Chapter 2
Architecting Data-Intensive Software Systems

Chris A. Mattmann, Daniel J. Crichton, Andrew F. Hart,

Cameron Goodale, J. Steven Hughes, Sean Kelly, Luca Cinquini,
Thomas H. Painter, Joseph Lazio, Duane Waliser, Nenad Medvidovic,
Jinwon Kim, and Peter Lean

1 Introduction

Data-intensive software is increasingly prominent in today’s world, where the
collection, processing, and dissemination of ever-larger volumes of data has become
a driving force behind innovation in the early twenty-first century. The trend towards
massive data manipulation is broad-based, and case studies can be examined in
domains from politics, to intelligence gathering, to scientific and medical research.
The scientific domain in particular provides a rich array of case studies that
offer ready insight into many of the modern software engineering, and software
architecture challenges associated with data-intensive systems.

C.A. Mattmann (P<) D.J. Crichton ¢ A.F. Hart * C. Goodale * J.S. Hughes ° S. Kelly

* L. Cinquini * T.H. Painter « J. Lazio *« D. Waliser

Instrument and Science Data Systems, NASA Jet Propulsion Laboratory

California Institute of Technology, Pasadena, CA, USA

e-mail: chris.a.mattmann@nasa.gov; daniel.j.crichton @jpl.nasa.gov; andrew.f.hart @jpl.nasa.gov;
cameron.e.goodale @jpl.nasa.gov; john.s.hughes@jpl.nasa.gov; sean.kelly @jpl.nasa.gov;
luca.cinquini @jpl.nasa.gov; thomas.painter@jpl.nasa.gov; joseph.lazio@jpl.nasa.gov;
duane.e.waliser @jpl.nasa.gov

N. Medvidovic

Computer Science Department, Viterbi School of Engineering
University of Southern California, Los Angeles, CA, USA
e-mail: neno@usc.edu

J. Kim

Joint Institute for Regional Earth System Science and Engineering (JIFRESSE),
University of California, Los Angeles, Los Angeles, CA, USA

e-mail: jkim@atmos.ucla.edu

P. Lean
Department of Meteorology, University of Reading Reading, UK
e-mail: p.w.lean@reading.ac.uk

B. Furht and A. Escalante (eds.), Handbook of Data Intensive Computing, 25
DOI 10.1007/978-1-4614-1415-5_2, © Springer Science+Business Media, LLC 2011

26 C.A. Mattmann et al.

Scientific domains such as climate research, bioinformatics, radio astronomy,
and planetary and Earth science all face challenges related to the effective manip-
ulation of large datasets, including the capture, generation, and distribution of the
often complex, heterogeneous data to support various domain-specific applications
including: decision support, modeling and prediction, virtual exploration and
simulation, and visualization, among others.

Capturing, generating and distributing data in meaningful ways is key to ensuring
that the data can be used by downstream consumers. One major impediment to these
activities in modern times is the sheer volume of the data involved. Data volumes
have steadily increased as the mechanisms for generating and capturing data with
increasing resolution have evolved. To take a recent example from the world of
radio astronomy [40], the LOw Frequency Array (LOFAR) instrument [1] currently
generates 138 PB (petabytes) of data per day [2]. Other examples include climate
models that produce 8 PB per run, NASA Earth science decadal missions, such as
the Orbiting Carbon Observatory, with projected mission data volumes well into the
hundreds of TB range [3], and the high-energy physics community’s Large Haldron
Collider (LHC) instrument, generating 2 PB of data per second [4] during operation.

Yet, despite its tremendous implications, data volume is only one of many
challenges that must be addressed to properly architect data-intensive systems. At
the same time, the rapid evolution of information technology in multiple dimensions
(storage capacity, computing power, network bandwidth, computing language, and
web protocols) is opening up an unprecedented set of possibilities for the large-scale
analysis of data, changing the very way researchers conduct their day-to-day work.

Scientific research is no longer conducted by small groups of scientists working
in adjacent offices or a single laboratory, using a few pieces of hardware equipment
and desktop software. Rather, scientific collaborations are increasingly distributed,
often global in nature, and typically involve tens to hundreds of scientists working
together from their home institutions, connected via virtual electronic environments,
and accessing and analyzing massive amounts of data archived at distributed
locations.

Scientific algorithms too are becoming increasingly complex, and are often
implemented using a combination of many different software modules working
together. The need to operate over larger and larger datasets, often in heterogeneous,
multi-unit environments, and the need to distribute results not just to peers, but
to a variety of audiences of vastly different backgrounds (e.g., global policy
makers, public officials conducting regional and local assessments, and students
and researchers of all education levels) — facilitating the transformation of big data
into actionable knowledge — present significant challenges as well. This modern
paradigm for scientific data analysis requires a technical infrastructure that can meet
these new challenges, and at the same time keep pace with the relentless evolution
of the underlying hardware and software capabilities.

In this chapter, we will survey the state of the art in software engineering, and
software architectural challenges associated with data-intensive systems, expressly
focusing on the domains of science data systems. In Sect.2, we will restrict our
focus to seven key challenges for data-intensive systems in this domain, specifically:

2 Architecting Data-Intensive Software Systems 27

(1) data volumes, (2) data dissemination; (3) data curation; (4) use of open source
software; (5) search; (6) data processing and analysis and (7) information modeling.
These challenges are then illustrated via case studies in Sect. 3, in which we describe
our experience on several data-intensive science projects in the areas of Regional
Climate Modeling, Bioinformatics, Planetary.

Science, Radio Astronomy, and Snow Hydrology. After placing the challenges,
in context, in Sect.4 we describe several emerging software and architectural
paradigms that we view as promising approaches to the construction of software
to support data-intensive science in the aforementioned domains, and Sect. 5 rounds
out the chapter.

Throughout the chapter, we strive to present information in an descriptive, rather
than prescriptive fashion, in order to align with this book’s goal of providing a
handbook in the area of data-intensive systems. We feel this approach will help
to guide the reader through important projects, and architectural challenges, rather
than provide a recipe applicable only to any one experience.

2 Key Challenges

Architecting data-intensive software systems in today’s highly connected, compu-
tationally demanding scientific research environments presents tremendous chal-
lenges that stretch to the limit the familiar software engineering approaches of
the last 10 years. Many of the canonical software architecture techniques must be
updated to accommodate the uniquely challenging circumstances encountered in
building modern, data-intensive software systems.

In this section, we present a representative cross-section of concerns and
architectural challenges inherent in modern, data-intensive systems. We do not
claim this to be a comprehensive list, but rather that it is indicative of the type and
complexity of the challenges that must be overcome in order to construct effective
software for data-intensive applications.

We will refer back to these challenges (shown graphically in Fig. 2.1) throughout
the remainder of the chapter. Specifically, in Sect. 3, we will illustrate the manifesta-
tion of these challenges in several real-world data systems for scientific research that

Huge-scale (TB, PB, XB)

Data Volume Average (GB, MB)
— Archive

Data Dissemination t Delivery

Data Curation Processing
— Consume

Architectural Challenges Use of Open Source

T Produce

Search (Near) Real Time

Data Processing and Analysis Offline

/— Model-driven
Information Modeling
-

Exchange/Interoperability

Fig. 2.1 Architectural challenges relevant to data-intensive systems

28 C.A. Mattmann et al.

information

- term data
archive partal

delivery

dissemination

<

Dalivery Proocols
{FTP, GridF TP,
bLFTP, WebDAY,
ale)

Fig. 2.2 Architectural challenge areas and their relation to the data-intensive system lifecycle. FM
stands for file management, WM stands for workflow management, and RM stands for resource
management

we have constructed at NASA’s Jet Propulsion Laboratory. Further, in Sect.4, we
will highlight how topical data-intensive system technologies provide a framework
for understanding these concerns, and for addressing them in various ways.

Before we dive into the discussion on challenges, we must first frame them
within the context of data-intensive systems architecture. The following section will
revolve around the imagery seen in Fig.2.2.

2.1 The Architecture of a Data-Intensive System

As can be seen from Fig. 2.2, the architecture of a data-intensive system is inherently
complex. If we scan the diagram from left to right, we see that data (and metadata)
enter into the system delivered (or disseminated as we will explain in Sect. 2.2.2 and
as shown in Fig. 2.1) via a number of potential protocols (e.g., FTP, GridFTP, etc.)
to a staging area (shown in the upper left periphery of Fig.2.2). Once in the staging
area the data and metadata are curated (as we will explain further in Sect.2.2.3)
which can involve both human-in-the-loop detective work to richly add metadata
and structure to the data, and can also involve automatic, software-based metadata
extraction. One key component of this effort is information modeling (as we will
explain further in Sect. 2.2.7) wherein which models of the data and metadata set to
be cataloged, and archived are derived.

Once curated, data is ingested (either manually or automatically) via some
sort of file management component (shown in the middle-left portion of Fig.2.2
and labeled as FM). Ingestion involves both the cataloging of extracted metadata
associated with the data and data dissemination from the staging area to a controlled,

2 Architecting Data-Intensive Software Systems 29

rich archive'. The FM is also responsible for staging data and metadata to the
workflow manager component (labeled as WM in Fig. 2.2 and shown in the bottom-
left portion of the diagram) and for managing the total volume of data in the archive.
The workflow management component is responsible for data processing (as we
will learn more about in Sect.2.2.6). Both of these components (FM and WM)
are available for consumption from a number of open source projects including
within our own efforts in the Apache Object Oriented Data Technology (OODT)
project [5, 6], as well as within Apache Hadoop [7], Condor [8], Wings [9], Pegasus
[9], and from a number of other examples that we’ll cover in Sect. 4 (see [10] for
further information). The workflow management component orchestrates control
flow (sequences of executions of work units or tasks), and data flow (passing of
information in between those tasks). In science data systems, tasks traditionally
correspond to some sort of data flow-style component, that takes input data files
and transforms them somehow (geolocates them; calibrates them, etc.) to produce
output data files.

The WM works together with a resource management component (shown as
RM (another common open source component) in the middle-portion of Fig.2.2
and responsible for managing the underlying compute and storage resources shown
as the boxes below RM) to execute a ready-to-run task on a set of hardware and
software resources (e.g., a cluster, a grid, a cloud, etc.). The first step once the
job has been batched out to a hardware node (provided there was enough disk
space, compute resources, etc., as calculated by the RM) is to stage the appropriate
data files required for input to the task. This involves communication with the FM
component usually in the form of metadata search as demonstrated in the middle-
portion of Fig.2.2. Once the input is available, it is provided (along with any other
necessary run-time information) to the underlying task and the task is executed out
on the hardware node, the result of which is a set of output data files (and potentially
metadata). This information is then traditionally re-ingested (e.g., via a crawling
process [6]) and disseminated to the file management component for preservation,
and to make those output data files and metadata available to downstream tasks and
processing.

At some point during the lifecycle of the data-intensive system, data is delivered
from the processing archive to the long term-archive as illustrated in the transi-
tion from the left-to-middle-to-right portions of Fig.2.2. This process is volume
intensive, and involves dissemination in its own right. There may also been further
data curation that occurs to enrich the metadata and structure of the data for the
long-term archive. Once archived, the data is presented externally to the scientific
user community via data portals (e.g., see [11] for some examples), where users
can interactively and programmatically search for the data and metadata, and
explore and consume the information model that describes the data. Users may also
download the data and metadata, so dissemination is an important factor here, as
shown in the right side of Fig.2.2.

'We use “archive” and “repository” interchangeably throughout the chapter.

30 C.A. Mattmann et al.

In the next section, we will describe in detail the key challenges of data-intensive
systems as it relates to their canonical architecture that we have covered in this
section.

2.2 The Challenges

In this section, we will hone in on the seven challenges described in Fig. 2.1 and
illustrated from an architectural perspective in Fig.2.2.

2.2.1 Total Volume

The amount of data analyzed by a single project has already reached the order of
several petabytes (PB), and the exabyte (EB) is rapidly approaching mainstream
vernacular. For example, a single run of a modern climate model simulation running
on a high-resolution grid (such as the CESM T341, which is global grid at roughly
40 km resolution) will generate several terabytes (TB) of output. The combined
total volume for all of the models comprising the Coupled Model Intercomparison
Project Phase 5 (CMIPS5) [12] is on the order of 10 PB. Similarly, the next generation
of Earth observing satellite missions planned by NASA (such as the DESDynlI [13]
mission), will generate a final product stream of roughly 40 TB/day, resulting in
several tens of PB over the course of just a few years.

Massive data volumes present several challenges at the architectural level. From
our related experience, the fork in the road lies at the transition from gigabytes
(GB) of data (up to hundreds of GB) to terabytes, petabytes and exabytes of
information, as shown in the upper right portion of Fig.2.1. Modern commodity
hardware traditionally ships with disks in the GB/low TB range (up to 1-2), and it is
relatively inexpensive to scale up to tens of TB. However, scaling much beyond the
tens of TB range not only raises costs significantly, it also increases the complexity
of managing the resultant data system from an architectural perspective.

In science data systems, data is regularly stored as files on disk, and associated
metadata’ is stored in a file catalog such as a database, a flat-file based index (such
as Lucene [14]), or simply as metadata files on disk alongside the data itself. As
the data volumes increase, the challenges of partitioning the data effectively on
disk, organizing the metadata efficiently for search, and providing access to both
data and metadata for processing and dissemination become more pronounced. In
average-scale volumes (up to hundreds of GB), the disk repositories and files can
be organized in an ad-hoc fashion without becoming prohibitively complicated to
traverse and explore. For repositories in the terabyte range and beyond, alternative

2Metadata refers to “data about data.”” As an example, consider a book data file, and its associated
metadata, “author,” with potentially many values.

2 Architecting Data-Intensive Software Systems 31

approaches are often required, including: (1) metadata based file organization — a
partitioning of data based upon certain metadata attributes (e.g., for datasets that are
spatially located, files might be partitioned on disk by region); (2) file management
replication — replication of file management servers to partition the overall data
“namespace” and its access, search, and processing; (3) careful selection of data
dissemination technologies — taking into consideration the benefits and limitations
(e.g., support for multi-delivery intervals, parallelized saturation of the underlying
network) [13] of distribution technologies such as bbFTP and GridFTP [15], among
others; and (4) the additional search, and processing challenges we discuss below.
All of these challenges are illustrated architecturally in Fig. 2.2.

The difficulty in dealing with massive data volumes permeates the strategies for
addressing all of the other concerns and challenges from Fig. 2.1, including open
source (in the sense that certain open source technologies are oriented specifically
for use with larger data volumes as we will describe further in Sect. 2.5). In the
following section we will cover data dissemination, a challenge directly related to
data volume.

2.2.2 Data Dissemination

The dissemination of data at the scales one might realistically expect to encounter
in modern data-intensive software systems is no longer a trivial matter and merits
careful consideration in the architectural planning phases of system development.
Data volumes, coupled with the (often internationally) distributed nature of modern
research teams, and the cross-domain nature of many scientific problems, imply
that data holdings analyzed by a single project can no longer be assumed to exist
at a single archive, but rather are likely to be distributed across multiple locations
that may be both geographically and technologically distinct. At the same time,
users often expect to find and interact with data as if it were a single archive.
Meeting this expectation requires that data-intensive systems consider discovery
and access services that conform to a common Application Programming Interface
(API) to permit clients to seamlessly access data from arbitrary locations without
requiring specialized code. This is seen traditionally in many modern open source
file management, workflow management and resource management components in
the form of extension points or “plug in” services that allow composition of existing
data system components. This could be envisioned as in Fig.2.2, for example, at
both ends of the diagram. On the one hand, for example, the distribution of upstream
data sets across the globe, that must be brought into a data-intensive system for
processing; and on the other, the data produced by a data-intensive system that must
be distributed to several geographically diverse archives.

Unfortunately, in many cases, the present state of the art involves providers
that run legacy services customized to the specific storage type, data format, and
control policies in use at the center. Middleware code that delivers data and metadata
conforming to the common API, while interfacing with the existing back-end
servers and applications is often necessary to bridge the gap.

32 C.A. Mattmann et al.

Typically, data holdings are not generated or collected on their final storage area,
but they need to be moved there possibly through several stages of processing
(as shown in the left-side and middle portions of Fig.2.2). This requires both the
availability of a network bandwidth that is able to keep up with the data generation
stream, and the utilization of data transfer protocols that are able to take advantage
of that bandwidth. Historically, network bandwidth has lagged behind with respect
to the continuous increase in storage capacity and computing power. Currently,
the fastest networks allow transfers of about 10 GB/s, but they are available only
between a few selected locations. New technologies (GridFTP, UDT, BFTP etc.
[13,15] as shown in the left periphery of Fig. 2.2 and as could be imagined in the
right) continue to emerge that aim at maximizing data transfer rates by instantiating
multiple concurrent data streams, tweak the buffer size, and decompose each single
transferred file. But the benefits of these technologies are still limited in most cases
by the availability of the underlying high speed network as our own prior studies
[13] and [15] have shown.

In the following section we will describe the importance and relevance of data
curation once data has reached a staging area as disseminated from a remote site,
and once data is sent from a processing system to a long-term archive (as shown in
the middle left to middle right portions of Fig.2.2.

2.2.3 Data Curation

Data curation is a broad term for a set of processes designed to ensure that data in all
stages of a data-intensive software system, from raw input data to processed output,
exhibit properties that facilitate a common organization, unified interpretation, and
contain sufficient supporting information, or metadata, so as to be easily shared and
preserved. Recall the prior discussion from Sect. 2.1 and the left-upper portion of
Fig.2.2.

While the concept of data curation is not a new one, it has taken an increasingly
prominent role in the modern era of high-volume, complex data systems. The
proliferation of mechanisms, formats, and standards for generating, annotating,
distributing, and ultimately archiving data underscores the need to treat a policy
for data curation as an essential ingredient of a data intensive software system. Our
own specific experience in this area is within the context of bioinformatics systems
and we point the reader to [16] and [17] for further information.

The process for data curation varies across systems depending upon factors
such as the volumes of data involved, the degree of noise in the inputs, and the
downstream expectations for disseminating the data for future (and perhaps even
far-future) use. Furthermore, the degree of automation in the curation process is
also highly variable. Some systems maintain a human in the loop, whereas others
perform curation via an algorithmic, rule-based approach, without any inline human
intervention.

Data curation is closely related to efforts in information modeling (discussed
in Sect. 2.2.7). The curation process is very often one of the chief mechanisms by

2 Architecting Data-Intensive Software Systems 33

which the abstract information model is actually applied to the data in the system,
and through which any modeled constraints are enforced. From this perspective,
the data curation process can be viewed as a mechanism for quality assurance; it
provides an opportunity to perform sanity checks and corrective action on the data
as it moves throughout the system.

The benefits of data curation are not limited to error detection, however.
The curation process is often viewed as a mechanism for adding value to the
data. Curation provides opportunities for enriching data with contextual metadata
annotations that facilitate its downstream discovery and use (e.g., via search).
Furthermore, the analysis steps in many data-intensive systems are often highly
context-sensitive, and depend upon information such as the provenance of the data
(the detailed history of processing steps employed to generate the current data
as shown in the middle-bottom portions of Fig.2.2), as well as the operational
and environmental parameters for an accurate interpretation of the data. Here
again, the close relationship to information modeling becomes evident. Where
the information model defines concepts and relationships that must be present in
the data, the data curation process must implement a mechanism for satisfying the
requirements.

Finally, in addition to offering opportunities for error correction and for adding
value to generated data, the curation process often provides an opportunity to
address the requirements for sharing and for long-term preservation of the data
(for a detailed description of this area, we point the reader to [18] and further its
accompanying special issue of Nature magazine on “Big Data”). The contextual
annotations described earlier provide rich technical descriptions of the data. Aside
from enabling context-sensitive in-system processing, this additional detail is
extremely helpful in a distributed, collaborative environment where groups of end-
users may not otherwise have the same degree of detailed insight into the processes
by which their data was generated. A well-curated dataset with sufficiently detailed
annotations and descriptive metadata has a better chance of standing on its own as a
self-contained, scientifically valuable resource than does a simple collection of raw
data that lacks a curated context.

We will next change gears a bit and specifically describe the role that the use of
open source software plays within data-intensive systems, and how the consumption
and production of open source data management software components play a role
in the overall architecture of data-intensive systems.

2.2.4 Use of Open Source

With the tremendous existing challenges of constructing data-intensive systems,
the consumption and (re-)use, as well as the production of components for down-
stream (re-use) is an important challenge in data-intensive systems. Open-source
software is extremely common-place in data-intensive systems, and represents
the implementation-level reification of (re-)use of software components. We will
elaborate below.

34 C.A. Mattmann et al.

Several areas within Fig. 2.2 demonstrate data-intensive components that already
exist and that can be consumed off-the-shelf from many open source market places.
Our purpose in this section is not to highlight the wealth of open source software
products for data systems that exist; nor is it to contrast and compare them. Instead,
we focus on the identification and rationale behind consuming and producing open
source software components as identified in our data-intensive system architecture
within Fig. 2.2.

For the left side of Fig. 2.2, (the file management and curation areas) protocols
for data-delivery into a staging area are myriad, and can be consumed with
varying levels of effort. Some data dissemination components and connectors
[19] (the models of interaction between software components) vary in their non-
functional properties, as well as in functional areas such as scalability, consistency,
dependability, and efficiency [3]. In terms of production, the development of
reusable connectors and protocols within this portion of the data-intensive system
focuses on exploiting the underlying network, bandwidth, and hardware resources
in some fashion to achieve speeds in performance, and reductions in overall memory
footprint. Since connectors are inherently application independent, the development
of dissemination software for open source and downstream reuse is an active area
of open research.

Information modeling and curation (shown in the upper left, and upper right
portions of Fig.2.2) are two areas where the stock of open source software
components are relatively small and much current work in data-intensive systems
focuses on the development of these components. This is in part due to the diversity
and heterogeneity of the data managed, and to the scientific domain of applicability,
as well as in part due to the relatively recent focus (over the past 10 years) on
the capture of rich descriptions of data and metadata. So, from a open-source
software production perspective, data-intensive systems are in need of (re-)usable
components focused on these two challenges.

Regarding workflow management and resource management as shown in the
middle portion of Fig.2.2, many existing open source components are available
for consumption. We point the reader to [9] and [10] for further surveys, as well
as to our own work in the area of the Apache OODT [5] project. In terms of
developing open source components for workflow and resource management, effort
is mostly spent in the area of supporting a variety of complex control flow (fan-in,
and fan-out, as defined by directed acyclic graphs [20]) and underlying hardware
and compute resources (grids, clouds, etc.). The development of effective workflow
and resource management components is highly complex, and in our experience,
effort is best spent in this area consuming existing open source components and
leveraging existing models.

One thing worth pointing out regarding processing and resource management is
that the underlying scientific tasks (the #, tasks shown in the bottom-middle portion
of Fig. 2.2), regarded by many scientists as representative of some step in the overall
scientific process, are typically first-of-breed algorithms and the result of many years
of research. Depending on the maturity of the data-intensive systems domain, these
algorithms may or may not be suitable for downstream open source dissemination.

2 Architecting Data-Intensive Software Systems 35

The algorithms often represent “research-grade” code and aren’t “hardened” to be
suitable for other contexts, and/or scientific domains. This is due to a number of
reasons that are beyond the scope of this chapter, one common of which is that
the algorithms are often tied to the scientific instrument or physical process that
produced the input data that they operate on. As for consuming these components
from the open source marketplace, as the algorithms are often unique, their (re-)use
is typically limited to the system at-hand.

Regarding the right-side of Fig. 2.2, there are a number of existing open-source
search components available for consumption and (re-)use within a data-intensive
system. We will discuss these more in Sect.2.2.5. Data disseminated from long-
term archives can best leverage the same types of connector technologies and open
source software previously discussed in the beginning of this section.

Besides production and consumption of open source software, there are a
number of other challenges and concerns, including understanding open source
licenses, communities, development practices, and methodologies. We see this as
an emerging and important area to keep within arm’s reach in understanding data-
intensive systems.

In the next section, we will discuss search as a key challenge within the data-
intensive systems domain. From the existing discussion and from Fig. 2.2, search
crops up in both the data processing (left/bottom middle) and in user-facing data
dissemination from a long-term archive portions of the architecture.

2.2.5 Search

All of the effort towards collecting, ingesting, storing, and archiving is for naught
unless there is some way to get that data back. Strictly regurgitating out of system
all that was ingested does not suffice, as there are multiple orders of magnitude more
data saved within a data-intensive system that are required for an individual analytic
problem. As a result, systems need a way to search through all that data to locate
items that match criteria.

Data-intensive systems therefore provide a search feature that accepts queries
for data and returns a set of matching results, both useful in data processing to
identify input data files and metadata to stage to an algorithm and shown in the
bottom/middle-left portion of Fig. 2.2, as well as in data dissemination to end-users
shown in the right side of Fig.2.2. Stated informally, queries pose questions of
where certain data is, and the search feature satisfies those questions with the answer
of where to find such data. A query in this sense means any form of declaration
of desiderata, such as “Where are readings of ocean temperature taken by an
orbiting infrared CCD between 2000-01-01 and 2001-12-317” or “What humor
books published after 1950 in the northern hemisphere mention the term ‘loogie’?”
The desiderata necessarily require some foreknowledge of the data curated with a
data-intensive system.

Note well that retrieval and dissemination are separate operations from search.
Strictly speaking, a search operation serves to locate data matching criteria and

36 C.A. Mattmann et al.

nothing else. The results of search are the locations of the matching data, and
potentially other metadata recorded about it. What happens next is up to the user
demands and architects of the system. In some instances, a “results list” may be
presented, ranking the matching data by some metric, and a user may then select
specific data to retrieve.

Giving better morphology to results, a data-intensive system operating in a
system-independent matter may present results as:

¢ A set of identifiers (often Uniform Resource Identifiers or URIs) that either name
or locate the matching data. These may be “resolved” in order to retrieve the
actual data.

* A matching set of metadata that annotate each identifier with descriptors indicate
context and, optionally, relevance. Such metadata serve to guide consumers of the
system towards the best result from a possibly massive set of matching results.

Queries presented to a search component of a data-intensive system often take one
of three forms: open, guided, and constrained.

Open queries are the easiest to use from a user standpoint and are the most
familiar in today’s web-enabled internet. Anyone from the most intimate and
advanced users of search engines to the casual “googler” takes advantage of the
open format of queries. The open query format is merely a sequence of textual
terms that the search component of a data-intensive system matches against the
system’s catalog of data. Such matching may be subject to certain processing (such
as conversion of terminology, synonym generation, and the like). Often, the matches
to open queries depend on the data containing the actual terms presented. Open
queries serve the requirements of all kinds of users, though those inexperienced or
unfamiliar with what is within a data-intensive system’s catalog may not be able to
present the right terms to gain any results.

Guided queries enable exploration of the corpus of data cataloged within a
data-intensive system. Guided queries present a series of high-level organizational
categories or “facets” of the cataloged data along with a set of applicable terms
in each category. By selecting an item, the set of matching data, as well as the
related categories, are constrained, presenting a narrower view. Repeating this, users
can narrow down towards the sought after data while also refining their desiderata
to better mesh with the cataloged entries. It enables both a broad overview of the
available catalog while also providing for customized, use-case, a specific matching
of results through a guided progressive disclosure. This interactive approach is ideal
for new users who can gather, at a glance, a high-level view of the catalog. However,
its weakness is that it requires curators of the data-intensive system’s catalog to
choose categorizations that appeal to the system’s users. Inappropriate facets may
lead users nowhere.

Constrained queries enable the end user or client systems of the data-intensive
system to specify a series of logical constraints on any of the searchable indexes
in the system’s catalog. Such constraints specify exact or relative values, such as
temperature measurements equal to 273°, or in the range of 273-279°, and so forth.
Multiple constraints may be joined in a logical expression, such as temperature in

2 Architecting Data-Intensive Software Systems 37

the range of 273-279° OR altitude greater less than 2km YET with number of
observations greater than 20. Constrained queries allow for the most precise yet
also the widest ranging potential for search throughout a data-intensive system.

The architecture of the search component in a data-intensive system typically
takes the form of a distributed structure in which one or more catalogs (containers
for indexes and metadata, managed by file management components as identified in
Fig.2.2) are populated with information about the corpus of data to be cataloged.
In this arrangement, the logical entities include the query handler, which accepts
desiderata in the three forms as described above; the indexer, that provides informa-
tion for queries and creates the catalog of data; the schema manager, that provides
the configurable set of metadata for queries; the converter, that accepts data to add to
the catalog, analyzes it, and extracts metadata, and passes such digested data to the
indexer; and the storage broker, that manages the persistence for all this information.
Ancillary components include replication management, controllers, authentication,
and authorization.

More specifically, the query handler accepts external queries, checks if they’re
well-formed, and uses the indexer for resolution. Query handlers may project a
number of client interfaces, from HTML forms, to HTTP-based web services
(including REST, XML-RPC, SOAP, and so forth), or language-specific application
programmer interfaces. The query handler gathers results and returns them to the
client, paginating as needed.

The schema manager maintains persistent metadata about indexed items. It is
equipped with the system curators’ selected metadata fields, their data types, and
so forth. For example, in a document data system, the schema manager would track
titles, authors, and abstracts. In a climate data system, it might be latitudes and
longitudes. Since search results contain only the locations of matching data and not
the data themselves, it’s the schema manager’s job to annotate those results with
enough useful information to inform end users of whether retrieving such data is
useful.

Finally, the indexer is the heart of the search component. It provides the logic
to handle queries, catalog data, and communicate with backend storage systems.
When data is entered into the system, it relies on metadata extraction and analysis
components to provide details to the schema manager. It relies on data conversion
components to translate foreign formats. It relies on the storage broker to maintain
such information over long periods of time. It builds high speed indexes for future
queries. And it services those queries.

In the ensuing section, we will build upon the existing challenges and describe
the relationship of data processing and analysis to them and to the data-intensive
system.

2.2.6 Data Processing and Analysis

Scientific data repositories have long focused on the need to capture data from
upstream data producers (instruments, sensors and other scientific activities),

38 C.A. Mattmann et al.

without carefully addressing science user needs for turning these repositories into
useful knowledge-bases. In light of this, many scientific domains have standardized
over time on science user pipelines or automated software workflows which
process and generate data from rich canonical science repositories, in order to
provide value-added answers and outputs to scientists, and to the broader decision-
support community. In a data-intensive system, this boils down to workflows, tasks,
workflow management systems, and resource management components as depicted
in the middle of Fig.2.2.

Often, the large amounts of data generated by a project need to be post-processed
before it can be analyzed by the scientists. Such is the case for example for
remote sensed data, where the data stream from the ground station needs to be
transformed through several successive algorithms to generate the required data
products. Another example is that of global climate model output that needs to be
regridded and downscaled to provide data that can be used to predict the effect
of climate change on a regional and local scale. Along the way, the relationship
between maintaining data and metadata for the intermediate inputs and outputs
of such science workflows and pipelines is critical since this information in many
ways drives downstream processing, and ultimately other interesting areas of data-
intensive systems such as provenance of output and the like. There is also a close
relationship to other architectural components, including file management (to stage
files and metadata for the steps in each workflow), curation, and dissemination to
the node where the step is processing.

Post-processing these large volumes of data, often in real time, mandates
new requirements on the computing power of the hardware employed. When the
data cannot be processed on a single machine, the project needs to consider an
architecture that distributes the load over several servers, possibly configured to
perform different steps of the overall processing pipeline. This is demonstrated
through the resource management component and its main purpose as shown in the
middle of Fig.2.2. Cloud computing environments have increasingly become under
consideration as a method to dynamically allocate computing resources to a data
processing task, due to their ability to support sporadic burst processing, and storage.
In practice, clouds, grids, clusters, and even desktop computing machines are all
used and leveraged during scientific data processing, and all should be available as
suitable resources for use.

The close relationship with processing and with file and metadata management
also begets an important connection to information modeling. Often, science
algorithms and workflow tasks are not necessarily concerned with maintaining
provenance, and other data system metadata inasmuch as they are concerned with
presenting the output science result or measurement. To ensure that the provenance
of executing these science algorithms is captured, many data-intensive systems
employ an architectural wrapper approach [21]. The wrapper orchestrates the
lifecycle of the individual step in the scientific processing, ensuring the appropriate
files, and metadata are provided, that the appropriate inputs are available and pre-
conditions met, and that metadata and output data files are cataloged and archived

2 Architecting Data-Intensive Software Systems 39

and made available for distribution. We point the reader to our own work in the
context of several science data processing systems in Earth science for further
information [6].

We close out this section and the discussion of key challenges below by
highlighting the importance of information modeling.

2.2.7 Information Modeling

In a data-intensive software system, especially one with requirements for long-term
data usability and persistence, the metadata should be considered as significant as
the data. For example, a digital image is essentially useless to a planetary scientist
unless information about the locations of the light source, the imaging instrument,
and the target body are all known, preferably within a single frame of reference.
Metadata is often captured in a data-intensive system within a catalog or registry
(as demonstrated in the left upper portion of Fig.2.2). In some scientific domains
(e.g., NASA planetary missions), the experiment is non-repeatable since it occurred
over a particular unique space/time sequence. Because of this, it is in the best interest
of the science community to collect as much information as possible about the
observation and the context within which it was performed for future reference.
Metadata is also required to index and classify the data for search and retrieval as
described in Sect. 2.2.5 and throughout Sect. 2.2 and as shown in the upper right and
lower left portions of Fig.2.2.

Information models are used to define, organize, and classify metadata. These
include models for the actual data as well as models for other digital, physical and
conceptual things in the domain. For example in addition to a model for a digital
image file, others might be required to describe the digital calibration data required
to produce scientifically useful products®, the physical instrument that collected the
data, and the mission that managed it.

Data-intensive software systems also have system interoperability and data
correlation requirements. Shared information models [22] are needed to meet these
requirements by adding semantics, basically formally defined relationships between
things in the models. Furthermore to achieve seamless connectivity important
assumptions must be made about the information models being used to provide
the semantics, including having a single shared ontology and the need for human
assistance in the development of the ontology. Without a single shared ontology
the effort to achieve connectivity across pre-existing repositories is essentially
“cryptography” and rapidly becomes intractable.

Information models help describe data as it is provided to the user through
data portals, search and curation tools, and to software programs looking for the
appropriate files to stage for data processing and for science algorithms (shown in
the upper right, and middle portions of Fig.2.2).

3In the world of science data systems and data-intensive systems in general, “products” refer to the
output data file(s) along with their metadata.

40 C.A. Mattmann et al.

With the above understanding of the key challenges of data-intensive systems
as they relate to software architecture out of the way, in the next section we
will illustrate modern, real-world examples and manifestations of these challenges
within the architectures of science data systems for regional climate modeling,
astronomy and radio science, along with snow hydrology. In doing so, we will also
highlight strategies and approaches for dealing with these important challenges.

3 Representative Science Data Systems

Having covered the challenges that data-intensive computing presents, we will
expand on several examples from our collective project experience. It is our goal
to illustrate the commonality between these examples despite the extreme variance
in the area of scientific study from project to project.

The goal is two-fold. First, we demonstrate that the key challenges of data-
intensive systems manifest independent of the science domain; and second, we
strive to highlight successful architectural approaches and strategies (relating back
to Sect.2) that have proved effective as a means for addressing these stringent
challenges.

3.1 Climate Modeling

Climate modeling is a computationally expensive task, both in terms of data
processing and data volumes (recall Sects.2.2.6 and 2.2.1). While the accuracy of
climate projections is limited by both the level of understanding of the Earth system
and the available computer resources, currently the bottleneck lies primarily with
the computer resources [18].

By the early twentieth century, scientific understanding of the atmosphere had
reached a stage where accurate predictions could, in theory, have been made if
adequate computer resources had been available. This is illustrated by the fact that
during World War I, mathematician Lewis Fry Richardson, devised an atmospheric
model broadly similar to those in use today. He attempted to make a weather forecast
using this model, but limited by the computer resources of the day (he ran the model
by hand, performing calculations using pen and paper), it took him several months to
produce a 6-h forecast [23]. Consequently, routine weather predictions and the even
more computationally expensive problem of climate prediction were unfeasible until
the advent of modern computers later in the century.

Climate models work by splitting the entire Earth system (atmosphere, land
surface, ocean and sea ice) into a three dimensional grid and using the laws of
physics to predict the future evolution of various state variables at each grid box.
The models make projections up to 100 years ahead by calculating the evolution in
sequences of short time steps (each only a few tens of minutes long). Over time,

2 Architecting Data-Intensive Software Systems 41

the steady increase in computing power has allowed the model grid length to be
reduced (smaller boxes give a finer representation of the atmospheric features) and
the complexity of the simulations to be increased.

Recently, the scientific community has faced a challenge in how to maintain this
performance increase in the face of a trend towards massive parallelization in HPC
architectures. Existing climate model codes do not scale well across many thousands
of CPU cores and major re-engineering may be required to take advantage of the
potential of massively parallel architectures. Currently, atmospheric models are
parallelized such that each core handles a geographically distinct region. However,
as changes in the atmosphere at one point depend on nearby conditions, considerable
communication between cores is required, reducing the scalability of the system.

As the resolution of the climate models increases, so does the volume of data
produced (Sect. 2.2.1). Today, climate research projects often involve international
collaboration between teams from many research centers, often involving data from
several models. The problems of disseminating and processing statistics (recall
Sects.2.2.2 and 2.2.6) on such large datasets is becoming an increasingly serious
challenge to the community. In addition, different models use different file formats
and meta-data conventions posing significant difficulties to researchers working on
output from more than one model. Currently, coordinated attempts are being made
to assist in the efficient dissemination and processing (Sects.2.2.2 and 2.2.6) of
climate model datasets through the creation of unified data portals which provide a
single source of data from multiple models in a common format.

Among the key computational aspects of climate modeling for predicting future
climate and its impact on human sectors is the fact that the assessment of climate
variations and change on regional sectors require high resolution information since a
number of important climate features vary according to regional-scale variations in
underlying surfaces. For example, precipitation and snow budget that play key roles
in the occurrence of flooding and water resources in California is closely related with
the regional complex terrain (e.g., [24-26]). Climate simulations at such fine spatial
resolutions for time scales of a century or more, minimum for resolving long-term
climate trend challenges computational infrastructure for both CPU cycles and the
handling (dissemination and storage) of model output. The CPU-cycle requirement
has been progressing well during the past three decades with the development of
massively parallel computer architectures and programming.

The data dissemination (recall Sect.2.2.2) part has also been progressing with
the progresses in physical storage; however, it is still a bottle neck in climate
modeling. Because running global climate simulations at the spatial and time scales
to meet the needs for impact assessment and computing long-term climate trends,
respectively, remains cost-prohibitive, the climate modeling community employs
nested modeling in which regional climate models are used to spatially downscale
relatively coarse global model data.

Handling of massive data from regional model runs is a specially important
problem. For example, one snapshot of model fields for the fine-resolution domain
is about 150 MB. Multiplying this with the frequency of model data sampling
(6h, i.e., four times a day) and the simulation period (20 years for a minimum

42 C.A. Mattmann et al.

obs model
B moce! juiprar
provided
Web Service Temporal
Interface Regridding

Spatial
e Regriddin
Output

m
*x
=
o
L
o
=)
7]

observational
datasets
Statistic (e.g.,

Fig. 2.3 The regional climate model evaluation system, or RCMES

to alleviate the effects of decadal variations), one regional climate run generates
about 4.5 TB of model output for its total volume. As model runs for at least two
periods, present-day and future, are needed for one set of climate change signals, one
scenario run generates about 10 TB of data. Note that this is a conservative estimate
based on the limited computational resources available to a small research group
consisted of a few researchers. Recent reduction in the cost of storage media allowed
regional climate modelers resolve the storage space problem somewhat; however,
transferring data from supercomputer centers to local storage and the performance
of local data storage in supporting data analysis remain major concerns.

Our most immediate experience in this area is centered around a project incepted
in 2009 funded by the American Recovery and Reinvestment Act (ARRA). The
project was focused on the assessment and generation of US Western regional
climate models using multiple observational datasets from e.g., the Atmospheric
Infrared Sounder (AIRS), MODerate resolution Imaging Spectrometer (MODIS),
and Tropical Rainfall Measurement Mission (TRMM) projects. Leveraging the open
source Apache OODT framework (that we will further discussion in Sect.4), we
constructed a Regional Climate Model Evaluation System (RCMES) [27] with two
principal components, shown on the left and right sides of Fig. 2.3.

The Regional Climate Model Evaluation Database (RCMED) (left side of
Fig.2.3) was built to warehouse data point tuples (of the form time, lat, lon, value)
from the aforementioned observational datasets and their respective file formats
ranging from NetCDF, HDF4/5, to GRIB [27]. The RCMED provided an external
user-facing web service allowing spatial/temporal searches (recall Sect.2.2.5 and
the right side of Fig.2.1) of the relevant observational data for a particular region
of interest. Over the lifespan of the project, we have ingested over 14 billion data
points into RCMED at a rate over 60,000 tuple records per second.

2 Architecting Data-Intensive Software Systems 43

The web service’s primary consumer, the Regional Climate Model Evaluation
Toolkit or RCMET, complemented the RCMES by providing temporal and spatial
regridding of the observational data to match up to the provided climate model
outputs (shown in the right side of Fig.2.3). This was a computationally intensive
data processing (recall Sect.2.2.6) task that produced output bias calculations
(demonstrating the model or observational data biases when compared), and other
relevant decision-making outputs.

In the following section, we will discuss a relevant data-intensive system example
in the domain of astronomy.

3.2 Astronomy

Astronomy has had a long history of data intensive problems. Even observers in
the pre-telescopic era could generate stellar catalogs having 1,000 or more entries.
With the invention of the telescope, and then photographic and spectroscopic
systems, the data volume increased dramatically, to the point that it was necessary
to employ “human computers” in order to keep up. In the modern era, telescopes
and numerical simulations are being designed that challenge many aspects of data
intensive processing (Sect.2.2.6), including processing, data storage, and curation
(Sect.2.2.2).

Cosmology is the study of the origin and fate of the Universe, and it can
be a science driver for extreme processing. Recent observations have provided a
reckoning of the major constituents of the Universe, namely it is composed of
approximately 4% of baryonic matter, 21% of dark matter, and 75% of dark energy.
Baryonic matter is “normal” matter, composed of proton, neutrons, and electrons;
dark matter is largely unknown, though its nomenclature stems from the fact that
it does not appear to emit or absorb light and its presence can be inferred only
from its gravitational effects; and dark energy is described largely in name only,
as a component that may act effectively as if it has negative pressure but may also
indicate a fundamental breakdown of our understanding of gravity on the largest
scales.

Improving our knowledge of these constituents, and particularly probing the
extent to which their balance may have changed with cosmic time, requires surveys
of a significant fraction of the volume of the Universe. There are a number of surveys
in which galaxies are used as point mass tracers of the Universe and which are either
underway or being planned for this decade, and into the next, for ground-based
telescopes. A partial listing includes the Baryon Oscillation Sky Survey (BOSS)
and its successor BigBOSS, the Evolutionary Map of the Universe (EMU), the all-
sky survey with the Large Synoptic Sky Telescope (LSST), and an all-sky survey
with the Square Kilometre Array (SKA).

The EMU survey on the Australian SKA Pathfinder (ASKAP) and the SKA
surveys could drive quite extreme processing requirements. Both ASKAP and
the SKA are interferometers, in which one does not obtain an image of the sky

44 C.A. Mattmann et al.

Table 2.1 Telescope parameters and resulting processing requirements

Australian SKA pathfinder Square kilometre array Square kilometre array
(ASKAP) phase 1 (SKAI) phase 2 (SKA2)
Nantenna = 30 Nantenna ~ 250 Nantenna ~ 1,000
Npeams = 30 Npeams = 1 Npeams = 1?7

Nirequency ~ 16k Nirequency ~ 16k? Nirequency ~ 16k?

Niime ~ 4k

Naia ~ 1.8 X 1012 Naa ~ 4 X 1012 Naia ~ 65 X 102
Nops ~ 18 x 1010 Nops ~ 40 x 1013 Nps ~ 650 x 1013

directly. Rather, an interferometer consists of N individual apertures (telescopes).
Each unique pair of telescopes samples a particular Fourier component of the sky
brightness distribution, and the whole interferometer provides N(N — 1)/2 Fourier
samples. An image of the sky is obtained by Fourier inverting these N(N —1)/2 sam-
ples. In practice, obtaining the image requires more than “just” a Fourier transform,
as various corrections for uneven sampling and instrumental effects must be applied.
Moreover, because of instrumental effects or galaxy emission characteristics or
both, it is desirable to obtain samples at multiple frequencies or wavelengths, and
the Universe is faint, necessitating long integrations. Finally, ASKAP will, and the
SKA may, have a “multi-beaming” technology deployed that allows multiple images
to be obtained simultaneously. These processing requirements are summarized in
Table 2.1.
The total data that must be processed in order to produce a single image is then

~ 2
Ndata ~ Namenna NbeamerequencyNtime

where Naneenna 1S the number of antennas in the array, Npeam 1S the number of “beams”
or independent fields of view generated by the “multi-beaming” technology,
Nirequency 18 the number of frequencies or wavelengths processed, and Nijpe is the
number of time samples collected. Significantly, current community estimates are
that the number of operations required to correct for instrumental effects could be as
large as 10*~10° per datum. Table 2.1 summarizes what the telescope parameters are
for ASKAP and the SKA and the resulting processing requirements. In the case of
the SKA, many of the design choices are not yet finalized; thus, the values listed in
Table 2.1 should be seen as indicative rather than definitive. Table 2.1 also assumes
the lower value for the number of operations, namely 10* per datum. Nonetheless,
it is clear that even the conservative assumptions yield processing requirements of
tens to hundreds of Peta-operations.

The Universe can provide a laboratory with which to test fundamental laws of
physics, which in turn can drive data storage requirements. One of the most famous
examples of using the Universe as a proving ground for fundamental theories was
the 1919 solar eclipse expeditions that were mounted, in part, to test a prediction of
Einstein’s recently published Theory of General Relativity (GR). Those expeditions

2 Architecting Data-Intensive Software Systems 45

demonstrated that the stars seen near the limb of the Sun, i.e., for which the line of
sight was strongly affected by the gravitational field of the Sun, had their positions
shifted by an amount consistent with that of GR, and inconsistent with Newton’s
Universal Law of Gravitation. Today, of course, GR has entered modern life, as
GR corrections must be incorporated into satellite navigation (e.g., with the Global
Positioning System or GPS).

One modern test of GR uses binary star systems. A particular class of star is a
neutron star, and a subset of neutron stars is detectable as radio pulsars. These stars
are the condensed remnants of massive stars, containing perhaps 150% of the mass
of the Sun packed into a volume of about 10 km in radius, and they produce regularly
repeating pulses of radio radiation. In the best cases, the arrival time of a pulse from
a pulsar can be predicted to better than 100 ns precision. The combination of large
masses and high precision makes pulsars exquisite clocks for GR tests.

The exemplar for such tests of GR is the system PSR B1913 4 16, which consists
of two neutron stars in an approximately 8 h orbit* about each other, with one of the
neutron stars detected as a pulsar. The discovery and subsequent precision timing of
the pulses from this system resulted in the 1993 Nobel Prize in Physics. Since the
discovery of PSR B1913 4 16, there have been a few other such neutron star-neutron
star binaries discovered, including the recent discovery of the double pulsar PSR
JO737 — 3039, in which both neutron stars have been detected as pulsars; there are
also neutron star-white dwarf> binaries known that can probe other aspects of GR.
In GR, the most compact object that could exist is a black hole, and there is intense
interest in finding a black hole-pulsar binary as a number of previously inaccessible
tests of GR would then become possible.

One of the main difficulties in conducting such tests is that sufficiently useful
pulsars are rare. There are currently approximately 2,000 pulsars known. Of these,
fewer than 10% can be used for high precision GR tests of one kind or another;
indeed the very best pulsars may constitute only a few percent of the total known
population. Estimates of the total (detectable) pulsar population in the Galaxy are
as large as 20,000, suggesting that many more could be found. Moreover, for some
of the tests of interest, it is useful to have pulsars distributed widely on the sky,
which requires that one ultimately conduct a survey over the entire accessible sky
for pulsars.

Searching for pulsars requires large telescopes because pulsars are generally
quite faint. Obtaining sufficient signal to noise on pulsars also often requires
collecting data over a large frequency (or wavelength) span and over a sufficient time
interval. However, pulsar pulses are short durations, of order 1 ms, necessitating
rapid time sampling, and their radio signals are affected by propagation through the

“The size of their orbit is comparable to the diameter of the Sun.

5A white dwarf is the remnant of a star with a mass of about that of the Sun compressed into a
volume about the size of the Earth. The Sun will end its life some five billion years hence as a
white dwarf.

46 C.A. Mattmann et al.

Table 2.2 Illustrative data volumes generated by Pulsar surveys

Green bank telescope/Arecibo

Parameter observatory/Parkes telescope SKA

Dt 20-70 min 30 min

Dt 64-82 s 50 uS

Dn 300-800 MHz 800 MHz

Dn 24-100 kHz 20kHz

Ndata 44-2.200 x 10° samples 1,440 x 10° samples
Pixels in the sky ~350 x 10° ~76 x 10°

Full sky survey 20 x 10" samples 4.6 x 10'® samples

interstellar medium, necessitating maintaining a narrow frequency sampling. For
each “pixel” on the sky, the number of data acquired is then

Dt Dn
Nyata = a a

where Dt is the total integration time, dt is the time sampling, Dn is the total
frequency bandwidth processed, and dn is the frequency channelization or sampling.

Table 2.2 presents illustrative data volume values for modern-day pulsar surveys,
such as those being conducted at the Green Bank Telescope (GBT), the Arecibo
Observatory, or the Parkes Telescope, and a future survey with the SKA.

For a single-dish telescope such as the GBT, Arecibo, or Parkes, a “pixel”
on the sky is defined by the size of the field of view; both Parkes and Arecibo
have implemented multi-feed system that effectively provides approximately 10
independent and simultaneous fields of view, increasing the data volumes by
approximately an order of magnitude. Specifically, the dimensions of a single pixel
could be typically 16 arcminutes (at a fiducial frequency of 800 MHz or a fiducial
wavelength of 37cm), resulting in about 350 x 10° pixels in total in the sky.
Conversely, for the SKA, because it is an interferometer with much higher angular
resolution, a typical pixel dimension might be 1.2 arcminutes, resulting in as many
as 76 x 10° pixels in the sky. Table 2.2 also summarizes what the resulting data
volume would be for an all-sky pulsar survey, cast in terms of “samples.” Clearly,
if the data represented by only 1-byte samples, it would be quite easy to obtain
Exabyte data volumes.

Our focus here has been on pulsar surveys, which are conducted at radio
wavelengths. However, ground-based optical surveys, such as to be conducted by
the LSST, could easily generate tens of Terabytes of data per night. For instance,
the LSST envisions having a 3.2 Gpixel camera that is read out every 15 s. Over the
course of a night, 30 TB will be generated, or about 10 PB/year. During the LSST’s
nominal 10 year lifetime, the data volume begins to approach an Exabyte.

Finally, much of this discussion has focused on data to be generated by future
telescopes. Astronomy is a notable science in that the typical time scale of many
phenomena can exceed a human lifetime, often by a large factor. By retaining

2 Architecting Data-Intensive Software Systems 47

the data from a telescope for significant durations, it can be possible to probe the
behavior of various kinds of objects on time scales that would not otherwise be
possible. For example, by collecting and combining data from photographic plates
and modern observations, it is possible to reconstruct the brightness variations of
some sources over durations that exceed 100 years. Clearly, data curation over such
durations both opens investigations that otherwise would not be possible — perhaps
not even imagined at the time that the original observations were taken — but also
poses significant challenges.

Experience with existing instruments, such as the Hubble Space Telescope (HST)
and the Very Large Array (VLA), also has demonstrated the power of a data archive.
While the archive of neither telescope is yet particularly large, they have proven
quite useful, as the number of scientific papers being generated by re-analysis of
archival data is now equaling or exceeding the number of scientific papers being
generated from new observations. Moreover, major telescopes, such as the HST
and VLA, have lifetimes that are measured in decades. Thus, it is likely to become
necessary to provide for data curation on time scales of many decades.

Figure 2.4 demonstrates a recent data processing system that we developed
to process data from the Expanded Very Large Array (EVLA) instrument, a
data-archive centric instrument with more than ten times the VLA’s sensitivity.
EVLA data (the day2_TDEM_0003_10s_norx) is disseminated (Sect.2.2.2) across
the world-wide-web and delivered to a staging area, where it is automatically
curated and metadata is extracted. The data is then ingested into the file management
component (center of Fig.2.4) labeled as FM where the extracted metadata is
stored in a catalog (labeled as car in Fig.2.4) and the data itself is moved to a
repository (labeled as rep in Fig. 2.4). Separately, a system operator sends an event
to being processing the EVLA Spectral Line Cube (eviascube in Fig.2.4) task,
a Common Astronomy Software Applications (CASA) [28] program developed
for the EVLA summer school in 2010. The workflow management component
(labeled as WM in the middle-right of Fig. 2.4) is responsible for running the CASA
program, which is wrapped in a science algorithm wrapper called CAS-PGE, part
of the Apache OODT project that we will describe further in Sect. 4. The wrapper
communicates with the file management component, figures out the locations and
metadata associated with the day2_TDEM_0003_10s_norx and then provides that
information to the CASA program so that it can process it and generate a spectral
line cube image. The result image, and calibration tables are ingested into the file
management component by the wrapper, and made available to external users via
a data portal (recall the upper right portion of Fig.2.2) that provides search and
dissemination (recall Sects. 2.2.5 and 2.2.2, respectively) of the results to the science
community.

We will wrap up Sect.3 by describing the domain of snow hydrology, and its
data-intensive challenges, along with a representative data system that we have
constructed to address them.

48 C.A. Mattmann et al.

day2_TDEMOOO3_10s_norx

day2_TDEMO003_10s_norx

Staging
Area
(o] products,
§' 5 metadata
SIE >
w Science
system

@ status

Curator |[«—»| FM 23 >
g 7]

— proc Ata System
Legend: . o - S
Apache —_— |
0QODT wntrolﬂw.‘ w
Monitor
— hEN
data
i fmet
e ska-dc.jpl.nasa.gov

aviascube avent

Fig. 2.4 A prototype architecture demonstrating data processing, and archiving of extended very
large array (EVLA) data

3.3 Snow Hydrology

Snow cover and its melt dominate regional hydrology in many of the world’s
mountainous regions. One-sixth of Earth’s population depends on snow- or glacier-
melt for water resources, and people in these areas generate one-fourth of the global
domestic product [29, 30]. In the Western US, more than 70% of the freshwater
supply comes from snowmelt from the geographically limited mountain ranges.
Recent analyses of long-term surface observations show a declining snowpack
and snow cover in the western US attributable to increasing temperature [31-33].
Investigations in the Colorado River Basin show that radiative forcing by dust from
the Colorado Plateau in the mountain snow cover consistently enhances snowmelt
and leads to a month’s earlier loss of snow cover extent [34].

Today, the western US face significant water resource challenges due to increas-
ing demands related to population growth and for economic and environmental

2 Architecting Data-Intensive Software Systems 49

Crawler FileManager

Push/Pull

LPDAAC R

file staging

: Reusable

| OO0DT Components I'\:I:et;acllata
Snow DS Specific atalog

: Components

e o o o o e e e e e e e e e o e e e

Fig. 2.5 The SnowDS (data system) and its instantiation using Apache OODT

needs. If current trends continue, future demands are expected to increase by 40%
in the next 30 years according to the US Western Governor’s Association and
their 2006 report. The complexity of Western water management gives rise to
the significant role of science and the need for improved observations to support
sustainability for generations to come [35].

Resource managers are tasked with projecting run-off amounts in order to
manage reservoirs, dams, and water allocations for several western States and
Mexico. In the past, planners have relied on information developed from historic
observations of stream flow, snow pack, soil moisture and climate drivers coupled
with a sparse network of snow and stream gages as input to decision tools for
seasonal and yearly planning. However, it is becoming clear that this approach is
no longer viable, as historic observations perform poorly under a changing climate
[36], and changes in precipitation and snow patterns hinder accurate assessments of
snow and runoff conditions using the existing system of sensors. The result has been
a decline in the accuracy of water supply forecasts in the western United States.

The data system infrastructure developed to support this effort consists of a
scalable, end-to-end processing environment centered around custom algorithms to
perform enhanced filtering of raw remote sensing observations and a distribution
architecture for the generation and delivery of data products to the National Snow
and Ice Data Center Distributed Active Archive Center (NSIDC-DAAC). The
increased coverage and enhanced accuracy of the data products generated by the
system fill critical gaps in the present snow and ice record. The data system
infrastructure is show in Fig. 2.5.

The first task was to obtain the required data to fully process and analyze the
Colorado River Basin (CRB) using a distinct set of MODIS MODO09GA tiles.
Using the Apache OODT data management framework, we immediately started
to download the data into our staging area, where the files were then crawled
and metadata ingested into the file management component. OODT’s file manager
requires a set of XML policy files to set up the metadata structure for ingestion of

50 C.A. Mattmann et al.

Tile

Tile - +hoovear.has e | —.

B v . ™ Tile mrtresample
Tile - *h@9oves*.hdf ::_""‘_,_, * hdf 5
Tile - *hieve4*.hdf

Surf_Reflect_bel.tif
surf_Reflect_be2.tif

Surf_Reflect_b@3.tif *.bip file
surf_Reflect_be4.tif (Band Interleave
surf_Reflect_b@5.tif by Pixel)

Surf_Reflect_bes.tif
Surf_Reflect_be7.tif

cirrus.tif
clouds.tif
cloudShadow.tif
water.tif

State 1km.tif [—

Compute
Cloud Cover

MODDRFS
Processing

Solar Zenith.tif

O processing

[] data files moddrfs . tif (geo-tif)

moddrfs.img (raw image)

Fig. 2.6 The MODIS dust radiative forcing of snow (MOD-DREFES) algorithm and its processing

products. This “metadata first” approach helps to ensure that a common information
model is in place before the data is actively placed in the archive. Figure2.4
illustrates the data ingestion pipeline that was deployed to support the on-going
snow research project at JPL.

Utilizing the OODT framework offered a variety of time-saving benefits that ex-
tended beyond metadata collection: by simple configuration changes, we were also
able to archive the raw MODIS data files on disk within a directory structure what
was organized around temporal and geospatial considerations, making downstream
discovery and processing considerably easier.

After just over 2 weeks, the team had obtained over 9 years of MODIS satellite
observations from the upstream archive, and the focus shifted to the processing and
generation of MODIS Dust Radiative Forcing of Snow (MOD-DRFS) products. To
implement the specialized algorithms, we installed the OODT workflow manager
and wrapped the native Perl and IDL code used to transform MODIS products
into MOD-DRFS products. Figure 2.6 shows the entire multi-staged process used
to generate MOD-DRFES. After a number of exploratory test runs, we estimated
that processing the entire dataset would take just over 16 days of uninterrupted
processing, and decided to investigate the potential time savings that increased
parallel processing might afford.

Apache OODT offers a resource management component that can be utilized to
map workflow jobs to remote batch nodes based upon node resource availability,
allowing workflow steps to be distributed and managed across multiple compute

2 Architecting Data-Intensive Software Systems 51

nodes. The team configured the software and installed batch stubs on another
machine, and in 2 days we started processing MOD-DRFS across eight nodes
using a standard configuration. With additional testing and configuration, the nodes
were further optimized for better performance. Less than 4 days (a 76% reduction
in processing time) later, all of the MOD-DRFS data was created, with metadata
extracted and archived back into the file manager.

In the very near term, we expect that the primary significance of this system
will be a dramatic reduction in the amount of time necessary to process multiple
years of remote-sensing data for the purpose of determining snow and ice cover
in the western United States. The development of a full-featured data system
infrastructure will provide operational benefits in the areas of scalability, reliability,
and repeatability that are not currently achievable. By increasing the efficiency with
which large volumes of remote-sensing data can be processed, we expect to be able
to generate a large volume of data products immediately relevant to ongoing policy
and decision-support efforts.

4 The Role of Middleware and the Road Ahead

The field of data intensive software systems has blossomed recently as the relentless
advance of technology has begun to put massive amounts of computational power
and storage capacity within reach of projects with more modest budgets. As a
result, more and more organizations are discovering the possibilities, insights, and
competitive advantages to be had from the creative application of algorithms to
massive collections of data. As this proliferation of software (much of it open
source recall Sect.2.2.5) for managing different aspects of the data management
process continues to expand, we believe that middleware software packages that
facilitate the integration of these disparate components into end-to-end data pro-
cessing pipelines like the ones discussed in the previous section will play an
increasingly prominent role. In this section we will describe one such middleware
framework, the Apache Software Foundation’s Object Oriented Data Technology
(OODT) project [5], to illustrate how middleware specifically designed with the
challenges of manipulating massive datasets in mind is becoming an essential
element for rapidly composing robust, reusable systems for data management and
analysis.

Apache OODT represents a Domain Specific Software Architecture (DSSA) [37]
that grew out of a more than a decade of effort NASA’s Jet Propulsion Laboratory
(JPL) in Pasadena, California, in the area of designing robust data management
solutions for NASA’s planetary and Earth science missions. The scientific diver-
sity of these missions, which include investigations into climate, physics, space
exploration, and even the medical fields (as you will recall from the descriptions
in Sect. 3), had, before OODT, led investigators to reinvent the data system from
scratch each time. Yet, despite their apparently unrelated scientific goals, each

52 C.A. Mattmann et al.

of these missions largely shared a core set of common data management and
processing needs (recall Sect.2.2), and faced a largely similar set of fundamental
challenges. This insight, that underneath the differences in semantic interpretation
of the data, the basic processing needs could be addressed through common,
architecturally principled components, was the driving force behind the original
development of OODT.

OODT’s strength is that its architecture and evolution has never been driven
by any one particular domain, but rather has been informed over the years by
continuous input from a broad spectrum of scientific efforts. As a result, OODT has
implemented a flexible set of domain-agnostic components that users can pick and
choose from to create a platform on which focused, domain-specific solutions can
be built. As a concrete example, OODT does not contain algorithms for processing
satellite imagery and generating higher order products from raw data. Rather, it
provides a highly configurable, wrappable workflow processing framework that can
be combined with a file management component to dramatically reduce the time
required to string together such domain-specific processing algorithms into a full-
fledged data-intensive pipeline.

As mentioned before, the benefit that middleware packages such as OODT pro-
vide to the modern data-intensive software system is that they enable such systems
to be composed out of reusable, loosely-connected components that communicate
among one another over standard interfaces and open protocols. This architecture
contrasts with the monolithic “silo” approach often adopted for “one-off” solutions,
and offers several distinct advantages.

In particular, because the component pieces of the data system are separable, the
system itself can be made more resilient to technological evolution and changing
requirements. As illustrated by the discussion from Sect. 2.2, data-intensive soft-
ware systems are expected to cope with increasing data volumes and processing
complexity, making this advantage particularly appealing.

The primary benefit of leveraging a technology like OODT in the construction of
a data-intensive software system is its ability to act as a glue layer, facilitating com-
munication and interaction between distributed, possibly heterogeneous upstream
data sources, scientific processing algorithms, data archiving infrastructure, and data
dissemination technologies. In the following section we describe a representative
cross-section of examples where integration between OODT and a variety of
enterprise-class open source software facilitate the rapid development of massively
scalable pipelines for data management and processing.

With a firm understanding of the architectural challenges related to data-intensive
systems and with concrete examples of the manifestation of those challenges
and approaches to deal with them under our belts, we will describe in detail
the Apache Object Oriented Data Technology (OODT) project [5] and our ex-
perience using it as a framework for addressing the challenges of data-intensive
systems.

2 Architecting Data-Intensive Software Systems 53
4.1 Apache Object Oriented Data Technology

Rather than seeking to develop a domain-specific solution end to end from scratch,
the prevalence of industrial-strength open-source software, freely maintained by
communities of subject-matter experts, makes it easier than ever to obtain best-in-
class solutions to specific aspects of the data management pipeline, and to leverage
middleware packages like OODT to yoke together these individual workhorses into
a powerful, purpose-driven pipeline.

The major components that comprise Apache OODT can be broken down into
two families that we will discuss further below.

4.1.1 Information Integration Components

OODT’s information integration components help users search, access, and dis-
seminate data and metadata. The Profile Server component delivers descriptions of
data, or metadata, including the Dublin Core [38] set of metadata elements, and cus-
tomized [SO-11179 [39] extensions for resource location, and for mission-specific
annotations (e.g., latitude and longitude for geo-located files; or mission and target
for planetary science files). Profile servers describe data delivered back by Product
Server components. Product servers are responsible for hiding the uniqueness of
backend data stores and repositories of science data files, and delivering back the
data from them seamlessly. Query Servers unite the product and profile servers by
using the profile servers to locate resources (even other profile servers and product
servers) that match a provided query and then packaging up the resultant data files
and metadata and delivering it back to the user automatically, or interactively. These
components directly deal with the key challenges of data dissemination, search,
open source and information modeling (recall Sects.2.2.2,2.2.4, 2.2.5, and 2.2.7
respectively). The information integration components are useful when write-access
to the underlying repositories and catalogs are not available, yet the use case calls for
unobtrusively exposing the collected data and metadata and presenting it externally
via search and dissemination techniques.
In the next section we will describe the OODT data processing components.

4.1.2 Data Processing Components

OODT’s data processing components include a triumverate of services. The file
management component, workflow management component and resource manage-
ment components catalog and archive files and metadata in repositories and catalogs
automatically, and interactively (directly supporting curation recall Sect. 2.2.3 and
the left-middle portion of Fig.2.2 and dissemination recall Sect.2.2.2 and the left-
middle portion of Fig.2.2); data-flow and control-flow orchestration (recall the

54 C.A. Mattmann et al.

middle-bottom portions of Fig.2.2 and Sect. 2.2.6) and management of underlying
hardware resources, be it grids, clouds, clusters and compute nodes (middle portions
of Fig.2.2 and Sect. 2.2.1), respectively.

Several client frameworks are part of the data processing components. The
combination of a pushpull component that acquires remote data files and metadata
negotiating various protocols (FTP, SCP, etc.) to obtain it and an automatic file
identification and crawling framework assist in getting files and metadata into the
file manager component. A science algorithm wrapper (recall the discussion in
Sect.2.2.6) called CAS-PGE provides an unobtrusive interface to the ecosystem
of data processing services in order to stage files, metadata, and input into the
algorithm, to execute it, and to record its output and provenance.

It is no coincidence that the major elements of data-intensive processing,
ingestion, and dissemination all coincide with this family of OODT components.
The components were designed, from first principles, with the goal of addressing
the key challenges of data-intensive systems, and with an eye towards flexibility,
and extensibility to accommodate inevitable technology change and evolution.

5 Conclusion

In this chapter, we have strived to provide an overview of the relevant architectural
areas and of seven key challenges associated with data-intensive systems. The
chapter serves two primary purposes. First, it provides a contextual overview of
the important architectural components, techniques and architectural patterns for
science data systems, an important cross-section of the realm of data-intensive
systems that you will cover in this handbook. Second, the chapter frames the
discussion of these challenges and architectural patterns within the context of
three real world examples in regional climate modeling, astronomy, and in snow
hydrology. Each of these scientific domains presents many important challenges
in data ingestion, processing, curation, dissemination, search, delivery, and the
remainder of the relevant architectural areas discussed.

Throughout the chapter, our goal was to optimize for breadth rather than depth
in any one particular issue. As our chapter is an overview of architecture for data-
intensive systems, its goal is to ground the discussion of later relevant, specific data-
intensive examples discussed in later chapters.

The material presented therein including the architecture and the challenges
serve as a roadmap and concrete research agenda for areas of improvement and
fundamental research in data-intensive systems. All of these areas are being actively
explored by many world-class institutions and researchers and progress is being
made. The future in the data-intensive systems domain is bright!

Acknowledgements This work was conducted at the Jet Propulsion Laboratory, California
Institute of Technology under contract to the National Aeronautics and Space Administration. The
authors would like to thank the editors of the book for their resolve to publish the book and to work
with the authors’ tenuous work schedules to get this chapter published.

2 Architecting Data-Intensive Software Systems 55

References

1.

10.

11.

12.

13.

14.

15.

16.

H. Rottgering, LOFAR, a new low frequency radio telescope. New Astronomy Reviews, Volume
47, Issues 4-5, High-redshift radio galaxies - past, present and future, September 2003, Pages
405-409.

. http://twitter.com/#!/chrismattmann/status/66141594474127361.
. C. Mattmann. Software Connectors for Highly Distributed and Voluminous Data-Intensive

Systems. Ph.D. Dissertation. University of Southern California, 2007.

. R. T. Kouzes, G. A. Anderson, S. T. Elbert, I Gorton, D. K. Gracio, The Changing Paradigm

of Data-Intensive Computing. Computer, vol.42, no.1, pp.26-34, Jan. 2009.

. C. Mattmann, D. Crichton, N. Medvidovic and S. Hughes. A Software Architecture-Based

Framework for Highly Distributed and Data Intensive Scientific Applications. In Proceedings
of the 28th International Conference on Software Engineering (ICSE06), Software Engineering
Achievements Track, pp. 721-730, Shanghai, China, May 20th—28th, 2006.

. C. Mattmann, D. Freeborn, D. Crichton, B. Foster, A. Hart, D. Woollard, S. Hardman,

P. Ramirez, S. Kelly, A. Y. Chang, C. E. Miller. A Reusable Process Control System Framework
for the Orbiting Carbon Observatory and NPP Sounder PEATE missions. In Proceedings of the
3rd IEEE Intl Conference on Space Mission Challenges for Information Technology (SMC-IT
2009), pp. 165-172, July 19-23, 2009.

. T. White. Hadoop: The Definitive Guide. 2"¢ Edition, O’Reilly, 2010.
. P. Couvares, T. Kosar, A. Roy, J. Weber, K. Wenger. Workflow Management in Condor. In

Workflows for e-Science. 1. J. Taylor, E. Deelman, D. B. Gannon, M. Shields, eds. Springer
London, pp. 357-375, 2007.

. Y. Gil, V. Ratnakar, K. Jihie, J. Moody, E. Deelman, P.A Gonzalez-Calero, P. Groth. Wings:

Intelligent Workflow-Based Design of Computational Experiments. IEEE Intelligent Systems.
vol.26, no.1, pp.62—72, Jan.-Feb. 2011.

D. Woollard, N. Medvidovic, Y. Gil, and C. Mattmann. Scientific Software as Workflows: From
Discovery to Distribution. IEEE Software — Special Issue on Developing Scientific Software,
Vol. 25, No. 4, July/August, 2008.

Science Gateways Group, Indiana University Pervasive Technologies Institute, http://pti.iu.
edu/sgg, Accessed:July2011.

D. N. Williams, R. Ananthakrishnan, D. E. Bernholdt, S. Bharathi, D. Brown, M. Chen,
A. L. Chervenak, L. Cinquini, R. Drach, I. T. Foster, P. Fox, D. Fraser, J. Garcia, S. Hankin,
P. Jones, D. E. Middleton, J. Schwidder, R. Schweitzer, R. Schuler, A. Shoshani, F. Siebenlist,
A. Sim, W. G. Strand, M. Su, N. Wilhelmi, The Earth System Grid: Enabling Access to
Multi-Model Climate Simulation Data, in the Bulletin of the American Meteorological Society,
February 2009.

J. Tran, L. Cinquini, C. Mattmann, P. Zimdars, D. Cuddy, K. Leung, O. Kwoun, D. Crichton
and D. Freeborn. Evaluating Cloud Computing in the NASA DESDynl Ground Data System.
In Proceedings of the ICSE 2011 Workshop on Software Engineering for Cloud Computing -
SECLOUD, Honolulu, HI, May 22, 2011.

M. McCandless, E. Hatcher, and O. Gospodneti. Lucene in Action, Manning Publications, 532
pages, 2011.

C. Mattmann, D. Crichton, J. S. Hughes, S. Kelly, S. Hardman, R. Joyner and P. Ramirez.
A Classification and Evaluation of Data Movement Technologies for the Delivery of Highly
Voluminous Scientific Data Products. In Proceedings of the NASA/IEEE Conference on Mass
Storage Systems and Technologies (MSST2006), pp. 131-135, College Park, Maryland, May
15-18, 2006.

A. Hart, C. Mattmann, J. Tran, D. Crichton, H. Kincaid, J. S. Hughes, S. Kelly, K. Anton,
D. Johnsey, C. Patriotis. Enabling Effective Curation of Cancer Biomarker Research Data. In
Proceedings of the 22nd IEEE International Symposium on Computer-Based Medical Systems
(CBMS), Albuquerque, NM, August 3rd—4th, 2009.

http://twitter.com/{#}!/chrismattmann/status/66141594474127361
http://pti.iu.edu/sgg, Accessed: July 2011
http://pti.iu.edu/sgg, Accessed: July 2011

56

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

C.A. Mattmann et al.

A.Hart, J. Tran, D. Crichton, K. Anton, H. Kincaid, S. Kelly, J.S. Hughes and C. Mattmann. An
Extensible Biomarker Curation Approach and Software Infrastructure for the Early De- tection
of Cancer. In Proceedings of the IEEE Intl. Conference on Health Informatics, pp. 387-392,
Porto, Portugal, January 1417, 2009.

C. Lynch. Big data: How do your data grow? Nature, 455:28-29, 2008.

N. R. Mehta, N. Medvidovic, and S. Phadke. 2000. Towards a taxonomy of software
connectors. In Proceedings of the 22nd international conference on Software engineering
(ICSE ’00). ACM, New York, NY, USA, 178-187.

J. Yu, R. Buyya. A Taxonomy of Workflow Management Systems for Grid Computing. J. Grid
Comput., 2005: 171~200.

D. Woollard, C. Mattmann, and N. Medvidovic. Injecting Software Architectural Constraints
into Legacy Scientific Applications. In Proceedings of the ICSE 2009 Workshop on Software
Engineering for Computational Science and Engineering, pp. 65-71, Vancouver, Canada,
May 23, 2009.

M. Uschold and G. M., Ontologies and Semantics for Seamless Connectivity. SIGMOD
Record, vol. 33, 2004.

L. F. Richardson. Weather prediction by numerical process, Cambridge University Press, 1922.
J. Kim. Precipitation and snow budget over the southwestern United Sates during the
1994-1995 winter season in a mesoscale model simulation. Water Res. 33, 2831-2839, 1997.

J. Kim, R. T. Kim, W. Arritt, and N. Miller. Impacts of increased atmopheric CO2 on the
hydroclimate of the Western United States. J. Climate 15, 1926-1942, 2002.

F. M. Ralph, P.J. Neiman, and G.A. Wick, 2004. Satellite and CALJET aircraft observations of
atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/1998, Mon.
Weather Rev., 132, 1721-1745.

A. Hart, C. Goodale, C. Mattmann, P. Zimdars, D. Crichton, P. Lean, J. Kim, and D. Waliser.
A Cloud-Enabled Regional Climate Model Evaluation System. In Proceedings of the ICSE
2011 Workshop on Software Engineering for Cloud Computing - SECLOUD, Honolulu, HI,
May 22, 2011.

J. P. McMullin, B. Water, D. Schiebel, W. Young, K. Golap. CASA Architecture and
Applications, Proceedings of Astronomical Data Analysis Software and Systems, Vol. 376,
p. 127, October 2006.

C. R. Bales., N. P. Molotch, T. H. Painter, M. D. Dettinger, R. Rice, and J. Dozie. Mountain
Hydrology of the Western United States, Water Resources Research, in press., 2006.

T. P Barnett, J. C. Adam, and D. P. Lettenmaier. Potential impacts of a warming climate on
water availability in snow-dominated regions, Nature, 438, doi:10.1038/nature04141, 2005.

T. P. Barnett et al. Human-induced changes in the hydrology of the western United States,
Science, 319(5866), 1080-1083, 2008.

P. W. Mote, A. F. Hamlet, M. P. Clark, and D. P. Lettenmaier. Declining mountain snowpack in
western North America, Bulletin of the American Meteorological Society, 86(1), 39-49, 2005.
D. W. Pierce, et al. Attribution of declining western U.S. snowpack to human effects, Journal
of Climate, 21, 6425-6444, 2008.

T. H. Painter, A. P. Barrett, C. C. Landry, J. C. Neff, M. P. Cassidy, C. R. Lawrence,
K. E. McBride, and G. L. Farmer. Impact of disturbed desert soils on duration of mountain
snow cover, Geophysical Research Letters, 34, 2007.

M. T. Anderson and J. Lloyd H. Woosley. Water availability for the Western United States —
Key Scientific Challenges, US Geological Survey Circular, 1261(85), 2005.

P. C. D. Milly, J. Betancourt, M. Falkenmark, R. Hirsch, Z. Kundzweicz, D. Lettenmaier, and
R. Stouffer. Stationarity is Dead, Wither Water Management?, Science, 319(5863), 573-574,
2008.

W. Tracz. 1995. DSSA (Domain-Specific Software Architecture): pedagogical example.
SIGSOFT Softw. Eng. Notes 20, 3 (July 1995), 49-62.

2 Architecting Data-Intensive Software Systems 57

38. S. Weibel, J. Kunze, C. Lagoze and M. Wolf, Dublin Core Metadata for Resource Discovery,
Number 2413 in IETF, The Internet Society, 1998.

39. Home Page for ISO/IEC 11179 Information Technology, http://metadata-stds.org/11179/,
Accessed:July2011.

40. National Radio Astronomy Observatory Innovations in Data-Intensive Astronomy Workshop,
http://www.nrao.edu/meetings/bigdata/, Accessed:06/27/11.

http://metadata-stds.org/11179/, Accessed: July 2011
http://metadata-stds.org/11179/, Accessed: July 2011
http://www.nrao.edu/meetings/bigdata/, Accessed: 06/27/11

2 Springer
http://www.springer.com/978-1-4614-1414-8

Handbook of Data Intensive Computing
Furht, B.; Escalante, A, (Eds.)

2011, XV, 794 p., Hardcover

ISEMN: 278-1-4614-1414-8

	Chapter
2 Architecting Data-Intensive Software Systems
	1 Introduction
	2 Key Challenges
	2.1 The Architecture of a Data-Intensive System
	2.2 The Challenges
	2.2.1 Total Volume
	2.2.2 Data Dissemination
	2.2.3 Data Curation
	2.2.4 Use of Open Source
	2.2.5 Search
	2.2.6 Data Processing and Analysis
	2.2.7 Information Modeling

	3 Representative Science Data Systems
	3.1 Climate Modeling
	3.2 Astronomy
	3.3 Snow Hydrology

	4 The Role of Middleware and the Road Ahead
	4.1 Apache Object Oriented Data Technology
	4.1.1 Information Integration Components
	4.1.2 Data Processing Components

	5 Conclusion
	References

