Chapter 2
Generating, Compiling and Executing
Bytecode Programs

Abstract The generation of CIL programs—input of ILDJIT—is an important step
of the compilation process described inside this book. This chapter describes how to
generate CIL code by using available tools, such as Mono and GCC4CLI. Moreover,
compilation processes available in ILDJIT are described including both static and
dynamic compilations.

Keywords CIL programs + Compile bytecode programs - Compilation framework *
Just-in-time compilation + Dynamic look-ahead compilation + Dynamic compila-
tion - Static compilation + Bytecode systems

Compilers consider programs written by using a source language, such as C, C++,
Java, and so on, to generate their semantically equivalent representations by targeting
a destination language, such as the machine code of a target platform (e.g. Intel x86).
In order to start using them, examples of programs written by using their source
language have to be provided.

ILDJIT [1] is able both to translate programs written in CIL [2] bytecode language
and execute them on Intel x86 and ARM platforms. Therefore, in order to use this
framework, we need to produce the input of ILDJIT: CIL programs.

CIL is a stack-based bytecode language with a rich set of metadata, which includes
descriptions of data types. Even if it is possible to write CIL programs by using a
normal text editor, such as vi or emacs, and encode them to its binary format
described in the ECMA-335 [2] standard, the author of this book suggests to the
reader to use available tools to generate them automatically by starting from more
human readable programming languages like C [3], C++ [4], Java [5] or C# [6] to
avoid possible headaches.

This chapter starts by describing how to generate CIL programs from C or C#
programs and it continues by introducing the compilation process of ILDJIT, which
leads to the generation of the target machine code eventually. Different compilation
schemes are available to the user of ILDJIT, which can decide the set of compilation

S. Campanoni, Guide to ILDJIT, SpringerBriefs in Computer Science, 5
DOI: 10.1007/978-1-4471-2194-7_2, © Simone Campanoni 2011

6 2 Generating, Compiling and Executing Bytecode Programs

steps to perform offline (i.e., static compilation) and the ones to perform when the
program is running (i.e., dynamic compilation).

2.1 Generating the Bytecode

In order to describe how to generate CIL programs, we start writing one of the
simplest program from the user of a programming language point of view, which is
also one of the first milestone for a compiler developer: the famous Hello world
program. After the introduction of its implementation in two different languages, C
and C#, we generate their correspondent CIL representations to highlight the impact
of the source language to the CIL program.

By using an editor like vi, we write the following program and we save it to the
file called hello_world.c:

/* hello_world.c */
#include <stdio.h>
int main () {
printf ("Hello, world!\n");
return O;

To produce the CIL bytecode from C programs, we rely on the GCC based
compiler called GCCA4CLI [7]. In particular, in order to compile our C program,
we run the following command:

$ ¢il32-gcc -o hello_world_c.cil hello_world.c

The result is a file called hello_world_c.cil, which is the CIL representation
of our hello world program. This file can be used as input to ILDJIT, which first
produces and then executes the correspondent machine code. In order to run CIL
programs, the ILDJIT command i1j1it is used and its syntax is the following:

iljit ILDJIT OPTIONS FILE_CIL ARGUMENTS_OF_CIL_PROGRAM

In our case, the hello world program has no parameter and we do not use ILDJIT
options for its execution. Hence,

$ 1l1jit hello_world_c.cil
Hello, world!

Notice that we cannot execute CIL programs directly on our underlying platform
because it does not know how to interpret them.

As next example, we generate the CIL representation of a hello world program
by using the C# programming language. By using our editor, we write the following
file called hello_world.cs:

2.1 Generating the Bytecode 7

/* hello_world.cs */

using System;

public class HelloWorld {

public static int Main () {
Console.Write("Hello, world!\n");
return 0;
}

}

In order to produce the CIL representation of our C# program, we rely on the Mono
[8] compiler.

S mcs -out:hello_world cs.cil hello_world.cs

Theresultisafile calledhello_world_cs.cil, whichisthe CIL representation
of our C# hello world program. As before, the generated file is given as input to
ILDJIT.

S i1l1ljit hello_world_cs.cil
Hello, world!

Since from two different programming languages, C and C#, we generate two
different CIL programs that produce the same output, one question could arise: what
are the differences between these two CIL programs? To answer this question, we
compare those two programs: hello_world_c.cil and hello_world_cs.
cil. A deeper analysis on these files (following described) shows that they differ
quite substantially. This difference exists for two reasons: first these files are produced
starting from different programming languages, C and C#. The second reason is
due to the different compiler used to produce them: GCC4CLI and Mono. Our
analysis is based on the output of the tool monodis [8] available inside the Mono
project. Following we report the important fraction of its output when it is applied
tohello_world cs.cil.

S monodis ./hello_world_cs.cil

.method public static int32 Main () cil managed {
ldstr "Hello, world!\n"
call void class System.Console::Write(string)
1dc.14.0
ret

The CIL is composed by one method, Main, which is the entry point of the
program (i.e., the first method executed). Inside this method, there is a call to another
one, Write, which belongs to an external CIL library called Base Class Library

8 2 Generating, Compiling and Executing Bytecode Programs

(BCL), which is defined inside the ECMA-335 standard. The method Wri te prints
to the terminal the string given as its input eventually.

Let us consider the CIL hello world program coming from the C language:
hello_world_cs.cil. As before, we use monodis to analyze the file. The
important fraction of its output is the following:

S monodis ./hello_world c.cil

.method public static int32 main () cil managed {
ldsflda valuetype string_type hello_world_c::string O
call int32 libstd::puts(int8%*)
pop
ldc.i4 0
ret

We can notice two important differences comparing it to the previous case:
the function called to print the string is different. Instead of calling Write, the
method main calls puts, which belongs to an external CIL library produced by
the GCC4CLI compiler, that maps calls to the standard C library to the ones available
in BCL. We can assign this mismatch to the differences between the two program-
ming languages used. The second difference is related to the string to print. This time,
the mismatch is due to the fact that different compilers have been used to generate
the CIL.

2.2 Static Compilation

ILDJIT provides a compilation scheme that exposes the benefits of the static compi-
lation by exploiting the more and more predominant multicore technology. After
describing what a static compilation scheme is, we introduce and motivate its specific
implementation available inside ILDJIT.

Usually, static compilation refers to the compilation process where the corre-
spondent machine code of a target platform is produced from a program written by
using an high level language, such as C, C#, CIL, and so on. More generally, a static
compilation is the process of translating a program, available in a source language,
into a target language, and its storing inside a file system, which makes possible later
executions of it without necessitating the same compilation process anymore. Notice
that static compilations do not assume the knowledge of input data of programs given
as input. An example of static compilation is the translation from C to CIL described
in Sect.2.1.

As previously described, CIL programs rely on the standard library called BCL.
This library is composed by several classes, which include methods; some of these

2.2 Static Compilation 9

Fig.2.1 Execution of a CIL
program by using ILDJIT, C I L
which is composed by a

compiler and a runtime B C L

system [native methods signature]

[native methods body]:

15 Compiler ||Runtime

Fig.2.2 Execution of a

program written in the C C p ro g ra m

language and compiled it
statically

C library

methods have their signatures described in CIL, but their bodies have to be provided
by the runtime system—ILDIJIT in our case. Most of these native methods are
similar to the classic system calls of the underlying operating system; an example
is Platform.FileMethods.Open, which opens a file whose name is speci-
fied as input by an object String. The relation between CIL programs, BCL and
ILDJIT is shown in Fig.2.1. The CIL program is translated to the machine code of
the underlying platform before its execution by the compiler available inside ILDJIT.
This transformation can be applied anytime (e.g., at static time or at runtime). The
runtime system built inside ILDJIT is in charge to virtualize the underlying oper-
ating system by exposing the bodies of the aforementioned native methods like
Platform.FileMethods.Open.

In order to better understand possible implementations of the static compilation
scheme inside environments like CIL (similar discussion can be done for the Java
environment), in the following, we describe the execution of programs written in a
programming language where this scheme is usually applied: the C language.

Consider a C program for example: it is translated to machine code by a compiler
like gcc to be later executed. The environment where these programs are executed
is shown in Fig.2.2.

The first difference between the execution of CIL and C programs is about the
compiler: after C programs have been translated, the compiler does not play any role
during their executions. In other words, the compiler is detached from the running
produced code. On the other hand, at least CIL programs need a runtime, which
is coupled with their executions; this fact suggests implementations of compilation
schemes, which are usually applied to bytecode systems, where the compiler, which

10 2 Generating, Compiling and Executing Bytecode Programs

Memory usage

l Machine code] l Machine code]
Compiler |[Runtime] Runtime])
Tlme‘
I Compilation phase I Execution phase
ILDJIT has The machine code has The compiler is End of the program
been invoked been generated no longer available execution

(i.e. iljit --static)
ILDJIT phases

Fig.2.3 Static compilation scheme implemented inside ILDJIT

is part of the virtual machine used, is kept in memory even after the compilation of
the running bytecode program.

Another difference is related to the machine code generated: code generated from
C programs interacts with the underlying operating system directly. On the other
hand, code generated by the compiler built inside virtual machines, such as ILDJIT,
interacts with the runtime, which can perform additional checks before redirecting
the execution to the underlying operating system. This indirection can be used to
improve security inside a system.

As programs that run in user space need an operating system, as CIL programs
need a runtime system that provides the same kind of abstraction for the underlying
platform. For this reason, ILDJIT implements the static compilation scheme in a
slightly different way with respect to the aforementioned scheme. The following
schemes, which are similar to the static compilation one, are provided by ILDJIT:
static, ahead-of-time, partial static and partial-ahead-of-time compilations. Those
schemes are introduced in the next sections.

2.2.1 Static Compilation in ILDJIT

ILDJIT implements the static compilation scheme by executing two phases in one
run: the compilation and the execution phase. These phases are kept separated. This
type of execution is shown in Fig.2.3, where ILDJIT has been invoked with the
parameter -—static. In this compilation scheme, ILDJIT does not interchange
compilation and execution of the program: first, the entire program is translated to
the target machine code (e.g. Intel x86). When the machine code has been generated,
and also stored in memory, ILDJIT shutdowns the compiler both to free as much
memory as possible and to reduce the overall number of running threads (the compiler
is multi-threaded). When only the runtime module resides in memory, the execution
of the produced code can start.

2.2 Static Compilation 11

In order to compile our hello world program by using the static compilation
scheme, we need to execute the following command:

$ iljit --static ./hello_world_c.cil
Hello, world!

In this example, ILDJIT both produces and executes the machine code of the
underlying platform of the program hello_world_c.cil , which prints to the
terminal the string Hello, wor1d!.

In order to reduce the first phase, where the machine code is generated, ILDJIT
stores the optimized code in its code cache, which resides in the file system at
~/.i1djit/manfred, where = refers to the home of the user (e.g. /home/
simone). Every program has its own directory inside the code cache called with the
name of its correspondent CIL file. For example, in our previous example, where we
compiled and executed our hello world program, the directory
~/.1ldjit/manfred/hello_world_c.cil has been generated. The para-
meter of ILDJIT -—clean- code-cache removes every code inside this code
cache.

$ 1s7/. ildjit/manfred
hello world c.cil

$ iljit -clean-code-cache
$ 1s7/. ildjit/manfred

$

The code generated and stored inside the code cache is platform independent.
ILDJIT stores its intermediate representation inside this cache instead of the final
machine code. The reason is that most of the time spent by the compiler is due to the
code optimizations; these optimizations are mainly performed to the intermediate
representation. By storing the already optimized intermediate representation to the
code cache, at the second time a program is invoked, ILDJIT loads the code from
its cache (generated at the first run), it generates the machine code and it starts the
execution. This time, the time spent by the compiler is negligible in usual scenarious.
For example, on an Intel core i7 machine, the overall time spent by the compiler at the
second invocation to generate the machine code for an entire real program is few ms.

2.2.2 Ahead-of-Time Compilation in ILDJIT

Other than the already described static compilation scheme, ILDJIT provides the
ahead-of-time (AOT) compilation. The main difference between the AOT and the
static compilation scheme is that in the first one, the compiler is kept in memory even

12 2 Generating, Compiling and Executing Bytecode Programs

Memory usage

Runtime)| Runtime)|
[Runtime] [Runtime] Time
N
>
| Compilation phase I Execution phase
ILDJIT has The machine code has End of the program

been invoked been generated execution
(i.e. iljit --static)
ILDJIT phases

Fig.2.4 Ahead-of-time compilation scheme implemented inside ILDJIT

after the compilation phase shown in Fig.2.3. The resulting execution is shown in
Fig.2.4.

The AOT compilation has been introduced to compile an intermediate language,
such as Java bytecode or CIL, into the target machine code before actually running it.
However, recompilation of the produced code can happen at runtime in this scheme.
These recompilations are typical of dynamic compilers, which exploit runtime infor-
mation to produce better code. For this reason, ILDJIT keeps the compiler in memory
even after the compilation phase.

2.2.3 Partial Compilations in ILDJIT

Sections 2.1 and 2.2 describes two static compilation schemes available in ILDJIT.
In both cases, both the entire program and everything it is linked with are translated
to the ILDJIT intermediate representation (IR) first and to the machine code later.
Consider for example our hello world program, hello_world_c.cil. In this
case, every method defined either inside the hello_world_c.cil file or inside
the entire BCL is compiled.

On top of these two schemes, ILDJIT provides a partial compilation option, -P1,
which can be used for both ones. When this option is specified, ILDJIT applies the
chosen compilation scheme only to those methods effectively executed by a previous
run of the program. This type of partial compilation is structured in three phases:
first, we need to clear the code cache.

S iljit -clean-code-cache
Second, the program is executed to keep track of which methods are needed.

$ 1s7/. ildjit/manfred
S iljit -P1 ./hello_world_c.cil
Hello, world!

2.2 Static Compilation 13

$ 1s7/. ildjit/manfred
hello_world_c.cil

Finally, the chosen compilation scheme is applied constraining it to the methods
previously executed.

$ 1ljit -Pl--static ./hello_world_ c.cil
Hello, world!

$ 1s7/. ildjit/manfred
hello_world_c.cil

Later executions of the program do not need the -P1 option anymore because the
code has been generated already. Hence

$ i1ljit --static ./hello_world_ c.cil
Hello, world!

or

S iljit-aot ./hello_world_c.cil
Hello, world!

Notice that even if the second phase does not produce any code, after its execution,
a code cache entry for the considered program has been created. Information inside
the code cache at that stage includes profiling data only. Hence, no code is included.
By looking inside the cache, we can see a file called profile.ir.

$ 1ljit --clean-code-cache

$ i1ljit -P1l ./hello_world_c.cil

Hello, world!

$ 1s7/. ildjit/manfred

hello_world_c.cil

$ 1s7/. ildjit/manfred/hello_world c.cil/*.ir
profile.ir

On the other hand, after the third phase, the same code cache entry of the consid-
ered program includes code effectively. Hence, the third phase replaces the profile
data with the generated code.

$ 1s7/. ildjit/manfred/hello_world_c.cil/*.ir
profile.ir

$ iljit -P1 --static ./hello_world_c.cil
Hello, world!

$ 1s7/. ildjit/manfred/hello_world_c.cil/*.ir
methods.ir

The file methods . ir contains the code of the methods specified inside the file
profile.ir.

14 2 Generating, Compiling and Executing Bytecode Programs

Fig.2.5 IR produced inside
one system and exploited by
another one

2.2.4 Cached Code

As previously described, the code stored inside the code cache of ILDJIT
(i.e., 7/. ildjit/manfred) contains the IR representation of the program.
By default, ILDJIT stores platform independent code inside this cache only (this
behavior can be changed by customizing the framework as described in Chap. 6).
Since the cached code is platform independent, we can exploit it on different systems
where either the underlying operating system or the platform can differs with respect
to the one used to produce that code.

Consider for example the scenarios described by Fig.2.5 where two computers
are involved: PC1 and PC2. The first one, PC1, has a Windows operating system
installed on top of an Intel x86 processor. On the other hand, the second one, PC2,
has Linux installed on top of an ARM processor. The code is first generated on PC1.

PCl $ iljit --static hello_world_c.cil
Hello, world!

Then, the code cache is transfered from PC1 to PC2.

PC1$ rcp -r /. ildjit/manfred/hello_world_c.cil
PCl: /. ildjit/manfred/

Hence, ILDJIT installed on PC2 can exploit the code produced by PCI1.

PC2$ iljit --static hello_world_c.cil
Hello, world!

Thanks to this platform independent property of the produced IR code, CIL
programs can be compiled once and used inside every system ILDJIT has been
installed into, no matter which system produced that code.

2.3 Dynamic Compilation

Software portability suggests the generation of portable intermediate binary code,
that remains independent from the specific hardware architecture and is executed
by a software layer called virtual machine (VM) [9]. A virtual machine provides an

http://dx.doi.org/10.1007/978-1-4471-2194-7_6

2.3 Dynamic Compilation 15

interface to an abstract computing machine that accepts the intermediate binary code
as its native language; in this way, the virtualization of the instruction set architecture
(ISA) is performed. The dynamic compilation approach was introduced to overcome
the slowness of the first generation of virtual machines, where the execution of
bytecode programs was entirely interpreted: they interpreted bytecode rather than
first compiling it to machine code and then executing the so produced code. This
approach, of course, did not offer the best possible performance, as the system spent
more time executing the interpreter than the program it was supposed to be running.

ILDJIT provides two different dynamic compilation schemes: the just-in-time
(JIT) [9] and the dynamic-look-ahead (DLA) [2] one. In both cases, the code cache
is not used. The second one, the DLA compilation, is a natural evolution of the JIT
compilation specifically designed for the multicore era. These schemes interchange
the compilation and the execution of the program leading to an interleaving of the
corresponding phases shown in Fig.2.3.

The code produced by dynamic compilers can be different with respect to the one
produced by static compilers described in Sect.2.2. The reasons are the following:
first the compilation performed at runtime should be as fast as possible in order to
reduce its overhead at runtime. Hence, the dynamic compiler cannot spend too much
time to optimize the code. Second, the compilation performed at runtime can exploit
runtime information, such as values of method parameters, not available at static
time.

2.3.1 Just-in-Time Compilation

Strictly defined, a JIT compiler translates bytecode into machine code, before its
execution, in a lazy fashion: the JIT compiles a code path only when it knows that
code path is about to be executed (hence the name, just-in-time compilation). This
approach allows the program to start up more quickly, as a lengthy compilation
phase is not needed before execution beginning. Figure2.6 shows the execution of
ILDJIT by using this scheme. This figure shows that the machine code is generated
during the entire execution of the program by interleaving execution and compilation
phases. Hence, the memory used to store the produced code grows as the execution
of the program proceeds. Several approaches have been proposed in literature [9] to
constrain this memory growing effect by discarding code produced in the past which
is likely to be not useful in the near future. By default, ILDJIT does not constrain
this growing effect. However, as described in Chap. 6, ILDJIT can be customized to
change this behavior.

The JIT compiler is the default compilation scheme used by ILDJIT. Hence, we
do not need additional options to use it.

$ 1ljit hello_world_c.cil
Hello, world!

16 2 Generating, Compiling and Executing Bytecode Programs

Memory usage

CiL ciL ciL

Machine code
’Campi!er Runtime| ’Compi!er Runtime|

Time

|:| Compilation phase

End of the program
execution

ILDJIT has
been invoked
(i.e. iljit)

|:| Execution phase
ILDJIT phases

Fig.2.6 Just-in-time compilation scheme implemented inside ILDJIT

The JIT approach seems promising comparing it to the bytecode interpretation
solution, but it presents some drawbacks: JIT compilation removes the overhead due
to the interpretation at the expense of some additional startup cost, and the level of
code optimization is mediocre. To avoid a significant startup penalty for portable
applications, the JIT compiler has to be fast, which means that it cannot spend much
time in optimization. The next section describes an evolution of this scheme, called
Dynamic Look-Ahead compilation [10], which exploits the parallelism available in
multicore architectures to both improve the quality of the code and to reduce the
compilation time perceived by the execution of the program.

2.3.2 Dynamic Look-Ahead Compilation

Dynamically compiled code can achieve large speedups, especially in the long run,
since the execution of a native method is an order of magnitude faster than that of
an interpreted one. However, the performance of a JIT-based dynamic compiler is
still lower than that of native code produced by static compilation schemes like the
AQT one. The loss of performance is due to both compilation overhead, often called
startup time, and to the poor quality of the generated code, since the startup time
minimization prevents the aggressive and costly optimizations usually performed by
static compilers.

Nowadays, multi-core technology has become the predominant technology in
both desktop and embedded domains. This type of hardware architecture is a way
to provide more computational power without relying on the reduction of the clock
cycle, which is becoming increasingly difficult due to technology limitations. For
this reason, dynamic look-ahead (DLA) compilers exploit multiprocessor environ-
ments by introducing compiler threads, which can dynamically compile bytecode
portions in advance, in parallel with the application execution. Strictly defined, a
DLA compiler translates and optimizes bytecode looking ahead of the execution

2.3 Dynamic Compilation 17

Fig.2.7 Dynamic Memory usage
look-ahead compilation
scheme implemented inside SCL 5L
ILDJIT :
=
Time
ceoodl | 1L
ceunt [T IE DN
e|LDJIT has End of the program
been invoked execution
(i.e. iljit)

Execution phase

|:| Compilation phase

ILDJIT phases

in order to both anticipate the compilation before the execution asks for it, and to
produce optimized code.

DLA compilers are based on a software pipeline architecture for compilation,
optimization and execution tasks. While a processor is executing a method, compi-
lation threads (running on other processors) look ahead into the call graph, detecting
methods that have good chances to be executed in the near future. Moreover, they
guess whether a method is a hot spot [9] (code often executed) or not, and apply
aggressive optimizations accordingly. In the best case, there is no compilation over-
head, because compilation fully overlaps with execution and methods are already
compiled when they are invoked. Moreover, optimizations are fully exploited to
provide high quality code.

Figure 2.7 shows a typical execution of a DLA compiler.The main difference with
respect to JIT compilers is that DLA compilers can translate more code than the JIT
ones (because it compiles in advance methods by guessing where the execution is
going). Moreover, the produced code is optimized already before its first execution.

In order to use the DLA compiler available in ILDJIT, the option —d1a is provided.

$ i1ljit --dla hello_world_c.cil
Hello, world!

By default, ILDJIT exploits every core provided by the underlying platform when-
ever the DLA compiler is used and there is a peak in term of methods to compile to
run the application.

18 2 Generating, Compiling and Executing Bytecode Programs

2.4 Different Configurations with a Single Installation

ILDJIT is a framework that includes a set of modules, which compose its core, and
a set of external plugins, which provide different type of translations, code opti-
mizations, memory managements and policies used by various compilers previously
described.

Different users can have different needs, which means that different sets of plugins
have to be used by different users. ILDJIT comes with a default set of plugins, which
are installed in the system, and therefore, they are shared between users of that
installation. However, ILDJIT provides a solution, following described, of having
personal customizations of a single installation of the framework. This can be useful
both to override some default plugins and to add new ones.

The aferomentioned solution applied to ILDJIT about personal customizations
of the framework is based on environment variables called ILDJIT X_PLUGINS,
where X is the name of the specific extension that it refers to. At boost time, ILDJIT
loads these customizations in the following order: first, it loads the plugins in the
same order specified by the list of directories declared by the environemnt variable
ILDJIT_X_PLUGINS. Finally, it loads plugins from the directory where it has
been installed. Consider for example the following list of directories:

S echo$ ILDJIT_ X PLUGINS
/home/simone/first: /home/simone/second

Assuming that ILDJIT is installed inside the default directory, which is
/usr/local, then plugins are loaded and used in the following order: /home/
simone/first, /home/simone/second, /usr/local/lib/iljit/
optim-izers. Assuming that we have a task, like dead code elimination, which
is provided by two different plugins: one provided by the default installation and
one installed in /home/simone/first. In this case, by having the directories
specified as for the previous variable ILDJIT_X_PLUGINS, ILDJIT will use the
plugin installed in /home/simone/first. On the other hand, if we change the
value of the variable ILDJIT_X_PLUGINS as following:

$ export ILDJIT X_ PLUGINS=/home/simone/second

then the plugin provided by the default installation will be used. In order to provide
this behavior, ILDJIT links at runtime plugins found in the system, which provide
tasks not provided by other plugins that it is not already linked with.

Consider a scenario where there are three users: alex , bob and tom. Consider
also that ILDJIT has been installed inside the default directory and that these three
users share the same system (or they share the file system at least). Imagine that
alex and bob need to customize ILDJIT with their own plugins. Moreover, tom

2.4 Different Configurations with a Single Installation 19

needs both to customize ILDJIT with his own plugins and to use bob’s plugins. In
this case, alex needs to set the aforementioned variable as following:

S export ILDJIT_X_PLUGINS=/home/alex/my_plugins
On the other hand, bob needs to set it as following:
S export ILDJIT X_PLUGINS=/home/bob/my_plugins

Finally, tom needs to set the variable to point to the following two directories:

$ export ILDJIT_X_PLUGINS=/home/tom/my_plugins:
/home/bob/my_plugins

Notice that tom needs to have read access to the bob ' s directory in order to use
his plugins.

References

1. Campanoni, S., Agosta, G., Crespi-Reghizzi S., Biagio A.D.: A highly flexible, parallel virtual
machine: design and experience of ILDJIT. In: Software: Practice and Experience, pp. 177-207
Wiley (2010)

2. ECMA ECMA-335: common language infrastructure (CLI). http://www.ecma-international.

org/publications/files/ECMA-ST/Ecma-335.pdf (2010). Cited 11 June 2011

ISO (1999). ISO C Standard 1999

1SO (2003). ISO/IEC 14882:2003

5. Gosling, J., Bill, J., Steele, G., Bracha, G.: The Java Language Specification. 3rd edn. Addison-
Wesley (2005)

6. ECMA ECMA-334: C# Language Specification. http://www.ecma-international.org/
publications/filessECMA-ST/Ecma-334.pdf (2006). Cited 11 June 2011

7. Costa, R., Ornstein A.C., Rohou, E. GCC4CLI. http://gcc.gnu.org/projects/cli.html (2010).
Cited 11 June 2011

8. de Icaza, M., Molaro, P., Mono, D.M. http://www.mono-project.com (2011).Cited 11 June
2011

9. Smith, J., Nair R.: Virtual Machines: versatile platforms for systems and processes. In: The
Morgan Kaufmann Series in Computer Architecture and Design, Morgan Kaufmann Publishers
(2005)

10. Campanoni, S., Sykora M., Agosta, G., Crespi-Reghizzi S.: Dynamic look ahead compilation:

a technique to hide JIT compilation latencies in multicore environment. International confer-
ence on compiler construction, pp. 220-235 (2009)

B w

http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-335.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-334.pdf
http://gcc.gnu.org/projects/cli.html

2 Springer
http://www.springer.com/978-1-4471-2193-0
Guide to ILDJIT

Campanoni, 5.

2011, X, 97 p. 30 illus,, Softcover
ISBEMN: 978-1-4471-2193-0

	2 Generating, Compiling and Executing Bytecode Programs
	2.1 Generating the Bytecode
	2.2 Static Compilation
	2.2.1 Static Compilation in ILDJIT
	2.2.2 Ahead-of-Time Compilation in ILDJIT
	2.2.3 Partial Compilations in ILDJIT
	2.2.4 Cached Code

	2.3 Dynamic Compilation
	2.3.1 Just-in-Time Compilation
	2.3.2 Dynamic Look-Ahead Compilation

	2.4 Different Configurations with a Single Installation
	References

