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From a practical point of view, the most general description of an AGC system is 
presented in Fig. 2.1. The input signal VIN is amplified by a variable gain amplifier 
(VGA), whose gain is controlled by a signal VC. In order to adjust the gain of the 
VGA to its optimal output level VOUT, the AGC generally, first detects the strength 
level of the signal using the peak detector; it then compares this level with a refer-
ence voltage VREF and finally, it filters and generates the required control voltage. 
This function can be performed by detecting the signal at the output of the VGA, so 
the architecture is called “feedback” AGC (Fig. 2.1a), or at the input, in which case 
it is identified as “feedforward” AGC (Fig. 2.1b) [1].

Both structures present different inherent characteristics which means choosing 
one or the other depending on the target application.

Feedback AGCs  The advantages of using feedback AGC are: first, the dynamic 
range required at the detector input is reduced in the same way as the AGC gain 
range; and second, the circuit linearity is high due to the feedback loops’ inherent 
characteristic. On the other hand, this architecture also has the following disadvan-
tages. The high level of feedback required to reach high compression ratios makes 
feedback processors more likely to exhibit instabilities if high compression ratios 
are managed. Instability is also likely in feedback expanders where high expansion 
ratios are desired. Finally, the feedback loop will always have a maximum boundary 
bandwidth in order to maintain stability. This maximum bandwidth entails a mini-
mum settling-time [2]. In many applications this is not a significant issue, since sev-
eral signal periods are processed before the gain is changed. However, in other cases 
the standard imposes a maximum settling-time that precludes the use of conven-
tional feedback configurations [3, 4]. Moreover, in order to keep the settling-time 
constant, the feedback configuration requires the use of specific control voltage 
generation functions.

Feedforward AGCs  High compression and high expansion ratios are possible with 
this configuration [5]. Moreover, the feedforward AGC offers a time constant that 
mainly depends on the peak detector response, so this loop is ideally not affected 
by the minimum settling-time restriction. In contrast, the disadvantages of a feed-
forward AGC are that the level detector is exposed to the entire dynamic range of 
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the input signal and that the loop requires higher linearity, since the feedback loop 
inherent linearity improvement is now absent. Table 2.1 summarizes the main char-
acteristics of these two configurations. 

To provide a deep insight into the theory and design of AGC circuits, this chapter 
will be focused on the study of the control theory involved behind the primary idea of 
an AGC system, for both the feedback and feedforward configurations. After that, a 
few practical AGC circuits will be simulated and the obtained performances analyzed.

2.1 � AGC Loop Fundamentals

2.1.1  �AGC with Feedback Loop

Typically, the AGC circuit has to adjust the amplitude of the incoming signal before 
the ADC continues with the recovery of data from the input signal. This adjustment 
usually occurs during a predetermined preamble where known data are transmitted 
and whose duration should be minimized to attain an efficient use of the channel 
bandwidth. One of the key issues in feedback control loops is that if the control 
voltage generation function is not correctly chosen, the acquisition time will be 
a function of the input amplitude and the preamble will be shorter than the slow-
est possible AGC circuit acquisition time [6, 7]. Consequently, to optimize system 

Fig. 2.1   Simplified block diagrams of feedback (a) and feedforward (b) AGCs

Advantages Disadvantages
Feedback 

Loop
Lower input dynamic 

range required by 
peak detector

Inherently higher 
linearity

Instabilities with high 
compression or 
expansion

Higher settling-time

Feedforward 
Loop

No instability  
problems

Ideally, zero 
settling-time

AGC input dynamic 
range required by 
peak detector

High linearity required 
in loop

Table 2.1   Summary of 
main AGC loop control 
characteristics
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performance, the AGC loop settling time should be well defined and signal inde-
pendent.

A typical feedback AGC scheme is shown in Fig. 2.2. It consists of a variable 
gain amplifier, a peak detector and a loop filter. The loop filter is required to gener-
ate the DC level required to manage the VGA and in feedback AGCs, it is especially 
important to settle loop bandwidth and keep it stable. In this scheme, VIN is the input 
signal to be adjusted; VOUT is the output signal which must have a constant ampli-
tude associated to VREF; VP is the amplitude level detected by the peak detector; VREF 
is the reference which fixes the required output amplitude; and VC is the control 
signal which varies the gain of the VGA by means of a function G( VC) in order to 
obtain the desired output.

Although the AGC loop is typically a nonlinear system, the employment of a 
logarithmic converter, shown in the scheme in dashed lines, together with the cor-
rect function G( VC), will result in a linear system in decibels (dB) [8]. As will be 
shown in the following analysis, this result is the most common condition required 
to obtain the essential property of a constant acquisition time [9]. The loop works by 
increasing or reducing VC until VP is made equal to the reference voltage VREF which 
determines the output amplitude.

Consider now input VIN and output VOUT signals given by the general expres-
sions:

�
(2.1)

where Ai corresponds to the amplitude term and f is a function which introduces the 
frequency dependence.

Since the AGC loop responds only to the amplitude level of the signals, let us 
continue this analysis considering only AIN( t) and AOUT( t). From Fig. 2.2 the rela-
tionship between the input and output amplitude is given by:

� (2.2)

To facilitate analysis, the AGC of Fig. 2.2 is reshaped to the logarithmic domain, so 
in the following, the equivalent representation of the AGC shown in Fig. 2.3 will 
be used. This AGC model employs logarithmic blocks to express the main input 

VIN (t) = AIN (t)f (wt)

VOUT (t) = AOUT (t)f (wt),

AOUT = G(VC)AIN .

Fig. 2.2   Common block 
diagram of feedback AGC

2.1  AGC Loop Fundamentals
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signals in dBs. Thus, x, y and z are now the input, output and reference signals 
respectively. The peak detector block has been removed from the AGC in Fig. 2.3, 
since it has been considered that the peak detector extracts the amplitude of VOUT 
linearly and much faster than the loop basic operation, so it has no effect on the loop 
dynamics. The loop filter H( s) is represented as a low pass filter with the transfer 
function equal to GM2/sC. Again, as shown in the figure, only amplitude levels are 
taken into account.

Thus, (2.2) can be rewritten as:

� (2.3)

where kc1 is a constant with the same dimensions as AIN  and AOUT.
On the other hand, according to Fig.  2.3, the output of the AGC can be ex-

pressed as:

� (2.4)

and the control voltage is given by this expression:

� (2.5)

Taking the derivative with respect to the time of (2.4) and introducing the result in 
(2.5), the following equation is obtained:

� (2.6)

AOUT = kc1 exp

{
log [G(VC)] + log

[
AIN

kc1

]}
,

y(t) = x(t) + log [G(VC)]

VC(t) =
t∫

0

GM2

C

{
kc1e

z−kc2 log
[
ey(τ )

]}
dτ.

dy

dt
=

dx

dt
+

1

G(VC)

dG

dVC

GM2

C

{
kc1e

z − kc2 log [ey(t)]
}

,

Fig. 2.3   Model of generalized feedback AGC
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which represents a nonlinear system response of the output y to the input x, depend-
ing on the function G( VC). Let us rewrite (2.6) in the following way:

� (2.7)

where

� (2.8)

Equation (2.7) describes a first-order linear system having a high pass response with 
a time constant given by:

� (2.9)

We are now going to look at different system responses depending on the choice 
of G( VC) function. Many different functions could be employed though only main 
cases will be analyzed in this work.

Linear function  Let us begin with the simplest case taking G( VC) as a linear func-
tion: G( VC)  =  aVC, where a is a constant. With this selection, the time constant in 
(2.9) yields to:

� (2.10)

As shown in (2.10), the time constant, τ, depends on the control voltage, VC. As a 
result, τ depends on the input signal strength, since VC will vary inversely propor-
tional to the input level. In many receivers, input dynamic range can be up to 80 dB 
[10, 11]. This means the time constant for small signals would be ten thousand times 
longer than the minimum τ. As a result, given that the ADC must wait until all the 
previous blocks characteristics are fixed, the time performance of the full receiver 
would be degraded.

Exponential function  The solution to the above problem is to employ a func-
tion G( VC) so that the associated time constant is kept steady throughout the full 
dynamic range: the most popular solution is to fix GM2 and C in Fig. 2.3 and to make 
 constant by choosing the correct function G( VC). Thus, we need only to solve the 
differential equation below:

� (2.11)

which has the unique solution given by:

� (2.12)

dy

dt
+ s(VC)kc1y(t) =

dx

dt
+ s(VC)VREF ,

s(VC) =
1

G(VC)

dG

dVC

GM2

C
.

τ =
1

s(VC)kc2
=

[
1

G(VC)

dG

dVC

GM2

C
kc2

]−1

.

τ =
[

1

VC

GM2

C
kc2

]−1

.

1

G(VC)

dG

dVC

= kG1,

G(VC) = kG2e
kG1VC ,
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so the time constant depends only on certain internal circuit characteristics:

� (2.13)

The function in (2.12) is the most popular solution employed to implement AGCs. 
This has lead many designers to try to implement the VGA with an exponential con-
trol voltage [10–13]. This is not difficult if BiCMOS technology is used [14], but 
the logarithmic block (in dotted lines) is quite complicated to implement in CMOS 
technologies, and consequently, in some CMOS systems this block is omitted [15]. 
In these cases, it is also possible to meet the constant settling-time objective con-
sidering small signal approximations. Using (2.8) and considering s( VC)  =  kx, (2.6) 
without the log function is rewritten as:

� (2.14)

Assuming that the output amplitude of the AGC loop is operating near its fully 
converged state AOUT  ≈  VREF, or equivalently, ( y − z) << 1, the exponential function 
in (2.14) can be expanded in Taylor series as shown below:

� (2.15)

Since kc1e z  =  VREF, the following expression is obtained from (2.14):

� (2.16)

where the first-order linear system described by (2.16) again has a high pass re-
sponse with the following time constant:

� (2.17)

Bearing in mind once again the assumptions required to develop (2.11) and (2.12) 
(i.e. GM2, C  =  constant and G( VC) exponential), the time constant is given by:

� (2.18)

Notice that in this case the settling time is a function of the input variable VREF, 
indicating that the system is fundamentally nonlinear. On the contrary, (2.13) is in-
dependent of any bias condition, since in this case the circuit is perfectly modelled 
as a linear system in the logarithmic domain.

τexp−log =
C

GM2kG1kc2
= constant.

dy

dt
=

dx

dt
+ kx[VREF − kc1ey(t)].

ey(t) ≈ ez[1 + y(t) − z + . . . ].

dy

dt
+ kxVREF y(t) =

dx

dt
+ kxVREF log

(
VREF

kc1

)
,

τ =
1

VREF kx

=
[

1

G(VC)

dG

dVC

GM2

C
VREF

]−1

.

τexp =
C

GM2kG1VREF
.

2  AGC Fundamentals



19

Although the most popular, solution (2.11) is not the only way to achieve a con-
stant settling-time. As shown in (2.9), the function of the time constant depends on 
more parameters which can be employed to fix it to a constant value. In fact, a more 
general solution would be to consider a variable GM2, while C is kept constant due 
to the difficulty in varying its value in a continuous way. In this more general case, 
the settling-time will be constant if

� (2.19)

Many solutions exist which satisfy (2.19), however in this chapter only the sim-
plest one will be commented on briefly. This solution, already proposed in [9], is to 
consider again a linear variation G with the control voltage VC, but in this case GM2 
varies in the same way as G. Therefore, dG/dVC is constant due to its linear depen-
dence and GM2( VC)/G( VC) is constant because both functions are changed together 
in the same way. Thus, a constant settling-time is achieved without employing any 
complex function.

A second key issue in feedback AGCs is the stability of the loop. As in any other 
feedback loop, designer must be careful when choosing parameters to guarantee 
the loop is stable for all conditions. Consider the equivalent feedback AGC loop 
diagram in logarithmic domain shown in Fig. 2.4.

Its transfer function can be given as in standard feedback theory by

� (2.20)

where A(s) is VGA transfer function and F(s) is AGC loop transfer function.
For the study of stability, the well-known rules of feedback theory apply [16]. 

Many AGC stability analysis only consider the loop filter poles [17, 18]. However, 
in any practical AGC design, at least two other secondary poles should be consid-
ered: one main pole associated to the VGA and another one to the peak detector. 
Here, as we are only interested in minimum stability conditions and their effects on 
loop performance, just a first order filter, VGA and peak detector are considered to 

GM2

G(VC)

dG

dVC

= kxC = constant.

H (s) =
A(s)

1 + A(s)F (s)
.

Fig. 2.4   Equivalent AGC 
loop diagram

A(s)
VIN(dB) VOUT(dB)

F(s)
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simplify the analysis, but any higher number of poles would only introduce more 
limitations to loop stability conditions.

The choice of VGA main pole must be done considering input signal bandwidth 
and noise constraints. The pole must be high enough, so that the amplifier can man-
age the full input signal bandwidth. On the other hand, this pole cannot be chosen 
infinitely high as this is very power expensive and it would increase the noise intro-
duced in the system. Thus, the usual choice is to match the VGA pole at the input 
signal highest frequency.

One of the simplest ways to detect signal strength is to first rectify and next filter 
it. To correctly detect signal strength, detector output ripple must be low. This is 
possible if the signal strength is detected by averaging many signal cycles. How-
ever, this also means that the detector pole is much lower than the main signal fre-
quency or, in other words, much lower than the VGA pole.

Finally, AGC loop filter introduces a third pole. As said before, a first order filter 
is considered to simplify this analysis. The main function of this filter is to reduce 
the ripple generated by the detector to generate a cleaner control voltage. Thus, to 
accomplish this function and to avoid the stability problems generated by having 
two poles very close in a feedback loop, this pole is chosen still smaller than the 
peak detector pole, which at the same time was smaller than the VGA pole:

� (2.21)

Consequently, the feedback AGC loop bandwidth is much smaller than VGA’s one, 
so loop response is much slower than input signal. That is a limitation in fast-set-
tling applications, as mentioned in Chap. 1.

2.1.2  �AGC with Feedforward Loop

Feedforward loop does not have the stability problems which can arise in feedback 
loop, as the circuit is open loop [1]. This loop responds in a predefined way to the 
input signals and so, its settling-time depends only on the time required by the level 
detector to follow the input signal, which is usually much lower than the feedback 
loop filter time constant. In consequence, feedforward loop has much faster con-
vergence and does not present the time-constant variation problems explained in 
Sec. 2.1.1.

A typical feedforward AGC scheme is shown in Fig. 2.5, which consists of a 
variable gain amplifier, a peak detector and a control voltage generation circuit. 
The nodes in this scheme have equivalent meaning to those of feedback AGC: VIN 
is the input signal that must be adjusted; VOUT is the output signal which must have 
a constant amplitude associated to VREF; VP is the amplitude level detected by the 
peak detector; VREF is the reference which fixes the required output amplitude; and 
VC is the control signal generated as a function of VP and VREF to vary the gain of the 
VGA by means of function G( VC) to obtain the wanted output.

pF << pPD << pVGA.

2  AGC Fundamentals
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The key problem associated with feedforward AGCs is that the peak detector 
needs to be linear in the full VGA input dynamic range. This drawback can lead to a 
very power hungry detector or in some cases, makes its implementation impossible. 
In order to reduce the required dynamic range, multi-stage VGAs can be employed, 
so that the total input dynamic range is shared out between them and the detector 
sees only a small part of the full range.

2.2 � Matlab Simulations

In order to verify the convergence response for the different AGC loops, behav-
ioural simulations were carried out in Matlab using Simulink, a tool for modelling, 
simulating and analyzing multi-domain dynamic systems [19]. Five loop cases are 
analyzed: four feedback and one feedforward, one for each solution given in a pre-
vious section. Feedback models are based on Fig. 2.3 where different G( VC) are em-
ployed. The feedforward model is based on a VGA and loop linear in dB response; 
although any other function where the loop response is interrelated with the VGA 
gain function would ideally have the same result.

2.2.1  �AGC with Feedback Loop

Simulink models based on the AGC loop in Fig. 2.3 are implemented for the feed-
back case. Differences are then introduced in the model depending on the function 
G( VC). All the cases will undergo the same test conditions so that a direct compari-
son can be made. To facilitate simulations, only amplitude signals are considered. 
The reference signal, Vref, is arbitrarily chosen equal to 0.1 V, but any other value 
would not affect the model dynamics. As a result, three different stepwise signals 
are introduced which start at t  =  0 s with an amplitude of 0.2 V; at t  =  5 µs these 
signals change abruptly to 100, 20 or 2 mV, values which correspond to 6, 20 and 
40 dB steps, respectively, and keep constant at these values until t  =  10 µs. The 
reference signal is set at 100 mV and the loop filter is chosen to have a DC gain 
equal to 20 dB.

Fig. 2.5   Common block dia-
gram of feedforward AGC
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VC

VREF

VPPeak
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2.2.1.1  Case 1: Linear AGC

The first analyzed case is the linear AGC, whose convergence is described by:

� (2.22)

The equivalent Simulink model can be seen in Fig. 2.6, where G( VC)  =  VC.
According to (2.22), the settling-time of this AGC should increase as long as the 

input signal decreases. Thus, as expected, the output transient response shown in 
Fig. 2.7 validates the expected result for the linear AGC.

2.2.1.2  Case 2: Exponential AGC

The second case employs an exponential function G( VC) to obtain a constant set-
tling-time as shown in

τ =
[

1

VC

GM2

C
kc2

]−1

.

Fig. 2.6   AGC1: Simulink model

Fig. 2.7   Convergence 
response of AGC1 for differ-
ent stepwise changes
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� (2.23)

which has the unique solution:

� (2.24)

so

� (2.25)

The employed Simulink model is the one in Fig. 2.8.
The same simulation conditions have been employed as in the previous model. 

Results are expressed in Fig.  2.9. The settling-time is constant and independent 
of any external parameter, this behaviour makes this AGC model one of the most 
popular options among AGC designers.

1

G(VC)

dG

dVC

= kG1,

G(VC) = kG2e
kG1VC ,

τexp − log =
C

GM2kG1kc2
= constant.

Fig. 2.8   AGC2: Simulink model
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2.2.1.3  Case 3: Exponential AGC without log-converter

The model in Fig. 2.8, still employs a logarithmic block in the AGC loop. This block 
is very complicated to be implemented in CMOS technology. However, it can be 
avoided. The Simulink model in Fig. 2.10 verifies this response, which was previ-
ously analyzed in (2.18):

� (2.26)

Considering small variations of the output signal versus the reference signal, this 
AGC settling-time could be considered constant. Figure 2.11 illustrates the varia-
tion of the time constant (defined as the time required to converge to ± 10% of the 

τexp =
C

GM2kG1VREF

.

Fig. 2.10   AGC3: Simulink model
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reference voltage) versus the reference voltage. The simulated response verifies that 
expected in (2.18). The same simulation has been carried out for input signals with 
changes around VREF of 1, 10, 25 and 50%. Again, as expected, an almost constant 
settling-time is obtained where the response is degraded when the variation percent-
age increases.

2.2.1.4  Case 4: Linear VGA with linear loop filter

The last feedback AGC model means to verify the response expected from:

� (2.27)

A linear G( VC) response is employed together with a linear GM2( VC) filter response 
so that (2.27) is achieved. The corresponding Simulink model can be seen in 
Fig. 2.12.

This model ideally offers a constant settling-time and the response is confirmed 
in Fig. 2.13.

2.2.2  �AGC with Feedforward Loop

Finally, in order to compare all previous feedback AGC models with a feedforward 
AGC, the model in Fig. 2.14 was simulated.

GM2

G(VC)

dG

dVC

= kxC = constant.

Fig. 2.12   AGC4: Simulink model
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2.2.2.1  Case 5: Feedforward AGC

As shown in Fig.  2.4 and 2.14, no filter is needed in this AGC as stability will 
not suffer the lack of this block. Since the peak detector response is supposed to 
be immediate and given that ideally there is no other block to limit the frequency 
response of the loop, the ideal settling-time of this AGC is constant and immediate 
as shown in Fig. 2.15.

2.3 � Conclusions

In this chapter, the two main AGC configurations have been introduced: feedback 
and feedforward loops. An analysis has been made which, though not exhaustive, 
it highlights each of the main topology properties. Furthermore, Simulink-Matlab 
toolbox has been employed to verify these results by behavioural simulation.

Fig. 2.13   Convergence 
response of AGC4 for differ-
ent stepwise changes
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Each architecture offers different advantages and drawbacks, which must be 
taken into account when choosing one for a target application.

Conventional feedback AGC facilitates peak detector design and intrinsically 
offers higher linearity. On the other hand, high compression or expansion ratios 
make feedback processors more likely to exhibit instabilities; their correct design 
only allows the use of certain given control functions in order to obtain a constant 
settling-time circuit and furthermore, these circuits submit a trade-off between time 
constant and stability which precludes the possibility of designing AGCs with a 
very fast convergence.

Alternatively, feedforward AGC requires a highly linear peak detector; since it 
responds in a predefined way to the input signals. However, stability is not a con-
cern in these AGCs. In consequence, settling-time can be made ideally zero and 
much faster convergence is achieved.

Due to the stringent time constraints in modern communication receivers, and 
due to the lack of available literature, this book will focus attention on the explora-
tion of feedforward AGCs: new devices, circuits and techniques must be studied, 
developed and implemented to answer the demands of wireless technology, which 
is becoming ever faster, smaller and more complex. This study will be made mainly 
in standard CMOS technology, but also in SiGe BiCMOS technology which offers 
great advantages in performance with a cost difference that is rapidly increasing 
thanks to current submicron CMOS technologies.
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