Chapter 2

Computer-Aided Drug Discovery and Development

Shuxing Zhang

Abstract

Computer-aided approaches have been widely used in pharmaceutical research to improve the efficiency
of the drug discovery and development pipeline. To identify and design small molecules as clinically
effective therapeutics, various computational methods have been evaluated as promising strategies,
depending on the purpose and systems of interest. Both ligand and structure-based drug design
approaches are powerful technologies, which can be applied to virtual screening for lead identification
and optimization. Here, we review the progress in this field and summarize the application of some new
technologies we developed. These state-of-the-art tools have been used for the discovery and develop-
ment of active agents for various diseases, in particular for cancer therapies. The described protocols are
appropriate for all drug discovery stages, but expertise is still needed to perform the studies based on the
targets of interest.
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1. Introduction

Drug discovery and development is a time-consuming and expensive
process. On average, it takes 10-15 years and US $500-800
million to introduce a drug into the market (1, 2). This is why
computer-assisted drug design (CADD) approaches have been
widely used in the pharmaceutical industry to accelerate the pro-
cess (3, 4). CADD helps scientists focus on the most promising
compounds so that they can minimize the synthetic and biological
testing efforts. In practice, the choice of CADD approaches to be
employed is usually determined by the availability of the experi-
mentally determined 3D structures of target proteins. If protein
structures are unknown, various methods of ligand-based drug
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1.1. Ligand-Based
Drug Design

design can be employed, such as Quantitative Structure Activity
Relationship (QSAR) and pharmacophore analysis. If the target
structures are known, structure-based approaches can be used
such as molecular docking, which employs the target 3D struc-
tures to design novel active compounds with improved potency.
As more structures are becoming available, the prediction accuracy
will likely to be improved.

In the absence of the receptor 3D information, lead identification
and optimization depend on available pharmacologically relevant
agents and their bioactivities (5-8). The computational approaches
include QSAR, pharmacophore modeling, and database mining
(8-10). We will use QSAR as an example to illustrate the workflow.
QSAR describes mathematical relationships between structural attri-
butes and target properties of a set of chemicals (9, 11, 12). Many
different 2D (two-dimensional) and 3D (three-dimensional) QSAR
approaches have been developed during the past several decades
(13, 14). The major differences of these methods include chemical
descriptors and mathematical approaches that are used to establish
the correlation between the target properties and the descriptors.
Many 2D QSAR methods have been extensively studied (15, 16)
based on graph theoretic indices. Although the physicochemical
meaning of these indices is unclear, they certainly represent different
aspects of molecular structures. It has been extensively applied to
analytical chemistry, toxicity analysis, and other biological activity
prediction (17). 3D QSAR approaches have been developed to
address the problems of 2D QSAR techniques including their
inability to distinguish stereoisomers. These 3D methods include
molecular shape analysis (MSA), distance geometry, and Voronoi
techniques (18-20). Comparative Molecular Field Analysis
(CoMFA) (21) perhaps is the most popular example of 3D QSAR.
It has been widely used in medicinal chemistry and toxicity analysis
by elegantly combining the power of molecular graphics and partial
least square (PLS) technique. QSAR techniques usually assume
the linear relationship between a target property and molecular
descriptors. However, the explosive growth of structural and bio-
logical data has challenged this assumption. To this end, some
nonlinear QSAR methods have been proposed and most of them
are based on either artificial neural network (ANN) (22-25) or
machine learning techniques (26-28). We have concentrated on
the development and application of automated algorithms for
QSAR studies, including genetic algorithms-partial least squares,
k-Nearest Neighbor (29), and support vector machine (30-32).
Machine learning usually is defined as a discipline concerned
with the improvement of the performance of computer algorithms
based on their previous experiences (33), and these algorithms
establish the correlations between the variables and the output of
the system (26, 34-37). In engineering field, it is closely related
to pattern recognition and has become steadily more successful
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over the past 20 years. Learning approaches have been widely
used in cheminformatics and molecular modeling (38—42). For
instance, support vector machine (SVM) was found to yield better
results compared to multiple linear regressions (MLR) and radial
basis functions (RBF) (31). Various versions of such programs
have been applied to the calculation of activities of enzyme inhibi-
tors (43). Lazy learning and kNN approaches were employed in
the discovery of anticonvulsant compounds and anticancer agents,
respectively (41, 42). Machine learning is also being frequently
used to conduct ADMET predictions (44—46). Gaussian kernel
SVM was used to successfully classify a set of drugs in terms of
their potential to cause an adverse drug reaction TdP (47).
Although TdP is involved in multiple mechanisms, the SVM pre-
diction accuracy on an independent set of molecules was 90%
more than that with ANN and decision tree methods.

Structure-based design has played an important role in drug
discovery and development (48-50). This approach requires the
understanding of receptor-ligand interactions. If the target 3D struc-
ture is known, it can be used for the design of new ligands (49-51).
The structural information is either from X-ray crystallography,
NMR, or from homology modeling. SBDD approaches are respon-
sible for evaluating the complementarities and predicting the possible
binding modes and affinities between small molecules and their mac-
romolecular receptors. The success of SBDD is well documented
(52, 53) and the computational approaches vary widely in method-
ology, performance, and speed. Some are capable of providing accu-
rate binding modes, while others are more suitable for fast searching
of large databases (50, 54—61). Herein we will focus on the most
commonly used strategies: molecular docking and scoring.

Molecular docking is used for computational schemes that
attempt to find the best matches between a receptor and a ligand.
It involves the prediction of ligand conformations and orientation
(or posing) within a binding site and attempts to place the ligand
into the binding site in configurations and conformations appro-
priate for interacting with the receptor (62). Docking methods
can be divided into matching and simulation methods. The former
approaches create a binding site model, typically including the
favorable hydrogen binding and steric interactions, and then
attempt to dock a ligand into this model by geometrical matching
(63). Although early attempts of matching methods only consid-
ered the translational and orientational degrees of freedom of the
ligand, most of recently developed programs take into account
the conformational flexibility of ligands and the limited flexibility
of the receptor (63, 64). The examples of this class include DOCK
(65, 66), FlexX (67, 68), etc. Simulation methods put a molecule
into a binding site by exploring the translations, orientations, and
conformations until an ideal binding mode is found. Autodock is
the most representative example of this class (69).
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One of the major challenges is the scoring function problem,
i.e., the problem of fast and accurate evaluation of binding affinities.
Several approaches to address this problem have been proposed
and developed. Force field scoring is based on the classical molec-
ular force fields, suchas AMBER (70), CHARMM (71), MMFF94
(72), etc., to compute nonbonded interaction terms between the
receptor and ligand atoms. Additional empirical terms taking into
account the solvation and entropy effects have been also consid-
ered (73). The second family of methods is the empirical scoring
functions, which include LUDI (74-76)and VALIDATE (77).
They have been introduced several years ago and are based on
the concept that the receptor-ligand interaction energy can be
approximated by a multivariate regression of different parameters
such as the number of hydrogen bonds, lipophilicity, ionic inter-
actions, entropy penalties, etc. Recently, a third family of methods,
knowledge-based scoring functions (DrugScore (78) SmoG (79),
PME (80), BLEEP (81), etc.) has been introduced. These methods
employ the statistical analysis of known receptor-ligand complexes
to define pairwise interatomic potentials of protein—ligand inter-
actions. After the calibration on the training set of complexes,
these scoring functions are validated by predicting binding affinities
for the complexes of the test sets.

Recently advances in networking, high-end computers, large
data stores, and middleware capabilities are ushering in a new era of
high-performance parallel and distributed simulations (82). Based
on these technologies, novel high-throughput docking approaches
have been developed to enable efficient and inexpensive drug dis-
covery. For instance, we developed an automated DOcking-based
Vlrtual Screening (DOVIS) system (59), which makes sophisticated
docking strategies to be carried out on HPC clusters to screen mil-
lions of compounds more efficiently. In this chapter, we will discuss
the methods using our recent implementation HiPCDock (61).

2. Materials
(Hardware
and Software)

2.1. Ligand-Based
Design Approaches

1. Computer workstations with Linux operating systems.
2. ChemDraw or other molecular structure drawing programs.

. Descriptor generators such as DRAGON, MolConnZ, and
OEChem.

. Text editors such as UltraEdit, vi, and EMACS.

. Descriptors normalization programs.

w

. Data splitting program such as SES.

. Databases such as ZINC, PubChem, and ChemDiv.
. ALL-QSAR Program.

. Activity testing facility.
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. High-performance computing (HPC) clusters with Linux

operating systems.

. LSF queuing systems for the HPC clusters.
. Java environment.

. Perl and Python modules.

. HiPCDock program.

. AutoDock3 program.

. AutoDockTools package.

. Matlab package.

. OpenBabel program.

3. Methods

3.1. Ligand-Based
Design Approaches

Difterent programs have different protocols to perform the task.
Here we use ALL-QSAR as an example to demonstrate the pro-
cedures (Fig. 1). For special notes, please refer Section 4.

1.

Prepare molecular structures of interest. Most of programs
accept sdf, mol2, or some other formats. The structures can be
2D or 3D, depending on the studies. If 3D QSAR (Fig. 2) is
conducted, then 3D structures of the molecules are required.

. Calculate descriptors for the molecules using the molecular

file created above. Most descriptor generation programs just
need the molecular file as input. Depending on the study,
some options may need to be specified. For instance, with
MOE descriptors, you can specify 1D, 2D, or 3D descriptors,
or all of them. Other commonly used descriptors include
DRAGON descriptors, MolConnZ descriptors, OEChem
shape descriptors, etc. During this step, some molecules may
be skipped due to the inability to calculate the descriptors by
the programs. This can be due to the limitations of the pro-
grams or the inaccuracy of the molecule structures.

. Prepare the molecular activity file. Usually two columns are

required: the first column is the molecular name and the second

Candidate | Preclinical Clinical

D:scovery Qoﬂm:zaaon Selection | Development  Development

Hit

Lead  Preclinical Clinical NDA
Candidate Candidate

Fig. 1. Drug discovery and development pipeline. The process is very time consuming and expensive. It mainly includes
lead discovery and optimization, preclinical and clinical trial, and final NDA and marketing.
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[—’l Y-Randomization

Al Multiple
Compounds Training Sets
! | ALL-QSAR training
Desn‘iptors SP“‘ into and Pl'ellifﬁoll
and activity Training and
Test Sets
. Multiple v
Test Sets Select Acceptable
Random External Models ge.g. 92> 0.6,
Got R?>0.6)
Validate Predictive Models
with Randomly Selected -—
External Sets
Models for External Prediction
and Virtual Screening
Selected hits for Chemical
purchase compound DB
Bioassay testing
Experimentally Further lead
confirmed active optimization

Fig. 2. QSAR and virtual screening workflow. Starting from molecular structures and their bioactivities, QSAR models can
be built to perform external predictions and virtual screening. The identified hits are experimentally tested, and the active
compounds will be further optimized and the new data can be further fed back to the process.

is the activity values. The order of the molecules in the activity
file should be corresponding to the order in the descriptor file.

. Descriptor normalization. Usually the values of the descriptors

are quite different as many of them represent completely dif-
ferent properties with different scale. For instance, the molecular
weight is in hundreds but the LogP is usually below 10. To
exclude the disproportional influence by the descriptor values,
normalization is recommended. The way to do this is to find
the maximum and minimum values for all molecules for each
descriptorand normalize eachvalueswith (X, -X )/(X -X ).
There are many other ways to do the normalization.

. Once the descriptors are normalized, the dataset will be split

into multiple training and test sets for model building. This
can be achieved with SE8 (Sphere Exclusion version 8)
algorithm (83).
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The procedures of SE8 start with the calculation of the
distance matrix D between representative points in the descrip-
tor space. Let D_. and D__be the minimum and maximum
elements of D, respectively. N probe sphere radii are defined
by the following formulas R . =R =D ., R =R =D _ /4,
R =R +(i-1)x(R-R,)/(N-1), where 7=2,...,N-1.

. Each probe sphere radius corresponds to one division into

the training and test set. In our studies it consisted of the
following steps. (i) Select randomly a compound. (ii) Include
it in the training set. (iii) Construct a probe sphere around
this compound. (iv) Select compounds from this sphere
and include them alternatively into test and training sets.
(v) Exclude all compounds from within this sphere for fur-
ther consideration. (vi) If no more compounds left, stop.
Otherwise let m be the number of probe spheres constructed
and 7 be the number of remaining compounds. Let d,
(i=1,...,m; j=1,...,n) be the distances between the remain-
ing compounds and probe sphere centers. Select a compound
corresponding to the lowest dt.]. value and go to step (ii).

. Once the dataset is split into training and test sets, our

ALL-QSAR will load the training set descriptors and activities

space into memory and assign a lowest predefined value to
the kernel width K.

. Take a query compound from the test set and calculate the

Euclidean distances between it and all compounds of the
training set. If the distance from the test set compound to its
nearest neighbor is higher than D__, this compound is out of
the applicability domain. Since the activity prediction for it is
believed to be not accurate, it will not be predicted. In this
case return to step 9 and process the next compound of the
test set, or, if there are no more compounds in the test set, go
to step 16. If the compound of the test set is within the appli-
cability domain, go to step 10. The applicability domain is
calculated as the following: APD =y +Zo, where ¥ is the
average of weighted Euclidean distance for the training set.
Z is an empirical cutoff value to control the significance
(or confidence) level with the default value as 0.5. o is
the standard deviation of all pairwise Euclidean distance in
the training set.

The weight of every compound in the training set is calcu-
lated for the query compound.

Calculate coefficients B.

Using the values of B, weights and descriptors to predict the
target property of the query compound.

Repeat step 9 for the next compound. If the procedure was
repeated for all compounds, go to step 14.
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3.2. Structure-Based
Design Approaches

3.2.1. Preprocessing
of Receptors

14.

15.

16.

17.

18.

19.

20.

21.

22.

Calculate the correlation coefficient between the predicted
and experimental activity values of the test set compounds.

If kernel width is lower than the predefined value, add a pre-
defined step to it and repeat the process starting from step 9
for N times until the prediction is converged.

Sort models by the R? starting from the highest value, and
RMSD between predicted and actual target property values
and select the top 10 best models.

The models can be used for predictions of new molecules or
virtual screening.

In virtual screening, top hits based on predicted activity (e.g.,
top 100) are selected for investigation.

The selected hits will be inspected for their scaffold, potential
toxicity, and other properties by both modelers and synthetic
chemists.

Only those accepted by both modelers and chemists are sub-
mitted to experimental testing.

Experimentally confirmed hits will be used to perform lead
optimization and new molecule design.

The newly designed molecule will be predicted for their activity,
starting from step 1, and the measured activities are fed back
to our model building process.

Here by splitting it into multiple steps including preprocessing of
molecules, parallel docking, and postprocessing of result analysis,
the overall workflow in Fig. 3 demonstrates how our new HiPCDock
(61) works as high-throughput molecular docking protocols for
drug discovery and development. For special notes, please refer
Section 4.

1.

4.

The protein structure is directly downloaded from PDB (pdb
format). Hydrogens are added to the structures and appropri-
ate charges are assigned by executing a Python script, which
uses the related functions from AutoDockTool (Fig. 4).

. The structure is converted from pdb format to pdbq format

by adding an extra column of charges. If users prefer adding
hydrogens and assigning charges with other software, such as
SYBYL, it can be done and the saved mol2 file can be used as
input into our pipeline.

. Once our program loads the structure, it uses AutoDock utility

program mol2fftopdbg to convert the mol2 file to pdbq

format.

After the pdbq file is obtained, the solvation process is per-
tormed using addsol module from AutoDock to convert the
pdbq file to pdbgs format. The current acceptable input file
formats include pdb, pdbq, and mol2.
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1

Fig. 3. Overall workflow of HiPCDock. The whole process includes target and ligand preparation, distribution of parallel
docking onto multiple CPUs, and final analysis of the results to select promising hits. This is involved in a statistical analysis
(77) of docking scores as indicated in the black box.

‘ Protein Sequence

Data Bank

Mol2 File

Grid Maps ~—| PDBQs | PDBQ
—

Fig. 4. Workflow for protein preparation. Target preparation starts from the 3D structure of the proteins. Hydrogens
and charges are automatically added and grid maps are created using autogrid3, and the pdbgs file is generated for
docking process.
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N pdbq File Lists N mol2 Files
N = Number of CPU N = Number of CPU

. After the solvation, the created pdbgs is used to generate a

grid parameter file (GPF). Currently, ten atom types are used
for proteins, including carbon (C), nitrogen (N), oxygen (O),
sulfur (S), hydrogen (H), metal (M), phosphorus (P), Zinc
(Z), Calcium (L), and X for unknown type.

. The 3D grids of interaction energy for all possible atom types

are calculated at one time. These uniquely defined atom types
include nonaromatic carbon (C), aromatic carbon (A), nitrogen
(N), oxygen (O), sulfur (S), phosphorus (P), hydrogen (H),
metal (M), fluorine (F), chlorine (¢), bromine (b), iodine (1),
zinc (Z), calcium (L), iron (f), and unknown type (X). They
basically cover most of the possible ligand atom types included
in databases.

. The center of the common grids can be either the center of

mass coordinates of the ligand that had been removed from the
binding site of the target protein under consideration or the
geometrical center of a series of key residues provided by users.

. A modified script (from gpfyen) is used to generate the GPF

file with our customized atom types and the parameter values
provided by users.

. Based on the GPF file, auntogrid3 is executed to create 16

atom type maps, plus an additional electron density map.

PDBQ? —» Mol2? —— Mol2

oniped

Job Distribution

Docking

Fig. 5. Workflow for chemical compound preparation. Chemical compound preparation is also performed on multiple
CPUs to speed up the process as the chemical database can include millions of compounds. The process will result in
ligand pdbq files, which can be repeatedly used in docking.
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The chemical compounds also need to be preprocessed for our
program as demonstrated in Fig. 5. The current acceptable ligand
input file formats are SMILE strings (smi), sdf/sd, mol, mol2,
and pdbgq. Files in the first four formats may have single or multiple
molecule(s). Each pdbq file can comprise one molecule. The input
of chemical compounds is a directory, so it can include multiple
files. The pipeline requires that the directory contains either pdbq
or acceptable non-pdbaq files. The protocol is as follows:

1. HiPCDock converts each non-mol2 file using OpenBabel to
mol2 format, which possesses Gasteiger charges.

2. Then each mol2 file is partitioned into multiple pieces of
roughly equal size. The number of pieces is determined by
the number of CPU requested by users.

3. If the directory has pdbq files, HIPCDock generates multiple
(equals to the number of CPU) file lists. Each list includes
approximately equal number of compounds.

Once the grid maps are generated and the chemical compounds
are partitioned into the right format, parallel docking can be per-
formed using high-performance computing clusters for virtual
screening. Here are the procedures:

1. Each partition is submitted to a CPU and the docking process
is performed automatically. The current implementation is
using Load Sharing Facility (LSF) queuing system.

2. The LSF job array function is used for the job distribution
and scheduling. Once a CPU is available, HIPCDock distributes
ajob on that CPU and starts docking. Otherwise, it is pending
in the queue.

3. The workflow on each CPU is illustrated in Fig. 4. If the
chemical database is in mol2 format, autotors is executed for
each molecule (by looping through all of the molecules in the
partition) to define the torsions of the compound and then
convert it to pdbq format.

4. The new pdbq file will be saved in a directory so that it can be
re-used directly in future runs.

5. If the input is already in pdbq format or the built-in database
is used, the above process is skipped and the docking starts to
run by executing auntodock3 module.

6. The docking parameter file (DPF) is automatically generated
by HiPCDock based on the input from users.

7. After docking each molecule, the result in its docking log file
(DLG) is analyzed and the lowest estimated free energy of
binding is recorded. This is used for the comparison with
other molecules to determine whether this molecule is a strong
enough binder to be a hit. If yes, its DLG is kept, otherwise its
related files will be deleted in order to save disk space.
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3.2.4. Postprocess

of Docked Results

8.

Since this is the most time-consuming part with a big loop
(e.g., tens of thousands of compounds on each CPU if we
dock millions of compounds on hundreds of CPUs), a restart
function is implemented to improve the robustness of the
program. Basically, each successfully processed molecule is
recorded in a tracking file. Every time HiPCDock runs, it first
checks the tracking file and starts from the molecule where
the last run was stopped.

Once the jobs on all CPUs are done, the HiPCDock postprocess
module starts to analyze the results.

1.

It collects all of the individual hit lists together and generates
an overall list.

. The list is sorted according to their free energy of binding,

and the top ranked compounds, as requested by users (e.g.,
10% of all database compounds), are selected as the final
hits.

. These hits can be further refined by chemists’ knowledge as

well as by molecular visualization provided by HiPCDock.

. For each final hit, all of docked conformations are extracted

from the DLG and are converted to sdf files so that the users
can visualize their interactions with the receptor.

. OpenBabel function is utilized to calculate some molecular

properties for each hit.

4. Notes

. The molecular descriptors should be normalized to exclude

the influence of those disproportional descriptor values.

. The descriptors used in training, testing, or new datasets

should be consistent.

. Usually descriptor correlation analysis should be conducted

to keep only independent descriptors, also for the reduction
of descriptor dimensions.

. Parameter tuning is usually necessary to obtain best models for

predictions, and therefore, it might be a good idea to run the
model building multiple times by changing the parameters.

. Y randomization should be performed to exclude chance cor-

relation between the descriptors and target properties.

. Databases for virtual screening should be cleaned and their

descriptors should be normalized based on training set nor-
malization parameters.
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. Receptors structures should be cleaned by removing its water

molecules and by fixing the wrong or missing residues for
docking.

. Different charge types can be tried during docking.

9. The starting conformations of ligands (or chemical databases)

10.

11.

12.

should be minimized by using the lowest energy conformations.

If the docking process is disrupted, it can be restarted and the
docking will continue until finished.

The hit selection is based on the conformation with the lowest
predicted binding free energies but not necessarily the best
binding poses due to the approximation and imperfection of
scoring functions.

Multiple scoring functions can be applied to conduct consen-

sus docking/scoring to obtain the best predictions.
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and this work was supported in part by MD Anderson faculty

Acknowledgments
startup fund.
References
1. Workman, P. (2003). How much gets there

and what does it do?: The need for better
pharmacokinetic and pharmacodynamic end-
points in contemporary drug discovery and
development. Curr Pharm Des. 9: 891-902.
Brown, D. & Superti-Furga, G. (2003).
Rediscovering the sweet spot in drug discovery.
Druyg Discov Today. 8: 1067-1077.

. Gomeni, R., Bani, M., D’Angeli, C., Corsi,

M. & Bye, A. (2001). Computer-assisted
drug development (CADD): an emerging
technology for designing first-time-in-man
and proof-of-concept studies from preclin-
ical experiments. Eur ] Pharm Sci. 13:
261-270.

. Veselovsky, A. V. & Ivanov, A. S. (2003).

Strategy of computer-aided drug design. Curr
Druyg Targets Infect Disord. 3: 33—40.

Stahura, F. L. & Bajorath, J. (2004). Virtual
screening methods that complement HTS.
Comb Chem High Throughput Screemn. 7:
259-269.

Guner, O., Clement, O. & Kurogi, Y. (2004).
Pharmacophore modeling and three dimen-
sional database searching for drug design

using catalyst: Recent advances. Curr Med
Chem. 11: 2991-3005.

10.

11.

12.

13.

Hansch, C., Leo, A., Mekapati, S. B. & Kurup,
A. (2004). Qsar and Adme. Bioorg Med Chem.
12: 3391-3400.

. Parvu, L. (2003). QSAR - a piece of drug

design. J Cell Mol Med. 7: 333-335.

. Langer, T. & Wolber, G. (2004). Virtual com-

binatorial chemistry and in silico screening:
Efficient tools for lead structure discovery?
Pure App Chem. 76: 991-996.

Dror, O., Shulman-Peleg, A., Nussinov, R. &
Wolfson, H. J. (2004). Predicting molecular
interactions in silico: I. A guide to pharma-
cophore identification and its applications to
drug design. Curr Med Chem. 11: 71-90.
Perkins, R., Fang, H., Tong, W. D. & Welsh,
W. J. (2003). Quantitative structure-activity
relationship methods: Perspectives on drug
discovery and toxicology. Environ Toxicol
Chem. 22: 1666-1679.

Tropsha, A. & Zhang, W. FE. (2001).
Identification of the descriptor pharma-
cophores using variable selection QSAR: Appli-
cations to database mining. Curr Pharm
Design. 7: 599-612.

Leo, A. J. & Hansch, C. (1999). Role of
hydrophobic effects in mechanistic QSAR.
Perspect Druy Discov Design. 17: 1-25.



36

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Zhang

Garg, R., Kurup, A., Meckapati, S. B. &
Hansch, C. (2003). Searching for allosteric
effects via QSAR. Part II. Bioory Med Chem.
11: 621-628.

Kier, L. B. & Hall, L. H. (1993). The genera-
tion of molecular-structures from a graph-
based Qsar equation. Quant Struct Act Relnt.
12: 383-388.

Hall, L. H. & Kier, L. B. (2001). Issues in
representation of molecular structure — The
development of molecular connectivity. | Mol
Graph Model. 20: 4-18.

Anker, L. S., Jurs, P. C. & Edwards, P. A. (1990).
Quantitative structure retention relationship
studies of odor-active aliphatic-compounds with
oxygen-containing functional-groups. Anal
Chem. 62: 2676-2684.

Crippen, G. M. (1982). Distance geometry
analysis of the benzodiazepine binding-site.
Mol Pharmacol. 22: 11-19.

Hopfinger, A. J. (1980). A Qsar Investigation
of dihydrofolate-reductase inhibition by baker
triazines based upon molecular shape-analysis.
J Am Chem Soc. 102: 7196-7206.

Boulu, L. G. & Crippen, G. M. (1989).
Voronoi binding-site models — calculation of
binding modes and influence of drug-binding
data accuracy. J Comb Chem. 10: 673-682.

Cramer, R. D, III, Patterson, D. E. & Bunce,
J. D. (1988). Comparative molecular field
analysis (CoMFA). 1. Effect of shape on bind-
ing of steroids to carrier proteins. J Am Chem
Soc. 110: 5959-5967.

So0,S.S. & Richards, W. G. (1992). Application
of neural networks — quantitative structure-
activity-relationships of the derivatives of
2,4-diamino-5-(substituted-benzyl)pyrimi-
dines as Dhfr inhibitors. | Med Chem. 35:
3201-3207.

Tetko, I. V., Tanchuk, V. Y., Chentsova, N. P.,
Antonenko, S. V., Poda, G. I., Kukhar, V. P.
& Luik, A. I. (1994). Hiv-1 reverse-tran-
scriptase inhibitor design using artificial neu-
ral networks. J Med Chem. 37: 2520-2526.

Ajay, A. & Murcko, M. A. (1995).
Computational methods to predict binding
free energy in ligand-receptor complexes.
J Med Chem. 38: 4953-4967.

Andrea, T. A. & Kalayeh, H. (1991).
Applications of neural networks in quantita-
tive structure-activity-relationships of dihy-
drofolate-reductase inhibitors. | Med Chem.
34: 2824-2836.

Bolis, G., Dipace, L. & Fabrocini, F. (1991).
A machine learning approach to computer-
aided molecular design. | Comput Aided Mol
Des. 5: 617-628.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

King, R. D., Muggleton, S., Lewis, R. A. &
Sternberg, M. J. E. (1992). Drug design by
machine learning — the use of inductive logic
programming to model the structure-activity-
relationships of trimethoprim analogs binding
to dihydrofolate-reductase. Proc Natl Acad
Sci US A. 89: 11322-11326.

Jain, A. N., Dietterich, T. G., Lathrop, R. H.,
Chapman, D., Critchlow, R. E., Bauer, B. E.,
Webster, T. A. & Lozanoperez, T. (1994).
Compass — a shape-based machine learning
tool for drug design. J Comput Aided Mol Des.
8: 635-652.

Zheng, W. F. & Tropsha, A. (2000). Novel
variable selection quantitative structure-property
relationship approach based on the k-nearest-
neighbor principle. J Chem Inf Comput Sci. 40:
185-194.

Xue, C. X., Zhang, R. S., Liu, H. X., Yao, X.
J.,Liu, M. C.,Hu, Z. D. & Fan, B. T. (2004).
An accurate QSPR study of O-H bond disso-
ciation energy in substituted phenols based on
support vector machines. | Chem Inf Comput
Sci. 44: 669-677.

Yao, X. J., Panaye, A., Doucet, J. P., Zhang,
R. S., Chen, H. F., Liu, M. C.,, Hu, Z. D. &
Fan, B. T. (2004). Comparative study of
QSAR/QSPR correlations using support
vector machines, radial basis function neural
networks, and multiple linear regression.
J Chem Inf Comput Sci. 44: 1257-1266.
Kovatcheva, A., Golbraikh, A., Oloff, S., Xiao,
Y. D.,Zheng, W. F., Wolschann, P., Buchbauer,
G. & Tropsha, A. (2004). Combinatorial
QSAR of ambergris fragrance compounds.
J Chem Inf Comput Sci. 44: 582-595.
Mjolsness, E. & DeCoste, D. (2001). Machine
learning for science: State of the art and future
prospects. Science 293: 2051-2055.
Herbrich, R. & Williamson, R. C. (2003).
Algorithmic luckiness. | Mac Learn Res. 3:
175-212.

Schneider, G. & Downs, G. (2003). Machine
learning methods in QSAR modelling. OSAR
Comb Sci. 22: 485-486.

Sebastiani, P., Kohane, I. S. & Ramoni, M. F.
(2003). Machine learning in the Genomics
era — Editorial: Methods in functional genom-
ics. Machine Learning 52: 5-9.

Smith, M. G. & Bull, L. (2003). Feature con-
struction and  selection using  Genetic
Programming and a Genetic Algorithm. Genetic
Programminyg, Proceedings 2610, 229-237.
Armengol, E. & Plaza, E. (2003). Discovery
of toxicological patterns with lazy learning.
Knowledge-Based Intellignet Information and
Engineerving Systems, Pt 2, Proceedings 2774,
919-926.



39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

Computer-Aided Drug Discovery and Development

Oloff, S., Zhang, S., Sukumar, N., Breneman,
C. & Tropsha, A. (2006). Chemometric anal-
ysis of ligand receptor complementarity: iden-
tifying complementary ligands based on
receptor information (CoLiBRI). J Chem Inf
Model. 46: 844-851.

Zhang, S., Golbraikh, A. & Tropsha, A.
(2006). Development of quantitative struc-
ture-binding affinity relationship models
based on novel geometrical chemical descrip-
tors of the protein-ligand interfaces. | Med
Chem. 49: 2713-2724.

Zhang, S., Golbraikh, A., Oloff, S., Kohn, H.
& Tropsha, A. (2006). A novel automated
lazy learning QSAR (ALL-QSAR) approach:
method development, applications, and vir-
tual screening of chemical databases using
validated ALL-QSAR models. J Chem Inf
Model 46: 1984-1995.

Zhang, S., Wei, L., Bastow, K., Zheng, W.,
Brossi, A., Lee, K. H. & Tropsha, A. (2007).
Antitumor agents 252. Application of vali-
dated QSAR models to database mining: dis-
covery of novel tylophorine derivatives as
potential anticancer agents. | Comput Aided
Mol Des. 21: 97-112.

Duch, W., Swaminathan, K. & Meller, J.
(2007). Artificial intelligence approaches for
rational drug design and discovery. Curr
Pharm Des. 13: 1497-1508.

Clark, D. E. & Grootenhuis, P. D. (2002).
Progress in computational methods for the
prediction of ADMET properties. Curr Opin
Druyy Discov Dev. 5: 382-390.

Davis, A. M. & Riley, R. J. (2004). Predictive
ADMET studies, the challenges and the oppor-
tunities. Curr Opin Chem Biol. 8: 378-386.
Li, H., Yap, C. W., Ung, C. Y., Xue, Y., Li, Z.
R., Han, L. Y., Lin, H. H. & Chen, Y. Z.
(2007). Machine learning approaches for pre-
dicting compounds that interact with thera-
peutic and ADMET related proteins. J Pharm
Sci. 96: 2838-2860.

Yap, C. W., Cai, C. Z., Xue, Y. & Chen, Y. Z.
(2004). Prediction of torsade-causing poten-
tial of drugs by support vector machine
approach. Toxicol Sci. 79: 170-177.

Kubinyi, H. (2003). Drug research: myths,
hype and reality. Nat Rev Druy Discov. 2:
665-668.

Reddy, M. R. & Erion, M. D. (1998).
Structure-based drug design approaches for
predicting binding affinities of HIV1 protease
inhibitors. J Enzyme Inkib. 14: 1-14.

Taylor, R. D., Jewsbury, P. J. & Essex, J. W.
(2002). A review of protein-small molecule
docking methods. | Comput Aided Mol Des.
16: 151-166.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

6l.

62.

63.

37

Kuntz, I. D., Meng, E. C. & Shoichet, B. K.
(1994). Structure-based molecular design.
Acc Chem Res. 27: 117-123.

Hardy, L. W. & Malikayil, A. (2003). The
impact of structure-guided drug design on
clinical agents. Curr Drug Discov. 3: 15-20.
Maryanoft, B. E. (2004). Inhibitors of serine
proteases as potential therapeutic agents: The
road from thrombin to tryptase to cathepsin
G. J Med Chem. 47: 769-787.

Chen, L. S., Nowak, B. J., Ayres, M. L., Krett,
N. L., Rosen, S. T., Zhang, S. & Gandhi, V.
(2009). Inhibition of ATP synthase by chlori-
nated adenosine analogue. Biochem Pharmacol.
78:583-591.

Du-Cuny, L., Song, Z., Moses, S., Powis, G.,
Mash, E. A., Meuillet, E. J. & Zhang, S. (2009).
Computational modeling of novel inhibitors
targeting the Akt pleckstrin  homology
domain. Bioory Med Chem. 17: 6983-6992.
Mahadevan, D., Powis, G., Mash, E. A, et al.
(2008). Discovery of a novel class of AKT
pleckstrin homology domain inhibitors. Mol
Cancer Ther. 7: 2621-2632.

Moses, S. A., Ali, M. A., Zuohe, S., Du-Cuny, L.,
Zhou, L. L., Lemos, R.; Thle, N.; Skillman,
A. G., Zhang, S., Mash, E. A., Powis, G.,
Meuillet, E. J. (2009). In vitro and in vivo
activity of novel small-molecule inhibitors tar-
geting the pleckstrin homology domain of
protein kinase B/AKT. Cancer Res. 69:
5073-5081.

Zhang, S., Ying, W. S., Siahaan, T. J. & Jois,
S. D. S. (2003). Solution structure of a pep-
tide derived from the beta subunit of LFA-1.
Peptides. 24: 827-835.

Zhang, S., Kumar, K., Jiang, X., Wallqvist, A.
& Reifman, J. (2008). DOVIS: an implemen-
tation for high-throughput virtual screening
using AutoDock. BMC Bioinformatics 9: 126.
Zhang, S., Kaplan, A. H. & Tropsha, A.
(2008). HIV-1 protease function and struc-
ture studies with the simplicial neighborhood
analysis of protein packing method. Proteins.
73: 742-753.

Zhang, S. & Du-Cuny, L. (2009).
Development and evaluation of a new statisti-
cal model for structure-based high-through-
put virtual screening. Int ]| Bioinform Res
Appl. 5: 269-279.

Kitchen, D. B., Decornez, H., Furr, J. R. &
Bajorath, J. (2004). Docking and scoring in
virtual screening for drug discovery: Methods
and applications. Nat Rev Drug Discov. 3:
935-949.

Morris, G. M., Goodsell, D. S., Halliday, R. S.,
Huey, R., Hart, W. E., Belew, R. K. & Olson,
A. J. (1999). Automated docking using a



38

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

Zhang

Lamarckian genetic algorithm and an empirical
binding free energy function. J Comput Chem.
19: 1639-1662.

Halperin, I., Ma, B., Wolfson, H. & Nussinov,
R. (2002). Principles of docking: An overview
of search algorithms and a guide to scoring
functions. Proteins 47: 409-443.

Makino, S. & Kuntz, I. D. (1997). Automated
flexible ligand docking method and its appli-
cation for database search. J Comb Chem. 18:
1812-1825.

Shoichet, B. K. & Kuntz, I. D. (1991). Protein
docking and complementarity. J Mol Biol.
221: 327-346.

Kramer, B., Metz, G., Rarey, M. & Lengauer,
T. (1999). Ligand docking and screening with
FlexX. Med Chem Res. 9: 463-478.

Rarey, M., Kramer, B., Lengauer, T. & Klebe,
G. (1996). A fast flexible docking method
using an incremental construction algorithm.
J Mol Biol. 261: 470-489.

Goodsell, D. S., Morris, G. M. & Olson, A. J.
(1996). Automated docking of flexible
ligands: applications of AutoDock. ] Mol
Recognit. 9: 1-5.

Cornell, W. D., Cieplak, P., Bayly, C. I, et al.
(1996). A second generation force field for
the simulation of proteins, nucleic acids and
organic molecules. J Am Chem Soc. 117:
5179-5197.

MacKerell, A. D., Jr., Banavali, N. & Foloppe,
N. (2000). Development and current status
of the CHARMM force field for nucleic acids.
Biopolymers. 56: 257-265.

Halgren, T. A. (1996). Merck molecular force
field: 1. Basis, form, scope, parameterization,
and performance of MMFF94. | Comput
Chem. 17: 490-519.

Shoichet, B. K., Leach, A. R. & Kuntz, I. D.
(1999). Ligand solvation in molecular docking.
Proteins. 34: 4-16.

Bohm, H. J. (1992). Ludi - rule-based auto-
matic design of new substituents for enzyme-
inhibitor leads. | Comput Aided Mol Des. 6:
593-606.

75.

76.

77.

78.

79.

80.

81.

82.

83.

Bohm, H. J. (1992). The computer-program
Ludi — a new method for the denovo design of
enzyme-inhibitors. J Comput Aided Mol Des.
6: 61-78.

Bohm, H. J. (1998). Prediction of binding
constants of protein ligands: a fast method for
the prioritization of hits obtained from de novo
design or 3D database search programs.
J Comput Aided Mol Des. 12: 309-323.

Head, R. D., Smythe, M. L., Oprea, T. 1.,
Waller, C. L., Green, S. M. & Marshall, G. R.
(1996). VALIDATE: a new method for the
receptor-based prediction of binding affinities
of novel ligands. | Am Chem Soc. 118:
3959-3969.

Gohlke, H., Hendlich, M. & Klebe, G.
(2000). Knowledge-based scoring function to
predict protein-ligand interactions. | Mol Biol.
295: 337-356.

DeWitte, R. S. & Shakhnovich, E. 1. (1996).
SMoG: de novo design method based on sim-
ple, fast, and accurate free energy estimates. 1.
Methodology and supporting evidence. ] Am
Chem Soc. 118: 11733-11744.

Muegge, I. & Martin, Y. C. (1999). A general
and fast scoring function for protein-ligand
interactions: a simplified potential approach.
J Med Chem. 42: 791-804.

Mitchell, J. B. O., Laskowski, R. A., Alex, A.
& Thornton, J. M. (1999). BLEEP-potential
of mean force describing protein-ligand inter-
actions: I. Generating potential. | Comput
Chem. 20: 1165-1176.

Johnston, W. E., Jacobson, V. L., Loken, S.
C., Robertson, D. W. & Tierney, B. L. (1992).
High-performance computing, high-speed
networks, and configurable computing envi-
ronments: progress toward fully distributed
computing. Crit Rev Biomed Eng. 20:
315-354.

Golbraikh, A., Shen, M., Xiao, Z. Y., Xiao,
Y. D, Lee, K. H. & Tropsha, A. (2003).
Rational selection of training and test sets
for the development of validated QSAR
models. J Comput Aided Mol Des. 17:
241-253.



2 Springer
http://www.springer.com/978-1-61779-011-9

Drug Design and Discovery
Methods and Protocols
Satyanarayanajois, 5.0, (Ed.)
2011, Xll, 69 p., Hardcover
ISEM: 978-1-61779-011-9

A product of Humana Press



	Chapter 2: Computer-Aided Drug Discovery and Development
	1. Introduction
	1.1. Ligand-Based Drug Design
	1.2. Structure-Based Drug Design

	2. Materials (Hardware and Software)
	2.1. Ligand-Based Design Approaches
	2.2. Structure-Based Design Approaches

	3. Methods
	3.1. Ligand-Based Design Approaches
	3.2. Structure-Based Design Approaches
	3.2.1. Preprocessingof Receptors
	3.2.2. Preprocessingof Ligand Compounds
	3.2.3. Parallel Dockingon HPC Clusters
	3.2.4. Postprocessof Docked Results


	4. Notes
	References


