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Bounds for Local Density of Sphere Packings and the
Kepler Conjecture, by J. C. Lagarias

This paper presents a framework for local density inequalities giving upper bounds for
sphere packing density in arbitrary dimensions. It discusses in detail such inequalities
in the three-dimensional case, and the Kepler conjecture.

Sections 4 and 5 of this paper outline the Hales-Ferguson proof as presented in
their six 1998 preprints. The final version of the proof given in their 2006 papers,
given in Part II, made further small changes from the outline here. In particular, their
treatment of V-cells is modified, as described in Section 5.1 of the paper T. C. Hales
and S. P. Ferguson, “A Formulation of the Kepler Conjecture”; see especially Re-
marks 5.10 and 5.11. The modified treatment eliminates the need to handle “tips” as
described in Definition 4.5 of this paper.
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Abstract. This paper formalizes the local density inequality approach to getting upper
bounds for sphere packing densities in R”. This approach was first suggested by L. Fejes
Té6th in 1953 as a method to prove the Kepler conjecture that the densest packing of unit
spheres in R® has density 77/+/18, which is attained by the “cannonball packing.” Local
density inequalities give upper bounds for the sphere packing density formulated as an
optimization problem of a nonlinear function over a compact set in a finite-dimensional
Euclidean space. The approaches of Fejes T6th, of Hsiang, and of Hales to the Kepler
conjecture are each based on (different) local density inequalities. Recently Hales, together
with Ferguson, has presented extensive details carrying out a modified version of the Hales
approach to prove the Kepler conjecture. We describe the particular local density inequality
underlying the Hales and Ferguson approach to prove Kepler’s conjecture and sketch some
features of their proof.

1. Introduction

The Kepler conjecture was stated by Kepler in 1611. It asserts that the face-centered
cubic lattice gives the tightest possible packing of unit spheres in R?.

Kepler Conjecture. Any packing Q of unit spheres in R> has upper packing density

b4
p(R2) < —= =~ 0.740480. (1.1)
V18
The definition of upper packing density is given in Section 2. The problem of proving
the Kepler conjecture appears as part of Hilbert’s 18th problem, see [Hi].
There have been many attempts to prove Kepler’s conjecture. Since the 1950s these
have been based on finding a local density inequality that gives a (sharp) upper bound
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166 J. C. Lagarias

on the density. In recent years Hales has developed an approach for proving Kepler’s
conjecture based on such an inequality, and in 1998 he announced a proof, completed
with the aid of Ferguson, presented as a set of six preprints. The proof is computer-
intensive, and involves checking over 5000 subproblems. It involves several new ideas
which are indicated in Sections 4 and 5.

Local density inequalities obtain upper bounds for the sphere packing constant via an
auxiliary nonlinear optimization problem over a compact set of “local configurations.”
They measure a “local density” in the neighborhood of each sphere center separately. The
general approach to the Kepler conjecture is first to find a local optimization problem that
actually attains the optimal bound 7/+/18 (assuming that one exists), and then to prove
it. This approach was first suggested in the early 1950s by Fejes Téth [FT1, pp. 174—
181], who presented some evidence that an optimal local density inequality might exist
in three dimensions. In 1993 Hsiang [Hs1] presented another candidate for an optimal
inequality.

The objects of this paper are:

(i) Toformulate local density inequalities for sphere packings in arbitrary dimension
R", in sufficient generality to include the known candidates for optimal local
inequalities in R>.

(i1) To review the history of local density inequalities for three-dimensional sphere
packing and the Kepler conjecture.

(iii) To give a precise statement of the local density inequality considered in the
Hales—Ferguson approach.

(iv) To outline some features of the Hales—Ferguson proof.

In Section 2 we present a general framework for local density inequalities, which is
valid in R", given as Theorem 2.1. This framework is sufficient to cover the approaches
of Fejes Téth, Hsiang, and Hales and Ferguson to Kepler’s conjecture. A different frame-
work for local density inequalities appears in [O]. In Section 3 we review the history
of work on local optimization inequalities for Kepler’s conjecture. In Section 4 we
describe the precise local optimization problem formulated by Ferguson and Hales in
[FH], which putatively attains 77 /+/18. In Section 5 we remark on some details of the
proof strategy taken in the papers of Hales [SP-I], [SP-II], [SP-III], [SP-IV], [KC],
Ferguson and Hales [FH], and Ferguson [SP-V]. In Section 6 we make some concluding
remarks.

The current status of the Hales—Ferguson proof is that it appears to be sound. The
proof has been examined in fairly careful detail by a team of reviewers, but it is so
long and complicated that it seems difficult for any one person to check it. This pa-
per is intended as an aid in understanding the overall structure of the Hales—Ferguson
proof approach, as presented in the preprints. For another account of the Hales and
Ferguson work, see [O]. For Hales’ own perspective, see [Ha4]. It may yet be some
time until a version of the Hales—Ferguson proof is published; significant simplifica-
tion may yet occur, and the local density inequality to be proved in the final version,
which we may call “Version 2.0,” may differ in some details from the one described in
Section 4.

Two appendices are included which contain some information relevant to the Hales—
Ferguson proof given in the preprints. Appendix A describes some of the Hales—Ferguson
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Bounds for Local Density of Sphere Packings and the Kepler Conjecture 167

scoring functions. Appendix B lists references in the Hales and Ferguson preprints for
proofs of lemmas and theorems stated without proof in Sections 4 and 5.
This paper is a slightly revised version of the manuscript [L].

Notation. B, := B,(0; 1) = {x € R": ||x|| < 1} is the unit n-sphere. It has volume
kn ="/ T (n/2 + 1), with k, = 7 and k3 = 47/3. We let C,(x, T) := x + [0, T]"
denote an n-cube of sidelength 7', with sides parallel to the coordinate axes, and lowest
corner at x € R".

2. Local Density Inequalities

In this section we present a general formulation of local density inequalities. We first
recall the standard definition of sphere packing densities, following Rogers [R2]. Let
Q denote a set of unit sphere centers, so that |[v — v/|| > 2 for distinct v, V' € Q. The
associated sphere packing is 2 + B,,.

Definition 2.1.

(i) For a bounded region S in R”, and a sphere packing 2 + B, specified by the
sphere centers €2, the density p(S) = p(€2, S) of the packing in the region S is

__vol(SN(Q+B,))
o(S) = Sol(S) . (2.1)

(i) For T > 0 the upper density p(€2, T') is the maximum density of the packing 2
over all cubes of size T, i.e.,

p(Q,T) = sup p([0, TT" +x). 2.2)

xeR3

Then the upper packing density of Q is

p(2) :=limsup p(2, T). 2.3)

T—o0

(iii) The sphere packing density §(B,,) of the ball B, of unit radius is

5(By) = sup p(2). 2.4

Definition 2.2. A sphere packing 2 is saturated if no new sphere centers can be added
to it.

To obtain sphere packing bounds it obviously suffices to study saturated sphere pack-
ings, and in what follows we assume that all packings are saturated unless otherwise
stated.
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168 J. C. Lagarias

Definition 2.3.  An admissible partition rule is a rule assigning to each saturated pack-
ing € in R” a collection of closed sets P(Q2) := {R, = R,(2)} with the following
properties:

(i) Partition. Each set R, is a finite union of bounded convex polyhedra. The sets
R,, cover R? and have pairwise disjoint interiors.

(i1) Locality. There is a positive constant C (independent of €2) such that each region
R, has

diameter(R,) < C. (2.5)

Each R, is completely determined by the set of sphere centers w € Q with
distance(w, R,) < C. (2.6)

There are at most C regions intersecting any cube of side 1.
(iii) Translation-Invariance. The partition assigned to the translated packing Q' =
Q2 + x consists of the sets {R, (2) + x}.

Definition 2.4. An admissible weighting rule or admissible scoring rule o for an ad-
missible partition rule in R” is a rule which for each 2 assigns to each pair (R, V)
consisting of a region R, € P(2) and a center v € 2, a real weight o (R, v) which
satisfies |0 (Ry, V)| < C* for an absolute constant C*, and which has the following
properties:

(i) Weighted Density Average. There are positive constants A and B (independent
of ©) such that for each set R,

Y 0 (R, V) = (Ap(Ry) — B) vol(Ry), 2.7)
veQ

where
p(Ry) vol(Ry) = vol(Ry N (2 + B,)) (2.8)

measures the volume covered in R, by the sphere packing €2 with unit spheres.

(ii) Locality. There is an absolute constant C (independent of €2) such that each
value o (R, v) is completely determined by the set of sphere centers w € Q
with ||w — v|| < C. Furthermore,

0(Ry,v) =0  if dist(v, Ry) > C. 2.9)

(iii) Translation-Invariance. The weight function o’ assigned to the translated pack-
ing Q' = Q + x satisfies

0'(Ry +X,V+X) =0 (R, V). (2.10)

Note that this definition specifically allows negative weights.
The “local density” is measured by the sum of the weights associated to a given vertex
v in a saturated packing.

32



Bounds for Local Density of Sphere Packings and the Kepler Conjecture 169

Definition 2.5.

(i) The vertex D-star (or decomposition star) D(v) at a vertex v € 2 consists of all
sets R, € P(R2) such that o (R,, v) #£ 0.
(ii) The total score assigned to a vertex D-star D(v) at v € Q is

Score(D(v)) = Z o (Ry, V). 2.11)
R,eD(v)

The total score at v depends only on regions entirely contained within distance C of
v. Any admissible partition and weight function (P, o) together yield a local inequality
for the density of sphere packings, as follows.

Theorem 2.1. Given an admissible partition rule and an admissible weighting rule
(P, o) for saturated packings in R", set

0 =6p,(A,B):= sup (sup Score(D(v))), 2.12)

Q saturated veQ

and suppose that 0 < k,A, where k, is the volume of the unit n-sphere. Then the
maximum sphere packing density satisfies

Remarks. (1) Welet f(A, B, 0) := «,B/(k, A —0) denote the packing density bound
as a function of the score constants A and B. The sphere packing density bound actually
depends only on the score constant ratio B/ A, rather than on B and A separately, since 0
is ahomogeneous linear function of A and B. This ratio detemines the relative weighting
of covered and uncovered volume used in the inequality.

(2) A natural approach to sphere packing bounds, used in many previous upper bounds,
is to partition space into pieces R(v) corresponding to each sphere center v, with each
piece containing the unit sphere around v. Then one obtains a bound p(2) < 6 by
establishing an upper bound

p(R(V)) = all veQ. (2.14)

L < 9
vol(R(v)) —

Any optimal sphere packing bound of this type must necessarily be volume-independent,
in the sense that if equality is to be attained at all local cells R(v) simultaneously, then
they must all have the same volume. In contrast the inequality of Theorem 2.1 does take
into account the volumes of the individual pieces in the vertex D-star. This flexibility
results in a larger class of local density inequalities. The idea of using a score constant
ratio B/A not equal to the optimal packing density is due to Hales [Hal], [Ha2], cf.
Appendix B.

Proof of Theorem 2.1. 'We may assume that €2 is saturated. Given 7 > Oand any ¢ > 0,
we choose a point x € R” which attains the density bound o(£2, T') on the cube C,,(x, T')
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170 J. C. Lagarias

to within . We evaluate the scores of all vertex D-stars of verticesv € QN C,(x, T) in
two ways. First, by definition of 6,

> Score(D(v)) < 0#/Q N Cy(x, T)|. (2.15)
veQNC, (x,T)

However, we also have

Z Score(D(v))

>, (Zo(Ra, v))
veQNC, (x,T) veQNC,(x,T) o
= > < > a(Ra,w) +0(T"h

Rugétmx,r) veQNC, (x,T)

= ) (Ap(Ry) — B)vol(Ry) + O(T"™")
R,<C,(x;T)

= Kk, A#|Q N C,(x, T)| — Bvol(Cy(x, T)) + O(T" 1)

= Kk, A#|Q N C,(x, T)| — BT" + O(T" ). (2.16)

Here we use that fact that { R, } partitions R", so covers the cube, and the O (T"~') error
terms above occur because the counting is not perfect within a constant distance C of
the boundary of the cube. Combining these evaluations yields

(knA —O)# QN C,(x, T)| < BT" + O(T" V).

If 6 < k, A, then we can rewrite this as

#QNC,(x,T)| B 1
< — . 2.17
" _KnA—0+O(T> @17)

By assumption

vol(C(x, T) N (2 + B))

p(2,T)—¢ <

T3
#QNCKx, T)| (1)
=k—+ 0| = ).
" T
Together with (2.17), this yields
5. Ty —e< B Lol (2.18)
s — &= e ) .
P A — 0 T

with an O-symbol constant independent of . Letting ¢ — 0 and then T — oo gives
the inequality for p(€2). Since this holds for all saturated packings the result follows. [

Determining the quantity 6p ,(A, B) for fixed A, B can be viewed as a nonlinear
optimization problem over a compact set. The translation-invariance property of (P, o)
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Bounds for Local Density of Sphere Packings and the Kepler Conjecture 171

allows the supremum (2.12) to be taken over the smaller set with v = 0 and admissible
Q2 containing 0. The locality property shows that the vertex D-star at 0 is completely
determined by w € Q with ||w|| < C. The set of such configurations of nearby sphere
centers forms a compact set in the Euclidean topology. Actually the partition and weight
functions may be discontinuous functions of the locations of sphere centers, so the
optimization problem above is not genuinely over a compact set. One must compactify
the space of allowable vertex D-stars by allowing some sets of sphere centers to be
assigned more than one possible vertex D-star. In practical cases there will be a finite
set of types of vertex D-stars, hence a finite upper bound on the number of possibilities.

Definition 2.6. A local density inequality in R” is optimal if

f(A, B,0ps) =38(B,). (2.19)

Optimal local density inequalities exist in one and two dimensions. In discussing the
three-dimensional case, we presume that §(B3) = 7/+/18, so that an optimal density
inequality in R? will refer to one achieving this value. The evidence indicates that there are
many different possible optimal local density inequalities in three dimensions, including
that of the Hales and Ferguson proof.

There are currently four candidates for local density inequalities that may be optimal
in three dimensions. The first is that of Fejes Toth, described in Section 3, which uses
averages over Voronoi domains, in which the score constant ratio B/A = 7/ V18. The
second is that of Hsiang [Hs1], which is a modification of the Fejes T6th averaging,
and uses the same score constant ratio. The third is due to Hales [SP-I], and is based on
the Delaunay triangulation, using a modified scoring rule described in Section 3. The
fourth is that given by Ferguson and Hales [FH], and uses a combination of Voronoi-
type domains and Delaunay-type simplices, with a complicated scoring rule, described
in Section 4. In the latter two cases the score constant ratio is

B s —37 + 12 arccos(1/+/3)

A — CYoct — \/g
In all four cases the compact set of local configurations to be searched has very high
dimension. Each sphere center has three degrees of freedom, and the number of sphere
centers involved in these methods to determine a vertex D-star seems to be around 50,
so the search space consists of components of dimension up to roughly 150.

It is unknown whether optimal local density inequalities exist for the sphere packing
problem in R” in any dimension n > 4. In dimensions 4, 8, and 24 it seems plausible
that the minimal volume Voronoi cell in any sphere packing actually occurs in the
densest lattice packing. If so, the Voronoi cell decomposition would yield an optimal
local inequality in these dimensions, and the densest packing would be a lattice packing
in these dimensions. Another question asks: in which dimensions is the maximal sphere
packing density attained by a sphere packing whose centers form a finite number of
cosets of an n-dimensional lattice? Perhaps in such dimensions an optimal local density
inequality exists.

The state of the art in sphere packings in dimensions 4 and above is given in [CS] and
[Z]. Apart from this, a very interesting new approach giving upper bounds for the density

~ (0.720903.
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172 J. C. Lagarias

of sphere packings appears in the thesis of Henry Cohn [C]. His bounds are nearly sharp
in dimensions 8 and 24, and strongly suggest that the Es and Leech lattice A4 packings
are optimal in these dimensions, respectively.

3. History

We survey results on local density inequalities in three dimensions. The work on local
density bounds was originally based on two partitions of R* associated to a set Q of
sphere centers: the Voronoi tesselation and the Delaunay triangulation. Since they will
play an important role, we recall their definitions.

Definition 3.1. The Voronoi domain (or Voronoi cell) of v € Q is
Vior(V) = Vir (v, Q) := {x € R*: |x — V|| < |x — w| forall w € Q}. 3.1

The Voronoi tesselation for Q2 is the set of Voronoi domains {V,.:(v): v € Q}.

The Voronoi tesselation is a partition of space up to boundaries of measure zero. If Q2
is a saturated sphere packing, then all Voronoi domains are compact sets with diameter
bounded by 4. Indeed, for a saturated packing the Voronoi domain is contained in the
sphere of radius 2 centered at v, as these spheres form a covering.

Definition 3.2. The Delaunay triangulation associated to a set €2 is dual to the Voronoi
tesselation. It contains an edge between every pair of vertices that have Voronoi domains
that share a common face. Suppose now that the points of Q2 are in general position, which
means that each corner of a Voronoi domain has exactly four incident Voronoi domains.
In this case these Voronoi domains have between them four faces that touch this corner,
and these faces in turn determine (four edges of) a Delaunay simplex. The resulting
Delaunay simplices partition R? and make up the Delaunay triangulation. In the case of
non-general position 2 the Delaunay triangulation is not unique. The possible Delaunay
triangulations are determined locally as limiting cases of general position points. (There
are only finitely many triangulations possible in any bounded region of space.)

All the simplices in a Delaunay triangulation have vertices v; € 2 and contain no
other point v € Q2. We define, more generally:

Definition 3.3. A D-simplex (or Delaunay-type simplex) for Q2 is any tetrahedron T
with vertices vy, v», v3, v4 € £ such that no other v €  is in the closure of 7. We
denote it D(vy, V2, V3, V4).

In the literature a Delaunay simplex associated to a point set €2 is any simplex with
vertices in 2 whose circumscribing sphere contains no other vertex of 2 in its interior.
All simplices in a Delaunay triangulation of 2 are Delaunay simplices in this sense, so
are necessarily D-simplices, but the converse need not hold.

The admissible partitions that have been seriously studied all consist of a domain
V (v) associated to each vertex v € V, which we call a V-cell, together with a collection
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Bounds for Local Density of Sphere Packings and the Kepler Conjecture 173

of certain D-simplices D(vy, V2, v3, v4) which we call the D-system of the partition. We
use the term D-set to refer to a D-simplex included in the D-system. We note that a
V-cell may consist of several polyhedral pieces, and may even be disconnected.

The original approach of Fejes Téth to getting local upper bounds for sphere packing
in R? used the Voronoi tesselation associated to 2. If  is a saturated packing, then each
Voronoi domain V,,(v) is a bounded polyhedron consisting of points within distance at
most 4 of v. Examples are known of Voronoi domains in a saturated packing that have
44 faces; an upper bound for the number of faces of a Voronoi domain of a saturated
packing is 49. The Voronoi partition takes the V-sets V (v) to be the Voronoi domains of
v, with no D-sets, and the vertex D-star Dy (V) is just Vi (V). A Voronoi scoring rule is

Score(Dyor(V)) := (p(V(V)) — B)vol(V(v)), (3.2

with the score constants A = 1 and B is to be chosen optimally. Such scoring rules
are admissible. However, it has long been known that no Voronoi scoring rule gives an
optimal inequality (2.19). The dodecahedral conjecture states that the maximum packing
density of a Voronoi domain is attained for a local configuration of 12 spheres touching
at the center of faces of a circumscribed regular dodecahedron.

Dodecahedral Conjecture. For a Voronoi domain Vo (V) of a unit sphere packing,

(V) < il
15(1 — cos(mr/5) tan(r/3))

o (V. ~ 0.754697 (3.3)

and equality is attained for the dodecahedral configuration.

A proof of the dodecahedral conjecture has been announced by Hales and McLaughlin
[Dod], based on similar ideas to the Hales’ approach to the Kepler conjecture.

In 1953 Fejes T6th [FT1] proposed that an optimal inequality might exist based on
a weighted averaging over Voronoi domains near a given sphere center, and in 1964 he
made a specific proposal for such an optimal inequality. In the notation of this paper he
used the Voronoi partition and an admissible scoring function of the form

0 (Vior(W), V) 1= 0 (W, V){(Ap (Vior (W) — B) vol(Vior (W)}, 3.4

in which A = 1, B = n/+/18, and the weights @ (w, v) are given by

L if 2<|w—v|<2+1,

vy =412 3.5
CVV=N0 i w241, 3-5)

and
ov,v):=1-— Zw(w, V). 3.6)
WAV

Here t+ > 0 is a fixed constant. The resulting inequality in Theorem 2.1 is optimal if
the associated constant 6p ,,(A, B) = 0. The Fejes-T6th scoring function corresponds
to a weighted averaging over the spheres touching a central sphere at v, where the
weight assigned to the central sphere depends on how many spheres touch it. Fejes T6th
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considered choosing ¢ as large as possible consistent with requiring that w(v, v) > 0,
which is equivalent to requiring that it is impossible to pack 13 spheres around a given
sphere, with all 13 sphere centers within distance 2 + ¢ of the center of the given sphere.
In 1964 he suggested [FT2, p. 299] that one could take the value t = 0.0534, and we
consider this to be Fejes Toth’s candidate for an optimal inequality. It has not been
demonstrated that w(v, v) > 0 holds for this value of ¢, but note that the argument of
Theorem 2.1 is valid for any value of 7, even if some w (v, v) are negative. The only issue
is whether the resulting sphere packing bound is optimal. Fejes Té6th [FT2] explicitly
noted that establishing an optimal inequality, if it is true, reduces the problem in principle
to one in a finite number of variables, possibly amenable to solution by computer.

In 1993 Hsiang [Hsl] studied a variant of the Fejes Téth approach. He used the
Voronoi partition and an admissible scoring function! of the form (3.4), with the same
A =1, B = /+/18, and with the weights w(w, v) > 0 given by

w(W,V) = 1+§V(v) it =il = %’ (3.7)
0 it lw—v| > &,
where
NW) :=#weQ: 0<|w—v|<E (3.8)

counts the number of “near neighbors” of v. Hsiang announced that his local inequality
is optimal (with 0p (A, B) = 0), and that he had proved it, which would then con-
stitute a proof of Kepler’s conjecture. However, the proof of optimality presented in
[Hs1] is regarded as incomplete by the mathematical community, see G. Fejes To6th’s
review of Hsiang’s paper in Mathematical Reviews, the critique in [Ha3], and Hsiang’s
rejoinder [Hs2].

In 1992 Hales [Hal], [Ha2] studied the Delaunay triangulation, which partitions R
into D-sets. There are a finite number of (local) choices for Delaunay triangulations
of a neighborhood of a fixed v € . Hales used the following function in defining his
associated weight function.

Definition 3.4. The compression of a finite region R in R* with respect to a sphere
packing €2 is
' (R) := (p(R) — Soct) vOI(R) (3.9
in which
—37 + 12arccos(1/+/3)
NG

is the fraction of the volume of the regular octahedron of sidelength 2 covered by unit
spheres centered at its vertices.

~ (.720903 (3.10)

6oct =

! More accurately, the locally averaged density in Section 3 of [Hs1] is converted to the form given in
Section 2 by clearing denominators, and cancelling out Hsiang’s factor of 13. Note also that each Voronoi
domain contains exactly one sphere, so that p(V (V)) vol(V (V)) = 4x/3.
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Bounds for Local Density of Sphere Packings and the Kepler Conjecture 175
Hales initially considered the admissible weight function
0 (D(V1, V2, V3, V4), V;) := I'(D(Vy, V2, V3, V4)). (3.11)

The vertex D-star of v consists of all the simplices in the Delaunay triangulation that
have v as a vertex; we call this set of simplices the Delaunay D-star Dpe (v) at v. Hales
used score constants A = 4 and B = 48,¢, with A = 4 used since each simplex is
counted four times. However, he discovered that the pentagonal prism attained a score
value exceeding what is needed to prove Kepler’s conjecture. The pentagonal prism is
conjectured to be extremal for this score function.

The fact that the (conjectured) extremal configurations for the Voronoi tesselation and
Delaunay triangulation do not coincide suggested to Hales that a hybrid scoring rule be
considered that combines the best features of the Voronoi and Delaunay scoring function.
In 1997 Hales again considered a Delaunay triangulation, but modified the scoring rule
to depend on the shape of the D-simplex D(vy, V3, v3, v4). For some simplices he used
the weight function above, while for others he cut the simplex into four pieces, one for
each vertex, called the pieces V (D, v;), and assigned the weights2

O(D(Vli V2, V3, V4)» Vi) = 4F(V(D9 Vi))»

for 1 <i < 4. He also partitioned a vertex D-star into pieces called “clusters” whose
score functions could be evaluated separately and added up to get the total score. Each
“cluster” is a finite union of Delaunay simplices filling up that part of the vertex D-
star at v lying in a pointed cone with vertex v. This vertex cone subdivision facilitates
computer-aided proofs by decomposing the problem into smaller subproblems. Hales
[SP-I], [SP-1I] presented evidence that this modified scoring function satisfies an optimal
local inequality. He showed that the two known local extremal configurations® gave local
maxima of the score of the Delaunay D-star in the configuration space. The associated
scoring function is

Score(Dpei(v)) = 8pt, (3.12)

where

11x 1
t := —— — 12arccos | —= ) >~ 0.0553736, (3.13)
P 3 (ﬁ)

which is the desired optimal value. He also showed that this was a global upper bound
over the subset of configurations described by a vertex map* G(v) that is triangulated.
Hales [SP-I, Conjecture 2.2] conjectured that the modified score function achieved the
optimal inequality

Score(Dpe1(v)) < 8pt, (3.14)

2 More precisely, he used here the “analytic continuation” of this scoring function that is described in
Appendix A.

3 These correspond to Voronoi cells being the rhombic dodecahedron or trapezo-rhombic dodecahedron
on p. 295 of [FT2].

4 See Section 5 for a definition of vertex map G(v).
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for all Delaunay D-stars Dp(v). However, he and Ferguson (his student) [FH] discov-
ered that a pentagonal prism configuration comes very close to violating the inequality
(3.14). Furthermore, there turned out to be many similar difficult configurations which
might possibly violate the inequality. These and other difficulties indicated that it was
not numerically feasible to prove (3.14) by a computer proof, assuming that (3.14) is
actually true.

Hales and Ferguson together then further modified both the partition rule P and the
scoring rule o to obtain a rule with the following properties:

(i) It makes the score inequality stronger on the known bad cases related to the
pentagonal prism configuration.

(i1) Ituses a more complicated notion of “cluster,” which includes Voronoi pieces as
well as D-sets, and which retains the “decoupling” property that it is completely
determined by vertices of €2 in the cone above it.

(iii) It chooses a scoring rule which when combined with “truncation” on clusters
is still strong enough to rule out most configurations. The “truncation” opera-
tion greatly reduces the number of configurations to be checked, at the cost of
weakening the inequality to be proved.

In Section 4 we give a precise description of the Hales—Ferguson rules (P, o).

4. Hales-Ferguson Partition Rule and Score Function

Ferguson and Hales [FH] use the following partition rule and scoring rule. The partition
uses two types of D-simplices, with a complicated rule for picking which ones to include
as D-sets in the partition. Modified Voronoi domains V (v) are used as V-sets. These
differ from the usual Voronoi domain (with the D-sets removed) by mutually exchanging
some regions called “tips.” The scoring rule is also complicated: the weight function used
on a D-simplex no longer depends on just its shape, but depends on the structure of nearby
D-sets.
We begin by defining the two types of D-simplices.

Definition 4.1. A QR-tetrahedron (or quasi-regular tetrahedron) is any tetrahedron
251

with all vertices in €2 and all edges of length < 5.

Definition 4.2. A QL-tetrahedron (or quarter) is any tetrahedron with all vertices in
Q2 and five edges of length < % and one edge with length % < [ < 24/2. The long

edge is called the spine (or diagonal) of the QL-tetrahedron.

For some purposes® the case of a spine of length exactly % should be considered
as either a QL-tetrahedron or a QR-tetrahedron. Here we treat it exclusively as a OR-

tetrahedron.

3 In proving inequalities one wants to work on a compact set. In compactifying the space of configurations,
this requires allowing the lower inequality in the definition of the QL-tetrahedron to be an equality.
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Neither kind of tetrahedron is guaranteed to be included in the Delaunay triangulation
of 2, but we do have:

Lemma 4.1. All QR-tetrahedra and QL-tetrahedra are D-simplices.

The Hales—Ferguson partition rule starts by selecting which D-simplices to include
in the D-system. These consist of:

(i) All QR-tetrahedra.

(ii) Some QL-tetrahedra. The QL-tetrahedra included in the partition satisfy the com-
mon spine condition which states that for a given spine, either all QL-tetrahedra
having that spine are included or none are.

This collection of tetrahedra is required (by the definition of an admissible partition) to
form a non-overlapping set, where we say that two sets S; and S, overlap if S; N S has
positive Lebesgue measure in R?. To show this is possible with (i) holding we have:

Lemma 4.2. No two QR-tetrahedra overlap.

QL-tetrahedra may overlap QR-tetrahedra or other QL-tetrahedra, hence one needs
a rule for deciding which QL-tetrahedra to include. To begin with, QL-tetrahedra can
overlap OR-tetrahedra in essentially one way.

Lemma 4.3. [fa QL-tetrahedron and QR-tetrahedron overlap, then the QR-tetrahedron
has a common face with an adjacent QR-tetrahedron, and the two unshared vertices of
these QR-tetrahedra are the endpoints of the spine of the QL-tetrahedron. The union of
these two QR-tetrahedra can be partitioned into three QL-tetrahedra having the given
spine, which includes the given QL-tetrahedron. Aside from these QL-tetrahedra, no
other QL-tetrahedron overlaps either of these two QR-tetrahedra.

This lemma shows that the QL-tetrahedra having a given spine have the property that
either all of them or none of them overlap the set of QR-tetrahedra. We next consider
how QL-tetrahedra can overlap other QL-tetrahedra. The following configuration plays
an important role.

Definition 4.3. A Q-octahedron is an octahedron whose six vertices v; € 2 and whose

251
twelve edges each have lengths 2 <[ < =

A Q-octahedron has three interior diagonals. If a diagonal has length 2 < [ < %,
then it partitions the Q-octahedron into four QR-tetrahedra. If a diagonal has length

% < 1 < 24/2, then it partitions the Q-octahedron into four QL-tetrahedra of which

it is the common spine. If a diagonal has length [ > 24/2 it yields no partition. A Q-
octahedron thus gives between zero and three different partitions into four QR-tetrahedra
or QL-tetrahedra. We call it a live Q-octahedron if it has at least one such partition.
Lemma 4.3 implies that if it has a partition into QR-tetrahedra, then it has no other
partition into QR-tetrahedra or QL-tetrahedra.
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Lemma 4.4. A QL-tetrahedron having a spine which is a diagonal of a Q-octahedron
does not overlap any QL-tetrahedron whose spine is not a diagonal of the same Q-
octahedron.

The selection rules for choosing QL-tetrahedra to include in the D-system require
that one either includes all QL-tetrahedra having the same spine or else none of them.
Thus the selection rule really specifies which spines to include.

Definition 4.4. Consider an edge [v;, Vo] with vy, v, € Q and BL vy —vy| < 2V2.
A vertex w € 2 is called an anchor of the edge [vy, v,] if

100

||W—Vi||§% for i=1,2.

Ferguson and Hales use the number of QL-tetrahedra having a spine [v;, v,] and
the number of anchors of that spine in deciding which QL-tetrahedra to include in the
D-system. Call a QL-tetrahedron isolated if it is the only QL-tetrahedron on its spine
[vy, v2]. The inclusion rule for an isolated QL-tetrahedron is:

(QLO)

An isolated QL-tetrahedron is included in the D-system if and only if it
overlaps® no other QL-tetrahedron or QR-tetrahedron.

Next consider spines [vy, V2] which have two or more associated QL-tetrahedra. Such
spines have at least three anchors, and the inclusion rules are:

(QLI)
(QL2)

(QL3)

Each non-isolated QL-tetrahedron on a spine with five or more anchors is
included in the D-system.

Each non-isolated QL-tetrahedron on a spine with four anchors is included in
the D-system, if the spine is not a diagonal of some Q-octahedron. In the case
of a live Q-octahedron, we include all QL-tetrahedra having one particular
diagonal, and exclude all QL-tetrahedra on other diagonals. For definiteness,
we choose the spine to be the shortest diagonal. In the case of a tie for the
shortest diagonal, a suitable tie-breaking rule is used.

Each non-isolated QL-tetrahedron on a spine with three anchors is included in
the D-system if each QL-tetrahedron on the spine does not overlap any other
QL-tetrahedron or QR-tetrahedron, or overlaps only isolated QL-tetrahedra.
It is excluded from the D-system if some tetrahedron on the spine overlaps
either a QR-tetrahedron or a non-isolated QL-tetrahedron having four or more
anchors. Finally, if some tetrahedron on the spine overlaps a non-isolated QL-
tetrahedron having exactly three anchors, then the spine of the overlapped set
is unique, and exactly one of these two sets of non-isolated QL-tetrahedra with
three anchors is to be included in the D-system, according to a tie-breaking
rule.’

6 It cannot overlap a QR-tetrahedron by Lemma 4.3.

7 The tie-breaking rule could be to include the spine with the lowest endpoint using a lexicographic ordering
of points in R3. It appears to me that Hales would permit an arbitrary choice of which one to include, see
Lemma 4.5(iii).
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The set of QL-tetrahedra selected above are pairwise disjoint and are disjoint from all
(QR-tetrahedra. This is justified by the following lemma.

Lemma 4.5.

(i) If two QL-tetrahedra overlap, then at most one of them has five or more
anchors.

(i) If two overlapping QL-tetrahedra each have four anchors, then their spines are
(distinct) diagonals of some Q-octahedron.

(ii1) If a non-isolated QL-tetrahedron with three anchors overlaps another QL-
tetrahedron having three anchors, then each of their spines contains exactly
two non-isolated QL-tetrahedra, and these four QL-tetrahedra overlap no other
QL-tetrahedron or QR-tetrahedron.

We call the set of QR-tetrahedra and QL-tetrahedra selected as above the Hales—
Ferguson D-system. (Hales and Ferguson call this a Q-system.)

We now define the V-cells of the Hales—Ferguson partition. To begin, we take the
Voronoi domain V,(v) at vertex v and remove from it the union of all D-simplices in the
D-system to obtain a reduced Voronoi region Vieq4(v). Next we move certain regions of
Viea(v) called “tips” to neighboring reduced Voronoi regions to obtain modified regions
Vimod (V) and finally we define the V-cell V (v) at v to be the closure of Vi;,0q4(V).

Definition 4.5. Let T be any tetrahedron such that the center x = x(7') of its circum-
scribing sphere lies outside 7'. A vertex v of T is negative if the plane H determined
by the face F of T opposite v separates v from x. The “tip” A(T, v) of T associated
to a negative vertex v is that part of the Voronoi region of v with respect to the points
{v1, V2, v3, v4} that lies in the closed half-plane H* determined by H that contains X.
The “tip” region A(T, v) does not overlap 7', and is a tetrahedron having x as a vertex,
and has three other vertices lying on H.

Lemma 4.6.

(i) A QR-tetrahedron or QL-tetrahedron T has at most one negative vertex.
(ii) If a negative vertex is present, then the three vertices of the associated “tip” that
lie on H actually lie in the face of T opposite to the negative vertex.
(iii) The “tip” of any tetrahedron in the Hales—Ferguson D-system either does not
overlap any D-simplex in the Hales—Ferguson D-system, or else is entirely
contained in the union of the D-simplices in the D-system.

We say that a “tip” that does not overlap any D-set is uncovered. The lemma shows
that uncovered “tips” lie in the union of the Voronoi regions {Vieq(W): w € 2}, so that
rearrangement of uncovered “tips” is legal. There is an a priori possibility that two “tips”
may overlap® each other.

8 I do not know if this possibility can occur.
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Vi

$vo +vi)

Vo

Fig. 1. “Tip” of D-simplex [vy, v2, v3].

Uncovered Tip Rearrangement Rule. Each y € R? that belongs to an uncovered
“tip” is reassigned to the nearest verfex w € Q2 such thaty is not in an uncovered “tip” of
any pair (7', w) where T is in the Hales—Ferguson D-system and w is a negative vertex
of T. (A tie-breaking rule is used if the two nearest vertices w are equidistant.)

This rule cuts an uncovered “tip” into a finite number of polyhedral pieces and reas-
signs the pieces to different reduced Voronoi regions. This prescribes how Vi0q(V) is
constructed, and thus defines the Hales—Ferguson V-cells V (v).

A two-dimensional analogue of a “tip” is pictured” in Fig. 1. In this figure the triangle
T = [vy, V2, v3] plays the role of a D-simplex, with v, as a negative vertex and the “tip”
is the shaded region. The points ¢y)2, €913, €123 are centroids of the triangles determined
by the corresponding v;’s. The shaded triangle [cg12, €013, €123] is in the Voronoi cell
Vior (Vo) while the remainder of the “tip” is in the Voronoi cell V. (v,). The uncovered tip
rearrangement rule partitions the part in Vy,(v2) into three triangles which are reassigned
to the V-cells V (vy), V(vy), and V(v3), e.g., [¥1, Y2, €o12] is reassigned to V (vy). The
reassignment of the “tip” ensures that the pointed cone over v, generated by the D-
simplex [vy, v,, v3] does not contain any part of the V-cell at v,. In this example the
V-cell at vy does not feel the effect of the vertex v,, due to the rearrangement.

We now turn to the Hales—Ferguson scoring rules. These use the compression function
I'(S) given in (3.9). The compression function is additive: If § = S} U S is a partition,

9 See Figure 2.1 of Hales [SP-II] for another example.
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then
L(S) =TS +TI'(S). 4.1)
For a D-simplex T,
4 .
(solid angle);
I(T)p(T) = - 4.2
vol(T)p(T) ; 3 (4.2)
where a full solid angle is 4.
The Hales—Ferguson weight function for a V' -cell is as follows:
(S1) Fora V-cell V(v),
4r(V(v)) if v=w,
our(V(v), w) = (4.3)

0 if v#w.

We next consider the weight function for D-sets. Let (7T, v) denote a D-simplex
together with a vertex v of it.

Definition 4.6. The Voronoi measure vor(T, v) is defined as follows. If the center of
the circumscribing sphere of T lies inside 7', then T is partitioned into four pieces:

Ve Tovi) == {x € T x = ;|| < [x— v for I < j <4

vor
and then

vor(T,v) =T (V) (T, v)). “4.4)

vor

There is an analytic formula for the right side of (4.4) given in Appendix A, and this
formula is used to define vor (T, v) in cases where the circumcenter falls outside 7.

In cases where the circumcenter is outside 7', and v is a negative vertex, then
vor(T,v) = I'(Vyor (T, v) U “tip”) 4.5)

while for the other three vertices parts of the “tip” are counted with a negative weight,
in such a way that

4
Z vor(T, v;) = 4T(T) (4.6)
i=1

holds in all cases. The weight function for a D-set is given as follows:
(S2) For a QR-tetrahedron 7' = D(vy, V3, V3, V4) in the D-system,

141

e . W07 (4.7
vor(T, V) if the circumradius of T exceeds 160+

I'(T) if the circumradius of 7 is at most
our(T, V) =
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The QL-tetrahedron scoring function is complicated. For a QL-tetrahedron T, let n™(T')
be the maximum of the circumradii of the two triangular faces of T adjacent to the spine
of T, and define the function

(T) it nt(T) < V2,

4.8
vor(T,v) if nt(T) > 2. 48

w(T,v) = {

Then the QL-tetrahedron scoring function is defined by:
(S3) (“Flat quarter” case) For a QL-tetrahedron T and a vertex v not on its spine,
onr(T, v) := u(T, v). 4.9)

(S4) (“Upright quarter” case) For a QL-tetrahedron T with vertex v on its spine, let ¥
denote the opposite vertex on the spine. If T is an isolated QL-tetrahedron, set

our(T, v) := u(T,v). (4.10)
If T is part of a Q-octahedron, set
our(T, V) := 5 (u(T, V) + u(T, ¥)). (4.11)
In all other cases, set
our(T, v) := %(,u(T, v) + w(T, V) + %(voro(T, v) —vorg(T,V)), (4.12)

in which vory(T, v) is a “truncated Voronoi measure” that only counts volume

withinradius % ( %(5)(1)) of vertex v, which is defined in Appendix A, and on pp. 9-11

of [FH].

The scoring rule (S4) is the most complicated one. In it the definition (4.11) plays
an important role in obtaining good bounds for the pentagonal prism case treated in
[SP-V], while the definition (4.12) is important in analyzing general configurations
using truncation in [SP-IV].

Theorem 4.1. The Hales—Ferguson partition rule and scoring rule (Pyg, oyr) are both
admissible, with score constants A = 4 and B = 48,

Proof. 1t is easy to verify that the definitions for scoring QR-tetrahedra and QL-
tetrahedra satisfy the weighted density average property

4
Y our(T, vi) = 41(T), (4.13)

i=1

which correspond to A = 4 and B = 46, using (4.6). Most of the remaining admis-
sibility conditions are verified by Lemmas 4.1-4.6 except for locality. For locality, a
conservative estimate indicates that the rules for removing and adding “tips” to deter-
mine the V-cell V(v) are determined by sphere centers w € Q with ||[w — v|| < 124/2.
Finally the score function on the D-simplices is determined by vertices within distance
6+/2 of v. O
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Based on this result, Theorem 2.1 associates to (Pyr, ougr) a sphere-packing bound;
the Hales program asserts this bound will be optimal. To establish the Kepler bound

T
p(R) < —. (4.14)
V18
via (2.15), one must prove that
0 = Opyp.on (4, 480ct) = 8pt, 4.15)
where
p= T, ( L ) 0.0553736 (4.16)
= arccos | — ~ 0. . .
Pr=3 73

The score function Score(Dyg(v)) is discontinuous as a function of the sphere centers
in 2 near v, because it is a sum of contributions of pieces which may appear and disappear
as sphere centers move, and discontinuities occur when QL-tetrahedra convert to OR-
tetrahedra. To deal with this, one compactifies the configuration space by allowing some
sphere center configurations to have more than one legal decomposition into pieces (but
at most finitely many). The optimization problem can then be split into a finite number
of subproblems on each of which oy is continuous.

The complexity of the definition of (Pyr, our) is designed to yield a computation-
ally tractable nonlinear optimization problem. The introduction of QL-tetrahedra and
the complicated score function on them is designed to help get good bounds for the
pentagonal prism case and similar cases. The rule for moving “tips” is intended to fa-
cilitate decomposition of the nonlinear optimization problem into more tractable pieces
via Theorem 5.5 below, and the use of “truncation.”

5. Kepler Conjecture
The main result to be established by the Hales program is the following.

Theorem 5.1 (Main Theorem). For the Hales—Ferguson partition rule and scoring
rule (Pur, our), and any v € 2 in a saturated sphere-packing, the vertex D-star Dyg(V)
at v satisfies

Score(Dyp(v)) < 8pt, (5.1
where pt := 117/3 — 12 arccos(1/+/3) ~ 0.0553736.

The Kepler conjecture follows by Theorem 2.1.

To prove inequality (5.1), by translation-invariance we can reduce to the case v =0
and search the set of all possible vertex stars, which by Section 4 are determined by
those points w € Q with |[w| < 12+/2. The space of possible sphere centers {w €
Q: |lw| < 1242} is compact. It can be decomposed into a large number of pieces,
on each of which the score function is continuous. To obtain compact pieces, we must
compactify the configuration space by assigning more than one possible local D-star
D(v) to certain arrangements of sphere centers. The compactification assigns at most
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finitely many possibilities to each arrangement, with an absolute upper bound on the
number of possibilities.

In what follows we generally assume that 0 € €2 and we study the vertex star atv = 0.
However, we state definitions and lemmas to be valid for general 2.

The definition of the score Score(D(v)) involves a sum over the V-sets and D-sets.
The usefulness of the compression measure I'(S) is justified by the following lemma.

Lemma 5.1.

(1) Every QR-tetrahedron T satisfies
(7)< pt, (5.2)

with equality occurring only when T is a regular tetrahedron of edge length 2.
(ii) A QL-tetrahedron T has

I(T) <0, (5.3)

with equality occurring for those T having five edges of length 2 and a spine of
length 2/2.

Result (ii) illustrates a somewhat counterintuitive behavior of the local density func-
tion: when holding five edges of a tetrahedron fixed of length 2, and allowing the sixth
edge to vary over % < [ < 24/2, the local density measure is largest for a spine of
maximal length.

The vertices w € Q with [|w] < % play a particularly important role, for they

determine all QR-simplices of €2 containing 0 as a vertex.

Definition 5.1. The planar map (or graph) G(v) associated to a vertex v € €2 consists
of the radial projection onto the unit sphere d B(v; 1) = {x € R3: |x —v|| = 1} centered
at v of all vertices w € Q with ||w —v|| < % plus all those edges [w, w'] between two
such vertices which have length |w — w'[| < 2.

Here we regard the planar map G(v) as being given with its embedding as a set of arcs
on the sphere. The following lemma asserts that no new vertices are introduced other
than those coming from points of 2 with ||w|| < %

Lemma 5.2. The radial projection of two edges [W, W1, [W}, W,] as above onto the
unit sphere d B(v; 1) give two arcs in G(v) which either are disjoint or which intersect
at an endpoint of both arcs.

We study local configurations classified by the planar map G(v). The planar map G(0),
which is determined by the vertices ||w]| < %, does not in general uniquely determine
251

the vertex D-star Dyr(0), but does determine all points X in it with |[x|| < 55;.

Definition 5.2. The part of Dyg(v) that lies in the pointed cone with base point v
determined by a face of the map G(v) is called the cluster over that face. Note that the
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face need not be convex, or even simply connected—it could be topologically an annulus,
for example.

The following lemma shows that the vertex D-star Dyp(0) can be cut up into clusters
in a way compatible with the scoring function.

Lemma 5.3. FEach QR-tetrahedron or QL-tetrahedron in the D-star Dyg(0) is con-
tained in a single cluster. Furthermore, all such tetrahedra having a common spine are
contained in a single cluster.

In effect the partition of the vertex D-star into clusters partitions the V-cell into
smaller pieces, while leaving the D-sets unaffected. The scoring function is additive
over any partition of a V-cell into smaller pieces, according to (4.1) and (4.3). The score
our(F) of the cluster determined by a face F of G(v) is the sum of the scores of the
OR-tetrahedra and QL-tetrahedra in the cluster, plus the Voronoi score 4I'(R) of the
remaining part R of the cluster. We then have

Score(Dup(V)) = Y oup(F). (5.4)
FeG(v)

We now consider clusters associated to the simplest faces F in the graph G(v). Each
triangular face corresponds to a QR-tetrahedron in Dyp(v), and, conversely, each OR-
tetrahedron in Dygp(v) produces a triangular face. A quad cluster is a cluster over a
quadrilateral face. A Q-octahedron with spine ending at 0 results in a quadrilateral
face, but there are many other kinds of quad clusters. In the case of faces F with > 5
edges, the cluster may consist of a V-cell plus some QL-tetrahedra, in many possible
ways. All the possible decompositions into such pieces have to be considered as separate
configurations.

Lemma 5.4.

(1) A cluster over a triangular face F consists of a single QR-tetrahedron, and
conversely. The score of such a cluster is at most 1pt, and equality holds if and
only if it is a regular tetrahedron of edge length 2.

(ii) The sum of the score functions over any quad cluster is at most zero. Equality
can occur only if the four sphere centers v; corresponding to the vertices of the
quad cluster each lie at distance 2 from v and also from each other, if they share
an edge of the quad cluster.

(iii) The score of a cluster over any face with five or more sides is strictly negative.

The extremal graphs where equality is known to occur in (5.1) have eight triangular
faces and six quadrilateral faces. The upper bound of 8 pr for these cases is implied by
this lemma. (It appeared first in [SP-II, Theorem 4.1].)

The following result rules out graphs G(v) with faces of high degree.

Theorem 5.2. All decomposition stars Dyg(0) with planar maps G(0) satisfy
Score(Dyp(0)) < 8pt (5.5
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unless the planar map G(0) consists entirely of (not necessarily convex) faces of the
Jollowing kinds: polygons having at most eight sides, in which pentagons and hexagons
may contain an isolated interior vertex or a single edge from an interior vertex to an
outside vertex, and a pentagon may exclude from its interior a triangle with two interior
vertices.

There remain a finite set of possible map structures that satisfy the conditions of
251

Theorem 5.2. Here we use the fact that there can be at most 50 vertices v with [|v|| < 355-
The list is further pruned by various methods, and reduced to about 5000 cases. Since the
(putative) extremal cases are already covered by Lemma 5.4, in the remaining cases one
wishes to prove a strict inequality in (5.1), and such bounds can be obtained in principle
by computer.

Most of the remaining cases are eliminated by linear programming bounds. The linear
programs obtain upper bounds for the score function Score(Dyr(0)) for a planar map G
of a particular configuration type, using the score function as the objective function, in

the form

Maximize Score(Dyr(0)) := Z o (F), (5.6)

fu;es

where the variable o (F) is the sum of weights associated to the cluster over the face
F. The use of linear programming relaxations of the nonlinear program seems to be a
necessity in bounding the score function. For example, the compression function I'(R)
for different regions R is badly behaved: it is neither convex nor concave in general. The
linear constraints include hyperplanes bounding the convex hull of the score function
over the variable space.

One can decouple the contributions of the separate faces F of G(v) using the following
result.

Lemma 5.5 (Decoupling Lemma). Let v € Q2 be a vertex of a saturated packing and
let F be a face of the associated planar map G(v), and let C denote the (closed) pointed
cone over F with vertex v, and let Cr req denote the closure of the cone over F obtained
by removing from Cg all cones over D-sets with a corner at v. Then the portion of the
V-cell V (v) that lies in Cp is completely determined by the vertices of Q2 that fall in the
smallest closed convex cone Cp containing Cr. In particular,

Vi i=VE®NCr =V QNCr, V) NCrreq. (5.7)

To obtain such a decoupling lemma requires the exchange of “tips” between Voronoi
domains, as described in Section 4.

The decoupling lemma permits the score function o (V (v), v) to be decomposed into
polyhedral pieces that depend on only a few of the nearby vertices. This decomposes the
problem into a sum of smaller problems, to bound the scores of the pieces o (V (v)NCF, V)
in terms of these vertices. It will often be applied when the face F is convex, in which
case Cr = Cr.
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A futher very important relaxation of the linear programs involves “truncation.” The
truncated V-cell is

Virune (V) := V(V) N B(v: 357). (5.8)

The following lemma says that we may choose whether to apply truncation or not
separately to the parts of the V-cell which lies over each face of G.

Lemma 5.6. Let F be a face of G(v) and let Cf be the cone over that face. The region
Virune (V) NCr is entirely determined by the vertices of G(v) in Cg. If Vi denotes this set of
vertices, together with v, then this region is the closure of (Vyo:(V, V) N Cg) — { D-sets}.
The compression function satisfies the bound

I'(Viune (V) N Cp) = T(V(v) N Cr). (5.9

Inequality (5.9) implies that replacing a Voronoi-type region by a truncated region
can only increase the score, hence one can relax the linear program by using the score of
truncated regions. If one is lucky the linear programming bounds using truncated regions
will still be strong enough to give the desired inequality. The use of truncation greatly
reduces the number of configurations that must be examined. Truncation bounds were
also used in proving Theorem 5.2 above.

We add the following remarks about the construction of the linear programming
problems:

(1) For each face F of a given graph type G, Hales and Ferguson construct a large
number of linear programming constraints in terms of the edge lengths, dihedral
angles, and solid angles of the polyhedral pieces making up the cluster of Dygp(v)
over face F of the graph G. The edge lengths, dihedral angles, and solid angles
are variables in the linear program. Some of the constraints embody geometric
restrictions that a polyhedron of the given type must satisfy. Others of them
are inequalities relating the weight function of the polyhedron, which is also
a variable in the linear program, to the geometric quantities. The inequalities
bound the score function on the cluster (either as a V-cell or as D-sets) in terms
of these variables. There are also some global constraints in the linear program,
for example, that the solid angles of the faces around v add up to 4.

(2) The weight function for D-sets does not permit subdivision of the simplex, but
the weight function on the V-cell is additive under subdivision, so one can cut up
such regions into smaller pieces if necessary, to get improved linear programming
bounds, by including more stringent constraints.

(3) In the linear programming relaxation, a feasible solution to the constraints need
not correspond to any geometrically constructible vertex D-star. All that is re-
quired is that every vertex D-star of the particular configuration type corresponds
to some feasible point of the linear program.

In this fashion one obtains a long list of linear programs, one for each configuration
type, and to rule out a map type G one needs an upper bound for the linear program’s
objective function strictly below 8pr. To obtain such an upper bound rigorously, it suffices
to find a feasible solution to the dual linear program, and to obtain a good upper bound
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one wants the dual feasible solution close to a dual optimal solution. The value of the dual
linear program’s objective function is then a certified upper bound to the primal linear
program. To obtain such a certification, it is useful to formulate the linear programs so
that the dual linear program has only inequality constraints, with no equality constraints,
so that the feasible region for it is full-dimensional. This way, one can guarantee that
the dual feasible solution is strictly inside the dual feasible region which facilitates
checking feasibility. This is necessary because the linear program put on the computer
is only an approximation to the true linear program. For example, certain constraints
of the true linear program involve transcendental numbers like 7, and one considers an
approximation. The effect of these errors is to perturb the objective function of the dual
linear program. Thus a rigorous bound on the effect of these perturbations on the upper
bound can be obtained in terms of the dual feasible solution. In this way one can (in
principle) get a certified upper bound'? on the score for a map type G, using a computer.

The linear programming bounds in the Ferguson—-Hales approach above suffice to
eliminate all map types G not ruled out by Theorem 5.2 except for about 100 “bad”
cases. These are then handled by ad hoc methods. I have not studied the details about
how these remaining “bad” cases are handled. Presumably they are split into smaller
pieces, extra inequalities are generatgd1 somehow, and perhaps specific information on

5

the location of vertices of more than {35 is incorporated into the linear programs.

6. Concluding Remarks

The Kepler conjecture appears to be an extraordinarily difficult nonlinear optimization
problem. The “configuration space” to be optimized over has an extremely complicated
structure, of high dimensionality, and the function being optimized is highly nonlinear
and nonconvex, and lacks good monotonicity properties. The crux of the Hales approach
is to select a formulation of an optimization problem that can be carried out (mostly by
computer) in a reasonable length of time. This led to the Hales—Ferguson choice of a
very complicated partition and score function, giving an inelegant local inequality, which
however has good decomposition properties in terms of the nonlinear program. Much of
the work in the proof lies in the reductions to reasonable sized cases and the use of linear
programming relaxations. The elimination of the most complicated cases in Theorem
5.2 was a major accomplishment of this approach. The use of Delaunay simplices to
cover most of the volume where density is high seems important to the proof and to the
choice of score functions, since simple analytic formulas are available for tetrahedra.
The Hales—Ferguson proof, assumed correct, is a tour de force of nonlinear optimization.

In contrast, the Hsiang approach formulates a relatively elegant local inequality, in-
volving only Voronoi domains and a fairly simple weight function: only nearest neighbor
regions are counted. It is conceivable that a rigorous proof of the Hsiang inequality can
be established, but it very likely will require an enormous computer-aided proof of a
sort very similar to the Hales approach. Voronoi domains do not seem well suited to

10 The Hales proof in the preprints used a linear programming package CPLEX that does not supply such
certificates. Therefore the linear programming part of the Ferguson—Hales proof needs to be re-done to obtain
guaranteed certificates.
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computer proof: they may have 40 or more faces each, and the Hsiang approach requires
considering up to 20 of them at a time. A computer-aided proof would likely have to
dissect the Voronoi domains into pieces, further increasing the size of the problem.
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Appendix A. Hales Score Function Formulas

These definitions are taken from Section 8 of [SP-1] and pp. 8-11 of [FH]. A tetrahedron
Ty, 1,15, ..., 1) is uniquely determined by its six edge lengths /;. Let the vertices of
T be vy, vy, v, v3 and number the edges as

li = llvo—vill for 1=<i<3, ly = [Iva = w3l Is =[[vi = v,

and g = [|vi — v2|. (A.D)

We take vy = 0 for convenience.

Suppose that the circumcenter w, = w.(7) of T is contained in the pointed cone over
vertex vy, determined by 7. Let Ty denote the part of the Voronoi cell of v, with respect
to the set 2 = {vy, V1, V2, v3} of vertices of T that lies in 7'. Suppose in addition that the
three faces of T containing v, are each non-obtuse triangles. Then the set T, subdivides
into six pieces, called Rogers simplices by Hales [SP-I, p. 31]. A Rogers simplexin T is
the convex hull of vy, the midpoint of an edge emanating from v, the circumcenter of
one face of T containing that edge, and the circumcenter w, = w.(T). If a denotes the
half-length of an edge, b the circumradius of a face, and ¢ = ||y.| is the circumradius
of T, then the associated Rogers simplex has shape

R(a,b,c) :=T(a,b,c, (c* —b)'"? (& —a®)'"? b* —a*)'?), (A2)

with the positive square root taken. The intersection of a unit sphere centered at 0 with
R(a, b, ¢) has volume % Sol(vy; R(a, b, ¢)), where Sol(vy; R(a, b, ¢)) denotes the solid
angle of R(a, b, ¢) at vy, normalized so that a total solid angle is 47r. The values

x; =12 (A.3)

1

are the squares of the edge lengths.

Lemma A.1. The solid angle Sol(vy, T) of a tetrahedron T (11, I, I3, 14, I5, lg) is given
by

2A
Sol(vy, T) := 2 arccot <A‘/2) (A.4)
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in which the positive square root of A is taken, the value of arccot lies in [0, ],

Ay, b, 13, Lo, s, bg) »= L+ 30 G+ +5LGHE 1) +560T+5-15)  (A5)

and
Al b, 13,14, s, 1)
=L+ L+ G -G+ B =)+ LG -+ 5+ —5+19)
+BEG+E-B+ G+ E—-13)
— BB - BBE - BB - 22 (A.6)
Definition A.1.
(i) For a tetrahedron T (1, [5, ..., ls) with vertex vy, if the circumcenter w. of T

falls inside the cone determined by T at v, then we set

6
vor(T, vg) := 4Z{V01(Ri (a, b, c))(—boct) + % Sol(R;, vo)} (A7)
i=1
with
B2 — ay2(c2 — p2y12
vol(R(a. b ¢)) = 2" =4) 6(C kg
for 1<a<b<=<c. (A.8)

This formula satisfies vor(T, vy) = 4F(f"0).

(i1) The six tetrahedra R;(a, b, ¢) are still defined even when the circumcenter w,
falls outside the cone of T at vertex vy, and we still take the formula (A.7) to
define vor(T, vy), except that both vol(R;(a, b, c)) and Sol(R;, Vo) are counted
with a negative sign: each tetrahedron R;(a, b, ¢) falls outside 7', and has no
interior in common with it.

Hales calls the definition (ii) the “analytic continuation” of case (i). It has a geometric
interpretation.

The truncated Voronoi function vor (T, vy; t) of atetrahedron T at vertex v is intended
to measure the compression F(To N B(vop; t)). Here we have truncated the region f”o by
removing from it all points at distance greater than ¢ from v,. We set

vorg(T, vo) 1= vor(T, v, 2. (A.9)
The definition
vor(T, vo: t) := T'(Ty N B(vo: 1)) (A.10)

is valid only when the circumcenter w, of T lies in the cone generated from 7 at vertex
vp. In the remaining case one must construct an analytic representation analogous to
(A.7) for vor (T, vy; t). This is done on pp. 9-10 of [FH].
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Appendix B. References to the Hales Program Results

This paper was written to state the Hales—Ferguson local inequality in as simple a way
as I could find, and does not match the order in which things are done in the preprints
of Hales and Ferguson. Also, the lemmas and theorems stated here are not all stated
in the Hales and Ferguson preprints; some of them are based on talks that Hales gave
at IAS in January 1999. The pointers below indicate where to look in the preprints for
the results I formulate as lemmas and theorems. Warning: The Hales—Ferguson partition
and scoring function given in [FH], which are the ones actually used for the proof of the
Kepler conjecture, differ from those used earlier by Hales in [SP-I] and [SP-II].

(0) The idea of considering local inequalities that weight total area and covered area
by spheres in a ratio B/ A that is not equal to the optimal density occurs in Hales’
original approach based on Delaunay triangulations, see [Hal] and [Ha2]. It also
appears in [SP-I, Lemma 2.1] and in [FH, Proposition 3.14]. I have inserted the
parameters A and B in order to include the density inequality of Hsiang [Hs1] in
the same framework.

(1) Definitions 4.1 and 4.2 appear on p. 2 of [FH].

(2) Lemma 4.1 is Lemma 1.2 of [FH], proved in Lemma 3.5 of [SP-I]. (The fact
that no vertex of €2 occurs inside a face of a QL-tetrahedron or a QR-tetrahedron
requires additional argument.)

(3) Lemma 4.2 follows from Lemma 1.3 of [FH].

(4) Lemma 4.3 is proved at the bottom of p. 3 of [FH].

(5) Lemma 4.4 is covered in the discussion on pp. 5-6 of [FH].

(6) Lemma 4.5(i)—(iii) is covered in the discussion on p. 5 of [FH], including Lem-
ma 1.8 of that paper.

(7) The notion of “tip” is discussed at length in Section 2 of [SP-II]. In part II “tips”
are not actually reassigned, although this is mentioned. Instead their existence
affects (i.e., is encoded in) the scoring rule used for the associated Delaunay
simplex which the “tip” is associated to. The rules for moving “tips” around to
make V-cells in the Hales—Ferguson approach are discussed on p. 8 of [FH].
Warning: The way that “tips” are handled in part IT and in [FH] may not be the
same: [FH] takes priority.

(8) Lemma 4.6(1) is Lemma 2.2 of [SP-II] and Lemma 4.17 of [FH]. Facts related to
(i) are discussed in Section 8.6.7 of [SP-I]. (For the second part I do not have a
reference.) (iii) Hales mentioned this in IAS lectures, and sent me a proof sketch,
which I expanded into the following: Let S be a simplex in the D-system that
overlaps a “tip” protuding from v. Say that the “tip” overlaps by pointing to §
along a face F of S. Thus F is a negatively oriented face of §" = (F, v), which
means that the simplex S’ is a QR-tetrahedron or else a QL-tetrahedron with spine
on F. Suppose first that §’ is a QL-tetrahedron. It now follows that S must be
a QL-tetrahedron with its spine on F by Lemma 2.2 of [FH]. So S’ and S are
adjacent QL-tetrahedra with spines on their common face F. Now S is in the
D-system since §’ is in the D-system. Thus the distance of v to the vertices in F
is at most 2L since v is not on the spine. We now suppose that the “tip” is not

m El
entirely contained in S, and derive a contradiction. If it is not contained in S, then
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it crosses out through a face F’ of S. By the same argument, the distance from v to
the vertices of F’ is at most %. Thus v has distances at most % from all vertices
of S, which is impossible by Lemmas 1.2 and 1.3 of [FH]. Suppose secondly
that S” is a QR-tetrahedron. Then one shows that S is also a QR-tetrahedron,
hence is in the D-system. The rest of the argument goes as before, to the same
contradiction.

(9) Theorem5.1. The main theorem is first stated as Conjecture 3.15 on p. 13 of [FH].
It is the theorem asserted to be proved in [KC].

(10) Lemma 5.1(i) appears as Lemma 3.13 in [FH]. Lemma 5.1(ii) is a special case
of Lemma 3.13 of [FH] for a quad cluster, which can consist of four congruent
QL-tetrahedra.

(11) The standard regions corresponding to the graph G (v) are defined on p. 4 of [FH].
(“Planar map that breaks unit sphere into regions.”)

(12) Lemma 5.2 follows from Lemma 1.6 of [FH], which implies that crossing lines
come from QL-tetrahedra only.

(13) Lemma 5.3 is an immediate consequence of my Lemma 5.2 and Lemma 1.3 of
[FH].

(14) Lemma 5.4 appears as Lemma 3.13 in [FH].

(15) Theorem 5.2 follows from the corollary to Theorem 4.4 of [SP-IV]. See also
Proposition 7.1 of [SP-IIT].

(16) Lemmas 5.5 and 5.6. These results are briefly stated at the bottom of p. 8 of [FH].
There are also some relevant details in Section 2.2 of [SP-II]. (I do not know an
exact reference for a detailed proof.)

Hales—Ferguson Terminology in
terminology this paper
(1) Decomposition star Vertex D-star
(2) Quasiregular tetrahedron OR-tetrahedron
(3) Quarter QL-tetrahedron
(4) Diagonal (of quarter) Spine (of QL-tetrahedron)
(5) O-system D-system
(6) Score o (R, V) Weight function o (R, v)
(7) Standard cluster Cluster
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