PREFACE

Real-time computing plays a crucial role in our society since an increasing number
of complex systems rely, in part or completely, on computer control. Examples of
applications that require real-time computing include nuclear power plants, railway
switching systems, automotive and avionic systems, air traffic control, telecommuni-
cations, robotics, and military systems. In the last several years, real-time computing
has been required in new applications areas, such as medical equipments, consumer
electronics, multimedia systems, flight simulation systems, virtual reality, and interac-
tive games.

Despite this large application domain, most of the current real-time systems are still
designed and implemented using low-level programming and empirical techniques,
without the support of a scientific methodology. This approach results in a lack of
reliability, which in critical applications may cause serious environmental damage or
even loss of life.

This book is a basic treatise on real-time computing, with particular emphasis on pre-
dictable scheduling algorithms. The main objectives of the book are to introduce the
basic concepts of real-time computing, illustrate the most significant results in the
field, and provide the basic methodologies for designing predictable computing sys-
tems useful in supporting critical control applications.

This book is written for instructional use and is organized to enable readers without a
strong knowledge of the subject matter to quickly grasp the material. Technical con-
cepts are clearly defined at the beginning of each chapter, and algorithm descriptions
are corroborated through concrete examples, illustrations, and tables.

ix

X PREFACE

Contents of the chapters

Chapter 1 presents a general introduction to real-time computing and real-time op-
erating systems. It introduces the basic terminology and concepts used in the book,
discusses the typical application domains, and clearly illustrates the main characteris-
tics that distinguish real-time processing from other types of computing.

Chapter 2 introduces the general problem of scheduling a set of tasks on a uniprocessor
system. Objectives, performance metrics, and hypotheses are clearly presented, and
the scheduling problem is precisely formalized. The different algorithms proposed
in the literature are then classified in a taxonomy, which provides a useful reference
framework for understanding the different approaches. At the end of the chapter, a
number of scheduling anomalies are illustrated to show that real-time computing is
not equivalent to fast computing.

The rest of the book is dedicated to specific scheduling algorithms, which are pre-
sented as a function of the task characteristics.

Chapter 3 introduces a number of real-time scheduling algorithms for handling aperi-
odic tasks with explicit deadlines. Each algorithm is examined in regard to the task set
assumptions, formal properties, performance, and implementation complexity.

Chapter 4 treats the problem of scheduling a set of real-time tasks with periodic ac-
tivation requirements. In particular, three classical algorithms are presented in detail:
Rate Monotonic, Earliest Deadline First, and Deadline Monotonic. A schedulability
test is derived for each algorithm.

Chapter 5 deals with the problem of scheduling hybrid sets consisting of hard peri-
odic and soft aperiodic tasks, in the context of fixed-priority assignments. Several
algorithms proposed in the literature are analyzed in detail. Each algorithm is com-
pared with respect to the assumptions made on the task set, its formal properties, its
performance, and its implementation complexity.

Chapter 6 considers the same problem addressed in Chapter 5, but in the context of a
dynamic priority assignment. Performance results and comparisons are presented at
the end of the chapter.

Chapter 7 introduces the problem of scheduling a set of real-time tasks that may in-
teract through shared resources and hence have both time and resource constraints.
Three important resource access protocols are described in detail: the Priority Inher-
itance Protocol, the Priority Ceiling Protocol, and the Stack Resource Policy. These
protocols are essential for achieving predictable behavior, since they bound the max-

Preface xi

imum blocking time of a process when accessing shared resources. The latter two
protocols also prevent deadlocks and chained blocking.

Chapter 8 is dedicated to non-preemptive and limited preemptive scheduling, often
used in industrial applications to make task execution more predictable and reduce the
run time overhead introduced by arbitrary preemptions. Different solutions are pre-
sented, analyzed, and compared in terms of implementation complexity, predictability,
and efficacy.

Chapter 9 deals with the problem of real-time scheduling during overload conditions;
that is, those situations in which the total processor demand exceeds the available
processing time. These conditions are critical for real-time systems, since not all tasks
can complete within their timing constraints. This chapter introduces new metrics
for evaluating the performance of a system and presents a new class of scheduling
algorithms capable of achieving graceful degradation in overload conditions.

Chapter 10 describes some basic guidelines that should be considered during the de-
sign and the development of a hard real-time kernel for critical control applications.
An example of a small real-time kernel is presented. The problem of time predictable
inter-task communication is also discussed, and a particular communication mecha-
nism for exchanging asynchronous messages among periodic tasks is illustrated. The
final section shows how the runtime overhead of the kernel can be evaluated and taken
into account in the guarantee tests.

Chapter 11 discusses some important issues related to the design of real-time applica-
tions. A robot control system is considered as a specific example for illustrating why
control applications need real-time computing and how time constraints can be de-
rived from the application requirements, even though they are not explicitly specified
by the user. Finally, the basic set of kernel primitives presented in Chapter 9 is used to
illustrate a concrete programming example of real-time tasks for sensory processing
and control activities.

Chapter 12 concludes the book by presenting a number of real-time operating systems,
including standard interfaces (like RT-Posix, APEX, OSEK, and Micro-ITRON), com-
mercial operating systems (like VxWorks, QNX, OSE), and open source kernels (like
Shark, Erika, Marte, and Linux real-time extensions).

Xii PREFACE

Difference with the second edition

This book contains several changes and additions with respect to the previous edition.
Several parts have been added to illustrate the most recent methods proposed in the
real-time literature, mistakes and typos have been corrected, and some concepts have
been further clarified, based on the observations received from the readers.

The most significant additions are the following:

In Chapter 1, the introduction has been extended by presenting new applications
domains. A description of the Ariane 5 accident has been added to explain the im-
portance of analyzing the characteristic of the system and the environment. The
list of desirable features for a real-time system has been revised and expanded.
Additional notes on the cache behavior have been included in the section about
predictability.

Chapter 2 has been enhanced in several parts. The section on resource constraints
has been extended by a concrete example that illustrates the importance of us-
ing semaphores to guarantee data consistency when accessing shared resources.
Other examples of scheduling anomalies have been added at the end of the chap-
ter to highlight critical situations that can occur when running an application at
different speeds and when self-suspending a task using a delay primitive.

In Chapter 4, the schedulability analysis of fixed priority tasks has been extended
by introducing the workload-based test, which in several conditions is more effi-
cient than the response time test.

In Chapter 5, the analysis of fixed priority servers has been also extended un-
der the Hyperbolic Bound and the Response Time Analysis and a procedure for
dimensioning the server parameters has been included.

Given the popularity that the CBS algorithm received in the real-time community,
Chapter 6 has been extended by introducing a section on how to determine the
CBS parameters for minimizing the average response time of the served tasks.

Chapter 7 has been substantially revised. Two protocols, Non-Preemptive Pro-
tocol and Highest Locker Priority, have been described and analyzed, as they
are often used in legacy applications to deal with shared resources. The second
protocol, also known as Immediate Priority Ceiling, is specified in the OSEK
standard for the development of automotive systems. Finally, a new section has
been added at the end of the chapter to show how schedulability tests can be
extended in the presence of blocking terms.

Preface Xiii

A new chapter (8) on Limited Preemptive Scheduling has been added, describing
a set of scheduling methods that can reduce the overhead introduced by preemp-
tions. Limited preemptive techniques are very effective in practical applications
and represent a solution to increase the predictability and the efficiency of real-
time systems.

Chapter 9 has been substantially restructured. The concepts of overload and over-
run have been formally defined. An example has been added to explain the re-
jection strategy of the RED algorithm. The section on Resource Reservation has
been expanded, discussing how to perform schedulability analysis, bandwidth
adaptation, and resource sharing. Job skipping and elastic scheduling have also
been revisited and expanded with examples, considerations, and implementation
issues.

Chapter 12 has been significantly revised and updated by adding the most recent
developments achieved in the Linux community and in the research laboratories.
The AUTOSAR specification has been included in the section on standards and
a new section has been added on the development tools for the analysis and the
simulation of real-time systems.

New exercises has been added.

The bibliography has been updated with more recent references.

Xiv PREFACE

Acknowledgments

This work is the result of 20 years of research and teaching activity in the field of
real-time systems. The majority of the material presented in this book is based on
class notes for an operating systems course taught at the University of Pisa, at the
University of Pavia, and at the Scuola Superiore Sant’ Anna of Pisa.

Though this book carries the name of a single author, it has been positively influenced
by a number of people to whom I am indebted. Foremost, I would like to thank all my
students, who have directly and indirectly contributed to improve its readability and
clarity.

A personal note of appreciation goes to Paolo Ancilotti, who gave me the opportunity
to teach these topics. Moreover, [would like to acknowledge the contributions of John
Stankovic, Krithi Ramamritham, Herman Kopetz, John Lehoczky, Gerard Le Lann,
Alan Burns, Gerhard Fohler, Sanjoy Baruah, and Lui Sha. Their inputs enhanced the
overall quality of this work. I would also like to thank the Springer editorial staff for
the support I received during the preparation of the manuscript.

Special appreciation goes to Marco Spuri and Fabrizio Sensini, who provided a sub-
stantial contribution to the development of dynamic scheduling algorithms for aperi-
odic service; Benedetto Allotta, who worked with me in approaching some problems
related to control theory and robotics applications; Luca Abeni, for his contribution
on resource reservation; Giuseppe Lipari and Marco Caccamo, for their work on re-
source sharing in dynamic scheduling; and Enrico Bini, for his novel approach on the
analysis of fixed priority systems.

I also wish to thank Marko Bertogna, for his a valuable support in revising the chapter
on limited preemptive scheduling, and Claudio Scordino for his contribution in the
description of Linux related kernels.

A very special thanks goes to Paolo Gai, who developed the SHARK operating system
and the ERIKA kernel (currently used as an educational kernels in several real-time
courses around the world), and to all the people who are now involved in their main-
tenance (Tullio Facchinetti for SHARK, Mauro Marinoni and Gianluca Franchino for
ERIKA).

2 Springer
http://www.springer.com/978-1-4614-0675-4

Hard Real-Time Computing Systems

Predictable Scheduling Algorithms and Applications
Buttazo, G,

2011, X\, 524 p., Hardcover

ISEMN: 978-1-4614-0675-4

