
chapter 2

Measures

In this chapter I will introduce the notion of a measure, give a procedure for
constructing one, and apply that procedure to construct Lebesgue’s measure
on RN as well as the Bernoulli measures for coin tossing.

§ 2.1 Some Generalities

In this section I give a mathematically precise definition of what a measure is
and prove a few elementary properties that follow from the definition. How-
ever, to avoid getting lost in the formalities, it will be important to keep the
ultimate goal in mind, and for this reason I will begin with a brief summary
of what that goal is.

§ 2.1.1. The Idea: The essence of any theory of integration is a divide and
conquer strategy. That is, given a space E and a family B of subsets Γ ⊆ E for
which one has a reasonable notion of measure assignment Γ ∈ B 7−→ µ(Γ) ∈
[0,∞], the integral of a function f : E −→ R with respect to µ is computed by
a prescription that contains the following ingredients. First, one has to choose
a partition P of the space E into subsets Γ ∈ B. Second, having chosen P,
one has to select for each Γ ∈ P a typical value aΓ of f on Γ. Third, given
both the partition P and the selection

Γ ∈ P 7−→ aΓ ∈ f(Γ) ≡ Range
(
f � Γ

)
,

one forms the sum

(2.1.1)
∑
Γ∈P

aΓ µ(Γ).

Finally, using a limit procedure if necessary, one removes the ambiguity (in-
herent in the notion of typical ) by choosing the partitions P in such a way
that the restriction of f to each Γ is increasingly close to a constant.

Obviously, even if one ignores all questions of convergence, the only way
in which one can make sense out of (2.1.1) is to restrict oneself to partitions
P that are either finite or, at worst, countable. Hence, in general, the final
limit procedure will be essential. Be that as it may, when E is itself countable
and {x} ∈ B for every x ∈ E, there is an obvious way to avoid the limit step;
namely, one chooses P =

{
{x} : x ∈ E

}
and takes

(2.1.2)
∑
x∈E

f(x)µ({x})
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to be the integral. (I continue, for the present, to systematically ignore all
problems arising from questions of convergence.) Clearly, this is the idea on
which Riemann based his theory of integration. On the other hand, Riemann’s
is not the only obvious way to proceed, even in the case of countable spaces
E. For example, again assume that E is countable, and take B to be the set
of all subsets of E. Given f : E −→ R, set Γ(a) = {x ∈ E : f(x) = a} ∈ B
for every a ∈ R. Then Lebesgue would say that

(2.1.3)
∑

a∈Range(f)

aµ
(
Γ(a)

)
is an equally obvious candidate for the integral of f .

In order to reconcile these two obvious definitions, one has to examine the
assignment Γ ∈ B 7−→ µ(Γ) ∈ [0,∞] of measure. Indeed, even if E is countable
and B contains every subset of E, (2.1.2) and (2.1.3) give the same answer
only if one knows that, for any countable collection

{
Γn
}
⊆ B,

(2.1.4) µ

(⋃
n

Γn

)
=
∑
n

µ
(
Γn
)

when Γm ∩ Γn = ∅ for m 6= n.

The property in (2.1.4) is called countable additivity, and, as will become
increasingly apparent, it is crucial. When E is countable, (2.1.4) is equivalent
to taking

µ(Γ) =
∑
x∈Γ

µ
(
{x}
)
, Γ ⊆ E.

However, when E is uncountable, the property in (2.1.4) becomes highly non-
trivial. In fact, it is unquestionably Lebesgue’s most significant achievement
to have shown that there are non-trivial assignments of measure that enjoy
this property.

Having compared Lebesgue’s ideas to Riemann’s in the countable setting, I
close this introduction to Lebesgue’s theory with a few words about the same
comparison for uncountable spaces. For this purpose, suppose that E = [0, 1]
and, without worrying about exactly which subsets of E are included in B,
assume that Γ ∈ B 7−→ µ(Γ) ∈ [0, 1] is a mapping that satisfies (2.1.4).

Now let f : [0, 1] −→ R be given. In order to integrate f , Riemann says that
one should divide up [0, 1] into small intervals, choose a representative value
of f from each interval, form the associated Riemann sum, and then take the
limit as the mesh size of the division tends to 0. As we know, his procedure
works beautifully as long as the function f respects the topology of the real
line: that is, as long as f is sufficiently continuous. However, Riemann’s
procedure is doomed to failure when f does not respect the topology of R.
The problem is, of course, that Riemann’s partitioning procedure is tied to
the topology of the reals and is therefore too rigid to accommodate functions
that pay little or no attention to that topology. To get around this problem,
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Lebesgue tailors his partitioning procedure to the particular function f under
consideration. Thus, for a given function f , Lebesgue might consider the
sequence of partitions Pn, n ∈ N, consisting of the sets

Γn,k =
{
x ∈ E : f(x) ∈

[
k2−n, (k + 1)2−n

)}
, k ∈ Z.

Obviously, all values of f restricted to any one of the Γn,k’s can differ from
one another by at most 1

2n . Hence, assuming that Γn,k ∈ B for every n ∈ N
and k ∈ Z and ignoring convergence problems,

lim
n→∞

∑
k∈Z

k

2n
µ
(
Γn,k

)
simply must be the integral of f !

When one hears Lebesgue’s ideas for the first time, one may well wonder
what there is left to be done. On the other hand, after a little reflection,
some doubts begin to emerge. For example, what is so sacrosanct about
the partitioning suggested in the preceding paragraph and, for instance, why
should one not have done the same thing relative to powers of 3 rather than 2?
The answer is, of course, that there is nothing to recommend 2 over 3 and that
it should make no difference which of them is used. Thus, one has to check
that it really does not matter, and, once again, the verification entails repeated
application of countable additivity. In fact, it will become increasingly evident
that Lebesgue’s entire program rests on countable additivity.

§ 2.1.2. Measures and Measure Spaces: With the preceding discussion
in mind, the following should seem quite natural.

Given a non-empty set E, the power set P(E) is the collection of all
subsets of E, and a σ-algebra B is any subset of P(E) with the properties
that E ∈ B, B is closed under countable unions (i.e., {Bn : n ≥ 1} ⊆
B =⇒

⋃∞
n=1Bn ∈ B), and B is closed under complementation (i.e.,

B ∈ B =⇒ B{ = E \B ∈ B). Observe that if {Bn : n ≥ 1} ⊆ B, then

∞⋂
n=1

Bn =

( ∞⋃
n=1

B{
n

){

∈ B,

and so B is also closed under countable intersections. Given E and
a σ-algebra B of its subsets, the pair (E,B) is called a measurable space.
Finally, if (E,B) and (E′,B′) are measurable spaces, then a map Φ : E −→ E′

is said to be measurable if (cf. Exercise 2.1.19 below) Φ−1(B′) ∈ B for every
B′ ∈ B′. Notice the analogy between the definitions of measurability and
continuity. In particular, it is clear that if Φ is a measurable map on (E1,B1)
into (E2,B2) and Ψ is a measurable map on (E2,B2) into (E3,B3), then Ψ◦Φ
is a measurable map on (E1,B1) into (E3,B3).

Obviously both {∅, E} and P(E) are σ-algebras over E. In fact, they are,
respectively, the smallest and largest σ-algebras over E. More generally, given
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any1 C ⊆ P(E), there is a smallest σ-algebra over E, denoted by σ(C) and
known as the σ-algebra generated by C. To construct σ(C), note that there
is at least one, namely P(E), σ-algebra containing C, and check that the in-
tersection of all the σ-algebras containing C is again a σ-algebra that contains
C. When E is a topological space, the σ-algebra generated by its open subsets
is called the Borel σ-algebra and is denoted by BE .

Given a σ-algebra B over E, the reason why the pair (E,B) is called a
measurable space is that it is the natural structure on which measures are
defined. Namely, a measure on (E,B) is a map µ : B −→ [0,∞] that assigns
0 to ∅ and is countably additive in the sense that (2.1.4) holds whenever {Γn}
is a sequence of mutually disjoint elements of B. If µ is a measure on (E,B),
then the triple (E,B, µ) is called a measure space. A measure µ on (E,B)
is said to be finite if µ(E) <∞, and it is said to be a probability measure
if µ(E) = 1, in which case (E,B, µ) is called a probability space.

Note that if B, C ∈ B, then B ∪ C = B ∪
(
C \ (B ∩ C)

)
and therefore

(2.1.5) µ(B) ≤ µ(B) + µ(C \B) = µ(C) for all B, C ∈ B with B ⊆ C.

In addition, because C = (B∩C)∪
(
C\(B∩C)

)
and B∪C = B∪

(
C\(B∩C)

)
,

µ(B) + µ(C) = µ(B) + µ
(
B ∩ C) + µ

(
C \ (B ∩ C)

)
= µ(B ∪ C) + µ(B ∩ C),

and so

(2.1.6)
µ(B ∪ C) = µ(C) + µ(B)− µ(B ∩ C)

for all B, C ∈ B with µ(B ∩ C) <∞

and

(2.1.7)
µ(C \B) = µ(C)− µ(B)

for all B, C ∈ B with B ⊆ C and µ(B) <∞.

Finally, µ is countably subadditive in the sense that

(2.1.8) µ

( ∞⋃
n=1

Bn

)
≤
∞∑
n=1

µ(Bn) for any {Bn : n ≥ 1} ⊆ B.

To check this, set A1 = B1 and An+1 = Bn+1 \
⋃n
m=1Bm, note that the An’s

are mutually disjoint elements of B whose union is the same as that of the
Bn’s, and apply (2.1.4) and (2.1.5) to conclude that

µ

( ∞⋃
n=1

Bn

)
= µ

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ(An) ≤
∞∑
n=1

µ(Bn).

1 Even if E = RN , the elements of C need not be rectangles.
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As a consequence, the countable union of Bn’s with µ-measure 0 again has
µ-measure 0. More generally,

(2.1.9)
µ

( ∞⋃
n=1

Bn

)
=

∞∑
n=1

µ(Bn)

for any {Bn : n ≥ 1} ⊆ B with µ(Bm ∩Bn) = 0 when m 6= n.

To see this, take C =
⋃
{Bm ∩ Bn : m 6= n}, use the preceding to see that

µ(C) = 0, set B′n = Bn \ C, and apply (2.1.4) to {B′n : n ≥ 1}.
Another important property of measures is that they are continuous un-

der non-decreasing limits. To explain this property, say that {Bn : n ≥ 1}
increases to B and write Bn ↗ B if Bn+1 ⊇ Bn for all n ∈ Z+ and
B =

⋃∞
n=1Bn. Then

(2.1.10) {Bn : n ≥ 1} ⊆ B and Bn ↗ B =⇒ µ(Bn)↗ µ(B).

To check this, set A1 = B1 and An+1 = Bn+1 \ Bn, note that the An’s are
mutually disjoint and Bn =

⋃n
m=1Am, and conclude that

µ(Bn) =

n∑
m=1

µ(Am)↗
∞∑
m=1

µ(Am) = µ(B).

Next say that {Bn : n ≥ 1} decreases to B and write Bn ↘ B if Bn+1 ⊆ Bn
for each n ∈ Z+ and B =

⋂∞
n=1Bn. Obviously, Bn ↘ B if and only if

B1 \Bn ↗ B1 \B. Hence, by combining (2.1.10) with (2.1.7), one finds that

(2.1.11) {Bn : n ≥ 1} ⊆ B, Bn ↘ B, and µ(B1) <∞ =⇒ µ(Bn)↘ µ(B).

To see that the condition µ(B1) < ∞ cannot be dispensed with in general,
define µ on

(
Z+,P(Z+)

)
to be the counting measure (i.e., µ(B) = card(B)

for B ⊆ Z+), and take Bm = {n ∈ Z+ : n ≥ m}. Clearly Bm ↘ ∅, and yet
µ(Bm) =∞ for all m.

Very often one encounters a situation in which two measures agree on a
collection of sets and one wants to know that they agree on the σ-algebra
generated by those sets. To handle such a situation, the following concepts
are sometimes useful. A collection C ⊆ P(E) is called a Π-system if it is
closed under finite intersections. Given a Π-system C, it is important to know
what additional properties a Π-system must possess in order to be a σ-algebra.
For this reason one introduces a notion that complements that of a Π-system.
Namely, say that H ⊆ P(E) is a Λ-system over E if

(a) E ∈ H,
(b) Γ,Γ′ ∈ H and Γ ∩ Γ′ = ∅ =⇒ Γ ∪ Γ′ ∈ H,
(c) Γ,Γ′ ∈ H and Γ ⊆ Γ′ =⇒ Γ′ \ Γ ∈ H,
(d) {Γn : n ≥ 1} ⊆ H and Γn ↗ Γ =⇒ Γ ∈ H.
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Notice that the collection of sets on which two finite measures agree satisfies
(b), (c), and (d). Hence, if they agree on E, then they agree on a Λ-system.2

Lemma 2.1.12. The intersection of an arbitrary collection of Π-systems or
of Λ-systems is again a Π-system or a Λ-system. Moreover, B ⊆ P(E) is a
σ-algebra over E if and only if it is both a Π-system and a Λ-system over E.
Finally, if C ⊆ P(E) is a Π-system, then σ(C) is the smallest Λ-system over
E containing C.
Proof: The first assertion requires no comment. To prove the second one,
it suffices to prove that if B is both a Π-system and a Λ-system over E, then
it is a σ-algebra over E. To this end, first note that A{ = E \ A ∈ B for
every A ∈ B and therefore that B is closed under complementation. Second,
if Γ1,Γ2 ∈ B, then Γ1 ∪ Γ2 = Γ1 ∪ (Γ2 \ Γ3) where Γ3 = Γ1 ∩ Γ2. Hence B is
closed under finite unions. Finally, if {Γn : n ≥ 1} ⊆ B, set An =

⋃n
1 Γm for

n ≥ 1. Then {An : n ≥ 1} ⊆ B and An ↗
⋃∞

1 Γm. Hence
⋃∞

1 Γm ∈ B, and
so B is a σ-algebra.

To prove the final assertion, let C be a Π-system and H the smallest Λ-
system over E containing C. Clearly σ(C) ⊇ H, and so all that we have to do
is show that H is Π-system over E. To this end, first set

H1 = {Γ ⊆ E : Γ ∩∆ ∈ H for all ∆ ∈ C}.
It is then easy to check that H1 is a Λ -system over E. Moreover, since C is a
Π-system, C ⊆ H1, and therefore H ⊆ H1. In other words, Γ ∩∆ ∈ H for all
Γ ∈ H and ∆ ∈ C. Next set

H2 = {Γ ⊆ E : Γ ∩∆ ∈ H for all ∆ ∈ H}.
Again it is clear that H2 is a Λ-system. Also, by the preceding, C ⊆ H2.
Hence H ⊆ H2, and so H is a Π-system. �

As a consequence of Lemma 2.1.12 and the remark preceding it, one has
the following important result.

Theorem 2.1.13. Let (E,B) be a measurable space and C is Π-system that
generates B. If µ and ν are a pair of finite measures on (E,B) and µ(Γ) = ν(Γ)
for all Γ ∈ {E} ∪ C, then µ = ν.

Proof: As was remarked above, additivity, (2.1.7), and (2.1.10) imply that
H = {Γ ∈ B : µ(Γ) = ν(Γ)} is a Λ-system. Hence, since B ⊇ H ⊇ C, it follows
from Lemma 2.1.12 that H = B. �

A measure space (E,B, µ) is said to be complete if Γ ∈ B whenever there
exist C, D ∈ B such that C ⊆ Γ ⊆ D with µ(D\C) = 0. The following simple
lemma shows that every measure space can be “completed.”

2 I learned these ideas from E. B. Dynkin’s treatise on Markov processes. In fact, the Λ-

and Π-system scheme is often attributed to Dynkin, who certainly deserves the credit for
its exploitation by a whole generation of probabilists. On the other hand, Richard Gill

has informed me that, according to A.J. Lenstra, their origins go back to W. Sierpiński’s

article Un théorème général sur les familles d’ensembles, which appeared in Fund. Math.
12 (1928), pp. 206–210.
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Lemma 2.1.14. Given a measure space (E,B, µ), define Bµ to be the set of
Γ ⊆ E for which there exist C, D ∈ B satisfying C ⊆ Γ ⊆ D and µ(D\C) = 0.

Then Bµ is a σ-algebra over E and there is a unique extension µ̄ of µ to Bµ as
a measure on (E,Bµ). Furthermore, (E,Bµ, µ̄) is a complete measure space,

and if (E,B, µ) is complete, then Bµ = B.

Proof: To see that Bµ is a σ-algebra, suppose that {Γn : n ≥ 1} ⊆ Bµ, and
choose {Cn : n ≥ 1} ∪ {Dn : n ≥ 1} ⊆ B accordingly. Then C =

⋃∞
n=1 Cn

and D =
⋃∞
n=1Dn are elements of B, C ⊆

⋃∞
n=1 Γn ⊆ D, and µ(D \ C) = 0.

Also, if Γ ∈ Bµ and C and D are associated elements of B, then D{, C{ ∈ B,
D{ ⊆ Γ{ ⊆ C{, and µ(C{ \D{) = µ(D \ C) = 0.

Next, given Γ ∈ Bµ, suppose that C, C ′, D, D′ ∈ B satisfy C ∪ C ′ ⊆ Γ ⊆
D ∩ D′ and µ(D \ C) = 0 = µ(D′ \ C ′). Then µ(D′ \ D) ≤ µ(D′ \ C ′) = 0
and so µ(D′) ≤ µ(D) + µ(D′ \ D) = µ(D). Similarly, µ(D) ≤ µ(D′), which
means that µ(D) = µ(D′), and, because µ(C) = µ(D) and µ(C ′) = µ(D′),
it follows that µ assigns the same measure to C, C ′, D and D′. Hence, we
can unambiguously define µ̄(Γ) = µ(C) = µ(D) when Γ ∈ Bµ and C, D ∈ B
satisfy C ⊆ Γ ⊆ D with µ(D \ C) = 0. Furthermore, if {Γn : n ≥ 1} are

mutually disjoint elements of Bµ and {Cn : n ≥ 1} ∪ {Dn : n ≥ 1} ⊆ B are
chosen accordingly, then the Cn’s are mutually disjoint, and so

µ̄

( ∞⋃
n=1

Γn

)
= µ

( ∞⋃
n=1

Cn

)
=

∞∑
n=1

µ(Cn) =

∞∑
n=1

µ̄(Γn).

Hence, µ̄ is a measure on (E,Bµ) whose restriction to B coincides with µ.

Finally, suppose that ν is any measure on (E,Bµ) that extends µ. If Γ is

a subset of E for which there exist Γ′, Γ′′ ∈ Bµ satisfying Γ′ ⊆ Γ ⊆ Γ′′ and
ν(Γ′′ \ Γ′) = 0, there exist C, D ∈ B satisfying C ⊆ Γ′ and Γ′′ ⊆ D such that
ν(D \ Γ′′) = 0 = ν(Γ′ \ C) and therefore

µ(D \ C) = ν(D \ C) = ν(D \ Γ′′) + ν(Γ′′ \ Γ′) + ν(Γ′ \ C) = 0.

Hence, Γ ∈ Bµ and ν(Γ) = µ(C) = µ̄(Γ). Thus, we now know that µ̄ is the

only extension of µ as a measure on (E,Bµ) and that Bµ = B if (E,B, µ) is
complete. �

The measure space (E,Bµ, µ̄) is called the completion of (E,B, µ), and
Lemma 2.1.14 says that every measure space has a unique completion. Ele-
ments of Bµ are said to be µ-measurable.

Given a topological space E, use G(E) to denote the class of all open
subsets of E and Gδ(E) the class of subsets that can be written as the
countable intersection of open subsets. Analogously, F(E) and Fσ(E) will
denote, respectively, the class of all closed subsets of E and the class of sub-
sets that can be written as the countable union of closed subsets. Clearly
B ∈ G(E) ⇐⇒ B{ ∈ F(E), B ∈ Gδ(E) ⇐⇒ B{ ∈ Fσ(E), and
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Gδ(E) ∪ Fσ(E) ⊆ BE . Moreover, when the topology of E admits a met-
ric ρ, it is easy to check that F(E) ⊆ Gδ(E) and therefore G(E) ⊆ Fσ(E).
Indeed, if F ∈ F(E), then

G(E) 3 {x : ρ(x, F ) < 1
n} ↘ F as n→∞.

Finally, a measure µ on (E,BE) is called a Borel measure on E, and if µ is a
Borel measure on E, a set Γ ⊆ E is said to be µ-regular when, for each ε > 0,
there exist F ∈ F(E) and G ∈ G(E) such that F ⊆ Γ ⊆ G and µ(G \ F ) < ε.
A Borel measure µ is said to be regular if every element of BE is µ-regular.

Theorem 2.1.15. Let E be a topological space and µ a Borel measure on
E. If Γ ⊆ E is µ-regular, then there exist C ∈ Fσ(E) and D ∈ Gδ(E) for

which C ⊆ Γ ⊆ D and µ(D \C) = 0. In particular, Γ ∈ BE
µ

if Γ is µ-regular.

Conversely, if µ is regular, then every element of BE
µ

is µ-regular. Moreover,
if the topology on E admits a metric space and µ is a finite Borel measure on
E, then µ is regular. (See Exercise 2.1.20 for a small extension.)

Proof: To prove the first part, suppose that Γ ⊆ E is µ-regular. Then, for
each n ≥ 1, there exist Fn ∈ F(E) and Gn ∈ G(E) such that Fn ⊆ Γ ⊆ Gn and
µ(Gn \ Fn) < 1

n . Thus, if C =
⋃∞
n=1 Fn and D =

⋂∞
n=1Gn, then C ∈ Fσ(E),

D ∈ Gδ(E), C ⊆ Γ ⊆ D, and, because D\C ⊆ Gn\Fn for all n, µ(D\C) = 0.

Obviously, this means that Γ ∈ BE
µ
. Conversely, if µ is regular and Γ ∈ BE

µ
,

then there exist Γ′, Γ′′ ∈ BE for which Γ′ ⊆ Γ ⊆ Γ′′, µ(Γ′′ \ Γ′) = 0. By
regularity, for each ε > 0, there exist F ∈ F(E), G ∈ G(E) such that F ⊆ Γ′,
Γ′′ ⊆ G, and µ̄(G \ Γ′′) ∨ µ̄(Γ′ \ F ) < ε

2 . Hence, F ⊆ Γ ⊆ G and

µ(G \ F ) = µ̄(G \ Γ′′) + µ(Γ′′ \ Γ′) + µ(Γ′ \ C) < ε,

and so Γ is µ-regular.
Now suppose the E admits a metric and that µ is finite, and let R be the

collection of B ∈ BE that are µ-regular. If we show that R is a σ-algebra
that contains G(E), then we will know that R = BE and therefore that µ is
regular. Obviously R is closed under complementation. Next, suppose that
{Bn : n ≥ 1} ⊆ R, and set B =

⋃∞
n=1Bn. Given ε > 0, for each n choose

Fn ∈ F(E) and Gn ∈ G(E) such that Fn ⊆ Bn ⊆ Gn and µ(Gn \ Fn) <
2−n−1ε. Then G(E) 3 G =

⋃∞
m=1Gm ⊇ B, Fσ(E) 3 C =

⋃∞
m=1 Fm ⊆ B,

and

µ(G \ C) ≤ µ

( ∞⋃
m=1

(Gm \ Fm)

)
≤
∞∑
m=1

µ(Gm \ Fm) <
ε

2
.

Finally, because µ(C) <∞ and C\
⋃n
m=1 Fm ↘ ∅, (2.1.11) allows us to choose

an n ∈ Z+ for which µ(C \F ) < ε
2 when F =

⋃n
m=1 Fm ∈ F(E). Hence, since

µ(G \F ) = µ(G \C) + µ(C \F ) < ε, we know that B ∈ R and therefore that
R is a σ-algebra.

To complete the proof, it remains to show that G(E) ⊆ R, and clearly
this comes down to showing that for each open G and ε > 0 there is a closed
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F ⊆ G for which µ(G\F ) < ε. But, because E has a metric topology, we know
that G(E) ⊆ Fσ(E). Hence, if G is open, then there exists a non-decreasing
sequence {Fn : n ≥ 1} ⊆ F(E) such that Fn ↗ G, which, because µ(G) <∞,
means that µ(G \ Fn) ↘ 0. Thus, for any ε > 0, there is an n for which
µ(G \ Fn) < ε. �

Exercises for § 2.1

Exercise 2.1.16. The decomposition of the properties of a σ-algebra in
terms of Π-systems and Λ-systems is not the traditional one. Instead, most
of the early books on measure theory used algebras instead of Π-systems as
the standard source of generating sets. An algebra over E is a collection
A ⊆ P(E) that contains E and is closed under finite unions and complemen-
tation. If one starts with an algebra A, then the complementary notion is
that of a monotone class: M is said to be a monotone class if Γ ∈ M
whenever there exists {Γn : n ≥ 1} ⊆ M such that Γn ↗ Γ. Show that B is a
σ-algebra over E if and only if it is both an algebra over E and a monotone
class. In addition, show that if A is an algebra over E, then σ(A) is the
smallest monotone class containing A.

Exercise 2.1.17. If f : R −→ R is either right continuous or left continuous,
show that f is BR-measurable.

Exercise 2.1.18. Given a measurable space (E,B) and ∅ 6= E′ ⊆ E, show
that B[E′] ≡ {B ∩ E′ : B ∈ B} is a σ-algebra over E′. Further, show that
if E is a topological space, then BE [E′] = BE′ when E′ is given the topology
that it inherits from E. Finally, if ∅ 6= E′ ∈ B, show that B[E′] ⊆ B and that
the restriction to B[E′] of any measure on (E,B) is a measure on

(
E′,B[E′]

)
.

In particular, if E is a topological space and µ is a Borel measure on E, show
that µ � BE′ is a Borel measure on E′ and that it is regular if µ is regular.

Exercise 2.1.19. Given a map Φ : E −→ E′, define Φ(Γ) = {Φ(x) : x ∈ Γ}
for Γ ⊆ E and Φ−1(Γ′) = {x ∈ E : Φ(x) ∈ Γ′} for Γ′ ⊆ E′.

(i) Show that Φ and Φ−1 preserve unions in the sense that Φ (
⋃
αBα) =⋃

α Φ(Bα) and Φ−1 (
⋃
αB
′
α) =

⋃
α Φ−1(B′α). In addition, show that Φ−1

preserves differences in the sense that Φ−1(B′ \A′) = Φ−1(B′) \Φ−1(A′). On
the other hand, show that Φ need not preserve differences, but that it will if
it is one-to-one.

(ii) Suppose that B and B′ are σ-algebras over, respectively, E and E′ and
that Φ : E −→ E′. If B′ = σ(C′) and Φ−1(C ′) ∈ B for every C ′ ∈ C′, show
that Φ is measurable. In particular, if E and E′ are topological spaces and Φ
is continuous, show that Φ is measurable as a map from (E,BE) to (E′,BE′).
Similarly, if Φ is one-to-one and B = σ(C), show that Φ(B) ∈ B′ for all B ∈ B
if Φ(C) ∈ B′ for all C ∈ C ∪ {E}.

(iii) Now suppose that µ is a measure on (E,B) and that Φ is a measurable
map from (E,B) into (E′,B′). Define µ′(B′) = µ(Φ−1(B′)

)
for B′ ∈ B′,
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and show that µ′ is a measure on (E′,B′). This measure µ′ is called the
pushforward or image of µ under Φ and is denoted by either Φ∗µ or µ◦Φ−1.
Similarly, if Φ : E −→ E′ is one-to-one and takes elements of B to elements of
B′ and if µ′ is a measure on (E′,B′), show that Γ ∈ B 7−→ µ′

(
Φ(Γ)

)
∈ [0,∞]

is a measure on (E,B). This measure is the pullback of µ′ under Φ.

Exercise 2.1.20. Let E be a topological space and µ a Borel measure on
E. Show that µ is regular if, for every Γ ∈ BE and ε > 0, there is an open
G ⊇ Γ for which µ(G \ Γ) < ε. In addition, if E is a metric space and there
exists a non-decreasing sequence {Gn : n ≥ 1} of open sets such that Gn ↗ E
and µ(Gn) <∞ for each n ∈ Z+, show that µ is regular.

Exercise 2.1.21. Let (E,B, µ) be a finite measure space. Given n ≥ 2 and
{Γm : 1 ≤ m ≤ n} ⊆ B, use (2.1.6) and induction to show that

µ(Γ1 ∪ · · · ∪ Γn) = −
∑
F

(−1)card(F )µ
(
ΓF
)
,

where the summation is over non-empty subsets F of {1, . . . , n} and ΓF ≡⋂
i∈F Γi. Although this formula is seldom used except in the case n = 2, the

following is an interesting application of the general result. Let E be the group
of permutations of {1, . . . , n}, B = P(E), and µ

(
{π}

)
= 1

n! for each π ∈ E.
Denote by A the set of π ∈ E such that π(i) 6= i for any 1 ≤ i ≤ n. Then
one can interpret µ(A) as the probability that, when the numbers 1, . . . , n
are randomly ordered, none of them is placed in the correct position. On the
basis of this interpretation, one might suspect that µ(A) should tend to 0 as
n→∞. However, by direct computation, one can see that this is not the case.
Indeed, let Γi be the set of π ∈ E for which π(i) = i. Then A =

(
Γ1∪· · ·∪Γn

)
{,

and therefore

µ(A) = 1− µ(Γ1 ∪ · · · ∪ Γn) = 1 +
∑
F

(−1)card(F )µ
(
ΓF
)
.

Show that µ(ΓF ) = (n−m)!
n! if card(F ) = m, and conclude from this that

µ(A) =
∑n

0
(−1)m

m! −→ 1
e as n→∞.

Exercise 2.1.22. Given a sequence {Bn : n ≥ 1} of sets, define their limit
inferior to be the set

lim
n→∞

Bn =

∞⋃
m=1

∞⋂
n=m

Bn,

or, equivalently, the set of x ∈ E that are in all but finitely many of the Bn’s.
Also, define their limit superior to be the set

lim
n→∞

Bn =

∞⋂
m=1

∞⋃
n=m

Bn,
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or, equivalently, the set of x that are in infinitely many of the Bn’s. Show
that limn→∞Bn ⊆ limn→∞Bn, and say that the sequence {Bn : n ≥ 1} has

a limit if equality holds, in which case limn→∞Bn = limn→∞Bn is said to
be the limit limn→∞Bn of {Bn : n ≥ 1}. Show that if (E,B, µ) is a measure
space and {Bn : n ≥ 1} ⊆ B, both limn→∞Bn ∈ B and limn→∞Bn are
elements of B. Further, show that

(2.1.23) µ

(
lim
n→∞

Bn

)
≤ lim
n→∞

µ(Bn)

and that

(2.1.24) µ
(

lim
n→∞

Bn

)
≥ lim
n→∞

µ(Bn) if µ

( ∞⋃
n=1

Bn

)
<∞.

Conclude that

(2.1.25) lim
n→∞

Bn exists & µ

( ∞⋃
n=1

Bn

)
<∞ =⇒ µ

(
lim
n→∞

Bn

)
= lim
n→∞

µ(Bn).

Hint: Note that
⋂∞
n=mBn ↗ limn→∞Bn and

⋃∞
n=mBn ↘ limn→∞Bn as

m→∞.

Exercise 2.1.26. Let (E,B, µ) be a measure space and {Bn : n ≥ 1} ⊆ B.
Show that

∞∑
n=1

µ(Bn) <∞ =⇒ µ
(

lim
n→∞

Bn

)
= 0.

This useful observation is usually attributed to E. Borel. More profound
is the following converse statement, which is due to F. Cantelli. Assume
that µ is a probability measure. Sets {Bn : n ≥ 1} ⊆ B are said to be
independent under µ or µ-independent if, for all n ≥ 1 and choices of
Cm ∈ {Bm, B{

m}, 1 ≤ m ≤ n, µ(C1 ∩ · · · ∩ Cn) = µ(C1) · · ·µ(Cn). Cantelli’s
result says that if {Bn : n ≥ 1} ⊆ B are µ-independent sets, then

∞∑
n=1

µ(Bn) =∞ =⇒ µ
(

lim
n→∞

Bn

)
= 1.

Thus, for µ-independent sets, µ
(
limn→∞Bn

)
is either 0 or 1 according to

whether
∑∞
n=1 µ(Bn) is finite or infinite, a result that is referred to as the

Borel–Cantelli Lemma. Give a proof of Cantelli’s result. In doing so, the
following outline might be helpful.

(i) Show that it suffices to prove that limN→∞ µ
(⋂N

n=mB
{
n

)
= 0 for each

m ∈ Z+.
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(ii) Show that 1− x ≤ e−x for all x ≥ 0, and use this to check that

µ

(
N⋂

n=m

B{
n

)
≤ e−

∑N

n=m
µ(Bn) for N ≥ m.

Exercise 2.1.27. Given a pair of measures µ and ν on a measurable space
(E,B), one says that µ is absolutely continuous with respect to ν and
writes µ� ν if, for all B ∈ B, ν(B) = 0 =⇒ µ(B) = 0. Assuming that µ is
finite and that µ� ν, show that for each ε > 0 there exists a δ > 0 such that
µ(B) < ε whenever ν(B) < δ. Next, assume that E is a metric space, that
both µ and ν are regular Borel measures on E, and that µ is finite. Show
that µ � ν if and only if for every ε > 0 there exists a δ > 0 for which
ν(G) < δ =⇒ µ(G) < ε whenever G ∈ G(E).

Exercise 2.1.28. A pair of measures µ and ν on a measurable space (E,B)
are said to be singular to one another and one writes µ ⊥ ν if there exists a
B ∈ B such that µ(B) = 0 = ν(B{). In words, µ and ν are singular to one
another if they live on disjoint parts of E. Assuming that E is a metric space,
that ν is regular Borel measure on E, and that µ is finite, show that µ ⊥ ν
if and only if for every δ > 0 there is a G ∈ G(E) for which ν(G) < δ and

µ(G{) = 0.

§ 2.2 A Construction of Measures

In this section I will first develop a procedure for constructing measures and
will then apply that procedure to three important examples.

§ 2.2.1. A Construction Procedure: Suppose that R is a collection of
compact subsets I of a metric space (E, ρ) and that V is a map from R to
[0,∞) that satisfy the following conditions:

(1) ∅ ∈ R and I, I ′ ∈ R =⇒ I ∩ I ′ ∈ R.
(2) V (∅) = 0 and V (I) ≤ V (J) if I, J ∈ R and I ⊆ J .
(3) For any J ∈ R, n ∈ Z+, and {I1, . . . , In} ⊆ R, V (J) ≤

∑n
m=1 V (Im) if

J ⊆
⋃n
m=1 Im and V (J) ≥

∑n
m=1 V (Im) if the Im’s are non-overlapping

(i.e., their interiors are mutually disjoint) and J ⊇
⋃n
m=1 Im.

(4) For any I ∈ R and ε > 0, there exist I ′, I ′′ ∈ R such that I ′′ ⊆ I̊,

I ⊆ I̊ ′, and V (I ′) ≤ V (I ′′) + ε.
(5) For any G ∈ G(E), there is a sequence {In : n ≥ 1} of non-overlapping

elements of R such that G =
⋃∞
n=1 In.

An example to keep in mind is that for which E = RN , R is the collection
of all closed rectangles in RN (one should consider ∅ to be a rectangle), and
V (I) = vol(I).

The goal of this subsection is to prove that there is a unique Borel measure
µ on E such that µ(I) = V (I) for all I ∈ R. Before getting started with the
proof, recall the following elementary fact about double sums of non-negative
numbers.
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Lemma 2.2.1. If
{
am,n : (m,n) ∈ (Z+)2

}
⊆ [0,∞), then

∞∑
m=1

∞∑
n=1

am,n =
∑

(m,n)∈(Z+)2

am,n =

∞∑
n=1

∞∑
m=1

am,n.

Proof: For each M, N ∈ Z+,( ∞∑
m=1

∞∑
n=1

am,n

)
∧

( ∞∑
n=1

∞∑
m=1

am,n

)
≥

∑
{(m,n):m≤M & n≤N}

am,n,

and therefore( ∞∑
m=1

∞∑
n=1

am,n

)
∧

( ∞∑
n=1

∞∑
m=1

am,n

)
≥

∑
(m,n)∈(Z+)2

am,n.

Similarly,

∑
(m,n)∈(Z+)2

am,n ≥

( ∞∑
m=1

∞∑
n=1

am,n

)
∨

( ∞∑
n=1

∞∑
m=1

am,n

)
,

and so all three must be equal. �

Now define µ̃(Γ) for Γ ⊆ E to be the infimum of
∑∞
m=1 V (Im) for all choices

of {Im : m ≥ 1} ⊆ R that cover Γ (i.e., Γ ⊆
⋃∞
m=1 Im). My strategy is to

find a σ-algebra L ⊇ BE for which the restriction µ of µ̃ to L is a measure.
Thus, the first thing that I have to check is that µ̃(I) = V (I) for all I ∈ R.

Lemma 2.2.2. If L ∈ Z+ and Γ =
⋃L
`=1 J` where the Jm’s are non-

overlapping elements of R, then µ̃(Γ) =
∑L
`=1 V (J`). In particular, µ̃(I) =

V (I) for all I ∈ R.

Proof: Obviously µ̃(Γ) ≤
∑L
`=1 V (J`). To prove the opposite inequality, let

{Im : m ≥ 1} be a cover of Γ by elements of R. Given an ε > 0, choose I ′m
for each m ∈ Z+ so that Im ⊆ I̊ ′m and V (I ′m) ≤ V (Im) + 2−mε. Because Γ is
compact, there exists an n ∈ Z+ such that {I ′1, . . . , I ′n} covers Γ.

Next, set Im,` = I ′m ∩ J` for 1 ≤ m ≤ n and 1 ≤ ` ≤ L. Then, for each `,
J` =

⋃n
m=1 Im,`, and, for each m, the Im,`’s are non-overlapping elements of

R with
⋃L
`=1 Im,` ⊆ I ′m. Hence, by (3),

∞∑
m=1

V (Im) + ε ≥
n∑

m=1

V (I ′m) ≥
n∑

m=1

L∑
`=1

V (Im,`) ≥
L∑
`=1

V (J`). �

In view of Lemma 2.2.2, I am justified in replacing V (I) by µ̃(I) for I ∈ R.
The next result shows that half the equality in (2.1.4) is automatic, even

before one restricts to Γ’s from L.
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Lemma 2.2.3. If Γ ⊆ Γ′, then µ̃(Γ) ≤ µ̃(Γ′). In fact, if Γ ⊆
⋃∞
n=1 Γn, then

µ̃(Γ) ≤
∑∞
n=1 µ̃(Γn). In particular, if Γ ⊆

⋃∞
n=1 Γn and µ̃(Γn) = 0 for each

n ≥ 1, then µ̃(Γ) = 0.

Proof: The first assertion follows immediately from the fact that every cover
of Γ′ is also a cover of Γ.

In order to prove the second assertion, let ε > 0 be given, and choose for
each n ≥ 1 a cover {Im,n : m ≥ 1} ⊆ R of Γn satisfying

∑∞
m=1 V (Im,n) ≤

µ̃(Γn) + 2−nε. It is obvious that {Im,n : (m,n) ∈ (Z+)2} is a countable cover
of Γ. Hence, by Lemma 2.2.1,

µ̃(Γ) ≤
∑

(m,n)∈(Z+)2

V (Im,n) =

∞∑
n=1

∞∑
m=1

V (Im,n) ≤
∞∑
n=1

µ̃(Γn) + ε. �

As a consequence of Lemma 2.2.3, one has that

(2.2.4) µ̃(Γ) = inf{µ̃(G) : Γ ⊆ G ∈ G(E)}.

To see this, note that the left-hand side is certainly dominated by the right.
Thus, it suffices to show that if {Im : m ≥ 1} is a cover of Γ by elements of R
and ε > 0, then there is a G(E) 3 G ⊇ Γ such that µ̃(G) ≤

∑∞
m=1 V (Im) + ε.

To this end, for each m choose I ′m ∈ R such that Im ⊆ I̊ ′m and V (I ′m) ≤
V (Im) + 2−mε, and take G =

⋃∞
m=1 I̊

′
m. Clearly Γ ⊆ G ∈ G(E) and

µ̃(G) ≤
∞∑
m=1

V (I ′m) ≤
∞∑
m=1

V (Im) + ε.

One important consequence of (2.2.4) is that it shows that for any Γ ⊆ E
there is a Gδ(E) 3 D ⊇ Γ for which µ̃(D) = µ̃(Γ). Indeed, simply choose
Γ ⊆ Gn ∈ G(E) for which µ̃(Gn) ≤ µ̃(Γ) + 1

n , and take D =
⋂∞
n=1Gn.

Another virtue of (2.2.4) is that it facilitates the proof of the second part
of the following preliminary additivity result about µ̃.

Lemma 2.2.5. If G and G′ are disjoint open subsets of E, then µ̃(G∪G′) =
µ̃(G) + µ̃(G′). Also, if K and K ′ are disjoint compact subsets of E, then
µ̃(K ∪K ′) = µ̃(K) + µ̃(K ′).

Proof: We begin by showing that if {Im : m ≥ 1} is a sequence of non-
overlapping elements of R, then

(2.2.6) µ̃

( ∞⋃
m=1

Im

)
=

∞∑
m=1

V (Im).

Because the left-hand side is dominated by the right, it suffices to show that
the right-hand side is dominated by the left. However, by Lemmas 2.2.3 and
2.2.2, for each n ∈ Z+,

µ̃

( ∞⋃
m=1

Im

)
≥ µ̃

(
n⋃

m=1

Im

)
=

n∑
m=1

V (Im),
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which completes the proof of (2.2.6).
Next, suppose that G and G′ are disjoint open sets. By (5), there exist

non-overlapping sequences {Im : m ≥ 1} and {I ′m : m ≥ 1} of elements of
R such that G =

⋃∞
m=1 Im and G′ =

⋃∞
m=1 I

′
m′ . Thus, if I ′′2m−1 = Im and

I ′′2m = I ′m for m ≥ 1, the I ′′m’s are non-overlapping elements of R whose union
is G ∪G′. Hence, by (2.2.6),

µ̃(G ∪G′) =
∞∑
m=1

V (I ′′m) =
∞∑
m=1

V (Im) +
∞∑
m=1

V (I ′m) = µ̃(G) + µ̃(G′).

To complete the proof, let K and K ′ be given. Because they are disjoint
and compact, there exist disjoint open sets G and G′ such that K ⊆ G and
K ′ ⊆ G′. Thus, for any open H ⊇ K ∪K ′,

µ̃(H) ≥ µ̃
(
(H ∩G) ∪ (H ∩G′)

)
= µ̃(H ∩G) + µ̃(H ∩G′) ≥ µ̃(K) + µ̃(K ′),

and therefore, by (2.2.4), µ̃(K ∪K ′) ≥ µ̃(K) + µ̃(K ′). Because the opposite
inequality always holds, there is nothing more to do. �

I am at last ready to describe the σ-algebra L, although it will not be
immediately obvious that it is a σ-algebra or that µ̃ is countably additive on
it. Be that as it may, take L to be the collection of Γ ⊆ E with the property
that, for each ε > 0, there is an open G ⊇ Γ for which µ̃(G \ Γ) < ε.

At first, one might be tempted to say that, in view of (2.2.4), every subset
Γ is an element of L. This is because one is inclined to think that µ̃(G) =
µ̃(G \ Γ) + µ̃(Γ) when, in fact, µ̃(G) ≤ µ̃(G \ Γ) + µ̃(Γ) is all that we know in
general. Therein lies the subtlety of the definition! Nonetheless, it is clear that
G(E) ⊆ L. Furthermore, if µ̃(Γ) = 0, then Γ ∈ L, since, by (2.2.4), one can
choose, for any ε > 0, an open G ⊇ Γ such that µ̃(G \Γ) ≤ µ̃(G) < ε. Finally,
if Γ ∈ L, then there is a D ∈ Gδ(E) for which Γ ⊆ D and µ̃(D\Γ) = 0. Indeed,
simply choose {Gn : n ≥ 1} ⊆ G(RN ) for which Γ ⊆ Gn and µ̃(Gn \ Γ) < 1

n ,
and take D =

⋂∞
1 Gn.

The next result shows that L is closed under countable unions.

Lemma 2.2.7. If {Γn : n ≥ 1} ⊆ L, then Γ =
⋃∞

1 Γn ∈ L, and, of course
(cf. Lemma 2.2.3), µ̃(Γ) ≤

∑∞
1 µ̃(Γn).

Proof: For each n ≥ 1, choose G(E) 3 Gn ⊇ Γn so that µ̃(Gn \ Γn) < 2−nε.
Then G ≡

⋃∞
1 Gn is open, contains Γ, and (by Lemma 2.2.3) satisfies

µ̃(G \ Γ) ≤ µ̃

( ∞⋃
n=1

(
Gn \ Γn

))
≤
∞∑
1

µ̃(Gn \ Γn) < ε. �

Knowing that L is closed under countable unions and that it contains G(E),
we will know that it is a σ-algebra and that BE ⊆ L as soon I show that L is
closed under complementation.
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Lemma 2.2.8. If K ⊂⊂ E,1 then K ∈ L and µ̃(K) <∞.

Proof: The first step is to show that µ̃(K) < ∞. For this purpose, choose
a non-overlapping cover {Im : m ≥ 1} ⊆ R of K, and then use (4) to choose

{I ′m : m ≥ 1} ⊆ R so that Im ⊆ I̊ ′m and V (I ′m) ≤ V (Im) + 1 for each m. Now

apply the Heine–Borel property to find an n ∈ Z+ such that K ⊆
⋃n
m=1 I̊

′
m.

Then µ̃(K) ≤ n+
∑n
m=1 V (Im) <∞.

We will now show that K ∈ L. To this end, let ε > 0 be given, and choose an
open set G ⊇ K so that µ̃(G) ≤ µ̃(K)+ε. Set H = G\K ∈ G(E), and choose
a non-overlapping sequence {In : n ≥ 1} ⊆ R so that H =

⋃∞
1 In. Then, by

(2.2.6), µ̃(H) =
∑∞
m=1 V (Im). In addition, for each n ∈ Z+, Kn ≡

⋃n
m=1 Im

is compact and disjoint from K. Hence, by Lemmas 2.2.7 and 2.2.3,

µ̃(Kn) + µ̃(K) = µ̃(Kn ∪K) ≤ µ̃(G),

and so, because µ̃(K) <∞,
∑n
m=1 V (Im) = µ̃(Kn) ≤ ε for all n, and therefore

µ̃(G \K) = µ̃(H) ≤
∑∞
m=1 µ̃(Im) ≤ ε. �

Lemma 2.2.9. L is a σ-algebra over E that contains BE . Moreover, if
Γ ⊆ E, then Γ ∈ L if and only if for every ε > 0 there exist F ∈ F(E) and
G ∈ G(E) such that F ⊆ Γ ⊆ G and µ̃(G \ F ) < ε. Alternatively, Γ ∈ L
if there exist C, D ∈ L such that C ⊆ Γ ⊆ D and µ̃(D \ C) = 0, and if
Γ ∈ L, then there exist C ∈ Fσ(E) and D ∈ Gδ(E) such that C ⊆ Γ ⊆ D and
µ̃(D \ C) = 0.

Proof: Because of Lemma 2.2.7, proving that L is a σ-algebra comes down
to showing that it is closed under complementation. For this purpose, begin
by observing that Fσ(E) ⊆ L. To check this, choose {Im : m ≥ 1} ⊆ R such
that E =

⋃∞
m=1 Im, and set Kn =

⋃n
m=1 Im. Then Kn is compact for each n.

Given F ∈ F(E) and n ∈ Z+, set Fn = F ∩Kn. Clearly Fn is compact and is
therefore an element of L. Hence, since F =

⋃∞
n=1 Fn and L is closed under

countable unions, we see first that F(E) ⊆ L and then that Fσ(E) ⊆ L.
Next, suppose that Γ ∈ L, and choose D ∈ Gδ(E) for which Γ ⊆ D and

µ̃(D \Γ) = 0. Then C ≡ D{ ∈ Fσ(E), C ⊆ Γ{, and µ̃(Γ{ \C) = µ̃(D \Γ) = 0.

Hence, Γ{ \ C ∈ L, and therefore so is Γ{ = C ∪ (Γ{ \ C), which means that
L is closed under complementation and is therefore a σ-algebra over E.

Knowing that L contains G(E) and is a σ-algebra, we know that BE ⊆ L.
In addition, if Γ ∈ L, then for each ε > 0 we can find an open G ⊇ Γ and
a closed F with F { ⊇ Γ{ for which µ̃(G \ Γ) ∨ µ̃(F { \ Γ{) < ε

2 , which means
that F ⊆ Γ ⊆ G and µ̃(G \ F ) < ε.

Finally, given the preceding, it is clear that if Γ ∈ L then there exist C ∈
Fσ(E) and D ∈ Gδ(E) such that C ⊆ Γ ⊆ D and µ̃(D \ C) = 0. Conversely,
if there exist such C, D ∈ L, C ⊆ Γ ⊆ D, and µ̃(D \C) = 0, then µ̃(Γ \C) ≤
µ̃(D \ C) = 0, and so Γ = C ∪ (Γ \ C) ∈ L. �

1 I will often use the notation K ⊂⊂ E to mean that K is a compact subset of E. When E
is discrete, the notation means that K is a finite subset of E.
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Theorem 2.2.10. Refer to the preceding. Then there is a unique Borel
measure µ on E for which µ(I) = V (I) for all I ∈ R. Moreover, µ is regular,

L = BE
µ
, and (cf. Lemma 2.1.14) µ̄ is the restriction of µ̃ to BE

µ
.

Proof: We will first show that µ̃ is countably additive on L. To this end,
let {Γn : n ≥ 1} ⊆ L be a sequence of mutually disjoint, relatively compact
(i.e., their closures are compact) sets. By Lemma 2.2.9, for each ε > 0 we
can find a sequence {Kn : n ≥ 1} of compact sets such that Kn ⊆ Γn and
µ̃(Γn) ≤ µ̃(Kn) + 2−nε for each n. Hence, by Lemma 2.2.7, for each n ∈ Z+,

µ̃

( ∞⋃
m=1

Γm

)
≥ µ̃

(
n⋃

m=1

Km

)
=

n∑
m=1

µ̃(Km),

and therefore

µ̃

( ∞⋃
m=1

Γm

)
≥
∞∑
m=1

µ̃(Km) ≥
∞∑
m=1

µ̃(Γm)− ε,

which proves that

µ̃

( ∞⋃
m=1

Γm

)
≥
∞∑
m=1

µ̃(Γm).

Since the opposite inequality is trivial, this proves the countable additivity of
µ̃ for relatively compact elements of L.

To treat the general case, choose {Im : m ≥ 1} ⊆ R for which that E =⋃∞
m=1 Im, and set A1 = I1 and An+1 = In+1 \

⋃n
m=1 Im. Then the An’s

are mutually disjoint, relatively compact elements of L. Hence, if Γm,n =
Am ∩ Γn, then the Γm,n’s are also mutually disjoint and relatively compact.
Furthermore, Γn =

⋃∞
m=1 Γm,n for each n, and so, by the preceding and

Lemma 2.2.1,

µ̃

( ∞⋃
n=1

Γn

)
=

∑
(m,n)∈(Z+)2

µ̃(Γm,n) =

∞∑
n=1

µ̃(Γn).

Knowing that µ̃ is countably additive on L and that L ⊇ BE , we can take
µ to be the restriction of µ̃ to BE . Furthermore, the results in Lemma 2.2.9
show that this µ is regular, L = BE

µ
, and that µ̃ � L equals µ̄.

To complete the proof, suppose that ν is a second Borel measure on E
for which ν(I) = V (I) whenever I ∈ R. Given an open G, choose a non-
overlapping {Im : m ≥ 1} ⊆ R whose union is G, and apply (2.1.8) and
(2.2.6) to conclude that

ν(G) ≤
∞∑
m=1

ν(Im) =

∞∑
m=1

V (Im) = µ(G).



§ 2.2 A Construction of Measures 45

Next, given ε > 0, choose for m ∈ Z+ an I ′′m ∈ R so that I ′′m ⊆ I̊m and
V (Im) ≤ V (I ′′m) + 2−mε. Then, because the I ′′m’s are disjoint,

ν(G) ≥ ν

( ∞⋃
m=1

I ′′m

)
=

∞∑
m=1

V (I ′′m) ≥
∞∑
m=1

V (Im)− ε ≥ µ(G)− ε.

Hence, ν and µ are equal on G(E). Finally, note that, by combining (4) and
(5), we can produce a non-decreasing sequence of open sets Gn ↗ E such
that µ(Gn) < ∞. Hence, by Theorem 2.1.13, ν equals µ on BGn for each n,
from which it follows easily that ν equals µ on BE . �

Corollary 2.2.11. Suppose that T : E −→ E is a transformation with
the property that T−1(I) ∈ R and V

(
T−1(I)

)
= V (I) for all I ∈ R. Then

T−1(Γ) ∈ BE and µ
(
T−1(Γ)

)
= µ(Γ) for all Γ ∈ BE . Equivalently, T∗µ = µ.

Proof: By part (i) of Exercise 2.1.19, T−1 of a union of sets is the union of
T−1 of each set over which the union is taken, and T−1 of a difference of sets
is the difference of T−1 of each set. Next, let B be the set of Γ ∈ BE with the
property that T−1(Γ) ∈ BE . By the preceding observation, B is a σ-algebra
over E. In addition, R ⊆ B. Thus, because for any open G there is a sequence
{Im : m ≥ 1} ⊆ R whose union is G, G(E) ⊆ B. Since this means that B is
a σ-algebra contained in BE and containing G(E), it follows that B = BE .

Next, set ν(Γ) = µ
(
T−1(Γ)) for Γ ∈ BE . By part (iii) of Exercise 2.1.19, ν

is a Borel measure on E. Moreover, by assumption, ν(I) = V (I) for I ∈ R.
Hence, by the uniqueness statement in Theorem 2.2.10, ν = µ. �

§ 2.2.2. Lebesgue Measure on RN : My first application of Theorem 2.2.10
will be to the construction of the father of all measures, Lebesgue measure on
RN .

Endow RN with the standard Euclidean metric, the one given by the Eu-
clidean distance between points. Next, take R to be the set of all rectangles
I in RN relative to a fixed orthonormal coordinate system, include the empty
rectangle in R, and define V (I) = vol(I) if I 6= ∅ and V (∅) = 0. In order to
apply the results in § 2.2.1, I have to show that this choice of R and V satisfies
the hypotheses (1)–(5) listed at the beginning of that subsection. It is clear
that they satisfy (1), (2), and (4). In addition, (3) follows from Lemma 1.1.1.
To check (5), I will use the following lemma. In its statement and elsewhere,
a square will be a (multi-dimensional) rectangle all of whose edges have the
same length. That is, a non-empty square is a set Q of the form x + [a, b]N

for some x ∈ RN and a ≤ b.

Lemma 2.2.12. If G is an open set in R, then G is the union of a countable
number of mutually disjoint open intervals. More generally, if G is an open
set in RN , then, for each δ > 0, G admits a countable, non-overlapping, exact
cover C by closed squares Q with diam (Q) < δ.

Proof: If G ⊆ R is open and x ∈ G, let I̊x be the open connected component
of G containing x. Then I̊x is an open interval and, for any x, y ∈ G, either
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I̊x ∩ I̊y = ∅ or I̊x = I̊y. Hence, C ≡ {I̊x : x ∈ G ∩Q} (Q here denotes the set
of rational numbers) is the required cover.

To handle the second assertion, set Qn =
[
0, 2−n

]N
and Kn = { k

2n + Qn :

k ∈ ZN}. Note that if m ≤ n, Q ∈ Km, and Q′ ∈ Kn, then either Q′ ⊆ Q

or Q̊ ∩ Q̊′ = ∅. Now let G ∈ G(RN ) and δ > 0 be given, take n0 to be the

smallest n ∈ Z for which 2−n
√
N < δ, and set Cn0

= {Q ∈ Kn0
: Q ⊆ G}.

Next, define Cn inductively for n > n0 so that

Cn+1 =

{
Q′ ∈ Kn+1 : Q′ ⊆ G and Q̊′ ∩ Q̊ = ∅ for any Q ∈

n⋃
m=n0

Cm

}
.

Since if m ≤ n, Q ∈ Cm, and Q′ ∈ Cn, either Q = Q′ or Q̊ ∩ Q̊′ = ∅,
the squares in C ≡

⋃∞
n=n0

Cn are non-overlapping, and certainly
⋃
C ⊆ G.

Finally, if x ∈ G, choose n ≥ n0 and Q′ ∈ Kn such that x ∈ Q′ ⊆ G. If
Q′ /∈ Cn, then there exist an n0 ≤ m < n and a Q ∈ Cm for which Q̊∩ Q̊′ 6= ∅.
But this means that Q′ ⊆ Q and therefore that x ∈ Q ⊆

⋃
C. Thus C covers

G. �

Knowing that R and V satisfy hypotheses (1)–(5), we can apply Theorem
2.2.10 and thereby derive the following fundamental result.

Theorem 2.2.13. There is one and only one Borel measure λRN on RN
with the property that λRN (Q) = vol(Q) for all squares Q in RN . Moreover,
λRN is regular.

Proof: The existence of λRN as well as its regularity are immediate conse-
quences of Theorem 2.2.10. Furthermore, that theorem says that λRN is the
only Borel measure ν with the property that ν(I) = vol(I) for all I ∈ R. Thus,
to prove the uniqueness statement here, it suffices to check that ν(I) = vol(I)
for all rectangles I if it does for squares. To this end, first note that if I is a
rectangle, then there exists a sequence {In : n ≥ 1} of rectangles such that

In ↗ I̊ and vol(In)↗ vol(I). Hence, by (2.1.10), ν(I) = ν(I̊). In particular,

by (2.1.7), this means that2 ν(∂I) = ν(I) − ν(I̊) = 0 for all rectangles I.

Now apply Lemma 2.2.12 to write I̊ =
⋃∞
n=1Qn, where the Qn’s are non-

overlapping squares, use the preceding to check that ν(Qm ∩ Qn) = 0 for

m 6= n, and apply (2.1.9) to see that ν(I) = ν(I̊) =
∑∞
n=1 vol(Qn). Since the

same reasoning applies to λRN and λRN (Qn) = vol(Qn), we have now shown
that ν(I) = vol(I) as well. �

The Borel measure λRN described in Theorem 2.2.13 is called Lebesgue

measure on RN . In addition, elements of BRN
λRN are said to be Lebesgue

measurable sets.
An important property of Lebesgue measure is that it is translation in-

variant. To be precise, for each x ∈ RN , define the translation map

2 I use ∂Γ to denote the boundary Γ̄ \ Γ̊ of a set Γ.
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Tx : RN −→ RN by Tx(y) = x + y. Obviously, Tx is one-to-one and onto.
In fact, T−1

x = T−x. In addition, because Tx = T−1
−x and T−x is continu-

ous, Tx takes BRN into itself. Finally, say that a Borel measure µ on RN is
translation invariant if µ

(
Tx(Γ)

)
= ν(Γ) for all x ∈ RN and Γ ∈ BRN .

The following corollary provides an important characterization of Lebesgue
measure in terms of translation invariance.

Corollary 2.2.14. Lebesgue measure is the one and only translation
invariant Borel measure on RN that assigns the unit square [0, 1]N mea-
sure 1. Thus, if ν is a translation invariant Borel measure on RN and
α = ν

(
[0, 1]N

)
<∞, then ν = αλRN .

Proof: That λRN is translation invariant follows immediately from Corollary
2.2.11 and the fact that, for any rectangle I and x ∈ RN , vol

(
Tx(I)

)
= vol(I).

To prove the uniqueness assertion, suppose that µ is a translation invariant
Borel measure that gives measure 1 to [0, 1]N . We first show that µ(H) = 0 for
every H of the form {x ∈ RN : xi = c} for some 1 ≤ i ≤ N and c ∈ R. Indeed,
by translation invariance, it suffices to treat the case c = 0. In addition, by
countable subadditivity and translation invariance, it is sufficient to show that
µ(R) = 0 when R = {x : xi = 0 and xj ∈ [0, 1] for j 6= i}. But if ei is the
unit vector whose ith coordinate is 1 and whose other coordinates are 0, then,
for any n ≥ 1, the sets

{
m
n ei + R : 0 ≤ m ≤ n} are mutually disjoint, have

the same µ-measure as R, and are contained in [0, 1]N . Hence, nµ(R) ≤ 1 for
all n ≥ 1, and so µ(R) = 0.

Given the preceding, we know that µ(∂I) = 0 for all rectangles I ⊆ RN .
Hence, if (n1, . . . , nN ) ∈ (Z+)N , then

µ
(
[0, 1]N

)
= µ

(⋃{
N∏
i=1

[
ki−1
ni

, kini

]
: 1 ≤ ki ≤ ni for 1 ≤ i ≤ N

})

=

(
N∏
i=1

ni

)
µ

(
N∏
i=1

[
0, 1

ni

])
,

and so µ
(∏N

i=1

[
0, 1

ni

])
=
∏N
i=1

1
ni

. Starting from this, the same line of

reasoning can be used to show that µ
(∏N

i=1

[
0, mini

])
=
∏N
i=1

mi
ni

for any

pair (m1, . . . ,mN ), (n1, . . . , nN ) ∈ (Z+)N . Hence, by translation invariance,
for any rectangle whose sides have rational lengths, µ(I) = vol(I). Finally,
for any rectangle I, we can choose a non-increasing sequence {In : n ≥ 1}
of rectangles with rational side lengths such that In ↘ I, and so µ(I) =
limn→∞ vol(In) = vol(I). Now apply Corollary 2.2.11.

To prove the concluding assertion, first suppose that α = 0. Then, because
RN can be covered by a countable number of translates of [0, 1]N , it follows
that ν(RN ) = 0 and therefore that ν = αλRN . Next suppose that α > 0.
Then α−1ν is a translation invariant Borel measure on RN and ν assigns the
unit square measure 1. Hence, by the earlier part, α−1ν = λRN . �
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Although the property of translation invariance was built into the construc-
tion of Lebesgue measure, it is not immediately obvious how Lebesgue measure
responds to rotations of RN . One suspects that, as the natural measure on
RN , Lebesgue measure should be invariant under the full group of Euclidean
transformations (i.e., rotations as well as translations). However, because my
description of Lebesgue’s measure was based on rectangles and the rectangles
were inextricably tied to a fixed set of coordinate axes, rotation invariance is
not as obvious as translation invariance was.

The following corollary shows how Lebesgue measure transforms under an
arbitrary linear transformation of RN , and rotation invariance will follow as
an immediate corollary.

Given an N ×N , real matrix A =
((
aij
))

1≤i,j≤N , define TA : RN −→ RN

to be the action of A on x. That is, (TAx)i =
∑N
j=1 aijxj for 1 ≤ i ≤ N . We

can now prove the following.

Theorem 2.2.15. For any N ×N , real matrix A and Γ ∈ BRN
λRN , TA(Γ) ∈

BRN
λRN and λRN (TAΓ) = |det(A)|λRN (Γ). Moreover, if A is non-singular,

then TA takes BRN into itself.

Proof: We begin with the case in which A is non-singular. Then TA−1 is a
continuous, one-to-one map from RN onto itself, and TA = (TA−1)−1. Hence,
by (iii) of Exercise 2.1.19, TA takes BRN into itself. Next, define νA on BRN
by νA(Γ) = λRN

(
TA(Γ)

)
. Then, again, by part (iii) of Exercise 2.1.19, νA is

a Borel measure on RN . Now set α(A) = νA
(
[0, 1]N

)
. Because TA([0, 1]N ) is

compact, α(A) <∞. In addition, because

νA
(
Tx(Γ)

)
= λRN

(
TAx + TA(Γ)

)
= λRN

(
TA(Γ)

)
= νA(Γ),

νA is translation invariant. Thus Corollary 2.2.14 says that νA = α(A)λRN ,
and so all that we have to do is show that α(A) = |det(A)|. To this end, ob-
serve that there are cases in which α(A) can be computed by hand. The first
of these is when A is diagonal with positive diagonal elements, in which case

TA
(
[0, 1]

)
=
∏N
j=1[0, ajj ] and therefore α(A) =

∏N
j=1 ajj = det(A). The sec-

ond case is the one in which A is an orthogonal matrix. Then TA
(
B(0, 1)

)
=

B(0, 1) and therefore, since λRN
(
B(0, 1)

)
∈ (0,∞), α(A) = 1. To go fur-

ther, notice that, since TAA′ = TA ◦ TA′ , α(AA′) = α(A)α(A′). Hence,
if A is symmetric and positive definite (i.e., all its eigenvalues are posi-
tive) and O is an orthogonal matrix for which3 D = O>AO is diagonal,
then the diagonal entries of D are positive, det(A) = det(D) = α(D), and
therefore α(A) = α(O>)α(D)α(O) = α(D) = det(A). Finally, for any
non-singular A, A>A is a symmetric, positive definite matrix. Moreover,
if O = A−1(AA>)

1
2 , where (AA>)

1
2 denotes the symmetric square root of

AA>, then O satisfies OO> = A−1AA>(A>)−1 = I and is therefore orthog-

onal. Hence, since A = (AA>)
1
2O>, we find that α(A) = det

(
(AA>)

1
2

)
=

3 Given a matrix A, I use A> to denote the transpose matrix.
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|det(A)|. Finally, to show that TA takes a Γ ∈ BRN
λRN into BRN

λRN and that
λRN

(
TA(Γ)

)
= |det(A)|λRN (Γ), choose C, D ∈ BRN so that C ⊆ Γ ⊆ D and

λRN (D \ C) = 0. Then TA(C), TA(D) ∈ BRN , TA(C) ⊆ TA(Γ) ⊆ TA(D),

λRN
(
TA(D) \ TA(C)

)
= λRN

(
TA(D \C)

)
= 0, and therefore TA(Γ) ∈ BRN

λRN

and λRN
(
TA(Γ)

)
= λRN

(
TA(C)

)
= |det(A)|λRN (C) = |det(A)|λRN (Γ).

To treat the singular case, first observe that there is nothing to do when
N = 1, since the singularity of A means that TA(R) = {0} and λR({0}) = 0.
Thus, assume that N ≥ 2. Then, if A is singular, TA(RN ) is contained in
an (N − 1)-dimensional subspace of RN . Therefore, what remains is to show
that λRN assigns measure 0 to an (N − 1)-dimensional subspace H. This is
clear if H = RN−1×{0}, since in that case one can obviously cover H with a
countable number of rectangles each of which has volume 0. To handle general
H’s, choose an orthogonal matrix O so that H = TO

(
RN−1 × {0}

)
, and use

the preceding to conclude that λRN (H) = λRN
(
RN−1 × {0}

)
= 0. �

Before concluding this preliminary discussion of Lebesgue measure, it may
be appropriate to examine whether there are any sets that are not Lebesgue
measurable. It turns out that the existence of such sets brings up some ex-
tremely delicate issues about the foundations of mathematics. Indeed, if one
is willing to abandon the full axiom of choice, then R. Solovay has shown
that there is a model of mathematics in which every subset of RN is Lebesgue
measurable. However, if one accepts the full axiom of choice, then the follow-
ing argument, due to Vitali, shows that there are sets that are not Lebesgue
measurable. The use of the axiom of choice comes in Lemma 2.2.17 below.
It is not used in the proof of the next lemma, a result that is interesting in
its own right. See Exercise 2.2.35 for a somewhat surprising application and
Exercise 6.3.17 for another derivation of it.

Lemma 2.2.16. If Γ ∈ BR
λR

has positive Lebesgue measure, then the set
Γ− Γ ≡ {y − x : x, y ∈ Γ} contains an open interval (−δ, δ) for some δ > 0.

Proof: Without loss of generality, we will assume that Γ ∈ BR and that
λR(Γ) ∈ (0,∞).

Choose an open set G ⊇ Γ for which λR(G \ Γ) < 1
3λR(Γ), and let (cf. the

first part of Lemma 2.2.12) C be a countable collection of mutually disjoint,

non-empty, open intervals I̊ whose union is G. Then∑
I̊∈C

λR(I̊ ∩ Γ) = λR(Γ) ≥ 3
4λR(G) = 3

4

∑
I̊∈C

λR(I̊).

Hence, there must be an I̊ ∈ C for which λR(I̊ ∩ Γ) ≥ 3
4λR(I̊). Set A = I̊ ∩ Γ.

If d ∈ R and (d+A) ∩A = ∅, then

2λR(A) = λR(d+A) + λR(A) = λR
(
(d+A) ∪A

)
≤ λR

(
(d+ I̊) ∪ I̊

)
.

At the same time, (d+I̊)∪I̊ ⊆ (I−, d+I+) if d ≥ 0 and (d+I̊)∪I̊ ⊆ (d+I−, I+)

if d < 0, where I− and I+ denote the left and right endpoints of I̊. Thus, in
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either case, λR
(
(d + I̊) ∪ I̊

)
≤ |d| + λR(I̊). Hence, if (d + A) ∩ A = ∅, then

3
2λR(I̊) ≤ 2λR(A) ≤ |d| + λR(I̊), from which one sees that |d| ≥ 1

2λR(I̊). In

other words, if |d| < 1
2λR(I̊), then (d + A) ∩ A 6= ∅. But this means that for

every d ∈
(
− 1

2λR(I̊), 1
2λR(I̊)

)
there exist x, y ∈ A ⊆ Γ for which d = y−x. �

Lemma 2.2.17. Let Q denote the set of rational real numbers. Assuming
the axiom of choice, there is a subset A of R such that (A − A) ∩ Q = {0}
and yet R =

⋃
q∈Q(q +A).

Proof: Write x ∼ y if y − x ∈ Q. Then “∼” is an equivalence relation on
R, and, for each x ∈ R, the equivalence class [x]∼ of x is x + Q. Now, using
the axiom of choice, choose A to be a set that contains precisely one element
from each of the equivalence classes [x]∼, x ∈ R. It is then clear that A has
the required properties. �

Theorem 2.2.18. Assuming the axiom of choice, every Γ ∈ BR
λR

with
positive Lebesgue measure contains a subset that is not Lebesgue measurable.
(See part (iii) of Exercise 2.2.36 for another construction of non-measurable
quantities.)

Proof: Let A be the set constructed in Lemma 2.2.17, and suppose that
Γ ∩ Tq(A) were Lebesgue measurable for each q ∈ Q. Then we would have

that 0 < λR(Γ) ≤
∑
q∈Q λR

(
Γ∩Tq(A)

)
, and so there would exist a q ∈ Q such

that λR
(
Γ ∩ Tq(A)

)
> 0. But, by Lemma 2.2.16, we would then have that

(−δ, δ) ⊆ {y − x : x, y ∈ Tq(A)} ⊆ {0} ∪ Q{ for some δ > 0, which cannot
be. �

§ 2.2.3. Distribution Functions and Measures: Given a finite Borel
measure on R, set Fµ(x) = µ

(
(−∞, x]

)
. Clearly Fµ is a non-negative, bounded,

right-continuous, non-decreasing function that tends to 0 as x → −∞. The
function Fµ is called the distribution function for µ. In this subsection
I will show that every bounded, right-continuous, non-decreasing function F
that tends to 0 at −∞ is the distribution of a unique finite Borel measure on
R.

Let F be given. By Exercise 1.2.23, F = Fc + Fd, where Fc and Fd are
bounded and non-decreasing, Fc is continuous, and Fd is a pure jump function.
Further, it is easy to check that both Fc and Fd can be taken so that they
tend to 0 at −∞. Hence, to prove the existence of a µ for which F = Fµ, it
suffices to do so when F is either a continuous or a pure jump function and
then take the sum of the measures corresponding to Fc and Fd.

When F is a pure jump function, there is nearly nothing to do. Simply
define µ by

µF (Γ) =
∑

{x∈Γ∩D}

(
F (x)− F (x−)

)
for Γ ∈ BR,
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where D is the countable set consisting of the discontinuities of F . Without
difficulty, one can check that µF is a finite Borel measure on R for which F
is the distribution function.

Now assume that F is continuous, and take R to be the set of all (including
the empty interval) closed intervals I in R, and define V

(
[a, b]

)
= F (b)−F (a)

for a ≤ b. Checking that this choice of R and V satisfies that hypotheses at the
start of § 2.2.1 is easy. The same argument as we used to prove Lemma 1.1.1
when N = 1 shows that (3) holds, (4) follows from the continuity of F , and
Lemma 2.2.12 proves (5). Thus, by Theorem 2.2.10, there is a Borel measure
µF on R for which µF

(
[a, b]

)
= F (b)− F (a) for all a < b. In particular,

F (x) = F (x)− lim
y↘−∞

F (y) = lim
y→−∞

µF
(
[y, x]

)
= µF

(
(−∞, x]

)
,

and so F is the distribution function for µ.

Theorem 2.2.19. Let F be a bounded, right-continuous, non-decreasing
function on R that tends to 0 at −∞. Then there is a unique Borel measure
µF on R for which F is the distribution function. In particular, µF is finite
and regular. (See Exercises 2.2.37 and 8.2.18 for other approaches.)

Proof: The only assertions that have not been covered already are those
of uniqueness and finiteness. However, the finiteness follows from µF (R) =
limx↗∞ F (x) < ∞. To prove the uniqueness, suppose that ν is a second
Borel measure on R satisfying ν

(
(−∞, x]

)
= F (x) for all x ∈ R. Then, by the

argument just given, ν is finite. In addition, for a < b,

ν
(
(a, b)

)
= lim
x↗b

(
F (x)− F (a)

)
= F (b−)− F (a) = µF

(
(a, b)

)
.

Hence, ν(I̊) = µF (I̊) for all open intervals I̊, and so, by the first part of
Lemma 2.2.12, ν(G) = µF (G) for all G ∈ G(R). By Theorem 2.1.13, this
means that ν = µF on BR. �

§ 2.2.4. Bernoulli Measure: Here is an application of the material in
§ 2.2.1 to a probabilistic model of coin tossing.

Set Ω = {0, 1}Z+

, the space of maps ω : Z+ −→ {0, 1}. In the model, Ω is
thought of as the set of all possible outcomes of a countably infinite number
of coin tosses: ω(i) = 1 if the ith toss came up heads and ω(i) = 0 if it
came up tails. Similarly, given ∅ 6= S ⊆ Z+, take Ω(S) = {0, 1}S , think
of Ω(S) as the outcomes of those tosses that occurred during S, and define
ΠSΩ −→ Ω(S) to be the projection map given by ΠSω = ω � S. Then, for
each S, A(S) ≡ {Π−1

S Γ : Γ ⊆ Ω(S)} is a σ-algebra over Ω, and, in the model,
elements of A(S) are events (the probabilistic term for subsets) that depend
only on the outcome of tosses corresponding to the i’s in S.

Now suppose that, on each toss, the coin comes up heads with probability
p ∈ (0, 1) and tails with probability q = 1− p. Further, assume that the out-
comes of distinct tosses are independent of one another. That is, if η ∈ Ω(S),



52 2 Measures

then the probability of the event Π−1
S ({η}) = {ω ∈ Ω : ω(i) = η(i) for i ∈ S}

is

(2.2.20) p
∑

i∈S
η(i)

q
∑

i∈S
(1−η(i))

.

Obviously, when S is infinite, this quantity is 0. On the other hand, if ∅ 6=
F ⊂⊂ Z+ (i.e., F is a non-empty, finite subset of Z+), and βFp : A(F ) −→
[0, 1] is defined by the prescription

(2.2.21) βFp
(
Π−1
F Γ

)
=
∑
η∈Γ

p
∑

i∈F
η(i)

q
∑

i∈F
(1−η(i))

,

where the sum over the empty set is taken to be 0, then βFp is a measure

on
(
Ω,A(F )

)
that measures the probability of events that depend only on

outcomes during F .
Next set A =

⋃
{A(F ) : ∅ 6= F ⊂⊂ Z+}. Then A is an (cf. Exercise 2.1.16)

algebra over Ω. However, A is not a σ-algebra. Nonetheless, we can define
βp : A −→ [0, 1] so that βp(A) = βFp (A) if A ∈ A(F ). To know that this
definition is justified, we must make sure that if A ∈ A(F ) ∩ A(F ′), where

F 6= F ′, then βFp (A) = βF
′

p (A). To this end, note that A ∈ A(F ∩ F ′), and
therefore that it suffices to handle the case in which F ⊂ F ′. Further, this
case reduces to the one in which F ′ = F ∪{j}, where j /∈ F . But if Γ ⊆ Ω(F ),
then Π−1

F Γ = Π−1
F ′ Γ0 ∪Π−1

F ′ Γ1, where

Γk =
{
η ∈ Ω(F ′) : η � F ∈ Γ and η(j) = k

}
for k ∈ {0, 1},

and so

βF
′

p

(
Π−1
F ′ Γ

)
= βF

′

p

(
Π−1
F ′ Γ0

)
+ βF

′

p

(
Π−1
F ′ Γ1

)
= qβFp

(
Π−1
F Γ

)
+ pβFp

(
Π−1
F Γ

)
= βFp

(
Π−1
F Γ

)
.

Thus, we now know that βp is well-defined and βp(Ω) = 1. In addition, βp is
finitely additive in the sense that, for any n ∈ Z+,

βp

(
n⋃

m=1

Am

)
=

n∑
m=1

βp(Am)

if the Am’s are mutually disjoint elements of A. Indeed, by choosing F ⊂⊂ Z+

so that {Am : 1 ≤ m ≤ n} ⊆ A(F ), one can do the computation with βFp
instead of βp.

The preceding paragraphs summarize the presentation of coin tossing given
in an elementary probability theory course. What is not usually covered in
such a course is the extension of βp to events like

A =

{
ω ∈ Ω : lim

n→∞

1

n

n∑
k=1

ω(k) exists

}
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that depend on an infinite number of tosses. My aim here is to show that
such an extension exists and that it can be constructed using the results in
§ 2.2.1.

The first step is to introduce a topology on Ω, and the one that I will
choose is the one corresponding to pointwise convergence. That is, I want the
sequence {ωm : m ≥ 1} to converge to ω if and only if for each i ∈ Z+ there
is an mi such that ωm(i) = ω(i) for all m ≥ mi. One way to describe this
topology is to define

ρ(ω, ω′) =

∞∑
i=1

2−i|ω(i)− ω′(i)|,

and check that ρ is a metric on Ω for which convergence is the same as
pointwise convergence. Further, as a topological space with metric ρ, Ω is
compact. To see this, let {ωm : m ≥ 1} ⊆ Ω be given. Then there exists
a strictly increasing sequence {m1,` : ` ≥ 1} ⊆ Z+ such that ωm1,`

(1) =
ωm1,1

(1) for all ` ∈ Z+. Knowing {m1,` : ` ≥ 1}, choose a strictly increasing
subsequence {m2,` : ` ≥ 1} of {m1,` : ` ≥ 1} for which ωm2,`

(2) = ωm2,1
(2)

for all ` ∈ Z+. Proceeding by induction on k ∈ Z+, produce {mk,` : (k, `) ∈
(Z+)2} such that {mk+1,` : ` ≥ 1} is a strictly increasing subsequence of
{mk,` : ` ≥ 1} and ωmk,`(k) = ωmk,1(k) for all ` ≥ 1. If mk = mk,k and
ω(i) = ωmi(i), then {ωmi : i ≥ 1} is a subsequence of {ωm : m ≥ 1} and
ωmi −→ ω as i→∞.

It is clear that every A ∈ A is closed. In addition, if ∅ 6= F ⊂⊂ Z+, ω ∈ A ∈
A(F ), and iF ≡ max{i : i ∈ F}, then ρ(ω′, ω) < 2−iF =⇒ ω′ � F = ω � F
and therefore ω′ ∈ A. Hence, every element of A is both open and closed.
Moreover, for each ω ∈ Ω,

{
Π−1
F ({ω � F}) : ∅ 6= F ⊂⊂ Z+

}
forms a countable

neighborhood basis at ω. Indeed, given ω ∈ Ω and r > 0, choose n ≥ 1 such
that 2−n < r, and observe that {ω′ : ω′(i) = ω(i) for 1 ≤ i ≤ n} is contained
in the ρ-ball of radius r centered at ω.

Having made these preparations, we can turn to the construction. Take
R = A, and define V (A) = βp(A) for A ∈ A. Then R and V satisfy the
hypotheses (1)–(5) at the beginning of § 2.2.1. Indeed, (1), (2), and (3) are
obvious from the facts that A is an algebra and that βp is finitely additive on
A. As for (4), the fact that each A ∈ A is both open and closed means that
there is nothing to check. Finally, the following lemma shows that (5) holds.

Lemma 2.2.22. If ∅ 6= S ⊆ Z+ and G ∈ A(S) is open, then there is a
sequence {Am : m ≥ 1} of mutually disjoint elements of A(S) ∩ A for which
G =

⋃∞
m=1Am.

Proof: To produce a sequence {Am : m ≥ 1} ⊆ A of mutually disjoint
elements of A(S) such that G =

⋃∞
m=1Am, one can proceed as follows. If S

is finite, then one can take A1 = A and An = ∅ for n ≥ 2. If S is infinite,
let {in : n ≥ 1} be the strictly increasing enumeration of S, and set Fn =
{i1, . . . , in}. Choose A1 to be the largest element A ∈ A(F1) with the property
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that A ⊆ G. Equivalently, A1 is the union of all the A ∈ A(F1) contained
in G. Next, given Am ∈ A(Fm) for 1 ≤ m ≤ n, choose An+1 to the largest
A ∈ A(Fn+1) contained in G\

⋃n
m=1Am. Obviously, these Am’s are mutually

disjoint elements of A∩A(S), all of which are subsets of G. To see that they
cover G, suppose that ω ∈ G, and choose n ≥ 2 for which ω′ ∈ G whenever
ρ(ω′, ω) < 2−in−1 . Then A ≡ {ω′ : ω′(im) = ω(im) for 1 ≤ i ≤ n} ∈ A(Fn)

is a subset of G, and so either ω ∈
⋃n−1

1 Am or A ∩
⋃n−1

1 Am = ∅, in which
case ω ∈ A ⊆ An. �

Theorem 2.2.23. Referring to the preceding, there exists a unique exten-
sion of βp as a Borel probability measure on Ω, and this extension is regular.
Finally, βp is the unique Borel measure ν on Ω with the property that, for
each n ∈ Z+ and η ∈ {0, 1}n,

ν
(
{ω ∈ Ω : ω(i) = η(i) for 1 ≤ i ≤ n}

)
= p
∑n

i=1
η(i)qn−

∑n

i=1
η(i).

Proof: The existence of the extension as well as its regularity are guaranteed
by Theorem 2.2.10. Furthermore, that theorem says that there is only one
extension. Finally, suppose that ν is as in the last part of the statement.
Because every non-empty element of A is the finite union of mutually disjoint
sets of the form {ω : ω(m) = η(m) for 1 ≤ m ≤ n}, where η ∈ {0, 1}n for
some n ∈ Z+, any ν that extends βp � A is therefore equal to βp. �

Because Bernoulli (again Jacob) made seminal contributions to the study
of coin tossing, the Borel probability measure βp in Theorem 2.2.23 is called
the Bernoulli measure with parameter p. Before closing this discussion of
coin tossing, it should be pointed out that the independence on which (2.2.20)
was based extends to βp as a Borel measure. To verify this, we will need the
following lemma.

Lemma 2.2.24. Suppose that ∅ 6= S ⊂ Z+. If B ∈ A(S) and B ⊆ H ∈
G(Ω), then there is a G ∈ G(Ω) ∩ A(S) such that B ⊆ G ⊆ H. Hence, if

B ∈ A(S) ∩ Bβp , then βp(B) = inf{βp(G) : B ⊆ G ∈ G(Ω) ∩ A(S)}.

Proof: Given ω ∈ B, note that Π−1
S ({ω � S}) ⊂⊂ H. In particular, there

exists an n(ω) ∈ Z+ for which ρ
(
Π−1
S ({ω � S}), H{

)
> 2−n(ω). Thus, if

F (ω) = {i ∈ S : i ≤ n(ω)}, then A(ω) ≡ Π−1
F

(
{ω � F (ω)}

)
⊆ H. Indeed, if

ω′ ∈ A(ω), determine ω′′ ∈ Ω by taking ω′′ � S = ω � S and ω′′ � S{ = ω′ � S{.
Then ω′′ ∈ Π−1

S ({ω � S}) and ρ(ω′, ω′′) ≤ 2−n(ω), which means that ω′ ∈ H.
Now take G =

⋃{
A(ω) : ω ∈ B

}
, and observe that G is an open element of

A(S) that contains B and is contained in H.
Given the preceding, the final assertion is an easy application of the fact,

coming from Theorems 2.2.23 and 2.1.15, that

βp(B) = inf{βp(G) : B ⊆ G ∈ G(Ω)}. �
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Theorem 2.2.25. Let S ⊆ Z+, and suppose that B ∈ BΩ
βp ∩ A(S) and

B′ ∈ BΩ
βp ∩ A(S{). Then βp(B ∩B′) = βp(B)βp(B

′).

Proof: Obviously, there is nothing to do when either B or B′ is either empty
or the whole of Ω. Thus, we will assume that ∅ 6= S ⊂ Z+. Next suppose
that F ⊂⊂ S and F ′ ⊂⊂ S{. Then, for any A ∈ A(F ) and A′ ∈ A(F ′),
it follows easily from (2.2.21) that βp(A ∩ A′) = βp(A)βp(A

′). Next suppose

that G ∈ A(S) and G′ ∈ A(S{) are open. By Lemma 2.2.22, G =
⋃∞
m=1Am,

where {Am : m ≥ 1} are mutually disjoint elements of A ∩ A(S), and G′ =⋃∞
m′=1A

′
m′ , where {A′m : m ≥ 1} are mutually disjoint elements of A∩A(S{).

Thus {Am ∩Am′ : (m,m′) ∈ (Z+)2} is a cover of G∩G′ by mutually disjoint
elements of A, and βp(Am ∩ Am′) = βp(Am)βp(Am′) for all (m,m′). Hence,
by Lemma 2.2.1,

βp(G ∩G′) =
∑

(m,m′)∈(Z+)2

βp(Am)βp(A
′
m′) = βp(G)βp(G

′).

Finally, let B and B′ be as in the statement. Then βp(B∩B′) ≤ βp(G∩G′) =

βp(G)βp(G
′) for any open G ∈ A(S) containing B and open G′ ∈ A(S{)

containing B′. Hence, by Lemma 2.2.24, βp(B ∩B′) ≤ βp(B)βp(B
′).

To prove the opposite inequality, let ε > 0 be given, and choose open sets
G and G′ for which B ⊆ G, B′ ⊆ G′, and βp(G \ B) + βp(G

′ \ B′) < ε. By

Lemma 2.2.24, we may and will assume that G ∈ A(S) and G′ ∈ A(S{). But
then

βp(B)βp(B
′) ≤ βp(G)βp(G

′) = βp(G ∩G′)
= βp(B ∩B′) + βp

(
(G ∩G′) \ (B ∩B′)

)
≤ βp(B ∩B′) + ε,

since (G ∩G′) \ (B ∩B′) ⊆ (G \B) ∪ (G′ \B′). �
In the jargon of probability theory, Theorem 2.2.25 is saying that the σ-

algebra A(S) ∩ BΩ
βp

is independent under βp of the σ-algebra A(S{) ∩ BΩ
βp

.

§ 2.2.5. Bernoulli and Lebesgue Measures: For obvious reasons, the
case p = 1

2 is thought of as the mathematical model of a coin tossing game
in which the coin is fair (i.e., unbiased). Thus, one should hope that µ 1

2
has

special properties, and the purpose of this subsection is to prove one such
property.

There is a natural continuous map Φ taking Ω onto [0, 1], the one given by

(2.2.26) Φ(ω) =

∞∑
n=1

2−nω(n).

By part (ii) of Exercise 2.1.19, Φ is measurable as a mapping from (Ω,BΩ)
to
(
[0, 1],B[0,1]

)
. What I am going to show is that (cf. part (iii) of Exercise
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2.1.19) Φ∗β 1
2

= λ[0,1], where (cf. Exercise 2.1.18) λ[0,1] is the Borel measure

on [0, 1] obtained by restricting λR to B[0,1]. In fact, I am going to prove more.
Namely, I am going to show that, in spite to the fact that Φ is not one-to-one,

(2.2.27) Φ(B) ∈ B[0,1] and λ[0,1]

(
Φ(B)

)
= β 1

2
(B) for all B ∈ BΩ.

Once we know this, we will have

(2.2.28) Φ∗β 1
2
(Γ) = β 1

2

(
Φ−1(Γ)

)
= λ[0,1](Γ) for Γ ∈ B[0,1]

as a trivial consequence.
The interest in (2.2.27) stems from the following considerations. Let ω∞

be the element of Ω that is equal to 1 at all n ∈ Z+. Then Φ(ω∞) = 1. Next,

let Ω̂ be the subset of Ω consisting of ω∞ and any ω ∈ Ω with the property
that ω(n) = 0 for infinitely many n ∈ Z+. Because Ω\ Ω̂ is equal to the set of
ω ∈ Ω \ {ω∞} for which there is an m ∈ Z+ such that ω(i) = 1 for all i ≥ m,

it is clear that Ω \ Ω̂ is countable and therefore an element of BΩ to which

β 1
2

assigns measure 0. Hence, Ω̂ ∈ BΩ and β 1
2
(Ω̂) = 1. The advantage that Ω̂

has over Ω is that Φ̂ ≡ Φ � Ω̂ is one-to-one and onto [0, 1]. To see this, first

note that ω∞ is the one and only element of Ω̂ that Φ̂ takes to 1. Next, given
x ∈ [0, 1), determine ω by

ω(1) =

{
0 if x ∈

[
0, 1

2

)
1 if x ∈

[
1
2 , 1
)

and, for j ≥ 2,

ω(j) =

{
0 if x−

∑j−1
i=1 2−iω(i) < 2−j

1 if x−
∑j−1
i=1 2−iω(i) ≥ 2−j .

One can use induction to check that 0 ≤ x −
∑j
i=1 2−iω(i) < 2−j for each

j ≥ 1. In particular, ω ∈ Ω̂, since otherwise m = max{i : ω(i) = 0} would be
finite and x −

∑m
i=1 2−iω(i) = 2−m, which would be a contradiction. Hence,

Φ̂ is onto. To see that it is one-to-one, suppose that ω, ω′ ∈ Ω̂ and that
Φ(ω) = Φ(ω′) ∈ [0, 1). Then neither ω nor ω′ is ω∞ and so each has infinitely
many i’s at which it vanishes. Now suppose that ω 6= ω′ and therefore that
m = min{i ∈ Z+ : ω(i) 6= ω′(i)} < ∞. Without loss in generality, we can
assume that ω′(m) = 1 and ω(m) = 0. But then we would have

2−m ≤ 2−m +

∞∑
i=m+1

2−iω′(i) =

∞∑
i=m+1

2−iω(i) < 2−m,

which is impossible.
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From an arithmetic perspective, when x ∈ [0, 1), Φ̂−1(x) gives the coeffi-
cients of the dyadic expansion of x: the representation of x as

∑∞
i=1 2−iω(i)

for which {i ∈ Z+ : ω(i) = 1} is minimal. Thus, since

λ[0,1]

(
{x ∈ [0, 1] : Φ̂−1(x) ∈ B}

)
= λ[0,1]

(
Φ̂(B)

)
= λ[0,1]

(
Φ(B)

)
,

(2.2.27) says that the statistics under λ[0,1] of the dyadic coefficients of a
number in [0, 1) are given by β 1

2
, an observation that E. Borel seems to have

been the first to make. See part (iii) of Exercise 3.1.15 for an application of
this observation.

With the preceding as motivation, I turn now to the proof of (2.2.27). First

note that, because Φ(B)\ Φ̂(B∩ Ω̂) is countable for any B ⊆ Ω, we need show
only that

(∗) Φ̂(B ∩ Ω̂) ∈ B[0,1] and λRN
(
Φ̂(B ∩ Ω̂)

)
= β 1

2
(B) for all B ∈ BΩ.

Second, observe that we only need to check (∗) when B = An(η) ≡ {ω : ω(i) =
η(i), 1 ≤ i ≤ n} for some n ∈ Z+ and η ∈ {0, 1}n. To understand why this is

enough, remember that Φ̂ is one-to-one and therefore, by part (i) of Exercise
2.1.19, preserves differences as well as unions. Hence, the set F of B ∈ BΩ

for which (∗) holds is closed under differences as well as countable unions. In

addition, because Φ̂ is onto, Ω ∈ F , and therefore F is a σ-algebra over Ω.
Thus, (∗) will be proved once I show it holds for B’s coming from a Π-system
that generate BΩ. But, every non-empty A ∈ A is the finite union of sets of
the form An(η) and (cf. Lemma 2.2.24) every open set in Ω is the countable
union of elements of A. Hence {∅} ∪

{
An(η) : η ∈ {0, 1}n & n ∈ Z+

}
is a

Π-system that generates BΩ. Finally, given n ∈ Z+ and η ∈ {0, 1}n, it is an
easy matter to check that

(2.2.29) [0, 1) ∩ Φ̂
(
An(η) ∩ Ω̂

)
=

[
n∑
i=1

2−iη(i), 2−n +

n∑
i=1

2−iη(i)

)
.

Thus, not only is Φ̂
(
An(η)∩ Ω̂

)
∈ B[0,1] but also λ[0,1] assigns it measure 2−n,

which is the same as the measure β 1
2

assigns to An(η).

Exercises for § 2.2

Exercise 2.2.30. Suppose that G is an open subset of RN and that Φ :
G −→ RN ′ is uniformly Lipschitz continuous in the sense that there is
an L < ∞ such that |Φ(y) − Φ(x)| ≤ L|y − x| for all x, y ∈ G. Because
Φ is continuous, it takes compact subsets of G to compact sets, and from
this conclude that Φ takes elements of Fσ(G) to elements of BRN′ . Next,

show that if Γ ∈ BG
λRN has Lebesgue measure 0, then Φ(Γ) is an element of

BRN
λRN′ that has Lebesgue measure 0. Finally, combine these to show that

Φ(Γ) ∈ BRN
λRN′ for every Γ ∈ BG

λRN .
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Exercise 2.2.31. Let B be a σ-algebra over E with the property that {x} ∈
B for all x ∈ E. A measure µ on (E,B) is said to be non-atomic if µ({x}) = 0
for all x ∈ E. Show that if there is a non-trivial (i.e., not identically 0), non-
atomic measure on (E,B), then E must be uncountable. Next, apply this to

show that the existence of λRN and βp implies that RN , Ω, and Ω̂ must all be
uncountable.

Exercise 2.2.32. It is clear that any countable subset of R has Lebesgue
measure zero. However, it is not so immediately clear that there are uncount-
able subsets of R whose Lebesgue measure is zero. The goal of this exercise
is to show how to construct such a set. For this purpose, start with the set
C0 = [0, 1], and let C1 be the set obtained by removing the open middle third
of C0 (i.e., C1 = C0 \

(
1
3 ,

2
3

)
=
[
0, 1

3

]
∪
[

2
3 , 1
]
). Next, let C2 be the set obtained

from C1 after removing the open middle third of each of the (two) intervals
of which C1 is the disjoint union. More generally, given Cn (which is the
union of 2n disjoint, closed intervals), let Cn+1 be the set that one gets by
by removing from Cn the open middle third of each of the intervals of which
Cn is the disjoint union. Finally, set C =

⋂∞
k=0 Cn. The set C is called the

Cantor set, and it turns out to be an extremely useful source of examples.
In particular, show that C is an uncountable, closed subset of [0, 1] that has
Lebesgue measure 0. See Exercise 8.3.22 for further information.

Here are some steps that you might want to follow.

(i) Since each Cn is closed, C is also. Next, show that λR(Cn) =
(

2
3

)n
and

therefore that λR(C) = 0.

(ii) To prove that C is uncountable, refer to the notation in § 2.2.4, and
define Ψ : Ω −→ [0, 1] by

Ψ(ω) =

∞∑
i=1

2ω(i)

3i
.

Show that Ψ is one-to-one.

(iii) In view of Theorem 2.2.23 and Exercise 2.2.31, one will know that C

must be uncountable if Ψ(Ω̂) ⊆ C. To this end, first show that [0, 1] \ C can
be covered by open intervals of the form

(
(2k− 1)3−n, 2k3−n

)
, where n ∈ Z+

and 1 ≤ k ≤ 3n−1
2 . Next, show that Ψ(ω) > (2k − 1)3−n =⇒ Ψ(ω) ≥ 2k3−n

and therefore that Ψ(Ω̂) ⊆ C.

Exercises 2.2.33. Here is a rather easy application of Theorem 2.2.15. If
BRN (c, r) is the open ball in RN of radius r and center c, show that

λRN
(
BRN (c, r)

)
= λRN

(
BRN (c, r)

)
= ΩNr

N , where ΩN ≡ λRN
(
BRN (0, 1)

)
is the (cf. (iii) in Exercise 5.1.13) volume of the unit ball in RN .

Exercise 2.2.34. If v1, . . . , and vN are vectors in RN , the parallelepiped
spanned by {v1, . . . ,vN} is the set

P (v1, . . . ,vN ) ≡
{ N∑

1

xivi : x ∈ [0, 1]N
}
.
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When N ≥ 2, the classical prescription for computing the volume of a paral-
lelepiped is to take the product of the area of any one side times the length of
the corresponding altitude. In analytic terms, this means that the volume is
0 if the vectors v1, . . . ,vN are linearly dependent and that otherwise the vol-
ume of P (v1, . . . ,vN ) can be computed by taking the product of the volume of
P
(
v1, . . . ,vN−1

)
, thought of as a subset of the hyperplane H

(
v1, . . . ,vN−1

)
spanned by v1, . . . ,vN−1, times the distance between the vector vN and the
hyperplane H

(
v1, . . . ,vN−1

)
. Using Theorem 2.2.15, show that this prescrip-

tion is correct when the volume of a set is interpreted as the Lebesgue measure
of that set.

Hint: Take A to be the N × N matrix whose ith column is vi, and use
Cramer’s rule to compute det(A).

Exercise 2.2.35. Cauchy posed the problem of determining which functions
f : R −→ R are additive in the sense that f(x + y) = f(x) + f(y) for all
x, y ∈ R. The goal of this exercise is to show that an additive function that

is BR
λR

-measurable must be linear. That is, f(x) = f(1)x for all x ∈ R.

(i) Show that, for each x ∈ R and rational number q, f(qx) = qf(x). In
particular, conclude that any continuous, additive function is linear.

(ii) Show that if f is bounded on some non-empty open set, then f is linear.

(iii) Assume that f is a BR
λR

-measurable, additive function. Choose an
R > 0 for which Γ = {x ∈ R : |f(x)| ≤ R} has strictly positive λR-measure,
and use Lemma 2.2.16 and additivity to conclude that there is a δ > 0 for
which |f(x)| ≤ 2R on (−δ, δ). After combining this with (ii), conclude that
every BR-measurable, additive function is linear.

Exercise 2.2.36. In connection with Exercise 2.2.35, one should ask whether
there are solutions to Cauchy’s functional equation that are not linear. Be-
cause any such solution cannot be Lebesgue measurable, one should expect
that its construction must require the axiom of choice. What follows is an
outline of a construction.

(i) Let A denote the set of all subsets A ⊆ R that are linearly independent
over the rational numbers Q in the sense that, for every finite subset F ⊆ A
and every choice of {αx : x ∈ F} ⊆ Q,

∑
x∈F αxx = 0 =⇒ αx = 0 for all

x ∈ F . Partially order A by inclusion, and show that every totally ordered
subset of A admits an upper bound. That is, if T ⊆ A and, for all A, B ∈ T ,
either A ⊆ B or B ⊆ A, then there exists an M ∈ A such that A ⊆M for all
A ∈ T . Now apply the Zorn’s Lemma, which is one of the equivalent forms
of the axiom of choice, to show that there exists an M ∈ A that is maximal
in the sense that, for all A ∈ A, M ⊆ A =⇒ M = A.

(ii) Referring to (i), show that M is a Hamel basis for R over the rationals.
That is, for all y ∈ R \ {0} there exist a unique finite F (y) ⊆M and a unique
choice of {qx(y) : x ∈ F (y)} ⊂ Q \ {0} for which y =

∑
x∈F (y) qx(y)x.
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(iii) Continuing (i) and (ii), extend the definition of qx(y) so that qx(y) = 0
if either y = 0 or x /∈ F (y). Then, for all y ∈ R, y =

∑
x∈M qx(y)x, where, for

each y, all but a finite number of summands are 0. Next, let ψ be any R-valued
function on M , define f : R −→ R so that f(y) =

∑
x∈M ψ(x)qx(y)x, and

show that f is always additive but that it is linear if and only if ψ is constant.
In particular, for each x ∈M , qx is an additive, non-linear function. Conclude
from this that, for each x ∈ M , y  qx(y) cannot be Lebesgue measurable
and must be unbounded on each non-empty open interval.

Exercise 2.2.37. Here is another construction of the measures µF in Theo-
rem 2.2.19. Set F (∞) = limx→∞ F (x), and define F−1 :

[
0, F (∞)

)
−→ R so

that
F−1(x) = inf{y ∈ R : F (y) ≥ F (x)}.

Check that F−1 is B[0,F (∞))-measurable, and set

µ(Γ) = (F−1)∗λR(Γ) = λR
(
{x ∈ [0, F (∞)) : F−1(x) ∈ Γ}

)
for Γ ∈ BR.

Show that µ is a finite Borel measure on R whose distribution function is F .
Hence, µ = µF .

Exercise 2.2.38. A right-continuous, non-decreasing function F : R −→ R
is said to be absolutely continuous if for every ε > 0 there exists a δ > 0
such that

∑∞
n=1

(
F (bn)−F (an)

)
< ε whenever {(an, bn) : n ≥ 1} is a sequence

of mutually disjoint open intervals satisfying
∑∞
n=1(bn − an) < δ. Show that

an absolutely continuous F is uniformly continuous. Next, assume that F
is bounded and tends to 0 at −∞, and let (cf. Theorem 2.2.19) µF be the
Borel measure on R for which F is the distribution function. Show that F is
absolutely continuous as a function if and only if µF is (cf. Exercise 2.1.27)
absolutely continuous with respect to λR.

Exercise 2.2.39. Given a bounded, right-continuous, non-decreasing func-
tion F on R, say that F is singular if for each δ > 0 there exists a se-
quence {(an, bn) : n ≥ 1} of mutually disjoint open intervals such that∑∞
n=1(bn − an) < δ and F (∞) − F (−∞) =

∑∞
n=1

(
F (bn) − F (an)

)
. As-

suming that F tends to 0 at −∞, show that F is singular if and only if the
measure µF for which it is the distribution function is (cf. Exercise 2.1.28)
singular to λR.

Exercise 2.2.40. As we saw in Exercise 2.2.37, all finite Borel measures on
R can be written as an image of λR. This fact is a particular example of the
much more general fact that, under mild technical conditions, nearly every
measure can be written as the image of λR. The purpose of this exercise is to
construct a measurable f : [0, 1] −→ [0, 1]2 such that λ[0,1]2 = f∗λ[0,1], where
λ[0,1]2 is the restriction of λR2 to B[0,1]2 . To construct f , first define π0 and
π1 on Ω into itself so that [π0(ω)](i) = ω(2i) and [π1(ω)](i) = ω(2i − 1) for
i ≥ 1. Next, define f : [0, 1] −→ [0, 1]2 by

f =
(
Φ ◦ π0 ◦ Φ̂−1,Φ ◦ π1 ◦ Φ̂−1

)
.
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Show that f is a measurable map from ([0, 1];B[0,1]) onto ([0, 1]2,B[0,1]2) and
that λ[0,1]2 = f∗λ[0,1].

Exercise 2.2.41. If {S1, . . . , Sn} are mutually disjoint subsets of Z+ for
some n ≥ 2, show that

βp
(
A1 ∩ · · · ∩An

)
= βp(A1) · · ·βp(An)

for every choice of {A1, . . . , An} ⊆ BΩ
βp

with Am ∈ A(Sm) for 1 ≤ m ≤ n.
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