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Abstract  This chapter introduces the highly promising future role of Reconfigurable 
Computing (RC) and emphasizes, that it is a critical survival issue for computing-
supported infrastructures worldwide and stresses the urgency of moving RC from 
niche to mainstream. It urges acceptance of the massive challenge of reinventing 
computing, away from its currently obsolete CPU-processor-centric Aristotelian CS 
world model, over to a twin-paradigm Copernican model including and interlacing 
both, software and configware. It gives a flavor of the fundamentals of RC and the 
massive impact on the efficiency of computing it promises. Furthermore the chapter 
outlines the educational barriers we have to surmount and the urgent need for 
major funding on a global scale to run a world-wide mass movement, of a dimen-
sion at least as far reaching as the Mead-&-Conway-style VLSI design revolution in 
the early 1980s. The scenarios are similar: around 1980 an urgently needed designer 
population has been missing. Now a properly qualified programmer population is 
not existing. But this time the scenario is much more complex and the problem is 
more difficult, requiring not only a twin-paradigm approach for programming het-
erogeneous systems including both: many-core processors and reconfigurable 
accelerators, but also to find a solution to the parallelism crisis also called the 
“Programming wall”. The presentation of recent R&D advances in RC, especially 
those ones funded by the EU, are also subject of all other chapters of this book.
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2.1 � Introduction

Reconfigurable computing is an important survival issue of the world-wide comput-
ing infrastructures. This chapter stresses, that all our computer-based infrastructures 
worldwide are extremely important to avoid a massive crisis of the global and local 
economy (Sects. 2.1.1 and 2.2.3). This chapter warns of the future unaffordability of 
the electricity consumption of the entirety of all computers worldwide, visible and 
embedded (Sect. 2.2), and, that green computing, although important and welcome, 
is by far not sufficient to guarantee affordability and not at all to support further 
progress for future applications of high performance computing (Sect. 2.2.2).

Reconfigurable Computing, the second RAM-based machine paradigm offers 
drastic reduction of the electric energy budget and speedup factors by up to several 
orders of magnitude – compared to using the von Neumann paradigm [1], now 
beginning to loose its dominance. This chapter stresses the urgency of moving 
Reconfigurable Computing (RC) from niche to mainstream (Sect.  2.2.3) and urges, 
that we need a worldwide mass movement of a larger format than that of the VLSI 
design revolution around 1980, where only an urgently needed designer population 
has been missing [2–6]. This time a properly qualified programmer population is 
missing. But we need to push the envelope into two different directions. The VLSI 
design revolution has been the most effective project in the modern history of comput-
ing. But this time we need even more. A dual rail effort is needed for simultaneously 
developing the scene toward parallel programming for manycore architectures and to 
structural programming for reconfigurable computing (RC), as well as heterogeneous 
systems including the cooperation of both paradigms.

Currently the dominance of the basic computing paradigm is gradually wearing 
off with the growth of the area of RC applications – bringing profound changes to 
the practice of both, scientific computing and ubiquitous embedded systems, as well 
as new promise of disruptive new horizons for affordable very high performance 
computing. Due to RC also the desk-top personal supercomputer is near. To obtain 
the payoff from RC we need a new understanding of computing and supercomputing, 
as well as of the use of accelerators. For bridging the translational gap, the software/
configware chasm, we need to think outside the box.

Section 2.3 tries to introduce (almost) non-expert readers to the flavor of RC. FPLAs, 
FPGAs, platform FPGAs, fine grain and coarse grain. Section 2.3.1 discusses the dif-
ferences of RC applications in embedded systems and in supercomputing. It introduces 
the fundamentals of RC and the massive impact on the efficiency of computing it prom-
ises. Furthermore the chapter outlines the educational barriers we have to surmount and 
the urgent need for major funding on a global scale to run a world-wide mass move-
ment, of a dimension reaching further than the Mead-&-Conway-style microelectron-
ics revolution in the early 1980s. Section 2.2.2 illustrates the Reconfigurable Computing 
Paradox, and Sect. 2.2.3 Why von Neumann is so inefficient. Section 2.3 tries to con-
vince the reader, why we need to reinvent computing. This chapter advocates to intro-
duce a dual paradigm trans disciplinary education by using Configware Engineering as 
the counterpart of Software Engineering by new curricula in CS (Computer Science) 
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and CE (Computer Engineering) for providing an integrating dual paradigm mind set 
to cure severe qualification deficiencies of our graduates Sect. 2.3.3 tells us what prob-
lems we must solve, Sect. 2.3.1 the “parallel programming problem”, Sect. 2.3.4 how 
to introduce RC and Sect. 2.3.5 describes the way toward a new world model of com-
puting. It urges acceptance of the massive challenge to reinvent computing, away from 
its currently obsolete CPU-processor-centric Aristotelian CS world model, to a twin-
paradigm Copernican model. For more details about the problem area see [7].

2.1.1 � Why Computers Are Important

Computers are very important for all of us. By many millions of people around 
the world computers are used in hundreds of application areas featuring ten-
thousands of programs with millions of lines of code developed by thousands of 
man-years by investment volumes up to billions of dollars [8]. Computers running 
this legacy software are indispensable in our world [9]. Completing their tasks 
manually would require much more time, or, would be completely impossible, 
especially if networking is involved. Not only to maintain our global economy 
we must maintain these important infrastructures. However, threatening unaf-
fordable operation cost by excessive power consumption is a massive future  
survival problem for our existing cyber infrastructures, which we must not 
surrender.

2.1.2 � Unaffordable Energy Consumption by Computing

It has been predicted that by the year 2030, if current trends continue, the worldwide 
electricity consumption by ICT (Information and Communication Technology) 
infrastructures will grow by a factor of 30 [10], reaching much more than the cur-
rent total electricity consumption of the entire world for everything, not just for 
computing. The trends are illustrated by an expanding wireless internet, and by a 
growing number of internet users. as well as with tendencies toward more video on 
demand, HDTV over the internet, shipping electronic books, efforts toward more 
cloud computing and many other services. Other estimations claim, that already 
now the greenhouse gas emission from power plants generating the electricity 
needed to run the internet is higher than that of the total world-wide air traffic. For 
more predictions see [11]. The electricity bill is a key issue not only for Google, 
Microsoft, Yahoo and Amazon with their huge data farms at Columbia River [12]. 
That’s why Google recently submitted an application asking the Federal Energy 
Regulatory Commission for the authority to sell electricity [13], and has a patent for 
water-based data centers, using the ocean to provide cooling and power (using 
the motion of ocean surface waves to create electricity) [14]. Already in the near 
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future the electricity bill of most facilities will here be substantially higher than the 
value of their equipment [15]. Already in 2005, Google’s electricity bill was about 
50 millions US-$ higher than the value of its equipment. Meanwhile the cost of 
a data center is calculated solely by the monthly power bill, not by the cost of hard-
ware or maintenance [16]. As Google’s employee L. A. Barroso said [17]: “The 
possibility of computer equipment power consumption spiraling out of control 
could have serious consequences for the overall affordability of computing.” Power 
consumption estimations for an exascale supercomputer (1,018 calculations/s)  
like expected for about 2,018 range between 200 MW and 10 GW (the double of 
New York 16 million people energy consumption) [18, 19].

2.1.3 � Peak Oil: Dig More Coal for Computing?

Rapidly growing energy prices are predicted since the oil production has reached its 
peak by about the year 2009 [20–23]. Already currently 80% of crude oil is coming 
from decline fields (Fig. 2.1). However, the demand is growing because of develop-
ing standards of living in China, India, Brazil, Mexico and newly industrializing 
countries. We need at least “six more Saudi Arabias for the demand predicted for 
2030” (Fatih Birol, Chief Economist IEA [20]). I believe that these predictions do 
not yet consider the growing electricity consumption of computers. Maybe, we will 
need ten more Saudi Arabias. About 50% of the shrinking oil reserves are under 
water [24]. In consequence of the Gulf of Mexico oil spill not all deepwater explora-
tions will be allowed and the crude oil prices will go further up. All this will cause a 
massive future survival problem for our cyber infrastructures, which we must not 
surrender because this is an important global economy issue. Or, should we dig more 
coal [22]? It makes sense, to measure computing performance not just by MIPS  
(million instructions per second), but by MIPS/W instead.

Fig. 2.1  Beyond Peak Oil: massively declining future crude oil production [22]
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2.1.4 � Green Computing: Important, but Limited

Green Computing tends to use conservative methods to save energy by more efficient 
modules and components. For example LED flat panel displays need much less 
power than LCD-based displays. Also much more power-efficient power supply 
modules are possible. The potential to save power is substantially less than an order 
of magnitude: maybe, a factor of about 3–5. A scene separate from Green Computing 
is Low Power Circuit Design, now also called Low Power System on Chip Design 
(LPSoCD). Its most important conference series are about 30 years old: the PATMOS 
(oldest) and the ISLPED conference series.

Several methods are known for LPSoCD, such as: Active Body Bias (ABB), 
Adaptive Voltage Scaling (AVS), Dynamic Voltage Scaling (DVS), Multiple 
Supply Voltages (MSV), Multi-Threshold CMOS (MTCMOS), Power Gating 
(PG), Power Gating with Retention (RPG), etc. [16]. However, the order of magni-
tude of the benefit to be expected from this subarea LPSoCD is rather low. By 
MSV in using 3 Vdds the power reduction ratio at best is about 0.4 [16]. LPSoCD 
is a matter of ASIC design, e. g. of hardwired accelerator design. Only 3% of all 
design starts are ASIC designs (Fig. 2.2) with a trend leading further down. But in 
fact, low power design is also used for developing better power-efficient FPGAs – 
to the benefit of Reconfigurable Computing. But we need a much higher potential 
of saving energy because “Energy cost may overtake IT equipment cost in the near 
future” [9]. “Green Computing has become an industry-wide issue: incremental 
improvements are on track” [23], But “we may ultimately need revolutionary new 
solutions.” [25] Let me correct this statement by “we will ultimately also need 
revolutionary solutions (like reconfigurable computing), since we need much 
higher efficiency.”

2.1.5 � Massively Saving Energy by RC

The idea of saving energy by using Reconfigurable Computing is not new [26, 27]. 
Being very important to massively reduce the energy consumption of computing, 
by up to several orders of magnitude, Reconfigurable Computing is extremely 

Fig. 2.2  FPGA to ASIC design start ratio



12 R. Hartenstein

Fig. 2.3  Better power efficiency by accelerators

Fig. 2.4  Speed-up factors

important for the survival of the world economy. Already a partial paradigm shift 
promises to save electricity by orders of magnitude. Dozens of papers (ref. in [28]) 
have been published on speed-ups obtained by migrating applications from 
software running on a CPU, over to configware for programming FPGAs [28]. It 
has been reported already more than a decade ago, that for a given feature size, 
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microprocessors using traditional compilers have been up to 500 times more power 
hungry than a pure hardware mapping of an algorithm in silicon [27] (Fig. 2.3). 
Speedup factors up to 4 orders of magnitude have been reported from software to 
FPGA migrations [26–49]. Here the energy saving factor is roughly about 10% of 
the speedup factor, i.e., still up to >3 orders of magnitude.

Figure 2.4 shows a few speedup factors picked up from literature, reporting a 
factor of 7.6 in accelerating radiosity calculations [46], a factor of 10 for FFT 
(fast  Fourier transform), a speedup factor of 35 in traffic simulations [47]. 
A speedup by a factor of 304 is reported for an R/T spectrum analyzer [48]. For 
digital signal processing and wireless communication, as well as image processing 
and multimedia, speed-ups by 2 to almost 4 orders of magnitude have been 
reported. In the DSP area for MAC operations a speedup factor of 100 has been 
reported compared to the fastest DSP on the market (2004) [49]. Already in 1997, 
a speedup between 7 and 46 has been obtained over the fastest DSP [26]. In the 
multimedia area we find factors ranging from 60 to 90 in video rate stereo vision 
[34] and from 60 to 90 in real-time face detection [35], and of 457 for hyperspec-
tral image compression [36]. In communication technology we find a speedup by 
750 for UAV radar electronics [37]. For cryptography speed-ups by 3 to >5 orders 
of magnitude have been obtained. For a commercially available Lanman/NTLM 
Key Recovery Server [50] a speedup of 50–70 is reported. Another cryptology 
application reports a factor of 1,305. More recently for DES breaking a speed-up 
by × 28,514 has been reported [51] (Table 2.1).

For Bioinformatics applications [52] (also see [29]) speed-ups have been obtained 
by 2–4 orders of magnitude. Compared to software implementations sensational 
speed-up factors have been reported for software to FPGA migrations. A speedup  
of up to 30 has been shown in protein identification [30], by 133 [31] and up to 
500  [32] in genome analysis. The Smith-Waterman algorithm, which is used for 
protein and gene sequence alignment, is basically a string-matching operation that 
requires a lot of computational power [52]. Here another study demonstrates speed-
ups of 100x using Xilinx Virtex-4 hardware matched against a 2.2 GHz Opteron 
[53]. A speedup by 288 has been obtained with Smith-Waterman at the National 
Cancer Institute [33]. More recently a speed-up higher by more than an order of 
magnitude has been obtained here [45]. The CHREC project (supported by 24 
industry partners [54]) reports running Smith-Waterman on a Novo-G supercom-
puter, a cluster of 24 Linux servers, each housing four Altera Stratix-III E260 
FPGAs. According to this CHREC study, a four-FPGA node ran 2,665 times faster 
than a single 2.4 GHz Opteron core [55]. Another Smith-Waterman DNA sequenc-
ing application that would take 2.5 years on one 2.2 GHz Opteron is reported to take 
only 6 weeks for 150 Opterons running in parallel. Using 150 FPGAs on NRL’s 
Cray XD1 (speedup by 43) is reported to further reduce this time to 24 h, which 
means a total speedup of 7,350X over a single Opteron [42]. These are just a few 
examples from a wide range of publications [29–51] reporting substantial speedups 
by FPGAs.

Recently not only energy saving factors have been reported, roughly one order of 
magnitude lower than the speed-up. More recently has been reported [51] for DES 
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breaking (a crypto application): 28,500 (speed-up) vs. 3,439 (saving energy) and for 
DNA sequencing 8,723 (speed-up) vs. 779 (saving energy) etc. (Table 2.1). This 
paper also reports factors for saving equipment cost (up to x96) and equipment size 
(up to 1,116, see Table 2.1). No hangar full of equipment is needed when FPGAs are 
used in Scientific Computing. The Pervasiveness of FPGAs is not limited to embedded 
systems, but is also spread over practically all areas of scientific computing, where 
high performance is required and access to a supercomputing center is not available 
or not affordable. The desk-top supercomputer is near.

2.1.6 � A Mass Movement Needed as Soon as Possible

This subsection emphasizes that RC is a critical survival issue for computing-supported 
infrastructures worldwide and stresses the urgency of moving RC from niche to main-
stream. It urges acceptance of the massive challenge of reinventing computing, away 
from its currently obsolete CPU-processor-centric Aristotelian CS world model, over 
to a twin-paradigm Copernican model. A massive software to configware migration 
campaign is needed. First this requires clever planning to optimize the effort versus its 
expected results. Which software packets should be migrated first. All this requires 
massive R&D and education efforts taking many years. Lobbying for the massive 
funding should be started right now. We should address politicians at all levels: 
community level, state level, national level, and European Union level.

To explain all this to politicians is very difficult. Since politicians always watch 
the sentiment of their voter population, we efficiently have to teach the public, 
which is a challenge. Without a strong tailwind from the media a successful lobbying 
seems to be almost successless. All this has to be completed as soon as possible, as 
long as we can still afford such a campaign. To succeed with such a challenging 
educational campaign the foundation of a consortium is needed for running an at 
least Europe-wide project.

2.2 � Reconfigurable Computing

This section introduces a flavor of Reconfigurable Computing, its history, its more 
recent developments and, the massive impact on the efficiency of computing it promises. 
It is not easy to write this section such that it may be (almost) readable for non-experts 
– like the booklet FPGAs for Dummies which may help a little bit [56]. A Classical 
application for reconfigurable computing subsystems is the use as an accelerator to 

Table 2.1  Recent speed-up/power save data from software to configware migration [51]

SGI Altix 4,700 w. RC  
100 RASC vs. Beowulf cluster

Save factor

Speed-up factor Power Cost Size

DNA and protein sequencing   8,723 779 22 253
DES braking 28,514 3,439 96 1,116
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support the CPU (“central processing unit”). According to the state of the art in the 
1990s, having been the tail wagging the dog, this typically was and is a non-von-
Neumann accelerator [57]. But we have to distinguish two kinds of such accelerators: 
made from hardwired logic or from field-programmable logic. These two kinds are 
distinguished by binding time of their functionality: (1) before fabrication for fixed 
logic or hardwired logic devices (HWD) vs. (2) after fabrication for (field-)program-
mable logic devices (PLD). The term “field-programmable” indicates, that by recon-
figuration the functionality can be changed also at the users site by receiving new 
configuration code: from some memory, or, even over the internet.

First field-programmable blocks from the early 1980s have been so-called FPLAs 
featuring very area-efficient layout similar as known from ePROM memory for the 
price of being able to compute only Boolean functions in sum-of-product form. Very 
high speed-up could be obtained by matching hundreds of boolean expressions within 
a single clock cycle instead of computing them sequentially by a microprocessor. 
Together with a reconfigurable address generator [58] this brought a speed-up by 
factor up to 15,000 [59–63] for a grid-based design rule checker – already in the early 
1980s. Via the multi project chip organization of the E.I.S. project such a FPLA (which 
was called DPLA) has been manufactured on a multi-project chip of the multi univer-
sity E.I.S. project: the German contribution to the Mead-&-Conway VLSI design 
revolution. This DPLA has the capacity of 256 first FPGAs (field-programmable 
gate array) just appearing on the market (by Xilinx in 1984). This again demonstrates 
the massive area-inefficiency of FPGAs contributing to the Reconfigurable Computing 
Paradox (see Sect. 2.3.2) and the very early high speed-ups (Fig. 2.4).

The usual acronyms (Table 2.2) FPLA and FPGA are highly confusing being 
really not intuitive. From the straight-forward language feeling there does not seem 
to be any difference between “logic” in logic array (LA) and “gate” in Gate Array 
(GA). What is really different with FPGAs? In fact, FPGAs feature much more 
flexibility by introducing CLBs and routable wiring fabrics for interconnect 
between  CLBs (Fig.  2.5). In contrast to FPLAs, the CLB in FPGAs allows for 
instance to select one of 16 logic functions from simple LUTs (look-up tables, 
Fig. 2.6). However, PLAs [64, 65] are not routable and allow only to implement 
Boolean functions in sum-of-product form.

Beyond such fine grained reconfigurability the progress of Moore’s law leads to 
higher abstraction levels with “coarse-grained reconfigurability” featuring also CFBs 
(configurable function blocks), which may be adders, multipliers and/or many other 
functions. The next step is coarse-grained “platform FPGAs”, which also include one 
or several microprocessors, like the PowerPC in earlier platform FPGAs from Xilinx.

2.2.1 � Embedded Systems vs. Supercomputing

A growing trend is the use of FPGAs in embedded systems: ERC (Embedded 
Reconfigurable Computing). Originally there has been a feeling that FPGAs are too 
slow, power-hungry and expensive for many embedded applications. This has 
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Fig. 2.5  Interconnect fabrics example of a routable GA; grey line: example of one routed wire 
connecting 2 CLBs with each other

Fig. 2.6  LUT example
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changed. With low power and a wide range of small packages, particular FPGAs 
can be found in the latest handheld portable devices, including smartphones, eBooks, 
cameras, medical devices, industrial scanners, military radios, etc.

But embedded designers just don’t like FPGAs with CPUs inside [66]. FPGAs in 
this context have been very much seen as a hardware engineer’s domain, with the 
softies allowed in to play at some late stage [67]. Xilinx pre-announced a new fam-
ily of devices “going beyond the FPGA”. This “Extensible Programming Platform 
(EPP)” has a hardwired area with a top-end twin-core ARM Cortex-A9M processor 
unit and with a NEON multimedia processor, memory interfacing, peripherals, and 
a programmable fabric [67]. Instead of communicating across an FPGA, the two 
processors are connected by 2,500 wires, providing much capacity for an AMBA-
AXI bus and other communications protocols. Xilinx was stressing that this approach 
recognizes the increasingly dominant role of software in systems and is pushing 
EPPs as a way to first define the system in software and then carry out software and 
hardware design in parallel.

EPPs make the processor the centre of the device with the programmable fabric as 
an extra. And this, argues Xilinx, now puts the software engineer first with the hardies 
following behind. In EPPs the FPGA logic and the CPU will be programmable 
separately. FPGA configuration will be handled by the processor(s) directly, not by a 
serial ROM. In other words, you have to tell the FPGA you want it configured. That’s 
very un-FPGA-like [66]. That’s EPP-like. The approach of using both a processor 
and programmable fabric allows design to start at high level and the system to be 
implemented as software [67].

Xilinx’s first attempt at this was an FPGA with a processor inside. This time around, 
it’s a processor with an FPGA grafted on. That’s not just semantic hair-splitting: it’s the 
big difference between these chips and the old ones. The new chips will boot up and 
run just like normal microprocessors, meaning there’s no FPGA configuration required 
at all [68].

EPPs are a result of the new research topic Network-on-Chip (NoC) [69], which 
is a new paradigm for designing the on-chip hardware communication architecture 
based on a communication fabric, also including on-chip routers. NoC CAD tool 
flows also support mapping applications into NoC.

Apart from ERC (Embedded Reconfigurable Computing) we have another recon-
figurable computing scene: HPRC (High Performance Reconfigurable Computing), 
This last one is a relatively new area, but has attracted a lot of interest in recent 
years, so much so that this entire new phrase has been coined to describe it [71]. 
HPRC uses FPGAs as accelerators for supercomputers [72]. Large HPC vendors are 
already supplying machines with FPGAs ready-fitted, or have FPGAs in their prod-
uct roadmaps. What are the benefits of using FPGAs in HPC? Also here the first and 
most obvious answer is performance. HPC is renowned as that area of computing 
where current machine performance is never enough. A problem yet to be solved 
here is programmer productivity [73, 75]. It is an educational challenge, that pro-
grammers with the needed mix of skills are hardly available. Will FPGAs have a 
tough road ahead in HPC?
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2.2.2 � The Reconfigurable Computing Paradox

Technologically FPGAs are much less efficient than microprocessors [68, 70]. The 
clock speed is substantially lower. The routable reconfigurable wiring fabrics cause 
a massive wiring area overhead. There is also massive other overhead: reconfigu-
rability overhead, since of 200 transistors e. g. maybe about five or even less of them 
(Fig. 2.9 in [70]) serve the application, whereas the other 195 are needed for recon-
figurability (Fig. 2.6). Often there is also routing congestion, so that not all CLBs 
can be used, what causes further degradation of efficiency. Software to configware 
migration yield massive improvements in speed and power consumption, although 
FPGAs are a dramatically worse technology. We call this the “Reconfigurable 
Computing Paradox”. by orders of magnitude better performance with a drastically 
worse technology? What is the reason? It’s the von Neumann paradigm’s fault. The 
next subsection goes into details.

2.2.3 � Why von Neumann Is So Inefficient

The von Neumann paradigm has been criticized often [78–81]. Peter Newman had 
for 15  years each month the highly critical „computers at risk“ back pages of 
Communications of the ACM [80]. Nathan’s law (by Nathan Myhrvold, a former 
CTO of Microsoft) said that software is a gas, which fills any available storage 
space: on-chip memory, extra semiconductor memory located outside the processor 
chip, as well as hard disks. A lady (I forgot her name) said that it even fills the internet. 
Nicklaus Wirth’s pre-manycore interpretation of Moore’s law is, that “software is 
slowing faster than hardware is accelerating” [78].

Why is von Neumann so inefficient? It is the von Neumann syndrome [82] caused 
by the fact, that instruction streams are very memory-cycle-hungry. We can distin-
guish two different reasons: algorithmic complexity required by the von Neumann 
paradigm, and, architectural issues. There are also other attempts to explain at least 
particular symptoms of this syndrome (Fig. 2.8 [83]) [84]. A well known architec-
tural problem is the memory wall [85, 86] (Fig. 2.7): the access time to RAM outside 
the processor chip is slower by a factor of about 1,000, than to on-chip memory [86]. 
This difference is growing by 50% every year. It is a dramatic software engineering 
issue, that multiple levels of instruction stream overhead leads to massive code sizes 
which hit the memory wall [86]. However, rDPUs and rDPAs do not suffer from 
Nathan’s law, since at run time no instruction streams are running through.

How data are moved is a key issue. CPUs usually move data between memories 
requiring instruction streams (first line, Table 2.3). This means the movement of 
data is evoked by execution of instructions due to the von Neumann paradigm. Also 
the execution of operations inside a CPU requires reading and decoding of instruc-
tions (Fig. 2.8 gives an idea of the overhead of the main components for contempo-
rary CPUs). However, after a full migration to static reconfigurable computing an 
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algorithm is run by data streams only. Instead of a hardwired program counter 
reconfigurable data counters are used which do not require instruction sequences for 
address computation.

Also, how data are moved inside the data paths is a key issue, and pipe network 
structures to interconnect rDPUs avoid moving data through memory blocks because 
data are moved directly from DPU to DPU [87]. This means, that operation execu-
tion inside a DPU (not having a program counter) is “transport-triggered” (second 
line, Table 2.3). It is triggered via handshake by the arrival of the data item, not 
needing an instruction to call it. Not looking at dynamically reconfigurable systems 
([88] only for advanced courses) we see, that reconfigurable fabrics don’t perform 
any instruction sequencing at run time.

Beyond such fine grained reconfigurability the progress of Moore’s law leads to 
higher abstraction levels with “coarse-grained reconfigurability” featuring also 

Fig. 2.7  von Neumann principles

Table 2.3  Twin paradigm fundamental terminology

Machine  
paradigm

State register

# Term Controlledby Type Location

1 Software Instruction streams von Neumann Program counter in CPU
2 Configware (Configuration memory) None None (Hidden)
3 Flowware Reconfigurable  

address generator
Data stream 

machine
Data counter In ASM memory 

block

Fig. 2.8  All but ALU is overhead: ×20 efficiency [83]
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CFBs (configurable function blocks), which may be adders, multipliers and/or many 
other functions. The next step is coarse-grained “platform FPGAs”, which also 
include one or several microprocessors, like the PowerPC in earlier platform FPGAs 
from Xilinx.

But by a migration sometimes also the amount of data streams may be minimized 
by changing the algorithm. Here an illustration example for reducing the algorithmic 
complexity is given by the migration of the well-known O(n2) complexity bubble 
sort algorithm away from von Neumann. The algorithmic complexity turns from 
O(n2) into O(n) [8]. In a similar manner, other well-known algorithmic methods can 
be transformed to explore parallelism and locality, like in dynamic programming as 
presented in [88]. The combination of these effects leads to massive speed-up and 
massive saving of energy.

Of course, the data entering or leaving such an array (Fig. 2.9) have to be stored. 
The datastream machine paradigm uses auto-sequencing Memory blocks (asM). 
Each asM has a reconfigurable address generator and data counter inside. so that no 
instruction streams are needed for address computation. All this data streams can be 
programmed via data-imperative languages [90], being a kind of sisters of classical 
instruction-imperative programming languages. Data-imperative languages are 
easy to teach since both classes of imperative languages use the same primitives 
(Table  2.4). But there is one exception: data-imperative languages also support 
parallelism inside loops (Table 2.4). This also contributes to the benefit by recon-
figurable computing. The simultaneous use of both classes of languages we call 
“twin-paradigm approach” (Table 2.4 and Fig. 2.10).

Fig. 2.9  Example for data stream processor principles



22 R. Hartenstein

2.3 � Why We Need to Reinvent Computing

We cannot afford to relinquish RC. We will urgently need this technology to cope 
with threatening unaffordable operation cost by excessive power consumption of 
the entirety of all von Neumann computers world-wide. We need to migrate many 
application packages from software over to configware. This is a challenge to rein-
vent computing to provide the qualifications needed since disruptive developments 
in industry have caused the many-core programming crisis. Intel’s cancellation the 
Tejas and Jayhawk processors indicated in May 2004 the end of frequency scaling’s 
dominance to improve performance. “Multicore computers shift the burden of 
software performance from VLSI designers over to software developers” [89]. For 
Gary Smith from GS-EDA the three biggest disruptions are not only (1) many-core 
silicon, but also (2) non-vN architectures, and (3) parallel software, and the center 
of gravity shifts from EDA to programming (not “software“ how Gary named it [93], 
compare Table 2.3 and Fig. 2.10).

To use manycore we need to rewrite our software: our biggest problem. RTL 
verification moves up to ESL. EDA Industry and ESA need to merge. Especially 
for Embedded Software Automation (ESA) we need tools to develop parallel soft-
ware. He calls for an approach of using both, processor and programmable fabric, 
allows design to start at high level and the system to be implemented as progware 
(programware, see Fig.  2.10), e. g. with tools like LabView, MatLab, or others. 

Fig. 2.10  New CS world model 
image

Table 2.4  Imperative language twins: program counter vs. data counters

Instruction stream languages Data stream languages

sequencing primitives Read next instruction goto 
(instruction address) jump  
(to instruction address) 
instruction loop instruction  
loop nesting escapes instruction 
stream branching

Read next data item goto  
(data address) jump  
(to data address) data loop 
data loop nesting 
escapesdata stream 
branching

asymmetry Loops not internally parallel Yes: loops internally parallel
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From Xilinx and ARM hardware and software IP and tool chains are available useful 
to speed up time-to-market and reducing risk. It’s easier to take advantage of accel-
erators than to try to integrate and program more processors.

To rewrite the software the qualified programmer population is not existing: a 
huge challenge to provide new educational approaches to qualify for heteroge-
neous systems including both, parallel software and configware. This requires 
much more than just bridging the traditional hardware/software chasm in education 
[91]. We need robust and fast implementations of adequate compilers and design 
tools, e. g. automated by formal techniques based on rewriting [92]. The biggest 
payoff will come from Putting Old ideas into Practice and teaching people how to 
apply them properly [94]. Dimensionality-rooted scaling laws favor reconfigu-
rable spatial computing over temporal computing. Time to space mapping even 
dates back to the early 1970s and even the late 1960s, years before the first hard-
ware description languages came up [91, 95, 96]. “The decision box (in the flow 
chart) turns into a demultiplexer. This is so simple! Why did it take 30 years to find 
out?” [97].

The impact is a fascinating challenge to reach new horizons of computer science. 
We need new generations of talented innovative scientists and engineers to start the 
second history of computing.

2.3.1 � The “Parallel Programming Problem”

Parallel computer programs are difficult to write: performance is affected by data 
dependencies, race conditions, synchronization, and parallel slowdown. The prob-
lem is: how to optimize parallel Computing despite Amdahl’s Law? The “parallel 
programming problem” has been addressed high performance computing for more 
than 25 years with very disappointing results [100–102]. Programming languages 
research has stalled for several decades [103]. Informal approaches are not working. 
For the multi-core era, we must adopt a systematic approach informed by insight 
into how programmers think [104].

I do not agree. We have to teach them how to think. We have to teach program-
mers how to “think parallel”, how to find concurrent tasks, how to synchronize free 
from deadlock and race conditions, how to schedule tasks at the right granularity, 
and, how to solve the data locality problem. Perhaps a new visual programming 
paradigm is required [68]. What are the right models (or abstractions) to avoid typi-
cal problems [105]: multi-core version applications running slower, problems with 
race conditions, and strategies for migrating code to multi-core. We see a promising 
new horizon: a model-based twin-paradigm methodology to master the hetero of  
all 3: Single-core, Multicore, and Reconfigurable Computing.

We need a different way of thinking. “The shift to multicore processor archi-
tectures really is stressing existing programming models” said Richard C. Murphy 
at Sandia aiming at redesigning memory systems to move computation as close to 
memory as possible to eliminate the traditional load-store approach where big 
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systems use more resources moving data around than for actually computing 
[106]. Since Linpack doesn’t measure performance for actual problems in many 
application areas, Sandia has proposed Graph500 as a new rating system for test-
ing skills in analyzing large, graph-based structures that link huge numbers of 
data points [107]. Studies show that moving data around (not computations) will 
be the dominant energy problem.

2.3.2 � Why FPGAs Should Win

Most ASIC design world-wide has stopped [108]. Only 3% of all design starts are 
ASIC designs (Fig. 2.3) from mega-funded companies with gigantic-volume products 
that can afford latest generation custom SoC development, and niche players that 
continue doing ASIC design with older-generation processes. The enormous 97% gap 
can be filled best by hybrid FPGA/hard-core devices – by FPGA companies with the 
required technology and infrastructure to sell and support them.

“FPGAs have become incredibly capable with respect to handling large amounts 
of logic, memory, digital-signal-processor (DSP), fast I/O, and a plethora of other 
intellectual property (IP)” [109]. At 28-nm, FPGAs deliver the equivalent of a 
20–30-million gate application-specific integrated circuit (ASIC). At this size, 
traditionally used FPGA design tools begin to break down and can no longer design 
and verify these devices in a reasonable amount of time.

This positions FPGA companies in the best place they’ve ever been – a place 
from where they could capture huge segments of the standard parts and ASSP 
business with semi-standard parts that include FPGA fabric for application-spe-
cific customization. Instead of today’s still-very-general-purpose FPGAs, we’ll 
see more devices with a narrower application focus without too much general-
purpose overhead on the die. With each passing process generation, the cost of that 
overhead shrinks, and the cost of developing the traditional alternative solutions 
goes up.

Industry abandoned the “pure” FPGA [110]. Countless failed FPGA start-ups 
have proven that the magic is not in the fabric. The real keys are tools, IP, and 
support for enabling the customer/designer to get the fabric to do what they want as 
easily as possible, and with minimal risk.

It turns out that the solution is a mixture of FPGA fabric and hard logic coming 
from the FPGA companies. Instead of putting FPGA fabric in our custom SoC 
designs, we are getting custom SoC in our FPGAs. Today’s FPGA are hybrid parts 
with optimized hardwired cells (like multipliers, memory, IO and even processors) 
and FPGA fabric living on the same die.

It is an important factor that there is an order of magnitude more software engi-
neers than hardware guys. Usually it is the software community that selects the 
processor, not the hardware team. To gain the approval of software engineers the 
FPGA vendors realized that promoting “a processor with FPGA accelerators” is 
more attractive than an “FPGA with a processor inside”.
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The FPGA business and the processor business looks like “chip” business, but 
actually are more “tools, software, IP, and services” businesses. With the coming 
together of the embedded processing world [111] and the FPGA world, we will see 
if FPGA companies like Xilinx can be convincing enough in their ability to support 
the embedded software developer, or if companies like Intel can be convincing 
enough in their ability to support the FPGA designer.

“Customers are increasingly turning to FPGAs and expert 3rd party providers to 
design progressively complex products within shrinking time to market budgets.” 
As the industry is developing more complex designs on programmable solutions, 
competent and trusted providers are required to deliver key IP, software, and services 
to meet the tight delivery schedules of today’s system companies and to allow 
customers to find the right qualified 3rd party provider easier and faster than before – 
avoiding, that for SoC designers it’s a nightmare using IPs delivered by 3rd parties 
or internal IP teams? An Electronics IP core, a semiconductor intellectual property 
core, or IP block is a reusable unit of logic, cell, or chip layout design that is the 
(legal) intellectual property of one party.

2.3.3 � Problems We Must Solve

Furthermore this chapter outlines the educational barriers we have to surmount and 
the urgent need for major funding on a global scale to run a world-wide mass move-
ment, of a dimension as far reaching as the Mead-&-Conway-style microelectronics 
revolution in the early 1980s. Problems We Must Solve:

	1.	 A mass migration from software to configware for the benefit of massively saving 
energy, of much higher performance, and, of gaining high flexibility.

	2.	 developing a most promising migration priority list.
	3.	 to reeducating the programmer population for such a mass movement campaign 

[68], and upgrading our highly obsolete curricula for three reasons:

(a)	� to realize that parallel programming qualifications are a must,
(b)	� to resolve the extreme shortage of programmers qualified for RC, and
(c)	� twin paradigm programming skills are a must to program hetero systems 

(like modern FPGAs featuring all 3: reconfigurable fabrics, hardwired function 
blocks, and CPUs).

As a consequence we need innovative undergraduate programming courses [98] 
which also teach a sense for locality, not only needed for classical parallel program-
ming, is already coming along in RC with time to space mapping required to struc-
turally map an application to the datastream side of the twin paradigm approach. 
This means, that teaching the structural programming of RC also exercises the sense 
of locality needed for traditional parallel programming. The extension of the non-
sequential part of education should be optimized not to scare away undergraduate 
students. Twin-paradigm lab courses should be model-based, may be MathWorks-
supported, mainly at the abstraction level of pipe networks [99].
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2.3.4 � How to Introduce Reconfigurable Computing

Since software has to be rewritten anyway, this is the occasion for the twin-
paradigm approach to massively reduce the energy consumption of our computing 
infrastructures.

Meanwhile FPGAs are also used everywhere for high performance in scientific 
computing, where this is really a new computing culture – not at all a variety of 
hardware design. Instead of H/S codesign we have here software/configware co-
design (SC co-design), which is really a computing issue. This major new direction of 
developments in science will determine how academic computing will look in 2015 
or even earlier. The instruction-stream-based mind set will loose its monopoly-like 
dominance and the CPU will quit its central role – to be more an auxiliary clerk, 
also for software compatibility issues.

An introduction to Reconfigurable Computing (RC) [90, 112, 113] should regard 
the background to be expected from the reader. This chapter of the book mainly 
addresses a bit IT-savvy people in the public and its mass media, as well as “soft-
ware engineers”. Here an introduction is difficult, since in both communities people 
typically know nothing or almost nothing about RC. To move RC from its niche 
market into mainstream massive funding is needed for R&D and to reinvent pro-
gramming education. To yield the attention of media and the politicians we need a 
highly effective campaign by mass media.

RC should urgently become mainstream. Several reasons have prevented RC from 
truly becoming mainstream [114]. The execution model is inherently different from the 
traditional sequential paradigm were we can reason about state transition sequences 
much better than in a hardware or a concurrent execution model. As a consequence, the 
development and validation of tools is substantially a traditional hardware mind set.

Tools are limited and above all fairly bridle. This means programmers must master 
the details of not only software development but also of hardware design. Such a set of 
skills is also not taught as part of major electrical engineering courses severely con-
straining the pool of engineering with the “right” mindset for programming RC to a 
selected few. Moreover the recent evolution of FPGAs and to some extent coarse-grain 
RC architecture make programmer and performance portability difficult at best.

One of the objectives of the REFLECT project (Chap. 11) is lowering the barrier of 
access of RC to the average programmers, by retaining the “traditional” imperative pro-
gramming mindset in a high-level language such as MATLAB and rely on the concepts 
of Aspects to provide a clean mechanism (at the source code level) for the advanced user 
to provide key information for a compilation and synthesis tool to do a good job in 
mapping the computation to hardware. The approach should be by no means fully auto-
matic [114]. Instead, we have the programmer involved but controlling the high-level 
aspects of the mapping while the tools takes care of the low-level, error-prone steps.

We extend the “traditional” imperative programming mindset (for software) by 
a twin-paradigm imperative mind (subject of Sect. 2.4.4.) also including an imper-
ative datastream programming methodology (for “flowware” – for terminology see 
Table 2.3) [90]. We obtain an almost fully symmetric methodology: the only asym-
metry is intra-loop parallelism, possible for data streams, however not for instruction 
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streams (Table 2.4). The semantic difference of these machine paradigms is the 
state register: the program counter (located with the ALU) for running the instruc-
tion streams in executing software, and data counter(s) (located in memory block(s) 
[60, 61]) for running data streams in executing flowware.

2.3.5 � Toward a New World Model of Computing

The traditional CPU-centric world model of the CS world is obsolete. It resembles 
the old Aristotelian geo-centric world model. Its instruction-stream-based software-
only tunnel view perspective hides structural and data stream aspects – massively 
threatening the progression of system performance, where we have to confront 
a  dramatic capability gap. We need a generalized view, comparable to the 
Copernican world model not being geo-centric. We need a hetero model which 
also includes structures and data streams and supports time to space mapping, 
since scaling laws favor reconfigurable spatial computing over temporal comput-
ing. Exercising time to space mapping, also by programming data streams and by 
software to configware migration, provides important skills: e. g. locality aware-
ness, understanding and designing efficient manycore architectures and their 
memory organization being essential to cope with bottlenecks caused by band-
width problems.

This new direction has not yet drawn the attention of the curriculum planner within 
the embedded systems scene. For computer science this is the opportunity of the cen-
tury, of decampment for heading toward new horizons, and, to preserve the afford-
ability of its electricity consumption. This should be a wake-up call to CS curriculum 
development. Each of the many different application domains has only a limited view 
of computing and takes it more as a mere technique than as a science on its own. This 
fragmentation makes it very difficult to bridge the cultural and practical gaps, since 
there are so many different actors and departments involved. We need the new CS 
world model to avoid the capability gap caused by that fragmentation. Computer 
Science should take the full responsibility to merge Reconfigurable Computing into 
CS curricula for providing Reconfigurable Computing Education from its roots. CS 
has the right perspective for a trans-disciplinary unification in dealing with problems, 
which are shared across many different application domains. This new direction would 
also be helpful to reverse the current down trend of CS enrolment.

Not only for the definition of the term “Reconfigurable Computing” (RC), it makes 
sense to use a clear terminology – not only to improve education about how to reinvent 
computing. It is a sluttish use of terms if “soft” or “software” is used for everything, 
which is not hardware. The term “software” should be used only for instruction 
streams and their codes. However, we generalize the term “programming” (Fig. 2.6) 
such, that procedural programming (in time domain) creates sequential code, like 
instruction streams (software), or data streams, which we call “flowware”, and, that 
“structural programming” (programming in space) creates “structural code”, which 
we call “configware”, since it can be used for the configuration of FPGAs (Field-
Programmable Gate Arrays) or other reconfigurable platforms. Summary: Table 2.3.
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This established terminology reveals (see Table 2.3 for the terms we should use 
and Table 2.5 for the terms that usually make some confusion), that a software to 
configware migration means a paradigm shift, away from the traditional program-
mer’s CPU-centric world model of computing, resembling the geo-centric 
Aristotelian world model. To reinvent computing we need a multi paradigm hetero 
system world model of computing science (Fig. 2.9), which models the co-existence 
of, and the communication between: (1) the traditional imperative software pro-
gramming language mind set with the CPUs running by software (instruction 
streams), (2) the reconfigurable modules to be structurally programmed by config-
ware, and (3) an imperative datastream programming language mind set with [90] 
data stream machines programmed by flowware for generating and accepting data 
streams (asM in Table 2.3 stands for “auto-sequencing Memory”, also containing 
the data counter inside a reconfigurable address generator). We obtain an almost 
fully symmetric methodology: the only asymmetry is intra-loop parallelism, possible 
for data streams, however not for instruction streams (Table  2.4). The semantic 
difference of these machine paradigms is the state register: the program counter 
(located with the ALU) for running the instruction streams in executing software, 
and the data counter(s) (located in memory block(s) [60–66]) for running data 
streams in executing flowware.

Figure 2.10 illustrates this triple-paradigm “Copernican” world model replacing 
the von-Neumann-only-centric obsolete “Aristotelian” narrow tunnel view perspec-
tive of classical software engineering, which hides almost everything, which is not 
instruction-stream-based. (The term “supersystolic” in Fig. 2.10 stands for the gener-
alization of the systolic array: non-linear and non-uniform pipes are allowed like spi-
ral, zigzag and any excessively irregular shapes.) This generalized model will help us 
to come up with a new horizon of programmer education which masters overcoming 
the hardware/software chasm, having been a typical misconception of the ending first 
history of computing. The impact is a fascinating challenge to reach new horizons of 
research and development in computer science. We need a new generation of talented 
innovative scientists and engineers to start the beginning second history of computing, 
not only for the survival of our important computer-based cyber infrastructures, but 
also for developing and integrating exciting new innovative products for the trans-
forming post PC era global information and communication markets [90].

Not yet discussed in this paper is the accelerator role of GPUs (graphics proces-
sors [115]) which for some authors seem to be the FPGA’s competitor w. r. to 
speed-up and power efficiency [116–118]. Meanwhile the very busy hype on the 
accelerator use of GPGPU seems to be over-exaggerated [117]. FPGAs from a new 

Table 2.5  Confusing terms which should not be used

Term Once introduced for

Dataflow Indeterministic exotic machines
Firmware Nested von Neumann machines
Microcode
Microprogram
Software or “soft” No use other than for instruction streams
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Xilinx 28  nm high-performance, low-power process, developed by Xilinx and 
TSMC-optimized for high performance & low power are massively better off than 
GPUs. E.g., for the Smith-Waterman algorithm the following normalized perfor-
mance is reported: 584 for FPGA, 25 for GPU, and, 1 for GPP [119]. Since a com-
pute-capable discrete GPU can draw much more than 200 W, other authors call this 
massive power draw a serious roadblock to the adoption, not only in embedded  
systems, but even for data centers [120].

But going hetero by interweaving instruction stream parallelism and structural 
parallelism is a massive challenge requiring to master many difficult problems. The 
existence of thousands of languages did not prevent a stall of language research in the 
past two decades [104]. Being speaker in seven tutorials at Supercomputing 2010 
[121] Tim Mattson of Intel complaints about what he calls “choice overload” and 
calls to arms. Another design tool problem is hitting the moving target of the complex 
value chain in SoC design: the rapidly growing segment of the electronics industry 
called “Electronics Intellectual Property” or “Electronics IP”, where currently the 
designers have a nightmare using IPs delivered by 3rd parties or internal IP teams 
[122]. Masses of highly qualified new kinds of jobs must be created to meet the 
fascinating challenges of reinventing computing sciences, following the wide horizon 
of the new world model [121].

2.4 � Conclusions

This chapter has emphasized that Reconfigurable Computing (RC) is a critical sur-
vival issue for computing-supported infrastructures worldwide and has stressed the 
urgency of moving RC from niche to mainstream. Since a qualified programmer 
population does not exist we need to use Reconfigurable Computing to Reinvent 
Computing (R2R) and to Rewrite Textbooks for R2R (RT4R2R), and many of us 
should become Reinvent Computing Evangelists (RCE). We urgently need a world-
wide mass movement of R&D and education to be more massively funded and sup-
ported than the Mead-&-Conway VLSI design revolution in the early 1980s, which 
so far has been the most effective project in the history of modern computing 
science. This chapter urges acceptance of the massive challenge of reinventing 
computing, away from its currently obsolete CPU-processor-centric Aristotelian CS 
world model, to a twin-paradigm Copernican model.

For energy cost reasons, a massive software to configware migration campaign 
is needed. First this requires clever planning to optimize all its aspects. We also 
need to develop plans deciding, which software packets need to be migrated, and, 
which of them should be migrated first. All this requires many years, probably  
a decade of massive R&D and education efforts. We cannot afford to hesitate. 
Lobbying for the massive funding should be started right now. We should address 
politicians at all levels: community level, state level, national level, and European 
Union level. To explain all this to politicians is very, very difficult. Since politi-
cians always watch the sentiment of their voter population, we efficiently have to 
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teach the public, which is a dramatic challenge. Without the support by a strong 
tailwind from the media a successful lobbying does not seem to have any chance. 
All this has to be completed as soon as possible, as soon as we can still afford such 
massive activities. To succeed with such a challenging educational campaign the 
foundation of a powerful consortium to be funded at all levels is needed for running 
an at least Europe-wide project.
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