Chapter 2

Stability Charts for Fundamental
Delay-Differential Equations

Simple scalar equations play an important role in understanding the main features of
DDE:s and the function of stability charts. Stability charts are diagrams constructed
in the plane of two (or more) parameters of the system showing the stable and unsta-
ble domains or the numbers of unstable characteristic exponents/multipliers. In this
chapter, some basic scalar equations are considered for which the stability charts
can be constructed in closed form by a straightforward analysis of the characteristic
equation. In Sections 2.1, 2.2, and 2.3, first- and second-order autonomous scalar
DDEs are analyzed by the D-subdivision method, while in Section 2.4, a second-
order time-periodic scalar DDE, the delayed Mathieu equation, is analyzed by Hill’s
infinite determinant method.

2.1 First-Order Scalar Equations

In this section, stability properties of linear first-order scalar DDEs with point de-
lays and with distributed delays are analyzed. The corresponding stability charts are
constructed by the D-subdivision method and by analysis of the exponent-crossing
directions.

2.1.1 The Hayes Equation

Consider the first-order scalar equation with a single point delay in the form
x(t) = ax(t) + bx(t — 1) . (2.1)

This equation is often referred to as one of the simplest basic examples of a delayed
system [153, 255, 188, 251]. The stability condition for the parameters a and b was
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14 2 Stability Charts for Fundamental Delay-Differential Equations

first presented by Hayes [104] in 1950. In this section, the stability chart with the
numbers of unstable characteristic exponents is constructed in an analytic way.
If b = 0, then (2.1) reduces to the scalar ODE

X(1) = ax(t) 2.2)
with the characteristic function
D) =A-a. 2.3)

In this case, the only characteristic exponent is 4 = a; consequently, the system is
asymptotically stable if @ > 0, and it is unstable if a < 0.

The stability properties for the case b # 0 are more complex due to the infinite-
dimensional nature of the delayed system. The corresponding characteristic function

reads
D) =A—a—-be™ . (2.4)

According to the D-subdivision method, substitution of 1 = y + iw, w > 0, into the
characteristic equation D(1) = 0 and decomposition into real and imaginary parts
yields
Re : y—a—-be " cos(wr) =0, (2.5)
Im : w+be sin(wr) =0. (2.6)

The case y = 0 gives the D-curves as a parametric function of w in the form

ifw=0: b=-a, 2.7
ifwor#kr, keN: a= wf:os(w‘r) , b= '—a) ) (2.8)
sin(wT) sin(wT)

with the corresponding limits for wr = kr, k € N. The D-curve given by (2.7) is
associated with a real critical characteristic exponent crossing the imaginary axis
at 0. The D-curves given by (2.8) are associated with a complex conjugate pair of
characteristic exponents in the form A = +iw, where w is the angular frequency of
the arising vibrations.

Due to the continuity of the characteristic exponents with respect to changes in
the system parameters, these curves divide the parameter plane (a, b) into regions
where the numbers of unstable characteristic exponents are constant. As mentioned
in Section 1.3, the change of these numbers along the D-curves can be determined by
analysis of the exponent-crossing direction, which is the sign of the partial derivative
of y with respect to one of the system parameters.

Taking the partial derivative of (2.5) and (2.6) with respect to b and considering
that y = 0 along the D-curves gives

(1 + brcos(wn))y |, + (brsin(wn))w ;, = cos(wr) , (2.9)
—(brsin(w1))y j, + (1 + brcos(wn))w j, = — sin(w7) , (2.10)
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where v} and w ; are the partial derivatives of y and w with respect to b. The solution
of (2.9)~(2.10) fory ; is

cos(wt) + bt

(1 + bt cos(wt))? + (bt sin(wr))? (2.11)

Y=

For the D-curve (2.7), equation (2.11) gives y ; = (1 + br)y L. Ifb > -1/, then
Y}, is positive; consequently, the critical characteristic exponent crosses the imagi-
nary axis from left to right through the origin as b is increased, i.e., a stable char-
acteristic exponent becomes unstable. If b < —1/7, then the critical characteristic
exponent crosses the imaginary axis in the opposite direction, i.e., an unstable ex-
ponent becomes stable for increasing b.

For the D-curves (2.8), equation (2.11) gives sgn(y ;) = sgn( cos(wt) + b7). This
yields two possible cases.

1. If w € ((2k — )mr,2kn), k € Z*, then the corresponding D-curves (2.8) satisfy
b > 1/7; consequently, y ; is positive in this case. This means that the complex
conjugate pair of critical characteristic exponents crosses the imaginary axis from
left to right, i.e., two stable exponents become unstable as b is increased.

2. If w € 2kn,(2k + 1)), k € N, then the D-curves (2.8) satisfy b < —1/7; con-
sequently, y ; is negative. This means that the complex conjugate pair of critical
characteristic exponents crosses the imaginary axis from right to left, i.e., two
unstable exponents become stable as b is increased.

Overall, it can be concluded that more and more unstable characteristic expo-
nents appear along the D-curves (2.8) as |b| is increased. Since the half-line b = 0
with a < 0 is associated with an asymptotically stable ODE, the number of unstable
exponents in the region containing this half-line is 0. The number of unstable expo-
nents in the neighboring domains can be given by considering the exponent-crossing
directions along the D-curves. The corresponding stability chart with the number of
unstable characteristic exponents is presented in Figure 2.1. Stable domains (with
0 unstable exponents) are indicated by gray shading. The limits for the frequency
parameter w along the D-curves are also presented.

The number of unstable characteristic exponents can also be determined using
Stepan’s formula (1.26) for systems with odd dimension. According to (1.24), the
real and the imaginary part of D(iw) define the functions

R(w) = —a—bcos(wr), w€[0,00), (2.12)
S(w)=w+bsin(wtr), wE[0,). (2.13)

Note that the D-curves (2.7) and (2.8) are given by the equations R(w) = 0 and
S (w) = 0. The stability analysis can be performed for each domain separated by the
D-curves step by step. Consider, for instance, the parameters @ = 0, b = -5 and
7 = 1 that are associated with point A within the domain of two unstable exponents
(see Figure 2.1). For these parameters, S (w) has the zeros o = 2.5957 and 0, = 0,
and (1.26) gives N = 2. The analysis for the other domains can be performed in the
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Fig. 2.1 Stability chart with the number of unstable characteristic exponents for (2.1) with 7 = 1.

same way, and the number of unstable exponents can be determined for the whole
parameter plane (a, b).

2.1.2 The Cushing Equation

The counterpart of (2.1) with distributed delay reads

X(t) =ax(t)+ b ﬁ w(@)x(t +9)dd . (2.14)

This equation was analyzed by Cushing [60] in relation to population dynamics. If

the kernel function is w(3) = 6(9 — 1), o < 7 < 0, with 6(3) being the Dirac delta

distribution, then (2.14) gives (2.1). Stability properties of (2.14) with the kernel

function w(#) being the gamma distribution was analyzed in [29, 30, 198]. Here,

the stability properties are determined for the kernel function w(:%) = 1 (see [18]).
The characteristic function for (2.14) with w(¢) = 1 reads

l_e—/l(r
DA)=A-a->b 1 , A#0, (2.15)

with the continuous extension at A = 0 with
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D(0) = }ling) D(A) = —-a—-bo . (2.16)

According to the D-subdivision method, substitution of 1 = y + iw, w > 0, into
D(A) = 0 and decomposition into real and imaginary parts gives

Re : y—a—p? Y COsw) T weTsinwa) _ @2.17)

Y2 + w2

Im: w+ bw —weT” cos(wo) —y e sin(wo) =0. (2.18)

¥2 + w?

If y = 0, then (2.17) and (2.18) give the D-curves in the parametric form

1
ifo=0: b=- a, (2.19)
o
) w sin(wo) -w?
fwr#kr, keN: a= , b= s (2.20)
1 — cos(wo) 1 — cos(wo)

with the corresponding limits for wo = km, k € N.

Similarly to the analysis of (2.1), the exponent-crossing direction at the D-curves
can be obtained by taking the partial derivatives of (2.17) and (2.18) with respect to
b and then setting ¥ = 0 and solving the resulting equations for y ;. This derivation
gives

) 1 1 — cos(wo) sin(wo)
fyb = A2 + B2 ( a)z bo + w ) 5 (221)
where
- B .
Al cos(wo) 2w0' sm(wo-)b ’ (2.22)
w
_ sin(wo) — wo cos(wo) b (2.23)

w?

Taking the limit w — 0 gives the exponent-crossing direction along the D-curve
(2.19) associated with w = 0 as

20

. 2.24
bo?+2 2.24)

Vh =
If b > —2/02, then 7;) is positive; consequently, as b is increased, the critical char-
acteristic exponent crosses the imaginary axis from left to right through the origin,
i.e., a stable exponent becomes unstable. If b < —2/02, then y , 1s negative, and the
critical characteristic exponent crosses the imaginary axis in the opposite direction,
i.e., an unstable exponent becomes stable as b is increased.
For the D-curves (2.20), equation (2.21) gives

sin(wao)
“ ) , (2.25)

sgny = sgn (—o- +
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Fig. 2.2 Stability chart with the number of unstable characteristic exponents for (2.14) with
w =1,0=1.

which is always negative if w # 0. This implies that new pairs of unstable exponents
appear at each D-curve given by (2.20) as b is decreased.

Utilizing that the half-line » = 0 with a < 0 is associated with an asymptoti-
cally stable ODE, the number of unstable exponents can be given for each region
by considering the exponent-crossing direction at the corresponding D-curves. The
stability chart with the number of unstable exponents can be seen in Figure 2.2. Sta-
ble domains are indicated by gray shading. The limits for the frequency parameter
w along the D-curves are also presented.

Again, the application of Stepan’s formula (1.26) with the functions

sin(wo)

R =-a=b"""" wel0,m), (2.26)
S =wib' CZ)S(“"T) . wel0,00), 2.27)

defined in (1.24) can also be used to determine the number of unstable characteris-
tic exponents for the individual domains in Figure 2.2. Consider, for instance, the
parameters a = 0, b = —100, and o = 1 that are associated with point A within
the domain of four unstable exponents. For these parameters, S (w) has the zeros
oy = 10.823, 0, = 7.3814, 03 = 5.4864, 04 = 0, and (1.26) gives N = 4. The
analysis for the other domains can be performed in the same way.
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2.2 Delayed Oscillators

A well-known Newtonian example for delayed systems is the damped delayed os-
cillator described by the scalar DDE

§(0) + a1 x(t) + aox(t) = by x(t — 7). (2.28)

Although the stability chart in the parameter plane (ag, by) has a very clear struc-

ture (see Figures 2.4 and 2.5), it was first published correctly only in 1966 by Hsu

and Bhatt [112]. Since then, this equation has become a basic example for delayed

Newtonian problems; see, for instance, [153, 255, 44, 179]. Stability analysis for

the generalizations of (2.28) have been considered in detail in [53, 160, 245, 176].
The special case of (2.28) with by = 0 is the damped oscillator

X() + a1 x() + apx(®) =0 . (2.29)
The characteristic function (which is a polynomial in this case) reads
D) =2 +ad+ag, (2.30)

and the characteristic exponents are

—a; = \/af - 4ay

Ao = ) (2.31)

Substitution of A = +iw, w > 0, into (2.30) gives the D-curves in the form
fw=0: a=0, a €eR, (2.32)
fw#0: a=0, a=w>>0. (2.33)

The number of unstable exponents can be determined based on (2.31). The stability
properties are presented in Figure 2.3.
Consider now the undamped delayed oscillator

X(t) + agx(t) = box(t — 1) , (2.34)
1
0
09 Stable
3 1
0
2 Fig. 2.3 Stability chart with
-0.5 the number of unstable char-
-1 0 1 2 3 4 5

acteristic exponents for the
damped oscillator (2.29).



20 2 Stability Charts for Fundamental Delay-Differential Equations

which is a special case of (2.28) with a; = 0. The corresponding characteristic
function is
D) = 22 + ag — boe ™. (2.35)

According to the D-subdivision method, substitution of 1 = y + iw, w > 0, into
D() = 0 and decomposition into real and imaginary parts yields

Re : > —w’ +ay—boe " cos(wt) =0, (2.36)
Im : 2yw+ boe " sin(wt) =0. (2.37)

If v = 0, then (2.36) and (2.37) give the D-curves in the form

k 2
fwr=kr, keN : bo:(—l)kao—(—l)k(:) , (2.38)
ifor#kn, keN: by=0, ag=w*>0. (2.39)

These D-curves are straight lines in the plane (a, by) and form a special combination
of triangles, shown in Figure 2.4. The D-curve b = ag given by (2.38) with k = 0 is
associated with a real critical characteristic exponent 4 = 0. All the other D-curves
are associated with the complex conjugate pair of characteristic exponents of the
form A = tiw.

The exponent-crossing direction along the D-curves can be obtained by taking
the partial derivatives of (2.36) and (2.37) with respect to b and substituting the
D-curves (2.38), (2.39), and y = 0. For the D-curves (2.38), this analysis gives

b()T

B2 + 4ot (240

Vi =
that is, yj is positive for by > 0 and negative for by < 0. This means that new
unstable exponents appear as these D-curves are crossed with increasing |bo|. Along
the D-curve ag = by associated with £ = 0 in (2.38), a real characteristic exponent
becomes unstable as |bg| is increased, while at the other D-curves associated with
k > 0, a pair of complex characteristic exponents crosses the imaginary axis from
left to right for increasing |b).

The analysis for the D-curve (2.39) gives

, — sin(wr)
b= oy (2.41)
with w = 4/ap. In this case, the sign of y », can be given as
2mr\* Qm+ D\
Y, <O if ( )<a0<( ) , meN, (2.42)
T T

2m+ D\’ 2m + 2)r\’
v >0 i ((’": )”) <ao<((’": )”), meN. (243
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Fig. 2.4 Hsu-Bhatt stability chart with the number of unstable characteristic exponents for (2.34)
with 7 = 27.

This means that a pair of complex characteristic exponents becomes unstable as the
line by = 0 with ag > 0 is crossed from inside the triangles (see Figure 2.4).

Since the half-line by = 0 with ag < 0 is associated with an ODE with one un-
stable characteristic exponent (see Figure 2.3), the number of unstable exponents
can be given for all regions by considering the exponent-crossing directions along
the corresponding D-curves. The stability chart with the number of unstable charac-
teristic exponents is presented in Figure 2.4. Stable domains are indicated by gray
shading. The frequency parameter w along the stability boundaries is also presented.

The number of unstable characteristic exponents can also be determined using
Stepan’s formula (1.25) for systems with even dimension. According to (1.24), the
real and the imaginary part of D(iw) define the functions

R(w) = —w? + ag — by cos(wt), w € [0, ), (2.44)
S(w) = bysin(wr), w € [0, ). (2.45)

For this analysis, (1.25) should be applied for some fixed parameters associated
with the individual domains in Figure 2.4. For instance, the parameters ao = 0.5,
by = —1, and 7 = 2r are associated with point A within the domain of four unstable
exponents. For these parameters, R(w) has the zeros p; = 1.1161, po = 0.7631,
p3 = 0.3156, and (1.25) gives N = 4. All the other domains can be analyzed in a
similar way.

Consider now the damped and delayed case, i.e., (2.28) with a; # 0 and by # 0.
The corresponding characteristic function is

D) = 2* + ajd + ag — boe™" . (2.46)

Substitution of A = +iw, w > 0, into D(A) = 0 gives the D-curves in the form
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Fig. 2.5 Hsu-Bhatt stability chart with the number of unstable characteristic exponents for (2.28)
with a; = 0.1 and 7 = 271,

ifw=0: by=ao, (2.47)

, ajwcos(wrt) 1)

fwr+kn, keN: ay=w" + (2.48)

sinfwr)  © Y sin(wr)

The number of unstable exponents for the domains bounded by (2.47) and (2.48)
can be determined based on continuous dependence of the characteristic exponents
on the system parameters. For this purpose, the stability chart for the case a; =0
in Figure 2.4 can be used as a reference. The corresponding stability chart is shown
in Figure 2.5. Stable domains are indicated by gray shading. The limits for the fre-
quency parameter w along the stability boundaries are also presented.

2.3 Stabilization with Feedback Delay

Stabilization of a one-degree-of-freedom Newtonian system about an unstable equi-
librium by a proportional-derivative controller in the presence of feedback delay is
described by the equation

X(t) + aox(t) = —kpx(t — 1) — kax(t — 1) , (2.49)

where ag < 01is the negative stiffness, &, is the proportional gain, kg is the derivative
gain, and 7 is the feedback delay. This equation corresponds to the general second-
order delayed system

X(t) + a1 x(t) + agx(t) = box(t = 7) + by x(t — 1) (2.50)

with by = —kp, by = —ky, and a; = 0. Equation (2.49) is a frequently cited example
in dynamics and control theory [255, 243, 166], and it is also relevant to human
balancing problems [263, 260, 190].
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acteristic exponents for (2.51)
with g = —0.5.

If ag < 0 and k, = 0, kg = 0, then the system is unstable with the characteristic
exponents A;, = ++/—ay, i.e., the number of unstable exponents is 1.
If the feedback delay is zero, then the governing equation reads

(1) + ap x(t) = —ky x(1) — ka (1) , 2.51)

which is equivalent to the well-known damped oscillator (2.29) with some appro-
priate parameter transformations. In this case, the D-curves can be given in the form

ifo=0: ky=ay, kieR, (2.52)

ifw#0: ka=0, ky=-ap+w”>-a, (2.53)
where w is the imaginary part of the critical characteristic exponent. The stability
chart with the number of unstable exponents is presented in Figure 2.6. This chart
shows that if the feedback delay 7 is 0, then the unstable system can be stabilized

by control gains k, > —ag and kq > 0.
Consider now (2.49) with 7 > 0. The corresponding characteristic function reads

D) = A +ag + kpe ™ + kgde ™" . (2.54)

According to the D-subdivision method, substitution of 1 = y + iw, w > 0, into
D(A) = 0 and decomposition into real and imaginary parts gives

Re : Y’ —w’ +ap+ kpe™" cos(wt) + kay e cos(wT) + kqwe ™ sin(wt) =0,

(2.55)
Im : 2yw — kye " sin(wt) + kqwe ™" cos(wt) — kgy e 7" sin(wt) = 0. (2.56)
The case y = 0 gives the D-curves in the form
ifw=0: ky=-ap, kieR, (2.57)
2 w2 —ap
ifwo#0: ky=(w —ap)cos(wr), kg= sin(wr) . (2.58)
w

The D-curve k, = —ag given by (2.57) is associated with a real critical characteristic
exponent A = 0. The D-curve given by (2.58) is associated with a complex conjugate
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Fig. 2.7 Stability chart with the number of unstable characteristic exponents for (2.49) with
ap=-05and 7 = 1.

pair of characteristic exponents of the form A = +iw. For a fixed a, these curves cut
the parameter plane (kp, kq) into infinitely many domains (see Figure 2.7).

The exponent-crossing direction along the D-curve k, = —ag can be obtained by
taking the partial derivatives of (2.55) and (2.56) with respect to k, and substituting
v=0,w=0,and k, = —ap. This derivation gives

Po= ! 2.59

Yy = aot + kg’ (2.59)
that is, y ,’(p is positive for kg < —agt and negative for kg > —aot. If the line k, = —ag
is crossed from left to right with k4 > —aot, then a real characteristic exponent
becomes stable. If kg4 < —aot, then a real exponent becomes unstable as the line
kp = —ay is crossed from left to right. Since the parameter point (kp, kg) = (0,0)
corresponds to an ODE with one unstable characteristic exponent, the number of
unstable exponents can be given for all the domains in the parameter plane (k ,, kq)
by considering the exponent-crossing directions along the D-curve k, = —ag. The
corresponding stability chart with the number of unstable exponents is presented in
Figure 2.7. The stable domain is indicated by gray shading. Some specific values of
the frequency parameter w along the stability boundaries are also presented.

The number of unstable exponents can also be determined using Stepan’s formula
(1.25) with the functions

R(w) = —w? +ap + ky cos(wt) + kqwsin(wt),  w € [0,00), (2.60)
S (w) = —kp sin(wr) — kgw cos(wt) ,  w € [0, 00) . (2.61)

For instance, the parameters ag = —0.5, 7 = 1, k, = =20, and kg = 0 are associated
with point A within the domain of three unstable exponents in Figure 2.7. For these
parameters, R(w) has the zeros p; = 3.844 and p, = 1.750, and (1.25) gives N = 3.
All the other domains can be analyzed in a similar way.
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Fig. 2.8 Stability charts with the number of unstable characteristic exponents for (2.49) with 7 = 1
for different system parameters «.

Figure 2.8 shows the stability charts for different system parameters a. It can
be observed that as a is decreased, the stable domain shrinks, and at ag = -2, it
completely disappears. This can easily be seen by the analysis of the tangent of the
parametric curve (2.58) at w = 0. A long but straightforward analysis gives

dkqg
. dkd . dw a()‘l'3 + 671
1 =1 = . 2.62
w0 dky 0o dky  3agr? +6 (262
dw

The tangent is vertical if 3ao7? +6 = 0, which gives the critical value ag ¢ = —2/7°.
If ag < aocrit, then (2.49) is unstable for any kp and k4. For the case 7 = 1 in Figure
2.8, the critical value is ag it = —2.

The same phenomenon is often considered from the delay point of view: for a
fixed system parameter ao < 0, there exists a critical delay Tei = V—2/ao. If the
feedback delay is larger than 74, then the system is unstable for all combinations
of kp and kq.

2.4 Delayed Mathieu Equation

A paradigm for time-delayed and time-periodic systems is the damped and delayed
Mathieu equation

§(0) + a1 x() + (8 + £ cos 1) x(1) = box(t — 1) . (2.63)

This equation combines the phenomenon of parametric forcing with the effect of
time delay. Consequently, stability analysis can be performed based on the Floquet
theory of DDEs [97, 100]. Here, the special resonant case will be investigated, when
T = 2m, i.e., the time delay is just equal to the principal period, and the stability
charts will be constructed by Hill’s infinite determinant method.
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2.4.1 Special Cases

The special case by = 0 gives the classical damped Mathieu equation
X)) +arx()+ (@ +ecost)x(t) =0. (2.64)

This equation (with a; = 0) was first discussed by Mathieu [183] in relation to the
vibrations of an elliptic membrane, but it is also known as the model equation for
the small oscillations of a pendulum under parametric forcing (i.e., with periodically
vibrating suspension point) around its upper and the lower equilibria [265, 146,
170]. The stability chart in the plane (6, €), the so-called Ince—Strutt diagram, was
published by van der Pol and Strutt [286] in 1928, but the functions of the stability
boundaries were already given in the textbook of Ince [116] in 1926.

According to the Floquet theory, the stability of (2.64) is determined by the eigen-
values of the monodromy matrix. As was mentioned in Section 1.2, this matrix has,
in general, no closed-form representation, but there exist several methods to give a
sufficiently accurate approximation (see, for instance, [205] for an overview). Here
the piecewise constant approximation of the periodic matrix is used according to
[111]. Equation (2.64) can be transformed into the state-space form

y =AWy, A@Q)=A@C+T), (2.65)
with
(x) B 0 1
¥ = (x(r)) » AD= (—(5 yecost) —ay) (2.66)

After piecewise constant approximation of the coefficient matrix according to (1.9),
the Floquet transition matrix can be approximated as

O(T) ~ D(T) = errehral L. Aol (2.67)

where i = T'/p is the length of the discretization step, with p being an integer, and
A, is the average of the time-periodic matrix A(z) over the ith discretization step
defined by (1.8). The system is asymptotically stable if the eigenvalues of ®(T)
(i.e., the characteristic multipliers) have modulus less than one. The stability chart
can be constructed by point-by-point evaluation of the critical eigenvalues over a
fixed-sized grid of parameters ¢ and &. The corresponding stability chart obtained
by p = 20 is shown in Figure 2.9 for different damping parameters a ;.

According to Liouville’s formula [83], the determinant of the monodromy matrix
can be given as

T T
det®(T) = exp (f Tr A(?) dt) = exp (f —ay dt) =eal | (2.68)
0 0

Since A is a 2x2 matrix, det @(T") = p o, where u; and i, are the two characteristic
multipliers with || > |u2|. The location of the multipliers in the complex plane can
be characterized as follows.
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Fig. 2.9 Ince—Strutt [116, 286] stability chart for (2.64). S indicates stable domains, U,; and U_;
indiciate unstable domains with critical characteristic multipliers z; > 1 and y; < —1, respectively.
Stability boundaries are presented for ¢; = 0, 0.2, and 0.4.

1. If a; < 0, then pyjup > 1, i.e., at least one of the characteristic multipliers has
modulus larger than 1. Consequently, the Mathieu equation (2.64) with negative
damping a, is always unstable.

2. If a; = 0, then u i, = 1. In this case, the system is stable in the Lyapunov sense
if |u1] = 1 and |up| = 1; otherwise, the system is unstable with |u;| > 1 and
|| < 1. Asymptotic stability does not occur in this case.

3. If a; > 0, then pujup < 1. In this case, one of the characteristic multipliers is
always located within the unit circle. The system can be asymptotically stable
with Juo| < |uy| < 1.

The above cases show that both characteristic multipliers can never cross the unit
circle at the same time. Consequently, in the damped Mathieu equation (2.64), only
cyclic-fold or period-doubling (flip) bifurcations may occur, and secondary Hopf
bifurcation does not arise. In Figure 2.9, stability curves bounding the unstable do-
mains indicated by U represent cyclic-fold bifurcations, while the curves bound-
ing the domains indicated by U _; represent period-doubling bifurcations.

The special case € = 0 of (2.63) gives the damped and delayed oscillator (2.28)
with ag = ¢ discussed in Section 2.2. The corresponding stability charts can be seen
in Figure 2.4 for a; = 0, 7 = 27 and in Figure 2.5 for a; = 0.1, 7 = 2x. These charts
were published first by Hsu and Bhatt [112] in 1966.

2.4.2 D-curves

First, the D-curves for the undamped system in the plane (9, b) are determined by
Hill’s infinite determinant method. The undamped case of (2.63) with a | = 0 reads

X() + (0 + ecost) x(t) = box(t — 2m) . (2.69)
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The corresponding stability chart in the space of system parameters ¢, b, and € was
published by Insperger and Stepan [124] in 2002. This chart combines the Ince—
Strutt stability chart of the Mathieu equation (shown in Figure 2.9) and the Hsu—
Bhatt stability chart of the delayed oscillator (shown in Figure 2.4).

The main point in the construction of the stability boundaries for (2.69) is that the
points where the lines of slope +1 intersect the line b = 0 in the Hsu—Bhatt stability
chart in Figure 2.4 are ap = 0, 1/4,1,9/4, ..., which coincide with the points where
the unstable tongues in the Ince—Strutt stability chart in Figure 2.9 open on the o-
axis for € = 0. In the subsequent analysis, this property will be used to show how the
stable triangles in the plane (a, by) in Figure 2.4 change for € > 0. The investigation
is based on the following theorems of the Floquet theory of DDEs (see, e.g., [83]):

e The trivial solution of (2.69) is asymptotically stable if and only if all the (in-
finitely many) characteristic multipliers have modulus less than one;

e 1 = e is a characteristic multiplier of (2.69) if and only if there exists a non-
trivial solution in the form x(¢) = p(t)e"’, where p(t) = p(t + T), with T being the

principal period (in this case 7' = 2r).

This implies the application of the trial solution in the form
(1) = pi)e + p(e (2.70)

where p(f) = p(t + 2n) is a periodic function and bar denotes complex conjugate.
Note that A is a characteristic exponent, that is, if Re A < 0, then the trivial solution
x(t) = 0 1s asymptotically stable.

According to Hahn [96], equation (2.69) may have solutions of the form ¢ *p(#)e*,
k € Z*, in critical cases. Consequently, if |u| = 1, i.e., Re A = 0, then the solution
p(t)e" is stable in the Lyapunov sense, but the solutions t*p()e” are unstable. This
case has no importance here, since it may arise only at certain special points of the
stability boundaries, while in the present investigation, the domains of asymptotic
stability are determined.

Expand the periodic function p(¢) in (2.70) into a Fourier series to obtain

x(t) = (Z A + Bkeik’] el + [Z Age 4 Ekeik’] el . (2.71)
=0

k=0

Using trigonometric transformations, (2.71) can be transformed to

X(1) = Z Cre™h 4 Cp e-ibr 2.72)
K=o
Substitution into (2.69) and balancing of the harmonics e ‘¥ and e yields two

systems of equations for the coefficients C and Cy:
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;Ck_1 + i Cr + ;Ck+1 =0, keZ, (2733.)
;@1 + 3G+ ‘;E,m -0, keZ, (2.73b)

where '
cr =6 + (A + ik)? = bye AR (2.74)

As follows from the Floquet theory, (2.73a) and (2.73b) are satisfied if and only if A
is a characteristic exponent. Since (2.73a) and (2.73b) are equivalent, only (2.73a)
will be analyzed. There is a nontrivial solution of system (2.73a) if the number zero
is an eigenvalue of the so-called Hill’s infinite matrix

“og/2 cq g2 0
HA) = 0 &/2 co €/2 0 . (2.75)

0 €2 ¢ &/2°

This matrix represents an unbounded linear operator H : l? - l? Here, l? is the
Hilbert space of the complex sequences (..., -1, 20, 21, ...) With 22 lze|? < oo.
As is the case for (unbounded) linear operators with compact resolvents, the spec-
trum of H consist of a countable number of eigenvalues. All of these eigenvalues
are of finite multiplicity. The number zero is an eigenvalue of H if and only if

Ker H(2) # {0} . (2.76)

Formula (2.76) can be treated as the characteristic equation of (2.69), since its roots
are the characteristic exponents. This is a reformulation of (1.37) with u = exp(274).

In order to carry out calculations, only the truncated system of equations with k =
—N, ..., N is considered. This reduces the infinite eigenvalue problem of operator
H to the calculation of a finite determinant

c.y €&/2
8/2 C_N+1 8/2

D(A) = det — (2.77)
8/2 CN-1 8/2

gl2 ¢y
Although this truncation seems to be a rough approximation, it still has a sound
mathematical basis (see [184, 63]). This approximation is just the same as the one
applied during the construction of the Ince—Strutt diagram using Hill’s method. The
equation D(1) = 0 can therefore be considered an approximate characteristic equa-
tion. In what follows, first, the D-curves will be constructed for N — oo; then, in
Section 2.4.3, the domains of stability will be determined.
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According to the D-subdivision method, the substitution of 1 = +iw, w > 0, into
D(A) = 0 gives an implicit form for the approximate D-curves (or D-surfaces) of
(2.69) in the parameter space (6, bo, €) with the frequency parameter w. In this case,
the diagonal elements in (2.77) read

cx=0—(w+k?=be™™,  k=-N,....,N. (2.78)
Note that the imaginary part of ¢; does not depend on k:
Im ¢, = bosin(2nw) , k=-N,...,N. (2.79)

It can be seen that Im ¢; = 0 if and only if either w = j/2 with j = 0,1,..., or
by = 0, which gives the classical Mathieu equation. Now the cases w # j/2 and
w = j/2with j =0,1,... are investigated separately.

Case w # j/2, j=0,1,...

In this case, Im ¢; # O for any k (if by # 0), as follows from (2.79). The Gaussian
elimination algorithm can be applied for the tridiagonal matrix in (2.77) to transform
it into an upper triangular matrix having the elements d; on the main diagonal.
Clearly, d_y = c_y # 0. In the (N + k)th step of the Gaussian elimination process,
Hill’s matrix assumes the form

d-y €/2 0

0 dk—l 8/2 0
0 d. €2 0 .- . (2.80)

0 €/2 ce1 €/2 O
0 €/2 cr2 €/2 0

Let us suppose that sgn(Im dy) = sgn(Im c;) for some k. Since Im ¢4 # 0, this means
that Im dy # 0, i.e., |di| # 0. Thus, the subsequent elimination of £/2 to the left from
ci+1 leads to

2 &2 Re dy &2Imd,

J 5 )+i(lmck+1 + 4|dk|2 . (281)

dre1 = Cre1 —
]

4d,, - (Re et =

Consequently,

2
sgn(Im dj41) = sgn [Im Ci+1 + (2; |) Im dk] =sgn(Imdy) = sgn(Imcy) #0 .
k
(2.82)

Since Imd_y = Im c_y = bsin(2rw) # 0, we have Im d; # 0, that is, |d;| # O is true
by induction.
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The determinant of Hill’s matrix can be calculated as the product of the diagonal
elements of the upper triangular matrix. Hence,

N
D(iw) = ]_[ di # 0, (2.83)
k=—N

that is, the determinant (2.77) is never zero if 1 = iw with w # j/2, j = 0,1,....
This means that there is no nontrivial solution of system (2.73a), and there are no
stability boundary curves in this case.

Case w=j/2, j=0,1,...

In this case, the diagonal elements in (2.77) are real:
2 .
ce=0-(k+3j) —bo(=1). (2.84)

If jis even, that is, j = 2h, h = 0,1,..., then 4 = ih, and the corresponding
characteristic multiplier is ‘ ‘
p=elm=e? =1, (2.85)

In this case, ¢ = 6 — by — (k+ h)?, and D(1) = 0 gives the relation f, (6 — by, &) = 0
for the D-curves. For the case by = 0, the relation f,;(d,&) = 0 serves as the U,
D-curves of the classical Mathieu equation defined in the form 6 = g.(g). This
means that the D-curves exist for the b # O case, too, in the form

0 —bo =gri(e) . (2.86)

In the plane (6, by), these are lines of slope +1 (shown as continuous lines in Figure
2.10). Along these D-curves, there exists a characteristic multiplier u = +1 repre-
senting cyclic-fold bifurcation, and equation (2.69) has a periodic solution of period
2n.

If jis odd, thatis, j = 2h+ 1, h = 0,1,..., then A = i(h + 1/2), and the
corresponding characteristic multiplier is

= el 1/22m _gin (2.87)

In this case, ¢y = 6 + by — (k+ h + 1/2)2, and D(1) = 0 implies the D-curve relation
f-1(0 + by, &) = 0. For the same reason as above, the D-curves exist again in the
form

6+by=g_1(e), (2.88)

where 6 = g_;(¢) gives the U_; D-curves of the classical Mathieu equation. In
the parameter plane (6, by), these D-curves are lines of slope —1 (shown as dashed
lines in Figure 2.10). Along these D-curves, there exists a characteristic multiplier
u = —1 representing a period-doubling (flip) bifurcation, and equation (2.69) has a
nontrivial periodic solution of period 4.
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Fig. 2.10 Stability chart with the number of unstable characteristic multipliers for the delayed
Mathieu equation (2.69) with € = 1.

The above analysis showed that the D-curves are straight lines in the plane (6, b)
with slopes +1, —1 and 0. For varying parameter &, the lines of slope +1 and —1
pass along the stability boundaries of the Ince—Strutt diagram. As mentioned be-
fore, these charts are approximate to the same extent as the Ince—Strutt diagram,
and the appearance of the delay in the Mathieu equation does not require any fur-
ther approximation in the stability analysis. The construction of the D-curves in the
plane (8, by) for € = 1 is demonstrated in Figure 2.10. The stability of the domains
bounded by the D-curves is determined in the next section.

2.4.3 The Number of Unstable Characteristic Multipliers

The stability of the individual domains separated by the D-curves (2.86) and (2.88)
can be determined based on the continuous dependence of the characteristic multi-
pliers on the system parameters. The special case € = 0 can be treated as a reference:
the domains attached to the stable triangles of the Hsu—Bhatt chart (see Figure 2.4)
are associated with zero unstable characteristic multipliers. Similarly, some unstable
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domains can also be identified in this way, and the number of unstable characteristic
multipliers can be given based on the case € = 0. There are, however, some new
domains that are not directly connected to any domains of the Hsu—Bhatt chart. The
stability of these domains can be determined by the exponent-crossing direction, i.e.,
by the analysis of the sign of the partial derivative of Re A with respect to parameter
by along the D-curves.

A recursive form for the calculation of the tridiagonal upper left subdeterminants
in equation (2.77) can be given as

D_y=c_n, (2.89)
82
D_ny1 = cNC N4l — 4 (2.90)
82
Dy = ¢ Dy — 4Dk_2, k=-N+2,...,N. (291)

Let us denote the partial derivative with respect to b by a prime ([’ = dUJ/dby)
and the substitution of A = ij/2 by a hat (LJ = 0|, /»). According to this notation,
taking the partial derivatives of expressions (2.74), (2.89), and (2.90) yields

¢, = 2(A +ik)A" — eI 4 poog e (kT (2.92)

& = (21bo (1) +i(j+20)) X' = (=1)/ (2.93)
D'y = (2mbo (~1Y Iy +iQ.y) X = (1) Ty , (2.94)
D!y = (2700 (<1 Tyt Qw01 ) A = (=) Ty (2.95)

where the coeflicients
I'y=1,
Q. N=j-2N,
I nyt =Cn+Conyt s

Q_yny1 =Cn(—2N +2)+C_y+1(j—2N) ,

are real numbers, since ¢y is real for all k = —N, ..., N. The same differentiation of
equation (2.91) yields the recurrence

D, =¢&Dwy +&D;_, - g Dizs k=-N+2,...N. (2.96)
It can be proved by induction that (2.96) can be expressed in the same form as
(2.94) and (2.95). If, for some k,

Di_y = (27bo (=1 g + i 2) X' = (~1) Tia (2.97)
Di_y = (27bo (=1 Ty + i 1) ' = (=1) Ty (2.98)

where o, I'i—1, Qr-2, Q-1 are real numbers, then, using (2.93), (2.96), we have
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D}, = (2rbo (=1Y [ +iQ) X = (=1Y I, k=-N+2,...,N, (2.99)

where the coeflicients

2
R &
I'y =Dy + 1 Gy — 4Fk72,

2
) . . £
Qi = (J+2k) Doy + 18 — 4 [0/
are again real numbers. Together with equations (2.94) and (2.95), this completes
the induction.
The final round of recurrence is given by the case k£ = N. Equation D;v = 0 with
D), defined in (2.99) gives

2rnl” ]2\,

Re A = by . (2.100)

(2mbo (~1) T + 2

The exponent-crossing direction along the D-curves is equal to the sign of Re 1”.
Since the coefficient of by in (2.100) is positive, sgn(Re 1”) = sgn(by). This means
that moving away from the by = 0 axis, each D-curve represents characteristic ex-
ponents becoming unstable, i.e., crossing the imaginary axis of the complex plane
from left to right. The D-curves (2.86) and (2.88) are associated with single critical
characteristic multipliers (i.e., u = 1 and u = —1, respectively), consequently, the
number of unstable characteristic multipliers increases by one at each D-curve as
|bg| is increased. So the only domains of stability are the triangles born from the
stable triangles of the & = 0 case. Since the case € = 0 is already known (see Figure
2.4), the number of unstable characteristic multipliers can be determined for all the
domains by equation (2.100) and by topological considerations. The stability chart
can be seen in Figure 2.10 for € = 1. The stable domains are indicated by gray shad-
ing. The frame view of the three-dimensional stability chart in the space (3, b g, €) is
shown in Figure 2.11.

2.4.4 Damped Case

The stability boundaries for the general damped and delayed Mathieu equation
(2.63) with 7 = 27 is more complex and they cannot be given in closed form. How-
ever, it can be shown that the stability boundaries associated with cyclic-fold and
period-doubling (flip) bifurcations remains straight lines of slopes +1 in the plane
(6, bo).

The analysis is very similar to that of the undamped case. Substitution of the trial
solution (2.70), Fourier expansion of the periodic terms, application of trigonometric
transformations, and balancing the harmonics results in the truncated determinant
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Fig. 2.11 Three-dimensional stability chart of the delayed Mathieu equation (2.69).

E,N 8/2
&/2 C ny1 £/2
D(1) = det . , (2.101)
8/2 EN—I 8/2
8/2 EN
where the diagonal elements have the form
G =6+ (A +1k)* + a1 (A + ik) — bye A0 (2.102)

instead of ¢; defined in equation (2.74).
After the substitution of 1 = +iw, w > 0, into (2.102), the imaginary part of ¢
reads
Im ¢, = a1(w + k) + by sin(2nw) . (2.103)

From this point, the proof of the undamped delayed Mathieu equation cannot be
continued, since Im ¢; = 0 does not hold in the cases w = j/2, j = 0,1,.... This
means that D-curves and stability boundaries may exist even for the case w # j/2,
Jj=0,1,..., and the critical characteristic multipliers can also be complex conjugate
pairs of modulus 1. Consequently, secondary Hopf bifurcations may occur in this
case, but the corresponding stability boundaries cannot be given in a simple closed
form. However, the case w = j/2, j =0,1,..., gives

G=06—(k+j/2)* = bo(=1) +i(k + j/2)ay , (2.104)

and the same classification can be done as for the undamped case.
If jis even, that is, j = 2h, h = 0,1,..., then A = ih, and the corresponding
characteristic multiplier is
pu=em =e?m =1, (2.105)
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In this case, & = & — by — (k + h)> + i(k + h)a,, and D(1) = 0 gives the re-
lation f+1((5 — bg,&,a;1) =0 for the D-curves. For the case by = 0, the relation
ﬂl (0,&,a;1) = 0 serves as the U,; D-curves of the classical damped Mathieu equa-
tion defined in the form ¢ = g, (e, a;). This means that the linear D-curves exist for
the by # O case, too, in the form 6 — by = g,(&, ay). In the plane (5, by), these are
lines of slope +1 (shown as continuous lines in Figure 2.12). Along these D-curves,
there exists a characteristic multiplier 4 = +1 representing a cyclic-fold bifurcation,
and equation (2.63) has a periodic solution of period 2.

If jis odd, thatis, j = 2h+ 1, h = 0,1,..., then A = i(h + 1/2), and the
corresponding characteristic multiplier is

= el 1/22m _in (2.106)

In this case, & = 6 + by — (k+ h + 1/2)> +i(k + h + 1/2)a;, and D(2) = 0 implies
the relation f_l(é + b, g,a1) = 0 for the D-curves. For the same reason as above,
the D-curves exist again in the form 6 + by = g_i(g, a;), where 6 = g_1(g, a;) gives
the U_; D-curves of the classical damped Mathieu equation. The D-curves are lines

\ Stable
[ N froee oo -

n=1
——-—--pu=-1 é
————— Imp #0

Stable

Fig. 2.12 Stability chart with the number of unstable characteristic multipliers for the damped
delayed Mathieu equation (2.63) with 7 =2m,a; = 0.1, = 1.
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of slope —1 in the parameter plane (d, o) (shown as dashed lines in Figure 2.12).
Along these D-curves, there exists a characteristic multiplier u = —1 representing a
period-doubling bifurcation, and equation (2.63) has a nontrivial periodic solution
of period 4.

This investigation showed that all the cyclic-fold and period-doubling D-curves
are straight lines of slope +1 in the plane (6, o). However, in addition to these
linear D-curves, other D-curves associated with secondary Hopf bifurcation may
also exist, since A and consequently u can also be complex at the loss of stability.
These D-curves cannot be constructed based on the analysis of the corresponding
Hill’s deteminant (2.101) in closed form, but they can be determined by numeri-
cal techniques. Figure 2.12 presents the stability chart with the number of unstable
characteristic multipliers determined by the semi-discretization method. The stable
domains are indicated by gray shading. It can be seen that the straight lines obtained
by the corresponding & = 1 section of the Ince—Strutt diagram are indeed stabil-
ity boundaries. These transition lines are shown as continuous and dashed lines for
the u = 1 and pu = —1 cases, respectively. The D-curves associated with complex
characteristic multipliers are shown as dash-dotted lines.
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