
21A. Salminen and F. Tompa, Communicating with XML,
DOI 10.1007/978-1-4614-0992-2_2, © Springer Science+Business Media, LLC 2011

 Abstract The primary purpose of the chapter is to introduce the basics for reading
and writing text with XML markup. The logical structure of an XML document
includes primarily nested elements, some of which have associated attributes.
A document type defi nition (DTD) can be included to constrain the contents and
structure of the document. The concepts of well-formedness and validity of
 documents are defi ned. Two alternative constraining mechanisms, XML Schema
and RELAX NG, are introduced and compared to DTDs. Finally, the two standard
processing models for XML, one based on streams and one based on trees, are intro-
duced. Although not all details of XML are covered, the chapter provides some
 literacy with respect to XML specifi cations, so that the complete language can be
learned as necessary.

 Keywords DTD • Formal grammars • Logical structure • Namespaces • Physical
structure • Processing models • RELAX NG • Schema languages • XML documents
• XSD

 Chapter 1 introduced markup and some of the basic ideas and uses of XML. This
chapter describes XML in more detail and how it is processed by computers. Like
HTML, the unit of communication when using XML is a document.

 The abbreviation XML comes from the name Extensible Markup Language . XML was
developed initially for representing information in the context of the Internet. When using
XML, software applications store and exchange data in the form of documents. Within
those documents, structural elements are named and marked up in a systematic way to
facilitate applications’ processing of the elements. XML is a restricted form of SGML, 1 an
older markup language.

 The rules constraining all XML documents are defi ned in XML specifi cations pub-
lished by the World Wide Web Consortium (W3C) as W3C Recommendations [23] .

 Chapter 2
 Fundamentals

 1 SGML, the Standard Generalized Markup Language, was accepted as ISO standard 8879 in 1986
 [16] and later augmented by supplements [17] .

22 2 Fundamentals

The fi rst W3C Recommendation for XML was published in 1998 [5] . Since then, four
new editions of version 1.0 have been published, in 2000, 2004, 2006, and 2008.
These four specifi cations do not defi ne a new language version but provide corrections
for errors discovered after publication of the previous edition. A new version 1.1 of
XML was published in February 2004 [6] , with a second edition in 2006.

 The history leading to the development of XML, as well as the history of XML
itself, is summarized in Appendix B. The XML development at W3C is closely
related to both software development for processing XML and applications devel-
opment activities where XML-related representation and communication languages
are developed around the world for various communities and application areas. We
describe the development process for W3C specifi cations in Sect. 3.1 .

 We start this chapter by fi rst introducing the way XML and XML-based lan-
guages utilize formal grammar rules to defi ne constraints for languages. In Sect. 2.2
we introduce the processing context of XML documents, which is needed to under-
stand the role of various XML document components in XML communication.
Then in Sect. 2.3 we give an overview of the data structure called XML document .
The defi nition capabilities included in XML documents are described in Sect. 2.4 .
Finally, Sect. 2.5 introduces two alternative processing models for XML documents:
stream processing and tree processing.

 2.1 Formal Grammars

 Natural and formal languages are both important in Web communications. Natural
languages are used by humans to communicate among themselves; no technology
need be involved unless the humans are separated from each other in space or time.
For a particular natural language, there may be written rules for building valid sen-
tences in the language, but the rules do not cover the full variety of expressions used
by people. Furthermore, people can use a natural language long before they learn to
articulate its rules.

 XML documents very often include parts written in a natural language, but XML
itself and the XML-based markup languages are formal languages, defi ned by for-
mal grammars. A formal language is a set of character strings for which the charac-
ters are taken from a given alphabet and concatenated into strings according to exact
rules. The language consisting of all positive numbers (that is, strings of digits, such
as 301992, 7, and 4124) is an example of a formal language: we can defi ne exact
rules for testing whether or not a string belongs to the language. The following are
other examples of formal languages:

 SGML, HTML, XML, and other markup languages deriving from SGML •
 C, Java, C++, and other programming languages •
 Algebraic expressions •
 Roman numerals •
 Social security identifi ers •
 Genetic code •

232.1 Formal Grammars

 The examples show that formal languages are usually developed by a group of
people for a specifi c purpose, such as for computer programming or to represent
information in computers. Such languages are developed to facilitate communica-
tion with a computer and between computers. Formal languages however seem to
evolve also without human activities. The genetic code is an example that exists in
nature and is documented as a formal language by humans.

 The syntax of formal languages is often specifi ed by a formal grammar . A for-
mal grammar (or simply grammar) describes the strings of the language by a set of
 production rules (also simply called rules or productions). Extended Backus–Naur
Form or EBNF form is a notation commonly used to describe such rules. EBNF is
used in the XML specifi cations to describe the acceptable expressions that make up
XML. The notation is introduced in the XML specifi cation and in Appendix C of
this book.

 Each rule in the XML grammar describes one named part, using the form

[1] document ::= prolog element Misc*

[3] S ::= (#x20 | #x9 | #xD | #xA)+

[22] prolog ::= XMLDecl? Misc* (doctypedecl Misc*)?

[27] Misc ::= Comment | PI | S

[39] element ::= EmptyElementTag | Stag content Etag

 [WFC: Element Type Match]

 [VC: Element Valid]

symbol ::= expression

 The symbol on the left is the name of the part, and the expression on the right
describes the structure of the part. As examples, some productions of the XML 1.0
specifi cation are shown here, where the number in brackets refers to the number of
the production in the full specifi cation.

 The fi rst production defi nes the structure of an XML document. The order of the
components on the right side is signifi cant: the notation A B means that A comes
before B. Thus, a document always contains a prolog followed by an element. After
the element there are zero or more occurrences of parts called Misc, the potential
omission or repetition being indicated by the metasymbol * (asterisk).

 Production 3 defi nes the white space used in XML markup between structural
components. It consists of space characters (#x20), tabs (#x9), carriage returns (#xD),
or line feeds (#xA). Symbols of the form #xN in the XML syntactic notation refer to
a particular Unicode character having code value corresponding to the hexadecimal
integer N. Alternatives are separated in the production by the metasymbol | (pipe).
The parentheses are used to group one part of the rule, and the metasymbol + (plus)
following the ending parenthesis indicates that whatever is represented by the group
can be repeated one or more times. Thus in XML, whitespace can be any string of
one or more characters, each chosen from any of the four alternatives. Note that
unlike the constituents of Production 1, the order of the individual characters com-
prising white space is not constrained.

24 2 Fundamentals

 Production rule 22 shows that a prolog may begin with an XML declaration
(XMLDecl), where the metasymbol ? (question mark or query) shows that this part is
not mandatory. The following Misc may occur zero or more times (indicated by the
metasymbol *). At the end of the prolog there can be a document type declaration
(doctypedecl) followed by zero or more Misc occurrences, again the ? indicating that
this group is optional. Since none of the three components of a prolog are mandatory,
a prolog can be an empty string (that is, a string consisting of no characters at all).

 The part called Misc is defi ned in production 27, which specifi es one of three
 alternatives: Misc is either a comment, a processing instruction (PI), or white
space (S).

 Production 39 defi nes an element. According to the production, an element is
either an empty-element tag or it consists of a start-tag, content, and end-tag, in that
order. Production 39 shows also the notation for associating two special kinds of
constraints with productions: well-formedness constraints of the form [WFC: …] and
 validity constraints of the form [VC: …]. This production is associated with a well-
formedness constraint called Element Type Match (which specifi es that an element’s
end-tag must match the element type in the start-tag) and a validity constraint called
Element Valid (which specifi es the conditions for the validity of an element). The
concepts well-formed and valid are introduced in the next section.

 The document type defi nition (DTD) mechanism of XML is a tool for describing
the production rules for a particular XML language. The DTD, together with the rules
expressed in the XML specifi cation, defi nes a formal language. Some of the notations
used in the production rules of the XML specifi cation are also used in DTDs to defi ne
the structure of elements. In defi ning element structures, for example, the metasym-
bols (,), ?, |, *, and + are used to refer to grouping, optionality, alternatives, and iteration,
just as they are in the XML rules. This is elaborated in Sect. 2.4.2 .

 2.2 Processors and Applications

 The XML specifi cations from W3C describe not only the structure of XML docu-
ments but also some essential aspects of the behavior of computer programs that
process XML documents. There are two types of software modules mentioned in
the specifi cations. A software module called an XML processor is used to read XML
 documents. The XML processor is not an independent software module but always
works with another software module called an application . The XML processor
provides the application access to the content and structure of documents (see
Fig. 2.1). Although functionally distinct, often the XML processor is embedded as
part of the application.

 As explained in Chap. 1 , an XML document contains marked up text and possibly
other forms of data linked to the text by entity references. The XML processor reads
the marked up text, separates the markup from other content, and checks that the
text conforms to the rules defi ned for all XML documents in the XML specifi ca-
tions. Those rules are called well-formedness rules and documents fulfi lling the

252.2 Processors and Applications

rules are called well-formed . The checking is applied only to the marked up text, not
the non-textual content linked to the marked up text by entity references nor the
textual content indicated explicitly to be omitted from processing.

 If an XML document has an associated DTD, then an XML processor may ensure
not only that the document satisfi es the well-formedness rules, but also that it satis-
fi es the rules expressed in the DTD. An XML processor capable of performing this
kind of testing is called validating , and the documents passing the tests are called
 valid . If an XML processor is only capable of testing the well-formedness of the
input data, it is called non-validating .

 Since an XML processor ensures that the input text follows defi ned syntactic
rules, the processor is often called a parser . In computing environments, a parser is
created for a particular language L, having particular grammar rules. The minimum
functionality of the parser of any language is to inform the user (whether a human
being or a software module) whether or not the input text belongs to the language L.
Thus the parser in any XML processor tests whether the input belongs to the generic
XML language. If the input is associated with a schema for a document type T, then
the parser of a validating XML processor further tests whether the input belongs to
the particular XML language called T.

 Example 2.1 To give a more concrete idea about the tasks of an XML processor,
we present a small example. Let the input be a fi le consisting of three text lines as
follows:

XML structures or information
about rule violations

• separating markup from content
• checking well-formedness
• possibly checking the validity

marked up text

processing XML data structures, for
example, retrieve parts, transform the
structure, or present data on a screen

marked up text, possibly linked to other
forms of data by entity referencesXML document

XML processor

Application

 Fig. 2.1 The processing context of an XML document

<?xml version="1.0"?>

<!DOCTYPE plain_text [<!ELEMENT plain_text (#PCDATA)>]>

<plain_text>Today's weather is truly exceptional.</plain_text>

26 2 Fundamentals

 The fi rst line shows the XML version for the markup used, the second line
 indicates the DTD, and the third line contains an element called plain_text. If the text
is given as an input to a non-validating XML processor, the processor should check
that the markup in the text follows the rules given for well-formed documents in the
XML 1.0 specifi cation. The processor should also check the syntactic correctness of
the DTD. However, no comparison between the DTD and the rest of the text is
made. On the other hand, if the same input is given to a validating XML processor,
it does all the same tasks, but it is also able to compare the DTD to the element to
check the validity constraints given in the specifi cation of XML 1.0. However, for
any XML processor the content of the only element is merely a string of characters;
no XML processor is capable of testing whether the content of the element is proper
English (although an XML application outside the XML processor might imple-
ment such functionality).

 The task of an XML processor is to identify individual units of content, as well
as the relationships between those units, and forward the information about them to
an application. The application in an XML processing environment is any software
module able to deal with XML data. Thus the application is the real consumer of
XML data; the XML processor only checks the input and forwards the structural
components to be handled by the application. For example, the application might
connect to a database system to store the structural components into its internal
structures. On the other hand, it might be capable of manipulating natural language
text instead, and so it might be able to check that the content of the element in
Example 2.1 is proper English.

 Similarly to the parsers of programming languages, the XML processor informs
its user (the application) about any violations of syntax rules in the text. The XML
specifi cations defi ne two kinds of violations of rules: errors and fatal errors . An
XML processor may detect and report an error, and may recover from it, but not all
XML processors need to detect errors. Fatal errors are kinds of violations that all
conforming XML processors must detect and report to the application. Applications
may be designed to handle data where the XML processor has found errors, but
XML-conforming applications may not attempt to work normally when they are
informed of fatal errors. 2 In the Web environment many authors of HTML docu-
ments are familiar with the fl exibility of HTML browsers, which often represent
documents that violate HTML rules in a manner in which the violations remain
unnoticed. Typically, no information about the violations is given to the human
reader of Web pages. This can also happen with XML documents for errors, but not
for fatal errors. Thus an application’s accommodation of XML data does not guar-
antee validity of a document, but well-formedness is assured.

 The small example given above is intended to clarify the distribution of labor
between an XML processor and application. In the following section we take a
closer look at the components of XML documents.

 2 “Once a fatal error is detected, however, the processor MUST NOT continue normal processing
(i.e., it MUST NOT continue to pass character data and information about the document’s logical
structure to the application in the normal way).” “This innocent-looking defi nition embodies one
of the most important and unprecedented aspects of XML: ‘Draconian’ error-handling.” [3]

272.3 XML Documents

 2.3 XML Documents

 Every XML document has a logical structure and a physical structure. Figure 2.1
shows an XML document as if it were stored in a single fi le. However, a document
may consist of several physical fi les. In this section we fi rst discuss the logical struc-
ture, then the physical structure, and fi nally the character encoding for XML
documents.

 2.3.1 Logical Structure

 Effective communications among humans relies on organizing ideas into meaning-
ful information structures. XML offers the means to present such communications
in a form in which the structures and structural units are processable by software
applications. The organization is expressed in the logical structure of documents,
and the most important components of that structure are elements .

 2.3.1.1 Elements and Nested Structures

 Elements, like all other components of the logical structure, are indicated by explicit
markup. As discussed in Chap. 1 and shown in our previous examples, elements in
XML begin with a start-tag of the form < … > and end with an end-tag of the form
</… >. Both the start-tag and the end-tag include the name of the element.

 XML does not set many restrictions for element names. They must start with a
letter or an underscore (_) and can include arbitrarily many alphanumeric characters
as well as periods, hyphens, underscores, diacritics, and various other typographic
marks; most notably they cannot include white space characters. For example, if we
want to label the string 1654 with the name year , we can present it as an XML
element:

<year>1654</year>

 The text between the tags is called the content of the element. Within a docu-
ment, all elements having the same name belong to the same element type , and most
applications are written such that all elements of one type are similarly processed.
For example, a banking application could include processing code to handle all
 elements named deposit.

 An element without content can be written without the end-tag, using a special kind
of empty-element tag of the form < …/>. For example, the empty-element tag

could be used to inform a printing application about the need for a carriage return. This
is identical to the tagged string
</br> with no intervening characters.

 An element’s content can consist of plain character data, such as the year element
above or the plain_text element in Example 2.1, or it can contain other elements as

28 2 Fundamentals

 The minus character (−) preceding a start-tag indicates that the element has child
elements and the child elements are presented on the screen. By clicking the

 child elements . The child elements contained in a common parent element are
called sibling elements . For example, an element showing a date could be written
in the form

<date><day>11</day><month>12</month><year>1654</year></date>

 This date element contains three child elements, named day, month and year,
which are therefore siblings. The level of nesting is unlimited: any child element
can itself have nested child elements. The following example shows three-level
nesting of elements.

 Example 2.2 The following XML document has two rhymes, one written in Finnish
and the other in English. The outermost element is called rhymecollection (note that
the name cannot include white space characters), and it contains two rhyme elements
as its children. Each of the rhyme elements, in turn, consists of two line elements.

<?xml version="1.0"?>

<rhymecollection>

<rhyme>

<line>Ole aina iloinen</line>

<line>niin kuin pikku varpunen</line>

</rhyme>

<rhyme>

<line>See, see! What shall I see?</line>

<line>A horse's head where his tail should be</line>

</rhyme>

</rhymecollection>

 An application showing tagged text to the user may highlight the nesting of
 elements through indentation. For example, if the text above is stored in a Microsoft
environment as a fi le named with extension .xml, and the fi le is opened by Internet
Explorer 6.0, the document is shown in the pretty-printed form:

292.3 XML Documents

<?xml version="1.0" ?>

−<rhymecollection>

+ <rhyme>

+ <rhyme>

</rhymecollection>

minus character, the child elements and the matching end-tag will be hidden and
the minus character will be replaced by plus character (+). For example, after click-
ing the minus characters preceding the two rhyme elements, the document would be
shown as

<date><day>11<month></day>12</month><year>1654</year><date>

is not correct in any XML document since elements day and month are not properly
nested.

 2.3.1.2 Unparsed Character Data

 Text in XML documents consists of intermingled markup and character data. All
text that is not defi ned as markup is character data. For cases where characters
denoting markup should be included in the character data, a mechanism called a
CDATA section is available. A CDATA section begins with markup <![CDATA[and
ends with the markup]]>. All characters within these delimiters are regarded as
character data, not markup. For example, to include the string

as character data in some XML document, the following CDATA section would be used:

 This assures that none of the enclosed text is interpreted as markup.

<![CDATA[<lastname>Pirhonen</lastname>]]>

<lastname>Pirhonen</lastname>

 All well-formed documents in XML have some restrictions on their nested struc-
tures, including the requirements for a single root element and proper nesting of
elements. Thus, in the nested structure there is always exactly one outermost ele-
ment, called the root element (or document element), and all non-root elements are
fully contained in some other element. Thus, for example, in representing a collec-
tion of rhymes in an XML document, the rhymes have to be nested inside a common
root element as was done in Example 2.2; there cannot be two elements at the out-
ermost level of the nesting structure. Proper nesting means that if the start-tag of an
element is part of the content of another element, the end-tag must also be part of
the content of that same element. For example, markup such as

30 2 Fundamentals

 2.3.1.3 Attributes

 In the rhyme collection of Example 2.2, English and Finnish were the languages
used in the rhymes. In this kind of situation, it might be useful to inform the applica-
tion about the language in which a rhyme is written. This kind of extra information,
or metadata , can be attached to elements by using attribute specifi cations . Attribute
specifi cations can be added to the start-tag of an element, following some white
space after the element name. An attribute specifi cation gives the name of an attri-
bute and a character string as the value of the attribute. For example, we can specify
that a rhyme is in Finnish as follows:

<lastname earlier="Rantanen">Korhonen</lastname>

<rhyme lang="FI"> ... </rhyme>

 Notice that the end-tag does not repeat the attribute specifi cation.
 As a second example, assume the lastname elements in a document are used to

give the current surname of a person. A former surname might be given by using the
attribute earlier:

 The value of the attribute earlier for the element is Rantanen.
 This example shows that there are two different techniques for providing a piece

of data in XML elements: as element contents and as attribute values. In both cases
a name can be attached to the datum. In the example above, the current surname of
a person is expressed as the content of the lastname element and the former surname
is given as the value of the attribute named earlier. It is also possible to give both
names as child elements of the lastname element:

<lastname current="Korhonen" earlier="Rantanen"/>

<lastname earlier="Rantanen" current="Korhonen"/>

<lastname><earlier>Rantanen></earlier><current>Korhonen</current></lastname>

<lastname><current>Korhonen</current><earlier>Rantanen></earlier></lastname>

 In this version, the current surname is given fi rst in a child element named current
and then the earlier name is given in a child element named earlier. The names could
instead be given in the reverse order:

 Yet another alternative is to give both names as attribute values of an empty
element:

or

All of these alternatives provide information about the current and former
 surnames of a person. When the names are given as child elements of the same
 element, the XML processor informs the application about the order of the names.
On the other hand, the order of attributes is insignifi cant. Therefore, from the point
of view of an application, the last two alternatives are indistinguishable, whereas the
others are all different.

312.3 XML Documents

 2.3.1.4 Comments and Processing Instructions

 As well as elements, which are the core components of the logical structure, other
components of the structure are declarations, comments, and processing instructions.
The XML declaration shown in Example 2.1 always starts an XML document. In XML
version 1.0 the XML declaration is not mandatory, but it is in version 1.1. Nevertheless
it is advisable to use it in all XML documents. Among the other declarations, the most
essential are the markup declarations, which are described in Sect. 2.4 .

 Comments can be written to provide some extra information to the human reader
of the marked up text. A comment begins with the character string ‘<!--’ and ends
with the string ‘-->’, for example,

 An XML processor may, but need not, make the text of the comment accessible
to the application. Thus if comments are to be used by an application, it is important
to ensure that the XML processor preserves them; however, to ensure robustness,
applications are better designed if they treat comments as being completely
optional.

 Instead of using comments to pass information to an application, XML provides
 processing instructions to allow documents to contain instructions for applications.
A processing instruction begins with the character pair ‘<?’ and ends with the pair
‘?>’. The instruction is passed to the application and identifi ed by a target name at the
start of the instruction. The rest of the instruction is any character string meaningful
to the application. The target name is intended to identify the application compo-
nent to which it is directed. An example of the use of processing instructions is to
provide information about an associated style sheet to some application rendering
the document, as recommended by W3C [8] . For this purpose, the target name in the
processing instructions is xml-stylesheet and additional information is provided by
pseudo-attributes such as shown in the following example:

<?xml-stylesheet href="ownstyle.css" type="text/css"?>

<!-- This is a comment -->

 The string after the target name xml-stylesheet looks like two attribute specifi ca-
tions, such as those that would be written inside the start-tag of an element. They are
called pseudo-attributes because they are used to provide information to the applica-
tion in the same way that attribute specifi cations are used, but they appear within a
processing instruction rather as part of a start-tag. The example provides the appli-
cation with information about an external CSS style sheet, in the same way as a
style sheet association is given in HTML:

<LINK href="mystyle.css" rel="stylesheet" type="text/css">

32 2 Fundamentals

 2.3.1.5 Namespaces

 A goal of the work at W3C is to support the reuse of XML structures once they are
developed, especially if there is software available to support the processing of
those structures. For example, structures relevant to banking (including withdrawals
and deposits) may need to be handled by banking software and those relevant to
mining (including the analysis of deposits and soil formations) may be handled by
mining software. When reusing elements and attributes defi ned in previous envi-
ronments, it is important that the XML processor can identify the context for each
name and that document developers avoid name collisions. For example, element
types named Title have been introduced in many different environments for differ-
ent purposes. In one context the Title elements may be used for publication titles
consisting of characters only, in another the Title elements may be used for property
titles and contain child elements, and in a third Title elements may be used for titles
of persons. If a developer wishes to use several or all of these element types in a
single document, it is important that unintentionally duplicated names of elements
or attributes can be distinguished.

 As a more concrete example, let us consider the XHTML language, which
describes the structures available in HTML, but is constrained so that XHTML doc-
uments are also XML documents. The structures and names defi ned in XHTML are
widely known, and there is plenty of software able to process XHTML structures. It
might be that some documents combine XHTML structures with structures from
other XML-based languages, such as XQuery or MathML; in this situation, the
processor should forward to the application information about the context within
which to handle each structure. By following this approach, XHTML applications
can manipulate the XHTML structures and ignore the others, if they wish to do so.

 In order to support modularity of specifi cations and reuse of element defi nitions
without name collisions, W3C has developed a method to associate an environment
identifi er with several element and attribute names so that the context can be recog-
nized when they are used. Since the idea was developed after the original design of
XML, the method is not described in the XML specifi cation but in a separate XML
Names specifi cation [4] .

 A set of element and attribute names together with their identifi er is called an XML
namespace . The original method of identifi cation was to use a Uniform Resource
Identifi er (URI) reference, which can be a URL (Uniform Resource Locator) that may
be familiar from HTML links, or a URN (Uniform Resource Name). For example, the
URI used to identify the elements and attributes defi ned in XHTML is http://www.w3.

org/1999/xhtml , as indicated in the XHTML specifi cation. In the new version of the
XML Names specifi cation, the identifi cation mechanism was extended to
 Internationalized Resource Identifi er (IRI) references [13] . Whereas a URI is a string of
characters chosen from a subset of US-ASCII characters, an IRI extends URIs to a wider
set of characters so that they can be used in the context of various natural languages.

 A namespace label , which follows the rules for an element name, is bound to an
IRI by a namespace declaration in the start-tag of the element where the namespace

332.3 XML Documents

is introduced. For example, in the following element start-tag the label xhtml is asso-
ciated with the IRI representing the XHTML namespace:

<report xmlns:xhtml = "http://www.w3.org/1999/xhtml">

<report xmlns:abba = "http://www.w3.org/1999/xhtml">

<xhtml:a xhtml:href = "example/figure">our results</xhtml:a>

 Any names from this namespace are then referenced by using qualifi ed names
consisting of the label as a prefi x and a name in the namespace, separated by a colon.
Continuing with the example, after the namespace declaration introducing xhtml, any
structural element or attribute from XHTML can be used within the element report by
prefi xing xhtml: to its name, producing qualifi ed names such as, xhtml:meta or xhtml:h1.
Thus, for example, within the report element, one might fi nd

 Note that a namespace name can use any label, as long as it is distinct from other
namespace labels. Therefore, instead of the label xhtml for the XHTML namespace
we could defi ne

and then refer to the href attribute of the XHTML language as abba:href.
 The XML Names specifi cation does not constrain how the names within a

namespace are defi ned. Often a namespace consists of all element and attribute
names introduced in a document type defi nition or other kind of schema. However
it is possible to specify the set of names included in a namespace by other means as
well. In any case, to be able to refer to the names from a namespace requires the
identifi cation of the namespace by an IRI. Note that even if the namespace identifi er
is syntactically a URL, it does not refer to any location on the Web; rather it is sim-
ply a unique identifi er. For example, if people in the sales department of MyCorp
agree to use the URL http://sales.mycorp.com to identify a set of element and attribute
names, this URL can be used for specifying the namespace, whether or not there is
some data at that Web address.

 2.3.2 Physical Structure

 Each XML document has a physical structure as well as a logical one. The physical
structure facilitates features not expressible by the logical structure alone. For
example, the physical structure allows the inclusion of non-textual data in a docu-
ment, even though the logical structure deals with marked up textual data only. Thus
an XML document can also be a multimedia document. Building software to deal
with the logical structure alone misses an important aspect of XML processing.

 The physical structure of an XML document consists of units called entities .
Each document includes a designated text entity called the document entity or root entity .

34 2 Fundamentals

All entities referred to directly or indirectly from the root entity are regarded as parts
of the physical structure of the document. A common type of an entity is a non-
textual fi le referenced from a text entity, and non-textual entities may include data
in any format. Figure 2.2 shows the physical structure of a document with a root
entity and two jpg images as non-textual entities.

 2.3.2.1 Entity Types

 Entities can be categorized according to three characteristics. The fi rst indicates
whether or not XML markup is to be interpreted: an entity is either parsed or unparsed .
The second characteristic indicates where the content of an entity is given: an entity
can be internal , in which case the content is given in the entity declaration, or external
in which case the content is given as a separate physical object. The third characteristic
indicates the use of entities: an entity is either a general entity, in which case it is used
within the elements of the document, or a parameter entity used within the DTD.
These three characteristics of entity types are further described as follows.

 Parsed – unparsed. The content of a parsed entity consists of marked-up text intended
to be analyzed by the XML processor. The root entity is always a parsed entity.
An unparsed entity is a resource whose content may, or may not, be text; and if it is text,
it may or not include XML markup. Regardless of content, however, an unparsed entity
is not intended to be analyzed by the XML processor, and XML places no constraints
on the content of unparsed entities. In Fig. 2.2 the document includes the tagged text of
the document as a parsed (root) entity and the two fi gures as unparsed entities.

 Each unparsed entity has an associated notation , identifi ed by name. The nota-
tion informs the application of the data format of the entity so that the content can
be managed appropriately.

 The tagged text of a document need not be all stored at the root; it may be
divided into two or more parsed entities. The ways text can be split into parsed enti-
ties is regulated by the rules defi ned for well-formed parsed entities in the XML
specifi cation, and in a well-formed document, all parsed entities must be well-
formed. The well-formedness rules are defi ned so that the logical and physical
structures in an XML document are properly nested. For example, both the start and
end of an element must be within the same (physical) entity.

pic2.jpg

reference

entity

pic1.jpg

root entity

 Fig. 2.2 A physical structure with three entities

352.3 XML Documents

 Example 2.3 In Example 2.2 a collection of rhymes was presented as an XML
document stored in one entity. The rhyme collection can be divided into two or more
parsed entities, but all of them have to be well-formed. For example, an entity with
the following content is not acceptable because it contains the end-tag of the element
rhymecollection but not its start-tag:

 On the other hand, the text

could appear as the content of a well-formed entity.

 External – internal. Memory units managed as separate fi les in XML processing
environments represent external entities. An alternative type of an entity is an inter-
nal entity, a named piece of text contained within another entity and intended to be
analyzed by an XML processor. The text piece is called the value of the entity. An
internal entity is always a parsed entity. This kind of entity is used, for example, to
avoid repetitive writing of long or otherwise complex pieces of text. For example, if
we assign the name UJ to the string

hat shall I se

See, see! What shall I see?

<rhyme>

<line>See, see! What shall I see?</line>

<line>A horse’s head where his tail should be</line>

</rhyme>

<rhyme>

<line>See, see! What shall I see?</line>

<line>A horse’s head where his tail should be</line>

</rhyme>

</rhymecollection>

University of Jyväskylä

or the text

or even

we can include the longer text value in a document by referring to UJ. References to
named, parsed entities are called entity references . In processing the XML docu-
ment, the XML processor replaces the name by its value before transmitting data to
the application. The syntax of entity references will be given below in Sect. 2.4.5 .

 Parameter – general. The separation of entities into general and parameter entities
is based on the context of their use in a document. A parameter entity is for use
within a DTD, whereas a general entity is for use within the element content of a
document. A parameter entity is always a parsed entity.

36 2 Fundamentals

 To conclude the characterization of entity types, let us consider the possible
 combinations of characteristics. Even though there are two possible settings for
each of the three characteristics, all combinations are not possible. An unparsed
entity cannot be internal, nor can it be a parameter entity. On the other hand, parsed
entities can be either internal or external and either general or parameter entities.
Therefore there are fi ve possible combinations for characteristics of entity types, as
summarized in Table 2.1 .

 2.3.2.2 Motivations for the Use of Entities

 Casual authoring of XML documents can be done without knowing much about
entities. In professional use of XML, however, entities play an important role.

 There are several reasons why it is often important to divide an XML document
physically into multiple pieces. We have already mentioned one: when non-textual
data is to be included in XML documents, external unparsed (general) entities are
needed. However, parsed entities can also provide support to document creators.

 The possibility to name a piece of text and to refer to it by an entity reference,
instead of writing it in full, is a valuable mechanism to ensure consistency when that
text must be repeated many times. Just as the namespace mechanism facilitates
reuse of element and attribute defi nitions originating from different sources, the
entity mechanism facilitates reuse of text fragments, either in the element content or
in the DTD. For example, a title appearing several times in a document can be
defi ned as a general entity. Similarly a piece of a defi nition intended to be used in
the DTD in several places can be defi ned as a parameter entity. In its simplest form,
the repeated text is a single character, more particularly a special character not
directly accessible from the keyboard. However, the entity can also be an arbitrarily
large fragment of boilerplate.

 Referring to a piece of text by its name, instead of using the text itself, often
simplifi es writing, but more importantly it supports consistent writing. This is
 especially important when boilerplate is required and in environments where several
content authors coordinate in writing texts. For example, in a text about W3C
 technical specifi cations repeatedly mentioning the terms "W3C Recommendation",
"W3C Proposed Recommendation", "W3C Candidate Recommendation", and "W3C Working

Draft", and in the absence of controls, authors might easily write the terms in slightly
different ways. If entity names, such as Rec, PRec, CRec, and WD, are used instead,
then the terms for the various kinds of W3C technical specifi cations will appear in
the fi nal documents in a consistent form, in spite of sections being written by distinct
content authors.

 Table 2.1 The fi ve possible
combinations of entity types

 Parsed Internal Parameter

 Parsed Internal General

 Parsed External Parameter

 Parsed External General

 Unparsed External General

372.3 XML Documents

 The naming facility is especially important for modularity and maintainability .
For example, several schema designers may be involved in the design of a large
DTD, which evolves through several versions. The work can be partitioned into
modules by dividing the DTD into several entities where each of the designers
focuses on his or her own module. If a designer makes changes to the defi nitions in
one module, the other designers using the defi nitions by reference need not make
any changes to their modules. Similarly if an organization’s legal department
updates the wording of a disclaimer, and that disclaimer is stored as the content of a
parsed entity and referenced from each place it is required, the new wording will
automatically be incorporated in all the organization’s documents.

 Entities can also be used to provide consistent semantic information aimed at
human readers. For example, consider a situation where an attribute for a date is
used in several element types. If the schema for the class of documents is defi ned by
the DTD mechanism, the capabilities to constrain the attributes’ values are very
limited. However, the schema designer can provide information about the intended
form of the dates by defi ning a parameter entity, say Date, that includes the follow-
ing comment:

 Such a comment might help document authors to write dates consistently.
If consistent date forms are used, an application could be implemented to recognize
the name Date as an attribute type and safely assume that the attribute values will
be eight digit numbers representing DDMMYYYY.

 2.3.3 Character Encoding

 Text in XML documents is encoded using the Unicode character set. Unicode is
intended to serve as a character set for representing textual data written in any natu-
ral language of the world; it is even independent of the writing direction of the
language.

 The set of characters available in Unicode is huge, and therefore mechanisms are
needed to be able to express a particular character without the need to use a symbol
representing that character in a particular natural language. For example, this is
especially important in situations where a character is not directly accessible from
the keyboard or other available input device. There are two ways to refer to single
characters without using their symbols. First, as we mentioned in Sect. 2.3.2 , the
value of an entity may be merely a single character; how to reference such an entity
will be described in Sect. 2.4.4 . Secondly, a single character can be referred to by a
 character reference , without defi ning an entity for that character. A character refer-
ence provides a decimal or hexadecimal representation of a character’s code point
in Unicode. The reference begins with the characters &# and ends with a semicolon
(;). The letter x after the characters &# signals the use of hexadecimal representation.
For example, " or " refers to the quotation mark by specifying code point
34 (hexadecimal 22) in the Unicode character set.

<!--a date given by eight digits in the form DDMMYYYY, for example, 24022005 -->

38 2 Fundamentals

 One problem related to character coding is the continuous evolution of natural
languages. Since languages evolve, Unicode must also evolve. This evolution was
not realized in the specifi cation of version 1.0 for XML, where the characters used
in XML markup, like the element and attribute names, were defi ned to be characters
from Unicode 2.0. This has caused limitations in the use of XML since Unicode has
subsequently been extended to versions 3.0 and 4.0, and there will be later versions
in the coming years. This problem related to Unicode versioning was one of the
major reasons for developing the new version 1.1 for XML.

 2.4 Declaring and Constraining Structures

 Extensibility is an important feature of XML. Like its predecessor SGML, XML is
a metalanguage , a language for describing other languages. The XML specifi cation
does not defi ne the element or attribute names to be used in documents, nor the ele-
ment structures to be used. The idea behind XML is to agree on a notation for
developing special vocabularies and markup languages for particular purposes.
Thus anyone can extend the rules provided in the XML specifi cation with his or her
own rules to constrain the documents for a particular application area.

 2.4.1 DTD and Markup Declarations

 Documents based on a common structure (or language) are said to be of the same
 document type , and the structure for a particular language is defi ned by markup
declarations in a Document Type Defi nition (DTD). The declarations of a DTD
defi ne the accepted element types and attributes, as well as the logical structure of
documents of the type. Along with the constraints for logical structure, declarations
in the DTD are also used to introduce the entities available for inclusion in docu-
ments of the type. The markup declarations can be given either locally, in the root
entity of the document in the document type declaration , or externally in a separate
fi le, as a separate entity. In the latter case, the address of the fi le must be provided
by the document type declaration. The terms internal subset and external subset
refer to the locally and externally given markup declarations, respectively. The
external subset is also an external entity.

 In Example 2.1 a document was given with a local DTD:

<?xml version="1.0"?>

<!DOCTYPE plain_text [<!ELEMENT plain_text (#PCDATA)>]>

<plain_text> Today’s weather is truly exceptional.</plain_text>

 The document type declaration consists of the shadowed line, which contains the
DTD (document type defi nition). If the DTD is specifi ed externally, in a separate fi le,

392.4 Declaring and Constraining Structures

then the name of the fi le should be provided in the document type declaration in place
of the DTD itself. Thus, an external DTD is attached to a document as follows:

<!DOCTYPE rhymecollection [
<!ELEMENT rhymecollection (title?, rhyme+)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT rhyme (line+)>
<!ATTLIST rhyme
 xml:lang (fi | en) #IMPLIED
 author CDATA #IMPLIED >
<!ELEMENT line (#PCDATA)>]>

 In this example, the system identifi er mytext.dtd specifi es where to fi nd the DTD
for the document.

 Four kinds of markup declarations are available for constraining XML docu-
ments: element type declarations and attribute list declarations to constrain the logi-
cal structure, and entity and notation declarations to constrain the physical structure.
Before going into the particular types of declarations, we fi rst give an introductory
example to demonstrate how DTDs can be used to constrain documents.

 Example 2.4 Example 2.2 above showed a document with two rhymes. The markup
vocabulary and structure for the markup used in Example 2.2 can be defi ned by the
following DTD:

 The defi nition consists of four element type declarations and one attribute list
declaration (ATTLIST). The attribute list declaration introduces two attributes for
elements of type rhyme. In the defi nition, the following constraints are defi ned for
documents of type rhymecollection:

 Element names. Only the element names rhymecollection, title, rhyme and line are
allowed in the documents.

 Attributes. Two attributes can be attached to the rhyme element: xml:lang and author.
The data types of the attribute values are defi ned after the attribute names. In the
example, the value of the attribute xml:lang is to be taken from an enumerated list
(either the string “fi ” or the string “en”), and the value of the attribute author is a
character string (CDATA). The repeated keyword #IMPLIED indicates that either or
both of the attributes can be given in the start-tag of a rhyme element, but neither of
them is mandatory (and any application must infer a missing attribute’s value from
context).

 Structure. The root element of the document is of type rhymecollection. The struc-
tural constraints concerning elements of the type are given by the content model
(title?, rhyme+) using metasymbols ? and + from the EBNF notation introduced in

<?xml version="1.0"?>

<!DOCTYPE plain_text SYSTEM "mytext.dtd">

<plain_text> Today’s weather is truly exceptional.</plain_text>

40 2 Fundamentals

Sect. 2.1 . It indicates that an element of the type rhymecollection contains one or more
rhyme elements, possibly preceded by an element of type title. The content model
(line+) defi nes a rhyme element as a structure consisting of one or more line elements.
In the declarations of the element types title and line, the keyword (#PCDATA) indi-
cates that the elements of these two types consist of character data devoid of markup
characters.

 Although it is well-formed, the tagged text describing two rhymes in Example
2.2 is not a valid document of any type, since there is no DTD attached to the text.
However, the text meets the element type constraints defi ned in the DTD given in
Example 2.4. Assume that the DTD is accessible at rhymes.dtd. The document of
Example 2.2 would then be valid if it includes the following document type declara-
tion after the XML declaration and before the root element:

 2.4.2 Element Type Declarations

 An element type declaration defi nes a name for a set of elements and constrains the
content of those elements. In other words, it specifi es what are acceptable element
names and what is acceptable between the start-tag and end-tag in each element. The
syntax for the element type declaration is given by production rules 45 and 46:

<!DOCTYPE rhymecollection SYSTEM "rhymes.dtd">

[45] elementdecl ::= '<!ELEMENT' S Name S Contentspec S? '>'

 [VC: Unique Element Type Declaration]

[46] contentspec ::= 'EMPTY' | 'ANY' | Mixed | Children

 The validity constraint named Unique Element Type Declaration is attached to the
element type declaration and specifi es that an element name cannot appear in more
than one type declaration.

 Rule 46 gives four alternatives for constraining an element’s content:

 The content must be empty (• EMPTY),
 The content is completely unconstrained (• ANY),
 The content may directly include child elements and character data (• Mixed), or
 The content may directly include child elements only (• Children).

 If the element type specifi es mixed content, then the elements of that type may
contain character data optionally interspersed with child elements. Unlike the speci-
fi cation ANY, the types of the child elements may be constrained; unlike Children, the
order and the number of occurrences of child elements cannot be constrained in
mixed content.

412.4 Declaring and Constraining Structures

 Example 2.5 Suppose that the content of a paragraph should consist of character
data interspersed with phrases intended to be rendered in italics or in bold. We could
defi ne an element type for such a paragraph where the rendering information is
indicated by markup. The following types could be defi ned for this purpose:

<!ELEMENT paragraph (#PCDATA | italics | bold)*>

<!ELEMENT italics (#PCDATA)>

<!ELEMENT bold (#PCDATA)>

 All three element types are examples of mixed content defi nitions, but the con-
tent of the types italics and bold consists of character data only. A paragraph element
may contain characters only, it may consist of arbitrarily many child elements of
types italics or bold or both, or it may contain character data interspersed with such
child elements, for example:

<paragraph>Viljo Revell is the architect of the Toronto City Hall</paragraph>

<paragraph>

 <bold>Viljo Revell</bold>is the architect of the<italics>Toronto City Hall</italics>

</paragraph>

<paragraph>

 <italics>Viljo Revell</italics> is the architect of the <italics>Toronto City Hall</italics>

</paragraph>

<paragraph>

 <bold>Viljo Revell is the architect of the Toronto City Hall</bold>

</paragraph>

 Metasymbols |, *, (, and) are used in the mixed content defi nitions with the same
semantics as in the XML syntax notation described in Sect. 2.1 above. The list of alter-
natives must start with #PCDATA, and the order of the child element types has no sig-
nifi cance. Since the number of occurrences of child elements cannot be constrained,
the symbol * always appears after the alternatives for child elements. An element type
defi nition equivalent to the defi nition of type paragraph in Example 2.5 is

<!ELEMENT paragraph (#PCDATA | bold | italics)*>

but none of the following describe mixed content in a well-formed XML document:

<!ELEMENT paragraph (bold | italics | #PCDATA)*>

<!ELEMENT paragraph (#PCDATA |bold | italics)>

<!ELEMENT paragraph (bold | italics)*>

 This is an example of the limitations included in the XML specifi cation to sim-
plify the building of XML processors. The incorrect forms of defi nition could make
as much sense as the correct ones, but by constraining the forms allowed in element
type defi nitions, the parsing of XML documents becomes easier and therefore build-
ing the software for parsing becomes more straightforward.

42 2 Fundamentals

 As these examples illustrate, the constraining capabilities of mixed content are
limited. However, if the content is to include child elements only, without any inter-
spersed character data, the element structure can be constrained by a content model
where the metasymbols ‘+’, ‘*’, ‘|’, ‘?’, ‘(’, and ‘)’ are available to constrain the ele-
ment structure. The semantics of the metasymbols is again the same as in the XML
syntax notation (see Sect. 2.1). However, whereas no separate symbol is used to
indicate concatenation in the XML syntax notation, in content models two successive
content particles are separated by a comma (,).

 Example 2.6 The following examples show four element type declarations:

<!ELEMENT product (mfg, model, description, clock?)>

<!ELEMENT model (#PCDATA)>

<!ELEMENT description (#PCDATA | feature)*>

<!ELEMENT clock EMPTY>

<!DOCTYPE phone [

<!ELEMENT phone (areacode, number)>

<!ELEMENT areacode (#PCDATA)>

<!ELEMENT number (#PCDATA)>]>

 The fi rst declaration defi nes an element content model, the second and third spec-
ify mixed content, and the fourth constrains the type to be empty. Elements of type
product must always begin with an element of type mfg, then an element of type
model, and after that an element of type description. At the end there may or may not
be an element of type clock. Child elements of type model contain character data only,
and description elements may contain character data interleaved with child elements
of type feature. If there is a clock child, it will always be empty.

 Example 2.7 Document type defi nition for a phone number:

 This grammar defi nes a language that includes each of the following three
sentences:

 • <phone><areacode>0146119</areacode><number>2603031</number></phone>

 • <phone><areacode>014</areacode><number>university</number></phone>

 • <phone><areacode>#5 silly bits</areacode><number>2603031</number></phone>

 These examples demonstrate that even if a phone number in XML format is valid
with respect to this DTD, it does not necessarily represent the correct form of a
phone number as we normally understand it. The DTD mechanism is not always
expressive enough to constrain elements’ contents to values within the domain
intended by the application designer. For this reason W3C has also defi ned the more
powerful XML Schema facility, which is described briefl y in Sect. 2.4.6 .

432.4 Declaring and Constraining Structures

 2.4.3 Attribute List Declarations

 Attributes are used to attach information to elements using name-value pairs.
Attributes can be attached to elements in two ways, either explicitly by an attribute
specifi cation or by declaring a default value as part of the attribute in the document
type defi nition. In the latter case, the XML processor associates the attribute name
and value with the element. Explicit attribute specifi cations appear either in the
start-tag of an element or in the empty-element tag. In a valid document all attri-
butes written in tags must be declared.

 An attribute list declaration defi nes the set of attributes pertaining to a given ele-
ment type, establishes type constraints for the attributes, and provides default values
and constraints on the presence of attributes. The syntax of an attribute list declara-
tion is specifi ed by productions 52 and 53:

<!ATTLIST poem author CDATA #IMPLIED >

<!ATTLIST poem author CDATA #REQUIRED >

[52] AttlistDecl ::= '<!ATTLIST' S Name Attdef* S? '>'

[53] AttDef ::= S Name S AttType S DefaultDecl

 The fi rst rule states that an attribute list declaration includes a name and zero or
more attribute defi nitions. The name given must refer to the name of an element
type. In each of the attribute defi nitions, we fi nd the name for an attribute, a data
type for that attribute, and a default declaration. For example, in the following attri-
bute list declaration an attribute called author is defi ned for the element type poem;
the attribute must be a character string, denoted by the type CDATA:

 The default declaration in an attribute defi nition is used to provide information
on whether the presence of the attribute is required, and if not, how an XML proces-
sor is to react if the declared attribute is not present in an element. The default dec-
laration has four different forms:

 • #REQUIRED the attribute must always be explicitly provided
 • #IMPLIED the attribute may be provided; no default value is given
 • AttValue the attribute may be provided; AttValue (a quoted string) is

the default value for the attribute if it is omitted
 • #FIXED AttValue the attribute must always have the default value given by

the quoted string AttValue

 In the above example, the constraint #REQUIRED indicates that the attribute author
must always be explicitly included in poem elements and no default value is given to
the attribute. Thus in a valid document the start-tag <poem author="Murasaki Shikibu">
is correct but the stand-alone tag <poem> is not. On the other hand, if the attribute
author is instead defi ned for the element type poem as follows

44 2 Fundamentals

then both of the start-tags <poem author="Murasaki Shikibu"> and <poem> are accepted
in a valid document. Similarly, both are valid if a default value is given, as in the
following declaration:

<!ATTLIST report phase NMTOKEN #IMPLIED >

<!ATTLIST poem author CDATA "Ono no Takamura ">

 The start-tag <report phase="draft"> would then be correct while the tag <report

phase="preliminary draft"> would not be accepted since a space is not accepted as a
name character. Both XML versions 1.0 and 1.1 defi ne constraints for the fi rst char-
acter accepted in a name. In version 1.0, only a letter, underscore (_), or colon (:) is
accepted as the fi rst character of a name; version 1.1 is not as restrictive, but it also
does not accept any of the digits 0–9 at the start of a name.

 Types ID, IDREF, and IDREFS allow users to associate unique names with ele-
ments in XML documents, and reference those names from other elements. The
values of type ID must be tokens accepted as names, and in a valid document every
ID value must be unique across all elements that bear any attribute of the type; that
is, a name must not appear as the value for an attribute of type ID more than once in
an XML document. For example, if attribute article_number has been defi ned to be of
type ID for the element type article and the value A123 appears as the value for article_

number on some article element, then it cannot appear as the value of any other ID
type attribute for another article nor for any other element type.

 Each name appearing in the value of attribute types IDREF or IDREFS must appear
in the same document as the value of some ID type attribute. If attribute article_refer-

ence of type IDREF has been defi ned for the element type paragraph, the start-tag
<paragraph article_reference="A123"> can appear only if there is an ID type attribute
with the value A123 in the document. If the attribute article_reference is defi ned with
type IDREFS, the start-tag <paragraph article_reference="A123 A567"> can appear if

 In this case it is possible to provide the attribute explicitly in the element, as
above, but if it is not provided then the XML processor attaches the attribute to the
element with the default value. The symbol #FIXED should be specifi ed in the decla-
ration if the default must always be used as the value of the attribute.

 While the character data in the content of elements cannot be constrained (#PCDATA
allows any characters to be included), attribute values can be constrained to be within
any of several data type families: a string type, several tokenized types, and enumerated
types. The string type is expressed in the declaration by the symbol CDATA as shown in
the above examples. Tokenized types are used in cases where the attribute value can be
constrained into a certain kind of token or list of tokens. There are seven different
tokenized types: ENTITY, ENTITIES, NMTOKEN, NMTOKENS, ID, IDREF, and IDREFS. The
plural forms refer to lists of tokens separated by white space.

 The types ENTITY and ENTITIES are used to specify that the value of the attribute
must be a name of an unparsed entity or a list of such names, respectively.

 The types NMTOKEN and NMTOKENS are used to specify values that are made up
of name characters only. For example, an attribute phase of type NMTOKEN could be
defi ned for an element type report as follows:

452.4 Declaring and Constraining Structures

there is an ID type attribute with value A123 and another ID type attribute with value
A567. A common practice is to give the name id to ID type attributes.

 The attribute types ID and IDREF(S) offer a restricted tool for unique identifi cation
and cross-referencing. As just described, since each value of type ID must be unique
within the document, the same value cannot be used for different element types nor
for different attributes. Furthermore, in a valid XML document, the value associated
with any attribute of type IDREF or included in a list of values for an attribute of type
IDREFS must match the value associated with an attribute of type ID within the same
document . Thus, the mechanism can be used only inside a single document, not
across a set of documents.

 In the attribute defi nition using an enumerated type , the attribute values to be
accepted in valid documents are specifi ed as part of the declaration. For example, if we
would like to associate the root element of the document type report with an attribute
phase to show the state of progress, the values could be given in the following way:

<product >

 <mfg>Nokia</mfg><model>8890</model>

 <description> Intended for EGSM 900 and GSM 1900 networks.</description>

 <clock setting= "nist" alarm = "no"/>

</product>

<!ATTLIST clock setting CDATA #IMPLIED

 alarm (yes | no | dual) "yes" >

<!ATTLIST report phase (draft | comments_requested | final) “draft” >

<!ATTLIST report phase (draft | comments_requested | final) #REQUIRED >

 Instead of declaring the attribute to be mandatory, the declaration

 specifi es that the value draft is the default value. In this case, if the attribute is not
present in a report element, then the processor supplies the value draft.

 Example 2.8 Two attributes are declared for the element type clock as follows:

 The attribute setting is a string type attribute without any default value. Attribute
alarm is of enumerated type with three valid values: yes, no and dual. Because of the
specifi ed default, if there is no attribute alarm explicitly included in the start-tag of a
clock element, the XML processor must attach the attribute with value yes to the ele-
ment. The following hypothetical product description provides an example of the
use of these attributes:

 The constraining mechanism provided by DTDs for attribute types is very
 limited. Nevertheless, if an application uses the DTD mechanism as the schema
language, the existence of some limited facility for attribute typing and the lack of
facilities for typing character data found in element content may be infl uential when
deciding whether to use elements or attributes for some data.

46 2 Fundamentals

 In addition to application-defi ned attributes, there are two predefi ned attribute
names, xml:space and xml:lang, available for use in XML documents. The prefi x xml
indicates that the names are reserved by the XML specifi cation. Nevertheless, in
valid documents these predefi ned attributes, like any other, must be declared if they
are used. Attribute xml:space signals an intention that white space should be preserved
by applications in the element, and its type must be an enumerated type with values
default and preserve. The attribute xml:lang is used to specify the language of the con-
tents and of other attribute values of an element. The values of the attribute must be
a subset of the codes defi ned in the specifi cation IETF RFC 1766, which uses abbre-
viations such as en, fr, fi , en-GB, and en-US to denote a language. For example, these
attributes could be declared for the type poem as follows:

<!ENTITY xml-spec "Bray, T., Paoli, J., Sperberg-McQueen, C.M., & Maler, E. (Editors),

Extensible Markup Language (XML) 1.0 (Second Edition),

W3C Recommendation 6 October 2000">

<!ATTLIST poem xml:space (default | preserve) "preserve"

 xml:lang (fi | en) "fi" >

 Before an attribute’s value is passed to an application or checked for validity, the
XML processor normalizes it by applying the algorithm given in Sect. 3.3.3 of the
XML specifi cation. The normalization converts character and entity references and
white space to a standard form in which references are replaced by their values.
Character and entity references and their replacement are considered further in
Sect. 2.4.5 below.

 2.4.4 Entity and Notation Declarations

 In a valid document, all entities must be declared before they are used. The declara-
tion gives a name and, in the case of internal entities, a value for the entity. For
external entities a reference to the external fi le must be provided. The value of the
internal entity given in the declaration is called a literal entity value .

 The declarations for parameter and general entities are distinguished by the pres-
ence or absence of one character: a parameter entity is introduced by a percent sign
(%) before the name of the entity, whereas a general entity is not. As examples,
consider fi rst the following general entity declaration:

 The 156-character string starting with “Bray” and ending with “2000” is given
the name xml-spec. Once declared as a general entity, it is usable as often as desired
within the elements of a document, but not in the DTD. On the other hand, the char-
acter % in the following declaration shows that it is declaring a parameter entity:

<!ENTITY % chapter_attributes

 "author NMTOKEN #IMPLIED

 date CDATA #REQUIRED" >

472.4 Declaring and Constraining Structures

 This entity is named chapter_attributes and is defi ned to represent two attribute
defi nitions that may be needed repeatedly in the DTD. Unlike general entities,
parameter entities are used in DTDs only and not elsewhere in documents.

 Since parameter and general entities are recognized in different contexts, and
they use different forms of reference, they also occupy different namespaces. This
means that a general entity and a parsed entity with the same name are two distinct
entities.

 The literal value of internal entities is not necessarily the value by which the
name of the entity is replaced at the place where it is used. As stated above, some
processing of entity and character references in the literal may be needed before the
replacement; this is further discussed in Sect. 2.4.5 .

 Example 2.9 The following examples of parameter entity declarations appear in
the XHTML specifi cation [20] .

<!ENTITY % URI "CDATA">

 <!-- a Uniform Resource Identifier, see [RFC2396] -->

<!ENTITY % UriList "CDATA">

 <!-- a space separated list of Uniform Resource Identifiers -->

<!ENTITY % StyleSheet "CDATA">

 <!—stylesheet data -->

<!ENTITY % Text "CDATA">

 <!--used for titles etc. -->

<!-- core attributes common to most elements

 id document-wide unique id

 class space separated list of classes

 style associated style info

 title advisory title/amplification

-->

<!ENTITY % coreattrs

 "id ID #IMPLIED

 class CDATA #IMPLIED

 style %StyleSheet; #IMPLIED

 title %Text; #IMPLIED" >

<!ENTITY % heading "h1 | h2 | h3 | h4 | h5 | h6">

<!ENTITY % list "ul | ol | dl">

 For external entities a system identifi er is given to allow the XML processor or
its client application to locate the entity. For example, an external entity section1
could be declared to be found at the location given:

<!ENTITY section1 SYSTEM "http://www.cs.jyu.fi/opetus/xml/section1.xml">

48 2 Fundamentals

 In this case the system literal is an absolute URI reference. It can also be a relative
URI, to be converted to an absolute URI reference by the XML processor. The
string given as a system literal may also contain characters intended to be escaped
before a URI can be used to retrieve the referenced entity. The handling of relative
URIs and escape characters is described in Sect. 4.2.2 of the XML specifi cation.
The system identifi er is sometimes preceded by a public identifi er, which is intended
to provide a label generally understood by the applications. The XML processor
may use any combination of the public identifi er and system identifi er, as well as
some additional information, in attempting to retrieve the entity’s content.

 The previous example declared section1 to be an external parsed entity. The dec-
laration of an unparsed entity requires the identifi cation of the fi le format for the
entity, which is specifi ed by a notation name introduced by a notation declaration .
The notation declaration provides an external identifi er that allows the XML proces-
sor or its client application to locate a suitable application capable of processing
data in the given format. Notation names are used not only in entity declarations to
specify the format of unparsed entities, but can also appear in attribute-list declara-
tions for enumerated attribute types. A notation for using pictures in gif format
could be introduced by the following notation declaration:

<!NOTATION gif PUBLIC

 "-//ISBN 0-7923-9432-1::Graphic Notation//NOTATION CompuServe Graphic

 Interchange Format//EN" >

 The notation can then be used to declare an external unparsed entity as follows:

 The presence of the token NDATA followed by the token gif declares that picture1
uses the notation gif, and together with the notation declaration notifi es the XML
processor that it should invoke an appropriate graphics handler.

 Five general entities, amp, lt, gt, apos, and quot, are predefi ned in the XML speci-
fi cation and therefore need not, and must not, be declared in a DTD. These are used
to escape the markup delimiters (ampersand (&), left angle bracket (<), right angle
bracket (>), apostrophe ('), and quotation mark ("), respectively). 3

 2.4.5 XML Processor Treatment of Entities and References

 A validating processor includes an entity in the physical structure of an XML
 document if it is the root entity, an external subset of the document type defi nition,
or an entity referred to by its name in an entity included in the physical structure.
A non-validating processor does not necessarily read external entities.

<!ENTITY picture1 SYSTEM "../pictures/scenery.gif " NDATA gif>

 3 By default, curly apostrophes and quotation marks are commonly used in place of straight ones
in documents prepared by word processors. However, these marks are not accepted by XML pro-
cessors and are a common cause of parsing errors when examples are copied for XML parsing.

492.4 Declaring and Constraining Structures

 Unparsed entities, which are always also external entities, are referenced by
 giving the name as an attribute value for some element. In a valid document the
referencing attribute must have been declared as an entity type attribute (ENTITY or
ENTITIES). Unparsed entities are not intended for processing by an XML processor.
Instead, the processor merely passes the identifi ers for each entity and the associ-
ated notation to the application.

 On the other hand, parsed entities are processed by the XML processor, which
replaces the entity name by the entity value, as described below. References to
parsed entities, called entity references , may appear outside attributes. Parameter
entity references always begin with a percent sign (%) and terminate with a semico-
lon(;), and the context of a parameter entity reference is always the document type
defi nition. General entity references always start with an ampersand (&) and end with
a semicolon. For example, &xml-spec; references the general entity xml-spec, and
%chapter_attributes; designates the parameter entity chapter_attributes. Recall that a
document may contain both a parameter entity and a general entity named title, for
example; their uses are distinguished by the syntax of the references (%title; versus
&title;) and whether they appear within a DTD or within the content of an element.

 Table 2.2 summarizes the contexts in which invocations of unparsed entities and
entity references might appear. 4

 To understand the processing of parsed entities and their references, it is important to
distinguish between two kinds of entity content: the literal entity value and the replace-
ment text. As mentioned in the previous section, the quoted string given in the declara-
tion of an internal entity is called a literal entity value. The literal entity value may
contain character, parameter entity, and general entity references. The replacement text
for a parsed internal entity reference is derived by replacing character references by their
character values and parameter entity references by their replacement texts.

 Table 2.2 Contexts for referencing entities and characters

 Referencing type Contexts

 Unparsed entity reference • As attribute value in a start-tag or in an attribute defi nition

 Parameter entity reference • Document type defi nition
 • Entity value (for an entity used in a document type defi nition)

 General entity reference • Element content
 • Attribute value either in a start-tag or in an attribute defi nition
 • Entity value

 4 Character references are syntactically similar to general entity references and can appear in the
same contexts. However, character references are not parsed as described in this section. See
instead Sect. 2.3.3 .

50 2 Fundamentals

 Example 2.10 Consider again some of the entity declarations from Example 2.9:

id ID #IMPLIED

class CDATA #IMPLIED

style CDATA #IMPLIED

title CDATA #IMPLIED

id ID #IMPLIED

class CDATA #IMPLIED

style %StyleSheet; #IMPLIED

title %Text; #IMPLIED

<!ENTITY % StyleSheet "CDATA">

 <!—stylesheet data -->

<!ENTITY % Text "CDATA">

 <!-- used for titles etc. -->

<!ENTITY % coreattrs

 "id ID #IMPLIED

 class CDATA #IMPLIED

 style %StyleSheet; #IMPLIED

 title %Text; #IMPLIED" >

 The literal entity value of the entity StyleSheet and of the entity Text is CDATA,
which is also the replacement text for those entities. The literal entity value of the
entity coreattrs is

whereas the replacement text is derived by replacing the parameter entity references
by their replacement texts:

 Any nested general entity references are left unexpanded when deriving such
replacement text; instead expansion of general entity references, replacing each ref-
erence by the value of the entity referenced, takes place only when the entity
 reference is encountered in element contents and in attribute values.

 For a parsed external entity, the literal entity value is the exact text contained in
the entity (external fi le) and the replacement text is the content of the entity after
stripping the text declaration, if there is one, but without any replacement of character
or parameter entity references.

 The replacement text for a parsed entity is regarded as an integral part of the
document in place of its entity reference. The detailed way an XML processor treats
an entity and its references depends on the type of references, their contexts, and the
type of the processor. Non-validating processors need not deal with external enti-
ties, nor are they obligated to read and process entity declarations occurring within
parameter entities. Hence a non-validating processor is not necessarily aware of all
entity declarations. The details of the treatment of entities and references are
described in Sect. 4.4 of the XML specifi cation.

512.4 Declaring and Constraining Structures

 Example 2.11 The XHTML specifi cation also contains the following entity
declarations:

(#PCDATA | %inline; | %misc.inline;)*

<!ENTITY % special.pre "br | span | bdo | map ">

<!ENTITY %special "%special.pre; | object | img ">

<!ENTITY % fontstyle "tt | i | b | big | small ">

<!ENTITY % phrase

 "em | strong | dfn | code | q | samp | kbd | var | cite | abbr | acronym | sub | sup ">

<!ENTITY % inline.forms "input | select | textarea | label | button">

<!ENTITY % misc.inline "ins | del | script">

<!ENTITY % inline

 "a | %special; | %fontstyle; | %phrase; | %inline.forms;">

<!ENTITY % Inline"(#PCDATA | %inline; | %misc.inline;)*">

 The literal value of the entity Inline is

 The replacement text is derived by replacing the references to parameter entities
inline and misc.inline by their replacement texts. The literal value for the entity inline

(#PCDATA | a | br | span | bdo | map | object | img | tt | i | b | big | small | em |

strong | dfn | code | q | samp | kbd | var | cite | abbr | acronym | sub | sup | input |

select | textarea | label | button | ins | del | script)*

%special.pre; | object | img

a | %special; | %fontstyle; | %phrase; | %inline.forms;

a | br | span | bdo | map | object | img | tt | i | b | big | small | em | strong | dfn | code | q |

samp | kbd | var | cite | abbr | acronym | sub | sup | input | select | textarea | label | button

br | span | bdo | map

must therefore be transformed to its replacement text, which requires examining its
four referenced entities. When processing the literal value of the entity special

 the processor encounters a reference to the entity special.pre whose replacement
text is

 After expanding everything, the replacement text of the entity inline is found to be:

 After also expanding the entity %misc.inline;, the replacement text of the entity
Inline is found to be:

52 2 Fundamentals

 2.4.6 XML Schema

 The document type defi nition mechanism provided by DTDs is just one means to
constrain XML data. Several other defi nition languages, called schema languages,
have also been defi ned for XML. Software supporting each such language is able to
check the validity of an XML document against the defi nitions of acceptable data
types and structures declared by the document designers.

 A language widely adopted for many applications is XML Schema , also known as
 XSD , developed by W3C and described in three parts: a primer summarizing the lan-
guage and providing several examples [14] , the specifi cation for describing compound
structures [21] , and the specifi cation for the 44 pre-defi ned atomic data types available
in XSD [2] . This provides richer constraining mechanisms than those available through
a DTD, and they can all be applied to both attribute values and element contents.

 2.4.6.1 Overview

 We begin by comparing some core features of XSD to those of DTDs, divided into
the following areas:

 XML model •
 Types •
 Syntax •
 Namespaces •

 Following that, we demonstrate how elements are declared and types defi ned,
and then how attributes are declared.

 XML model. As described in Sect. 2.3 , the core concept of XML is a document
with both physical structure and logical structure. The markup in an XML docu-
ment provides information for both of these structures, and DTDs include defi nition
capabilities for them both. A DTD is used by validating XML processors to assess
the validity of XML documents with respect to element type declarations, attribute
list declarations, entity declarations, and notation declarations.

 As will be explained in Sect. 2.5.2 below, the nesting of elements in XML
imposes a computational structure known as a tree . Based on this relationship, the
XML Information Set (Infoset) model describes an XML document as an abstract
tree structure consisting of 11 kinds of nodes called information items [12] . Unlike
a DTD, an XSD instance is not intended to assess the validity of marked up XML
documents but rather the validity of element and attribute information items as they
are defi ned by the Infoset model. Thus even though both XSD and DTDs are lan-
guages that constrain the contents of XML documents, the target for XSD is differ-
ent from that for DTDs.

 Types. The most signifi cant improvement of XSD over DTDs is the introduction of
a rich typing system, allowing designers to declare restricted domains of values for
each of the elements and attributes in their documents.

532.4 Declaring and Constraining Structures

 Consider fi rst the following DTD declarations for a multilingual street name
catalogue:

<!ELEMENT streetCatalogue (street+)>

<!ELEMENT street (streetName+)>

<!ELEMENT streetName (#PCDATA)>

<!ATTLIST streetName lang NMTOKEN #REQUIRED>

 This example includes declarations for three element types and one declaration
associating an attribute name with an attribute type . For each street there may be
several street names, and the language of each street name is provided using the lang
attribute.

 In a DTD, although the content of elements having children can be structurally
constrained, elements without any child elements always contain arbitrary strings of
character data (declared as #PCDATA). In the above example, the length of a street-

Name cannot be constrained. In other situations where ages, monetary amounts, or
dates are stored as element values, no constraints can be declared to ensure that
valid integers or dates are actually stored. Attribute values can be constrained by the
attribute type, but the choice of types is very limited, as described in Sect. 2.4.3
above.

 In XSD the term type always refers to the set of values allowable for an element
or attribute, never to its name. The typing system in XSD allows document design-
ers to specify elements and attributes that include all the constraints available in
DTDs, but many additional forms of constraint are also available. Types can be
 simple (such as integer, string, date, and time), which will be described in more
detail in Sect. 5.1 , or they can be structures with arbitrarily many sub-components
(so-called complex types).

 Elements and attributes are constrained by schema components in the form of
defi nitions and declarations. Defi nition components specify types as sets of possible
values, including both atomic and structured values. On the other hand, element,
attribute, and notation declarations are used to enable elements, attributes, and nota-
tions with the specifi c names to appear in document instances and to constrain the
contents of each appearance to conform to a defi ned type.

 The declaration for an element or attribute may include a type defi nition directly
or it may refer to the type by the type name. In the former case the type is anonymous .
In the latter case the defi nition of the type with the given name may be included in
the same schema, or the name can refer to a type defi ned in another schema or in the
XSD specifi cation itself. Note that the content specifi cations of element type declara-
tions of DTDs correspond to XSD’s anonymous type defi nitions.

 Syntax. Whereas the syntax for DTDs is especially defi ned for markup declara-
tions, XSD uses XML’s element and attribute notation. For example, elements
named element and attribute are used to declare elements and attributes, respectively,
and elements named complexType and simpleType are used to defi ne complex types
and simple types (those without attributes and subelements), respectively.
(Examples will be given in Sect. 2.4.6.2 below).

54 2 Fundamentals

 Schema instance fi les are usually named with the .xsd fi le extension when they
are intended to be processed by XSD-aware software. However, XSD schema
instances are also special cases of XML documents, and therefore they can be pro-
cessed by general XML software. The extension .xml is used instead when the fi le
is to be processed by general purpose XML software.

 Namespaces. The element and attribute names in a DTD must appear in the same form
as in the document validated against the DTD. Prefi xed names denoting namespaces
can be used in a DTD, but namespaces cannot be declared there since they can be
declared only in the start-tags of elements. Therefore two documents that use identical
namespaces but with different prefi xes cannot be validated with a single DTD.

 Parameter entities provide an alternative method to support reuse of declarations
in DTDs. Reuse is also supported by modularization methods enabling the creation
of schemas from well-defi ned sets of elements and attributes. Examples of these
methods are presented by Eve Maler and Jeanne El Andaloussi in their extensive
book on developing SGML DTDs [19] and in the descriptions of XHTML [1] and
the Text Encoding Initiative (www.tei-c.org). These alternative methods, however,
do not solve the problem of name collisions.

 XSD supports the use of namespaces in several ways. The XSD syntax, being a
subset of XML, allows the declaration of namespaces in the start-tag of any ele-
ment. The vocabulary declared and defi ned in a schema forms a target namespace ,
which therefore includes the names declared for all elements and attributes, as well
as of the names defi ned for types in the schema. For example, the following lines
might start a schema:

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:school="http://www.example/schoolNames"

 targetNamespace="http://www.example/schoolNames">

 <element name="beginDate" type="date" />

 The fi rst line declares the XSD namespace as the default namespace for the
schema itself. This allows the use of the names from the namespace http://www.w3.

org/2001/XMLSchema without any prefi x. The second line associates the prefi x school
with the namespace name http://www.example/schoolNames . The third line declares
this particular namespace as the target namespace of the schema. As a result, that
namespace is populated by the names declared for elements and attributes in the
schema, as well as by the names defi ned for types in the schema. The last line
declares the beginDate element to have the built-in type date. The name beginDate
belongs to the target namespace, but the element names schema and element, the
attribute names name and type, and the type name date are all taken from the
namespace http://www.w3.org/2001/XMLSchema .

 It is worth noticing that the namespace concept of XSD extends the XML Names
specifi cation [4] by including type names as well as names of elements and attri-
butes. Thus the example above shows that the namespace http://www.w3.org/2001/

XMLSchema includes the element names element and attribute and the attributes name

552.4 Declaring and Constraining Structures

and type, as well as the names of the built-in types such as date. Notice also that the
names of types are not used as element or attribute names in schemas but instead as
attribute values.

 A schema defi ning a particular target namespace may be divided into several
schema documents by using the include element to specify the location of the fi le
from which schema components are included. In such a case, there is a single
declared target namespace for all of the schema documents, and that target namespace
is populated by the names declared and defi ned in all the documents.

 The reuse of types is facilitated by the import element, which identifi es the target
namespace for the imported types. For example, the types defi ned in the target
schema http://www.example/schoolNames could be reused by another schema by
including the following schema element:

<student>

 <name>Steve Chung</name>

 <age>23</age>

 <phone>416-982-1111</phone>

</student>

<!ELEMENT student (name, age, phone)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT age (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

<import namespace="http://www.example/schoolNames"/>

<element name="phone" type="string" />

 2.4.6.2 Declaring Elements and Defi ning Types

 Consider defi ning a schema for the following simple XML document:

 The student element contains three subelements: name, age, and phone, each of
which consists of character data. A possible DTD for the data might include four
element type declarations as follows:

 An XSD defi nition for the same data is shown in Fig. 2.3 , where the schema com-
ponents are contained in the schema element. As in the example in the previous sec-
tion, the XSD namespace http://www.w3.org/2001/XMLSchema is fi rst declared as the
default namespace, and then the prefi x school is associated with the namespace http://

www.example/schoolNames , which is also declared as the target namespace. The schema
includes four element declarations, each specifi ed in an element named element that
associates a name, given with the attribute name, with a type.

 Since name, age, and phone do not have any attributes or child elements, they can
be declared to have a simple type. For example, the element

56 2 Fundamentals

declares the element name phone to have the built-in type string. Note, however, that
unlike DTDs, XSD allows the age to be constrained to contain a string that repre-
sents a positive integer.

 Unlike the other three elements, the student element has subelements, and it must
therefore be declared as a complex type. In Fig. 2.3 the type is declared using an
 anonymous type defi nition : the elements complexType and sequence defi ne a sequence
structure consisting of the elements name, age, and phone.

 Instead of using an anonymous type defi nition, an alternative is shown in Fig. 2.4 ,
where a complex type named PersonalData has been defi ned separately from the
student element declaration. The element declaration refers to this type by its name,
prefi xed by the name of the target namespace.

 XSD allows document designers to declare new types that are derived from other
atomic or complex types. For example, the type of the element phone in these exam-
ples was constrained to character strings, but any strings are allowed as element

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:school="http://www.example/schoolNames"

 targetNamespace="http://www.example/schoolNames">

 <element name="student">

 <complexType>

 <sequence>

 <element name="name" type="string" />

 <element name=”age” type=”positiveInteger”/>

 <element name="phone" type="string" />

 </sequence>

 </complexType>

 </element>

</schema>

 Fig. 2.3 A schema with an anonymous complex type defi nition

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:school="http://www.example/schoolNames"

 targetNamespace="http://www.example/schoolNames">

 <complexType name="PersonalData">

 <sequence>

 <element name="name" type="string" />

 <element name="age" type="positiveInteger"/>

 <element name="phone" type="string" />

 </sequence>

 </complexType>

 <element name="student" type="school:PersonalData"/>

</schema>

 Fig. 2.4 A schema with a named complex type defi nition

572.4 Declaring and Constraining Structures

content. Instead, a designer can constrain the content to conform to a particular
 pattern by declaring a restriction of the type string as follows:

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:school="http://www.example/schoolNames"

 targetNamespace="http://www.example/schoolNames">

 <element name="name" type="string" />

 <element name="phone" type="string" />

 <complexType name="PersonalData">

 <sequence>

 <element ref="school:name"/>

 <element name=”age” type=”positiveInteger”/>

 <element ref="school:phone" minOccurs="0" />

 </sequence>

 </complexType>

 <element name="student" type="school:PersonalData"/>

</schema>

 Fig. 2.5 A schema with references to global elements

<element name="phone">

 <simpleType>

 <restriction base="string">

 <pattern value="\d{3}-\d{3}-\d{4}"/>

 </restriction>

 </simpleType>

</element>

 The restriction is specifi ed with a facet called a pattern from the base type string.
The pattern "\d{3}-\d{3}-\d{4}" describes a string where three digits are followed by a
hyphen, three digits, a hyphen, and four digits. With such a declaration for the ele-
ment phone, an XSD-aware validator will reject phone elements having content that
does not match the pattern.

 Complex types can also be constrained. For example, a new type can be defi ned
as a restriction of PersonalData specifying that the age be between 16 and 25.
Alternatively, a new complex type can be defi ned as an extension of PersonalData

that also includes an e-mail address.
 Document designers may wish to use an element declaration in several places

with in a schema or in several schemas. To refer to a declaration, it must be declared
as global by placing it as a child of the schema element. For example, the student
element is a global declaration in Figs. 2.3 and 2.4 . On the other hand, the name,
age, and phone elements in those schemas are local declarations because they appear
inside complex type defi nitions.

 A global element can be referenced from other declarations using the ref attri-
bute. For example, the element declarations in the complex type defi nition in Fig. 2.5
use the attribute ref to refer to the global name and phone declarations, whereas age
remains local. Notice that the type of the elements are not repeated when referring

58 2 Fundamentals

to a global declaration. In contrast to XSD, all elements in DTDs are global (their
names can be used as references in other element type declarations); there is no cor-
responding mechanism to declare local elements.

 In Fig. 2.5 the element referencing school:phone also includes a second attribute
with the name minOccurs. With the value 0, this attribute constrains the number of
occurrences of phone elements in the student element to be greater than equal to 0.
Similarly, XSD provides the attribute maxOccurs to declare the maximum number of
repetitions of an element. The value of the attributes minOccurs and maxOccurs may be
any positive integer, or the term unbounded indicating that there is no maximum num-
ber of occurrences. The omission of either these attributes corresponds to including
the attribute with a value of 1. Thus, in Fig. 2.5 school:name and age must occur
exactly once (at least once and at most once), whereas school:phone may occur either
0 times or one time. In a DTD these constraints are expressed as

<!ELEMENT student (name, phone)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT age (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

<!ATTLIST phone area_code CDATA #IMPLIED>

<student>

 <name> Steve Chung</name>

 <age>23</age>

 <phone area_code="416" >982-1111</phone>

</student>

<element ref="school:phone" minOccurs="0" maxOccurs= ="5" />

<!ELEMENT student (name, age, phone?)>

 The attributes minOccurs and maxOccurs enable more precise constraints on the
number of occurrences than allowed by a DTD’s content model using the symbols
?, +, and *. For example, to allow at most fi ve phone numbers, the element declara-
tion would be written as follows:

 2.4.6.3 Declaring Attributes

 Instead of encoding all data as element content, let us examine how attributes are
declared in XSDs. Continuing with the earlier example, assume that the area code is
given as attribute value, instead of including it as part of the whole phone number:

 In a DTD this change would require adding an attribute list declaration:

 Note that in contrast to element declarations, all attributes in a DTD are declared
local by associating them with an element name. In XSD it is possible to declare
attributes to be global as well as local.

 Using XSD, the phone element must have a complex type to enable it to have an
attribute. Figure 2.6 shows how an appropriate complex type can be derived from a

592.4 Declaring and Constraining Structures

simple type. (For variety, the schema has also been altered such that no target
namespace has been declared – i.e., the default namespace is used for the target –
and the namespace http://www.w3.org/2001/XMLSchema is explicitly associated with
the prefi x xsd).

 In this example, two simple types have been defi ned to constrain the phone
 number and the area code respectively: the phoneNumberType restricts a string to the
form where three digits are followed by a hyphen and four digits, and the areaCode-

Type restricts a string to be three digits. The type of phone is an anonymous complex
type. The element simpleContent indicates that the content of the element contains
only character data, no sub-elements. The complex type is derived as an extension
from the base type areaCodeType by adding an attribute with name area_code and
type areaCodeType.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:simpleType name="phoneNumberType">

 <xsd:restriction base="xsd:string">

 <xsd:pattern value="\d{3}-\d{4}"/>

 </xsd:restriction>

 </xsd:simpleType>

<xsd:simpleType name="areaCodeType">

 <xsd:restriction base="xsd:string">

 <xsd:pattern value="\d{3}"/>

 </xsd:restriction>

</xsd:simpleType>

<xsd:element name="student">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="name" type="xsd:string" />

<xsd:element name="age" type="positiveInteger"/>

<xsd:element name="phone">

<xsd:complexType>

<xsd:simpleContent>

<xsd:extension base="phoneNumberType">

<xsd:attribute name="area_code" type="areaCodeType"/>

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

 Fig. 2.6 A schema with an attribute declaration

60 2 Fundamentals

 2.4.6.4 Extended XSD Example

 Before concluding this section, we return to the earlier example of a rhyme to illus-
trate grouping, optionality, alternatives, and iteration in XML Schema. For simplicity,
the example of alternative content shown here is via an enumerated type (for xml:lang);
more general alternatives are defi ned using the element <xs:choice> in place of
<xs:sequence>.

 Example 2.12 XSD declarations for rhymes that parallel the DTD declarations in
Example 2.4:

<xs:schema elementFormDefault="qualified" attributeFormDefault="unqualified"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="line" type="xs:string" />

<xs:element name="rhyme">

<xs:complexType mixed="false">

<xs:sequence minOccurs="1" maxOccurs="1">

<xs:complexType mixed="false">

<xs:element ref="line" minOccurs="1" maxOccurs="unbounded"/>

</xs:complexType>

</xs:sequence>

<xs:attribute name="xml:lang" use="optional">

<xs:simpleType>

<xs:restriction base="xs:language">

<xs:enumeration value="fi"/>

<xs:enumeration value="en"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="author" type="xs:string" use="optional"/>

</xs:complexType>

</xs:element>

<xs:element name="rhymecollection">

<xs:complexType mixed="false">

<xs:sequence minOccurs="1" maxOccurs="1">

<xs:element name="title" type="xs:string" minOccurs="0" maxOccurs="1"/>

<xs:element ref="rhyme" minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

 In Example 2.12, a rhyme is specifi ed as being a non-empty, unbounded sequence
of lines with no interleaved text (mixed="false"). Each line is itself a simple string.
A rhyme may optionally have attributes as follows: xml:lang is an enumerated type
that restricts the built-in type xs:language, and author can take any string as its value.

612.4 Declaring and Constraining Structures

A rhymecollection starts with an optional title and then has one or more elements of
type rhyme, declared earlier.

 In summary, XSD is more expressive than DTDs: it can be used to specify con-
straints that cannot be described using a DTD. The availability of many atomic
types allows element content to be constrained rather than merely being declared
generically as #PCDATA. In addition, minOccurs and maxOccurs can take any numeric
values, not merely 0, 1, or unbounded. The items in a sequence are constrained to
be in a fi xed order (as in DTDs, where, for example, name, age, and phone number
may all be required in that order), but by using <xs:all> instead of <xs:sequence> the
component elements are allowed to appear in arbitrary order (name, age, and phone
number must all be provided but any of the six possible orderings are acceptable).
Elements of any type can be declared with the attribute nillable="true" to allow any
instance of that element to have empty content when xsi:nil="true" is included among
its attributes (assuming that somewhere in its enclosing context xmlns:xsi=" http://www.

w3.org/2001/XMLSchema-instance " has been declared); thus the fact that a value is
missing, unknown or not applicable can be recorded for elements that must be pres-
ent and otherwise could not be empty (such as integers, dates, or complex types with
required sub-elements). Finally, any element can be declared to have a value that is
unique with respect to all other elements in the same context; for example, employee
id numbers can be declared to be non-repeating throughout the document, non-
repeating within each organization listed in the document, or non-repeating within
each division in each organization.

 Finally, DTDs provide the attribute types ID, IDREF, and IDREFs to support
links between elements within a document. XSD extends this to allow the defi nition
of keys (similar to relational database keys, but with respect to a particular context
within each document) and references (of type keyref) to those keys.

 2.4.7 RELAX NG

 A third data defi nition language is RELAX NG , developed by James Clark and
Murata Makoto through OASIS and an ISO standard (ISO/IEC 19757–2) since
December 2003 [10, 11] . RELAX NG is simpler than XML Schema, but it too
includes a richer collection of data types than available in DTDs as well as support
for namespaces.

 As will be explained in Sect. 2.5.2 below, the nesting of elements in XML
imposes a structure known in computer science as a tree . RELAX NG is designed
to constrain the trees that are represented by XML documents rather than capabili-
ties for constraining the document text directly. In RELAX NG, therefore, the con-
tent models for elements, as well as for the sets of valid values for attributes, are
modeled as tree-regular grammars , a formalism similar to EBNF (as introduced in

62 2 Fundamentals

Sect. 2.1) but describing trees rather than strings. RELAX NG is not able to describe
all the constraints describable with XSD, but it is more expressive than XSD in
specifying unordered and mixed content.

 Grammars in RELAX NG can be expressed using XML structures (quite similar
in style to that used in XSD), but a more compact syntax is also available, as illus-
trated in the following example:

 Example 2.13 RELAX NG declarations for rhymes that parallel the DTD declara-
tions in Example 2.4 and the XSD declarations in Example 2.12:

grammar {

 start = RhymeCollection

 RhymeCollection = element rhymeCollection { element title { text} ?, Rhyme+ }

 Rhyme = element rhyme {

 attribute xml:lang { ("fi" | "en") },

 attribute author {text},

 Line+

 }

 Line = element line { text }

 }

 2.5 Processing Models

 As explained in Sect. 2.2 , software that needs to read or modify data stored in an
XML document accesses that data via an XML processor. The responsibility of the
processor is to distinguish markup from content, to ensure that the document is
well-formed, possibly to ensure that the document satisfi es various validity con-
straints, to use the markup to identify individual units of content as well as the
relationships between those units, and to identify suitable applications to handle
non-textual components. This information is made available to the application soft-
ware according to a pre-determined protocol that dictates the form of communica-
tion between the XML processor and the XML application. Such a protocol is
typically embedded into an application program interface , or API , which is a set of
functions that support the communication between the participating pieces of
software.

 There are two major protocols that are used by XML processors. In the fi rst one,
the XML document is viewed as a string of beads: a linear structure formed by
interleaved markup and content. In the alternative protocol, the XML document is
viewed as a bunch of grapes: a hierarchical structure matching the nested nature of
the markup, with units of content situated at various points at the lowest levels of the
hierarchy [22] . Managing text via these two models is discussed in the remainder of
this section.

632.5 Processing Models

 2.5.1 Stream Processing

 Consider the XML element

<date><month>December</month><year>1654</year></date>

public void startElement (String uri, String name, String qName, Attributes atts){ … }

 The simplest interpretation of the structure and content is to view this as a stream
of tokens, where each token carries either a unit of markup or a unit of content:

 Opening tag: date
 Opening tag: month
 String: December
 Closing tag: month
 Opening tag: year
 String: 1654
 Closing tag: year
 Closing tag: date

 Tokens from this stream can be passed from the XML processor to the XML
application in the order in which they appear, and it is up to the application software
to handle the information conveyed by the tokens and their ordering in an appropri-
ate manner to achieve its goals.

 Applications that adopt this form of processing are typically based on SAX, the
“Simple API for XML” [7] . With SAX, the XML processor signals the occurrence
of each token in turn by calling an appropriate function, depending on the type of
token. A suitable token handler must be written by the XML application program-
mer as the body of each designated function. For example, when a SAX parser
encounters an opening tag, it calls the function startElement, passing parameters that
contain the tag name, information to resolve the namespace, and the list of attribute-
value pairs. Assuming that the software is written in the Java programming lan-
guage, the XML application programmer must implement the function

to handle a start-tag whenever it is encountered in the XML document. The following
table lists the set of token types that may occur in a SAX stream:

 Tokens from a DTD

 notationDecl unparsedEntityDecl

 Tokens from the body

 startDocument endDocument
 startElement endElement
 startPrefi xMapping endPrefi xMapping
 characters ignorableWhitespace
 processingInstruction skippedEntity

64 2 Fundamentals

 2.5.2 Tree Processing

 It is often important to consider the context of a fragment of an XML document in
order to process it appropriately. In such circumstances, it is convenient to have easy
access to the nesting structure implied by the markup. Thus, instead of viewing an
XML document as a stream of tokens, some application programs are better served
by viewing it as a hierarchical structure, and more specifi cally as an ordered, rooted
tree. The document element is interpreted as the root of the tree, and each non-root
element is interpreted as a child of the node corresponding to the element in which
it is contained. An XML processor supporting the tree-based protocol for commu-
nicating the information about an XML document to an XML application must
provide information about the order of sibling elements to that application.

 Consider again the following XML document with two rhymes, one written in
Finnish, another in English.

 The corresponding tree structure can be depicted as shown in Fig. 2.7 . In the tree
the children of a node are ordered from top to bottom and refl ect exactly the same
order as they appear (left to right) in the corresponding elements in the tagged text.

 Figure 2.7 shows only the element structure. Tree models for XML documents
have been developed in four different specifi cations proposed through W3C: the XML
Information Set (Infoset) model [12] , the XML Path Language (XPath 1.0) data model

<rhymecollection>

 <rhyme>

 <line>Ole aina iloinen</line>

 <line>niin kuin pikku varpunen</line>

 </rhyme>

 <rhyme>

 <line>See, see! What shall I see?</line>

 <line>A horse’s head where his tail should be</line>

 </rhyme>

</rhymecollection>

rhymecollection

rhyme

niin kuin pikku varpunen

See, see! What shall I see?

rhyme

A horse’s head where his tail should be
line

line

line

line

Ole aina iloinen

 Fig. 2.7 XML document as a tree

652.5 Processing Models

 [9] , the Document Object Model (DOM) [18] , and the XQuery 1.0 and XPath 2.0
Data Model [15] . All four cover more than just the structure of elements. Each model
defi nes a set of node types, including types for the root of a document as well as for
elements, attributes, comments, and processing instructions. However there are some
subtle differences between the models. For example, if a tree is created on the basis of
the Infoset model, there is a distinct node for each character in the content of an ele-
ment (thus resulting in 16 child nodes for the fi rst line node in the above example),
whereas the XQuery/XPath data model permits multiple-character strings in a content
node and specifi es that two adjacent sibling nodes may not both contain text (thus
resulting in only one child node for each line node in the above example). Furthermore,
although attributes are represented by nodes in all four models, there are some subtle
differences in the way in which the four models account for the fact that there is no
order defi ned among attributes of an element in the XML specifi cation. The existence
of competing tree models for XML data has caused some inconsistencies and incom-
patibilities in XML development.

 The functionality available through XPath 1.0 provides an example of an appli-
cation’s access to an XML document using a tree-based protocol. An XPath expres-
sion is a sequence of steps in which each step is interpreted with respect to a starting
node (the context node) and returns either a (possibly empty) set of nodes, a Boolean
value (true or false), a number, or a character string. For example, starting from the
root of the above tree, the expression rhyme/line yields a node set including all four
line elements, rhyme[2]/line yields the last two line elements (i.e., the two English
lines), and rhyme/line[contains(.,"niin")]/text() yields the contents of the second Finnish
line, namely the string “niin kuin pikku varpunen”.

 More precisely, the steps are separated by slashes and each step includes an axis,
a node test, and a predicate, defi ned as follows:

 Starting from a context node, an axis identifi es a subset of nodes in the tree and •
imposes a linear ordering on that subset. For example, the child axis selects all
element children of a node and orders them from fi rst to last; the ancestor axis
selects the parent of the node fi rst, followed by the parent’s parent, that node’s
parent, and so on until the root node is reached. XPath 1.0 defi nes 13 axes (ances-
tor, ancestor-or-self, attribute, child, descendant, descendant-or-self, following,
following-sibling, namespace, parent, preceding, preceding-sibling, self), any of
which can be specifi ed in any step of an expression. For simplicity, an abbrevi-
ated form may be used wherein the child axis need not be specifi ed, descendant-
or-self is represented by omitting the step (thus effectively doubling the slash),
parent is represented by a caret (^), and self is represented by a dot (.).
 Starting with the sequence of nodes designated by an axis, the node-test elimi-•
nates any node that does not match the specifi ed element name or element type.
For example, child::line selects only child nodes corresponding to elements named
line and descendant::comment() yields all comment nodes within the subtree of the
context node. When used as a node-test, an asterisk (*) matches all nodes desig-
nated by the axis.
 Starting from the sequence of nodes designated by an axis and passing the node-•
test, a predicate serves as an additional fi lter to select the subset of the nodes for

66 2 Fundamentals

which it evaluates to true . As an abbreviation, if the predicate is a number, it
selects the node from that position in the sequence, and if it is a path expression,
it selects each node N for which that path expression evaluates to a non-empty set
of nodes when N is used as the context node.

 Finally, a path consisting of a sequence of steps is evaluated by determining the set
of nodes from the fi rst step, using each in turn as a context node to select nodes using
the second step and forming the union of all returned node sets, and so forth. For
example, starting from some context node, the XPath expression

chapter/section[2]//fi gure/^subsection

selects all child element nodes with name chapter, then selects all second sections
that are children of those chapters, then all fi gures anywhere within those sections,
and fi nally all subsections that immediately contain those fi gures.

 2.5.3 Comparing Stream and Tree Processing

 Processing an XML document as a stream of tokens allows an application to con-
sider all components in the order that they appear in the document. Parsing a docu-
ment for stream processing is straightforward and stream parsers are very effi cient
regardless of the size of a document. Stream processors are typically used for XML
documents that are shipped from one application to another.

 Tree processing requires the parser to build and maintain a nested representation
of the document, usually within a computer’s main memory. As a result, an applica-
tion can navigate forward and backwards within the structure, climbing one branch
of the tree and descending others that may have occurred before or after it in docu-
ment order. The parser and the application interface are therefore somewhat more
complicated, and typically document processing is restricted to documents, and
their parses, that fi t into main memory. Tree processors are therefore typically used
for applications that require random access to sub-parts of a document, and they are
more amenable to supporting XML validation, especially with respect to resolving
attributes of type IDREF(S).

 In spite of recognizing their advantages and disadvantages, however, it is impor-
tant to remember that either type of processor is capable of preparing an XML docu-
ment for use in any application.

 References

 1. Austin, D., Peruvemba, S., McCarron, S., Birbeck, M. (eds): XHTML™ Modularization 1.1 – Second
Edition. W3C Recommendation (29 July 2010) http://www.w3.org/TR/xhtml-modularization/ ,
Cited 10 March 2011.

 2. Biron, P., Malhotra, A. (eds): XML Schema Part 2: Datatypes (Second Edition). W3C
Re-commendation (28 Oct 2004) http://www.w3.org/TR/xmlschema-2/ , Cited 10 March 2011.

67References

 3. Bray, T.: The Annotated XML Specifi cation. http://www.xml.com/axml/testaxml.htm , Cited
10 March 2011.

 4. Bray, T., Hollander, D., Layman, A., Tobin, R., Thompson, H.S. (eds): Namespaces in XML
1.0 (Third Edition). W3C Recommendation (8 December 2009) http://www.w3.org/TR/xml-
names/ , Cited 10 March 2011.

 5. Bray, T., Paoli, J., Sperberg-McQueen, C.M. (eds): Extensible Markup Language (XML) 1.0.
W3C Recommendation (10 February 1998) http://www.w3.org/TR/1998/REC-xml-19980210 ,
Cited 10 March 2011.

 6. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F., Cowen, J. (eds): Ex-tensible
Markup Language (XML) 1.1. W3C Recommendation (4 February 2004, edited in place 15
April 2004) http://www.w3.org/TR/2004/REC-xml11-20040204/ , Cited 10 March 2011.

 7. Brownell, D. (ed): SAX. http://www.saxproject.org/ , Cited 10 March 2011.
 8. Clark, J., Pieters, S., Thompson, H.S. (eds): Associating Stylesheets with XML documents 1.0

(Second Edition). W3C Recommendation (28 October 2010) http://www.w3.org/TR/xml-
stylesheet , Cited 10 March 2011.

 9. Clark, J., DeRose, S. (eds): XML Path Language (XPath) Version 1.0. W3C Recommendation
(16 November 1999) http://www.w3.org/TR/xpath , Cited 10 March 2011.

 10. Clark, J, Murata, M.: RELAX NG Specifi cation, Committee Specifi cation. OASIS
(3 De-cember 2001) http://www.oasis-open.org/committees/relax-ng/spec-20011203.html ,
Cited 10 March 2011.

 11. Clark, J, Murata, M.: RELAX NG Tutorial, OASIS Committee Specifi cation (3 December
2001), http://www.relaxng.org/tutorial-20011203.html , Cited 10 March 2011.

 12. Cowan, J., Tobin, R. (eds): XML Information Set (Second Edition). W3C Recommendation
(4 February 2004) http://www.w3.org/TR/xml-infoset/ , Cited 10 March 2011.

 13. Duerst, M., Suignard, M.: Internationalized Resource Identifi ers (IRIs). The Internet Society
(January 2005) http://www.rfc-editor.org/rfc/rfc3987.txt , Cited 10 March 2011.

 14. Fallside, D.C., Walmsley, P. (eds): XML Schema Part 0: Primer Second Edition. W3C
Recommendation (28 October 2004) http://www.w3.org/TR/xmlschema-0/ . Cited 10 March
2011.

 15. Fernández, M., et al. (eds): XQuery 1.0 and XPath 2.0 Data Model (XDM). W3C Recom-
mendation (23 January 2007) http://www.w3.org/TR/2007/REC-xpath-datamodel-20070123/ ,
Cited 10 March 2011.

 16. Goldfarb, C.F.: The SGML Handbook, edited by Y. Rubinsky. Oxford University Press,
Oxford, UK (1990).

 17. ISO/IEC JTC1/SC34 Web Server, Information Technology – Document Description and
Processing Languages. International Organization for Standardization and the International
Electrotechnical Commission. http://www.ornl.gov/sgml/ , Cited 10 March 2011.

 18. Le Hégaret, P., et al. (eds): Document Object Model (DOM). http://www.w3.org/DOM/ , Cited
10 March 2011.

 19. Maler, E., El Andaloussi, J.: Developing SGML DTDs. From Text to Model to Markup.
Prentice Hall PTR, Upper Saddle River, NJ (1995). Available online at http://www.xmlgrrl.
com/publications/DSDTD/ , Cited 10 March 2011.

 20. Pemberton, S., et al.: XHTML™ 1.0 The Extensible HyperText Markup Language (Second
Edition): A Reformulation of HTML 4 in XML 1.0. W3C Recommendation (26 January 2000.
revised 1 August 2002) http://www.w3.org/TR/xhtml1/ , Cited 10 March 2011.

 21. Thompson, H.S., Bech, D., Maloney, M., Mendelsohn, N. (eds): XML Schema Part 1:
Structures Second Edition. W3C Recommendation (28 October 2004) http://www.w3.org/TR/
xmlschema-1/ . Cited 10 March 2011.

 22. Tompa, F.W.: What is (tagged) text? In: Dictionaries in the Electronic Age, Proceedings of the
Fifth Annual Conference of UW Centre for the New Oxford English Dictionary and Text
Research, pp. 81–93. Waterloo, Ont.: University of Waterloo (1989). Available online at http://
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.40.5411&rep=rep1&type=pdf , Cited 10
March 2011.

 23. W3C, All Standards and Drafts. http://www.w3.org/TR/ , Cited 10 March 2011.

http://www.springer.com/978-1-4614-0991-5

	Chapter 2: Fundamentals
	2.1 Formal Grammars
	2.2 Processors and Applications
	2.3 XML Documents
	2.3.1 Logical Structure
	2.3.1.1 Elements and Nested Structures
	2.3.1.2 Unparsed Character Data
	2.3.1.3 Attributes
	2.3.1.4 Comments and Processing Instructions
	2.3.1.5 Namespaces

	2.3.2 Physical Structure
	2.3.2.1 Entity Types
	2.3.2.2 Motivations for the Use of Entities

	2.3.3 Character Encoding

	2.4 Declaring and Constraining Structures
	2.4.1 DTD and Markup Declarations
	2.4.2 Element Type Declarations
	2.4.3 Attribute List Declarations
	2.4.4 Entity and Notation Declarations
	2.4.5 XML Processor Treatment of Entities and References
	2.4.6 XML Schema
	2.4.6.1 Overview
	2.4.6.2 Declaring Elements and Defining Types
	2.4.6.3 Declaring Attributes
	2.4.6.4 Extended XSD Example

	2.4.7 RELAX NG

	2.5 Processing Models
	2.5.1 Stream Processing
	2.5.2 Tree Processing
	2.5.3 Comparing Stream and Tree Processing

	References

