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   Chapter 2   

 Conformation Sensitive Gel Electrophoresis       

         Marian   Hill        

  Abstract 

 Conformation sensitive gel electrophoresis (CSGE) is a rapid screening method for the detection of 
DNA sequence variation, specifi cally single-base changes or small insertions and deletions. It has been 
widely used for mutation screening in genetic disorders and for the detection of single nucleotide poly-
morphisms (SNPs). 

 CSGE is a simple manual method, based on heteroduplex analysis, and compares well in terms 
of sensitivity with other screening technologies. CSGE also lends itself to automation and such modi-
fi cations have been useful in increasing sample throughput and sensitivity. However, manual CSGE 
remains a low-cost, accessible, and effective approach for mutation screening, which can be carried out 
with  minimal specialist equipment. This chapter describes manual CSGE, and outlines some of the uses, 
 modifi cations, and limitations of this method.  
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 Conformation sensitive gel electrophoresis (CSGE) was initially 
developed by Ganguly et al.  (  1,   2  )  as a screening method to mini-
mise the amount of nucleotide sequencing required when inves-
tigating large genes for mutations. 

 This method is used for the detection of single-base changes 
or small insertions and deletions within PCR products. It specifi -
cally detects heterozygous changes, although homozygous and 
hemizygous changes are readily detectable when samples are 
mixed with an equivalent “normal” control. 

 CSGE was initially used to improve the analysis of multiple 
genes associated with collagen disorders  (  3  ) , and has been shown 
to be a highly sensitive tool in the analysis of a large range of 
inherited genetic disorders  (  4–  13  ) . CSGE has also been widely 
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used in the analysis of sequence variations in cancer susceptibility 
genes such as BRCA1 and BRCA2  (  14,   15  )  and in the study of 
the MEN1 gene in endocrine neoplasia type 1  (  16  ) . 

 CSGE has been compared with other screening methods in a 
number of studies. Markoff et al.  (  17  )  reported that CSGE was 
better than single-stranded conformation polymorphism (SSCP) 
for the analysis of mutations in BRCA1 and although these two 
methods were comparable in a study by Eng et al.  (  18  ) , they con-
cluded that denaturing high-pressure liquid chromatography 
(dHPLC) was more sensitive. However, under optimum condi-
tions, manual CSGE has been shown to detect up to 100% of 
mutations  (  3  )  and has the advantage that it can be carried with a 
minimum of specialist equipment. 

 The requirement for higher throughput testing, particularly 
for single nucleotide polymorphism (SNP) analysis, has facilitated 
a number of modifi cations to the basic CSGE method, to improve 
both speed and sensitivity  (  19–  21  ) . 

 Higher throughput and sensitivity has also been achieved by 
the use of fl uorescent labels and the automation of CSGE on 
genetic analysers. Fluorescent-CSGE (F-CSGE) offers improved 
resolution and reproducibility, and has been developed on both a 
gel and capillary format  (  14  ) . Hashemi Soteh et al.  (  13  )  com-
pared manual and fl uorescent CSGE in the study of mutations in 
the VWF gene, concluding that F-CSGE was a more sensitive 
method, allowing higher throughput analysis. The transfer of 
CSGE screening to multicapillary genetic analysers has increased 
potential throughput signifi cantly  (  22–  24  ) . Such approaches to 
mutation screening have been comprehensively evaluated by the 
UK National Genetics Reference Laboratory, Wessex  (  25  )  

 It is apparent that automated approaches allow higher 
throughput screening and are more reproducible and sensitive 
than the manual method, however, they do require specialised 
equipment and increased cost  (  14  ) . In addition, the availability of 
a genetic analyser may make direct nucleotide sequencing a cost-
effective alternative.  

 

      1.    CSGE is carried out on PCR products, the design of which is 
critical to the success of this method ( see   Notes 1 – 4 ). The 
PCR product must be of good quality and suffi cient concen-
tration to be clearly visible on electrophoresis.  

    2.    It is important to include suitable controls when screening, a 
previously sequenced equivalent PCR product with no 
sequence variation should always be included as a “normal” 

 2.  Materials

 2.1.  Samples 
and Controls for CSGE 
Analysis
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control, for comparison of band patterns. A previously 
sequenced “positive” control should also be included. This 
may be a sample with the same sequence variation when screen-
ing for a known change, or may be an unrelated variable.      

  Manual CSGE involves the use of a non-proprietary polyacrylam-
ide gel for electrophoretic separation. These gels are typically 
manual sequencing format (e.g. 30 × 45 cm) and 1 mm thick.

    1.    20× stock TTE buffer: 1.78 M    Tris, 570 mM taurine, 4 mM 
EDTA, pH 9.0.  

    2.    40% Acrylamide solution.  
    3.    BAP (1,4 bis (acrolyl) piperazine)*.  
    4.    Ethylene glycol*.  
    5.    Formamide*.  
    6.    Ammonium persulphate (10%, freshly prepared)*.  
    7.    TEMED ( N , N , N ,N   tetramethylethylenediamine)*.  
    8.    DNA loading dye: e.g. 30% glycerol, 0.25% bromophenol 

blue, 0.25% xylene cyanol FF.  
    9.    DNA stain (e.g. ethidium bromide (1 mg/ml) or Gelstar)*.     

 Electrophoresis/ultra-pure grade reagents should be used 
and all solutions should be prepared in high quality distilled, 
deionised water. 

  Note : *These chemicals are potentially harmful. Refer to 
Material Safety Data Sheets (MSDS) and use appropriate handling 
and disposal procedures.   

 

 CSGE is based on the ability to distinguish between homoduplex 
and heteroduplex DNA fragments by electrophoresis under par-
tially denaturing conditions. DNA homoduplexes consist of double-
stranded DNA fragments in which all the bases are paired correctly 
with their complementary base on the opposite stand. Heteroduplex 
DNA contains mismatched bases, and in PCR products that orig-
inate from a patient with a heterozygous mutation, both homo-
duplexes and heteroduplexes can form when double-stranded 
DNA is allowed to dissociate then reanneal with the complementary 
strand originating from a different allele (Fig.  1 ).  

 The presence of mismatched bases induces subtle conforma-
tional changes in the heteroduplex compared with the homoduplex 
as the misaligned bases do not conform to the typical Watson–
Crick base-pairing rules. 

 2.2.  Gel Preparation 
and Electrophoresis

 3.  Method
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 The CSGE protocol involves the generation of heteroduplexes 
and/or homoduplexes in PCR products through heating and 
slow reannealling, followed by gel electrophoresis on a large 
format polyacrylamide gel, cross-linked with BAP (1,4 bis (acro-
lyl) piperazine) – which greatly improves gel strength and increases 
conductivity  (  1  ) . The gel also contains ethylene glycol and forma-
mide, which act as mild denaturants. Under these conditions, 
heteroduplexes can be resolved from homoduplexes as they gen-
erally migrate more slowly through the gel matrix. 

 Bands are visualised by staining with a DNA stain such as ethid-
ium bromide. Multiple bands will be detectable in samples contain-
ing “heterozygous” changes, while a single-homoduplex band is 
generally visible in samples containing no sequence variation. 

 Like most screening methods, CSGE gives limited informa-
tion on the nature of the sequence variation, and further analysis, 
usually by nucleotide sequencing is essential for identifi cation. 

      1.    In order to also detect homozygous changes (or e.g. hemizy-
gous changes in X-linked disorders), the PCR product must 
be mixed with an equivalent “normal” control. Mix the test 
sample 1:1 with a previously sequenced male control sample 
for the detection of hemizygous changes in X-linked disorders, 

 3.1.  Sample Mixing 
and Heteroduplex 
Formation

  Fig. 1.    Illustration of heteroduplex and homoduplex generation. A PCR product from a patient who is heterozygous (A/C) 
at a specifi c nucleotide position will contain two species of double-stranded DNA. Heating to 98°C will dissociate the 
double-stranded DNA, incubation at 65°C allows the strands to reanneal. Heteroduplexes are formed when a strand from 
one allele reanneals with the complementary strand from the other allele, and will contain a mismatched base pair.       
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or a 2:1 mix (test:normal control) in autosomal disorders. 
Where a number of different fragments are to be screened, 
PCRs may be multiplexed, or products pooled, and then 
analysed simultaneously – providing the different PCR prod-
ucts can be easily differentiated.  

    2.    For heteroduplex formation, incubate the PCR product mix 
(10  μ l) in a thermocycler at 98°C for 5 min then 65°C for 
30 min, followed by a slow cool down to room temperature. 
This should be done immediately before electrophoresis.      

      1.    Ensure that gel electrophoresis plates are clean and grease-free.  
    2.    Prepare a gel solution consisting of:

   44 ml of 99:1 acrylamide:BAP (1,4 bis (acrolyl) piperazine) 
(10% fi nal concentration)  

  17.5 ml of ethylene glycol (10% fi nal concentration)  
  26 ml of formamide (15% fi nal concentration)  
  4.4 ml of TTE buffer  
  81 ml distilled, deionised water      

    3.    Initiate polymerisation by adding 1.75 ml of 0.1% ammonium 
persulphate and 100  μ l of TEMED; pour the gel immediately.  

    4.    Allow a minimum 1 h for polymerisation.      

      1.    Add 2  μ l loading dye to 10  μ l PCR product mix and load 
samples onto the gel in a standard loading buffer.  

    2.    Carry out electrophoresis, 0.5× TTE buffer, typically for 16 h 
at 400 V  (  1  ) .  

    3.    After electrophoresis, carefully remove one of the glass plates 
and place the gel (on the remaining plate) in an appropriate 
container. Pour ethidium bromide solution (1 mg/ml in 
0.5× TTE) onto the gel, and allow up to 30 min to stain.  

    4.    To transfer the gel to the UV imaging system, blot with 
Whatman fi lter paper, carefully wet the fi lter paper with water 
to release from the gel when in position.  

    5.    Visualise the separated products under UV illumination.      

  Homoduplexes are generally detected as a single band, one or 
more additional bands representing the Co-Migrating heterodu-
plexes may be seen if a mismatch is present. Comparison to a 
“normal” control is important to avoid false-positive results, as 
additional bands may also be seen due to secondary structure. 
A detectable and consistent CSGE band pattern should be noted 
in the positive controls used. As changes in band pattern may be 
subtle, experience is invaluable for the interpretation of results 
and optimum PCR product design ( see   Note 5 ). 

 3.2.  Gel Preparation

 3.3.  Electrophoresis 
and Staining

 3.4.  Analysis
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 Figure  2  illustrates the CSGE band patterns associated with 
two different mutations (1 bp deletion (−g) and a t → c substitu-
tion) in exon 9 of the  F11  gene. Although the heteroduplex 
band/s is commonly seen above the homoduplex band, this type 
of pattern is not always seen, as illustrated in lane 3. The pattern 
of bands is highly variable depending on the type of mutation and 
the sequence context although insertions and deletions tend 
to produce the largest band separation as they effect a larger 
conformation change.    

 

     1.    The exact nature of the mismatch, size of the PCR product, 
the location, and sequence surrounding the mismatch 
(sequence context) will all affect the sensitivity of CSGE. The 
reported detection rate of this method has ranged from 60% 
of BRCA1 mutations in a study co-ordinated by Eng et al. 
 (  18  )  to 100% in a number of studies, including those of 
Korkko et al.  (  3  ) .  

    2.    Optimal size for the PCR product is 200–500 bp, although 
sequence mismatches have been detected in products up to 
800 bp in length. Size is limited by the inherent fl exibility of 
DNA, which may mask any conformation change due to mis-
match  (  26  ) . Korkko et al.  (  3  )  suggested that PCR products 
should be limited to below 450 bp for optimum sensitivity, 
and demonstrated that a single-base polymorphism in the 

 4.  Notes

  Fig. 2.    Illustration of variation in band patterns seen in CSGE. Investigation of  F11  gene, 
exon 9. Lane 1: normal control, lane 2: patient with a single-base deletion (g), lane 3: 
patient with t → c substitution.       
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COL1A2 gene which could not be detected in a 755 bp 
product was clearly seen when PCR primers were redesigned 
to reduce the size to 276 bp.  

    3.    The band pattern seen is dependent on the nature of the mis-
match and the surrounding nucleotide sequence (sequence 
context). Ganguly et al.  (  27  )  analysed the ability of CSGE to 
distinguish specifi c mismatches within the same sequence 
context, and found the following order of sensitivity 

 G:G = G:T = T:G > G:A = A:G = T:T > A:A > C:T > C:C = C:A =
 A:C = T:C. 

 Initial studies with CSGE by Ganguly et al.  (  1  )  suggested 
that mismatches within high temperature melting domains 
may be particularly diffi cult to resolve. However, the same 
mutations were detectable in later studies when primers were 
redesigned further away  (  3  ) . It is generally accepted that CSGE 
is more sensitive to mismatches within an AT-rich sequence 
context than a GC-rich region  (  27  ) .  

    4.    Mismatches which are close to the end of the PCR product 
are less easily detected. Ganguly et al.  (  1  )  initially failed to 
detect a mismatch that was located 51 bp from one end of the 
PCR fragment. This became detectable when the primers 
were redesigned to position the mismatch 81 bp from the 
end. It is therefore advisable to allow for 50–100 bp of addi-
tional sequence at either end of the region of interest when 
designing primers for CSGE. A tagged primer system can be 
used (e.g. add 5 ¢  M13 universal sequence tags to primers), 
which will facilitate sequencing reactions where multiple 
regions are being analysed  (  25  ) . 

 Figure  3  illustrates the effect of mismatch position on 
detection. Primers were redesigned to position a c → a substi-
tution within exon 5 of the  F11  gene at 174, 70, and 42 bp 
from the end of the PCR product. Size was maintained at 
290–292 bp. The ability to detect the mismatch is lost as the 
position of the mismatch approaches the end of the PCR 
product.   

    5.    CSGE has some limitations as it can only detect single-base 
changes and small insertions or deletions. However, this 
method has been successfully used as part of a screening pro-
tocol for disorders associated with a wide range of mutation 
types  (  28  ) . In common with most screening methods, CSGE 
provides limited information on the nature of a previously 
unknown sequence variation or its signifi cance, and may not 
distinguish between two closely positioned sequence varia-
tions. Although band patterns associated with specifi c mis-
matches within the same PCR product are reproducible, it is 
advisable to sequence to confi rm the nature of the mismatch. 
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 CSGE is particularly useful for genes that are not very 
polymorphic such as  F8.  The sequencing load may increase 
signifi cantly where highly polymorphic genes such as BRCA1 
are analysed but it remains a powerful tool as it greatly reduces 
the amount of sequencing required during investigation of 
such genes  (  2  ) .          
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