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BASIC CONCEPTS

2.1 INTRODUCTION

Over the last few years, several algorithms and methodologies have been proposed in
the literature to improve the predictability of real-time systems. In order to present
these results we need to define some basic concepts that will be used throughout the
book. We begin with the most important software entity treated by any operating
system, the process. A process is a computation that is executed by the CPU in a
sequential fashion. In this text, the term process is used as synonym of task and thread.
However, it is worth saying that some authors prefer to distinguish them and define a
process as a more complex entity that can be composed by many concurrent tasks (or
threads) sharing a common memory space.

When a single processor has to execute a set of concurrent tasks – that is, tasks that
can overlap in time – the CPU has to be assigned to the various tasks according to
a predefined criterion, called a scheduling policy. The set of rules that, at any time,
determines the order in which tasks are executed is called a scheduling algorithm. The
specific operation of allocating the CPU to a task selected by the scheduling algorithm
is referred as dispatching.

Thus, a task that could potentially execute on the CPU can be either in execution (if it
has been selected by the scheduling algorithm) or waiting for the CPU (if another task
is executing). A task that can potentially execute on the processor, independently on
its actual availability, is called an active task. A task waiting for the processor is called
a ready task, whereas the task in execution is called a running task. All ready tasks
waiting for the processor are kept in a queue, called ready queue. Operating systems
that handle different types of tasks may have more than one ready queue.
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Figure 2.1 Queue of ready tasks waiting for execution.

In many operating systems that allow dynamic task activation, the running task can
be interrupted at any point, so that a more important task that arrives in the system
can immediately gain the processor and does not need to wait in the ready queue. In
this case, the running task is interrupted and inserted in the ready queue, while the
CPU is assigned to the most important ready task that just arrived. The operation of
suspending the running task and inserting it into the ready queue is called preemption.
Figure 2.1 schematically illustrates the concepts presented above. In dynamic real-
time systems, preemption is important for three reasons [SZ92]:

Tasks performing exception handling may need to preempt existing tasks so that
responses to exceptions may be issued in a timely fashion.

When tasks have different levels of criticality (expressing task importance), pre-
emption permits executing the most critical tasks, as soon as they arrive.

Preemptive scheduling typically allows higher efficiency, in the sense that it al-
lows executing a real-time task sets with higher processor utilization.

On the other hand, preemption destroys program locality and introduces a runtime
overhead that inflates the execution time of tasks. As a consequence, limiting preemp-
tions in real-time schedules can have beneficial effects in terms of schedulability. This
issue will be investigated in Chapter 8.

Given a set of tasks, J = {J1, . . . , Jn}, a schedule is an assignment of tasks to the
processor, so that each task is executed until completion. More formally, a schedule
can be defined as a function σ : R+ → N such that ∀t ∈ R+, ∃t1, t2 such that
t ∈ [t1, t2) and ∀t′ ∈ [t1, t2) σ(t) = σ(t′). In other words, σ(t) is an integer step
function and σ(t) = k, with k > 0, means that task Jk is executing at time t, while
σ(t) = 0 means that the CPU is idle. Figure 2.2 shows an example of schedule
obtained by executing three tasks: J1, J2, J3.
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Figure 2.2 Schedule obtained by executing three tasks J1, J2, and J3.

At times t1, t2, t3, and t4, the processor performs a context switch.

Each interval [ti, ti+1) in which σ(t) is constant is called time slice. Interval
[x, y) identifies all values of t such that x ≤ t < y.

A preemptive schedule is a schedule in which the running task can be arbitrarily
suspended at any time, to assign the CPU to another task according to a pre-
defined scheduling policy. In preemptive schedules, tasks may be executed in
disjointed interval of times.

A schedule is said to be feasible if all tasks can be completed according to a set
of specified constraints.

A set of tasks is said to be schedulable if there exists at least one algorithm that
can produce a feasible schedule.

An example of preemptive schedule is shown in Figure 2.3.

2.2 TYPES OF TASK CONSTRAINTS

Typical constraints that can be specified on real-time tasks are of three classes: tim-
ing constraints, precedence relations, and mutual exclusion constraints on shared re-
sources.
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Figure 2.3 Example of a preemptive schedule.

2.2.1 TIMING CONSTRAINTS

Real-time systems are characterized by computational activities with stringent timing
constraints that must be met in order to achieve the desired behavior. A typical timing
constraint on a task is the deadline, which represents the time before which a process
should complete its execution without causing any damage to the system. If a deadline
is specified with respect to the task arrival time, it is called a relative deadline, whereas
if it is specified with respect to time zero, it is called an absolute deadline. Depending
on the consequences of a missed deadline, real-time tasks are usually distinguished in
three categories:

Hard: A real-time task is said to be hard if missing its deadline may cause catas-
trophic consequences on the system under control.

Firm: A real-time task is said to be firm if missing its deadline does not cause
any damage to the system, but the output has no value.

Soft: A real-time task is said to be soft if missing its deadline has still some utility
for the system, although causing a performance degradation.

In general, a real-time task τi can be characterized by the following parameters:
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Figure 2.4 Typical parameters of a real-time task.

Arrival time ai is the time at which a task becomes ready for execution; it is also
referred as request time or release time and indicated by r i;

Computation time Ci is the time necessary to the processor for executing the
task without interruption;

Absolute Deadline di is the time before which a task should be completed to
avoid damage to the system;

Relative Deadline Di is the difference between the absolute deadline and the
request time: Di = di − ri;

Start time si is the time at which a task starts its execution;

Finishing time fi is the time at which a task finishes its execution;

Response time Ri is the difference between the finishing time and the request
time: Ri = fi − ri;

Criticality is a parameter related to the consequences of missing the deadline
(typically, it can be hard, firm, or soft);

Value vi represents the relative importance of the task with respect to the other
tasks in the system;

Lateness Li: Li = fi− di represents the delay of a task completion with respect
to its deadline; note that if a task completes before the deadline, its lateness is
negative;

Tardiness or Exceeding time Ei: Ei = max(0, Li) is the time a task stays active
after its deadline;

Laxity or Slack time Xi: Xi = di − ai − Ci is the maximum time a task can be
delayed on its activation to complete within its deadline.

Some of the parameters defined above are illustrated in Figure 2.4.
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Figure 2.5 Sequence of instances for a periodic task (a) and an aperiodic job (b).

Another timing characteristic that can be specified on a real-time task concerns the
regularity of its activation. In particular, tasks can be defined as periodic or aperiodic.
Periodic tasks consist of an infinite sequence of identical activities, called instances or
jobs, that are regularly activated at a constant rate. For the sake of clarity, from now
on, a periodic task will be denoted by τi, whereas an aperiodic job by Ji. The generic
kth job of a periodic task τi will be denoted by τi,k.

The activation time of the first periodic instance (τi,1) is called phase. If φi is the phase
of task τi, the activation time of the kth instance is given by φi + (k− 1)Ti, where Ti

is the activation period of the task. In many practical cases, a periodic process can be
completely characterized by its phase φi, its computation time Ci, its period Ti, and
its relative deadline Di.

Aperiodic tasks also consist of an infinite sequence of identical jobs (or instances);
however, their activations are not regularly interleaved. An aperiodic task where con-
secutive jobs are separated by a minimum inter-arrival time is called a sporadic task.
Figure 2.5 shows an example of task instances for a periodic and an aperiodic task.

2.2.2 PRECEDENCE CONSTRAINTS

In certain applications, computational activities cannot be executed in arbitrary order
but have to respect some precedence relations defined at the design stage. Such prece-
dence relations are usually described through a directed acyclic graph G, where tasks
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Figure 2.6 Precedence relations among five tasks.

are represented by nodes and precedence relations by arrows. A precedence graph G
induces a partial order on the task set.

The notation Ja ≺ Jb specifies that task Ja is a predecessor of task Jb, meaning
that G contains a directed path from node Ja to node Jb.

The notation Ja → Jb specifies that task Ja is an immediate predecessor of Jb,
meaning that G contains an arc directed from node Ja to node Jb.

Figure 2.6 illustrates a directed acyclic graph that describes the precedence constraints
among five tasks. From the graph structure we observe that task J 1 is the only one that
can start executing since it does not have predecessors. Tasks with no predecessors
are called beginning tasks. As J1 is completed, either J2 or J3 can start. Task J4 can
start only when J2 is completed, whereas J5 must wait for the completion of J2 and
J3. Tasks with no successors, as J4 and J5, are called ending tasks.

In order to understand how precedence graphs can be derived from tasks’ relations,
let us consider the application illustrated in Figure 2.7. Here, a number of objects
moving on a conveyor belt must be recognized and classified using a stereo vision
system, consisting of two cameras mounted in a suitable location. Suppose that the
recognition process is carried out by integrating the two-dimensional features of the
top view of the objects with the height information extracted by the pixel disparity on
the two images. As a consequence, the computational activities of the application can
be organized by defining the following tasks:
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Figure 2.7 Industrial application that requires a visual recognition of objects on a con-
veyor belt.

Two tasks (one for each camera) dedicated to image acquisition, whose objec-
tive is to transfer the image from the camera to the processor memory (they are
identified by acq1 and acq2);

Two tasks (one for each camera) dedicated to low-level image processing (typical
operations performed at this level include digital filtering for noise reduction and
edge detection; we identify these tasks as edge1 and edge2);

A task for extracting two-dimensional features from the object contours (it is
referred as shape);

A task for computing the pixel disparities from the two images (it is referred as
disp);

A task for determining the object height from the results achieved by the disp
task (it is referred as H);

A task performing the final recognition (this task integrates the geometrical fea-
tures of the object contour with the height information and tries to match these
data with those stored in the data base; it is referred as rec).

From the logic relations existing among the computations, it is easy to see that tasks
acq1 and acq2 can be executed in parallel before any other activity. Tasks edge1 and
edge2 can also be executed in parallel, but each task cannot start before the associated
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Figure 2.8 Precedence task graph associated with the industrial application illustrated in
Figure 2.7.

acquisition task completes. Task shape is based on the object contour extracted by the
low-level image processing; therefore, it must wait for the termination of both edge1
and edge2. The same is true for task disp, which however can be executed in parallel
with task shape. Then, task H can only start as disp completes and, finally, task rec
must wait the completion of H and shape. The resulting precedence graph is shown in
Figure 2.8.

2.2.3 RESOURCE CONSTRAINTS

From a process point of view, a resource is any software structure that can be used by
the process to advance its execution. Typically, a resource can be a data structure, a
set of variables, a main memory area, a file, a piece of program, or a set of registers of
a peripheral device. A resource dedicated to a particular process is said to be private,
whereas a resource that can be used by more tasks is called a shared resource.

To maintain data consistency, many shared resources do not allow simultaneous ac-
cesses by competing tasks, but require their mutual exclusion. This means that a task
cannot access a resource R if another task is inside R manipulating its data structures.
In this case, R is called a mutually exclusive resource. A piece of code executed under
mutual exclusion constraints is called a critical section.
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Figure 2.10 Example of schedule creating data inconsistency.

To better understand why mutual exclusion is important for guaranteeing data consis-
tency, consider the application illustrated in Figure 2.9, where two tasks cooperate to
track a moving object: task τW gets the object coordinates from a sensor and writes
them into a shared buffer R, containing two variables (x, y); task τD reads the vari-
ables from the buffer and plots a point on the screen to display the object trajectory.

If the access to the buffer is not mutually exclusive, task τW (having lower priority
than τD) may be preempted while updating the variables, so leaving the buffer in an
inconsistent state. The situation is illustrated in Figure 2.10, where, at time t, the (x, y)
variables have values (1,2). If τW is preempted after updating x and before updating
y, τD will display the object in (4,2), which is neither the old nor the new position.

To ensure a correct access to exclusive resources, operating systems provide a synchro-
nization mechanism (e.g., semaphores) that can be used to create critical sections of
code. In the following, when we say that two or more tasks have resource constraints,
we mean that they share resources that are accessed through a synchronization mech-
anism.
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Figure 2.12 Example of schedule when the resource is protected by a semaphore.

To avoid the problem illustrated in Figure 2.10, both tasks have to encapsulate the
instructions that manipulate the shared variables into a critical section. If a binary
semaphore s is used for this purpose, then each critical section must begin with a
wait(s) primitive and must end with a signal(s) primitive, as shown in Figure 2.11.

If the resource is free, the wait(s) primitive executed by τW notifies that a task is using
the resource, which becomes locked until the task executes the signal(s). Hence, if
τD preempts τW inside the critical section, it is blocked as soon as it executes wait(s),
and the processor is given back to τW . When τW exits its critical section by executing
signal(s), then τD is resumed and the processor is given to the ready task with the
highest priority. The resulting schedule is shown in Figure 2.12.
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Figure 2.13 Waiting state caused by resource constraints.

A task waiting for an exclusive resource is said to be blocked on that resource. All
tasks blocked on the same resource are kept in a queue associated with the semaphore
protecting the resource. When a running task executes a wait primitive on a locked
semaphore, it enters a waiting state, until another task executes a signal primitive that
unlocks the semaphore. Note that when a task leaves the waiting state, it does not
go in the running state, but in the ready state, so that the CPU can be assigned to the
highest-priority task by the scheduling algorithm. The state transition diagram relative
to the situation described above is shown in Figure 2.13.

2.3 DEFINITION OF SCHEDULING PROBLEMS

In general, to define a scheduling problem we need to specify three sets: a set of n
tasks Γ = {τ1, τ2, . . . , τn}, a set of m processors P = {P1, P2, . . . , Pm} and a set of
s types of resources R = {R1, R2, . . . , Rs}. Moreover, precedence relations among
tasks can be specified through a directed acyclic graph, and timing constraints can
be associated with each task. In this context, scheduling means assigning processors
from P and resources from R to tasks from Γ in order to complete all tasks under the
specified constraints [B+93]. This problem, in its general form, has been shown to be
NP-complete [GJ79] and hence computationally intractable.

Indeed, the complexity of scheduling algorithms is of high relevance in dynamic real-
time systems, where scheduling decisions must be taken on line during task execution.
A polynomial algorithm is one whose time complexity grows as a polynomial function
p of the input length n of an instance. The complexity of such algorithms is denoted by
O(p(n)). Each algorithm whose complexity function cannot be bounded in that way
is called an exponential time algorithm. In particular, NP is the class of all decision
problems that can be solved in polynomial time by a nondeterministic Turing machine.
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A problem Q is said to be NP-complete if Q ∈ NP and, for every Q ′ ∈ NP, Q’ is
polynomially transformable to Q [GJ79]. A decision problem Q is said to be NP-hard
if all problems in NP are polynomially transformable to Q, but we cannot show that
Q ∈ NP.

Let us consider two algorithms with complexity functions n and 5n, respectively, and
let us assume that an elementary step for these algorithms lasts 1 μs. If the input
length of the instance is n = 30, then it is easy to calculate that the polynomial algo-
rithm can solve the problem in 30 μs, whereas the other needs about 3 · 10 5 centuries.
This example illustrates that the difference between polynomial and exponential time
algorithms is large and, hence, it may have a strong influence on the performance of
dynamic real-time systems. As a consequence, one of the research objectives in real-
time scheduling is to identify simpler, but still practical, problems that can be solved
in polynomial time.

To reduce the complexity of constructing a feasible schedule, one may simplify the
computer architecture (for example, by restricting to the case of uniprocessor sys-
tems), or one may adopt a preemptive model, use fixed priorities, remove precedence
and/or resource constraints, assume simultaneous task activation, homogeneous task
sets (solely periodic or solely aperiodic activities), and so on. The assumptions made
on the system or on the tasks are typically used to classify the various scheduling
algorithms proposed in the literature.

2.3.1 CLASSIFICATION OF SCHEDULING
ALGORITHMS

Among the great variety of algorithms proposed for scheduling real-time tasks, the
following main classes can be identified:

Preemptive vs. Non-preemptive.

– In preemptive algorithms, the running task can be interrupted at any time
to assign the processor to another active task, according to a predefined
scheduling policy.

– In non-preemptive algorithms, a task, once started, is executed by the pro-
cessor until completion. In this case, all scheduling decisions are taken as
the task terminates its execution.
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Static vs. Dynamic.

– Static algorithms are those in which scheduling decisions are based on fixed
parameters, assigned to tasks before their activation.

– Dynamic algorithms are those in which scheduling decisions are based on
dynamic parameters that may change during system evolution.

Off-line vs. Online.

– A scheduling algorithm is used off line if it is executed on the entire task
set before tasks activation. The schedule generated in this way is stored in
a table and later executed by a dispatcher.

– A scheduling algorithm is used online if scheduling decisions are taken at
runtime every time a new task enters the system or when a running task
terminates.

Optimal vs. Heuristic.

– An algorithm is said to be optimal if it minimizes some given cost function
defined over the task set. When no cost function is defined and the only
concern is to achieve a feasible schedule, then an algorithm is said to be
optimal if it is able to find a feasible schedule, if one exists.

– An algorithm is said to be heuristic if it is guided by a heuristic function
in taking its scheduling decisions. A heuristic algorithm tends toward the
optimal schedule, but does not guarantee finding it.

Moreover, an algorithm is said to be clairvoyant if it knows the future; that is, if it
knows in advance the arrival times of all the tasks. Although such an algorithm does
not exist in reality, it can be used for comparing the performance of real algorithms
against the best possible one.

GUARANTEE-BASED ALGORITHMS

In hard real-time applications that require highly predictable behavior, the feasibility
of the schedule should be guaranteed in advance; that is, before task execution. In this
way, if a critical task cannot be scheduled within its deadline, the system is still in
time to execute an alternative action, attempting to avoid catastrophic consequences.
In order to check the feasibility of the schedule before tasks’ execution, the system
has to plan its actions by looking ahead in the future and by assuming a worst-case
scenario.
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In static real-time systems, where the task set is fixed and known a priori, all task
activations can be precalculated off line, and the entire schedule can be stored in a
table that contains all guaranteed tasks arranged in the proper order. Then, at runtime,
a dispatcher simply removes the next task from the table and puts it in the running
state. The main advantage of the static approach is that the runtime overhead does
not depend on the complexity of the scheduling algorithm. This allows very sophis-
ticated algorithms to be used to solve complex problems or find optimal scheduling
sequences. On the other hand, however, the resulting system is quite inflexible to
environmental changes; thus, predictability strongly relies on the observance of the
hypotheses made on the environment.

In dynamic real-time systems (typically consisting of firm tasks), tasks can be created
at runtime; hence the guarantee must be done online every time a new task is created.
A scheme of the guarantee mechanism typically adopted in dynamic real-time systems
is illustrated in Figure 2.14.

If Γ is the current task set that has been previously guaranteed, a newly arrived task
τnew is accepted into the system if and only if the task set Γ ′ = Γ ∪ {τnew} is found
schedulable. If Γ′ is not schedulable, then task τnew is rejected to preserve the feasi-
bility of the current task set.

It is worth noting that since the guarantee mechanism is based on worst-case assump-
tions a task could unnecessarily be rejected. This means that the guarantee of firm
tasks is achieved at the cost of a lower efficiency. On the other hand, the benefit of
having a guarantee mechanism is that potential overload situations can be detected in
advance to avoid negative effects on the system. One of the most dangerous phenom-
ena caused by a transient overload is called domino effect. It refers to the situation
in which the arrival of a new task causes all previously guaranteed tasks to miss their
deadlines. Let us consider for example the situation depicted in Figure 2.15, where
five jobs are scheduled based on their absolute deadlines.

READY RUNNING
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scheduling

terminationactivation
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acceptance
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NO

signal
free resource

wait on
busy resource

WAITING

Figure 2.14 Scheme of the guarantee mechanism used in dynamic real-time systems.
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Figure 2.15 Example of domino effect.

At time t0, if job Jnew were accepted, all the other jobs (previously schedulable)
would miss their deadlines. In planned-based algorithms, this situation is detected at
time t0, when the guarantee is performed, and causes job Jnew to be rejected.

In summary, the guarantee test ensures that, once a task is accepted, it will complete
within its deadline and, moreover, its execution will not jeopardize the feasibility of
the tasks that have been previously guaranteed.

BEST-EFFORT ALGORITHMS

In certain real-time applications, computational activities have soft timing constraints
that should be met whenever possible to satisfy system requirements. In these systems,
missing soft deadlines do not cause catastrophic consequences, but only a performance
degradation.

For example, in typical multimedia applications, the objective of the computing sys-
tem is to handle different types of information (such as text, graphics, images, and
sound) in order to achieve a certain quality of service for the users. In this case, the
timing constraints associated with the computational activities depend on the qual-
ity of service requested by the users; hence, missing a deadline may only affect the
performance of the system.

To efficiently support soft real-time applications that do not have hard timing require-
ments, a best-effort approach may be adopted for scheduling.
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A best-effort scheduling algorithm tries to “do its best” to meet deadlines, but there is
no guarantee of finding a feasible schedule. In a best-effort approach, tasks may be
enqueued according to policies that take time constraints into account; however, since
feasibility is not checked, a task may be aborted during its execution. On the other
hand, best-effort algorithms perform much better than guarantee-based schemes in
the average case. In fact, whereas the pessimistic assumptions made in the guarantee
mechanism may unnecessarily cause task rejections, in best-effort algorithms a task is
aborted only under real overload conditions.

2.3.2 METRICS FOR PERFORMANCE EVALUATION

The performance of scheduling algorithms is typically evaluated through a cost func-
tion defined over the task set. For example, classical scheduling algorithms try to
minimize the average response time, the total completion time, the weighted sum of
completion times, or the maximum lateness. When deadlines are considered, they are
usually added as constraints, imposing that all tasks must meet their deadlines. If some
deadlines cannot be met with an algorithm A, the schedule is said to be infeasible by
A. Table 2.1 shows some common cost functions used for evaluating the performance
of a scheduling algorithm.

The metrics adopted in the scheduling algorithm has strong implications on the perfor-
mance of the real-time system [SSDNB95], and it must be carefully chosen according
to the specific application to be developed. For example, the average response time is
generally not of interest for real-time applications, because there is not direct assess-
ment of individual timing properties such as periods or deadlines. The same is true
for minimizing the total completion time. The weighted sum of completion times is
relevant when tasks have different importance values that they impart to the system
on completion. Minimizing the maximum lateness can be useful at design time when
resources can be added until the maximum lateness achieved on the task set is less
than or equal to zero. In that case, no task misses its deadline. In general, however,
minimizing the maximum lateness does not minimize the number of tasks that miss
their deadlines and does not necessarily prevent one or more tasks from missing their
deadline.

Let us consider, for example, the case depicted in Figure 2.16. The schedule shown in
Figure 2.16a minimizes the maximum lateness, but all tasks miss their deadline. On
the other hand, the schedule shown in Figure 2.16b has a greater maximum lateness,
but four tasks out of five complete before their deadline.
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Average response time:

tr =
1
n

n∑
i=1

(fi − ai)

Total completion time:

tc = max
i

(fi) − min
i

(ai)

Weighted sum of completion times:

tw =
n∑

i=1

wifi

Maximum lateness:

Lmax = max
i

(fi − di)

Maximum number of late tasks:

Nlate =
n∑

i=1

miss(fi)

where

miss(fi) =
{

0 if fi ≤ di

1 otherwise

Table 2.1 Example of cost functions.
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Figure 2.16 The schedule in (a) minimizes the maximum lateness, but all tasks miss their
deadline. The schedule in (b) has a greater maximum lateness, but four tasks out of five
complete before their deadline.

When tasks have soft deadlines and the application goal is to meet as many deadlines
as possible (without a priori guarantee), then the scheduling algorithm should use a
cost function that minimizes the number of late tasks.

In other applications, the benefit of executing a task may depend not only on the task
importance but also on the time at which it is completed. This can be described by
means of specific utility functions, which describe the value associated with the task
as a function of its completion time.

Figure 2.17 illustrates some typical utility functions that can be defined on the applica-
tion tasks. For instance, non-real-time tasks (a) do not have deadlines, thus the value
achieved by the system is proportional to the task importance and does not depend
on the completion time. Soft tasks (b) have noncritical deadlines; therefore, the value
gained by the system is constant if the task finishes before its deadline but decreases
with the exceeding time. In some cases (c), it is required to execute a task on-time;
that is, not too early and not too late with respect to a given deadline. Hence, the
value achieved by the system is high if the task is completed around the deadline, but
it rapidly decreases with the absolute value of the lateness. Such types of constraints
are typical when playing notes, since the human ear is quite sensitive to time jitter.
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Figure 2.17 Example of cost functions for different types of tasks.

In other cases (d), executing a task after its deadline does not cause catastrophic con-
sequences, but there is no benefit for the system, thus the utility function is zero after
the deadline.

When utility functions are defined on the tasks, the performance of a scheduling al-
gorithm can be measured by the cumulative value, given by the sum of the utility
functions computed at each completion time:

Cumulative value =
n∑

i=1

v(fi).

This type of metrics is very useful for evaluating the performance of a system during
overload conditions, and it is considered in more detail in Chapter 9.

2.4 SCHEDULING ANOMALIES

In this section we describe some singular examples that clearly illustrate that real-
time computing is not equivalent to fast computing, since, for example, an increase of
computational power in the supporting hardware does not always cause an improve-
ment of performance. These particular situations, called Richard’s anomalies, were
described by Graham in 1976 and refer to task sets with precedence relations executed
in a multiprocessor environment.
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Figure 2.18 Precedence graph of the task set J ; numbers in parentheses indicate compu-
tation times.

Designers should be aware of such insidious anomalies to take the proper countermea-
sures to avoid them. The most important anomalies are expressed by the following
theorem [Gra76, SSDNB95]:

Theorem 2.1 (Graham, 1976) If a task set is optimally scheduled on a multiproces-
sor with some priority assignment, a fixed number of processors, fixed execution times,
and precedence constraints, then increasing the number of processors, reducing ex-
ecution times, or weakening the precedence constraints can increase the schedule
length.

This result implies that, if tasks have deadlines, then adding resources (for example,
an extra processor) or relaxing constraints (less precedence among tasks or fewer exe-
cution times requirements) can make things worse. A few examples can best illustrate
why this theorem is true.

Let us consider a task set consisting of nine jobs J = {J1, J2, . . . , J9}, sorted by
decreasing priorities, so that Ji priority is greater than Jj priority if and only if i < j.
Moreover, jobs are subject to precedence constraints that are described through the
graph shown in Figure 2.18. Computation times are indicated in parentheses.

If this task set is executed on a parallel machine with three processors, where the
highest priority task is assigned to the first available processor, the resulting schedule
σ∗ is illustrated in Figure 2.19, where the global completion time is t c = 12 units of
time.
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Figure 2.19 Optimal schedule of task set J on a three-processor machine.
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Figure 2.20 Schedule of task set J on a four-processor machine.

Now we will show that adding an extra processor, reducing tasks’ execution times, or
weakening precedence constraints will increase the global completion time of the task
set.

NUMBER OF PROCESSORS INCREASED

If we execute the task set J on a more powerful machine consisting of four processors,
we obtain the schedule illustrated in Figure 2.20, which is characterized by a global
completion time of tc = 15 units of time.

COMPUTATION TIMES REDUCED

One could think that the global completion time of the task set J could be improved by
reducing tasks’ computation times of each task. However, we can surprisingly see that,
reducing the computation time of each task by one unit of time, the schedule length
will increase with respect to the optimal schedule σ∗, and the global completion time
will be tc = 13, as shown in Figure 2.21.
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Figure 2.21 Schedule of task set J on three processors, with computation times reduced
by one unit of time.
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Figure 2.22 a. Precedence graph of task set J obtained by removing the constraints on
tasks J7 and J8. b. Schedule of task set J on three processors, with precedence constraints
weakened.

PRECEDENCE CONSTRAINTS WEAKENED

Scheduling anomalies can also arise by removing precedence constraints from the
directed acyclic graph depicted in Figure 2.18. For instance, removing the precedence
relations between job J4 and jobs J7 and J8 (see Figure 2.22a), we obtain the schedule
shown in Figure 2.22b, which is characterized by a global completion time of t c = 16
units of time.
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Figure 2.23 Example of anomaly under resource constraints. If J2 and J4 share the same
resource in exclusive mode, the optimal schedule length (a) increases if the computation
time of job J1 is reduced (b). Jobs are statically allocated on the processors.

ANOMALIES UNDER RESOURCE CONSTRAINTS

The following example shows that, in the presence of shared resources, the schedule
length of a task set can increase when reducing tasks’ computation times. Consider
the case illustrated in Figure 2.23, where five jobs are statically allocated on two pro-
cessors: jobs J1 and J2 on processor P1, and jobs J3, J4 and J5 on processor P2 (jobs
are indexed by decreasing priority). Moreover, jobs J 2 and J4 share the same resource
in exclusive mode; hence their execution cannot overlap in time. A schedule of this
task set is shown in Figure 2.23a, where the total completion time is t c = 17.

If we now reduce the computation time of job J1 on the first processor, then J2 can be-
gin earlier and take the resource before J4. As a consequence, job J4 must now block
over the shared resource and possibly miss its deadline. This situation is illustrated in
Figure 2.23b. As we can see, the blocking time experienced by J 4 causes a delay in
the execution of J5 (which may also miss its deadline), increasing the total completion
time of the task set from 17 to 22.
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Notice that the scheduling anomaly illustrated by the previous example is particu-
larly insidious for hard real-time systems, because tasks are guaranteed based on their
worst-case behavior, but they may complete before their worst-case computation time.
A simple solution that avoids the anomaly is to keep the processor idle if tasks com-
plete earlier, but this can be very inefficient. There are algorithms, such as the one
proposed by Shen [SRS93], that tries to reclaim such an idle time, while addressing
the anomalies so that they will not occur.

If tasks share mutually exclusive resources, scheduling anomalies can also occur in
a uniprocessor system when changing the processor speed [But06]. In particular, the
anomaly can be expressed as follows:

A real-time application that is feasible on a given processor can become
infeasible when running on a faster processor.

Figure 2.24 illustrates a simple example where two tasks, τ1 and τ2, share a common
resource (critical sections are represented by light grey areas). Task τ 1 has a higher
priority, arrives at time t = 2 and has a relative deadline D1 = 7. Task τ2, having
lower priority, arrives at time t = 0 and has a relative deadline D2 = 23. Suppose that,
when the tasks are executed at a certain speed S1, τ1 has a computation time C1 = 6,
(where 2 units of time are spent in the critical section), whereas τ2 has a computation
time C2 = 18 (where 12 units of time are spent in the critical section). As shown in
Figure 2.24a, if τ1 arrives just before τ2 enters its critical section, it is able to complete
before its deadline, without experiencing any blocking. However, if the same task set
is executed at a double speed S2 = 2S1, τ1 misses its deadline, as clearly illustrated in
Figure 2.24b. This happens because, when τ1 arrives, τ2 already granted its resource,
causing an extra blocking in the execution of τ1, due to mutual exclusion.

Although the average response time of the task set is reduced on the faster processor
(from 14 to 9.5 units of time), note that the response time of task τ 1 increases when
doubling the speed, because of the extra blocking on the shared resource.

ANOMALIES UNDER NON-PREEMPTIVE SCHEDULING

Similar situations can occur in non-preemptive scheduling. Figure 2.25 illustrates an
anomalous behavior occurring in a set of three real-time tasks, τ 1, τ2 and τ3, running
in a non-preemptive fashion. Tasks are assigned a fixed priority proportional to their
relative deadline, thus τ1 is the task with the highest priority and τ3 is the task with
the lowest priority. As shown in Figure 2.25a, when tasks are executed at speed S 1,
τ1 has a computation time C1 = 2 and completes at time t = 6. However, if the same
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Figure 2.24 Scheduling anomaly in the presence of resource constraints: task τ1 meets its
deadline when the processor is executing at a certain speed S1 (a), but misses its deadline
when the speed is doubled (b).

task set is executed with double speed S2 = 2S1, τ1 misses its deadline, as clearly
illustrated in Figure 2.25b. This happens because, when τ1 arrives, τ3 already started
its execution and cannot be preempted (due to the non-preemptive mode).

It is worth observing that a set of non-preemptive tasks can be considered as a special
case of a set of tasks sharing a single resource (the processor) for their entire execution.
According to this view, each task executes as it were inside a big critical section with
a length equal to the task computation time. Once a task starts executing, it behaves as
it were locking a common semaphore, thus preventing all the other tasks from taking
the processor.
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Figure 2.25 Scheduling anomaly in the presence of non-preemptive tasks: task τ1 meets
its deadline when the processor is executing at speed S1 (a), but misses its deadline when
the speed is doubled (b).

ANOMALIES USING A DELAY PRIMITIVE

Another timing anomaly can occur when tasks using shared resources explicitly sus-
pend themselves through a delay(T ) system call, which suspends the execution of the
calling task for T units of time. Figure 2.26a shows a case in which τ1 is feasible and
has a slack time of 6 units when running at the highest priority, suggesting that it could
easily tolerate a delay of two units. However, if τ1 executes a delay(2) at time t = 2,
it gives the opportunity to τ2 to lock the shared resource. Hence, when τ1 resumes,
it has to block on the semaphore for 7 units, thus missing its deadline, as shown in
Figure 2.26b.
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Figure 2.26 Scheduling anomaly in the presence of a delay: τ1 has a slack of 6 units of
time when running at the highest priority (a), but cannot tolerate a self suspension of two
units (b).

The example shown in Figure 2.26 illustrates an anomaly in which a task with a large
slack cannot tolerate a self suspension of a much smaller value. Figure 2.27 shows
another case in which the suspension of a task can also cause a longer delay in a
different task, even without sharing any resource. When τ 1 is assigned a higher priority
than τ2, the resulting schedule shown in Figure 2.27a is feasible, with a slack for τ 1 of
3 units of time. However, if the third instance of τ1 executes a delay(1) after one unit
of execution, τ2 will miss its deadline.
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Figure 2.27 Scheduling anomaly in the presence of a delay: two tasks are feasible without
delays (a), but a delay in τ1 causes a deadline miss in τ2 (b).

Exercises

2.1 Give the formal definition of a schedule, explaining the difference between
preemptive and non-preemptive scheduling.

2.2 Explain the difference between periodic and aperiodic tasks, and describe the
main timing parameters that can be defined for a real-time activity.

2.3 Describe a real-time application as a number of tasks with precedence relations,
and draw the corresponding precedence graph.

2.4 Discuss the difference between static and dynamic, online and off-line, optimal,
and heuristic scheduling algorithms.

2.5 Provide an example of domino effect, caused by the arrival of a task J ∗, in a
feasible set of three tasks.
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