Chapter 2
Serotonin 5-HT, . Receptors: Chemical
Neuronatomy in the Mammalian Brain

Guadalupe Mengod

2.1 Introduction

Serotonin 5-HT, receptors belong to the 5-HT, family, which includes 5-HT,, and
5-HT,, receptors. All three share similarities in their molecular structure, pharmacol-
ogy, and signal transduction pathways (Barnes and Sharp 1999; Hoyer et al. 1994).
Initially named 5-HT, . based on the conventions for naming serotonin receptors at
the time of its discovery, it was later renamed 5-HT . receptors after the cloning of its
gene and that of 5-HT,, (Pazos et al. 1984a; Prichett et al. 1988; Julius et al. 1988,
1990; Hoyer et al. 1985; Lubbert et al. 1987; Pazos and Palacios 1985) (see also
Palacios et al., Chap. 1, this volume). Chemical neuroanatomical techniques were
pivotal in the discovery of 5-HT,. receptors, which were first identified by autora-
diography after labeling of rat brain sections with the 5-HT,, and dopamine D, recep-
tor ligand mesulergine. This was followed by a thorough pharmacological
characterization performed in pig brain choroid plexus, and the binding site was dif-
ferentiated from the 5-HT,, receptor. The combined use of membrane receptor bind-
ing/pharmacology and brain slice autoradiography allowed its differentiation from
5-HT,,, 5-HT ;, and 5-HT,, receptors; it was then named 5-HT .. The pharmacology
and distribution of the new site differed from the existing knowledge about other
receptors (Pazos et al. 1984a, b; Hoyer et al. 1985). The 5-HT |, receptor was cloned
soon thereafter (Julius et al. 1988). The knowledge of the messenger ribonucleic acid
(mRNA) sequence and the derived protein sequence of these receptors allowed the
development of new important tools for the study of their chemical neuroanatomy.
The autoradiographic localization of 5-HT,. receptors had suffered from the
lack of selective ligands. While mesulergine remains the ligand of choice, SHT,.
sites can also be labeled by other ligands such as 5-HT self, LSD (lysergic acid
diethylamide), and DOI (1-(2,5-dimethoxy-4-iodophenyl-2-aminopropane), but
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always in combination with unlabeled ligands to block additional sites labeled by
these ligands. The ability to combine in situ hybridization with radioligand binding
autoradiography has allowed the establishment of the anatomical distribution of
5-HT,. receptors in the brain of many animal species by different anatomical and
pharmacological manipulations (Pazos and Palacios 1985; Eberle-Wang et al. 1997;
Hoffman and Mezey 1989; Mengod et al. 1990a, b; Molineaux et al. 1989;
Pompeiano et al. 1994). Immunohistochemistry with antibodies against parts of
5-HT,. receptors has also been used to visualize the receptor protein (Clemett et al.
2000; Abramowski et al. 1995).

In this chapter I will review some of the main findings concerning the anatomi-
cal and cellular distribution of 5-HT, . receptors in the brain of rodents, primates,
and humans with special emphasis on recent studies on the characterization of the
phenotype of the brain cells expressing these receptors and the significance of these
findings for the understanding the role of the 5-HT, . receptors in brain function.

2.2 5-HT,. Receptors: Neuroanatomical Localization by
Radioligand Binding Autoradiography, In situ
Hybridization, and Immunohistochemistry in the
Rodent Brain

5-HT, . receptor localization is restricted to the central nervous system (CNS), unlike
that of 5-HT,, and 5-HT,, receptors. Radioligands that label 5-HT, . receptors are:
[*H]mesulergine (in the presence of a selective 5-HT,, antagonist), [*’H]5-HT (with
adequate protection with a cocktail of 5-HT ligands), ['*I]SCH23982 (also dop-
amine D1), and ['"*I]LSD (in the presence of adequate 5-HT,, selective drugs). The
remarkable concentration of 5-HT,. receptors in the mammalian choroid plexus
somehow obscures its presence throughout the CNS. Autoradiographic studies have
identified this receptor in anterior olfactory nucleus, olfactory tubercle, lateral
amygdaloid nucleus, cortex, nucleus accumbens, hippocampus, amygdala, caudate,
and substantia nigra in addition to the choroid plexus in rat brain (Pazos and Palacios
1985). 5-HT,. receptor mRNA is very abundant in the pyramidal cell layer of the
ventral and posterior part of CA (cornu ammonis) 1 and CA2 fields of the hippocam-
pus and of the anterior part of the CA3, while it is very low in the pyramidal cell
layer of the dorsal and anterior region of CA1 and CA2, posterior part of CA3, and
the granule cell layer of the dentate gyrus. 5-HT,. binding sites show a regional
distribution in agreement with that of the mRNA, being concentrated on the pyrami-
dal cell layer of CAl and CA2 at ventral levels and the granule cell layer of the
dentate gyrus. However, receptors are also seen in the stratum lacunosum molecular
of the CA1 and CA3 fields at anterior and dorsal level (Palacios et al. 1991). These
localizations are illustrated in Fig. 2.1.

The distribution of [*H]mesulergine binding sites in rat brain (Pazos and Palacios
1985) are very similar to those found in mouse brain (Mengod et al. 1990a). In
mouse brain, [*H]mesulergine binding sites (in the presence of spiperone to block
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Fig. 2.1 5-HT,. receptors in the mouse brain. Regional distribution of [*H]mesulergine binding
sites and 5-HT,. receptor mRNA in adjacent sections of the mouse brain. (a) and (¢) Receptor
binding sites labeled by 5 nmol/L [*H]mesulergine. (b) and (d) Hybridization signal obtained with
a *P-labeled oligonucleotide probe complementary to the mRNA encoding 5-HT,. receptors.
Pictures are digital photographs from film autoradiograms. Amy indicates amygdala, CAl CAl
field of the hippocampus, CgCx cingulate cortex, ChP choroid plexus, CPu caudate-putamen, Hp
hippocampus, Hy hypothalamus, PAG periaqueductal gray, Pn pontine nuclei, Pyr pyriform cor-
tex, Rt reticular nucleus of the hypothalamus, SN substantia nigra. Scale bar: 1 mm

binding of the radioligand to 5-HT,, receptors) (Mengod et al. 1990a) are present
at high densities in choroid plexus, where it is predominant, although the presence
of low/very low specific [*H]mesulergine signals can be detected in nucleus accum-
bens, patches of the caudate putamen, olfactory tubercle, claustrum, septum, cingu-
lar cortex, amygdala, dentate gyrus, periaqueductal gray, entorhinal cortex, and
several brainstem motor nuclei. This binding is not detected in the 5-HT . receptor
knockout (KO) mouse brain (Lépez-Giménez et al. 2002), indicating that 5-HT,_
receptors are indeed present in the brain although at much lower densities than
5-HT,, receptors (with the remarkable exception of the choroid plexus). The distri-
bution of mRNA is very similar to that of protein or binding sites, except for high
levels in the habenular nucleus; where binding site levels are very low (Mengod
et al. 1990a; Lépez-Giménez et al. 2001a). There are multiple splice and editing
variants of 5-HT, receptors (Fitzgerald et al. 1999; Niswender et al. 1998), which
are beyond the scope of this chapter; they are not discriminated, so far as is known,
by the antagonist radioligands used in autoradiographic studies.

In monkey brain, 5-HT,. mRNA is present in choroid plexus, in layer V of most
cortical regions, and in nucleus accumbens, ventral anterior caudate and putamen, septal
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nuclei, diagonal band, ventral striatum, and extended amygdala (Lépez-Giménez
et al. 2001a). Several thalamic, midbrain, and brainstem nuclei also contain 5-HT, .
mRNA. [*H]Mesulergine binding and mRNA show a good correlation across the
brain supporting a predominant somatodendritic localization of 5-HT,. receptors.
However, in a few instances, a lack of correlation between both patterns of signal
suggests a possible location of 5-HT, . receptors on axon terminals. Examples of
poor correlation are the septal nuclei and horizontal limb of the diagonal band (pres-
ence of mRNA with apparent absence of binding sites) and interpeduncular nucleus
(presence of binding sites with apparent absence of mRNA).

2.3 Species Differences in 5-HT, . Receptors Distribution:
Rodent Versus Human and Nonhuman Primates

The pharmacological profile for 5-HT, . receptors is very similar for human, pig and
rat (Hoyer et al. 1985, 1986; Pazos et al. 1984b, 1987) both radioligand binding and
autoradiographic procedures in frontal cortex, hippocampus, and choroid plexus of
these species using [*H]mesulergine. The distribution of 5-HT, . receptor binding
sites in the human brain is somewhat different from that found in the rat brain
(Pazos and Palacios 1985; Hoyer et al. 1986). In the rat hippocampus, 5-HT,.
receptor binding sites are located in the stratum lacunosum molecular, whereas in
the human hippocampus the pyramidal layer is enriched in these receptors.

There are also differences in [*H]mesulergine binding sites in human brain when
compared with monkey (Macaca fascicularis) brain. High densities of binding sites
are observed in the human globus pallidus and substantia nigra (Pazos et al. 1987),
whereas they are absent in monkey globus pallidus and low in substantia nigra
(L6pez-Giménez et al. 2001a). In monkey neocortex, low levels of [*H]mesulergine
binding sites are detected on layer V, whereas in human cortical areas binding sites
are located predominately in layer III.

Although the distribution of 5-HT,. receptor mRNA in monkey brain (Lopez-
Giménez et al. 2001a) is very similar to that in rat (Eberle-Wang et al. 1997,
Pompeiano et al. 1994; Wright et al. 1995), mouse (Mengod et al. 1990a), and
human brain (Pasqualetti et al. 1999), there are some differences. In the neocortex
of mouse and rat the 5-HT,, receptor mRNA are found at detectable levels only in
prefrontal, cingulate, and retrosplenial cortices, whereas in monkey, mRNA is pres-
ent in all neocortical areas except in the calcarine sulcus within the occipital cortex.
The CA3 subfield of the hippocampus is another region of divergence: rat, mouse,
and human brain contain this mRNA, and no signal is found in the monkey CA3.
The rat entopeduncular nucleus contains 5-HT,. receptor mRNA, whereas its
equivalent in primate, the internal segment of the globus pallidus, is devoid of it. In
the striatum, the hybridization signal is uniformly intense in human, rat, and mouse
brain, whereas in monkey brain this signal is not uniform and is restricted to ventral
aspects of the anterior striatum. The substantia nigra is another brain region that
presents differences in the distribution of 5-HT, . receptor mRNA among the species.
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In human brain the presence of this mRNA is detected predominantly in the pars
compacta of this nucleus, whereas monkey brain cells showing the hybridization
signal were confined in the lateral part of substantia nigra. As in the rodent brain,
there is in general a good correlation between mRNA and binding sites in human
and monkey brains with the exceptions identified above. Some of these exceptions
are now discussed in relationship to the cellular localization of these receptors.

2.4 Phenotype of Cells Expressing 5-HT, . Receptors

The widespread distribution of 5-HT,. receptors in the brain of the mammalian
species studied until now suggests, as is the case for other neurotransmitter recep-
tors, that 5-HT, . receptors are expressed by neurons with different neurotransmitter
phenotypes. In this section evidence is presented that suggests the presence of these
receptors in neuropeptidergic, cholinergic, serotonergic, and GABAergic neurons,
as well as recent studies showing the interaction of 5-HT,, receptors with the can-
nabinoid and the dopaminergic systems.

2.4.1 5-HT,, Receptors and Neuropeptidergic Neurons

In nucleus accumbens and striatum, 5-HT, . receptor mRNA was found localized
with each of the neuropeptides (enkephalin, substance P, and dynorphin) as shown
by Ward and Dorsa (Ward and Dorsa 1996). The level of colocalization was similar
among the three neuropeptides but varied by region: high levels of colocalization
were observed (from 64% to 89%) ventrally, medially and scattered in patches with
high expression of the receptor in the striatum, whereas lower levels of colocaliza-
tion (43-54%) were observed in matrix-like areas of lower receptor expression.
According to the authors this colocalization could provide an anatomical basis for
earlier observations that alterations in serotonergic input can lead to changes in the
levels of striatal neuropeptides (Kondo et al. 1993).

2.4.2 5-HT,, Receptors and Serotonergic or GABAergic Neurons

The cellular localization of 5-HT, . receptor mRNA in relation to serotonergic and
GABAergic neurons has been studied in the anterior raphe nuclei of the rat (Serrats
et al. 2005). In the dorsal and median raphe nuclei, 5-HT, . receptor mRNA is not
detected in serotonergic cells identified as those expressing serotonin (5-HT) trans-
porter mRNA. In contrast, 5-HT,. receptor mRNA is found in the majority of
GABAergic cells of the anterior raphe nuclei, mainly located in the lateral and inter-
mediolateral parts of the dorsal raphe and lateral part of the median raphe, supporting
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previous hypotheses that proposed a negative-feedback loop involving reciprocal
connections between GABAergic interneurons bearing 5-HT,, , . receptors and 5-HT
neurons in the dorsal raphe and surrounding areas. According to this model, the exci-
tation of GABAergic interneurons through these 5-HT, . (and also 5-HT,,) receptors
would result in the suppression of 5-HT cell firing.

The finding of 5-HT, -immunoreactive cells in the raphe nuclei has led to the
proposal that some 5-HT neurons might express these receptors (Clemett et al.
2000). In contrast, electrophysiological data suggest that 5-HT,. receptors are
located on local GABAergic neurons, inside or close to the dorsal raphe (Liu et al.
2000), being part of a local negative-feedback circuit that would involve reciprocal
connections between GABAergic and 5-HT neurons. This model has been pro-
posed to explain the increases in the frequency of inhibitory postsynaptic currents
(IPSCs) induced by 5-HT and the 5-HT,, . agonist DOI [1-(2,5)-dimethoxy-4-io-
dophenyl-2-aminopropane] when applied to rat brain slices containing the dorsal
raphe.

The localization of the 5-HT, . receptor in GABAergic cells has been also
described in other brain areas. Immunohistochemical analyses on the 5-HT, . recep-
tor reveals that this receptor is mainly expressed in deep layers of the rat medial
prefrontal cortex (Liu et al. 2007) and cortex (Abramowski et al. 1995) in agree-
ment with the presence of the mRNA coding for this receptor in layers IV and V of
PFC of mice (Mengod et al. 1990a), rat (Pompeiano et al. 1994), monkey (L6pez-
Giménez et al. 2001a), and human (Pasqualetti et al. 1999). Around 50% of the
neurons expressing 5-HT,. receptor immunoreactivity in the prelimbic region of
the medial prefrontal cortex also expressed GAD67 immunoreactivity (Liu et al.
2007), a marker of GABAergic interneurons. We have detected abundant expres-
sion of 5-HT, ., receptor mRNA in layer V cells of the mouse cingulate cortex that
were not GABAergic. A detail of these results is shown in Fig. 2.2.

2.4.3 5-HT, Receptors and Cholinergic Neurons

In our studies on the distribution of 5-HT,. receptor mRNA in the Macaca brain
(Lopez-Giménez et al. 2001a) we remarked that several regions where cholinergic
cell groups are located also contained mRNA for 5-HT, . receptor. These regions of
codistribution include several forebrain areas [medial septal nucleus (cholinergic
group Chl), vertical nucleus of diagonal band (Ch2), horizontal nucleus of diagonal
band (Ch3), and nucleus basalis of Meynert (Ch4)], several mesencephalic nuclei
[pedunculopontine nucleus (ChS), laterodorsal tegmental nucleus (Ch6), parabig-
eminal nucleus (Ch8), oculomotor and trochlear nuclei], and motor nuclei of the
brainstem cranial nerve. This correspondence is also observed between the distribu-
tion of 5-HT,, receptor mRNA (Lépez-Giménez et al. 2001b) and several mesen-
cephalic and brainstem cholinergic cell groups, particularly in the latter region
where the different cranial nerve motor nuclei are highly enriched in both 5-HT,,
receptor mMRNA and ChAT mRNA.
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Fig.2.2 Cellular visualization of 5-HT, . receptors mRNA in the cingulate cortex. (a) Macroscopic
visualization of 5-HT, . receptor mRNA in the mouse coronal section. The inset in (a), correspond-
ing to the cingulate cortex, is shown at higher magnification in (b). (b) Cellular localization of
5-HT, receptors mRNA (labeled with #*P, black silver grains) in the cells of cingulate cortical
layers. GABAergic cells (GAD mRNA expressing cells seen as a brown precipitate) do not display
5-HT,. receptor mRNA hybridization signal. Scale bars: (a) 1 mm; (b) 20 pm

In fact, the interaction of cholinergic and serotonergic systems has been exten-
sively studied, especially those aspects relating to the modulation of central cholin-
ergic function by serotonin and its possible cognitive implications (See the review
in Cassel and Jeltsch (1995)). Regarding 5-HT, . receptors and cholinergic function,
several microdialysis studies carried out in rat brain showed the effect of 1-(3-chlo-
rophenyl)piperazine (mCPP) (an unselective 5-HT,. receptor agonist) on the
release of acetylcholine in rat cortex (Zhelyazkova-Savova et al. 1997) and hip-
pocampus (Zhelyazkova-Savova et al. 1999). This effect consisted of an increase of
acetylcholine release, which was shown to be mediated by 5-HT, . receptors, espe-
cially in the case of the cortex, providing corroborating evidence that the effect was
produced particularly via the nucleus basalis magnocellularis (Zhelyazkova-Savova
et al. 1997).

2.44 5-HT,, Receptors and the Cannabinoid Receptors System

The interaction of 5-HT,. receptors with the cannabinoid system through the CB,
receptor has been recently studied (Aso et al. 2009). CB, KO mice exhibited a
reduction in the expression of the 5-HT, . receptor in dorsal raphe, nucleus accum-
bens, and paraventricular nucleus, among other brain areas. In contrast, 5-HT,_
receptor expression was higher in the CA3 field of the ventral hippocampus of CB,
KO mice, suggesting different roles of this receptor in these brain areas. The
decreased expression of the 5-HT,, receptor in the dorsal raphe of CB, mutant mice
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could lead to a reduction in the inhibitory effect exerted by the 5-HT,. receptor on
5-HT neurons through the GABAergic mechanism (Boothman et al. 2006), which
supports the increased 5-HT extracellular levels in the brain areas receiving projec-
tions from the dorsal raphe observed in CB, KO mice. Likewise, the decreased
levels of 5-HT,. mRNA in CB, KO mice, observed within the nucleus accumbens
and the paraventricular nucleus of the hypothalamus, could indicate a diminished
capacity of this receptor to inhibit dopamine activity (Dremencov et al. 2006) and
to stimulate corticotrophin-releasing factor release (Heisler et al. 2007),
respectively.

2.4.5 5-HT,, Receptors and the Dopaminergic Receptors System

Dopaminergic nuclei, such as retrorubral area, substantia nigra pars compacta,
ventral tegmental area and periaqueductal gray, and dorsal striatum and
nucleus accumbens, express 5-HT, . receptor mRNA (Eberle-Wang et al. 1997;
Mengod et al. 1990a; Pompeiano et al. 1994; Ward and Dorsa 1996).
Pharmacological activation of 5-HT, . receptors inhibits firing rates of ventral
tegmental area neurons and dopamine release within the nucleus accumbens
(Prisco et al. 1994; Di Giovanni et al. 1999; Di Matteo et al. 1998). The impli-
cation of 5-HT,. receptors in the regulation of nigrostriatal dopaminergic
function has been a subject of debate mainly due to controversial results
obtained with different 5-HT,. receptor acting molecules (Di Matteo et al.
2001; Porras et al. 2002; De Deurwaerdere et al. 2004; Navailles et al. 2004).
Very recently (Abdallah et al. 2009) by using the 5-HT, receptor null mutant
mice, previously generated by Tecott and collaborators (Tecott et al. 1995), it
has been studied in a more direct manner the influence of this receptor subtype
on functions mediated by the nigrostriatal dopaminergic pathway. Based on
results generated by the combination of electrophysiological, pharmacologi-
cal, neurochemical, and behavioral methods, Abdallah and coworkers have
recently described that 5-HT,. receptor null mutant mice displayed (1) an
increment in the activity of the dopaminergic neurons of substantia nigra pars
compacta, (2) an increment in the extracellular dopamine in the dorsal striatum
and nucleus accumbens, (3) increased syntactic grooming chain failures and
altered grooming behaviors, and (4) increased sensitivity to the stereotypic
behavioral effects following selective dopamine transporter blockade. All
these responses occur without phenotypic differences in the elevation of drug-
induced striatal extracellular dopamine concentration, suggesting that the loss
of 5-HT,. receptor function may be accompanied by enhanced behavioral
responses to released dopamine. The phenotypic differences these authors
observe in stereotypic behavior following selective stimulation of dopamine
D, receptors with an agonist support this hypothesis. All these findings suggest
that 5-HT,. receptors play a significant role in the control of nigrostriatal
physiology and behavior.
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2.5 Conclusions

The studies reviewed here show that 5-HT, . receptors are extensive but distributed
heterogeneously in the mammalian brain. Although this distribution shows a
remarkable similarity among the species, there are nevertheless significant differ-
ences that have been identified. Many different neuronal populations including
neuropeptidergic, cholinergic, serotonergic and GABAergic as well as the cannabi-
noid and dopaminergic systems have been shown to express 5-HT,. receptor mRNA
and/or protein. In addition, the distribution suggests the involvement of other trans-
mitter systems such as the glutamatergic and dopaminergic, although colocalization
data are still missing. All these chemical neuroanatomical studies clearly point to the
role of these receptors in the functions of many brain pathways. The modulation
through selective agonists or antagonists of 5-HT, . receptors, an area of intensive
research, will reveal the importance of these receptors as therapeutic tools.
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