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Abstract

Pericytes were described in 1873 by the French scientist Charles-Marie Benjamin Rouget and were originally
called Rouget cells. The Rouget cell was renamed some years later due to its anatomical location abluminal
to the endothelial cell (EC) and luminal to parenchymal cells. In the brain, pericytes are located in
precapillary arterioles, capillaries and postcapillary venules. They deposit elements of the basal lamina and
are totally surrounded by this vascular component. Pericytes are important cellular constituents of the
blood-brain barrier (BBB) and actively communicate with other cells of the neurovascular unit such as
ECs, astrocytes, and neurons. Pericytes are local regulatory cells that are important for the maintenance
of homeostasis and hemostasis, and are a source of adult pluripotent stem cells. Further understanding of
the role played by this intriguing cell may lead to novel targeted therapies for neurovascular diseases.
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1. Introduction

Pericytes were described in the late 1800s by the French scientist
Charles-Marie Benjamin Rouget (1) and were referred to as the
Rouget cell. It was not until the early 1900s that Rouget’s work
was confirmed as reviewed by Doré (2) and the Rouget cell was
renamed as the pericyte. Since its discovery there has been con-
siderable confusion and controversy reflected in the numerous
conflicting definitions of the pericyte found in the literature. The
pericyte has been referred to as: (a) A contractile, motile cell that
surrounds the capillary in a tunic-like fashion (1). (b) A branching
contractile cell on the external wall of a capillary and peculiar
elongated, contractile cell wrapped around precapillary arterioles
“outside” the basement membrane (3). (c¢) A slender, relatively
undifferentiated connective tissue cell in the capillaries or other
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small blood vessels also called the adventitial cell (4). (d) A smooth
muscle /pericyte or smooth muscle cell of the capillaries (5, 6).
A broad flat cell with slender projections that wrap around the capil-
laries (6). (e) A stem or mesenchymal-like cell, associated with the
walls of small blood vessels. As a relatively undifterentiated cell, it
serves to support these vessels, but it can differentiate into a fibro-
blast, smooth muscle cell, or macrophage as well if required (6-14).

Despite nearly 130 years of investigation, the role of the peri-
cyte is still somewhat of a mystery. This is due, in part, to the rela-
tively low numbers of pericytes in most tissues. The ratio of
pericytes to EC varies from species to species and organ to organ
and varies even within the capillary bed. In the brain the average
ratio of pericytes to EC in the rat capillary is 1:5. In the mouse the
ratio is 1:4 and in humans 1:3—4. This low number is further aug-
mented by the difficulty of isolating pure primary pericytes (15).
Once isolated, pericytes rapidly differentiate along multiple lin-
cages depending on the regulatory signals present in the microen-
vironment. It is this pluripotentiality and the ability to migrate as
well as the lack of a pericyte specific marker that has lead to the
enormous confusion about this cell (14). In this chapter, the role
of the pericyte as an adaptive regulatory cell of the neurovascular
unit that is important in the maintenance of tissue homeostasis
will be discussed, as well as the role of the pericytes as a source of
adult stem cells and the potential role of pericytes in development
of disease pathology.

2. Morphology

2.1. Central Nervous
System (CNS) Pericyte
Morphology

In the mature CNS capillary, the pericyte is located between the
EC and parenchymal astrocytes and neurons (Fig. 1). Pericytes
have a prominent round nucleus that clearly differs from the elon-
gated cigar shaped nucleus of the EC. The pericyte extends long
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Fig. 1. Cross section of a CNS capillary is shown in cartoon form. The pericyte is located
between the endothelial cells (EC) and astrocytes (not shown). Pericyte projections (white)
wrap around the capillary (gray). The pericyte is totally surrounded by basal lamina.
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processes that extend over the vessel wall. The morphological
pattern of projections appears to be somewhat heterogeneous
(Fig. 2). Pericyte projections can extend around the capillary
(Fig. 2a—c) as originally described by Rouget (1). The classic
wrapping pattern is also somewhat heterogeneous. The most
common association of the pericyte with the capillary is one in
which the pericyte processes are broad and span a large somewhat
continuous surface of the vessel (Fig. 2a, d). Alternatively these

Fig. 2. Three scanning electron micrographs of segments of rat CNS capillaries are shown (a—¢) along with four cartoons
depicting the structural association of pericytes with microvessels (d—g). The common pattern is the pericyte encircling
the capillary with broad, virtually continuous projections that cover a large surface area of the microvessel (a, d). The
second pattern shows pericytes wrapping around the capillary, but the area is more defined and smaller and the pericyte
projections are finger-like in shape (b, ¢, €). The third pattern is that of migrating pericytes (b, f). This pattern is predomi-
nantly seen following injury and during the early stages of angiogenesis. The fourth pattern shows that the pericyte is
positioned longitudinally in a polar fashion along the microvessel (g). This pattern may reflect pericytes migrating along
the vessel or may reflect transition pericytes. This pattern is seen at arteriolar/capillary junctions and during
angiogenesis.
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processes may form finger-like projections that are more confined
and surround a more finite portion of vessels (Fig. 2b, ¢, ¢). A third
pattern of pericyte orientation in the microvessel involves a retrac-
tion of projections and this represents a migrating pericyte (Fig. 2b,
f) (16). Pericytes may also extend along the long axis of the capil-
lary which represents longitudinal migration (Fig. 2g). This pat-
tern is more commonly seen during angiogenesis. In normal
capillaries, the wrapping pattern predominates but under patho-
logical conditions the migrating pattern increases. It is likely that
these patterns represent functional differentiation of pericytes
rather than heterologous subsets.

The CNS pericyte is surrounded by the basal lamina on all
sides. During development and during angiogenesis the pericyte
deposits basal lamina components (14). Even pericyte projec-
tions, observed using electron microscopy, have a thin layer of
basal lamina. The basal lamina has been shown to thicken or thin
in response to stress stimuli (17-20). Changes in the basal lamina
can be directly associated with pericyte expression of proteases
(16) and ultimate migration from its vascular location (17, 21).

The intact basal lamina may not only provide anchoring and
structural integrity to the capillary but it may also be involved in
regulation of pericyte function and differentiation. It seems intui-
tive that there must be a reason why the pericyte is surrounded by
laminal proteins. AvB8 integrin is important in neurovascular cell
adhesion (22, 23). Pericytes encased in the basal lamina or exposed
to laminal proteins do not usually differentiate (Dore-Duffy,
unpublished observations). Thus migration through the basal lamina
is necessary before cells can function in their stem cell capacity.
Regulation at the level of the basal lamina may also be integral to
vascular adaptability to an ever-changing environment and to
pericyte signaling mechanisms (24).

Within its capillary location, the pericyte may signal nearby
EC (25), astrocytes (26), neurons, smooth muscle cells, and per-
haps other pericytes (14). Pericyte-EC contacts include peg and
socket arrangements (27, 28) and gap junctions (29, 30). Gap
junctions allow pericytes to communicate through the exchange
of ions and small molecules. Peg-and-socket contacts enable peri-
cytes to penetrate through the basal lamina and make contact
with other cells and nearby vessels (27, 28). Junctional complexes
including adhesion plaques also support transmission of contrac-
tile forces from pericytes to other cells. Pericyte gap junctions
contain N-cadherin, a variety of adhesion molecules, B-catenin,
extracellular matrix (ECM) molecules such as fibronectin, and a
number of integrins (30, 31). Thus, pericytes are involved in
highly complex signaling cascades that enable this cell to respond
to changes in the microenvironment. However, itis unclear whether
gap junctions and peg and socket contacts are naturally present or
whether they are initiated during changes in functional activity.
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For example, it is known that pericytes interdigitate with ECs
during the early phases of angiogenesis and with neurons during
the maturation of newly formed vessels (32). These sites of com-
munication are altered under pathological conditions. During
cerebral edema or diabetes, gap junctions are substantially
decreased or disrupted in retinal pericytes (33-35). Diabetes-
induced changes in gap junctions may be regulated by high glu-
cose (36). Pericyte-EC communication via gap junctions is
fundamental to the adaptive responses to compromised bioener-
getic homeostasis (37). Crosstalk between ECs, pericytes, as well
as astrocytes is involved in regulation of insulin transport (26).
Pericyte /endothelial cross talk is also integral to physiological
angiogenesis (38), and is likely to be important in adaptation to
hypoxic injury and focal capillary contractility.

Identification of the pericyte in culture or in situ is difficult. They
can be definitively identified at the electron microscopic (EM) level
or in semithin sections where their location relative to the basal
lamina can be seen (Fig. 1). EM morphology is detailed and dis-
cussed in a number of excellent articles (21, 39—41). Pericytes can
also be identified in capillary isolates by the shape of their nucleus
which is round while the EC nucleus is elongated and cigar-shaped
and can be easily delineated using a nuclear dye (14). Many inves-
tigators have used antibody directed against alpha smooth muscle
actin (aSMA) to identify pericytes (Table 1). While pericytes are
capable of expressing 0SMA, the expression of this protein in vivo
may be associated with functional heterogeneity within the capil-
lary and in vitro may be a marker of dedifferentiation. In their cap-
illary location, most pericytes are SMA negative (8, 14, 42, 43).
In brain, only those pericytes that are located near arterioles are
routinely immunoreactive for acSMA (14). Expression of this pro-
tein can be induced within the capillary and may be related to the
role of the pericyte in focal regulation of capillary blood flow
(44—-47) and in the acute stress response (14). In primary cultures,
less than 5% of freshly isolated capillary pericytes express oSMA
(8, 43) but nearly 100% express this marker by day 7 (Fig. 3) (48).

Bovine retinal pericytes express potassium (K+) channels (49).
In vasa recta pericytes, elevation of extracellular K+ hyperpolarizes
pericytes and this is reversed by barium (Ba2+), confirming the pres-
ence of strong inward rectifier K+ channels (Kir) (50). Kir, however,
is also strongly expressed in EC and arteriolar smooth muscle cells
(51). Transcription profiling of pericyte-deficient brain microvessels
isolated from platelet-derived growth factor beta (PDGER) -/~ and
PDGEp receptor (PDGFBR) -/~ mouse mutants has identified
new candidates for pericyte markers. The ATP-sensitive potassium-
channel Kir6.1 (also known as Kcnj8) and sulfonylurea receptor 2,
(SUR2, also known as Abcc9), as well as delta homologue 1 (DLK1),
have been proposed as specific markers for brain pericytes. The three



54 Dore-Duffy and Cleary

Table 1

This table outlines pericyte markers

Pericyte marker Reference
3G5-defined ganglioside (62)

140 kDa Aminopeptidase N (60)
Angiopoietin 1 (61)

DLKI (52)

ICAM-1 (42)

Kenj8 (52)

K+ channels /Kir (49-51)
Nestin (9)

NG2 (8 9 53 59)
0X-42 /oM (54)

PDFGoR (14)

PDGFBR (8, 14, 43, 58)
RGS-5 (55)

oaSMA (8 14, 42, 43, 145, 146)
SUR2 /Abcc9 (52)

VCAM-1 (42, 147)
Vimentin (8, 13, 56, 148)

Fig. 3. Primary rat pericytes (4 days old) grown in DMEM plus 20% fetal calf serum. Cells
were fixed in 4 % glutaraldehyde, permeabilized with Triton X-100 and dual stained for
expression of beta actin (green) and alpha smooth muscle actin (red). In this culture 30%
of the cells expressed the smooth muscle phenotype. One hundred percent of the cells
expressed the receptor for platelet derived growth factor beta (not shown).
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proposed brain pericyte markers are signaling molecules implicated
in ion transport and intercellular signaling (52). The selectivity of
expression has yet to be confirmed and it is possible that these
markers are not expressed in adult pericytes.

Pericytes are positive for the chondroitin sulfate proteoglycan
NG2, formerly known as the high molecular weight melanoma
associated antigen (53) and nestin (9). They also express vascular
cell adhesion molecule-1 (VCAM-1) and intercellular adhesion
molecule-1 (ICAM-1) (42). We have reported that pericytes
express the OX-42 marker (M) in vivo and in isolated capillaries
(54). However, in primary culture, this marker associates at focal
adhesion sites and is down-regulated with time. The adult CNS
pericyte expresses a number of proteins that are useful in their
identification (8, 48, 55). They express vimentin but not desmin
(8,56). Developmental markers such as the regulator of G-protein
signaling (RGS-5) protein have been identified in knockout mice
(57). This protein is expressed during embryonic development
and lost after birth. In our hands it is not expressed in normal
adult CNS pericytes (Dore-Duffy unpublished observations).
However, expression of RGS5 has been reported in tumor peri-
cytes during angiogenesis (55). Adult pericytes express PDGE,
PDGEFBR (58), and NG2 chondroitin sulfate proteoglycan
(8, 53, 59). Pericytes are also known to express PDGFaR (14)
but we have not yet tested this in brain sections. Other markers
expressed by pericytes include the 140 kDa aminopeptidase N
(60), angiopoietin 1 (61), and a 3G5-defined ganglioside (62).
The ganglioside 3G5 is not expressed by all pericytes (63) and is
expressed by a large number of other cells including islet cells,
follicular cells, melanocytes, and pancreatic and adrenal cells.

The lack of a definitive pan-marker for pericytes may be due
to the fact that these cells are multipotent self-renewing cells (9, 14).
This will be discussed in more detail under Subheading 3. When
pericytes are subcultured from freshly isolated capillaries they
undergo a period of quiescence that is followed by development
of the aSMA phenotype. This may reflect either dedifterentia-
tion, if one assumes that pericytes are derived from mesenchymal
cells, or may reflect differentiation of a quiescent stem cell along
the mesenchymal lineage (64). Thus aSMA cannot be used to
definitively identity pericytes nor can the lack of expression be
used to exclude pericytes.

3. Properties

3.1. Pericytes
and the Blood—-Brain
Barrier (BBB)

The BBB regulates the passage of various nutrients and essential
components, proteins, chemical substances, and microscopic
organisms between the bloodstream and the parenchymal tissue.
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3.2. Contractility

The anatomical constituents of the BBB are the EC, pericytes,
and basal lamina (matrix proteins) that together with the astro-
cytes, neurons, and possibly other glial cells comprise the neuro-
vascular unit. Coordinated cell-to-cell interactions between cells
of the neurovascular unit regulate a wide variety of functions that
include development, BBB permeability, cerebral blood flow, and
the stress response.

Dysregulation at the neurovascular level is linked to many com-
mon human CNS pathologies, making the neurovascular unit a
potential target for therapeutic intervention. Together the cells of
the neurovascular unit adapt to environmental changes and make
fine-tuned regulatory decisions that maintain homeostasis and
promote tissue survival. Nowhere is such tight regulation more
important than in the brain where bioenergetic and metabolic
homeostasis is integral for neuronal survival. The role of the CNS
pericyte in the neurovascular unit is still largely unknown. Pericytes
were once thought to function as a support or scaffolding struc-
ture. It is known that pericytes are highly complex regulatory
cells that communicate with ECs and other cells of the neurovas-
cular unit such as neurons and astrocytes by direct physical con-
tact and through autocrine and paracrine signaling pathways (8,
11-13, 27, 65). It seems intuitive that loss or dysfunction of the
pericyte or of any of the cells comprising the neurovascular unit
has highly deleterious effects.

The concept that pericytes regulate blood flow at the capillary
level was originally proposed by Steinach and Kahn in 1903 (45)
and Niin 1922 (66). Both scientific groups studied the effects of
toxic and electrical stimulation on capillary diameter. Doré
reviewed this area in 1923 (2). The concepts put forward in this
review are on target with what is known today. As stated by

Doré, (2): Until a few years ago the capillaries were vegavded
as elastic tubes undergoing passive distension in accovdance with the
general blood pressure, the state of contraction ov dilatation of the
supplying arterioles, and the nutrition of the vascular walls. There is
now, however, conclusive evidence that the capillarvies play an inde-
pendent part in the peripheral civculntion, that they possess the
intrinsic property of contraction and relaxation, and ave under the
divect influence of the nevvous system.

Pericytes have receptors for a large number of vasoactive sig-
naling molecules (8, 14) suggesting that they have the capacity to
be involved in cerebrovascular autoregulation. Nonneural peri-
cyte expression of aSMA and desmin, two proteins found in
smooth muscle cells, as well as their adherence to the endovascular
cells make them potential candidates in regulation of capillary
diameter and focal capillary blood flow (8, 27, 67-70). Electrical
stimulation of retinal and cerebellar pericytes is reported to evoke
a localized capillary constriction (47). ATP in the retina or



3.3. Pericytes

Are Multipotential
Stem Cells

in the Adult Brain

Morphology and Properties of Pericytes 57

noradrenaline in the cerebellum also results in constriction of
capillaries by pericytes. Glutamate reverses the constriction pro-
duced by noradrenaline. Following simulated ischemia and trau-
matic brain injury (TBI), capillary pericytes are induced to express
oSMA. Thus, it is likely that pericytes modulate blood flow in
response to acute changes in neural activity and/or metabolic
need. For example, other investigators have shown that capillary
contraction can be directly linked to metabolic need (69, 71).
Exposure to lactate increases pericyte calcium, contraction, and
capillary lumina become constricted. The contractile response
appears to involve a cascade of events resulting in the inhibition
of Na*/Ca* exchangers on the EC (71). Hypoxia, which closes
gap junctions, switches the effect of lactate from contraction to
relaxation. This further suggests that when energy supplies are
ample, lactate may stimulate vasoconstriction, and under hypoxic
conditions, induce vasodilation. Thus, pericyte function may be
linked with local vascular adaptation to changes in local bioenergetic
requirements.

Adaptations to stress at the vascular level include functional and
phenotypic changes involving differentiation along mesenchymal
and neural lineages, and lend credence to the idea that pericytes
are multipotential stems cells in the adult brain and in other tis-
sues. That pericytes are stem cells is supported by a host of infor-
mation from historical work and from more recent literature. We
will speculate on the importance of pericyte stem cell activity in
survival and DNA repair and how dysregulation of pericyte func-
tion may lead to disease.

The pluripotentiality of pericytes has been proposed for many
years and has been reviewed (8, 10-12, 14, 65). As early as 1970,
it was proposed that there is a similarity between neuroglial cells
and pericytes (72). Katenkamp and Stiller (73) proposed that
myofibroblasts were derived from pericytes and pericytes were
multipotent stem cells. They further proposed that these cells are
not only functional in dermatofibroma but are integral to connec-
tive tissue regeneration (74) and involved in interferon gamma
(IFN-y) (75) release. Nestin is induced in liver stellate cells during
transition from the quiescent to the activated phenotype in cul-
ture (76). These cells also express glial fibrillary acidic protein
(GFAP) and neural cell adhesion molecule (NCAM). They pro-
posed a potential embryonic origin of these cells. In the adult
liver, the replicating cells including endothelial, Kupffer, stellate
cells (Ito or pericytes), bile duct epithelium, and granular lym-
phocytes (pit cells), were found to be stem cells (77). The ability
of pericytes to form bone nodules in vitro (78) provided the basis
for a number of elegant studies predominantly by Anne Canfield’s
laboratory showing that pericytes are a source of osteogenic pro-
genitor cells (79-83). Pericytes have also been shown to produce
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chondrocytes and adipocytes (84). As early as 1993, it was shown
that bone marrow stromal cells are mesenchymal, express vimentin,
and can be induced to express aSMA in culture (85). These
cells are multipotent and share many pericyte characteristics. An
alternative hypothesis is that these cells are derived from a common
precursor. Multipotent stem cells isolated from human reaming
debris collected during surgical treatment of long bone diaphy-
seal fractures differentiate along the osteogenic pathway and can
be redirected to a neuronal phenotype (86). These cells also
resemble pericytes. It has been reported that growth factors such
as bovine fibroblast growth factor (bFGF) and epidermal growth
factor (EGF) stimulate pericyte proliferation and angiogenesis
(87). Both EGF and bFGF responsive vascular stem cells have
been reported in the rat and avian microvasculature (88-90).
Additional reports suggest that pericytes differentiate into fibro-
blasts (17, 83, 91), endothelial cells (90), adipocytes (92), chon-
drocytes (82), and macrophages/dendritic cells (54, 93).

We have investigated the neural potential of primary pericytes
subcultured from isolated rat CNS capillaries (9). Using fluorescence-
activated cell sorting (FACs) analysis, our study demonstrates that
adult CNS capillaries contain NG2 and nestin-positive
pericytes, markers not expressed in EC populations. Pericyte
BRDU /nestin-positive, bEFGF-induced spheres ultimately differ-
entiate and are composed of cells of neural cell lineage. Pericytes
undergo self-renewal and increase in number after subculturing.
By clonal analysis, multipotent pericytes differentiate along mul-
tiple lineages that include astrocytes, neurons, oligodendrocytes,
and aSMA-positive cells that are NG2 /nestin-positive and resem-
ble primary pericytes. There is no evidence of cell fusion in these
studies. When spheres are disrupted, cells coexpressing oligoden-
drocyte and astrocyte markers are noted. Pericytes also generate
neurospheres directly from cultured rat capillaries at a faster rate
than seen with primary pericytes (14) suggesting that ECs can
enhance this process. ECs secrete a substance that enhances
neurosphere formation (94) while smooth muscle cells do not
enhance neurosphere formation. While capillary pericytes are a
source of adult stem cells, ECs within the vascular niche provide
trophic support.

Subsequent studies have confirmed these findings and identi-
fied pericytes from other organs as adult stem cells. Liver pericytes
(Ito cells, stellate cells) are liver cell progenitors (95, 96). Skin
pericytes are the source of regenerating skin tissue in adults (97).
Rajkumar et al. (98) examined mechanisms by which microvascu-
lar injury leads to dermal fibrosis in diffuse cutaneous systemic
sclerosis. They hypothesized that microvascular pericytes or fibro-
blasts transdifferentiate into myofibroblasts. Purified pericytes
also demonstrate high myogenic potential in culture and in vivo
(99-101). Cells of testicular blood vessels (vascular smooth muscle
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cells or pericytes) are the progenitors of Leydig cells (102).
Resembling stem cells of the nervous system, the Leydig cell pro-
genitors are characterized by the expression of nestin. The pulp of
human teeth contains a population of cells with stem cell proper-
ties and it has been suggested that these cells originate from peri-
cytes (103). Pulp stem cells express molecules of the Notch
signaling pathway (Notch3). Notch3 was coexpressed with RGS5.
RGS5 induction may be coregulated with stem cell activity. Thus,
in six separate tissues namely, teeth, brain, skin, muscle, prostate and
liver, pericytes are a source of tissue progenitor cells in adult tissue.

The pericyte has a very broad stem cell potential that goes
beyond organ specific production of progenitor cells. In serum-
containing culture medium, primary CNS pericytes (2—4 days old)
take on a macrophage /dendritic cell-like phenotype (14, 54, 93).
During this period, pericytes express macrophage markers and
can present antigen (54 ). Upon exposure to interferon, pericytes
express MHC class II antigen and can present antigen to sensi-
tized splenic T-cells (93). Pericytes continue to differentiate
becoming 100% aSMA positive on days 7-10 and express other
markers such as the integrin Bl characteristic of mesenchymal
stem cells (MSC). With prolonged culture, pericytes form nod-
ules that produce mineralized bone by 21 days in culture (14, 81).
These nodules are alizaren red positive. In the same culture, there
are other cell types known to be derived from mesenchymal lin-
eage. Thus, in vitro data supports the concept that with the cor-
rect environmental cues CNS pericytes may form MSC and
then differentiate to bone, adipocytes, smooth muscle cells, and
endothelial cells. With different cues, pericytes differentiate along
the neural lineage.

In the adult, proliferating stem cell activity is usually found in
a perivascular location in response to stress or injury (104, 105).
However, the exact mechanism that regulates induction, prolif-
eration then reprogramming, and differentiation of adult stem
cells is not known. Pericytes migrate from their vascular location
in response to stress injury (21) and remain in a perivascular loca-
tion where they may encounter local signaling molecules that dic-
tate their subsequent activities such as migration, proliferation or
differentiation. It is likely that they may also migrate back to the
vascular location. Perivascular pericytes proliferate during the
developmental angiogenic response (106) and during physiologi-
cal angiogenesis (48). Pericyte signaling molecules that are
involved in regulation of angiogenesis are also involved in neuro-
genesis (107, 108). Pericytes synthesize the proangiogenic
cytokine, vascular endothelial growth factor (VEGF) (109).
VEGF augments pericyte proliferation in an autocrine fashion
(109), promotes differentiation of multipotent chondrocytic stem
cells (110), and promotes migration and vascular instability (111).
Pericytes are also responsive to growth factors and other signaling
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molecules important in regulation of neurogenesis (8, 109, 112).
Thus, it is possible that the response to injury and stress at the
tissue level is coregulated with stem cell differentiation in the
adult.

4. Pericytes
and Disease

As discussed above, pericytes play an important role in the main-
tenance of vascular and tissue homeostasis and are integral to
injury responses. Under normal conditions the pericyte is rela-
tively quiescent and is essential for vascular stability. Under condi-
tions of stress or injury, the pericyte undergoes phenotypic and
functional changes that may include migration, proliferation or
differentiation. How these events that include pericyte repro-
gramming are coordinated at the molecular level needs to be
determined. However, it is clear that pericyte dysfunction or the
loss of pericytes is likely to play an important role in the patho-
genesis of disease.

Pericyte loss or a reduced pericyte to EC ratio may be
achieved through migration of pericytes from their microvascu-
lar location under pathological or physiological conditions, selec-
tive pericyte death or from reduced pericyte turnover or
maintenance. Pericytes migrate naturally during the early phases
of physiological angiogenesis to make way for growing sprouts
(113, 114), or in response to stress or injury (21). Migration fol-
lowing TBI is thought to promote survival as pericytes remaining
in their vascular location show signs of degenerative activity (21).
However, migration is also thought to play a pathogenic role in
diabetic retinopathy (115). Decreased pericyte to EC ratios have
been observed following TBI (21) and stroke (116), multiple
sclerosis (117-121), brain tumor (122, 123), diabetic retinopa-
thy (124), aging (125, 126), and in a variety of angiopathies
(127). Pericyte loss may also play a role in Alzheimer’s disease,
however; enhanced pericyte coverage of some vessels may sug-
gest that increased proliferation of pericytes is an adaptation to
focal loss of bioenergetic homeostasis (121, 126, 128-130).
Pericyte loss due to cellular degeneration/apoptosis has been
shown in hypertrophic scars, keloids (131), early diabetic retin-
opathy (132, 133), cancer (134-137), hyperglycemia (138), and
during development (139). Premature infants have decreased
pericyte coverage (140). Increased pericyte coverage may also be
an indicator of vascular dysfunction. Pericyte proliferation has
been associated with development of muscularization during
pulmonary hypertension and is thought to be due to platelet
activating factor (141).
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On a more subtle level, loss of pericyte stem cell activity may
also lead to disease. Stem cells must maintain a functional genome.
Under continuous exogenous and endogenous stress, uncon-
trolled self-renewal cells can accumulate DNA errors, drive prolif-
erative expansion, and ultimately transform into cancer stem cells.
Tumor stem cells are thought to be involved in hematological
malignancies, such as hemangiomas and pericytomas, as well as in
solid tumors. The complex cellular mechanisms including cell
cycle arrest, transcription induction and DNA repair are activated
but may be dysregulated with an absence of repair machinery.
Mismatch repair gene defects have been recently identified in
hematopoietic malignancies, leukemia, and lymphoma cell lines
(142, 143). Pericyte differentiation within the vascular wall may
be considered dysfunctional. For example, differentiation along
the mesenchymal lineage with bone formation may result in
microcalcifications within small vessels (144) or even fatty deposi-
tion in the vascular walls. With continued knowledge of pericyte
biology, it is likely that their role in disease pathology may expand.

5. Conclusion

After its identification by Rouget in the late 1800s, relatively little
was published about the pericyte until 1902 when the presence of
this intriguing cell was confirmed. The development of tissue cul-
ture techniques has generated considerable interest in pericyte
biology. The ability to isolate pure primary pericytes has enabled
scientists to study these cells in vitro. The development of sophis-
ticated molecular biological techniques has enabled us to begin to
clearly delineate the complex mechanisms by which pericytes
communicate with other cells of the neurovascular unit. A better
understanding of the mechanisms by which pericytes communi-
cate with other cells and how altered communication may result
in disease pathology is likely to yield exciting new insights as well
as help in the development of a new therapeutic target in CNS
disorders.
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