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Chapter 2

Current Source Density Analysis of Ongoing Neural Activity: 
Theory and Application

Yonghong Chen, Mukesh Dhamala, Anil Bollimunta,  
Charles E. Schroeder, and Mingzhou Ding 

Abstract

Current source density (CSD) is the second spatial derivative of the local field potential (LFP). CSD 
analysis has been used extensively to localize the pattern of transmembrane current flow in neuronal 
ensembles. For brain responses to repeated external stimulation, the LFP data are epoched and averaged 
across an ensemble of trials, from which the CSD profile is then derived. For spontaneous brain activity, 
however, the lack of an external triggering event makes ensemble average difficult, hampering the inves-
tigation of such important cognitive functions as anticipatory attention and working memory. In this 
chapter, we describe a new method called phase realigned averaging technique (PRAT), which can over-
come this difficulty and achieve CSD profiles on a frequency-by-frequency basis. The method is first vali-
dated on simulation examples and then applied to LFP recordings from a monkey performing an 
intermodal selective attention task.
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Local field potentials (LFPs) are an important index of brain activ-
ity. Generated by electrical currents flowing across cell membranes, 
LFPs, together with population spikes, provide complementary 
measures of ensemble neural dynamics at both the input and the 
output level. Typically, LFPs are measured against a distant refer-
ence and are thus vulnerable to volume-conducted far-field effects. 
The second spatial derivative of LFPs, called the current source 
density (CSD), eliminates this problem and has the ability of more 
precisely localizing transmembrane currents than LFPs. To date, 
CSD analysis has been mainly applied to stimulus-evoked neural 
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responses. Following repeated experiments, LFP data are epoched 
and averaged across an ensemble of trials, triggered on some 
external event such as stimulus onset. The CSD profile is then 
computed on the averaged LFPs. This approach, widely practiced, 
has yielded valuable insights into the neuronal mechanisms behind 
sensory as well as higher order cognitive processes (1–4).

Neurons in the brain are spontaneously active even in the 
absence of sensory stimulation. This ongoing neural activity, rich 
in oscillatory content, provides a window into such important 
brain functions as anticipation, working memory, and top-down 
deployment of attention (5, 6). To date, characterization of ongo-
ing brain activity has mainly relied on time series techniques. How 
to extend CSD analysis to ongoing neural activity remains a chal-
lenge. The lack of an external trigger makes ensemble averaging 
difficult to achieve. Meanwhile, single-trial CSDs are too noisy to 
be a reliable indicator of meaningful neural events. In this chap-
ter, we seek to develop a novel method called the phase realigned 
averaging technique (PRAT) to overcome this problem. The 
method is formulated in the spectral domain and can reveal CSD 
profiles in depth recordings on a frequency-by-frequency basis. 
Simulated examples are used to demonstrate its effectiveness. It is 
then applied to laminar LFPs sampled with a multi-contact elec-
trode placed in the inferotemporal cortex of a macaque monkey 
performing an intermodal selective attention task.

CSD analysis was first introduced in 1950s (7, 8). Subsequent 
publications elucidated its theoretical basis and range of applica-
bility (1, 3, 4, 9). A standard CSD analysis has several simplifying 
assumptions: ohmic conductive medium, constant extracellular 
conductivity, homogeneous in-plane neuronal activity, and equi-
distant laminar electrode contacts (1). As a result of the continu-
ity condition in current flow, the CSD I(x,y,z) in a small volume 
element is defined as the divergence of current flow density J 
from the surface of that element. Under the assumption of a 
purely ohmic conductive medium, it can be related to the nega-
tive of the Laplacian of the field potential F(x,y,z) (1, 3):

	 ( ),I — s —= − Φ 	 (1)

where s is the conductivity tensor, positive I represents an outgo-
ing current (source), and negative I an incoming current (sink). 
This relationship also incorporates quasi-static approximations in 
the Maxwell’s equations (1, 10). Since s is symmetric, it can be 
made diagonal through a linear transformation (9). If we further 

2. Theoretical 
Background
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assume that (1) the dendrites are elongated along the z-direction, 
(2) s is homogeneous, and (3) the dominant current flows are 
along the elongated structures only, (2.1) reduces to:

	 2 2/ ,zI zs= − ∂ Φ ∂ 	 (2)

where the z-direction is perpendicular to the cortical surface and 
sz = s is a constant.

Experimentally, the spatiotemporal LFPs denoted by y(z, t) are 
generally recorded using a linear array electrode with multiple 
equally spaced recording contacts sampling activity from all six layers 
of the cortex. The second spatial derivative in (2.2) can be estimated 
by the following three-point finite-difference approximation:

	
2

2 2

( , ) ( , ) 2 ( , ) ( , )
,

z t z h t z t z h t
z h

y y y y∂ + − + −≈
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	 (3)

where h is the inter-electrode spacing. The CSD profiles are 
obtained by the negative of this derivative at the N–2 electrode 
contact positions. Here N is the number of electrode contacts, 
which are also referred to as channels in this chapter. The profiles 
at the first and the last electrode contact position can be estimated 
by extrapolating potential fields, but are usually left undefined.

Physiological data are noisy. Single-trial CSD profiles are gener-
ally not very informative in identifying the precise patterns of 
transmembrane current flow. The signal-to-noise ratio can be 
improved by averaging over an ensemble of trials. For ongoing 
brain activity, this averaging procedure is not readily implement-
able because of the absence of an external trigger (e.g. stimulus 
onset) for trial alignment. Here we propose a method in the fre-
quency domain to overcome this problem. Consider a LFP data-
set recorded with a multicontact linear electrode. Let ym(z, t) be 
the data from the m-th trial, where the variable z denotes the 
electrode contact, t the time, and m = 1, 2, 3, …, M with M being 
the total number of trials. According to Fourier’s theorem, ym(z, t) 
can be written as the linear superposition of sinusoids of differ-
ent frequencies. The phase information at frequency f is obtained 
by fitting 1 2( ) sin(2 ) cos(2 )x t a ft a ftp p= +  to ym(z, t). After 
extracting the parameters 1a  and 2a , the phase (qm) for the m-th 
trial at frequency f is given by 1

1 2tan ( ./ )a a−  Designating certain 
value of the phase as the trigger, all trials can be realigned according 
to this trigger. Averaging the realigned trials leads to the averaged 
LFP for this electrode contact. This is the essence of the method. 

3. Phase Realigned 
Averaging 
Technique
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To realign the data from the whole electrode array, apply the 
following algorithm:

	 1.	Choose a reference electrode contact or channel and estimate 
the phase at frequency f for all M trials. The reference channel 
is usually the channel with maximum signal power at f.

	 2.	Shift each trial m by its delay qm/2pf for the data in all the 
channels. The relation among the data from different chan-
nels is preserved.

	 3.	Repeat step 2 for all trials.
	 4.	Average over the realigned trials to obtain *( , )z ty< >:

	 *

1

1
( , ) 2 )/( , ,

M

m m
m

z t z t f
M

y y q p
=

< > = −∑ 	 (4)

		 where t* is the adjusted time as the shifting operation disrupts 
the original physiological time.

	 5.	Compute CSD profiles at frequency f as the negative of the 
second spatial derivative of y< > :

	
2

2 .I
z
yy ∂ < >∝ − < > ′′ = −

∂
	 (5)

		 The second derivative can be approximated by the finite dif-
ference formula in (3).

This method will be henceforth referred to as the PRAT. The 
resulting LFP and CSD profile will be referred to PRAT-LFP and 
PRAT-CSD, respectively. By scanning across the frequency spec-
trum of interest, one can analyze the current sources at different 
frequencies. See Csicsvari et al. (11) for a similar method based 
on band-pass filtering.

Mathematical models are used to generate spontaneous spa-
tiotemporal signals similar to that recorded in physiological 
experiments. The PRAT algorithm is then used to perform CSD 
analysis. By comparing the PRAT-CSD pattern with the corre-
sponding mathematical functions, we are able to assess the valid-
ity of our method. Obviously, such a direct cross-validation is not 
possible in the analysis of real physiological data where the answer 
is not known a priori.

Experimentally, the data to be analyzed come from a cortical col-
umn. Here a cortical column is represented by the unit interval. 

4. �Simulations

4.1. The Model
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The transmembrane current is assumed to have a sinusoidal 
profile containing a source and a sink: cos(2 )z z za f zp q+ , where 
az, fz, qz (=−p/2) are amplitude, frequency, and phase. This term 
is referred to as the spatial dynamics term. Solving the differential 
equation 

	
2

2 cos(2 ),z z za f z
z
j p q∂ = +

∂
	

we obtain 

	 2
1 2( ) cos(2 ) / (2 ) ,z z z zz C z C a f z ff p q p= + − + 	

where C1 and C2 are constants. The temporal dynamics Y(t) is 
modeled in two different ways: (1) a 10 Hz sinusoidal function 

sin(2 )t t ta f tp q+  and (2) a second-order autoregressive process 
[AR(2)]: ( ) ( 1) ( 2) ( )t t t tY aY bY x= − + − + , with a = 0.6, b = 
−0.9, and x(t) being a white Gaussian noise. Like the 10-Hz sinu-
soid, the AR(2) process chosen this way also has a spectral peak at 
10 Hz. Multiplying the space- and time-dependent functions and 
adding noise, we generate spatiotemporal LFP signals y(z, t):

	 = ψ +( , ) ( ) ( ) ( , ),z t z t z ty j h 	 (6)

where h(z, t) is a stochastic process with long-range power law 
(power a 1/frequency) correlation in all channels as well as ran-
dom amplitude Gaussian noise in different channels (12). This 
choice is motivated by the observation that 1/f spectra are com-
monly observed in EEG and LFP recordings from the mamma-
lian cortex (13–15).

The above models were simulated and these data were assumed 
to be acquired by a multi-electrode with 14 equally spaced con-
tacts. Figures 1 and 2 show the results for the two different tem-
poral functions, 10-Hz sinusoid and AR(2), respectively. In both 
figures, panel (a) gives the color-coded power spectra at different 
contacts or channels (vertical axis) where oscillation at 10 Hz is 
clearly seen; panel (b) displays the superposition of 500 trials with 
random initial phases at the reference contact denoted by zk; panel (c) 
shows the same 500 trials after phase realignment; panel (d) is the 
PRAT-LFP. The time label is from −100 to 0 ms. This label is 
motivated by the fact that, in the next section, experimental data 
from the prestimulus time period will be considered where the 
stimulus onset is defined as 0 ms. It is evident that the PRAT-
LFPs in Figs. 1d and 2d are not able to reveal the underlying 
current/source pattern in the mathematical model, suggesting 
that LFPs have limited ability to precisely localize generators of 
transmembrane current flow. The PRAT-CSD profiles obtained 
by taking the second spatial derivative on the PRAT-LFPs are 

4.2. CSD Analyses  
with PRAT
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shown in Figs. 1e and 2e. The source and the sink pairs in the 
CSD profiles are clearly seen at around electrode contact 4 and 
11. Temporally, the source-sink pair oscillates at a frequency of 
10 Hz. Thus, the PRAT method recovers the dynamics built into 
the mathematical model. The above analysis can be carried out 
for each frequency from 5 to 80 Hz. Integrating the rectified 
PRAT-CSD profile over space and a given time interval yields the 
amount of transmembrane current at frequency f. The results are 
plotted in panel (f) and are called the CSD spectra. From the 
CSD spectrum, the greatest amount of transmembrane current is 
seen to occur at10 Hz. This again is in agreement with the condi-
tions implemented in the mathematical model.

Fig. 1. Simulation example where the temporal dynamics is defined by a 10 Hz sinusoid. (a) Power spectra (5–80 Hz) as 
a function of electrode contact. (b) Trials from the reference contact before phase realignment. (c) The same trials after 
phase alignment. (d) The PRAT-LFP profile. (e) The PRAT-CSD profile. (f) The spectrum of the total transmembrane current 
flow. The horizontal axis is frequency (Hz) in (a) and (f). It is time otherwise in the unit of millisecond.
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Field potential oscillations are ubiquitous in the nervous system. 
Depending on the signal rhythmicity, these oscillations are classi-
fied according to the following approximate nomenclature: delta 
(1–3 Hz), theta (4–7 Hz), alpha (8–12 Hz), beta (13–25 Hz), 
and gamma (25–90 Hz). The alpha rhythm is a prominent oscil-
latory activity in the 8–12 Hz band in EEG recordings over the 
occipital and parietal areas during wakefulness (16, 17). Nearly 
80 years after its discovery (18), its genesis, cellular mechanisms, and 
functions remain unclear. Early work emphasized the pacemaking 

5. Application to 
Experimental Data

Fig. 2. Simulation example where the temporal dynamics is defined by an AR(2) process; the conventions are otherwise 
the same as in Fig. 1.
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role of the thalamus (19). More recent evidence suggests that it 
might be of a cortical origin (20). This problem is considered in 
this chapter by recording LFP and multiunit activity (MUA) from 
the inferotemporal cortex of a behaving macaque monkey. The 
PRAT method, in conjunction with other methods such as CSD-
MUA coherence, is applied to address two problems: (1) laminar 
location of alpha current generators and (2) effect of prestimulus 
alpha oscillation on stimulus-evoked processing.

The data considered here is part of a previously published study 
(21, 22). A male macaque monkey was trained to discriminate 
stimuli in both visual and auditory domains. There are two condi-
tions. In Condition 1, the monkey was presented with a mixed 
stream of auditory and visual stimuli. In each sensory modality, a 
standard stimulus occurred 86% of the time and an oddball stimu-
lus 14% of the time. Selective attention was manipulated by 
instructing the monkey to respond to the oddball stimulus in the 
attended modality only. Task difficulty was balanced between the 
modalities. In Condition 2, the monkey performed the oddball 
detection task in the auditory domain in the absence of visual 
stimulation. The reason for analyzing activity in visual cortices 
during auditory discrimination was that the discrimination kept 
the monkey verifiably alert without using visual stimuli, so that 
we could study spontaneous ongoing neural activity.

LFP and MUA were sampled with a linear array electrode with 14 
contacts spanning all six cortical layers in the inferotemporal cor-
tex. Data from one penetration, collected during periods of ade-
quate task performance (i.e. >80% target detection), were analyzed 
to demonstrate the method presented above.

Problem 1: Laminar generators of ongoing alpha oscillation. 
Data from Condition 2 were analyzed. The length of a contiguous 
segment of spontaneous ongoing activity was on average 30 s long 
and there were five such segments for the penetration. After high-
pass filtering (3 Hz, zero phase-shift) and down-sampling to 200 
Hz, the LFP data were further divided into epochs of 200 ms in 
duration, which were considered trials or realizations of an under-
lying stochastic process. The power spectrum of each recording 
contact was estimated and the contact showing the highest power 
spectral density at 10 Hz was chosen as the reference channel. The 
PRAT method was used to obtain PRAT-LFP and PRAT-CSD. 
Figure 3a shows the results where the reference contact is 
channel 6. The PRAT-LFPs (solid lines) exhibit clear oscillation at 
10 Hz. The PRAT-CSD (color coded) revealed an alpha current 
generator in the supra-granular layers (around contacts 5–7) with 
an underlying source/sink/source configuration. The alpha cur-
rent generator in the infra-granular layers (around contact 10) was 
relatively weak. No alpha current generator was seen in the granular 
layer. The generator around contact three is believed to reflect 

5.1. Experimental 
Paradigm

5.2. Recordings
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dendritic backpropagation. In Fig. 3b, the alpha band power is 
plotted as a function of the recording contact. The highest power 
occurs around channels 5 and 6, suggesting that the alpha current 
generator in the supra-granular layers may play an important role 
in the overall organization of alpha activity in the column.

The respective roles of the alpha current generators can be 
further delineated by examining the concomitant MUA data. In 
Fig. 3a, an epoch of MUAs at channels 6 and 10 are overlain on 
the CSD profile. The MUA near the supra-granular layer alpha 
generator varies rhythmically with the underlying current, while 
the MUA near the infra-granular alpha generator is not modu-
lated by the current. This suggests that the alpha current genera-
tor in the supra-granular layers is possibly the pacemaker of the 
alpha rhythm in the column. We confirmed this impression by 
calculating the CSD-MUA coherence. The MUA data were 
epoched the same way as the LFP data and down-sampled from 
2 kHz by taking a temporal average in nonoverlapping windows 
of 5 ms duration to achieve effectively the same sampling resolu-
tion of 200 Hz as the down-sampled LFPs. The coherence between 
single-trial CSDs around alpha current generators identified by 
the PRAT-CSD method and the corresponding mean-centered 
single-trial MUAs was calculated by the multivariate autoregressive 

Fig. 3. Analysis of spontaneous alpha activity in inferotemporal cortex. (a) PRAT-CSD profile displayed as a color-coded 
plot, which is the second spatial derivative of the PRAT-LFPs (solid traces). A single epoch of MUA from two contacts is 
superimposed. (b) Laminar distribution of the peak (10 Hz) LFP power across recording contacts. (c) CSD-MUA coherence 
spectra at different contacts.
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(MVAR) spectral analysis method (23). Figure 3c gives the CSD-
MUA coherence at channels 5, 6, 7, and 10 where relatively high 
transmembrane current flows were found. In the supra-granular 
layers, the CSD-MUA coherence is relatively strong, reaching 
values close to 0.16, while in the infra-granular layers, the CSD-
MUA coherence is close to zero. This supra-granular bias is con-
sistent with the single epoch data in Fig. 3a.

The above results demonstrate that the inferotemporal cortex 
contains an alpha pacemaker in the supra-granular layers, in agree-
ment with the suggestion that the alpha rhythm might be of a 
cortical origin. A more thorough analysis of this problem has 
been carried out by Bollimunta et al. (24). The alpha pacemaker 
in the supra-granular layers has a source/sink/source configura-
tion. In light of the substantially enlarged basal dendritic arbor 
reaching the size of 400 mm in IT (25), this alpha generator most 
likely reflects the activity of superficial pyramidal neurons. The 
CSD-MUA coherence further suggests basal dendritic excitation. 
It is worth noting that Lukach et al. (26), in an in vitro slice study, 
have shown that the supra-granular layers contain the pacemaker 
of alpha range oscillations in the entorhinal cortex in rats.

Problem 2: Effect of prestimulus alpha oscillation on stimulus 
evoked response. The data recorded under Condition 1 were con-
sidered. The continuous LFP recordings were divided into 600 
ms (−200, 400 ms) epochs based on the standard visual stimulus 
triggers. The prestimulus interval was defined to be from −200 to 
0 ms, where 0 ms denotes stimulus onset. After data preprocess-
ing, approximately 2,000 trials during which the monkey paid 
attention to the visual stimulus were made available for further 
analysis. The stimulus-evoked CSD from contact 5 in the supra-
granular layers was computed using the conventional method and 
shown in Fig. 4. From this figure, an early stimulus processing 
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Fig. 4. Stimulus evoked current source density from a contact in the supra-granular layers. Early and late evoked 
responses are marked.
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period (50–100 ms) and a late processing period (100–200 ms) 
were defined. Figure 5a shows the CSD profile of the ongoing 
prestimulus alpha oscillation determined by the PRAT method. 
Note the similarity between the CSD profile in Fig. 5a and that in 
Fig. 3a. Although obtained under different experimental condi-
tions, these transmembrane current flow patterns are likely to 
reflect the same physiological generating mechanisms.

To examine the relation between prestimulus alpha oscilla-
tion and stimulus-evoked response, the magnitude of the pre-
stimulus oscillation at 10 Hz was estimated on a trial-by-trial 
basis. A template matching method was used for this purpose. For 
single-trial LFP data, the second spatial derivative see (3) was 
calculated to yield single-trial CSD profiles. The PRAT-CSD in 
Fig. 5a was used as a template and moved along a given single-trial 
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Fig. 5. Effect of prestimulus alpha oscillation on stimulus-evoked response. (a) PRAT-CSD profile at 10 Hz during the 
prestimulus time period, which is used as a template for measuring the strength of single-trial alpha activity. (b) A trial 
having a strong match index value with the template (note the CSD pattern between the two solid lines). (c) Stimulus 
evoked CSD profile. (d) Early (blue) and late (red) evoked responses plotted against the normalized magnitude of 
prestimulus alpha oscillation. Here TTCF stands for total transmembrane current flow.
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CSD profile to find the best pattern match defined in terms of 
cross correlation. The correlation coefficient at the best match 
location was retained as an index of the magnitude of the pre-
stimulus alpha activity in that trial. The procedure was repeated 
for all trials. Figure 5b shows a single-trial CSD profile with a 
high matching index value; the similarity between the transmem-
brane current flow pattern that is between the two vertical lines 
and the PRAT-CSD in Fig. 5a is noticeable. All the trials were 
sorted into groups of 500 trials, according to the values of the 
template matching index, each group having 90% of the trials 
overlapped with the previous one, starting from the lower match-
ing index value to the highest. For the 500 trials in each group, a 
PRAT procedure was performed to yield a group PRAT-CSD 
profile. The total transmembrane current flow (TTCF) was com-
puted by integrating the rectified ongoing laminar CSD over time 
(100 ms) and space (depth). For the same group of trials, the 
stimulus-evoked CSD profile, shown in Fig. 5c, was calculated in 
the conventional way. The TTCF during the early (50–100 ms) 
and the late (100–200 ms) poststimulus time period were obtained 
and plotted against the prestimulus alpha TTCF in Fig. 5(d) (blue 
for early and red for late). All quantities were normalized to a 
maximum value of 1. The solid straight lines represent least 
squares fits. The correlation coefficient between prestimulus alpha 
activity and the early evoked response is 0.1, while the correlation 
coefficient between prestimulus alpha activity and the late com-
ponent is 0.9.

The above results demonstrate that the magnitude of the pre-
stimulus alpha oscillation can affect stimulus processing. In par-
ticular, the prestimulus alpha oscillation is shown to be more 
strongly correlated with the late evoked component than the early 
evoked component. This observation appears to contradict intui-
tive expectations and thus calls for a possible explanation. In the 
cortex, excitatory neuronal information transmission is mediated 
by the release of the neurotransmitter glutamate. There are two 
major classes of glutamate receptors: AMPA and NMDA. On the 
one hand, experimental evidence suggests that the early evoked 
component reflects the fast response to stimulus input and is 
mainly mediated by AMPA receptors (27, 28). On the other 
hand, the late evoked component is apparently related to neu-
ronal responses to feedback input from higher order areas and is 
thought to engage the NMDA receptors (28, 29). Spontaneous 
field potential oscillations in the theta and alpha range before the 
onset of stimulus reflect the cyclical variation in the excitability of 
neuronal ensembles (30–33). They involve the potentiation of 
NMDA receptors (34–36). The NMDA-mediated increase in 
excitability is an essential ingredient in recent theories of atten-
tion and memory (29, 37). This differential involvement of glu-
tamate receptors with distinct stages of information processing 
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and prestimulus facilitation of NMDA receptors may underlie the 
correlation pattern observed between prestimulus ongoing alpha 
activity and stimulus evoked response.
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