear ordering on |2/, with
respect to which there is no infinite descending sequence

a0>2[a1 >Ql_“>2lan >Q‘---.

Show that the class .# of well-ordered sets cannot be axiomatized® by a set of

L-sentences.
Hint: Extend the language by adding constants, if necessary, and then proceed similarly as in
Exercise 1.7.14(1).

1.7.16. Let E be a two-place relation symbol, and L = (E) the language of graphs.

By a graph we mean a (possibly infinite) L-structure 2(, in which the two-place

relation E% is symmetric and irreflexive. (One imagines the universe as a set of

points in which any two points x, y are connected by a line whenever E* (x,y) holds.)
Which of the following classes of L-structures are axiomatizable?® Either give

an axiom system, or show that there can be none.

(i) The class of all graphs.

(ii) The class of all L-structures that are not graphs.

(iii) The class of all finite graphs (i.e. graphs with a finite universe).

(iv) The class of all infinite graphs.

(v) The class of all connected graphs.

Here, a graph is called connected if for every two points x and y, there is a finite

path from x to y, i.e. a finite sequence of edges that begins at x and ends at y.

1.7.17. Let L = (+,-,0, 1) be the language of rings. Add a three-place relation sym-
bol M. For an arbitrary ring 2 and a,b,c € ||, we now define M* (a,b,c) 1=
a¥b=c.

Give a formula without function symbols that expresses precisely the commuta-
tivity of the ring multiplication.

9 Recall the definition of “axiomatized” given in Exercise 1.7.14.



60 1 First-Order Logic

1.7.18. Let L be a formal language. For each function symbol f; of L, we add a new
relation symbol F; with arity increased by one. In this way we obtain the extended
language L'. We transform an L-structure 2{ into an L'-structure 2’ by the following
definition: /

Fim (ai,-..,aq,a) :@ﬁm(a],...,as) =a,

for elements ay,...,a;,a € ||
Show that one can assign to each L-formula ¢ an L'-formula ¢’ with the follow-
ing properties:
(i) No function symbols occur in ¢’
(ii) For arbitrary L-structures 2 and arbitrary evaluations 4 of the variables, we
have:

Aok < A= ¢[h).

Hint: First consider prime formulae ¢ of the form ¢ = x, with ¢ a term and x a variable, and
define @’ recursively according to the construction of 7. Then we define the assignment ¢ — ¢’
recursively according the construction of formulae.
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