Chapter 2
An Approach to Interactive Co-segmentation

Abstract In this chapter, we describe in detail our approach to interactive co-
segmentation. We formulate the task as an energy minimization problem across all
related images in a group. The energies across images are tied together via a shared
appearance model, thus allowing for efficient inference. After describing our formu-
lation, we present an active learning approach that makes efficient use of users’ time.
A wide variety of cues are combined to intelligently guide the users’ next scribbles.
We then introduce our co-segmentation dataset, The CMU-Cornell iCoseg dataset,
the largest of its kind to date. We evaluate our system on this dataset using machine
simulations as well as real user-studies. We find that our approach can achieve com-
parable co-segmentation performance with less user effort.

2.1 Energy Minimization

Our approach [3] to multiple-image interactive co-segmentation is a natural exten-
sion of [7]. Given user scribbles indicating foreground / background, we cast our la-
belling problem as minimization of Gibbs energies defined over graphs constructed
over each image in a group. Specifically, consider a group of m image-scribble pairs
D={(2W W) . (2m 7Mm)\ where the k" image is represented as a
collection of n sites to be labelled, i.e. 2" *) = {Xl(k) ,Xz(k), .. ,X,Ep}, and scribbles
for an image . *) are represented as the partial (potentially empty)' set of labels
for these sites. For computational efficiency, we use superpixels as these labelling
sites (instead of pixels).? For each image (k), we build a graph, %) = (7 (K) £K)),
over superpixels, with edges connecting adjacent superpixels.

! Specifically, we require at least one labelled foreground and background site to train our models,
but only one per group, not per image.

2 We use mean-shift [10] to extract these superpixels, and typically break down 350500 images
into 400 superpixels per image.
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At the start of our algorithm, we require at least one foreground and background
scribble each. They can be in the same image, or in multiple images. Subsequent
iterations can have a scribble just from foreground or background. Using these la-
belled sites, we learn a group appearance model &7 = {A|,A,}, where A; is the
first-order (unary) appearance model, and A; the second-order (pairwise) appear-
ance model. This appearance model (<) is described in detail in the following sec-
tions. We note that all images in the group share a common model, i.e. only one
model is learnt. Using this appearance model, we define a collection of energies
over each of the m images as follows:
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where the first term is the data term indicating the cost of assigning a superpixel
to foreground and background classes, while the second term is the smoothness
term used for penalizing label disagreement between neighbours. Note that the (:)
part in these terms indicates that both these terms are functions of the learnt ap-
pearance model. From now on, to simplify notation, we write these terms as E;(X;)
and E;;(X;,X;), and the dependence on the appearance model ./ and image (k) is
implicit.

2.1.1 Data (Unary) Term

Our unary appearance model consists of a foreground and background Gaussian
Mixture Model, i.e., A; = {GMM,GMM, }. Specifically, we extract colour features
extracted from superpixels (as proposed by [14]). We use features from labelled sites
in all images to fit foreground and background GMMs (where number of gaussians
was automatically learnt by minimizing an MDL criteria [6]). We then use these
learnt GMMs to compute the data terms for all sites, which is the negative log-
likelihood of the features given the class model.

2.1.2 Smoothness (Pairwise) Term

The most commonly used smoothness term in energy minimization based segmen-
tation methods [11,12,21] is the contrast sensitive Potts model:

E(Xi,Xj) =1 (X,' %Xj) exp(—ﬁd,'j)7 (22)
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where I (-) is an indicator function that is 1(0) if the input argument is true(false),
d;j is the distance between features at superpixels i and j and f8 is a scale param-
eter. Intuitively, this smoothness term tries to penalize label discontinuities among
neighbouring sites but modulates the penalty via a contrast-sensitive term. Thus, if
two adjacent superpixels are far apart in the feature space, there would be a smaller
cost for assigning them different labels than if they were close. However, as various
authors have noted, this contrast sensitive modulation forces the segmentation to
follow strong edges in the image, which might not necessarily correspond to object
boundaries. For example, [12] modulate the distance d;; based on statistics of edge
profile features learnt from a fully segmented training image.

In this work, we use a distance metric learning algorithm to learn these d;; from
user scribbles. The basic intuition is that when two features (which might be far apart
in Euclidean distance) are both labelled as the same class by the user scribbles, we
want the distance between them to be low. Similarly, when two features are labelled
as different classes, we want the distance between them to be large, even if they
happen to be close by in Euclidean space. Thus, this new distance metric captures
the pairwise statistics of the data better than Euclidean distance. For example, if
colours blue and white were both scribbled as foreground, then the new distance
metric would learn a small distance between them, and thus, a blue-white edge in
the image would be heavily penalized for label discontinuity, while the standard
contrast sensitive model would not penalize this edge as much. The specific choice
of this algorithms is not important, and any state-of-art technique may be used. We
use the implementation of [5].

We update both A| = {GMM;,GMM, } and A, = {d;;} every time the user pro-
vides a new scribble. Finally, we note that contrast-sensitive potts model leads to a
submodular energy function. We use graph-cuts to efficiently compute the MAP la-
bels for all images, using the publicly available implementations of [1] and [8,9,16].

2.1.3 Comparing Energy Functions

Our introduced energy functions (2.1) are different from those typically found in
co-segmentation literature and we make the following observations. While previous
works [13,18,19,22] have formulated co-segmentation of image pairs with a single
energy function, we assign to each image its own energy function. The reason we
are able to do this is because we model the dependance between images implicitly
via the common appearance model (<), while previous works added an explicit
histogram matching term to the common energy function. There are two distinct ad-
vantages of our approach. First, as several authors [13, 18, 19,22] have pointed out,
adding an explicit histogram matching term makes the energy function intractable.
On the other hand, each one of our energy functions is submodular and can be
solved with a single graph-cut. Second, this common energy function grows at least
quadratically with the number of images in the group, making these approaches al-
most impossible to scale to dozens of images in a group. On the other hand, given
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the appearance models, our collection of energy functions are completely indepen-
dent. Thus the size of our problem only grows linearly in the number of images
in the group, which is critical for interactive applications. In fact, each one of our
energy functions may be optimized in parallel, making our approach amenable to
distributed systems and multi-core architectures. Videos embedded on our project
website [2] show our (single-core) implementation co-segmenting ~ 20 image in a
matter of seconds.

To be fair, we should note that what allows us to set-up an efficiently solvable
energy function is our incorporation of a user in the co-segmentation process, giv-
ing us partially labelled data (scribbles). While this user involvement is necessary
because we work with globally related images, this involvement also means that
the co-segmentation algorithm must be able to query/guide user scribbles, because
users cannot be expected to examine all cutouts at each iteration. This is described
next.

2.2 iCoseg: Guiding User Scribbles

In this section, we develop an intelligent recommendation algorithm to automati-
cally seek user-scribbles and reduce the user effort. Given a set of initial scribbles
from the user, we compute a recommendation map for each image in the group. The
image (and region) with the highest recommendation score is presented to the user
to receive more scribbles. Instead of committing to a single confusion measure as
our recommendation score, which might be noisy, we use a number of “cues”. These
cues are then combined to form a final recommendation map, as seen in Fig. 2.1.
The three categories of cues we use, and our approach to learning the weights of the
combination are described next.

2.2.1 Uncertainty-based Cues

Node Uncertianty (NU): Our first cue is the one most commonly used in uncer-
tainty sampling, i.e., entropy of the node beliefs. Recall that each time scribbles are
received, we fit A; = {GMM;,GMM,} to the labelled superpixel features. Using
this learnt Ay, for each superpixel we normalize the foreground and background
likelihoods to get a 2-class distribution and then compute the entropy of this distri-
bution. The intuition behind this cue is that the more uniform the class distribution
for a site, the more we would like to observe its label.

Edge Uncertainty (EU): The Query by Committee [23] algorithm is a fundamental
work that forms the basis for many selective sampling works. The simple but elegant
idea is to feed unlabelled data-points to a committee/set of classifiers and request
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Fig. 2.1: Cues: (a) shows the image with provided scribbles; (b)-(f) show various
cues; and (g) shows how these cues are combined to produce a final recommendation
map.

label for the data-point with maximal disagreement among classifier outcomes. We
use this intuition to define our next cue. For each superpixel, we use our learnt
distances (recall: these are used to define the edge smoothness terms in our energy
function) to find K (=10) nearest neighbours from the labelled superpixels. We treat
the proportion of each class in the returned list as the probability of assigning that
class to this site, and use the entropy of this distribution as our cue. The intuition
behind this cue is that the more uniform this distribution, the more disagreement
there is among the the returned neighbour labels, and the more we would like to
observe the label of this site.

Graph-cut Uncertainty (GC): This cue tries to capture the confidence in the energy
minimizing state returned by graph-cuts. For each site, we compute the increase in
energy by flipping the optimal assignment at that site. The intuition behind this cue
is that the smaller the energy difference by flipping the optimal assignment at a site,
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Fig. 2.2: CMU-Cornell iCoseg Dataset: Figure shows prototypical images from the
co-segmentation groups in our dataset. Note: each image shown above corresponds
to a group of images.

the more uncertain the system is of its label. We note that min-marginals proposed
by [15] could also be used.

2.2.2 Scribble-based Cues

Distance Transform over Scribbles (DT): For this cue, we compute the distance
of every pixel to the nearest scribble location. The intuition behind this (weak) cue
is that we would like to explore regions in the image away from the current scrib-
ble because they hold potentially different features than sites closer to the current
scribbles.

Intervening Contours over Scribbles (IC): This cue uses the idea of intervening
contours [17]. The value of this cue at each pixel is the maximum edge magnitude
in the straight line to the closest scribble. This results in low confusions as we move
away from a scribble until a strong edge is observed, and then higher confusions on
the other side of the edge. The motivation behind this cue is that edges in images
typically denote contrast change, and by observing scribble labels on both sides of
an edge, we can learn whether or not to respect such edges for future segmentations.
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Fig. 2.3: CMU-Cornell iCoseg Dataset: Figure shows the Stonehenge, windmill and
cheetah groups. We can see the large variation in illumination, scale, pose and ap-
pearance. Masks show the detail in our hand-annotated groundtruth.

2.2.3 Image-level Cues

The cues described so far, are local cues, that describe which region in an image
should be scribbled on next. In addition to these, we also use some image-level cues
(i.e., uniform over an image), that help predict which image to scribble next, not
where.

Segment size (SS): We observe that when very few scribbles are marked, energy
minimization methods typically over-smooth and results in “whitewash” segmen-
tations (entire image labelled as foreground or background). This cue incorporates
a prior for balanced segmentations by assigning higher confusion scores to images
with more skewed segmentations. We normalize the size of foreground and back-
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ground regions to get class distributions for this image, and use the inverse of the
entropy of this distribution as our cue.

Codeword Distribution over Images (CD): This image-level cue captures how di-
verse an image is, with the motivation being that scribbling on images containing
more diversity among features would lead to better foreground/background mod-
els. To compute this cue, we cluster the features computed from all superpixels in
the group to form a codebook, and the confusion score for each image is the en-
tropy of the distribution over the codewords observed in the image. The intuition is
that the more uniform the codeword distribution for an image the more diverse the
appearances of different regions in the image.

2.2.4 Combined Recommendation Map

We now describe how we combine these various cues to produce a combined confu-
sion map. Intuitively, the optimal combination scheme would be one that generates
arecommendation map that assigns high values to regions that a user would scribble
on, if they were to exhaustively examine all segmentations. Users typically scribble
on regions that are incorrectly segmented. We cast the problem of learning the opti-
mal set of weights for our cues as that of learning a mapping .% : ¢; — &;, where ¢;
is the 7-dimensional feature vector for superpixel i, corresponding to each of the 7
cues described above, and g is the error indicator vector, which is 1 if the predicted
segmentation at node i is incorrect, and O otherwise. We chose logistic regression
as the form of this mapping. The ground-truth for training this logistic regression
was generated by first scribbling on images®, co-segmenting based on these scrib-
bles, and then using the mistakes (or the error-map) in these segmentations as the
ground-truth. Our cue combination scheme is illustrated in Fig. 2.1.

2.3 The CMU-Cornell iCoseg Dataset

To evaluate our proposed approach and to establish a benchmark for future work, we
introduce the largest co-segmentation dataset yet, the CMU-Cornell iCoseg Dataset.
While previous works have experimented with a few pairs of images, our dataset
contains 38 challenging groups with 643 total images (~17 images per group), with
associated pixel-level ground truth. We built this dataset from the Flickr® online
photo collection, and hand-labelled pixel-level segmentations in all images. We used
the “Group” feature in Flickr, where users form groups around popular themes,
to search for images from this theme. Our dataset consists of animals in the wild

3 More precisely, by generating random automatic scribbles on images. See Section 2.4.1 for de-
tails.
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(elephants, pandas, efc.), popular landmarks (Taj Mahal, Stonehenge, efc.), sports
teams (Baseball, Football, etc.) and other groups that contain a common theme or
common foreground object. For some (though not all) of the groups, we restricted
the images to come from the same photographer’s photo-stream, making this a more
realistic scenario. Examples of these groups are shown in various figures in this
paper, and Fig. 2.3 shows some prototypical images. We have made this dataset
(and annotations) publicly available [2] to facilitate further work, and allow for easy
comparisons.

Dataset Annotation: The ground-truth annotations for the dataset were manually
generated by a single annotator using a labelling tool. The ground-truth was labelled
on superpixels. However, the labelling tool allowed the annotator to interactively ob-
tain finer / coarser superpixels as desired. A useful strategy used by our annotator
was to use coarse superpixels while labelling simple scenes, and to use finer super-
pixels when labelling complicated or cluttered scenes. This allowed for very high
quality ground truth, without the labeling task being prohibitively tedious.*

# Groups  #Images # Images/Group

[22] 7 16 2.29
[13] 23 46 2
CMU-Cornell iCoseg Dataset 38 643 16.92

Table 2.1: Dataset Statistics.

2.3.1 Dataset Statistics

We now analyze some statistics (size, appearance variation, scale variation) of our
introduced dataset.

Size: Table 2.1 lists the number of groups, number of images and average number
of images per group for our dataset. We note that this dataset is significantly larger
than those used in previous works [13,22]. Fig. 2.5a shows a histogram of number
of images in groups.

Appearance: Recall our argument that when consumers take multiple photographs
of the same event or object, the images are usually globally consistent. To quan-
tify that images in our dataset do capture this property, we perform the following
experiment. Fig. 2.4 shows a pair of images (“girl-pair”) from [22], and another

4 Since the superpixels were varied dynamically for each image, they were not the same as the
ones used inside our co-segmentation algorithm (which only used a single setting of parameters
for generating superpixels in all images).
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(a) Girl-pair [22]. (b) Stonehenge-pair from CMU-Cornell iCoseg
Dataset.

KL-Divergence

Foreground Background Ratio
Girl-pair [22] 1.06 4578  43.03
Stonehenge-pair 8.49 17.66 2.08

(c) Foreground and background similarity statistics

Fig. 2.4: Appearance Statistics: (a) shows a pair of images (“girl-pair”) from [22];
(b) shows a pair of images from the Stonehenge group in our CMU-Cornell iCoseg
Dataset; (c) lists the KL-divergences between the two images for each pair. Images
in our dataset are globally consistent, with comparable KL-divergence between fore-
grounds and backgrounds.
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Fig. 2.5: Dataset Statistics: (a) shows the histogram of the number of images in
groups; (b) shows histogram of avg. foreground size in groups; (c) shows histogram
of difference of largest and smallest foreground object within a group.

pair from our CMU-Cornell iCoseg Dataset (“‘Stonehenge-pair”). All the foreground
pixels from the first pair of images were clustered into 64 color codewords using k-
means clustering. A foreground histogram was built over this dictionary for each
of the images, and the KL distance was computed between these normalized his-
tograms. Similarly a color dictionary was built using the background pixels and the
KL distance between the background distances was computed. This process was
repeated for the second pair. We can see that for the “girl-pair” the appearance vari-
ation in foreground is considerably smaller than the variation in background. The
“Stonehenge-pair”, on the other hand, shows a more comparable variation. This is
not to say that the CMU-Cornell iCoseg dataset is inherently harder than previous
datasets. Our intent is to point out that our dataset contains images where the pre-
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(a) Largest scale-change (b) Smallest scale-change

Fig. 2.6: Scale Change: (a) shows the largest scale change, and (b) shows the small-
est scale change in our dataset.

vious works on co-segmentation would fail, because they have been designed for
a different scenario. We hope the introduction of our dataset motivates further re-
search in the problem we consider in this paper.

Scale: To quantify the amount of scale change in our dataset, we show the histogram
of average foreground size in groups in Fig. 2.5b. We can see that some groups con-
tain very small foreground objects (on avg. <5% of the image) while some groups
contain very large foreground objects (on avg >40% of image). In addition, the his-
togram (Fig. 2.5¢) of difference between largest and smallest foreground object in
a group shows that even within a group there is significant scale change. Fig. 2.6
shows images with the largest and smallest scale change in our dataset. We can
imagine that the large scale changes can be quite challenging for co-segmentation
algorithms. In the case of our algorithm however, scale changes should not matter
too much.

2.4 Experiments

For experimental evaluation, we performed machine experiments (Section 2.4.1) by
generating synthetic scribbles, and also performed user-study (Section 2.4.2). In all
experiments in this paper, we quantify the accuracy of an image segmentation as the
percentage of pixels whose labels are correctly predicted. Co-segmentation accuracy
for a group is the average segmentation accuracy over all images in this group.

2.4.1 Machine Experiments

To conduct a thorough set of experiments and evaluate various design choices, it
is important to be able to perform multiple iterations without explicitly polling a
human for scribbles. Thus, we develop a mechanism to generate automatic scribbles,
that mimic human scribbles. We model the scribbles as (smooth) random walks that
do not cross foreground-background boundaries. Our scribble generation technique
consists of sampling a starting point in the image uniformly at random. A direction
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Fig. 2.7: Diversity within a group: (a) histogram of the difference in accuracy be-
tween the best and worst seed-images for all the groups in our dataset. A large
difference indicates diversity in appearance. Some groups such as (b) “Kite” have
images with varied appearances (two images providing worst segmentation accura-
cies don’t contain any grass), while other groups such as (c) “Gymnast” are more
homogenous. Best viewed in colour.

angle is then randomly sampled such that it is highly correlated with the previous
direction sample (for smoothness) for the scribble,” and a fixed-size (=30 pixels)
step is taken along this direction to extend the scribble (as long as it does not cross
object boundaries, as indicated by the groundtruth segmentation of the image). To
mimic user-scribbles given a recommendation map, the initial as well as subsequent
points on the scribble are picked by considering the recommendation map to be a
distribution. Using synthetic scribbles allows us to control the length of scribbles
and observe the behavior of the algorithm with increasing information. Example
synthetic scribbles are shown in Fig. 2.9. For all experiments in this paper, the length
of each individual scribble was capped at 120 pixels.

3 For the first two sampled points, there is no previous direction and this direction is sampled
uniformly at random.
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Fig. 2.8: Sparse vs. Dense Scribbles: (a) and (b) show the histograms of accuracy
gains of even-split over the best (single) seed-image and a random (single) seed-
image, respectively; (c) compares the accuracies achieved by dense scribbles on a
single image, and sparse scribbles on multiple images for the group shown. Again,
images are ordered in decreasing accuracy. The second histogram (b) shows pro-
viding scribbles on multiple images is a better strategy than committing to a single
one.

2.4.1.1 Baseline 1: Scribbles restricted to a Single Image

To establish the simplest baseline, we ask the following question: “how well would
interactive co-segmentation work if we were restricted to scribbling on a single im-
age?” If a group consisted of successive frames from a video sequence, the choice
of this chosen image (seed-image) would not matter much. The higher the diversity
in the images among a group, the more variation we would observe in the group seg-
mentation accuracies achieved by various seed-images, because not all seed-images
would provide useful statistics for the group as a whole. We use the synthetically
generated scribbles (described above) to test this.
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(a) Image (b) Confusion Map

(c) Sampled Scribbles

Fig. 2.9: Example simulated scribbles: Note that these scribbles never cross fore-
ground boundaries (red player).

In Fig. 2.7a we show the histogram of the difference in accuracy between the
best and worst seed-images for all the groups in our dataset.® We can see that the
histogram has a heavy tail, with 28 (of 37) groups having greater than 10% differ-
ence (and one as high as 69%), indicating that most groups have a lot of variation.
Figs. 2.7b and 2.7¢ show the co-segmentation accuracies (Y-axis) for the “kite” and
“eymnast” group respectively, as a function of the total length of scribbles (X-axis)
on different seed-images in these groups (shown next to them). Images are ordered
in decreasing accuracy. The “Kite” groups is an example of the groups with a lot
of variation while the images in the “Gymnast” group have similar performances.
Notice that in the “Kite” group, the two “bad” images do not contain any grass,
and thus irrespective of the length of the scribbles on them, the algorithm will not
know whether grass is considered foreground or background, and thus the group
co-segmentation accuracy does not rise above 75%.

2.4.1.2 Aside: Automatic Seed Image Selection:

Before we describe the second baseline that we compare our interactive co-segmentation
approach to, we take a small detour related to the previous baseline. Clearly, if we

% In order to keep statistics comparable across groups, we select a random subset of 5 images
from all groups in our dataset. One of our groups consisted of 4 images only, so all our results are
reported on 37 groups.
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Fig. 2.10: For columns (a-e), top and bottom rows show best and worst images from
example groups, which motivate our choice of features (a) Illumination histogram
(b) HSV colour histogram (c) Gradient histogram (d) Gist and (e) Segmentation
histogram; (f) Segmentations of images shown in (e); (g) Two images from the group
are very similar with similar segmentation accuracies making the ranking a slightly
misleading metric.

were restricted to scribble on only one image in a group, the choice of the seed
image is crucial. This naturally leads to the question “Given a group of images to
be co-segmented by scribbling on one image, can we automatically select this seed
image in an intelligent way?”.

We pose this seed image selection problem as a classification task [4]. We extract
the following features to describe an image.

e Illumination histogram: One of the observations we made was that the pres-
ence of strong shadows across the image (Fig. 2.10(a)) often results in poor
co-segmentation accuracies. To capture this intuition, we compute a 50-dim his-
togram of the gray scale image.

* Hue, Saturation and Value entropy: The variety of colours in an image typi-
cally corresponds to the amount of useful information in the image, as seen in
Fig. 2.10(b). We quantify this via a 3-dim vector holding the entropies of the
hue, saturation and value marginal histograms. The more the number of colours
present in an image, the higher the entropies in these distributions would be.

* Gradient histogram: The distribution of the strength of edges is a good indicator
of how interesting the image is in terms of the existence of several regions/objects
in the image. To represent this, we compute a 20-dim histogram of the edge
magnitudes across the image. Fig. 2.10(c) shows that the worst image in the
group has very few strong edges as compared to the best image which has more
variety in its content.

* Scene Gist: The Gist features can help capture a holistic view of the overall scene
layout (Fig. 2.10(d)) . We extract the 1280-dim Gist features [20] which captures
the response of the image to gabor filters of different orientations and scales,
along with the spatial layout of these responses over the image.

* Segmentation histogram: Another indicator of the scene layout is the distribution
of the sizes of segments in an image when run through an off-the-shelf segmen-
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tation algorithm. For instance, as seen in Fig. 2.10(e,f), there is a stark contrast
in the distribution of sizes of segments found in these images. We use mean-
shift [10] for generating these segmentations.

We split our dataset into training groups and testing groups. We train a linear
SVM using each of the ny (=5) features described above individually to classify the
best image in a group from the worst image. At training time we do not consider
the remaining images in a group, because multiple images in groups can be visu-
ally similar leading to close cosegmentation accuracies, as seen in Fig. 2.10(g), and
including them during training would make the classification problem artificially
hard.

During testing, each image from the test group is passed through these ny SVMs,
and their output scores are recorded. Let the score corresponding to image x; and
SVM (feature) f, be u. The best images in training groups were labeled as the
positive class, and thus we expect f1f to be higher for better images.

We are ultimately interested in a ranking of the m images in the test group, and
in order to do so, we compute a quality measure for each image, by comparing it to
every other image in the group. Each image x; is assigned a quality measure

n

<

0(x;) = i
=

where [[¢]] is the sign function, i.e. +1 if r > 0, and —1 otherwise.

This effectively captures how many times the image x; got voted as being better
than other images in the group, among all features. The m images in a group are
ranked by this measure, and the top ranked image is chosen as the seed image.

For our experiments, we select m to be 5, and retain a random subset of 5 images
from all groups. Since one of the 38 groups contained only 4 images, we work with
the remaining 37 groups. We perform leave-one-out cross-validation on the groups.
To understand the effectiveness of each of the individual features, we first report
their corresponding image classification accuracies for identifying the best image
from the worst. The results are shown in Fig. 2.11. It can be seen that all features
hold some information to identify the best images from the worst ones (significantly
outperforming chance, which would be 50%). It can be seen that the HSV entropies
have the highest accuracy (~92%). This is understandable, especially since the seg-
mentation algorithm uses colour features. All other features have similar accuracies
(~T76%).

To quantify the quality of the final ranking determined by our approach, we match
our predicted ranks of images in the test groups, to the ground truth ranks (deter-
mined by sorting the average cosegmentation accuracies). We find that on average
(across groups), we assign a rank of 2.14 to images that have a ground truth rank of
1. Moreover, the images that we select as rank 1, have, on average, a ground-truth
rank of 2.11. In both cases, a random classifier would have an average rank of 3.
Although this improvement in ranks may not seem significant, it should be noted
that often groups contain more than one image that are “good” for scribbling and
give similar segmentation accuracies, e.g. images shown in in Fig. 2.10(g).

1[[(#5’ ol (2.3)

a
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Fig. 2.11: The classification accuracies of each of our features in identifying best
images in a group from the worst images.

—
o
o

Segmentation accuracy (%)

60
Worst possible Random Proposed Best possible

Fig. 2.12: The final cosegmentation accuracies.

The most relevant metric, for our application, is the gain in cosegmentation accu-
racies achieved by using our proposed seed image selection algorithm, as compared
to picking an image from the group at random, which is the heuristic used by previ-
ous works [12,24]. These results are shown in Fig. 2.12. We see that there is more
than a 10% gap in the cosegmentation accuracies that can be achieved by scribbling
on a randomly selected image (79.7%), and picking the best image in each group
(90.2%). It should be noted that the best accuracy is the accuracy which would be
achieved if an oracle were to label the best image in each group, and hence is the
upper bound on what accuracy we can achieve. We can see that by scribbling on an
image recommended by the seed image selection algorithm, we can fill more than
half of this gap (at 85.4%).

Of course, the question of automatic seed image selection, while an interesting
thought exercise, is relevant only if the user is restricted to scribbling on a single
image in a group. As described thus far, our interactive co-segmentation system is
more general, and recommends meaningful regions across all images in the group
to the user to provide scribbles on. After this brief side analysis, we now focus again
on the second baseline that we compare our approach to.
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2.4.1.3 Baseline 2: Uniform Recommendation Maps

In the previous baseline we were restricted to scribbling on a single image. As we
saw, the performance between the best and the worst seed-images could be sig-
nificantly different. In this section, we consider user scribbles to be a limited re-
source and evaluate whether it is better to seek sparse scribbles on multiple images
or dense scribbles on a single image. We follow a similar setup as in the last section,
only now the scribbles are evenly split across all images in the group, which corre-
sponds to uniform recommendation maps on all images. This way we can compare
1200-pixel scribbles (which would be dense) in a single image with five 240-pixel
scribbles (which would be sparse).” In practice, instead of making one long 1200-
pixel scribble, we sample scribbles of length at most 120 pixels, and evenly split
scribbles between foreground and background. As before, we perform 10 random
runs. Fig. 2.8c shows the average cosegmentation accuracies in the group (Y-axis)
for the worst (single) seed-image, the best (single) seed-image, a random (single)
seed-image, and the accuracy achieved by evenly splitting scribbles across all im-
ages (called even-split) as a function of the total length of scribbles (X-axis). We
can see that for the same length of scribbles, evenly splitting them across all im-
ages in the group and getting sparse scribbles performs better than dense scribbles
on any image in this group. Fig. 2.8a and 2.8b show the histogram of accuracy
gains of even-split over the best (single) seed-image and the random (single) seed-
image experiments over all of the groups. The accuracies for Figs 2.8a,2.8b were
computed using scribbles of total length of 1200 pixels, i.e., they correspond to the
rightmost datapoint in Fig.2.8c. We can see while even-split performs better than the
best (single) seed-image for most groups, it is strictly better than a random (single)
seed-image for all of the groups.

2.4.1.4 iCoseg

We first analyze the informativeness of each of our 7 cues. We start by generating a
foreground and background scribble each of length at most 120 pixels on a random
image in a group. We then compute each of our cues, and treat each individual
cue as a recommendation map. We generate the next synthetic scribble (again of at
most 120 pixels) as guided by this recommendation map, meaning that points are
sampled by treating this recommendation map as a probability distribution (instead
of sampling them randomly). We repeat this till we have scribbled about 1200 pixels
across the group, and compute the average segmentation accuracy across the images
of a group. We rank the 7 cues by this accuracy. Fig. 2.14 shows the mean ranks
(across groups, average of 10 random runs) achieved by these cues. Out of our cues,
the graph-cut cue (GC) performs the best, while both distance transform (DT) and
intervening contour (IC) are the weakest. GC cue quantifies the uncertainty of the
entire model (including node and edge potentials) and thus is expected to provide

7 This is one of the reasons for keeping a constant number of images per group. If each group had
different images, even-split performance would no longer be comparable across groups.
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Fig. 2.13: Machine Experiments: Figure shows average co-segmentation accuracy
as a function of the number of scribbles (each scribble is 120 pixels). iCoseg signifi-

cantly outperforms baselines and is close to a natural upper-bound (see Section 2.4.1
for details).

(o]

N

~
[
©
as
c
[
Q
=

o

NU EU GC DT
Cue

IC SS CD

Fig. 2.14: Mean ranks achieved by individual cues (see Sec 2.4.1).

the best indication of where more information is required (from an active learning
perspective). Thus, it is not surprising that this cue performs the best. DT and IC
on the other hand completely ignore the learnt model, and only consider low-level
cues like where (in X,y co-ordinates) we have scribbled in the image so far and the
gradients in the image which often do not coincide with object boundaries. Thus, it
is not surprising that they provide the least information to recommend meaningful
regions to scribble further on.

We now evaluate iCoseg, our recommendation system, as a whole. The experi-
mental set up is the same as that described above, except now we use the combined
recommendation map to guide subsequent scribbles (and not individual cues). The
cue combination weights are learnt from all groups except one that we test on (leave-
one-out cross validation). We compare to two baselines described above. One is that
of using a uniform recommendation map on all images in the group, which essen-
tially means randomly scribbling on the images (respecting object boundaries of
course). And the other (even weaker) baseline is that of selecting only one image
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Fig. 2.15: User Study: Average performance of subjects in the three conducted
experiments (see Section 2.4.2). iCoseg (Exp. 3) requires significantly less effort
for users, and allows them to reach 80% co-seg accuracy with 75% the effort of
Exp. 1.

(randomly) in a group to scribble on (with a uniform recommendation map on this
image).

Fig. 2.13 shows the performance of our combined recommendation map (iCoseg)
with increasing scribble length, as compared to the baselines. We see that our pro-
posed recommendation scheme does in fact provide meaningful guidance for re-
gions to be scribbled on next (as compared to the two baselines). A meaningful
upper-bound would be the segmentation accuracy that could be achieved if an ora-
cle told us where the segmentations were incorrect, and subsequent scribbles were
provided only in these erroneous regions. As seen in Fig. 2.13, iCoseg performs
very close to this upper bound, which means that users following our recommenda-
tions can achieve cutout performances comparable to those achieved by analyzing
mistakes in all cutouts with significantly less effort without ever having to examine
all cutouts explicitly.

2.4.2 User Study

In order to further test iCoseg, we developed a java-based user-interface for interac-
tive co-segmentation.® We conducted a user study to verify our hypothesis that our
proposed approach can help real users produce good quality cutouts from a group of
images, without needing to exhaustively examine mistakes in all images at each iter-
ation. Our study involved 15 participants performing 3 experiments (each involving

8 We believe this interface may be useful to other researchers working on interactive applications
and we have made it publicly available [2].
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Fig. 2.16: User Study: Average performance of subjects in the three conducted ex-

periments as a function of time (see Section 2.4.2). We can see that for a fixed

amount of time, iCoseg (Exp. 3) typically achieves highest co-segmentation accu-
racy.
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Fig. 2.17: User Study Screenshots: (a) Exp. 1: subjects were not shown cutouts
and were free to scribble on any image/region while respecting the fore-
ground/background boundaries; (b) Exp. 2: subjects exhaustively examine all seg-
mentations and scribble on mistakes (cyan indicates foreground); (c) Exp. 3: users
were instructed to scribble in the region recommended by iCoseg. Best viewed in
colour.

Mean no. of fg/lbg Mean length of Mean % fg. Amount of uncertainty
scribbles per iter  scribbles (px) in scribbles  under the scribbles

Machine experiments 1.00/1.00 120 23% -
User studies

Exp. 1 1.04/1.05 106 46% 0.49£0.04
Exp. 2 1.07/1.07 110 - 0.49+£0.04
Exp. 3 1.05/1.06 99 - 0.53+0.04

Table 2.2: Comparison between user study and machine experiments.
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5 groups of 5 related images). Fig. 2.17 shows screen-shots from the three exper-
iments. The subjects were informed that the first experiment was to acclimatize
them to the system. They could scribble anywhere on any image, as long as they
used blue scribbles on foreground and red scribbles on background. The system
computed cutouts based on their scribbles, but the subjects were never shown these
cutouts. We call this experiment “freeform-scribbling”. In the second experiment,
the subjects were shown the cutouts produced produced on all images in the group
from their scribbles. Their goal was to achieve 95% co-segmentation accuracy in
as few interactions as possible, and they could scribble on any image. We observed
that a typical strategy used by subjects was to find the worst cutout at every iteration,
and then add scribbles to correct it. In the third experiment, they had the same goal,
but this time, while they were shown all cutouts, they were constrained to scribble
within a window recommended by our algorithm, iCoseg. This window position was
chosen by finding the location with the highest average recommendation value (in
the combined recommendation map) in a neighbourhood of 201 x 201 pixels. The
use of a window was merely to make the user-interface intuitive, and other choices
could be explored. In all three experiments, users were restricted to use only 120
pixels of scribbles per iteration. Our Ul displayed a counter that showed how many
pixels they had left. Once their quota of pixels was over, they had no choice but to
ask the system to co-segment using these scribbles, after which they were given a
new quota of 120 pixels to scribble with. They did not have to use the entire quota
before co-segmenting.

Fig. 2.15 shows the average segmentation accuracies achieved by the subjects in
the three experiments (Y-axis) as a function of the length of their scribbles (X-axis).
We can see that, as with the machine experiments, iCoseg helps the users perform
better than freeform scribbling, in that the same segmentation accuracy (83%) can be
achieved with about 75% the effort. In addition, the average time taken by the users
for one iteration of scribbling reduced from 20.2 seconds (exhaustively examining
all cutouts) to 14.2 seconds (iCoseg), an average saving of 60 seconds per group.
Thus, our approach enables users to achieve cutout accuracies comparable to those
achieved by analyzing mistakes in all cutouts, in significantly less time. This fact
is further shown in Fig. 2.16 where the co-segmentation accuracy achieved (Y-axis)
is plotted as a function of time taken (X-axis) for each of the three expirments,
averaged across users and groups. We can see that our approach allows users to
reach highest accuracies given the same time budget.

2.4.3 Comparing Machine Experiments and User Study

In order to understand how users scribbled in our user-study and study how well
our automatic scribbles (machine experiments) emulate this, we analyze similarities
between the user and synthetic scribbles. Table 2.2 compares some statistics.
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(a) Images. (b) Scribbles on one Image.

(d) Ground-Truth. (e) Multiple Scribbles. (f) Predicted Segmentations.

Fig. 2.18: Common Failure Case: (a) shows the group of images; (c) shows the seg-
mentations achieved by scribbling on a single image, shown in (b). Cyan indicates
foreground. (f) shows the segmentations achieved by scribbles on multiple images,
shown in (e). When foreground and background have a lot of overlap in colour distri-
butions, our interactive segmentation method faces difficulty in producing accurate
segmentations (compare segmentations in (c),(f) with ground-truth in (d)). How-
ever, our algorithms allows for straightforward incorporation of more sophisticated
features (e.g. colour-pallet of [12]), which should result in better performance.

Our automatic scribbles were generated for foreground and background with a
fixed length of 120 pixels, and we see that they are comparable to the user scribbles
in both the length and the average number of scribbles.

Interestingly, we also found that while our subjects were not given an explicit
goal in Exp. 1 (freeform scribbling experiment) and were not shown the groundtruth,
they were implicitly aware of the common foreground and their scribbles reflected
that knowledge. The proportion of foreground pixels in all scribbles given by our
subjects (for Exp. 1) was 46%, while the groups they viewed only contained 23%
foreground. Clearly, they weren’t scribbling uniformly randomly over an image,
but were dividing their scribbles somewhat evenly over the foreground and back-
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Fig. 2.19: Superpixel Leaks: We use a single parameter setting to generate super-
pixels for all images in our dataset, and thus some images show superpixel leaks
across foreground objects. For example, in (d), the superpixel on the head of the
baseball player leaks into the background. As a result, the segmentation also tends
to either leak from foreground to background (f), or from background to foreground
(c), depending on the choice of scribbles, (e) and (b) respectively.

ground. Thus, even though Fig. 2.15 seems to suggest that iCoseg has fallen to the
performance level of the freeform-scribble baseline (Exp. 1), in reality, “freeform
scribbling” has become a smart human-attention based algorithm. The truly random
baseline can be seen in Fig. 2.13 where we force the random scribbles to be truly
uniformly random, which our algorithm easily outperforms.

We also measured whether users were scribbling on confusing areas, as measured
by our combined uncertainty map (which is normalized to be a spatial probability
distribution, and thus between 0 and 1). We notice that the amount of uncertainty
under user-scribbles is 0.49 £-0.04 for both Exp. 1 (freeform scribbling) and Exp.
2 (exhaustive examination), again indicating that the users were implicitly aware
about the common foreground and scribbled over incorrect segmentations which
are typically regions with high uncertainty. We note that the uncertainty under user
scribbles increased to 0.53 £ 0.04 for Exp. 3 (iCoseg), which is understandable,
because the users were guided to scribble within the indicated regions of high un-
certainty.

2.4.4 Limitations and Failure Cases

An assumption of our approach is that the foreground and background models are
different enough in the chosen feature space (i.e. colour for our experiments) to
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allow for reliable labelling of both classes. The interactive nature of our system
makes the choice of features and appearance models seem less critical. However,
they play an important role, and it is important to analyze the limitations and failure
cases of our approach.

Non-discriminative Features: The most common failure case for our method re-
sults from the choice of colour features. Fig. 2.18 shows a difficult group to segment
because the foreground colour distribution is very similar to the background colour
distribution. Thus, even though the scribble guidance leads users to useful locations,
the co-segmentation quality does not significantly improve despite multiple rounds
of scribbles. Figs. 2.18b,c show the co-segmentations after scribbling on a single
image, and Figs. 2.18e,f show the co-segmentations after scribbling on multiple im-
ages. We note that the choice of colour features is not inherent to the system, and
more sophisticated features can be seamlessly incorporated. One choice of better
features would be color-pattern features of [12] that capture the spatial distribu-
tion of colors in a neighborhood. These would provide more discriminative power
(which should result in improved performance), as well as help overcome the the
local nature of features extracted at superpixels.

Superpixel leaks: We use superpixels as the labelling sites in our framework. This
speeds up our implementation because the graph constructed on superpixels is sig-
nificantly smaller than the grid-graph on pixels. However, because we use a single
parameter setting to generate superpixels for all images in our dataset, some images
show superpixel leaks across foreground objects. Fig. 2.19 shows an example im-
age. Notice that some superpixels leak across object boundaries, e.g., the one on
the head of the baseball player. As a result of this superpixel leak, the segmentation
also tends to either leak from foreground to background or from background to fore-
ground, depending on the choice of scribbles. Having said this, our approach can be
trivially extended to work with pixels, for applications that require highly accurate
segmentations.

Single Background Model: It is conceivable that the use of multiple background
models within a group could be beneficial. However, the more models we wish to
build, the more scribbles we are likely to need from users for the models to be in-
formative. In the extreme, in order to have one background model for every image
in the group, we would need sufficient scribbles in all images in the group. This, to
some extent, would defeat the purpose of having a co-segmentation system, where
the goal is to leverage the fact that topically-related images share foreground and
background statistics, and hence can be co-segmented, and need not be segmented
individually. As seen in our examples, a large proportion of the images within a
group do share similar backgrounds, a property that should be exploited when pos-
sible, but these properties are of course, application dependent.

In order to quantify the above intuition, we performed the following experi-
ment. We performed co-segmentation with synthetic scribbles for the following
three cases:
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e Multiple Models, Independent Segmentation (MMIS). In this case, the synthetic
user scribbles on each of the five images in a group, and each image is indepen-
dently segmented. Intuitively, this is equivalent to running a standard Grab-cut-
like method on each image in the group, thus forcing the user to scribble on all
images. The appearance models are not shared and the user is forced to scribble
on all images to be segmented.

e Multiple Models, Co-Segmentation (MMCS). In this case, the synthetic user
again scribbles on a single image in the group, however now all images in the
group are segmented by sharing the appearance model learnt from the single
scribbled image. This is repeated by scribbling on all images in the group one at
a time. As we have already observed in Section 2.4.1.3 and Fig. 2.8, we do not
expect this combination to perform well.

* Single Model, Co-Segmentation (SMCS). This is the case described in our ma-
chine experiments (Section 2.4.1 and Fig. 2.13), where the synthetic user scrib-
bles on all images in the group. All images in the group are segmented by sharing
the appearance model learnt from all the scribbled images.

MMIS MMCS SMCS
Segmentation Accuracy 97.07 % 79.71 % 92.67 %

Table 2.3: Segmentation accuracies for various setups averaged across groups.

As we can see in Table 2.3, MMIS is the best thing to do, i.e. to scribble on
every image and segment all images independently. However, this requires users to
scribble on all images, which is not feasible for scenarios where the group contains
many images. On the other hand, SMCS relieves the user from this constraint of
scribbling on all images and as our machine experiments and user study show, the
savings provided by iCoseg are crucial.

Now that we have presented a detailed description of iCoseg which allows users
to interactively co-segment an object of interest from a group of images, in the
following chapter, we discuss various exciting applications that are enabled by such
a co-segmentation tool.
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