
2

Installing and Updating R

When you purchase SAS, WPS or SPSS, they sell you a“binary”version. That
is one that the company has compiled for you from the “source code” version
they wrote using languages such as C, FORTRAN, or Java. You usually install
everything you purchased at once and do not give it a second thought. Instead,
R is modular. The main installation provides Base R and a recommended set
of add-on modules called packages. You can install other packages later when
you need them. With thousands to choose from, few people need them all.

To download R itself, go to the Comprehensive R Archive Network
(CRAN) at http://cran.r-project.org/. Choose your operating system
under the web page heading, Download and Install R. The binary versions
install quickly and easily. Binary versions exist for many operating systems
including Windows, Mac OS X, and popular versions of Linux such as Ubuntu,
RedHat, Suse, and others that use either the RPM or APT installers.

Since R is an Open Source project, there are also source code versions of
R for experienced programmers who prefer to compile their own copy. Using
that version, you can modify R in any way you like. Although R’s developers
write many of its analytic procedures (or at least parts of them) using the R
language, they use other languages such as C and FORTRAN to write R’s
most fundamental functions.

Each version of R installs into its own directory (folder), so there is no
problem having multiple versions installed on your computer. You can then
install your favorite add-on packages for the new release.

2.1 Installing Add-on Packages

While the main installation of R contains many useful functions, many addi-
tional packages, written by R users, are available on the Internet. The main
site for additional packages is at the CRAN web site under Packages. The sec-
tion labeled Task Views organizes packages by task, such as Bayesian, Cluster
Analysis, Distribution, Econometrics, and so on. While CRAN is a good place

DOI 10.1007/978-1-4614-0685-3_2, © Springer Science+Business Media, LLC 2011
, Statistics and Computing,R.A. Muenchen, R for SAS and SPSS Users 11

http://cran.r-project.org/

12 2 Installing and Updating R

to read about and choose packages to install, you usually do not need to down-
load them from there yourself. As you will see, R automates the download and
installation process. A comparison of SAS and SPSS add-ons to R packages is
presented at this book’s web site, http://www.r4stats.com. Another useful
site helps you to find useful packages and write reviews of packages you like:
Crantastic at http://crantastic.org/.

Before installing packages, your computer account should have adminis-
trative privileges and you must start R in a manner that allows administrative
control. If you do not have administrative privileges on your computer, you can
install packages to a directory to which you have write access. For instructions,
see the FAQ (F requently Asked Questions) at http://www.r-project.org/.

To start R with administrative control on Windows Vista or later, right-
click its menu choice and then choose Run as administrator. Window’s User
Account Control will then ask for your permission to allow R to modify your
computer.

On the R version for Microsoft Windows, you can choose Packages> Install
package(s) from the menus. It will ask you to choose a CRAN site or “mirror”
that is close you:

CRAN mirror

Australia

Austria

Belgium

Brazil (PR)

...

USA (TX 2)

USA (WA)

Then it will ask which package you wish to install:

Packages

abc

abd

abind

AcceptanceSampling

...

zipcode

zoo

zyp

Choose one of each and click OK.
If you prefer to use a function instead of the menus, you can use the

install.packages function. For example, to download and install Frank Har-
rell’s Hmisc package [32], start R and enter the command:

install.packages("Hmisc")

http://www.r4stats.com
http://crantastic.org/
http://www.r-project.org/

2.2 Loading an Add-on Package 13

R will then prompt you to choose the closest mirror site and the package
you need. If you are using a graphical user interface (GUI), you click on your
choice, then click OK. If not, R will number them for you and you enter the
number of the mirror.

A common error is to forget the quotes around the package name:

> install.packages(Hmisc) # Quotes are missing!

Error in install.packages(Hmisc) : object 'Hmisc' not found

Older versions of R also required the argument dependencies = TRUE,
which tells R to also install any packages that this package “depends” on and
those that its author “suggests” as useful. That is now the default setting and
so it is usually best to avoid adding that. However, a few packages still require
that setting. The best known of these packages is Fox’s R Commander user
interface. So you would install it using:

install.packages("Rcmdr", dependencies = TRUE)

After a package is installed, you can find out how to cite it using the
citation function. Note that you call this function with the package name in
quotes:

> citation("Rcmdr")

To cite package 'Rcmdr' in publications use:

John Fox <jfox@mcmaster.ca>, with

contributions from ...(2010). Rcmdr: R

Commander. R package version 1.6-2.

http://CRAN.R-project.org/package=Rcmdr

A BibTeX entry for LaTeX users is

@Manual{,

title = {Rcmdr: R Commander},

author = {John Fox and with contributions from ...

If you use simply citation() it will tell you how to cite R itself.

2.2 Loading an Add-on Package

Once installed, a package is on your computer’s hard drive in an area called
your library. However, it is not quite ready to use. Each time you start R,
you also have to load the package from your library into your computer’s
main memory before you can use it. The reason for this additional step is

mailto:jfox@mcmaster.ca
http://CRAN.R-project.org/package=Rcmdr

14 2 Installing and Updating R

twofold. It makes efficient use of your computer’s memory and it keeps different
packages conflicting with each other, or with base R functions. You can see
what packages are installed and ready to load with the library function:

> library()

R Packages available

Packages in library 'C:/PROGRA~1/R/R-212~1.1/library':

anchors Statistical analysis of surveys with...

arules Mining Association Rules and Frequent Itemsets

base The R Base Package

...

xtable Export tables to LaTeX or HTML

xts Extensible Time Series

Zelig Everyone's Statistical Software

If you have just installed R, this command will show you the Base and
Recommended Packages. They are the ones that are thoroughly tested by the
R Core Team. The similar installed.packages function lists your installed
packages along with the version and location of each.

You can load a package you need with the menu selection, Packages> Load
packages. It will show you the names of all packages that you have installed
but have not yet loaded. You can then choose one from the list.

Alternatively, you can use the library function. Here I am loading the
Hmisc package. Since the Linux version lacks menus, this function is the only
way to load packages.

library("Hmisc")

With the library function, the quotes around the package name are op-
tional and are not usually used. However, other commands that refer to pack-
age names – such as install.packages – require them.

Many packages load without any messages; you will just see the“>”prompt
again. When trying to load a package, you may see the error message below. It
means you have either mistyped the package name (remember capitalization
is important) or you have not installed the package before trying to load
it. In this case, Lemon and Grosjean’s prettyR [38] package name is typed
accurately, so I have not yet installed it.

> library("prettyR")

Error in library("prettyR") :

there is no package called 'prettyR'

To see what packages you have loaded, use the search function.

2.3 Updating Your Installation 15

> search()

[1] ".GlobalEnv" "package:Hmisc"

[3] "package:stats" "package:graphics"

[5] "package:grDevices" "package:utils"

[7] "package:datasets" "package:methods"

[9] "Autoloads" "package:base"

We will discuss this function in detail in Chapter 13, “Managing Your Files
and Workspace.”

Since there are so many packages written by users, two packages will occa-
sionally have functions with the same name. That can be very confusing until
you realize what is happening. For example, the Hmisc and prettyR packages
both have a describe function that does similar things. In such a case, the
package you load last will mask the function(s) in the package you loaded ear-
lier. For example, I loaded the Hmisc package first, and now I am loading the
prettyR package (having installed it in the meantime). The following message
results:

> library("prettyR")

Attaching package: 'prettyR'

The following object(s) are masked from package:Hmisc :

describe

Since people usually want to use the functions in the package they loaded
most recently, this is rarely a problem. However, if warnings like these bother
you, you can avoid them by detaching each package as soon as you are done
using it by using the detach function. For details, see Section 13.4, “Loading
Packages.”

If your favorite packages do not conflict with one anther, you can have R
load them each time you start R by putting the commands in a file named
“.Rprofile”. That file can automate your settings just like the autoexec.sas file
for SAS. For details, see Appendix C.

2.3 Updating Your Installation

Keeping your add-on packages current is very easy. You simply use the
update.packages function.

> update.packages()

graph :

Version 1.15.6 installed in C:/PROGRA~1/R/R-26~1.1/library

16 2 Installing and Updating R

Version 1.16.1 available at

http://rh-mirror.linux.iastate.edu/CRAN

Update (y/N/c)? y

R will ask you if you want to update each package. That can get tedious if
you have a lot of packages to install. You can avoid that starting the update
process with:

update.packages(ask = FALSE)

If you enter“y,”it will do it and show you the following. This message, repeated
for each package, tells you what file it is getting from the mirror you requested
(Iowa State) and where it placed the file.

trying URL 'http://rh-mirror.linux.iastate.edu

/CRAN/bin/windows/contrib/2.6/graph_1.16.1.zip'

Content type 'application/zip' length 870777 bytes (850 Kb)

opened URL

downloaded 850 Kb

This next message tells you that the file was checked for errors (its sums
were checked) and it says where it stored the file. As long as you see no error
messages, the update is complete.

package 'graph' successfully unpacked and MD5 sums checked

The downloaded packages are in

C:/Documents and Settings/muenchen/Local Settings/

Temp/Rtmpgf4C4B/downloaded_packages

updating HTML package descriptions

Moving to a whole new version of R is not as easy. First, you download and
install the new version just like you did the first one. Multiple versions can
coexist on the same computer. You can even run them at the same time if you
wanted to compare results across versions. When you install a new version of
R, I recommend also installing your add-on packages again. There are ways
to point your new version to the older set of packages, I find them more
trouble than they are worth. You can reinstall your packages in the step-
by-step fashion discussed previously. An easier way is to define a character
variable like “myPackages” that contains the names of the packages you use.
The following is an example that uses this approach to install most of the
packages we use in this book1.

myPackages <- c("car", "hexbin", "Hmisc", "ggplot2",

"gmodels", "gplots", "reshape2", "prettyR", "xtable")

1 R Commander is left out since it requires dependencies = TRUE.

http://rh-mirror.linux.iastate.edu/CRAN
http://rh-mirror.linux.iastate.edu/CRAN/bin/windows/contrib/2.6/graph_1.16.1.zip
http://rh-mirror.linux.iastate.edu/CRAN/bin/windows/contrib/2.6/graph_1.16.1.zip

2.5 Uninstalling a Package 17

install.packages(myPackages)

We will discuss the details of the c function used above later. We will also
discuss how to store programs like this so you can open and execute them
again in the future. While this example makes it clear what we are storing
in myPackages, a shortcut to creating it is to use the installed.packages

function:

myPackages <- row.names(installed.packages())

You can automate the creation of myPackages (or whatever name you
choose to store your package names) by placing either code example that
defines it in your .Rprofile. Putting it there will ensure that myPackages is
defined every time you start R. As you find new packages to install, you
can add to the definition of myPackages. Then installing all of them when a
new version of R comes out is easy. Of course, you do not want to place the
install.packages function into your .Rprofile. There is no point in installing
package every time you start R! For details, see Appendix C.

2.4 Uninstalling R

When you get a new version of any software package, it is good to keep the
old one around for a while in case any bugs show up in the new one. Once
you are confident that you will no longer need an older version of R, you can
remove it.

In Microsoft Window, uninstall it in the usual way using Start> Control
Panel, then Programs and Features. To uninstall R on the Macintosh, simply
drag the application to the trash. Linux users should use their distribution’s
package manager to uninstall R.

2.5 Uninstalling a Package

Since uninstalling R itself also removes any packages in your library, it is
rarely necessary to uninstall packages separately. However, it is occasionally
necessary. You can uninstall a package using the uninstall.packages func-
tion. First, though, you must make sure it is not in use by detaching it. For
example, to remove just the Hmisc package, use the following code:

detach("package:Hmisc") # If it is loaded.

remove.packages("Hmisc")

18 2 Installing and Updating R

2.6 Choosing Repositories

While most R packages are stored at the CRAN site, there are other repos-
itories. If the Packages window does not list the one you need, you may
need to choose another repository. The Omegahat Project for Statistical
Computing [59] at http://www.omegahat.org/ and R-Forge [61] at http:

//r-forge.r-project.org/ are repositories similar to CRAN that have a
variety of different packages available. There are also several repositories as-
sociated with the BioConductor project. As they say at their main web site,
http://www.bioconductor.org/, “BioConductor is an open source and open
development software project for the analysis and comprehension of genomic
data” [23].

To choose your repositories, choose Packages> Select repositories. . . and
the Repositories window will appear:

Repositories

CRAN

CRAN (extras)

Omegahat

BioC software

BioC annotation

BioC experiment

BioC extra

R-Forge

rforge.net

The two CRAN repositories are already set by default. Your operating
system’s common mouse commands work as usual to make contiguous or
noncontiguous selections. In Microsoft Window, that is Shift-click and Ctrl-
click, respectively.

You can also select repositories using the setRepositories function:

> setRepositories()

If you are using a GUI the result will be the same. If you are instead working
without a graphical user interface, R will number the repositories and prompt
you to enter the number(s) of those you need.

2.7 Accessing Data in Packages

You can get a list of data sets available in each loaded package with the data
function. A window listing the default data sets will appear:

> data()

R data sets

http://www.omegahat.org/
http://www.bioconductor.org/

2.7 Accessing Data in Packages 19

Data sets in package 'datasets':

AirPassengers Monthly Airline Passenger Numbers 1949-1960

BJsales Sales Data with Leading Indicator

CO2 Carbon Dioxide Uptake in Grass Plants

...

volcano Topographic Information on Auckland's...

warpbreaks The Number of Breaks in Yarn during Weaving

women Average Heights and Weights for American Women

You can usually use these practice data sets directly. For example, to look
at the top of the CO2 file (capital letters C and O, not zero!), you can use the
head function:

> head(CO2)

Plant Type Treatment conc uptake

1 Qn1 Quebec nonchilled 95 16.0

2 Qn1 Quebec nonchilled 175 30.4

3 Qn1 Quebec nonchilled 250 34.8

4 Qn1 Quebec nonchilled 350 37.2

5 Qn1 Quebec nonchilled 500 35.3

6 Qn1 Quebec nonchilled 675 39.2

The similar tail function shows you the bottom few observations.
Not all packages load their example data sets when you load the packages.

If you see that a package includes a data set, but you cannot access it after
loading the package, try loading it specifically using the data function. For
example:

data(CO2)

If you only want a list of data sets in a particular package, you can use
the package argument. For example, if you have installed the car package
[21] (from Fox’s Companion to Applied Regression), you can load it from the
library and see the data sets only it has using the following statements:

> library("car")

> data(package = "car")

Data sets in package 'car':

AMSsurvey American Math Society Survey Data

Adler Experimenter Expectations

Angell Moral Integration of American Cities

Anscombe U. S. State Public-School Expenditures

Baumann Methods of Teaching Reading Comprehension

20 2 Installing and Updating R

Bfox Canadian Women's Labour-Force Participation

Blackmoor Exercise Histories of Eating-Disordered...

Burt Fraudulent Data on IQs of Twins Raised Apart

...

You could then print the top of any data set using the head function:

> head(Adler)

instruction expectation rating

1 GOOD HIGH 25

2 GOOD HIGH 0

3 GOOD HIGH -16

4 GOOD HIGH 5

5 GOOD HIGH 11

6 GOOD HIGH -6

To see all of the data sets available in all the packages you have installed,
even those not loaded from your library, enter the following function call:

data(package = .packages(all.available = TRUE))

http://www.springer.com/978-1-4614-0684-6

	2 Installing and Updating R
	2.1 Installing Add-on Packages
	2.2 Loading an Add-on Package
	2.3 Updating Your Installation
	2.4 Uninstalling R
	2.5 Uninstalling a Package
	2.6 Choosing Repositories
	2.7 Accessing Data in Packages

