Chapter 2
FPGA Application Design

In wired or wireless communication systems, the information that needs to be
transmitted is not only required to reach the destination but it should be error free
and should make efficient use of the channel bandwidth available. Various DSP
based encoding/decoding algorithms, data compression and noise filtering tech-
niques have been developed to achieve effective and efficient data transmission
with the help of FPGAs for hardware implementation. FPGA based implementa-
tions provide the flexibility of re-programming and quick delivery of the product to
the market.

This chapter demonstrates the design of a simple DS-SS system including the
basic building blocks such as, PN sequence generator, BPSK modulator/demodulator,
BOOTH multiplier, Low Pass Filter and convolutional coding. The system is
designed using Verilog HDL, simulation and functional verification of the design
is performed using ModelSim® XE III 6.0d, and synthesis using Xilinx® ISE. The
design is implemented and tested on Xilinx® Spartan 2E FPGA.

This chapter also demonstrates some of the algorithms and techniques used to
accomplish data integrity and channel bandwidth efficiency in a communication
system such as, Low Pass FIR filter using efficient Distributed Arithmetic (DA)
architecture, Discrete Cosine Transform (DCT) using Scaled DCT architecture and
Convolution coding and Viterbi decoding techniques. The Low Pass-Finite Impulse
Response (LP-FIR) filter coefficients are calculated using MatLab FDA tool based
on the given specification of the filter. The systems are designed using Verilog HDL,
simulation and functional verification of the design is done using ModelSim® XE II
6.0d and synthesis using Xilinx® ISE. The designs are implemented on Xilinx®
Spartan 2E FPGA.

The prerequisites for approaching this chapter would be an adequate background
of basic digital communication system.
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2.1 Design of Direct Sequence-Spread Spectrum System

Direct Sequence-Spread Spectrum (DS-SS) is a transmission technique in which a
pseudo-noise code, independent of the information data is employed as a modula-
tion waveform to “spread” the signal energy over a bandwidth much greater than the
signal information bandwidth. At the receiver the signal is de-spread using a syn-
chronized replica of the pseudo-noise code. The spreading sequence in DS-SS is
often called as PN sequence.

In this section, the spread signal is modulated using Binary Phase Shift keying
(BPSK) modulation technique in the transmitter and on the receiver side the modu-
lated signal is recovered using BPSK demodulation technique.

The basic building blocks of DS-SS system are shown in Fig. 2.1 [1].

2.1.1 PN Sequence Generator

2.1.1.1 Overview of PN Sequence Generator

A Pseudo-random Noise (PN) sequence/code is a binary sequence that exhibits
randomness properties but has a finite length and is therefore deterministic. PN
generators are heart of every spread spectrum systems. Each symbol or bit in the
sequence is called as Chip [2].

PN generators are based on Linear Feedback Shift Registers (LFSR). The contents
of the registers are shifted right by one position at each clock cycle. The feedback
from predetermined registers or taps to the left most register are XNOR-ed
together.

LFSRs have several variables:

e The number of stages in the shift registers

e The number of taps in the feedback path

* The position of each tap in the shift registers stage

» The initial starting condition of the shift register often referred to as the “FILL”
state
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Fig. 2.1 Basic building blocks of DS-SS system
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The longer the number of stages of shift registers in the PN generator, longer the
duration of the PN sequence before it repeats. For a shift register of fixed length N,
the number and duration of the sequences that it can generate are determined by the
number and position of taps used to generate the parity feedback bit.

A maximum length sequence (L) for a shift register of length N is referred to as
m-sequence and is defined as [3]:

L=2%-1,

E.g. an eight stage LFSR will have a set of m-sequences of length 255.
Some of the most popular types of PN Sequence generators are:

¢ m-sequence codes
e Barker codes
¢ Gold codes

2.1.1.2 Design of PN Sequence Generator
Design

Specifications:

¢ Clock frequency for PN sequence generator system, F =100 KHz.
e LFSR length, N=4.

* LFSRs are of D-FF type.

¢ X-NOR gate is used for linear parity feedback to the system.

* FPGA board clock frequency, F, =50 MHz (assumption)

Procedure:

* A clock frequency of 100 KHz for PN Sequence generator is designed using a
divider of 500 clock cycles of F,.
Clock divider= F/F = 50 MHz/100 KHz =500
¢ Maximum length sequence, N=4 corresponds to 4 D-FF to realize LFSRs of the
PN generator system.
Since N =4, the maximum sequence length L=2*-1=15.
Hence the sequence repeats every 15 clock cycles.
* The Chip rate for the PN sequence generator system is calculated as follows:
Chip period, T,=1/100 KHz=10 ps
Chip rate, F =100 KHz
* The bit period for the input data signal is calculated as follows:
Data bit period, T;=Max. sequence Length (L) x Chip period (Tc)
For the system, T,=15x 10 ps
Hence, the input data bit period for the system is, T,>150 ps.
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Fig. 2.2 Block diagram of a PN sequence generator

Block Diagram

The block diagram of a PN sequence generator for the design specification is shown
in Fig. 2.2.

2.1.1.3 Properties of PN Sequence

Merits of using PN sequence [4]:

1.

Balance property: In each period of the sequence the number of binary ones differ
from the number of binary zeros by at most one digit (when LFSR stage length
is odd)

Pn =+1+1+1-1-1+1-1=+1

. Run-length Distribution: A run is a sequence of a single type of binary digits.

Among the sequence of ones and zeros in each period it is desirable that one-half
the runs of each type are of length 1, about one-fourth are of length 2, one-eight
are of length 3 and so on.

. Autocorrelation: The origin of the name pseudo-noise is that the digital signal

has an autocorrelation function which is very similar to that of a white noise
signal. For PN sequences the autocorrelation has a large peaked maximum
for perfect synchronization of two identical sequences (like white noise). The
synchronization of receiver is based on this property.

. Cross-correlation: Cross-correlation is the measure of agreement between two

different codes pn, and pn,. When Cross-correlation is zero the codes are called
Orthogonal. In CDMA multiple users occupy the same RF bandwidth and
transmit simultaneously. When the user codes are orthogonal, there is no
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Fig. 2.3 Simulation results for PN sequence generator

interference between the users after dispreading and the privacy of the com-
munication of each user is protected.

Demerits of using PN sequence [4]:

1. Synchronization: The most sensitive aspect of DS-SS system is the synchroniza-
tion of the transmitter’s PN sequence to that of the receiver where an offset of
even one PN chip can result in noise rather than a de-spread symbol sequence.

2. Increased Bandwidth: As the data signal is spread using PN codes at higher fre-
quency, there is an increase in bandwidth used in the process.

3. Complexity: There is an increased complexity and computational load both in the
receiver and the transmitter to spread/de-spread the signal.

2.1.1.4 Simulation Results for PN Sequence Generator

The PN sequence generator is designed using Verilog HDL. Functional verification
and simulation is performed using ModelSim.
The simulation results for PN sequence generator is shown in Fig. 2.3.

2.1.2 Transmitter for Direct Sequence-Spread Spectrum System

2.1.2.1 Overview of DS-SS Transmitter System

In DS-SS transmitter, the input data bits are spread by PN sequence generator. The
spreading is actually done by multiplying the data bits with that of the PN sequence
code generated. The frequency of PN sequence is higher than the Data signal. After
spreading, the Data signal is modulated and transmitted. There are several schemes
available for modulation, viz. BPSK, QPSK, M-QAM etc. The most widely used
modulation scheme is the BPSK. In this design, BPSK modulation is used to modu-
late and transmit the spread signal.

The basic building blocks of a simple DS-SS transmitter system are shown in
Fig. 2.4.
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Fig. 2.4 Block diagram of a DS-SS transmitter system

Table 2.1 Truth table for the multiplier

m(t) p() s(t)
0 0 1
0 1 0
1 0 0
1 1 1

2.1.2.2 Design of DS-SS Transmitter
Multiplier Design

Specifications:

* PN sequence Chip rate, Tc=10 ps.
* Data signal Bit rate, Tb>150 ps.

Let the data signal be m(t) and PN sequence p(t). The two signals are multiplied
and the multiplied output is the spread signal. Truth table for the multiplier s(t) =m(t).
p(t) is shown in Table 2.1.

From the truth table, it can be inferred that an XNOR gate can act as a multiplier
to spread the data signal with the PN signal. Hence the block diagram for the multi-
plier is shown in Fig. 2.5.

Oscillator Design

Specification:

* PN sequence Chip rate, Tc=10 ps.
 Carrier frequency, Fc>5 times Chip rate.

Design:

* The oscillator carrier sampling rate is designed
Let the Sampling rate of sine wave be Fs=25 MHz.



2.1 Design of Direct Sequence-Spread Spectrum System 23

XNOR

Binary Sequence m(t)

Data bit rate Spread Signal s(t)
Tb =150 ps

PN Sequence p(t)
Chip rate
Tc=10 us

Fig. 2.5 Block diagram of a data and PN sequence multiplier

Oscillator _ Sme Wave Output
Sine Wave " Fe=x 700 KHz
Sampling Clock
Fs=25MHz

Fig. 2.6 Block diagram of an oscillator

e Number of samples for a full cycle of sine wave is designed
Let the number of samples for a full cycle be N=36.

* The oscillator is designed to generate sine wave of carrier frequency Fc
Fc>5(1/T.)=5(1/10ps)= 500KHz.

For the above design with sampling rate 25 MHz and 36 samples per cycle, the
carrier frequency, Fc=25 MHz/36~700 KHz. The oscillator is implemented using
a Look-Up-Table (LUT) of nine samples and the logic is design in order to oscillate
generating a sine wave.

The block diagram of the oscillator as per the design is shown in Fig. 2.6.

BPSK Modulator Design

Specification:

* Spread binary sequence is the input to the system
* Oscillator carrier sine wave of frequency, Fc~700 KHz
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Fig. 2.8 Simulation results for DS-SS transmitter system

Design:

The BPSK modulator is designed using the spread binary sequence as the input to
the system and the carrier frequency F . The logic is implemented in such a way that
the phase of the sine wave is shifted by 180° whenever the input binary bit
changes.

The block diagram of the BPSK Modulator as per the design is shown in
Fig. 2.7.

2.1.2.3 Simulation Results for DS-SS Transmitter
The DS-SS transmitter is designed using Verilog HDL. Functional verification and

simulation is done using ModelSim. The simulation results for DS-SS transmitter is
shown in Fig. 2.8.

2.1.3 Receiver for Direct Sequence-Spread Spectrum System

2.1.3.1 Overview of DS-SS Receiver System

In DS-SS receiver, the input to the system is the BPSK modulated signal. This signal
would have been affected by noise and other interference in the communication
channel. The DS-SS receiver should be designed carefully to reproduce the data
signal with least error.
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Fig. 2.9 Block diagram of a DS-SS receiver system

The BPSK modulated input signal is multiplied by the locally generated carrier
wave by the oscillator. The multiplied signal is then passed through the low pass
filter to get low frequency components only. A decision device is used to approxi-
mate the signal to binary sequence. This binary sequence is the spread sequence of
the data signal.

The most sensitive part of the DS-SS receiver is the synchronization of the
locally generated PN sequence and the sequence obtained from the decision device
[3]. Even a single bit mismatch may lead to noise instead of the data signal. Suitable
technique is used to achieve synchronization and multiply the local PN sequence
code with that of the received PN code. The Data signal is obtained after the multi-
plication process.

In this design, since transmitter and receiver uses common clock on the same
FPGA board, the delay in the receiver is considered and modeled appropriately.
No specific synchronization technique is used.

The block diagram of a simple DS-SS receiver system is shown in Fig. 2.9.

2.1.3.2 Design of DS-SS Receiver
BPSK Demodulator Design

Specifications:

* BPSK modulated signal is the input to the system
* Oscillator carrier sine wave of frequency, Fc~700 KHz

The input BPSK signal is multiplied with the carrier sine wave generated from
the local oscillator. The design and implementation of the signed BOOTH multi-
plier is discussed in the following section.

The multiplied output will have higher frequency components and channel noise
as well. The high frequency components are eliminated using a suitable Low Pass
Filter. Design of rectangular window Low-Pass FIR filter is also discussed in the
following section.

The filtered low frequency component will have distortion in the signal. Hence a
suitable ‘Decision Device’ is used to smoothen to binary sequence.
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BOOTH Multiplier Design

The BPSK modulated input signal is multiplied with the carrier sine wave generated
using the local oscillator. A signed multiplier is designed using BOOTH multiplier
algorithm [5].

The BOOTH algorithm used to implement the signed multiplier is as follows:

e The multiplicand X and multiplier Y is loaded into a register. Bit adjustment is
made with X and Y so that bits length of X and Y are equal. Bit ‘0’ is padded in
order to achieve it

* An accumulator is used to store the result. The length of the accumulator should
be twice the length of multiplicand or multiplier. A=2X or 2Y

e The multiplicand X is loaded into the accumulator from LSB

* A dummy bit of 0 is appended with the accumulator A at the LSB

* During the multiplication operation, the pair of LSB of the accumulator and the
dummy bit is considered to follow further arithmetic operations

* Depending on the bit pair obtained in the previous step, following operations are
performed:

o “00” — Arithmetic shift right of the Accumulator.

o “01” — Add multiplier Y to the Accumulator A (from MSB of A) and
Arithmetic shift right of Accumulator.

o “10” — Subtract multiplier Y from the Accumulator A (from MSB of A) and
Arithmetic shift right of Accumulator.

o “11” — Arithmetic shift right of the Accumulator.

Shift operations are performed along with dummy bit.
* The above operations are continued till MSB of multiplicand X is shifted off
from the accumulator A.

In this section, 5-bit signed BOOTH multiplier is designed and implemented.

Low Pass Filter and Decision Device Design

Specifications:

¢ The multiplied output from the BPSK demodulator is the input to this system
* A Low Pass Filter with cutoff frequency, =105 KHz
* Oscillator carrier wave sampling rate, Fs=25 MHz

Design:

A Rectangular window FIR filter is designed with a cutoff frequency, =105 KHz.
Let the length of impulse response for the filter, N=2.
The desired response of the ideal Low-pass filter is given by,
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H,(e™)=1,0<f <105 KHz, otherwise 0

The normalized angular frequency, o, =2nF/Fs=8.4nx 10~

H,(e")=10s0<o,; 00, <o<n

The filter coefficients are given by,

h, (n) = sin(8.4w x 107 N)/ (mN), where N # 0.

Therefore, the filter coefficients are,

h(0) =8.40x10*and h(1) = 8.39x10>

In this design, one sample of the signal is stored in a register and then it’s added

with the next sample. The filtered output samples obtained is then processed by the
Decision Device. The output of the Decision Device is held High (1) when the out-
put of the filter is non-negative otherwise it’s made Low (0).

2.1.3.3 Noise Models and Synchronization

Noise models [1]:

Multi Path Channels: In wireless channels there exists often multi path propaga-
tion. Since there are more than one path from the transmitter to the receiver.
Such multi paths may be due to (a) atmospheric reflection or refraction (b)
Reflections from ground, buildings or other objects. Corrective actions are taken
to eliminate noise due to multi path channels using appropriate synchronization
techniques.

Jamming: The goal of the jammer is to disturb the communication of his adver-
sary. Protection against jamming waveforms is provided by purposely making
the information-beating signal occupy a bandwidth far in excess of the minimum
bandwidth necessary to transmit it. This has the effect of making the transmitted
signal assume a noise-like appearance so as to blend into background. The trans-
mitted signal thus enabled to propagate through the channel undetected by
anyone who may be listening. Spread spectrum is a method of “camouflaging”
the information bearing signal.

In this design, the noise effect is not modeled as the transmitter and receiver is on

the same FPGA board without any air interface.

Synchronization techniques [1]:

For proper operation of DS-SS system, the locally generated PN sequence in the
receiver is synchronized to the PN sequence of the transmitter generator in both its
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Fig. 2.11 Simulation results for DS-SS modem

rate and position. A slight misalignment in the sequence results in noise instead of
data signal.

The process of synchronizing the locally generated PN sequence with the
received PN sequence is usually accomplished in two steps. The first step called
acquisition consists of bringing the two spreading signals into coarse alignment
with one another. Once the received PN sequence has been acquired, the second
step called tracking takes over and continuously maintains the best possible wave-
form fine alignment by means of a feedback loop. This is essential to achieve high-
est correlation power and thus highest processing gain (SNR) at the receiver.

In this design, synchronization technique is not modeled since the same clock
and PN sequence for receiver and transmitter is implemented on the same FPGA
board. A delay of one clock pulse is modeled while multiplying the PN code in the
receiver to compensate the filtering delay of one sample.

2.1.3.4 Simulation Results for DS-SS Receiver

The DS-SS receiver is designed using Verilog HDL [6]. Functional verification and
simulation is done using ModelSim.

The simulation results for DS-SS receiver is shown in Fig. 2.10.

The simulation results for DS-SS modem is shown in Fig. 2.11. The synthesis
report obtained from Xilinx ISE is also shown in Fig. 2.12. The modem can operate
at a maximum frequency of 64 MHz on Xilinx Spartan 2E FPGA.
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Fig. 2.12 Synthesis report for DS-SS modem

2.2 FIR Filter Design

2.2.1 Concepts of FIR Filter

A discrete-time filter produces a discrete-time output sequence for the discrete-time
input sequence. In the Finite Impulsive Response (FIR) system, the impulse response
sequence is of finite duration, i.e. it has a finite number of non-zero terms and hence
the filter coefficients are also constant. The response of the FIR filter depends only
on the present and past input samples (a causal system). Thus making the system
always stable.

The difference equation for length ‘M’ FIR filter is given by [4],

y(n) =b, X(n)+b,x(n—1)+b, x(n=2)+b, x(n—=3)+....b,, , x(n—M+1)
Y=""3 b, x(n-K)

where, [b,] is the set of filter coefficients.
Some of the important characteristics of FIR digital filter are as follows [4]:

e They can have an exact linear phase

* They are always stable

e The design methods are generally linear

* They can be realized efficiently in hardware

» The filter start-up transients have finite duration

» The filter coefficients are constant for the given order of the filter
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Table 2.2 Filter coefficients for LP FIR filter with order 16

Transfer function Coefficients Transfer function Coefficients
h(0) 0.0328 h(8) 0.5763
h(1) 0.0816 h(9) -0.0550
h(2) —-0.0065 h(10) -0.0694
h(3) -0.0047 h(11) 0.0847
h(4) 0.0847 h(12) -0.0047
h(5) -0.0694 h(13) -0.0065
h(6) -0.0550 h(14) 0.0816
h(7) 0.5763 h(15) 0.0328

Magnitude Response in dB
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Fig. 2.13 Frequency response (Magnitude) for the designed LP FIR filter

In this section a Low-Pass FIR filter is designed using MatLab FDA tool for the
given specifications. Simulated using ModelSim® and implemented using Xilinx®
2E FPGA.

2.2.2 Low Pass FIR Filter Design

The Low Pass FIR (LPF) specifications given in the assignment are,

e F =1KHz,F_=13KHz

pass sto]

* Pass band ripple=3 dB, Stop band ripple=60 dB
Assuming,

* Sampling frequency of the input signal, F =3 KHz.
* FIR Filter design method: Equiripple with density factor 16.

The filter coefficients are obtained using MatLab FDA tool for the given specifica-
tion. The order of the filter, N=16. The filter coefficients h(n) are as shown in Table 2.2.
The frequency response for the given filter specification is shown in Fig. 2.13
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Fig. 2.14 Block diagram to illustrate the functional operation of DA architecture

2.2.3 Distributed Arithmetic Architecture

Distributed Arithmetic (DA) is an important technique to implement digital signal
processing functions in FPGAs. DA provides an approach for multiplier-less imple-
mentation of DSP systems. It is an algorithm that can perform multiplication with
Look-Up Table (LUT) based schemes. DA specifically targets the sum of products
(also referred to as the vector dot product) computation that is found in many of the
important DSP filtering and frequency transforming functions [7].

In this section, LP FIR filter is designed and implemented using DA architecture.
By observing the filter coefficients in Table 2.2, the second half (8—15) of filter coef-
ficients are mirror image of the first half (0-7). Hence the SOP for second half can
be accessed from the first half by re-ordering the input bits appropriately. The first
half (0-7) coefficients can be broken into two parts and SOP can be calculated and
stored in two different blocks. Hence, two LUTs of length 16 are sufficient to store
the SOP for the obtained filter coefficients.

The basic functional operation of DA architecture is shown in Fig. 2.14.

2.2.4 Simulation and Synthesis Results

The LP FIR filter is designed using Verilog HDL. The design is simulated using
ModelSim®. The impulse response for the LP FIR filter system is shown in Fig. 2.15.
In this design, fixed point representations of real numbers are used. Filtered output
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Fig. 2.15 Simulation results for impulse response for the LP FIR filter system
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Fig. 2.16 HDL synthesis report for LP FIR filter design

values have lower 8 bits representing decimal part. Hence the exact filtered output
values from the simulation results are calculated as follows:

Y= (8,22,—2,—12,22,—18,—13,148,148,—13,—18,22,—12,—2,22,8)/ 28

Y =(0.0312,0.8593,-0.0078,-0.0468,0.8593,-0.0703,-0.0507,0.578]1,
0.5781,-0.0507,-0.0703,0.8593,-0.0468,-0.0078,0.8593,0.0312)

The design is synthesized and implemented on Xilinx® Spartan 2E FPGA. The
HDL synthesis report is shown in Fig. 2.16.

2.3 Discrete Cosine Transform Algorithms

2.3.1 Concepts of DCT

The Discrete Cosine Transform (DCT) is a technique that converts a spatial
domain waveform into its constituent frequency components as represented by a set
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of coefficients. The process of reconstructing a set of spatial domain samples is
called the Inverse Discrete Cosine Transform (IDCT). The equation for 1-D N-point
DCT is given by [8],

Xk =ak)y x(n)cos[%] 0<k<N-1

n=0

0((0)2\/%, (x(k)zJ%for 1I€Sk<N-1

One-Dimensional DCT has most often been used in two-dimensional DCT by
employing the row-column decomposition which makes it suitable for hardware
implementation. Typically the DCT coefficients produced have most of the block’s
energy in a few frequency domain elements and hence quantization and coding is
applied after DCT to provide lossless as well as lossy actual compression [8].

For data compression of image/video frames, usually a block of data is converted
from spatial domain samples to another domain (usually frequency domain) which
offers more compact representation. DCT technique is used in a wide range of signal
and image processing applications. Some of the most popular applications are [8],

where,

e JPEG and JPEG2000 image compression standards

* MPEG digital video standards

* H.261 and H.263 video conferencing standards

* Progressive Image Transmission (PIT) systems: teleconferencing, medical diag-
nostic imaging and security services

2.3.2 DCT Architectures on FPGA

The DCT can be implemented on FPGA using various architectures. Some of the
popular one’s reported in [9] are discussed below:

* Distributed Arithmetic: The N-points DCT can be considered as N parallel filters.
The DCT on the array requires N shift registers for parallel-to-serial conversion,
N LUT memories and N shift-accumulators. All the N memories receive the
same address. One shift-register and a shift-accumulator are each mapped to an
add-shift cluster, while the LUT is mapped to a part of a memory cluster.
Area usage: 8 shift registers +8 ROMs+8 Accumulators
* Mixed ROM: The 8-point 1D-DCT can be expressed as the product of an 88
matrix by an eight element column vector. Through algebraic manipulations, this
matrix can be reduced to 4 x4 matrix. Hence, the number of words per ROM is
reduced to only 16 but some overhead has been incurred in the form of adders to
calculate the address of the ROMs.
Area usage: 4 adders+4 subtractions+8 shift registers+8 accumulators+8
ROMs
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* CORDIC Rotator based: The DCT computation is done using CORDIC rotator
[10]. Since the memory is an integral part of the DA, and ROM size increases
exponentially with respect to vector size N. Many techniques have been devel-
oped for reducing the size of ROM. The CORDIC algorithm reformulates the
1-D DCT so that the ROM size is reduced to a fix size of four words, independent
of the bandwidth of the input data. The DA functionality is implemented by
converting parallel data to serial through shift registers and using this data to
formulate the address of the memories. This implementation requires 6-CORDIC
and 16 butterfly adders for an 8-point 1-D DCT. The CORDIC rotators are imple-
mented through ROM and shift accumulators, while butterfly adders are imple-
mented through add-shift clusters [11].

Area usage: 8 adders+8 subtractions+8 shift registers+12 accumulators+ 12
ROMs

e Skew circular convolution: This technique starts with re-ordering the input
sequences. Then skew circular convolutions are performed on the reordered
inputs, which give odd-indexed transformed sequence. The transformed
sequences are re-ordered for the proper output sequences.

Area usage: 4 adders+4 subtractions+8 shift registers+8 accumulators+8
ROMs

2.3.3 Scaled 1-D 8-Point DCT Architecture

Since using LUTs results in a very efficient and regular structure suitable for VLSI
implementation, especially on the FPGAs, there has been great interest in develop-
ing similar kind of LUT based DCT architecture. The Scaled DCT architecture is
also a LUT based design. The architecture is primarily designed by making mathe-
matical and trigonometric manipulation using 1-D 8-point DCT equation on eight
input data samples. In this design, LUT based Distributed Arithmetic architecture is
used. The basic building blocks of this architecture are [9]:

* 20 butterfly adders
e 12 shift registers
* 10LUTs

The constant scale factor (YO and Y4) is not considered in this implementation
as that can be combined with the quantization constants without requiring any addi-
tional hardware such as LUTs. The simplified 1-D 8-point DCT equations are as
shown below:

Y, = [V2x (X, + X, + X, + X, + X, + X, + X, +X,)]/4
Y, =[(X, - X,)xA+(X, - X, )XB+(X, =X, )xC+(X, -X,)xD]/2
Y, =[(X, +X, =X, - X,)XE+(X, +X, - X, -X)xF]/2
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Fig. 2.17 Block diagram of scaled DCT architecture

Y, =[(X, = X)xB+(X, - X )xD+(X; - X,)xA+(X, —X,)xC]/2

Y, =[V2x(X, =X, =X, + X, +X, - X, =X, +X,)

/2

Y, =[(X, = X,)XC+(X, - X)X A+(X, —X;)xD+(X, - X,)xB]/2

Y, = [(X0 +X, -X, - X )xF+(X, +X, -X, —X6)><E]/2

Y, =[(X, - X, )xD+(X, - X )xC+(X, - X )xB+(X, - X;)xA]/2

For N=8,

A=cos(n/16)
B=cos(371/16)
C=cos(57/16)
D=cos(7n/16)
E=cos(n/8)
F=cos(31/8)

The constant values A, B, C, D, E and F that is required to be multiplied with
input X is performed by LUT based Distributed Arithmetic architecture. The block
diagram of Scaled DCT architecture for 1-D 8-point samples is shown in Fig. 2.17.

2.3.4 Simulation and Synthesis Results

In this section, 1-D 8-point DCT is designed using Scaled DCT architecture and
coded in Verilog HDL. The design is simulated using ModelSim®. The DCT for the
input samples, X=(4, 2, 8, 4, 4, 6, 6, 6) is as shown in Fig. 2.18.
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Fig. 2.18 Simulation results for 1-D 8-point DCT

Y = (5120 /2,-544,-58,-372,-512 /N 2,404,807,439)

In this design, fixed point representations of real numbers are used. DCT output
values have lower eight bits representing decimal part of DCT output. Hence the
exact DCT output values from the simulation results are calculated as follows:

Y =(5120/~2,-544,-58,-372,-512 /\2,404,807,439) / 2°
Y =(14.1421,-2.0882,-0.2242,-1.4221,-1.4142,1.6011,3.1543,1.7475)

This design is implemented on Xilinx® Spartan 2E FPGA. The HDL [13] syn-
thesis report is shown in Fig. 2.19.

2.4 Convolution Codes and Viterbi Decoding

2.4.1 Concepts of Convolution Codes

Forward Error Correction (FEC) technique is used to improve the capacity of chan-
nel by adding some carefully designed redundant information to the data that is
transmitted over the communication channel. The process of adding this redundant
information is known as channel coding.
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HDL Synthesis Report

Hacro Statistics

# ROMs : 10
4x16-bit ROM : 10
# Adders/Subtractors : 31
16-bit adder : 13
4-bit adder carry out : 4
S5-bit adder : 10
S-bit adder carry out : 3
6-bit adder carry out : 1
# Counters : 1
4-bit up counter : 1
# Registers : 113
1-bit register : 91
16-bit register : 8
S-bit register : 14
# Multiplexers : 10
1-bit 5-to-1 multiplexer : 10
# Logic shifters : 12
16-bit shifter logical left : 12

Fig. 2.19 HDL synthesis report for 1-D 8-point DCT
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r 3 r 3
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v
{} L B(n)

Fig. 2.20 Block diagram of convolutional encoder for a rate ¥2., constraint length K=3

Convolutional coding and Block coding are the two major forms of channel
coding. Convolutional codes operate on serial data, one or a few bits at a time.
Block codes operate on relatively large message blocks. There are a variety of use-
ful convolutional and block codes, and a variety of algorithms for decoding the
received coded information sequences to recover the original data. Convolutional
encoding with Viterbi decoding is a FEC technique that is particularly suited to a
channel in which the transmitted signal is corrupted mainly by Additive White
Gaussian Noise (AWGN) [12].

The technique of convolutional coding transforms a binary message into a
sequence of symbols to be transmitted. Upon reception, the received information
must be related back to the original message bits. If there are no errors the process
of decoding is readily accomplished. In general, convolutional coding techniques
are applied to very long messages, such as the continuous stream of data from a
satellite television transmitter.

A convolutional encoder with two shift registers is shown in Fig. 2.20.
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Table 2.3 State transition Output symbols,  Output symbols,
table for the convolutional Current state if input=0 if input=1
encoder 00 00 11

01 11 00

10 10 01

11 01 10

The system block diagram can be expressed with the following equations:

An)=x(n) + x(n—-1)+ x(n—2)
B(n)=x(n) + x(n—2)

The basic building components of the convolutional encoder are flip-flops
comprising the shift registers and Exclusive-OR gates comprising the associated
Modulo-Two adders. The number of shift registers in the encoder generating the
encoded sequence determines the capability of the decoder to detect and correct num-
ber of bit errors received on the receiver in the obtained encoded sequence of data.

In this encoder, data bits are provided at a rate of ‘k’ bits per second. Channel
symbols are output at the rate of n=2k symbols per second. The constraint length
K =3 is the length of convolutional encoder, i.e., how many k-bit stages are avail-
able to feed the combinatorial logic that produces the output symbols. The input bit
is stable during the encoder cycle. The encoder cycle starts when an input clock
edge occurs. When the input clock edge occurs, the output of the left-hand flip-flop
is clocked into the right-hand flip-flop, the previous input bit is clocked into the left-
hand flip-flop and a new input bit becomes available. Then the outputs of the upper
and lower modulo-two adders become stable. The output selector cycles through
two states. In the first state, it selects and outputs the output of the upper modulo-two
adder. In the second state, it selects and outputs the output of the lower modulo-
two adder.

The state transition table that lists the channel output symbols, given the current
state and the input data is shown in Table 2.3.

2.4.2 Viterbi Decoder

A Viterbi decoder uses the Viterbi algorithm for decoding bit stream that has been
encoded using Convolutional codes. There are other algorithms for decoding a con-
volutional encoded stream (Ex: Fanon algorithm). The Viterbi algorithm is the most
resource-consuming but it does the maximum likelihood decoding [12]. Viterbi
decoding has the advantage that it has a fixed decoding time. It is well suited for
hardware decoder implementation. But its computational requirements grow expo-
nentially as a function of constraint length. So it is usually limited in practice to
constraint lengths of K<10.
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Fig. 2.21 Trellis diagram for Viterbi decoding with encoder rate ¥2 and K=3

Fig. 2.22 State transitions 00

from one state to the next State 00 T Tr s s ';" State 00
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State 01 _.- % State 01
State 10 State 10
State 11 State 11

The most important concept to aid in understanding the Viterbi algorithm is the
Trellis diagram. The Trellis diagram for the convolutional encoder rate Y2, constraint
length K=3 is shown in Fig. 2.21.

The four possible states of the encoder are depicted as four rows of horizontal
dots. There is one column of four dots for the initial state of the encoder and one for
each time instant during the message. For a 4-bit message with two encoder mem-
ory flushing bits, there are six time instants in addition to t=0, which represents the
initial condition of the encoder. The solid lines connecting dots in the diagram rep-
resent state transitions when the input bit is a one. The dotted lines represent state
transitions when the input bit is a zero. The expanded version of the transition
between one time instant to the next is shown in Fig. 2.22. Notice the correspon-
dence between the arrows in the Trellis diagram and the state transition diagram.
Since the initial condition of the encoder is State 00, and the two memory flushing
bits are zeros, the arrows start out at State 00 and end up at the same state [12].

Each time when a pair of channel symbols is received, the metric- Hamming dis-
tance between the received channel symbol pair and the possible channel symbol pairs
is calculated for each state. The Hamming distance is computed by simply counting
how many bits are different between the received channel symbol pair and the possible
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4 Clock
4 Reset
B4 DatalN

B4 Encoded Data
B4 DataOUT

Fig. 2.23 Simulation results for Viterbi decoding with no error in received channel data

channel symbol pairs. The results can only be zero, one, or two. The metrics computed
at each time instant for the paths between the states at the previous time instant and the
sates at the current time instant are called branch metrics. For the first time instant, the
results are stored as “accumulated error metric” values associated with the states. For
the second time instant onwards, the accumulated error metrics will be computed by
adding the previous accumulated error metrics to the current branch metrics. The
process is continued for k+m symbols (for k bits message and m shift registers). The
smallest accumulated error metric in the final state indicates how many channel sym-
bol errors occurred. This survival path which has the least accumulated error metric is
selected. Original message bits are recreated by interpreting the bits from the solid
and dotted arrows from the survival path in the Trellis diagram. The two flushing bits
at the end are discarded from the recreated message bits.

In this section, Viterbi decoder for 4-bit message is designed using Viterbi
algorithm [12].

» Four registers of 6-bit width are used to store the survival path at each state
transition.

» Four registers of 4-bit width are used to store the accumulated error metrics at
each state.

* At the end of the last state, the survival path having the least accumulated error
metrics is used to reproduce the estimated input message bits from the survival
path register.

2.4.3 Simulation and Synthesis Results

In this section, Convolutional encoder is designed using two shift-registers and
Viterbi decoder is designed using Accumulated Error Metrics algorithm. The design
is simulated using ModelSim®.

Assuming the input data to the convolutional encoder is x=(1001), the encoded
sequence is, e=(11 10 11 11 10 11). Following different cases are simulated to test
the Viterbi decoder design:

1. No error in the received data from the channel. The simulation result for this case
is shown in Fig. 2.23.
Received data: 11 1011 11 10 11

2. One bit error in the received data from the channel. The simulation result for this
case is shown in Fig. 2.24.
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Figure 2.25 Simulation results for Viterbi decoding with two bits error in received channel data

HDL Synthesis Report

Macro Statistics

# ROMs : 4
4x10-bit ROM HV4
4x12-bit ROM H4

# Adders/Subtractors : 16
3-bit adder : 16

# Counters 1
3-bit up counter t 1

# Registers : 17
1-bit register : 8
3-bit register HEE
4-bit register : 1
6-bit register HEE

# Comparators : 13
3-bit comparator greater : 4
3-bit comparator lessequal : 9

# Multiplexers : 22
1-bit 4-to-1 multiplexer 18
3-bit 4-to-1 multiplexer : 4

# Xors : 2
1-bit xor2 H

Fig. 2.26 HDL synthesis report for convolutional encoder and Viterbi decoder

Received data: 11 11 1111 1011
3. Two bits error in the received data from the channel. The simulation result for

this case is shown in Fig. 2.25.
Received data: 11 11 11 11 11 11

This design is implemented on Xilinx® Spartan 2E FPGA. The HDL synthesis
report is shown in Fig. 2.26.
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Appendix

A.

Verilog HDL code for PN sequence generator
module pn_sequence (clk, rst,pnOUT) ;
input clk;

input rst;

output pnOUT;

// Instantiate PN sequence clock : 100 KHz
pn_clock pn clock_seqg(clk,rst,pnCLK) ;

// Generate PN Sequence : m = 4
reg pnOUT;
reg [3:0]shift4reg;

always @ (posedge pnCLK, posedge rst)

begin
if (rst)
begin
pnoUT <= 1'b0;
shift4reg([3:0] <= 4'b0;
end
else
begin
shift4reg[0] <= ~(shiftd4reg[0] *
shift4reg[l] <= shift4regl[0];
shift4reg([2] <= shift4regl[l];
shift4reg[3] <= shift4regl[2];
pnOUT <= shift4reg[3];
end
end
endmodule
// PN Sequence Clock : 100 KHz
module pn_clock (clk, rst,pnCLK) ;
input clk;

input rst;
output pnCLK;

reg pnCLK;
integer pnCLKCnt;

always @ (posedge clk, posedge rst)
begin

if (rst)
begin
pnCLK <= 1'b0;
pnCLKCnt = 0;
end
else
begin
pnCLKCnt = pnCLKCnt + 1;
if (pnCLKCnt >= 250)
begin
pnCLK <= !pnCLK;
pnCLKCnt = 0;
end

2 FPGA Application Design

shift4reg(3]);
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else
pnCLK <= pnCLK;
end
end

endmodule

B. Verilog HDL code for LP FIR filter using Distributed Arithmetic Architecture
module fir filter(clk,rst,y,x0);

input clk;

input rst;

input [9:0]1x0;

output [21:0]y;

reg [21:0]y;

reg [9:0]rl,r2,r3,r4,r5,r6,r7,r8,r9,r10,rll,r12,r13,rl4,rl5,rl6;

reg [12:0]temp;
reg [21:0]calc;
reg [3:0]count;
reg load;

always @(posedge clk, posedge rst)
begin
if (rst)
begin
rl<=0; r2<=0; r3<=0; r4<=0; r5<=0; r6<=0; r7<=0; r8<=0;
r9<=0; rl0<=0; rll<=0; rl2<=0; rl3<=0; rld4<=0; rlS5<=0; rl6<=0;
temp = 0;
calc = 0;
count = 0; load = 1;
y = 0;
end
else
begin
if (load)
begin
rl <= x0;r2 <= rl;r3 <= r2;r4 <= r3;
r5 <= r4;r6 <= r5;r7 <= r6;r8 <= r7;
r9 <= r8;rl0<= r9;rll<= rl0;rl2<= rll;
rl3<= rl2;rld<= rl3;rl5<= rl4;rl6e<= rl5;
load = 0; count = 0;

end
else
begin
temp = blocklValue( rl[count], r2[count], r3[count], r4[count]) +
block2Value( r5[count], r6[count], r7[count], r8[count]) +
block2Value (r12 [count],rll [count],rl0 [count], r9[count]) +
blocklValue (rl6 [count],rl5 [count],rl4 [count],rl3 [count]) ;
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if ((count == 4'b1001) &&

(rllcount] || r2[count] || r3[count] || r4[count] |
r5[count] || r6[count] || r7[count] || r8[count] ||
rl2[count] || rll[count] || rlO[count]|| r9[count] ||
rl6[count] || ri5[count] || rl4[count]|| rl3[countl))

// For negative numbers
calc = calc + (~(temp << count) + 1);

else
calc = calc + (temp << count);
if (calc[12] == 1'bl)
calc[21:13] = 9'b111111111;
else
calc[21:13] = 9'b000000000;
if (count == 4'b1001)
begin
y = calc;
calc = 0;
temp = 0;
load = 1;
end
else
count = count + 1;
end
end
end

function [12:0]blocklValue; // LUT 1

input al,a2,a3,a4;

begin

case({al,a2,a3,a4})
4'b0000 : blocklValue = 13'b0000000000000;
4'p0001 : blocklvValue = 13'b1111111110100;
4'b0010 : blocklValue = 13'b1111111111110;
4'p0011 : blocklValue = 13'b1111111110010;
4'b0100 : blocklValue = 13'b0000000010110;
4'b0101 : blocklValue = 13'b0000000001001;
4'p0110 : blocklValue = 13'b0000000010011;
4'b0111 : blocklValue = 13'b0000000000111;
4'p1000 : blocklValue = 13'b0000000001000;
4'b1001 : blocklValue = 13'b1111111111100;
4'p1010 : blocklValue = 13'b0000000000111;
4'b1011 : blocklValue = 13'b1111111111011;
4'p1100 : blocklValue = 13'b0000000011100;
4'b1101 : blocklValue = 13'b0000000010001;
4'p1110 : blocklValue = 13'b0000000011010;
4'b1111 : blocklValue = 13'b0000000010000;
default : blocklValue = 13'b0000000000000;
endcase

//$display ("blockValue 1 : %b\n",blocklValue) ;
end
endfunction
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function [12:0]block2Value; // LUT_2
input bl,b2,b3,b4;

begin

case ({bl,b2,b3,bd})

4'b0000 :
4'b0001 :
4'b0010
4'b0011
4'b0100
4'b0101
4'b0110
4'b0111
4'b1000
4'b1001
4'bl010
4'b1011
4'b1100
4'b1101
4'bl110
4'b1111
default

endcase

end

//$display ("blockValue 2

endfunction

endmodule

block2Value =

block2Value
block2Value
block2Value

block2Value =
block2vValue =

block2Value
block2Value
block2Value
block2Value

block2Value =
block2vValue =

block2Value
block2Value
block2Value
block2Value

block2vValue =

13'b0000000000000;
13'b0000010010100;
13'b1111111110011;
13'b0000010111000;
13'b1111111101110;
13'b0000010000010;
13'b1111110000000;
13'b0000001110100;
13'b0000000010110;
13'b0000011001001;
13'b0000000001000;
13'b0000010011000;
13'b0000000000100;
13'b0000010010110;
13'b1111111110100;
13'b0000010001010;
13'b0000000000000;

$b\n",block2Value) ;

C. Verilog HDL code for Convolutional encoder

module Conv_Encoder (clk, rst, dataIn, dataOut);

input clk;
input rst;

input
output

[3:0]dataln;

[1:0]datalOut;

reg [1:0]datalOut;
reg [3:0]inBit;
reg f££f1,£f£2;

alwayse (posedge clk, posedge rst)

<= (inBit [0]"ff2);
<= (inBit [0]"ff1) “ff2;

begin
if (rst)
begin
dataOut <= 2'b0;
ffl <= 1'b0;
ff2 <= 1'b0;
inBit <= dataln;
end
else
begin
ffl <= inBit[0];
£ff2 <= ff1;
dataOut [0]
dataOut [1]
inBit <= inBit >> 1;
end
end

endmodule

45
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