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Abstract  The proximal molecular pathogenesis of ACTH-secreting pituitary 
adenomas remains enigmatic. Several transgenic mice models have contributed 
important knowledge to understanding human pituitary disease; animal and cell 
models have provided novel insights into mechanisms underlying the pathogenesis 
of ACTH-secreting pituitary adenomas, mostly due to cell cycle disruption. 
Defective glucocorticoid feedback mechanisms also likely lead to enhanced POMC 
expression and corticotroph proliferation. Novel peptide therapies targeting 
somatostatin and/or dopamine (D2) receptors may also provide further insights into 
ACTH-secreting pituitary tumor pathogenesis. Studies investigating microRNA 
expression in pituitary corticotroph adenomas point to important functions of a 
unique class of gene regulators in the molecular biology of Cushing’s disease. 
Continuing research advancement will lead to better understanding of Cushing’s 
disease and development of novel therapeutic approaches.
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Introduction

Despite advances leading to improved understanding of Cushing’s disease, the 
pathogenesis of pituitary corticotroph adenomas remains enigmatic. We focus 
here on current knowledge and emphasize recent progress in identifying molecu-
lar and genetic mechanisms contributing to the development of pituitary corti-
cotroph adenomas. Research progress on Cushing’s disease pathogenesis is 
heavily dependent on animal studies largely due to the low disease incidence and 
small tumor size in humans.

Animal Models of Cushing’s Disease and Related Tumors

Genetically manipulated mouse models have been used to recapitulate Cushing’s 
disease, primarily because of striking homology in mammalian genomes as well as 
similar pituitary anatomy, cell biology, and physiology. Transgenic approaches have 
allowed overexpression of dominantly acting transgenes to phenocopy Cushing’s 
disease pathology. Furthermore, specific allelic modification by homologous recombi-
nation gene ablation targeting endogenous cell cycle regulators have resulted in several 
mouse models with POMC-expressing tumors within the pituitary intermediate lobe.

Cushing’s Disease Models with Transgenic Oncogene 
Overexpression

These models represent artificial phenomena generated using oncogenic viruses 
and, therefore, offer limited insight into corticotroph tumorigenesis. The first 
transgenic murine Cushing’s disease model was produced by genetically introduc-
ing a hybrid gene consisting of the viral polyoma early region promoter linked to the 
polyoma large T antigen cDNA [1]. Transgenic mice developed pituitary 
microadenomas at 9 months of age, and large adenomas at 13–16 months of age, 
accompanied by features of Cushing’s syndrome that progressed to wasting. The 
tumor latency period suggested the requirement for additional genetic or epigenetic 
alterations in pathogenesis of these tumors [1, 2]. Immunocompetent wild-type 
mice bearing transplants of PyLT transgenic pituitary tumors showed more 
pronounced effects of glucocorticoid excess than PyLT transgenic mice themselves. 
One of two PyLT transgenic lines developed pituitary tumors with 100% penetrance, 
suggesting that some viral oncogenes exhibit pituitary gland cell specificity.

Transgenic expression of the proopiomelanocortin (POMC) gene promoter 
(nucleotides −706 to +64) driving a simian virus (SV) 40 early gene encoding 
large T antigen induced large POMC-expressing pituitary tumors arising from 
the intermediate lobe [3]. Tumor cells expressed nuclear SV40 T antigen and 
POMC peptides, but not other pituitary hormones. Posttranslational pituitary 
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POMC processing was characterized by high proportions of acetylated and 
carboxyl-terminal shortened b-endorphins, as well as amino-terminal acetylated 
a-melanocyte-stimulating hormone, but virtually no ACTH(1–39), b-lipotropin 
or POMC. This pattern is indistinguishable from that of melanotrophs in the WT 
mouse intermediate lobe. In addition, tumor cells expressed abundant levels of 
mRNA for the prohormone convertase PC2 and undetectable levels of PC1, which 
is also similar to that of WT neurointermediate lobe, but distinct from the observed 
PC1 abundance in the anterior lobe.

Cushing’s Disease Models with Transgenic Overexpression  
of Hormonal and Growth Factor Signals

Pituitary tumor growth appears to be promoted by hormones and growth factors 
implicated in normal pituitary function and development [6]. Mouse Cushing’s 
disease models were developed by transgenic overexpression of hypothalamic 
stimulatory hormones or growth factors [4, 5]. Transgenic mice with metallothion-
ein (mMT)-promoter-driven overexpression of CRH exhibited endocrine disrup-
tions involving the hypothalamic-pituitary-adrenal (HPA) axis, manifesting as 
elevated plasma ACTH and glucocorticoid levels. These transgenic mice developed 
phenotypes similar to those seen in patients with Cushing’s syndrome, such as 
excess fat accumulation, muscle atrophy, thin skin, and alopecia. However, there 
was no evidence of increased ACTH-expressing cells in the mMt-CRH transgenic 
pituitary, probably due to inhibitory feedback on pituitary corticotrophs by hyper-
cortisolemia resulting from CRH stimulation [4].

Arginine-vasopressin is a potent ACTH-releasing hormone, which acts synergis-
tically with CRH. Transgenic mice expressing the human V3 receptor under the 
control of rat POMC promoter sequences showed increased basal concentrations of 
corticosterone; however, no corticotroph tumors developed [7].

Leukemia inhibitory factor (LIF) is a pleiotropic cytokine that regulates the HPA 
axis and enhances POMC transcription as well as ACTH secretion by potently 
synergizing with CRH [8]. LIF also regulates corticotroph cell proliferation [9]. 
Transgenic LIF overexpression targeted by the pituitary glycoprotein hormone 
a-subunit (aGSU) promoter lead to corticotroph hyperplasia, truncal obesity, thin 
skin, and hypercortisolism, all characteristic phenotypes of Cushing’s disease. 
aGSU-LIF transgenic mice also exhibited central hypogonadism, dwarfism, and 
mild hypothyroidism, with gonadotroph, somatotroph, lactotroph, and thyrotroph 
hypoplasia. In the mouse, pituitary organ commitment is initiated with expression of 
alpha-GSU [5]. In the transgenic pituitary, LIF overexpression diverts progenitor cell 
differentiation from Lhx3/Lim3-dependent cell lineages (gonadotroph, thyrotroph, 
somatotroph, and lactotroph) to an Lhx3/Lim3-independent cell lineage, i.e., corti-
cotrophs. Pituitary LIF signaling is further potentiated by glucocorticoids [10], there-
fore suggesting that neuro-immune-endocrine interfacing molecules act as important 
players in pituitary corticotroph homeostasis and tumor formation.



22 N.-A. Liu et al.

Genetic Knockout of Cell Cycle Regulators in Pituitary  
POMC-Cell Tumors

Multiple targeted gene knockout models have implicated cell cycle regulators in the 
pathogenesis of pituitary POMC-expressing tumors [11–13]. These gene knockout 
animals exhibit a high incidence of pituitary intermediate lobe POMC cell tumors, 
which are an otherwise rare tumor type in WT mice (Table 2.1). A classical example 
indicating the association of cell cycle regulators and pituitary tumorigenesis is 
derived from the heterozygous Rb mice [11–13]. The Rb gene encodes a tumor 
suppressor that controls the G1/S checkpoint. Rb phosphorylation by cyclin depen-
dent kinases (Cdk) releases E2F, enabling S phase progression. Ink4-type inhibitors 
(p16, p15, p18, p19) and Cip/Kip-type (p21, p27, p57) suppress Cdk actions. 
Sequential activation and inactivation of protein kinase complexes regulate cell-cycle 
progression [14]. Rb+/− mice develop pituitary intermediate lobe POMC cell tumors 
at 12 months with 100% penetrance. p27 (Kip1) deletion, like deletion of the Rb 
gene, also leads to neoplastic growth within the intermediate lobe. However, interme-
diate lobe adenomas due to p27 deletion are less prominent than the POMC-expressing 
adenocarcinomas arising in Rb+/− animals [15–17]. Deletion of p27 or p21 in Rb+/− 
animals enhances intermediate lobe tumorigenesis and shortens the murine lifespan 
[18, 19]. Additionally, p18 deletion leads to intermediate lobe hyperplasia, which is 
further enhanced by compound loss of p27 or p21 [20, 21]. Overall, tumor incidence 
and phenotype are highly dependent on the mouse strain suggesting involvement of 
additional genetic factors in tumorigenesis [22]. Increased tumor incidence in Rb+/− 
mice is partially rescued by mutations of Rb effectors such as E2f1 or E2f4 [23, 24], 
as well as by pituitary tumor transforming gene (PTTG) [25]. PTTG is a securin that 
regulates sister-chromatid separation by binding to separase in the APC complex, 
and plays multiple roles in cell cycle regulation at different stages [26]. PTTG deletion 

Table 2.1  Disrupted cell cycle regulators in mouse and human Cushing’s disease and related 
tumors

Gene Tumor-associated change Tumor type References

pRb Mouse: heterozygous null 
mutation

IL tumors [13]

p27 Mouse: null mutation IL tumors in mouse [15, 17]
Human: reduced expression level 

a 19-bp duplication in exon 1
Corticotroph tumor and 

pituitary carcinoma
[44]

MEN1-like syndrome including 
corticotroph tumor

[55, 56]

p18 Mouse: null mutation IL and pituitary tumors [20]
Human: reduced expression level Corticotroph adenomas [48]

Cyclin E Human: overexpression Corticotroph adenomas [47]

Pttg Human: overexpression All types of pituitary tumors 
including corticotroph 
adenomas

[42]



232  Molecular Biology of Cushing’s Disease

decreased pituitary tumor incidence in Rb+/− mice by triggering p53/p21-dependent 
senescence [27, 28]. Therefore, multiple cell cycle regulatory pathways are involved 
in initiating and maintaining pituitary corticotroph tumorigenesis.

Spontaneous Cushing’s Disease in Large Animals

Spontaneous disorders mimicking human Cushing’s disease have been described in 
dogs, horses, and less commonly cats [29–32]. Equine Cushing’s disease usually results 
from intermediate lobe tumors, and rarely from those of the anterior lobe [29, 30]. 
Canine Cushing’s disease has an estimated incidence of 1–2 cases/1,000 dogs/year [31, 
32] and represents one of the most common endocrine disorders in dogs. Approximately 
30% of canine Cushing’s disease results from intermediate lobe tumors. In addition to 
typical melanotrophs, the canine pituitary intermediate lobe contains a substantial 
percentage of a second cell type that stains intensely for ACTH, but not for MSH [33]. 
Although molecular, cellular, and genetic makeup of canine corticotroph adenomas are 
yet to be identified, the high natural incidence and many clinical phenotypes similar to 
human Cushing’s disease render canine Cushing’s disease a potentially important 
system for both in vitro and in vivo studies to understand Cushing’s disease pathogen-
esis, as well as to develop and test new therapeutic strategies.

Molecular Pathogenesis of Human Cushing’s Disease

It remains unresolved whether corticotroph tumors arise from a primary defect in 
the hypothalamus or the pituitary [34]. However, currently, most evidence supports 
the primary pituitary origin of these tumors. Hypothalamic dysfunction was supported 
by the fact that many Cushing’s disease associated endocrinopathies manifested as 
inhibition of growth, hypogonadotropic hypogonadism, and hypothyroidism. 
Moreover, in many cases the pituitary adenoma is not identified at surgery and these 
tumors often recur after apparently complete resection, while some pituitary glands 
harboring corticotroph adenomas exhibit corticotroph hyperplasia [35, 36]. However, 
corticotroph hyperplasia is difficult to detect as differences from normal corticotroph 
cells are subtle [37]. The evidence for a primary pituitary origin is more compelling. 
High cure rates with reversal of major abnormalities associated with Cushing’s 
disease are observed after complete tumor resection and cortisol level normalization. 
Pituitary hyper-responsiveness to CRH before corticotroph adenoma removal 
reverses to hyporesponsiveness 1 week after resection [38]. Most corticotroph 
adenomas do not exhibit surrounding hyperplastic corticotrophs [37]. Moreover, 
pituitary tumors were proven to be monoclonal in origin [39, 40].

Biochemically and histologically, corticotroph tumor cells show relative and 
subtle abnormalities compared with normal ACTH-secreting cells, suggesting 
that tumorigenesis is likely associated with mutations or derangements of nor-
mal corticotroph-specific regulatory pathways. The initial event of corticotroph 
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transformation likely involves multifactorial etiologies such as genetic and 
epigenetic silencing of tumor suppressors, as well as hormonal and growth 
factor dysregulation, all of which may further promote tumor cell proliferation 
and expansion.

Tumor Suppressor Genes and Other Cell Cycle Regulators

Pituitary cells are rarely affected by oncogene activation or loss of tumor suppressor 
genes. Most protooncogene and tumor suppressor gene mutations implicated in 
nonpituitary cancers have not been identified in corticotroph adenomas. These 
include RAS, c-ERB2/neu, c-MYC, PKC, RET, c-MYB, c-FOS, Ga subunit of the 
G-protein, p53, Rb1, p16, and p18 [41].

As a cell cycle regulator and global transcription factor modulating G1/S and 
G2/M phase transition, human PTTG1 is overexpressed in more than 90% of all 
type of pituitary tumors, including corticotroph adenomas [42]. PTTG1 is regulated 
by CDK1-mediated phosphorylation [43], suggesting a link between cell cycle 
control by CDKs and PTTG1 function and implicating cell cycle deregulation in 
pituitary tumorigenesis. The p27 tumor suppressor regulates cell cycle progression 
by interacting with and inhibiting cyclin/Cdk complexes. Although early studies 
detected no p27 genomic mutations or consistent change in p27 messenger RNA 
expression in human sporadic pituitary tumors, downregulation of p27 protein 
expression is often observed in corticotroph adenomas and pituitary carcinomas 
suggesting underlying mechanisms involving posttranslational dysregulation [44]. 
Degradation of p27 is a critical event for the G1/S transition and occurs through 
ubiquitination by SCF(Skp2) and subsequent degradation by the 26S-proteasome 
[45]. In a study of 59 human pituitary samples (seven normal pituitary glands, 52 
adenomas including 12 ACTH-secreting tumors), no significant difference of Skp2 
mRNA or nuclear protein expression was detected between the normal pituitary and 
tumor tissue; therefore, it is not yet clear whether SKP2 is the relevant F-box protein 
for degradation of p27Kip1 in corticotropinomas [46]. In addition, increased cyclin 
E protein expression is frequently observed in corticotroph tumors, probably in rela-
tion to the low p27 protein expression levels [47]. Using Affymetrix GeneChip 
microarray analysis combined with RT-PCR analysis for gene expression profile of 
major pituitary adenoma subtypes, ACTH-secreting adenomas (n = 13) were shown 
to exhibit significantly underexpressed p18, in which murine gene deletion has been 
shown to produce pituitary ACTH cell hyperplasia and adenomas [48]. Both p27 
and p18 are directly regulated by MEN1 (multiple endocrine neoplasia type 1), and 
loss of MEN1 function results in downregulation of these two inhibitors with sub-
sequent deregulation in cell proliferation [49, 50]. The multiple endocrine neoplasia 
syndrome is characterized by predisposition to pituitary adenomas, parathyroid 
hyperplasia, and pancreatic endocrine tumors. Pituitary adenomas affect between 
25 and 30% of MEN-1 patients [51]. According to the France–Belgium MEN1 
multicenter study, 6 of 136 cases of MEN1 with pituitary adenomas harbored 
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ACTH-secreting corticotroph adenomas [52]. However, expression of MEN1 
mRNA is normal in sporadic pituitary corticotroph adenomas [53, 54]. Recently, the 
CDKN1B/p27Kip1 gene has been identified as a new susceptibility gene for a 
MEN1-like syndrome that is MEN1-gene mutation negative (now designated 
MEN4), in one family segregating endocrine neoplasia (pituitary adenoma, acro-
megaly, and primary hyperparathyroidism) [55]. Subsequently, a second germ-line 
CDKN1B/p27Kip1 mutation was identified in 1 of 36 (2.8%) Dutch patients clinically 
suspected for MEN1, however, tested negative for MEN1 gene mutation [56]. 
A 19-bp duplication within CDKN1B/p27Kip1 exon 1 changes the amino-acid 
sequence after 26 residues and leads to a premature stop codon 69 amino acids ear-
lier than the wild type. The patient was diagnosed with small-cell neuroendocrine 
cervical carcinoma, ACTH-secreting pituitary adenoma, and hyperparathyroidism, 
all lesions compatible with MEN1 [56]. Overall, somatic CDKN1B/p27Kip1 muta-
tions are uncommon in suspected MEN1 cases and sporadic pituitary adenoma 
patients [56–58] (Table 2.1).

Neuroendocrine Hormones and Regulatory Factors

Corticotroph proliferation and ACTH secretion are controlled by stimulatory fac-
tors, such as CRH, vasopressin, leukemia inhibitory factor (LIF), and inhibitory 
factors, such as glucocorticoid and somatostatin (SRIF), as well as their specific 
receptors. Genes encoding proteins involved in corticotroph regulatory pathways 
are potential candidates as tumorigenic mutations in Cushing’s disease. However, 
studies investigating classic corticotroph regulatory factors are yet to provide clear 
evidence of a common genetic defect in these tumors.

CRH is the main hypothalamic stimulator of corticotroph proliferation and 
ACTH secretion. In humans with CRH-secreting tumors, excess CRH induces 
corticotroph hyperplasia and hypercortisolism but no corticotroph tumor formation 
[59, 60]. In a study of 43 corticotroph adenomas, CRH mRNA levels were signifi-
cantly higher in tumor tissues vs. normal pituitary and also in macroadenoma and 
locally invasive adenomas vs. microadenomas. CRH expression correlated with 
Ki-67 expression, suggesting CRH autocrine/paracrine functions in corticotroph 
adenomas [61]. Some corticotroph adenoma cells exhibit increased CRH receptor 
type 1 mRNA levels; however, mutations of CRH receptor coding sequence have 
not been found [62]. Vasopressin type 3 receptor (V

3
R) stimulation enhances ACTH 

secretion and mRNA expression is increased in ACTH-secreting tumors, probably 
as a consequence of chronic glucocorticoid exposure. However, no mutation in the 
V

3
R gene has been found in corticotroph adenomas [63]. While the pathophysiolog-

ical significance of V
3
R and CRH/CRH-R overexpression in Cushing’s disease 

remains to be determined, they may be associated with proproliferative effects 
sustaining corticotroph tumor growth.

One of the hallmarks of corticotroph adenomas is partial resistance to corticos-
teroid feedback, which may represent an early event of corticotroph tumorigenesis. 
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Corticotroph tumors likely develop from cells with genetic mutations rendering 
partial resistance to the physiological negative feedback [64], therefore leading to a 
set-point defect and inappropriately high ACTH levels. Peritumoral normal corti-
cotrophs would likely exhibit growth suppression in response to the supraphysio-
logical level of cortisol, thus providing the mutant clone with a further growth 
advantage. ACTH may suppress its own secretion from corticotrophs via an ultra-
short paracrine/autocrine loop. Indeed, ACTH receptor and melanocortin 2 receptor 
(MC2) mRNAs were absent in 16 of 22 pituitary corticotroph adenomas, but were 
detectable in normal human pituitary. Plasma ACTH levels were significantly higher 
with tumors that did not express the receptor compared to those that did [65]. Loss 
of normal ACTH receptor expression and/or function in corticotroph adenomas may 
contribute to partial corticosteroid resistance, although no mutations of ACTH and 
MC2 receptors were found in corticotroph tumors that still exhibit receptor expres-
sion. Glucocorticoid exerts feedback on corticotrophs via the glucocorticoid recep-
tor (GR), and GR disruption may contribute to pituitary-specific glucocorticoid 
resistance seen in corticotroph adenomas. The human GR exhibits two isoforms 
resulting from alternative transcript splicing [66]. GR-b differs from GR-a at the 
carboxyl terminus, which prevents corticosteroid binding and transcriptional activa-
tion [66]. A nonsense mutation leading to a truncated GR was discovered in a patient 
with Nelson’s syndrome; however, no similar defect was identified in a series of 19 
ACTH-secreting tumors, including two cases of Nelson’s syndrome, three ectopic 
secretors, and one malignant corticotropinoma [67]. While a GR gene mutation 
does not appear to be a common defect contributing to glucocorticoid resistance in 
corticotroph adenomas, it remains to be determined whether GR LOH, or altered 
levels of GR-a and GR-b isoform expression are associated with Cushing’s disease 
pathogenesis.

Investigation of mechanisms underlying glucocorticoid resistance has led to 
identification of two essential proteins for repression of proopiomelanocortin 
(POMC), a precursor of ACTH. Corticosteroids repress POMC transcription 
through protein–protein interactions of GR with NGFI-B to form a transrepression 
complex at the POMC promoter. The ATPase subunit of the chromatin remodeling 
Swi/Snf complex Brg1 is essential to stabilize GR and NGFI-B interactions, and 
critical for recruitment of the histone deacetylase HDAC2 to the complex [68]. In 
a series of 36 human corticotroph adenomas obtained at surgery, 50% of tumors 
were deficient in nuclear Brg1 or HDAC2. Brg1 was delocalized to the cytoplasm 
in a subset of tumors, while it was detected in nuclei of surrounding peritumoral 
corticotroph cells. This observation was apparent in both human and canine pitu-
itary corticotroph adenoma cells [68, 69]. The relative high frequency of Brg1 and/
or HDAC2 misexpression in corticotroph adenomas supports their importance in 
pituitary corticosteroid resistance associated with Cushing’s disease.

Pituitary Nelson’s tumors arise in patients with Cushing’s disease who have 
undergone bilateral adrenalectomy. The cause for growth of Nelson’s tumor is yet 
unknown, and recent studies suggest that tumors do not appear de novo, but rather 
grow from a persistent pituitary corticotroph microadenoma [70]. Potential causes of 
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Nelson’s tumors may include restored CRH and AVP tone, elimination of the 
suppressive growth effect of endogenous cortisol and insufficient levels of exogenous 
cortisone [71]. Although usually slow growing, some tumors can grow rapidly to a 
large size [72]. Crooke hyalinization is usually absent in nontumorous corticotroph 
cells derived from pituitary glands harboring Nelson’s tumors.

Corticotrophs are also negatively regulated by somatostatin (SRIF) signaling 
pathways. Somatostatin actions are mediated through five different membrane-
bound receptors (SSTR 1–5). SSTRs are members of the G protein-coupled recep-
tor family. SSTR signaling leads to inhibition of hormone secretion and cell 
proliferation, or may induce apoptosis. Human corticotroph adenomas exhibit abun-
dant SSTR5, in addition to SSTR1, -2, and -3, mRNA and protein levels. Pasireotide 
(SOM230), a synthetic SRIF analog, inhibits ACTH secretion from ACTH-secreting 
adenomas not responsive to octreotide in vitro and is more effective than octreotide 
to inhibit CRH-induced rat ACTH and cortisol secretion. In a proof-of-concept, 
open-label, 15-day phase II trial, 76% of patients with Cushing’s disease receiving 
pasireotide exhibited lowered urinary free cortisol levels [73]. Enhanced pasireotide 
action in corticotrophs is determined by SST5 dominance that maximally stimulates 
short- and long-term corticotroph responses to SRIF analogs [74].

In addition to the aforementioned hormonal and regulatory factors, other cytok-
ines, growth and developmental factors have been investigated for potential roles in 
corticotroph tumor formation, including epidermal growth factor (EGF) and recep-
tor (EGFR), PTX family members and Tpit/Tbx19 [41, 69], none of which has been 
found to play a major role in corticotroph tumorigenesis. These factors may regulate 
a preexisting tumor clone or promote establishment of an oncogenic background, 
therefore contributing to tumor formation and/or expansion. A mutation in the 
DAX1 gene that controls HPA axis development was found in a 33-year-old patient 
with X-linked adrenal hypoplasia congenita and pituitary corticotroph adenoma 
[75]. Recently, pituitary corticotroph microadenomas have been reported in two 
patients with tuberous sclerosis complex, an autosomal dominant neurocutaneous 
disorder characterized by benign tumors (hamartomas), epilepsy, and mental 
retardation. This complex is a result of mutation in the TSC1 and TSC2 genes that 
encode the proteins hamartin and tuberin, respectively. Mechanisms promoting 
corticotroph adenoma growth in this disorder are unknown [76].

MicroRNA Expression in Corticotroph Adenomas

MicroRNAs (miRNAs) are noncoding, single-stranded RNAs constituting a novel 
class of gene regulators. MicroRNAs control diverse biological processes includ-
ing cell growth, differentiation and apoptosis by posttranscriptional regulation of 
target gene expression [77]. More than 50% of identified human microRNAs are 
located in the fragile sites of genome areas [78]. miRNA mutations or misexpres-
sion correlate with several human cancers suggesting that miRNAs can function as 
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tumor suppressors [79]. In a recent study of 11 ACTH-secreting pituitary adenomas 
and seven normal pituitaries, real-time PCR analysis revealed downregulation of 
several miRNAs in corticotroph adenomas compared with normal pituitary, including 
miR-15a, miR-16, and Let-7a among others [80]. Reduced miR-15a and miR-16 
expression was also discovered in GH- or PRL-secreting pituitary adenomas, and 
levels of reduction correlated inversely with tumor diameter [81, 82]. Interestingly, 
miR-15a and miR-16 genes are colocalized with the Rb tumor suppressor on chro-
mosome region 13q14, which is frequently deleted in pituitary adenomas including 
corticotropinomas [83, 84]. There has been evidence that additional putative tumor-
suppressor gene(s) at the 13q14 locus are closely linked to, but distinct from, Rb1 
and might be important in pituitary tumorigenesis [85]. Let-7 microRNA nega-
tively regulates high-mobility group A2 (HMGA2), an embryonic and oncogenic 
protein that is highly expressed in many tumors including pituitary adenomas 
[86–88]. In a series of 55 postsurgical pituitary adenomas, decreased let-7 expres-
sion was present in 23 of 55 (42%) adenomas, including 12 of 18 (67%) corti-
cotroph adenomas, and correlated with high-grade tumors (P < 0.05). An inverse 
correlation between let-7 and high-mobility group A2 expression was evident 
(R = −0.33, P < 0.05) [89]. These findings support a causal link between let-7 and 
HMGA2 whereby loss of let-7 expression induces HMGA2, contributing to pitu-
itary tumorigenesis and progression.

Conclusion

In summary, human corticotroph tumor studies are difficult to undertake as the 
disease is rare. Moreover, these tumors are small, and in many cases the tumor 
specimen is accompanied by surrounding normal pituitary tissue. In addition, 
direct comparison of tumorous to normal corticotroph cell function is challenging 
in most cases, as normal pituitary tissue from the same patient is usually unavail-
able, and even if available, the degree of “normalcy” is questionable. Recently, 
Roussel-Gervais et al showed that overexpression of cyclin E in murine pituitary 
POMC cells leads to abnormal reentry into cell cycle of differentiated POMC cells 
and to centrosome instability. These alterations are consistent with the intermedi-
ate lobe hyperplasia and anterior lobe adenomas observed in these pituitaries [90]. 
As this chapter was in press, we published a germline transgenic zebrafish overex-
pressing PTTG targeting the pituitary POMC lineage, which recapitulated features 
pathognomonic of corticotroph adenomas including corticotroph expansion, par-
tial glucocorticoid resistance, and pituitary cyclin E up-regulation, as well as meta-
bolic disturbances mimicking hypercortisolism due to Cushing’s disease [91].
Selective CDK inhibitors effectively targeted zebrafish and murine corticotroph 
tumor growth and hormone secretion [91]. A better understanding of the specific 
genetic and epigenetic alterations in human Cushing’s disease will be necessary for 
selecting the appropriate combination of current treatments and/or developing new 
therapeutic approaches.
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