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Chapter 2

Computer-Aided Drug Discovery and Development

Shuxing Zhang 

Abstract

Computer-aided approaches have been widely used in pharmaceutical research to improve the efficiency 
of the drug discovery and development pipeline. To identify and design small molecules as clinically 
effective therapeutics, various computational methods have been evaluated as promising strategies, 
depending on the purpose and systems of interest. Both ligand and structure-based drug design 
approaches are powerful technologies, which can be applied to virtual screening for lead identification 
and optimization. Here, we review the progress in this field and summarize the application of some new 
technologies we developed. These state-of-the-art tools have been used for the discovery and develop-
ment of active agents for various diseases, in particular for cancer therapies. The described protocols are 
appropriate for all drug discovery stages, but expertise is still needed to perform the studies based on the 
targets of interest.

Key words: Computer-aided drug discovery, High-throughput screening, Ligand-based drug 
design, Molecular docking, Quantitative structure–activity relationship, Structure-based drug 
design, Virtual screening

Drug discovery and development is a time-consuming and expensive 
process. On average, it takes 10–15 years and US $500–800 
million to introduce a drug into the market (1, 2). This is why 
computer-assisted drug design (CADD) approaches have been 
widely used in the pharmaceutical industry to accelerate the pro-
cess (3, 4). CADD helps scientists focus on the most promising 
compounds so that they can minimize the synthetic and biological 
testing efforts. In practice, the choice of CADD approaches to be 
employed is usually determined by the availability of the experi-
mentally determined 3D structures of target proteins. If protein 
structures are unknown, various methods of ligand-based drug 
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design can be employed, such as Quantitative Structure Activity 
Relationship (QSAR) and pharmacophore analysis. If the target 
structures are known, structure-based approaches can be used 
such as molecular docking, which employs the target 3D struc-
tures to design novel active compounds with improved potency. 
As more structures are becoming available, the prediction accuracy 
will likely to be improved.

In the absence of the receptor 3D information, lead identification 
and optimization depend on available pharmacologically relevant 
agents and their bioactivities (5–8). The computational approaches 
include QSAR, pharmacophore modeling, and database mining 
(8–10). We will use QSAR as an example to illustrate the workflow. 
QSAR describes mathematical relationships between structural attri-
butes and target properties of a set of chemicals (9, 11, 12). Many 
different 2D (two-dimensional) and 3D (three-dimensional) QSAR 
approaches have been developed during the past several decades 
(13, 14). The major differences of these methods include chemical 
descriptors and mathematical approaches that are used to establish 
the correlation between the target properties and the descriptors.

Many 2D QSAR methods have been extensively studied (15, 16) 
based on graph theoretic indices. Although the physicochemical 
meaning of these indices is unclear, they certainly represent different 
aspects of molecular structures. It has been extensively applied to 
analytical chemistry, toxicity analysis, and other biological activity 
prediction (17). 3D QSAR approaches have been developed to 
address the problems of 2D QSAR techniques including their 
inability to distinguish stereoisomers. These 3D methods include 
molecular shape analysis (MSA), distance geometry, and Voronoi 
techniques (18–20). Comparative Molecular Field Analysis 
(CoMFA) (21) perhaps is the most popular example of 3D QSAR. 
It has been widely used in medicinal chemistry and toxicity analysis 
by elegantly combining the power of molecular graphics and partial 
least square (PLS) technique. QSAR techniques usually assume 
the linear relationship between a target property and molecular 
descriptors. However, the explosive growth of structural and bio-
logical data has challenged this assumption. To this end, some 
nonlinear QSAR methods have been proposed and most of them 
are based on either artificial neural network (ANN) (22–25) or 
machine learning techniques (26–28). We have concentrated on 
the development and application of automated algorithms for 
QSAR studies, including genetic algorithms-partial least squares, 
k-Nearest Neighbor (29), and support vector machine (30–32).

Machine learning usually is defined as a discipline concerned 
with the improvement of the performance of computer algorithms 
based on their previous experiences (33), and these algorithms 
establish the correlations between the variables and the output of 
the system (26, 34–37). In engineering field, it is closely related 
to pattern recognition and has become steadily more successful 

1.1. Ligand-Based 
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over the past 20 years. Learning approaches have been widely 
used in cheminformatics and molecular modeling (38–42). For 
instance, support vector machine (SVM) was found to yield better 
results compared to multiple linear regressions (MLR) and radial 
basis functions (RBF) (31). Various versions of such programs 
have been applied to the calculation of activities of enzyme inhibi-
tors (43). Lazy learning and kNN approaches were employed in 
the discovery of anticonvulsant compounds and anticancer agents, 
respectively (41, 42). Machine learning is also being frequently 
used to conduct ADMET predictions (44–46). Gaussian kernel 
SVM was used to successfully classify a set of drugs in terms of 
their potential to cause an adverse drug reaction TdP (47). 
Although TdP is involved in multiple mechanisms, the SVM pre-
diction accuracy on an independent set of molecules was 90% 
more than that with ANN and decision tree methods.

Structure-based design has played an important role in drug 
discovery and development (48–50). This approach requires the 
understanding of receptor–ligand interactions. If the target 3D struc-
ture is known, it can be used for the design of new ligands (49–51). 
The structural information is either from X-ray crystallography, 
NMR, or from homology modeling. SBDD approaches are respon-
sible for evaluating the complementarities and predicting the possible 
binding modes and affinities between small molecules and their mac-
romolecular receptors. The success of SBDD is well documented 
(52, 53) and the computational approaches vary widely in method-
ology, performance, and speed. Some are capable of providing accu-
rate binding modes, while others are more suitable for fast searching 
of large databases (50, 54–61). Herein we will focus on the most 
commonly used strategies: molecular docking and scoring.

Molecular docking is used for computational schemes that 
attempt to find the best matches between a receptor and a ligand. 
It involves the prediction of ligand conformations and orientation 
(or posing) within a binding site and attempts to place the ligand 
into the binding site in configurations and conformations appro-
priate for interacting with the receptor (62). Docking methods 
can be divided into matching and simulation methods. The former 
approaches create a binding site model, typically including the 
favorable hydrogen binding and steric interactions, and then 
attempt to dock a ligand into this model by geometrical matching 
(63). Although early attempts of matching methods only consid-
ered the translational and orientational degrees of freedom of the 
ligand, most of recently developed programs take into account 
the conformational flexibility of ligands and the limited flexibility 
of the receptor (63, 64). The examples of this class include DOCK 
(65, 66), FlexX (67, 68), etc. Simulation methods put a molecule 
into a binding site by exploring the translations, orientations, and 
conformations until an ideal binding mode is found. Autodock is 
the most representative example of this class (69).

1.2. Structure-Based 
Drug Design
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One of the major challenges is the scoring function problem, 
i.e., the problem of fast and accurate evaluation of binding affinities. 
Several approaches to address this problem have been proposed 
and developed. Force field scoring is based on the classical molec-
ular force fields, such as AMBER (70), CHARMM (71), MMFF94 
(72), etc., to compute nonbonded interaction terms between the 
receptor and ligand atoms. Additional empirical terms taking into 
account the solvation and entropy effects have been also consid-
ered (73). The second family of methods is the empirical scoring 
functions, which include LUDI (74–76)and VALIDATE (77). 
They have been introduced several years ago and are based on 
the concept that the receptor–ligand interaction energy can be 
approximated by a multivariate regression of different parameters 
such as the number of hydrogen bonds, lipophilicity, ionic inter-
actions, entropy penalties, etc. Recently, a third family of methods, 
knowledge-based scoring functions (DrugScore (78) SmoG (79), 
PMF (80), BLEEP (81), etc.) has been introduced. These methods 
employ the statistical analysis of known receptor–ligand complexes 
to define pairwise interatomic potentials of protein–ligand inter-
actions. After the calibration on the training set of complexes, 
these scoring functions are validated by predicting binding affinities 
for the complexes of the test sets.

Recently advances in networking, high-end computers, large 
data stores, and middleware capabilities are ushering in a new era of 
high-performance parallel and distributed simulations (82). Based 
on these technologies, novel high-throughput docking approaches 
have been developed to enable efficient and inexpensive drug dis-
covery. For instance, we developed an automated DOcking-based 
VIrtual Screening (DOVIS) system (59), which makes sophisticated 
docking strategies to be carried out on HPC clusters to screen mil-
lions of compounds more efficiently. In this chapter, we will discuss 
the methods using our recent implementation HiPCDock (61).

	 1.	Computer workstations with Linux operating systems.
	 2.	ChemDraw or other molecular structure drawing programs.
	 3.	Descriptor generators such as DRAGON, MolConnZ, and 

OEChem.
	 4.	Text editors such as UltraEdit, vi, and EMACS.
	 5.	Descriptors normalization programs.
	 6.	Data splitting program such as SE8.
	 7.	Databases such as ZINC, PubChem, and ChemDiv.
	 8.	ALL-QSAR Program.
	 9.	Activity testing facility.

2. Materials  
(Hardware  
and Software)

2.1. Ligand-Based 
Design Approaches
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	 1.	High-performance computing (HPC) clusters with Linux 
operating systems.

	 2.	LSF queuing systems for the HPC clusters.
	 3.	Java environment.
	 4.	Perl and Python modules.
	 5.	HiPCDock program.
	 6.	AutoDock3 program.
	 7.	AutoDockTools package.
	 8.	Matlab package.
	 9.	OpenBabel program.

Different programs have different protocols to perform the task. 
Here we use ALL-QSAR as an example to demonstrate the pro-
cedures (Fig. 1). For special notes, please refer Section 4.

	 1.	Prepare molecular structures of interest. Most of programs 
accept sdf, mol2, or some other formats. The structures can be 
2D or 3D, depending on the studies. If 3D QSAR (Fig. 2) is 
conducted, then 3D structures of the molecules are required.

	 2.	Calculate descriptors for the molecules using the molecular 
file created above. Most descriptor generation programs just 
need the molecular file as input. Depending on the study, 
some options may need to be specified. For instance, with 
MOE descriptors, you can specify 1D, 2D, or 3D descriptors, 
or all of them. Other commonly used descriptors include 
DRAGON descriptors, MolConnZ descriptors, OEChem 
shape descriptors, etc. During this step, some molecules may 
be skipped due to the inability to calculate the descriptors by 
the programs. This can be due to the limitations of the pro-
grams or the inaccuracy of the molecule structures.

	 3.	Prepare the molecular activity file. Usually two columns are 
required: the first column is the molecular name and the second 

2.2. Structure-Based 
Design Approaches

3. �Methods

3.1. Ligand-Based 
Design Approaches

Fig. 1. Drug discovery and development pipeline. The process is very time consuming and expensive. It mainly includes 
lead discovery and optimization, preclinical and clinical trial, and final NDA and marketing.
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is the activity values. The order of the molecules in the activity 
file should be corresponding to the order in the descriptor file.

	 4.	Descriptor normalization. Usually the values of the descriptors 
are quite different as many of them represent completely dif-
ferent properties with different scale. For instance, the molecular 
weight is in hundreds but the LogP is usually below 10. To 
exclude the disproportional influence by the descriptor values, 
normalization is recommended. The way to do this is to find 
the maximum and minimum values for all molecules for each 
descriptor and normalize each values with (Xi − Xmin)/(Xmax − Xmin). 
There are many other ways to do the normalization.

	 5.	Once the descriptors are normalized, the dataset will be split 
into multiple training and test sets for model building. This 
can be achieved with SE8 (Sphere Exclusion version 8)  
algorithm (83).

Fig. 2. QSAR and virtual screening workflow. Starting from molecular structures and their bioactivities, QSAR models can 
be built to perform external predictions and virtual screening. The identified hits are experimentally tested, and the active 
compounds will be further optimized and the new data can be further fed back to the process.
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	 6.	The procedures of SE8 start with the calculation of the 
distance matrix D between representative points in the descrip-
tor space. Let Dmin and Dmax be the minimum and maximum 
elements of D, respectively. N probe sphere radii are defined 
by the following formulas Rmin = R1 = Dmin, Rmax = RN = Dmax/4, 
Ri = R1+(i−1)×(RN−R1)/(N−1), where i = 2,…,N−1.

	 7.	Each probe sphere radius corresponds to one division into 
the training and test set. In our studies it consisted of the 
following steps. (i) Select randomly a compound. (ii) Include 
it in the training set. (iii) Construct a probe sphere around 
this compound. (iv) Select compounds from this sphere 
and include them alternatively into test and training sets. 
(v) Exclude all compounds from within this sphere for fur-
ther consideration. (vi) If no more compounds left, stop. 
Otherwise let m be the number of probe spheres constructed 
and n be the number of remaining compounds. Let dij 
(i = 1,…,m; j = 1,…,n) be the distances between the remain-
ing compounds and probe sphere centers. Select a compound 
corresponding to the lowest dij value and go to step (ii).

	 8.	Once the dataset is split into training and test sets, our  
ALL-QSAR will load the training set descriptors and activities 
space into memory and assign a lowest predefined value to 
the kernel width K.

	 9.	Take a query compound from the test set and calculate the 
Euclidean distances between it and all compounds of the 
training set. If the distance from the test set compound to its 
nearest neighbor is higher than Dmax, this compound is out of 
the applicability domain. Since the activity prediction for it is 
believed to be not accurate, it will not be predicted. In this 
case return to step 9 and process the next compound of the 
test set, or, if there are no more compounds in the test set, go 
to step 16. If the compound of the test set is within the appli-
cability domain, go to step 10. The applicability domain is 
calculated as the following: ˆAPD s= +y Z , where ŷ is the 
average of weighted Euclidean distance for the training set. 
Z is an empirical cutoff value to control the significance 
(or confidence) level with the default value as 0.5. s is  
the standard deviation of all pairwise Euclidean distance in 
the training set.

	10.	The weight of every compound in the training set is calcu-
lated for the query compound.

	11.	Calculate coefficients b.
	12.	Using the values of b, weights and descriptors to predict the 

target property of the query compound.
	13.	Repeat step 9 for the next compound. If the procedure was 

repeated for all compounds, go to step 14.
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	14.	Calculate the correlation coefficient between the predicted 
and experimental activity values of the test set compounds.

	15.	If kernel width is lower than the predefined value, add a pre-
defined step to it and repeat the process starting from step 9 
for N times until the prediction is converged.

	16.	Sort models by the R,
2 starting from the highest value, and 

RMSD between predicted and actual target property values 
and select the top 10 best models.

	17.	The models can be used for predictions of new molecules or 
virtual screening.

	18.	In virtual screening, top hits based on predicted activity (e.g., 
top 100) are selected for investigation.

	19.	The selected hits will be inspected for their scaffold, potential 
toxicity, and other properties by both modelers and synthetic 
chemists.

	20.	Only those accepted by both modelers and chemists are sub-
mitted to experimental testing.

	21.	Experimentally confirmed hits will be used to perform lead 
optimization and new molecule design.

	22.	The newly designed molecule will be predicted for their activity, 
starting from step 1, and the measured activities are fed back 
to our model building process.

Here by splitting it into multiple steps including preprocessing of 
molecules, parallel docking, and postprocessing of result analysis, 
the overall workflow in Fig. 3 demonstrates how our new HiPCDock 
(61) works as high-throughput molecular docking protocols for 
drug discovery and development. For special notes, please refer 
Section 4.

	 1.	The protein structure is directly downloaded from PDB (pdb 
format). Hydrogens are added to the structures and appropri-
ate charges are assigned by executing a Python script, which 
uses the related functions from AutoDockTool (Fig. 4).

	 2.	The structure is converted from pdb format to pdbq format 
by adding an extra column of charges. If users prefer adding 
hydrogens and assigning charges with other software, such as 
SYBYL, it can be done and the saved mol2 file can be used as 
input into our pipeline.

	 3.	Once our program loads the structure, it uses AutoDock utility 
program mol2fftopdbq to convert the mol2 file to pdbq 
format.

	 4.	After the pdbq file is obtained, the solvation process is per-
formed using addsol module from AutoDock to convert the 
pdbq file to pdbqs format. The current acceptable input file 
formats include pdb, pdbq, and mol2.

3.2. Structure-Based 
Design Approaches

3.2.1. Preprocessing 
of Receptors
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Fig. 3. Overall workflow of HiPCDock. The whole process includes target and ligand preparation, distribution of parallel 
docking onto multiple CPUs, and final analysis of the results to select promising hits. This is involved in a statistical analysis 
(77) of docking scores as indicated in the black box.

Fig. 4. Workflow for protein preparation. Target preparation starts from the 3D structure of the proteins. Hydrogens 
and charges are automatically added and grid maps are created using autogrid3, and the pdbqs file is generated for 
docking process.
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	 5.	After the solvation, the created pdbqs is used to generate a 
grid parameter file (GPF). Currently, ten atom types are used 
for proteins, including carbon (C), nitrogen (N), oxygen (O), 
sulfur (S), hydrogen (H), metal (M), phosphorus (P), Zinc 
(Z), Calcium (L), and X for unknown type.

	 6.	The 3D grids of interaction energy for all possible atom types 
are calculated at one time. These uniquely defined atom types 
include nonaromatic carbon (C), aromatic carbon (A), nitrogen 
(N), oxygen (O), sulfur (S), phosphorus (P), hydrogen (H), 
metal (M), fluorine (F), chlorine (c), bromine (b), iodine (I), 
zinc (Z), calcium (L), iron (f), and unknown type (X). They 
basically cover most of the possible ligand atom types included 
in databases.

	 7.	The center of the common grids can be either the center of 
mass coordinates of the ligand that had been removed from the 
binding site of the target protein under consideration or the 
geometrical center of a series of key residues provided by users.

	 8.	A modified script (from gpfgen) is used to generate the GPF 
file with our customized atom types and the parameter values 
provided by users.

	 9.	Based on the GPF file, autogrid3 is executed to create 16 
atom type maps, plus an additional electron density map.

Fig. 5. Workflow for chemical compound preparation. Chemical compound preparation is also performed on multiple 
CPUs to speed up the process as the chemical database can include millions of compounds. The process will result in 
ligand pdbq files, which can be repeatedly used in docking.
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The chemical compounds also need to be preprocessed for our 
program as demonstrated in Fig. 5. The current acceptable ligand 
input file formats are SMILE strings (smi), sdf/sd, mol, mol2, 
and pdbq. Files in the first four formats may have single or multiple 
molecule(s). Each pdbq file can comprise one molecule. The input 
of chemical compounds is a directory, so it can include multiple 
files. The pipeline requires that the directory contains either pdbq 
or acceptable non-pdbq files. The protocol is as follows:

	 1.	HiPCDock converts each non-mol2 file using OpenBabel to 
mol2 format, which possesses Gasteiger charges.

	 2.	Then each mol2 file is partitioned into multiple pieces of 
roughly equal size. The number of pieces is determined by 
the number of CPU requested by users.

	 3.	If the directory has pdbq files, HiPCDock generates multiple 
(equals to the number of CPU) file lists. Each list includes 
approximately equal number of compounds.

Once the grid maps are generated and the chemical compounds 
are partitioned into the right format, parallel docking can be per-
formed using high-performance computing clusters for virtual 
screening. Here are the procedures:

	 1.	Each partition is submitted to a CPU and the docking process 
is performed automatically. The current implementation is 
using Load Sharing Facility (LSF) queuing system.

	 2.	The LSF job array function is used for the job distribution 
and scheduling. Once a CPU is available, HiPCDock distributes 
a job on that CPU and starts docking. Otherwise, it is pending 
in the queue.

	 3.	The workflow on each CPU is illustrated in Fig.  4. If the 
chemical database is in mol2 format, autotors is executed for 
each molecule (by looping through all of the molecules in the 
partition) to define the torsions of the compound and then 
convert it to pdbq format.

	 4.	The new pdbq file will be saved in a directory so that it can be 
re-used directly in future runs.

	 5.	If the input is already in pdbq format or the built-in database 
is used, the above process is skipped and the docking starts to 
run by executing autodock3 module.

	 6.	The docking parameter file (DPF) is automatically generated 
by HiPCDock based on the input from users.

	 7.	After docking each molecule, the result in its docking log file 
(DLG) is analyzed and the lowest estimated free energy of 
binding is recorded. This is used for the comparison with 
other molecules to determine whether this molecule is a strong 
enough binder to be a hit. If yes, its DLG is kept, otherwise its 
related files will be deleted in order to save disk space.

3.2.2. Preprocessing 
of Ligand Compounds

3.2.3. Parallel Docking 
on HPC Clusters
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	 8.	Since this is the most time-consuming part with a big loop 
(e.g., tens of thousands of compounds on each CPU if we 
dock millions of compounds on hundreds of CPUs), a restart 
function is implemented to improve the robustness of the 
program. Basically, each successfully processed molecule is 
recorded in a tracking file. Every time HiPCDock runs, it first 
checks the tracking file and starts from the molecule where 
the last run was stopped.

Once the jobs on all CPUs are done, the HiPCDock postprocess 
module starts to analyze the results.

	 1.	It collects all of the individual hit lists together and generates 
an overall list.

	 2.	The list is sorted according to their free energy of binding, 
and the top ranked compounds, as requested by users (e.g., 
10% of all database compounds), are selected as the final 
hits.

	 3.	These hits can be further refined by chemists’ knowledge as 
well as by molecular visualization provided by HiPCDock.

	 4.	For each final hit, all of docked conformations are extracted 
from the DLG and are converted to sdf files so that the users 
can visualize their interactions with the receptor.

	 5.	OpenBabel function is utilized to calculate some molecular 
properties for each hit.

	 1.	The molecular descriptors should be normalized to exclude 
the influence of those disproportional descriptor values.

	 2.	The descriptors used in training, testing, or new datasets 
should be consistent.

	 3.	Usually descriptor correlation analysis should be conducted 
to keep only independent descriptors, also for the reduction 
of descriptor dimensions.

	 4.	Parameter tuning is usually necessary to obtain best models for 
predictions, and therefore, it might be a good idea to run the 
model building multiple times by changing the parameters.

	 5.	Y randomization should be performed to exclude chance cor-
relation between the descriptors and target properties.

	 6.	Databases for virtual screening should be cleaned and their 
descriptors should be normalized based on training set nor-
malization parameters.

3.2.4. Postprocess 
of Docked Results

4. �Notes
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	 7.	Receptors structures should be cleaned by removing its water 
molecules and by fixing the wrong or missing residues for 
docking.

	 8.	Different charge types can be tried during docking.
	 9.	The starting conformations of ligands (or chemical databases) 

should be minimized by using the lowest energy conformations.
	10.	If the docking process is disrupted, it can be restarted and the 

docking will continue until finished.
	11.	The hit selection is based on the conformation with the lowest 

predicted binding free energies but not necessarily the best 
binding poses due to the approximation and imperfection of 
scoring functions.

	12.	Multiple scoring functions can be applied to conduct consen-
sus docking/scoring to obtain the best predictions.
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