Chapter 2
Emergent Feature Sensitivity in a Model of the Auditory
Thalamocortical System

Martin Coath, Robert Mill, Susan L. Denham, and Thomas Wennekers

Abstract If, as is widely believed, perception is based upon the responses of neurons that are tuned to
stimulus features, then precisely what features are encoded and how do neurons in the system come to
be sensitive to those features? Here we show differential responses to ripple stimuli can arise through
exposure to formative stimuli in a recurrently connected model of the thalamocortical system which
exhibits delays, lateral and recurrent connections, and learning in the form of spike timing dependent
plasticity.

2.1 Introduction

Since Hubel and Wiesel [11] showed that, for neurons in visual cortex there were ‘preferred stimuli’
which evoked a more vigorous response than all other stimuli, it has become commonplace to think
of neurons, or clusters of neurons, as having stimulus preferences—or alternatively as responding to
‘features’ of the stimulus.

Although it is widely believed that auditory perception is based on the responses of neurons that
are tuned to features of the stimulus it is not clear what these features are or how they might come in to
existence. There is, however, evidence that cortical responses develop to reflect the nature of stimuli in
the early post-natal period [12, 24, 25] and that this plasticity persists beyond early development [20].
In addition it has been shown that excitatory corticofugal projections to the thalamus are likely to be
crucial in thalamic plasticity and hence in the representation of the stimulus that is available to the
cortex [7].

The work presented here is motivated by the desire to investigate whether a recurrently connected
thalamocortical model exhibiting spike time dependent plasticity (STDP) can be sensitized to specific
features of a stimulus by exposure. Modelling studies have suggested [4, 5] that the spectro-temporal
patterns found in a limited number of stimuli, which reflect some putative early auditory environment,
may bootstrap the formation of neural responses and that unsupervised, correlation based learning
leads to a range of responses with features similar to those reported from measurements in vivo. How-
ever in this previously reported work the model of STDP adopted, mostly for reasons of computational
efficiency, was based on average activity over a period of time rather than the times of the spikes them-
selves. In addition this model also led to some synaptic weights increasing without limit and hence an
arbitrary cut-off in the time used for training.

Here we employ a model of plasticity that depends on times of pre-synaptic spikes and a vari-
able representing the post-synaptic activity [2] and avoids the problem of unlimited weights by using
synapses that are bi-stable, that is, over time the weights of all synapses tend to one or zero. We
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show that a model of auditory cortex incorporating lateral spread of excitation with associated de-
lays, recurrent connections between layers, and exhibiting STDP (learning) adapts during exposure to
training patterns (stimuli) in a way that is determined partly by the stimuli themselves, and the result-
ing network exhibits ‘feature preferences’ that could support the representation of the input in a high
dimensional feature space.

2.2 Methods

2.2.1 The Network

2.2.1.1 Network Architecture

The model auditory cortex consists of five hundred repeating units each consisting of eight neurons
arranged in layers, as illustrated in Fig. 2.1. The lower, sub-cortical, section represents the junction of
the inferior-colliculus (IC) with the medial geniculate body of the thalamus (MGB). The upper section
represents a two-layer cortical structure consisting of a receiving layer (layer 1v [22] marked simply
as P4 in Fig. 2.1) and a second layer (marked as P¢ in the figure) providing a recurrent excitatory
connection to the thalamus [10], and recurrent inhibitory connection to the thalamus via the thalamic
reticular nucleus (RTN) [9, 10]. Inhibitory inputs to the thalamus also come from the I1C, in this case
via a GABA-type interneuron, although there is evidence for direct connections from GABAergic cells
inIC [14, 21].

The recurrent excitatory connections from Pg to MGB are mediated by NMDA type synapses that
are the locui of the STDP (see Sect. 2.2.2). This approach reflects the belief that the principle role
of such corticofugal connections is to modulate thalamocortical transmission and that “corticofugal
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modulation is an important mechanism for learning induced or experience-dependent auditory plas-
ticity” [17, 26]. Although it is clear that some of the changes associated with this plasticity must be
located in the cortex, there is recent evidence that corticothalamic synapses are regulated by cortical
activity during the early developmental period [23].

2.2.1.2 Neurons

The neurons used are linear integrate-and-fire units and use a stimulation paradigm not of current
injection, but of conductance injection which moves integrate-and-fire models closer to a situation that
cortical neurons would experience in vivo [6]. This modification also allows the use of conductance-
based synapses as described in Sect. 2.2.1.3 below.

The behaviour of the neurons can be described by:

Y v - E) > wi - (V(t) = Egi)
T—— == - - w; - — LRi
ar L ,~ R
ifV>Vy thenV—>E;:Z(t)— lelse Z(t) > 0 2.1

where t is the membrane time constant, V the membrane potential, £; = 0 the leak reversal potential,
wj (t) is the weight of the ith synapse—this is a function of time because the value of w subsumes
not only the weight constant but also the time varying conductance of the synapse (see Sect. 2.2.1.3),
Vr =1 is the firing threshold potential, and Z(¢) is the output of the neuron expressed as delta func-
tions at firing times. Values for t were assigned identically and independently randomly from an equal
distribution (i.i.d.) in the range 9—11 ms. The value Eg; is the reversal potential of the ith synapse.

In addition all neurons received i.i.d. current injections representing the sum of non-stimulus-
specific activity. This has the effect of bringing the neurons closer to threshold and the range of values
was chosen such that a low level (<1 Hz) of spontaneous action potentials was evoked.

2.2.1.3 Synapses

There are four types of synapse present in the model. Each exhibits a time dependent conductance
which is derived from the train of spikes (delta functions) originating in the pre-synaptic neuron.
The conductance is the output of a second-order low-pass filter and the resulting temporal response
function for a single spike is an alpha-function characterised by two parameters: the rise-time t, and
the decay-time ;.

The majority of excitatory synapses have fast rise and fall times and are designated AMPA types.
Other excitatory synapses in the thalamocortical projections have longer rise and fall times and are
designated as NMDA synapses. Inhibitory synapses are all of the same type which have very fast rise
times and intermediate fall time and these are designated as GABA. The time constants are given in
Table 2.1 [8].

Table 2.1 Time constants

used in synapse models o td
AMPA 0.90 ms 1.50 ms
GABA 0.01 ms 5.00 ms

NMDA 3.00 ms 40.00 ms
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2.2.1.4 Depressing Synapses

The axons that project from MGB to layer IV of the cortex have the same time constants as other AMPA
synapses but exhibit synaptic depression and are referred to as dAMPA. The dynamical properties of
cortical synapses can influence the temporal sensitivity of cortical circuitry. Here we use a model
of synaptic depression which is characterised by the variable representing the running fraction of
available neurotransmitter x(¢) that recovers to unity with a time constant 74 [19].

dx 1—x
R —x-Z(t 2.2
o - x-Z(1) (2.2)

The time constant T4 was adjusted so as to be consistant with paired pulse ratios reported in in vivo
studies of pyramidal neurons [1]. All simulations were run with 74 = 30 ms.

2.2.1.5 Connections Between Columns

The excitatory afferents from the thalamus to each cell in the cortical receiving layer come from a
number of MGB cells as indicated in Fig. 2.1. These are selected based on connection probabilities
that vary with the distance between cells as shown in (2.3), i.e. falling as the inter-column distance
d increases. The maximum probability of a connection being made is at d = 0 and this value is
controlled by the variable C and the ‘width’ of the function is determined by s. All simulations were
run with C =0.2, s = 20.

In a similar way the corticothalamic connections to each MGB cell also come from a number of P¢
cells selected in a similar way. For these connections C = 0.1, s = 100. The probability of connection

is given by:
—0.5-d?
P=cC- exp(i2 ) 2.3)
s

For each of the 500,000 possible connections in the cortico-thalamic and thalamocortical projections
a Boolean value was chosen with the probability of TRUE being P and a synapse created, or not,
accordingly.

These ‘fan out’” connections give the opportunity for cortical neurons to integrate information from
heterotopic areas of thalamus and also stand as surrogates for the cortico—cortical connections [18]
which have no explicit representation in this model. The cortico—thalamic connections are mediated
via NMDA type synapses which are the loci of the STDP and hence the correlation-based learning in
the network, see Sect. 2.2.2.

2.2.1.6 Delays

In order to investigate the role played by the temporal structure of the stimuli in the emergent stimulus
preferences of the network, delays were incorporated in to the network. Assumptions were made
about the dimensions of the cortical area represented by the model and the range of values for axonal
propagation rates. Using these two figures, distance dependent delays were introduced for fan-out
connections in the model based on the inter-column distance.

Under the simplifying assumption that the delay increases linearly with d we have assumed a max-
imum separation between neurons of 1 cm and values of axonal propagation rate from 0.5-10.0 ms~".



2 Emergent Feature Sensitivity 11

2.2.2 Synaptic Plasticity

Spike-timing-dependent plasticity (STDP) is the modification of synaptic weights based on the corre-
lation between pre- and post-synaptic firing times. Evidence for this has been gathered in vitro, and
is beginning to emerge in vivo [13], and it is believed to be a feature of synapses which have NMDA
receptors that regulate the genes required for long term maintenance of these changes [15]. In general,
if a pre-synaptic spike precedes a post-synaptic spike then the synapse is potentiated; if the timing of
the spikes is reversed then the synapse is depressed.

One problem with correlation-based learning is that the weight changes are unstable and additional
mechanisms have to be invoked to ensure that weights do not increase in an uncontrolled manner. Our
approach in earlier work was to start with very low weights and keep the training short [3]. In this way
we see how the pattern of weight changes establishes itself in the early stages of training. Another
possibility, the approach that is adopted here, is to implement a form of STDP in which the weights
are bi-stable [2].

The learning rule used in the results presented here is summarized in (2.4), (2.5), and (2.6). At
the arrival time of each pre-synaptic spike the synaptic efficacy X is modified based on the post-
synaptic neuron membrane potential V and the post-synaptic neuron internal state variable C. The
variable C is identified with the calcium concentration [16] and is determined by a leaky integration
of post-synaptic spiking activity with a relatively slow time constant 7C:

dC(1) 1
=——C@)+J 8t —t; 2.4
- ZCO+ CIZ_( ) 2.4)
where Jc is the contribution of a single post-synaptic spike. The synapse is potentiated by a small
amount a if V is above a pre-determined threshold 6y and C is within set limits Glllp and pr. Similarly
the synapse is de-potentiated by an amount b if V is less than or equal to 6y and C is within a different

pair of bounds Qéown and Gélown:

X— X+a if V(tge) >0y and 6], < Clipre) < 61
(2.5)

h

X—X—b if V(tye) <0y and ' < Cltpe) <01

down

If no modification is triggered by the conditions in (2.5) (including in the absence of pre-synaptic
spikes) X drifts towards one of two stable states depending on whether it is greater than a threshold
value Oy :

dx .
—=a ifX >0y
dt
(2.6)
ax if X <6
_ = = 1
dt =X

where o and S are positive constants.

2.2.3 Training

Each of the stimuli used in these experiments consists of a pattern of current injection into the units
representing neurons of the inferior colliculus, these are marked 1C in Fig. 2.1. Although, for sim-
plicity, these patterns of current injection are not derived from audio files via a cochlear model they
can be thought of as time varying patterns of activity across the tonotopic axis represented by the one
dimensional array of I1C cells.
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Fig. 2.2 Example stimuli used in training the network. Each example, in common with all such stimuli used in the
experiments, have a 5 Hz amplitude modulation rate. (a) A stimulus with no FM component, and (b) a stimulus with a
slowly moving up FM component (determined by 6,). In the work reported here stimuli varied only in the value for 6,

2.2.3.1 Parametric AM/FM Stimuli

The stimuli were all of the form given by (2.7) below:

2. 0) = (cos(2mt6,) + 1)(cos(2m (cb, +t0;) + 1)) 27
4
where z(t, ¢) is the value of the current injection at time ¢ and in channel c.

The parameters 6., 6, and 6; can be adjusted to give sweeps or gratings that move in the tonotopic
axis with time, and also patches of stimulation that have a temporal amplitude modulation (AM) but
no frequency modulation (FM) component. Examples of such stimuli are shown below in Fig. 2.2.

The value of 6,, the temporal modulation rate, was fixed at 5 for all experiments. This value was
chosen because of the inherent low-pass nature of the thalamocortical projections caused by the de-
pressing synapses, (see Fig. 2.1) hence stimuli with temporal modulation rates much greater than 5
would drive the cortical receiving layer only weakly. In addition rates of temporal modulation around
4-5 Hz are important for communication signals such as the syllable rate for human speech. The value
of 0., the spectral density, was fixed at 2.

For each experiment one value of 6; was chosen as the training stimulus. The network was then
exposed to 50 epochs (each 2 seconds) of this stimulus with the learning rule turned on. Between
each of these learning phases the response of the network was recorded to 10 other stimuli. These
are referred to as test stimuli, with a range of values for 6; both positive and negative. Each test and
training stimulus was separated from the previous one by ~300 ms of random current injection at the
same mean level as the stimuli and the phase of the stimulus advanced by a random value from 0 to
27 to ensure that both the training and test stimuli were not presented stating at the same phase in
all cases, this process is summarised in Fig. 2.3. In the results section we consider networks trained
with the values for 6; of —10, —5, 0, 5, 10. Fixing 6, at integer multiples of 6, produces stimuli
with similar temporal characteristics in that the maxima of the current injections occur in the same
channels with each presentation.

2.2.3.2 Random Chord Stimuli

We also consider results of training with stimuli that consist of injections of current in channels chosen
at random (P = 0.1) for short periods of time chosen from an equal distribution from 20-60 ms. These
noise-like ‘random chord’ stimuli are more suitable than random current injections representing white
noise which drive the cortical receiving layer only very weakly.
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Fig. 2.3 One epoch of the training process. The sequence consists of (a) noise; before every stimulus there was 300 ms
of random current injection at a mean level the same as the stimuli, (b) training; one value of d was chosen as the FM
component of the training stimulus, (cy, ..., ¢,) testing; the response of the network was recorded during 10 test stimuli
with different values of 6 with the learning rule switched off. Each experiment consisted of 30 of these epochs

Fig. 2.4 The distribution Random chords
of the directional 250
sensitivity (S, see (2.8))
after training with ‘noise @ 200
like” random chord o
stimulus. The results GE 150
obtained after 30 epochs s
(see Fig. 2.3) show no clear g 100
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FM sweep rate Z g5 H ﬂ
o (0] all 0
57 10

0—10 =7-5 =241 12
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2.3 Results

Of interest are both the responses of the network and the responses of the individual neurons. In both
cases the questions are: (a) what, if any, aspect of the stimulus is the individual neuron or network
of neurons sensitive to after training and (b) is the distribution of sensitivities different for different
training stimuli. In the results presented here the responses were measured in the thalamic (MGB)
section of the network as this is the locus of plasticity in the current study and we will consider results
using the five training stimuli i.e. 6; = —10, —7, —5, —0, 5, 7, 10. We will also consider results from
training with random chord stimuli (see Sect. 2.2.3).

To help us describe the results we can define the direction sensitivity S of a neuron as the log ratio
of the spike count R at any given 6 for up and down versions of the stimulus.

Ry,
S =log —& 2.8
og Ro,.. (2.8)

The value of 6 which gives the maximum absolute value of S is the rate of change to which the
neuron is most sensitive which we will indicate as Sy. Because the highest spike count is always in
the numerator of (2.8) we append the sign representing the direction which gives the highest spike
count to indicate the preferred direction.

The first experiment was to determine the stimulus preferences of the MGB neurons in the case
where the training stimulus consists of random chords. The resulting directional sensitivities are
shown in Fig. 2.4. As can be seen in Fig. 2.4 there are neurons exhibiting all directional sensitivi-
ties but no clear pattern emerges during training.

The network was then exposed to stimuli having no FM component that is with 6; = 0. Figure 2.5(a)
shows the spike count for each test stimulus at each training epoch and Fig. 2.5(b) shows the resulting
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Fig. 2.5 Training with stimulus 6; = 0. (a) The summed spike count for the whole network for each of the ten test
stimuli over the training period, and (b) the resulting distribution of directional sensitivities among individual MGB
cells. No error bars are shown in (a) as this illustrates a single example training. Note that symbols representing up and
down stimuli for all 6 are superimposed indicating no overall direction preference
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Fig. 2.6 Weights of NMDA synapses after training with (a) stimuli with 6; = 0 (no FM component) and (b) with
04 = +5. The dotted diagonal indicates connections between cortical and thalamic cells at the same position in the
tonotopic axis. In the case of training with 6; = —5 (not shown) a pattern similar to (b) emerges but as a mirror image
reflected in the dotted diagonal

distribution of values for Sy. The response of the network shows no overall sensitivity to direction
of frequency modulation, although Fig. 2.5(c) shows that there are direction sensitive neurons in the
MGB after training and that these are predominantly at 6 = +5 and 6 = +10.

In the previous section the training stimuli had no FM component but patterns with a range of
values for 6; were used as test stimuli. In the next set of experiments the same test stimuli were used
but stimuli with a single value for 8; were used for training.

To illustrate the influence of the FM component of the stimulus on the pattern of weights Fig. 2.6
shows the pattern of corticothalamic projection weights in the NMDA synapses after exposure to stim-
uli with and without FM components. The nature of the learning rule is such that the overwhelming
majority of synapses will have connection weights of either one or zero so the patterns of weights can
be thought of as a connectivity matrix. It can be seen that the emergent connectivity for the stimu-
lus without FM component, Fig. 2.6(a), is symmetrical around the diagonal indicated with a dashed
line. Points on this diagonal represent connections between cortical cells and MGB cells at the same
position on the tonotopic axis, that is with a column separation d = 0 see (2.3). In contrast, the con-
nectivity pattern that emerges after training using a stimulus with FM component, Fig. 2.6(b), exhibits
an asymmetry about this same diagonal. In the case illustrated the FM component used in training was
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‘up’ and in the case where the equivalent ‘down’ stimulus was used the pattern was the mirror image
(not shown).

Figure 2.7 shows two results corresponding to Fig. 2.5 but after training with stimuli having
64 = 5. An asymmetry emerges in the response of the whole network and this can be seen in the
distribution of responses in the individual neurons. The network trained with up stimuli exhibits a ma-
jority of neurons with a greater sensitivity for down stimuli but only at 6 = 5, however, the emergent
preference for up stimuli is visible for & = 10. This apparent contradiction might be due to elevated fir-
ing rates in the first few milliseconds of the preferred stimulus causing the thalamocortical synapses to
depress, thus lowering the overall spike count for the training stimulus. Work is underway to confirm
this hypothesis.

A corresponding result can be seen in Fig. 2.8 for training with stimuli & = £10 which shows a
pattern consistent with the interpretation of Fig. 2.7. Few neurons show directional sensitivity for the
training stimulus but there is an increase in those with maximal directional sensitivity in the opposite
direction, and in the same direction for twice the FM rate.

2.4 Discussion

The functional organization of the auditory system can be altered in vivo by repeated stimulation (e.g.
[26]) and it has also been shown in studies of the visual system [23] that activity-dependent plasticity
in cortico-thalamic connections operate during early developmental stages. The work presented here
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represents the first attempt to model this sort of developmental plasticity in a biophysically motivated
artificial network of spiking units.

The results show that STDP allows the model which exhibits lateral connectivity and recurrent
connections to adapt to the stimuli to which they are exposed. This adaptation can, we have shown,
exploit a range of axonal delays in order to represent correlations in activity at different times along
a spatially defined axis such as the tonotopic axis reported in primary auditory cortex. In this way
sensitivity to spectrotemporal features can emerge through exposure to stimuli both in individual
neurons and neuronal ensembles.

The results provide a model which may help us understand how efferent cortical pathways to
thalamic nuclei might be crucial in the development of the auditory and other sensory systems, and
also how these might support other forms of plasticity such as attentional, or task-related modulation
of thalamocortical transmission.
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