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2.1 Introduction

The testis is a highly specialized male specific organ
with in principle two main functions: generation of
germ cells by a process called spermatogenesis, and
formation of hormones crucial for normal male pheno-
typic development as well as initiation and mainte-
nance of spermatogenesis (Grootegoed et al. 2000;
Loveland et al. 2005). The final goal of the germ cells
is transmitting genetic information to the next genera-
tion (Donovan 1998; McLaren 2001). Therefore, they
have to be able to become pluripotent, i.e. capable of
forming all differentiation lineages, both embryonal
and extraembryonal upon fertilization (Cinalli et al.
2008). This requires a unique mechanism involving
proliferation and maturation of germ cells as well as a
germ cell-specific manner of division known as meio-
sis (Hunt and Hassold 2002). This results finally in
generation of a haploid DNA content in highly special-
ized cells, called spermatozoa, able to penetrate the
zona pellucida of the mature egg. The proper forma-
tion of these cells requires a delicate temporal and spa-
tial process during embryogenesis resulting in testis
formation (Wilhelm et al. 2007), as well as during and
after puberty, being dependent on the interaction of
many cell types, which are organized within and
around the seminiferous tubules, being the functional
units wherein spermatogenesis occurs (Grootegoed
et al. 2000). The cell of origin of the germ cell lineage
is referred to as a primordial germ cell (PGC) (Donovan
1998; McLaren 1992, 2003 Wylie 1993; Kato et al.
1999). These cells originate outside the soma and
migrate to the genital ridge. Within the genital ridge
they are referred to as gonocytes (to be discussed
below). This system of gonadal development and
gametogenesis can be disturbed in various ways, both
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during early development as well in adult life. In prin-
ciple, every cell type present within the testis can
undergo malignant transformation, and result in can-
cer, like Sertoli cell tumors, Leydig cell tumors, lym-
phoma’s, sarcomas, etc (Woodward et al. 2004). These
types of cancer will not be discussed here. This chapter
will be restricted to the various human germ cell tumors
(GCTs), which can occur in the human testis. When
relevant, the GCTs occurring at other anatomical local-
izations will be referred to.

2.2 General Concept and Perspectives

The last few years, a wealth of information has become
available on solid cancers, including human GCTs.
This boost is due to the availability of various tech-
niques able to generate high throughput data on (epi)
genetics as well as expression profiling (both protein-
encoding and noncoding genes, including microRNAs
(miRNAs)). These data sets on their own are signifi-
cant for the elucidation of the pathogenetic steps
involved in the formation of the cancer under investi-
gation. An integrated approach will provide an even
higher level of understanding of the biology of the
systems. When linked to patient characteristics, the
data have been shown to be highly relevant for patient
management (Swanton and Downward 2008). This
approach has resulted in novel insights in the pathobio-
logical pathways, new methods for diagnosis, progno-
sis, response prediction, and molecular therapies. This
will benefit quality of life of the individual patient. In
addition, it will allow generation of informative in vitro
and in vivo models of disease. There is no doubt that
patients already benefit from this endeavor in terms of
increasing survival (Joensuu et al. 2001; Druker et al.
2001).

2.3 Human Germ Cell Tumors:
Introduction

Human GCTs are different from other solid cancers of
adults in a number of aspects, related to both biology
and clinical behavior (Oosterhuis and Looijenga
2005). This is likely due to their embryonic origin, in

spite of their clinical presentation in adult life as
observed in most cases (to be discussed below). It is
proposed that the origin of GCTs also explains their
overall sensitivity to DNA damaging agents (i.e., irra-
diation and cisplatin-based chemotherapy) (Hong and
Stambrook 2004), supported by the fact that this is
influenced by the histological composition of the
tumor: loss of embryonic features results in induction
of treatment resistance (Masters and Koberle 2003).
The recent findings on embryonic and adult stem cells
in general, and cancer stem cells specifically (Zaehres
and Scholer 2007; Rossant 2008; Morrison and
Spradling 2008; Knoblich 2008; Jaenisch and Young
2008), are of relevance in the context of the origin and
pathobiology of human GCTs (Pera 2008). The fol-
lowing paragraphs will focus on risk factors and
genetical characterization of the various types of these
tumors. Understanding the impact of these observa-
tions is also dependent on knowledge of the pathogen-
esis of these tumors, which requires information on
normal gonadal and germ cell development. Therefore,
these aspects will also be discussed where appropriate.
In addition, if relevant, clinical data will be integrated
in the discussion.

2.4 Classification of Human GCTs

Traditionally GCTs are classified on the basis of their
histological appearance, as judged by the pathologist
(Scully 1978; Mostofi and Sesterhenn 1985; Mostofi
et al. 1987; Donohue 1990). Although, without any
restriction this approach is relevant and informative, it
underestimates the biological diversity of this type of
cancer, as discussed extensively elsewhere (Oosterhuis
and Looijenga 2005; Reuter 2005). More specifically,
taking a different view on this seemingly heteroge-
neous group of cancers will likely identify novel pat-
terns, making the pathogenesis of these cancers easier
to understand, both from a developmental as well as
clinical point of view. For this specific purpose, an
alternative classification system was proposed in 2005,
in which site of presentation of the primary tumor, age
of the patient at diagnosis, histological composition,
and chromosomal constitution are informative param-
eters. On the basis of these criteria, five categories
(I-V) of GCTs are identified (Oosterhuis and Looijenga
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Table 2.1 Summary of the most differentiating parameters for the type I, I, and Ill germ cell tumors
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2005). This has already proven to allow a more straight-
forward understanding of their origin, histological
diversity, as well as clinical behavior. Because of the
fact that within the testis predominantly the type I, II,
and IIT GCTs are diagnosed, they will form the topic of
this chapter. On the basis of the incidence as well as
pathobiological and clinical aspects, emphasis will be
on the type I GCTs. The different characteristics rel-
evant to identify the major groups of GCTs of the tes-
tis, i.e., type I, II, and III, are summarized in Table 2.1.
A more detailed discussion on the other types of GCTs
has been made elsewhere (Oosterhuis and Looijenga
2003, 2005; Looijenga and Oosterhuis 1999; Looijenga
et al. 1999).

2.5 Origin of GCTs of the Testis

To understand the nature of risk factors for the devel-
opment of human GCTs, especially those of the testis,
it is of relevance to have insight into normal gonadal
development and the origin of GCTs. The morphologi-
cal characteristics and expression profiles (see below)
of the type II and III GCTs support their germ cell lin-
eage origin (Sperger et al. 2003; Kraggerud et al. 2002;
Skotheim et al. 2002; Looijenga et al. 2003a, 2006;
Korkola et al. 2005; Hofer et al. 2005; Biermann et al.
2007a, b; Gashaw et al. 2007). However, this is not
directly obvious for the type I GCTs, i.e., they show no
characteristics mimicking germ cells in any stage of
development. In this context, investigation of their pat-
tern of genomic imprinting, defined as the germ cell-
specific functional difference between a haploid set of

Aneuploid, gain X,7,8,12p,21 |
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chromosomes depending on the parental origin, is
informative (Surani et al. 1990; Tycko 1994; Surani
1994). The partial erasement of the pattern of genomic
imprinting supports the view that the majority of the
type I GCTs are also of germ cell origin (Sievers et al.
2005a). Therefore indeed, the type I, II, and III GCTs
can all be considered as GCTs truly.

The origin and migration of embryonic germ cells
from the yolk sac region (proximal epiblast) to the
genital ridge (Hayashi et al. 2007), provide an interest-
ing explanation as to why the type I and II GCTs can
also be found outside the gonads, i.e., along the mid-
line of the body. In this context, the current knowledge
on suppression of the somatic differentiation pathways
during formation and migration of embryonic germ
cells is highly relevant (see below). Still, the specific
localization of GCTs in the brain is unknown on the
basis of this assumption (Scotting 2006; Oosterhuis
et al. 2007). However, studies on genomic anomalies
support the view that they are indeed GCTs (De Bruin
et al. 1994; Motzer et al. 1991; Palmer et al. 2007).
Expression profiling of mRNA shows that the intracra-
nial GCTs have a similar pattern of gene expression as
those of the gonads, both testis and ovary (Looijenga
et al. 2006) and Hersmus et al., submitted for publica-
tion. The question remains to be answered whether the
germ cells at the extragonadal localizations have a spe-
cific function during embryogenesis and possibly later,
and whether the final cancer is the result of lack of
physiological apoptosis or differentiation later in life.
Alternatively, the tumors can be the results of initial
aberrant migration and unphysiological survival. The
recent observations regarding relevant factors in the
migration of PGCs, like SDF1 and its receptors CXCR4
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and 7 are relevant in this context (Knaut and Schier
2008; Boldajipour et al. 2008). Although these issues
are interesting, they will not be discussed here, because
of the focus on GCTs of the testis. In the following two
paragraphs, the type I and type III GCTs will be dis-
cussed in more detail, with emphasis on identified risk
factors and genetic anomalies, including mRNA,
miRNA, and protein findings. The remaining final part
of the chapter will be dedicated to the type II GCTs.

2.5.1 Typel GCTs

2.5.1.1 Epidemiology and Histological
Composition

The type I GCTs of the adult testis are rare (Schneider
et al. 2004), and predominantly found in neonates and
infants, although exceptions do occur (see below). A
higher incidence in industrialized countries has been
suggested, without an ethnic preference. Independent
of the anatomical localization (see Table 2.1), all proven
type I GCTs are composed of teratoma and/or yolk sac
tumor. The teratoma can contain both immature and
mature elements, possibly mixed, of all differentiation
lineages, i.e., endoderm, mesoderm, and ectoderm.
Overall, these tumors are clinically benign (Huddart
et al. 2003). If however, other histological components
are found, like seminoma, embryonal carcinoma, or
choriocarcinoma, it is by definition a type II GCT (see
below). Visa versa, if a tumor is composed of only a
teratoma or a yolk sac tumor, or a mixture of both,
diagnosed in a dysgenetic testis (see below) or in a tes-
tis after puberty, it must be demonstrated that it is not a
variant of a type II GCT. This can be done on the basis
of the identification of the precursor lesion or the pres-
ence of specific chromosomal anomalies (see below).

2.5.1.2 Cell of Origin

No obvious precursor cell for the type I GCTs based on
morphological or immunohistochemical characteristics
is identified so far. However, on analysis of mouse
models, as well as determination of the pattern of
genomic imprinting (see above), the cell of origin is
found to be a germ cell in the majority of cases (Walt
et al. 1993). A somatic origin of the (limited number

of) human type I GCTs with a biparental pattern of
genomic imprinting so far cannot be excluded. In
general, the type I GCTs show a partial pattern of erase-
ment, reflecting the origin of an early embryonic germ
cell (Sievers et al. 2005a). Experimental data on migrat-
ing (fluorescently labeled) PGCs in Bax-deficient mice,
which are therefore apoptosis disturbed, indicate that a
specific subpopulation of PGCs migrate along a differ-
ent route ending in the sacral region, instead of in the
genital ridge (Runyan et al. 2008). This sacrococcygeal
region is indeed another predominant anatomical site
where type I GCTs can be found. Interestingly, this
specific PGC population is larger in a female mouse
compared to that in a male mouse, possibly reflecting
the preferential occurrence of these tumors in baby
girls compared to baby boys (Schneider et al. 2004).
Although this is an interesting observation, elucidation
of the cell of origin and the pathogenetic pathways
involved in human type I GCTs still requires much
effort. The Wnt pathway has been proposed to be
involved, but mainly upon specific differentiation lin-
eages within the tumor, and not in the initiation of the
tumor itself (Fritsch et al. 2006). This is of interest
because of the significant role of Wnt in stem cell biol-
ogy (Walsh and Andrews 2003; Constantinescu 2003;
Suda and Arai 2008) (see also below).

2.5.1.3 Risk Factors and Genetic Changes

No risk factors for type I GCTs have been identified so
far (Malogolowkin et al. 1990); this supports an inde-
pendent origin and pathogenesis from the type Il GCTs
(see below). A slowly increasing incidence has been
noted. Interesting is the observation that teratomas are
frequently observed in mice in which the function of a
specific gene is disrupted in the germ cell lineage,
including kras?2, pten, and dnd (Looijenga et al. 2007a).
So far, no indications are available that one of these
genes is involved in the pathogenesis of the human
type I GCTs. Dnd is of specific interest, because of its
role in the function of miRNAs (see below). In the
mouse, absence of this gene results in a disturbed germ
cell development, resulting in infertility as well as
bilateral teratomas (Youngren et al. 2005). No studies
have been published on the association of a type I GCT
and fertility. A rare DNA variant within the DND gene
has been identified in a single type II GCT (see below)
(Linger et al. 2008). Using an additional series of
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18 proven type I GCTs, either teratomas or yolk sac
tumors, this specific variant was not found (Looijenga,
unpublished observations), and it is therefore unlikely
to be a relevant pathogenetic factor. Moreover, a num-
ber of inbred mouse strains show development of tes-
ticular teratomas, which is to a certain level dependent
of the genetic background used. The high tendency to
form of teratomas from the germ cell lineage in these
strains has been explained assuming that it reflects a
rescue mechanism preventing transmission of the
affected gene to the next generation (Looijenga et al.
2007a, b). The direct switch from a germ cell to a
somatic cell (the stem cell of the teratoma) will gener-
ate a relatively benign tumor. Although of interest,
no experimental data are available to support it yet,
but the heterogeneity in function of genes of which
disruption results in the phenomenon is intriguing. The
heterogeneity of genes leading to mouse teratoma
formation is of interest in the context of the required
suppression of the somatic differentiation program in
PGC:s (to be discussed below). It suggests that this can
be disturbed in many different ways, offering a model
to study this so-called process of activation to pluripo-
tency, also referred to as reprogramming (Silva and
Smith 2008; Surani et al. 2007). This step is also of
relevance in the context of type II GCTs, in which
reprogramming occurs in about 50% of the tumors
during the progression from the precursor lesion to the
invasive cancer (see below). However, mice do not
show development of type II GCTs, with possibly a
single, and highly relevant, exception (to be discussed
below).

Because of the lack of proven cell lines derived
from type I GCTs, the data on chromosomal constitu-
tion are obtained from primary in vivo tumors, which
need verification that sufficient numbers of tumor
cells are included in the sample under investigation.
With this possible restriction, the overall picture is
consistent and as follows: no chromosomal changes
are identified in teratomas, not even after microdis-
section, while recurrent genomic imbalances are
present in the type I yolk sac tumors (Perlman et al.
1994, 1996; Mostert et al. 2000; Schneider et al.
2001, 2002; Veltman et al. 2003, 2005). These data
have been obtained using conventional karyotyping,
and more recently also using chromosomal- as well
as array-comparative genomic hybridization (c- and
a-CGH), as well as (fluorescent) in situ hybridization
(ISH). The data from the different approaches are in

accordance to each other. The overall pattern is sum-
marized in Table 2.1. On the basis of genetic char-
acteristics, it has been demonstrated that indeed the
yolk sac tumor component originates from the tera-
toma component. This is in line with the observation
that upon extensive transplantation it is also observed
in mouse embryo-derived teratomas, considered as
the animal model for human type I GCTs (Walt et al.
1993; Van Berlo et al. 1990a, b). Of interest is that
mouse embryonic stem cells lacking functional Sox2,
a regulator of pluripotency (see below), give rise to
(polyploid) trophoblastic cells (i.e., reflecting extra-
embryonic differentiation) (Li et al. 2007a), in which
Cdx2 is aregulatory element (Deb et al. 2006). Indeed,
subtle changes in the level of Sox2 regulate differ-
entiation of embryonic stem cells (Boer et al. 2007;
Kopp et al. 2008) (see also below). The aneuploidy
of the human type I yolk sac tumors also parallels the
observation that if mouse embryonic stem cells are
tetraploidized, they form trophoblast. This serves as
a rescue mechanism to allow embryonic development
in gene-disrupted embryonic stem cells which lack
the capacity to generate the yolk sac, which is crucial
for further development. These data suggest that the
processes involved in the progression from teratoma
to yolk sac, both in mouse and human tumor cells,
might be solely determined by evolutionary retained
mechanisms, which are still operational in the type I
GCT cells. The intriguing consistency of polyploidy
remains unexplained (Otto 2007).

An older age of the patient, beyond the neonatal and
infantile period, at clinical diagnosis does not exclude
the diagnosis of a type I GCT. This is exemplified by
the two Caucasian female patients of respectively 14
and 37 years of age (unpublished observations). They
presented with an ovarian tumor histologically com-
posed of pure yolk sac tumor. Because of the rareness
of a pure yolk sac tumor at this age, and the knowledge
that they are much more frequent at younger age,
a-CGH was performed on both tumors, demonstrating
the type I characteristic chromosomal imbalances,
including loss of 1p, and 4 and 6q, and gain of 1q,
12p(13), and 20q (see Fig. 2.1a). The type II specific
chromosomal imbalance (see below), i.e., gain of the
short arm of chromosome 12, is absent (see Fig. 2.1b).
The second tumor suggests the presence of a teratoma-
tous component based on smooth muscle tissue, but it
could not be confirmed. Although of interest from a
pathobiological point of view, distinction between
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Fig. 2.1 Example of array-comparative genomic hybridization
using DNA of (a) a yolk sac tumor of the ovary of a phenotypi-
cally normal female patient of 37 years of age. Note the presence
of specific chrosomosomal imbalances, but the absence of gain
of the short arm of chromosome 12; (b) a representative type 11
testicular GCT, showing the recurrent chromosomal changes,
including gain of 12p; (¢) Expression data based on Affymetrix
profiling for SCML1, SLC25A31 (also known as ANT4), and

TEX4. Note the specific expression in spermatocytic seminoma
(SS) compared to that in seminoma (SE) and dysgerminoma
(DG). The seminoma cell line TCam-2 and the nonrelated JKT-1
are included for comparison; (d) Represenntative examples of
immunohistochemical detection of SCML1 on normal spermato-
genesis (left panel: positive), seminoma (middle panel: negative),
and SS (right panel: positive)
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a type I and type II yolk sac tumors has no clinical
implication as yet.

2.5.1.4 Concluding Points Type |l GCTs

No identified risk factors

Histologically composed of either teratoma and/or
yolk sac tumor

Predominantly diagnosed in neonates and infants

Early embryonic germ cell is cell of origin

Teratomas show no chromosomal anomalies

Yolk sac tumors show loss of 1p, and 4 and 6q and
gain of 1q, 12p(13), and 20q

No representative cell lines available

Various representative animal models identified
(i.p. mouse teratocarcinomas)

2.5.2 Typelll GCTs

2.5.2.1 Epidemiology

Type IIT GCTs, also known as spermatocytic semino-
mas (SS), are rare, and preferentially found in elderly
males (Muller et al. 1987; Burke and Mostofi 1993).
Although they hardly metastasize, up to 30% of the
patients will develop bilateral disease (Bergner et al.
1980). Although type II GCTs are significantly less
frequently diagnosed in blacks, there seems to be a
skewed incidence of SS. This supports the independent
origin of both tumor entities (see below). In contrast to
the type I and II GCTs, the SS have no counterpart in
the ovary or other anatomical localizations. In other
words, this tumor is specifically associated with the
occurrence of spermatogenesis, which is not the case
for the other GCTs, although this has been proposed
otherwise (see below). In fact, the type I and II tumors
are related to the presence, i.e., retention, of embryonic
germ cells, with their specific characteristics (see
above and below).

2.5.2.2 Histological Composition

SS have been considered as a variant of seminoma.
However, the morphology and histology are in the
majority of cases significantly different (Romanenko
and Persidskii 1983; Dekker et al. 1992; Cummings

etal. 1994; Chung et al. 2004; Talerman 1984). The less
experienced pathologists may be misled by the varia-
tion of the histological appearance of SS. Generally, SS
are characteristically composed of three cell types, with
respectively a small, intermediate, and large nucleus,
associated with a diploid, tetraploid, and hypertetra-
ploid DNA content. No convincing haploid tumor cells
have been identified so far (Looijenga et al. 2007b;
Oosterhuis et al. 1989a; Kysela and Matoska 1991;
Takahashi 1993). In addition, they usually lack infiltrat-
ing lymphocytes, which are characteristic for (classic)
seminoma (see below). The precursor lesion is known
as intratubular SS, being an accumulation of tumor cells
in the luminal space of the seminiferous tubules, sug-
gesting that the tumor cells only proliferate in the lumi-
nal compartment of the seminiferous tubule, beyond
the tight junctions between the Sertoli cells (Looijenga
et al. 2007a, b). This in contrast to the cell of origin of
the type II GCTs (see below).

2.5.2.3 Cell of Origin and Markers for Diagnosis

On the basis of the various sizes of the nuclei of the SS
tumor cells, it has been hypothesized that these cells
undergo meiosis, generating cells with a different DNA
content. This was further substantiated using immuno-
histochemistry for three markers, XPA, SCPI1, and
SSX2-4, which were indeed able to distinguish SS
from (classical) seminoma (Stoop et al. 2001).
Subsequently, other markers have been added on the
basis of targeted analysis, including P53, CHK2,
pl6INK4D, and MAGE-4A (Rajpert-De Meyts et al.
2003a), indeed markers of later stages of germ cell
development. The pattern of genomic imprinting of SS
is highly specific for germ cell developing along the
male lineage of spermatogenesis, i.e., it shows a more
paternal pattern of genomic imprinting (Sievers et al.
2005a). High throughput mRNA expression profiling
shows that these tumors indeed express multiple genes
related to spermatogenesis, including cancer testis
antigens (CTA), of which MAGE-4A is an example
(Looijenga et al. 2006). This study also demonstrated
that SS shows expression of genes specific for the pro-
phase of meiosis I, i.e., TCFLS5, CLGN, and LDHc.
Unpublished results indicate that a number of other
genes show a specific pattern of expression in SS com-
pared to other GCTs, including (classic) seminomas.
These include SCMH 1 (Takada et al. 2007), SLC25A31
(ANT4) (Brower et al. 2007), and TEX15 (Yang et al.
2008) (see Fig. 2.1c). These markers are related
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to different processes, like germ cell maturation,
including regulation of gene expression and meiotic
recombination. That the mRNA studies are informa-
tive is proven previously (Looijenga et al. 2006). It is
here also demonstrated for the specific presence of
SCML1 protein in SS and not in seminoma (see
Fig. 2.1d, middle vs. right panel; for comparison nor-
mal testis is indicated in the left panel). Other markers
are less discriminating between SS and seminoma, like
PLZF and TAF4B (Dadoune 2007), which are related
to spermatogenic stem cell maintenance and renewal
(data not shown). Therefore, the summed data suggest
that the cell of origin of SS is a later germ cell, most
likely a primary spermatocyte. This is, however, diffi-
cult to reconcile with the occurrence of bilateral dis-
ease in about one-third of the cases (Burke and Mostofi
1993; Bergner et al. 1980; Eble 1994). The explanation
could be that the first hit in the pathogenesis of SS in
fact occurs in a migrating germ cell before it enters the
genital ridge. The affected germ cell is, in spite of the
initial hit, able to develop along the male germ cell
lineage and the block in maturation becomes only
obvious when meiosis is initiated. This hypothesis
could be tested experimentally in the various sponta-
neous and induced animal tumors, like those in
Caenorhabditis elegans (Subramaniam and Seydoux
2003) and the dog (Looijenga and Oosterhuis 2007;
Looijenga et al. 1994). So far, no representative cell
lines of SS are available.

2.5.2.4 Risk Factors and Genetic Changes

No risk factors for SS are identified yet, although as
mentioned, the diagnosis of SS indicates directly that
the patient has a significant increase in risk to develop
a bilateral cancer. Because SS does not metastasize,
orchidectomy is sufficient for cure. It will result in
complete castration in some cases because of bilateral
disease. The rare progression of SS towards, highly
malignant, sarcomatous elements has, however, to be
kept in mind (Floyd et al. 1988; True et al. 1988;
Matoska and Talerman 1990). The monoclonal origin
of the SS and sarcoma element has not been proven so
far, for which the identified recurrent chromosomal
imbalances might be informative.

Conventional karyotyping, supported by c- and
a-CGH revealed that SS have a characteristic pattern
of chromosomal anomalies (Looijenga et al. 2006;

Oosterhuis et al. 1989a; Kysela and Matoska 1991;
Takahashi 1993; Rosenberg et al. 1998; Maiolino et al.
2004; Verdorfer et al. 2004; Mclntyre et al. 2007).
Overall they lack translocations, duplication, and dele-
tions, but are characterized by additional copies of
chromosome 9 (see Table 2.1). Integrated analysis of
both chromosomal anomalies and expression profiling
demonstrated that DMRTT is a likely candidate gene/
protein to explain the gain of chromosome 9 (Looijenga
et al. 2006). Although its mechanistic basis remains to
be elucidated, it can be used as an informative diagnos-
tic marker. Interestingly this protein is also found in
the testicular seminomas of dogs (Looijenga et al.
2007b), one of the supposed animal models for human
SS, and it is recommended to indeed reclassify these
canine tumors as SS.

Recent data on expression profiling of miRNA clas-
sify SS in the group of more differentiated samples,
including normal testis and teratomas (Gillis et al.
2007). Again, this supports the relatively mature stage
of differentiation of the tumor cells.

On the basis of these observations, it remains to be
decided whether SS are indeed a cancer, or rather a
benign tumor. The unsatisfactory explanation of the
high incidence of bilaterality of these tumors, often
synchronously, prompts another speculation. It is con-
ceivable that these neoplasms originate as a hyper-
plasia, which is common in hormonally regulated
endocrine organs. This thought is supported by the
fact that the canine seminomas, in fact SS, are very
often multifocal and mixed with gonadal stromal
tumors.

2.5.2.5 Concluding Points Type lll GCTs

No identified risk factors

Histologically composed of small, intermediate,
and large germ cells

Predominantly diagnosed in elderly, solely in the
testis

Primary spermatocyte likely cell of origin

Gain of chromosome 9 is a recurrent anomaly

DMRTT1 is a likely 9p-candidate gene

No representative cell lines available

Various representative animal models identified
(C. elegans and dog)

Bilateral disease might be explained by early initial
genetic change or hyperplasia
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2.6 Type Il GCTs: Introduction

Type II GCTs are the most frequent GCT of the testis,
accounting for approximately 1% of all cancers in
Caucasian males (Verhoeven et al. 2007; Shah et al.
2007). In contrast to most solid human cancers, type 11
GCTs have a peak incidence at the adolescent and young
adult age, in which group they represent in fact the most
frequent solid cancer. The age of presentation can be
significantly younger in patients with disorders of sex
development (DSD (see below)). In spite of the overall
cure rate, they are the second cause of death in young
adult Caucasian males (Horwich et al. 2006). In most
European countries a significant rise in incidence of
these cancers has been reported, although an interesting
heterogeneity has been observed (Dieckmann and
Pichlmeier 2004; Walsh et al. 2006). This has been
linked to both genetic predisposition as well as exposure
to environmental compounds, specifically those with
estrogen and/or antiandrogen action (see below). A sig-
nificant lower incidence of type II GCTs of the testis has
been reported for other ethnic populations, including
Asians and Blacks, which is not influenced by migration
(Gajendran et al. 2005; McGlynn et al. 2005).

2.6.1 Histological Composition
and Markers of Differentiation

The type II GCTs are subdivided into seminomas and
nonseminomas, both histologically and -clinically
(Woodward et al. 2004; International Germ Cell
Cancer Collaborative 1997). The nonseminomas are
further subclassified into embryonal carcinoma, yolk
sac tumor, choriocarcinoma, and teratoma (Woodward
et al. 2004). In fact, all differentiation lineages as found
during normal embryogenesis (both somatic and extra-
embryonal) can be represented in these tumors, includ-
ing the germ cell lineage (Honecker et al. 2006),
making these tumors really totipotent. This is in line
with the various markers suitable for diagnosis (see
below). It must be kept in mind that teratomas and yolk
sac tumors can therefore be both part of a type I and
type II GCTs, which cannot be distinguished on histo-
logical criteria. The markers useful to distinguish the
seminoma from the embryonal carcinoma of type II
GCTs are summarized in Fig. 2.2a. The list is not

meant to include all putative informative markers, but
to indicate the overall pattern. It sheds light on the
pathobiology of these tumors in general, and identifies
putative interesting targets for diagnosis and possibly
targeted treatment. These markers have been identified
on the basis of either a hypothesis-driven approach, or
using high throughput investigations. The markers
AFP (for yolk sac tumor), hCG (for choriocarcinoma),
and LDHI1 (for tumor load) are useful as serum mark-
ers in a clinical setting, specifically related to the pres-
ence of a yolk sac or choriocarcinoma component, and
tumor load, respectively (Horwich et al. 2006). It is
interesting to note that most markers suitable to distin-
guish seminoma and embryonal carcinoma from the
more differentiated nonseminoma components, and to
specify seminoma from embryonal carcinoma, are
known from regulation of pluripotency in (mouse and
human) embryonic stem cells, like OCT3/4, NANOG,
and SOX2. These and a selection of others will be dis-
cussed in more detail, clustered on the basis of their
pattern of expression:

2.6.1.1 OCT3/4 (POU5F1) and NANOG

OCT3/4, encoding the POUSF1 protein was the first
regulator of pluripotency identified in mouse embry-
onic stem cells (Nichols et al. 1998). This transcription
factor regulates whether the cells will remain undif-
ferentiated or start to differentiate (Hansis et al. 2000,
Niwa et al. 2000; Pesce and Scholer 2000, 2001;
Donovan 2001). The expression is at least influenced
by promoter methylation, both in vivo and in vitro
(Hattori et al. 2004; De Jong et al. 2007a) (see also
below). On the basis of this observation, the expres-
sion of mRNA of OCT3/4 in type II GCTs was initi-
ated. Two specific variants of the protein-encoding
OCT3/4 are recognized, of which the A (or I) type is
related to pluripotency. The protein is located in the
nucleus. The B (or II) variant is localized in the cyto-
plasm. It is not related to regulation of pluripotency,
and will therefore not be discussed here. Detection of
OCT3/4 mRNA is not only hampered by the existence
of two variants but also by the presence of a number of
pseudogenes. This may result in false positive RT-PCR
observations (Takeda et al. 1992; Suo et al. 2005;
Liedtke et al. 2007; De Jong and Looijenga 2006). A
combined approach using PCR amplification of mRNA
(after DNAse treatment) and endonuclease digestion
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Fig. 2.2 (a) Summary of the different factors involved in the
distinction between the human normal and malignant primordial
germ cell (seminoma) stage compared to embryonic stem cell
(embryonal carcinoma) stage. The red box set of genes, i.e.,
OCT3/4 (NANOG), SOX2/17 is suitable to be used in a clinical
setting; (b) Various factors and pathways related to the undit-
ferentiated stage of (mouse and human) embryonic stem cells.
The genes used to generate pluripotent stem cells from somatic
cells are underlined (Oct3/4-SOX2 and KIf-4). The difference
between mouse and human embryonic stem cells regarding the
need of Lif is illustrated by the use of brackets. The effects of
these different targets/pathways are on the epigenetic status of
the cells as well as their pattern of transcription; (¢) Affymetrix
expression profiling of KLF4 and c-MYC in the same samples is
mentioned under Fig. 2.1c, although in addition, embryonal car-
cinomas (EC) are included; (d) Representative example of SOX9

immunohistochemistry on a normal embryonic testis. Note
the staining of the Sertoli cells; (e) Representative example
of FOXL2 immunohistochemistry on a normal adult ovary.
Note the staining of the granulosa cells; (f) Representative
immunohistochemistry for stem cell factor on carcinoma in
situ cells (insert is the staining for OCT3/4); (g) Affymetrix
expression profiling for the various DNA methyl transferases
(1, 3A, 3B and 3L) on the samples is described under C;
(h) Immunohistochemical detection of SM-cytosine on normal
spermatogenesis (positive) and CIS (negative), and the various
histological elements of type II GCTs (seminoma is negative,
while all nonseminomas are positive). In addition, a chemother-
apy resistant seminoma, as well as the seminoma cell line
TCam-2 and the embryonal carcinoma cell line (NT2), shows a
high level of methylation
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allows investigation of the expression of the POUSF1
encoding gene (Palumbo et al. 2002). It is expressed in
seminoma and embryonal carcinoma, and not in the
various differentiated components. Subsequently, this
pattern has been confirmed on the protein level, using
tissue microarray on several thousands of solid cancer
specimens, of more than 100 different types. It shows
that OCT?3/4 is overall not found in other solid cancers
(Looijenga et al. 2003a). In spite of this observation,
many studies were initiated to investigate the presence
of OCT3/4 in nongerm cell cancers (De Jong and
Looijenga 2006). Predominantly on the basis of
mRNA-based investigation, it has been concluded that
this marker was indeed present, which would make it
unsuitable as specific marker for type II GCTs. Most
of these studies did not include proper protein detec-
tion, and indeed it was recently demonstrated that the
results were false positive mainly because of the detec-
tion of pseudogenes. A specific primer set to detect the

mRNA relating to the OCT3/4 protein has been gener-
ated, and proven to be specific (Liedtke et al. 2007; de
Jong et al. 2008a). Use of this approach, as well as
verified antibodies, will exclude false positive (and
negative) results. In conclusion, the presence of
OCT3/4 protein, detected by verified antibodies and
having specificity and sensitivity, is the most informa-
tive diagnostic marker for seminoma and embryonal
carcinoma (Richie 2005; de Jong et al. 2005a; Cheng
et al. 2007). If applied on tissue derived from an adult
testis, it is an absolute marker, but overdiagnosis is
possible in infants and in the case of germ cell matura-
tion delay (see below for further discussion). This
diagnostic value is not limited to the testis, but also
shown for other anatomical sites (De Jong et al. 2005b).
Moreover, the pattern of staining is not influenced by
metastasis or exposure to chemotherapeutic reagents.
Besides these invasive components, the precursor
lesions, CIS, and gonadoblastoma (see below) are also
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positive. It remains to be clarified whether OCT3/4 can
be considered as an oncogenic driver, as suggested on
the basis of experimental data in mouse (Gidekel et al.
2003). No chromosomal anomalies have been identi-
fied supporting this model so far. The specificity of
OCT3/4 for type I GCTs is in accordance to the obser-
vation that absence of this gene is not influencing the
adult stem cell properties in mouse (Lengner et al.
2007). Interesting, however, is the block in differentia-
tion and hyperplasia observed in various tissues in case
of overexpression of this gene (Hochedlinger et al.
2005). The putative targets under control of regulation
by OCT3/4 have been identified, which show a strong
specific pattern (Boyer et al. 2005; Loh et al. 2006).
Interestingly, absence of OCT3/4 in mouse PGC does
not result in differentiation, as reported in mouse and
human embryonic stem cells, but induction of apoptosis
(Kehler et al. 2004). This indicates that the function of
OCT3/4 is cell dependent, for which so far no explana-
tion has been provided (see also below). Although fewer
studies have been published on the other regulator of
pluripotency, i.e., NANOG, in type II GCTs, till now it
seems that the expression pattern is similar to OCT3/4
(Clark et al. 2004; Ezeh et al. 2005; Hart et al. 2005;
Hoei-Hansen et al. 2005; Korkola et al. 2006). It has been
suggested that the chromosomal localization of NANOG
is of specific interest, being on the short arm of chromo-
some 12, which is always gained in these tumors (see
below). However, it needs to be experimentally verified
whether such a relationship exists, because downregula-
tion of NANOG has been reported upon differentiation
of embryonal carcinoma towards other lineages (as
expected, parallel to OCT3/4), but gain of 12p is still
present in differentiated tumors, which indicates that still
a positive selection mechanism is involved. In this con-
text, the presence of gain of 12p in human embryonic
stem cells upon extensive in vitro growth is also relevant
(see below). There are, however, interesting data indicat-
ing that upregulation of NANOG is required for induc-
tion of apoptosis of mouse embryonic stem cells (Lin
et al. 2005). Interestingly, expression of this gene is regu-
lated by Oct3/4 as well as Sox2 (see below) (Loh et al.
2006; Rodda et al. 2005; Masui et al. 2007), and potenti-
ates indeed generation of pluripotency (Silva et al. 2006;
Suzuki et al. 2006). This is, among others, influenced by
the Wnt pathway, via B-catenin (Takao et al. 2006). Most
recently, Rex-1 has been found to distinguish within the
Oct3/4 positive mouse embryonic stem cell population.
The Rex-1 negative cells are related to primitive

ectoderm while the positive cells represent the inner cell
mass. These subpopulations are interchangeable, depend-
ing on the presence of Leukemia Inhibiting Factor (LIF)
(Toyooka et al. 2008). No such subpopulations have been
identified so far within type II GCTs (Kristensen et al.
2008). This might be due to the difference in LIF depen-
dence of the mouse and human embryonic stem cells
(Ginis et al. 2004). Another interesting finding is that an
aberrant Oct3/4 in embryonic stem cells is related to dis-
ruption of Dicer expression, which is crucial for normal
miRNA function (Cui et al. 2007) (see below).

Finally, although interesting data have been sum-
marized in Fig. 2.2b, still a lot of questions need to be
answered. The key question is whether these transcrip-
tion factors are intrinsic to the cell of origin and there-
fore consistently present, or whether they play a
causative role in the pathogenesis of these tumors.

2.6.1.2 SOX2 and SOX17

Although OCT3/4 and NANOG are valuable markers
for the study of tumor biology as well as for diagnos-
tics, they neither distinguish seminoma/CIS from
embryonal carcinoma nor PGCs from embryonic stem
cells. However, the presence of cytoplasmic as well as
nuclear OCT3/4 (A type) staining, especially in combi-
nation with the morphological criteria, allows identifi-
cation of embryonal carcinoma to a certain extent. Of
course various other informative markers have been
identified for embryonal carcinoma to allow distinction
from seminoma, including cytokeratin 8/18/19 and
CD30 (see also Figs. 2.2a and 2.3) (Pallesen and
Hamilton-Dutoit 1988; Latza et al. 1995; Herszfeld
et al. 2006). From a developmental point of view, the
observation that SOX2 is positive in embryonal carci-
noma and negative in seminoma and CIS is highly
interesting. SOX2 is associated with OCT3/4 as a com-
plex in the regulation of gene expression in embryonic
stem cells, both mouse and human (Rodda et al. 2005;
Masui et al. 2007; Okumura-Nakanishi et al. 2005;
Carlin et al. 2006; Nakatake et al. 2006), including
NANOG (see Fig. 2.2b for summary). In fact, OCT3/4
levels are regulated by SOX2 (Masui et al. 2007). But,
in contrast to OCT3/4 and NANOG, SOX2 is not spe-
cific for embryonic stem cells and their malignant
counterpart, i.e., embryonal carcinoma. It is found in
many different lineages of differentiation, however,
always in the absence of OCT3/4 and NANOG (Avilion
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Fig. 2.3 Pathogenetic model of the initiation and progression of type II GCTs. See text for explanation

et al. 2003; Kelberman et al. 2006). This likely deter-
mines the absence of pluripotency of these cells.
Interestingly, while SOX2 is found in mouse PGCs, it
is absent in the human counterparts, which illustrates
species specificities of regulation of pluripotency
(Perrett et al. 2008; De Jong et al. 2008b). This is also
demonstrated by the presence of Oct3/4 in mouse sper-
matogonia, in contrast to the human counterparts,
which therefore makes it an informative diagnostic
marker for CIS. Another intriguing observation is that
human Sertoli cells associated with disrupted sper-
matogenesis or CIS can also show staining for SOX2,
but never for OCT3/4 and NANOG. This must be kept
in mind to exclude false positive intratubular diagnosis
of embryonal carcinoma (De Jong et al. 2008b).

A relevant question is why OCT3/4 has a different
function in PGCs and embryonic stem cells, extrapo-
lated to seminoma/CIS and embryonal carcinoma, i.e.,

regulation of apoptosis vs. differentiation. It might be
due to the differential presence of SOX2, which is only
positive in embryonal carcinoma (see above). The next
question is whether another SOX-member transcription
factor is specifically expressed in PGCs, CIS, and semi-
noma. To get insight into this possibility, a high through-
put screening was performed, which showed that
SOX17 (and SOX15 to a lesser extent) is indeed spe-
cifically expressed in seminoma and CIS, confirmed at
the protein level as well as in nonseminoma cell lines.
Linking the genetic information to the expression data
indicates that seminoma indeed shows specific gain of
aregion on chromosome 17, in which SOX17 is mapped
(Korkola et al. 2008). Interestingly, SOX17 is identified
as a regulatory element to distinguish embryonic from
adult hematopoietic stem cells (Kim et al. 2007; Jang
and Sharkis 2007). This observation opens a new field
of experiments linking regulation of gene expression
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related to pluripotency in type II GCTs, especially on
the basis of the use of the various cell lines representa-
tive for human type II GCTs.

2.6.1.3 Diagnostic Expression Signature
for Seminoma and Embryonal
Carcinoma

The cumulated data allow now a rather simple and
informative signature for seminoma/CIS and embryo-
nal carcinoma, relevant both for diagnosis as well as
investigation of the mechanism of activation of pluri-
potency, i.e., the transition of a seminomatous (PGC/
gonocyte) cell to an embryonal carcinoma (embryonic
stem) cell. This is schematically illustrated in Fig. 2.2a
(in the red box). In fact, various patterns have been
reported, but the most simple and straightforward is
seminoma OCT3/4+/SOX17+/SOX2— and embryonal
carcinoma OCT3/4+/SOX17-/SOX2+. The power of
this rule of thumb is that by definition, besides OCT3/4,
a positive differentiating marker is included. This is
also true for the nonmalignant counterparts, i.e., human
PGC/gonocyte and embryonal stem cell, which has
been investigated in several studies (Gashaw et al.
2007; Hoei-Hansen et al. 2005; De Jong et al. 2008b;
Rajpert-De Meyts et al. 2004; Stoop et al. 2005;
Biermann et al. 2006; Kerr et al. 2008a, b; Honecker
et al. 2004). In this context, it is relevant to underline
that the PGC/gonocytes are in fact not pluripotent, but
are equipped to transmit this capacity to the next gen-
eration. In contrast, the embryonal stem cells are capa-
ble of showing an intrinsic pluripotency, which will be
lost upon derivation of adult stem cells that are com-
mitted and thereby have lost pluripotency. This is in
line with the absence of OCT3/4 in adult stem cells
(Ledford 2007).

2.6.1.4 Generation of Pluripotent Stem Cells
Using Defined Set of Genes

It has been shown that pluripotent stem cells can be
derived from somatically differentiated cells, both
human and mouse, and can be generated by expressing
a selected number of genes, i.e., OCT3/4, SOX2, KLF4,
and c-MYC. The latter can even be omitted (Zachres
and Scholer 2007; Nakatake et al. 2006; Takahashi and
Yamanaka 2006; Meissner et al. 2007; Nakagawa et al.

2007; Okita et al. 2007; Takahashi et al. 2007; Wernig
et al. 2007). This however, results in a less efficient
approach, and it results in the absence of malignant
transformation. Interesting is also that NANOG is not
required. So far, no studies specifically on KLF4 in type
IT GCTs have been performed, but expression profiling
analysis demonstrated no differences between semi-
noma and embryonal carcinoma, like OCT3/4 and
NANOG (see above) (Fig. 2.2¢). It has been indicated
that KLLF4 is needed in this specific set of genes to rees-
tablish an embryonic epigenetic pattern of the DNA and
histones (see also Fig. 2.2b), which is lost upon physi-
ological differentiation. A similar expression pattern in
type I GCTs is found for c-MYC, which is indicated to
be needed for proliferation induction (Fig. 2.2¢). It must
be kept in mind that these data on GCTs are based on
mRNA levels, and confirmation on the protein level,
including activity status, will be needed to get further
insight in the relevance of these proteins. However, it
can be concluded so far that embryonal carcinoma (and
seminoma, but in the absence of SOX2) seems to
express the critical genes of pluripotent stem cells.

The difference between seminoma and embryonal
carcinoma might be due to the different expression,
among others, of SOX17 and SOX2. In this context,
the recent observation that pten and akt are involved in
the generation of embryonic stem cells from mouse
PGC, i.e., the so-called activation of pluripotency (or
reprogramming), is highly relevant (Kimura et al.
2003, 2008). Inactivation of pten in PGCs results in
generation of embryonic stem cells, related to activa-
tion of Akt. Indeed, PTEN has been found to be inacti-
vated in the transition from CIS to embryonal carcinoma
(Di Vizio et al. 2005). Of interest is that suppression of
PTEN is required for allowing cellular transformation
(including antiapoptotic effects) of activated RAS
(Vasudevan et al. 2007) (see below). In the pten/akt
mouse model, p53 was found to be a crucial down-
stream target (see also below). The PTEN/AKT and
KRAS?2 pathways seem indeed to be active in human
embryonic stem cells (Humphrey et al. 2004). KRAS2
is another gene mapped to the short arm of chromo-
some 12, which makes it a gene of interest in the
pathogenesis of type II GCTs (see below), and sup-
portive data are available that it is indeed involved
(Mclntyre et al. 2008). This interesting model deserves
further exploration. Experimental data on the regula-
tory networks of these transcription factors can be
obtained using the available type II GCT cell lines
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(see below). Interesting is the fact that KRAS?2 is also
linked to c-KIT targeting, which will be discussed in
the next paragraph.

2.6.1.5 c-KIT and KRAS2

c-KIT is a kinase receptor relevant for a number of cru-
cial processes during normal development, including
survival and migration of PGCs from the epiblast to the
genital ridge (Wylie 1993; Godin et al. 1991; Runyan
et al. 2006). Disturbances in the function of the c-KIT
pathway, dependent on the ligand stem cell factor
(SCF) result in various anomalies, including sub- or
infertility (Lennartsson et al. 2005). In normal devel-
opment of germ cells, c-KIT is downregulated upon
arrival of the PGCs in the genital ridge (Wylie 1993;
Godin et al. 1991), although it can still be detected at a
relatively low level in human spermatogonia (Stoop
et al. 2008). In contrast, it remains high in expression
in the mouse counterparts, as also reported for Oct3/4
(see above). c-KIT is also present at a high level in CIS
and gonadoblastoma, the precursor lesions of type II
GCTs (see below) and is overall downregulated upon
invasive growth, although still some c-KIT can be
found in invasive tumors (Strohmeyer et al. 1991;
Izquierdo et al. 1995; De Meyts et al. 1996; Sakuma
et al. 2003; Miettinen and Lasota 2005; Nikolaou et al.
2007). Activating mutations, leading to an SCF inde-
pendent active receptor, have been found predomi-
nantly in bilateral type II GCTs. The sensitivity of the
mutation detection leads to seemingly conflicting data
(Sakuma et al. 2003; Looijenga et al. 2003b; Kemmer
et al. 2004; Tate et al. 2005; Biermann et al. 2007c;
Rapley et al. 2008). Some studies predominantly find
the activating mutations in primary unilateral semino-
mas. That indeed c-KIT has an important role in the
pathogenesis of type II GCTs is also supported by the
observation that this gene can be overexpressed because
of a highly restricted genomic amplification only
including this gene (Mclntire et al. 2005). That particu-
lar tumor indeed showed a high and consistent staining
at the protein level using immunohistochemistry. The
c-KIT signaling pathway has been linked to PL.K (De
Miguel et al. 2002; Shivakrupa et al. 2003), both in
mouse PGCs as well as type II GCTs. This is of course
relevant in the context of the previously described link
to PTEN (see above). Moreover, it is of interest because
of the observations that activating KRAS2 mutations

are also found, in a mutually exclusive manner
(Goddard et al. 2007). Activation of a mutated KRAS2
results in an increased in vitro survival of seminoma
cells (Olie et al. 1994, 1995a, b), which are normally
not able to survive outside the patient, as well as an
earlier age at clinical presentation of the tumor.

2.6.2 Risk Factors

A number of risk factors have been identified for type
II GCTs, including cryptorchidism, in(sub)fertility,
familial predisposition, birth weight, and birth order,
as well as various forms of DSD (Moller 1993;
Skakkebaek et al. 1998; Jacobsen et al. 2000; McGlynn
et al. 2003; Pamenter et al. 2003; Raman et al. 2005;
Costabile 2007; Sonke et al. 2007; Walsh et al. 2007,
Cook et al. 2008). In spite of the overall consistency of
the role of these risk factors, various others have been
identified, with variable impact. Interestingly, some of
them seem to be specific for either seminoma or non-
seminoma. In spite of much effort, it has not been pos-
sible to identify the gene or genes involved in familial
type II GCTs yet (Rapley et al. 2000; Holzik et al.
2004). The link to the long arm of the X chromosome
is likely related to the occurrence of cryptorchidism,
and thereby indirectly to the development of the can-
cer. Overall, the genetic predisposition is difficult to
investigate because of the small sizes of the affected
families, the relationship to subfertility, as well as the
possible role of the (micro)environment. Because of
their weakness as risk factors, it is often not possible to
divide the impact of both parameters within a single
family. The likely multigenetic basis of the predisposi-
tion makes the identification of genes even more com-
plex (Lutke Holzik et al. 2006). It is noteworthy in this
context that immigrants from Finland to Sweden, who
have a lower initial risk for type II GCTs, obtain the
risk of the Swedish population at the second genera-
tion (Hemminki et al. 2002). This demonstrates a sig-
nificant effect of the environment on the incidence for
a limited period of time, and possibly overruling a
genetic component, if present. Recent studies of trans-
generational effects of exposure to certain chemicals,
including endocrine disruptors, are of specific interest
(Anway et al. 2005, 2006; Chang et al. 2006; Crews
et al. 2007; Skinner 2007a, b). The link to epigenetic
regulation is intriguing and might explain for the
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so-called testicular dysgenesis syndrome (TDS) (see
below). It is of interest that the other identified risk fac-
tors commonly, in one way or the other, affect the mat-
uration of embryonic germ cells negatively. These
factors have been brought together into TDS
(Skakkebak et al. 2001; Fisher et al. 2003; Skakkebaek
2003; Rajpert-De Meyts 2006; Sonne et al. 2008). This
model integrates various elements, in which the final
outcome will have a negative effect on testicular func-
tion, including sub(in)fertility, cryptorchidism, and/or
an increased risk for development of a type II GCT. In
this model, the role of the supportive element, i.e., the
Leydig—Sertoli cells is crucial. Within the subgroup of
sub(in)fertility, it has recently been identified that the
presence of bilateral microlithiasis is an informative
parameter to identify males with a high risk (up to
20%) of CIS (De Gouveia Brazao et al. 2004), which
is in line with the observation of a high incidence of
these microcalcifications in patients with a unilateral
type II testicular GCT, and contralateral CIS (Holm
et al. 2003). This finding can be of value for screening
purposes (Costabile 2007).

A recent meta-analysis demonstrated that both a low
and a high birth weight increase the risk (Michos et al.
2007). In addition, trisomy 21 patients have an increased
risk and indeed, a delayed maturation of germ cells has
been identified (Cools et al. 2006a). It remains to be
elucidated whether the extra chromosome 21 in the
germ cells or the supportive cells in the testis results in
an increased risk for type II GCTs. Although this was
suggested, because of the gain of chromosome 21 in
the tumor cells, this seems to be unlikely, because this
has not been found for women. Therefore, it is more
likely that the suboptimal microenvironment of the tes-
tis due to the trisomy status of the individual results in
a delayed maturation of germ cells and thereby a higher
risk for malignant transformation. In this context, the
observation that Klinefelter patients (47,XXY) have no
increased risk of type II GCTs of the testis, but rather of
the mediastinum, is of interest (Isurugi et al. 1977; Lee
and Stephens 1987; Nichols et al. 1987; Hasle et al.
1992, 1995; Volkl et al. 2006). Most recently, such an
association has also been suggested for the intracranial
GCTs (unpublished observations). The absence of tes-
ticular type II GCTs in Klinefelter patients is likely due
to induction of apoptosis of germ cells related to an
improper microenvironment (Aksglaede et al. 20006).
The resulting pituitary/gonadal overstimulation may
play a role in the increased risk of mediastinal GCTs.

A similar phenomenon has been reported for germ cells
in the ovary of Turner syndrome patients (45X0O) (Modi
et al. 2003), as well as patients with complete androgen
insensitivity (CAIS) (Cools et al. 2005) (see below).

The mechanistic basis of the increased risk of the
various conditions remains to be elucidated, but the
possible role of estrogen and antiandrogen functions,
being the basis of the TDS model, is worth investigat-
ing in more detail. This hypothesis is supported by
multiple observations. The higher level of testoster-
one in blacks might indeed explain the lower inci-
dence of this type of cancer (Henderson et al. 1988).
This is supposedly related to the role of testosterone
during embryonal development in pushing the PGCs
along their maturation pathway to spermatogonia,
which thereby lose their characteristics of PGCs/
gonocytes, and therefore their ability to form CIS (see
above). The higher risk of the first child in birth order
is in line with a role of a higher level of estrogen expo-
sure at early embryonal developmental age (Weir
et al. 2000). Although type IT GCTs are rather specific
for the Caucasian population, the Maori are an inter-
esting exception (Wilkinson et al. 1992). Men of this
ethnic group show a similar incidence as Caucasians,
possibly again related to an increased level of estro-
gen. The intrinsically higher level of testesterone in
blacks, already during embryonal development, might
be related to their lower risk for type II GCTs. This
possibly prevents delayed maturation of PGC/gono-
cytes into the stage of spermatogonia. A number of
studies also indicate that polymorphisms in enzymes
which increase the level estrogen are related to a
higher risk of type II GCTs (Starr et al. 2005).
Moreover, the differences between the people of
Denmark and Finland are associated with different
exposures to chemicals that have estrogen or antian-
drogen activity (Toppari et al. 1996; Rajpert-De Meyts
et al. 2003b). A counterargument on the role of
increased estrogen is that during the early develop-
ment the level of estrogen is high, but it could be that
a critical window is relevant in this context. Of spe-
cific interest is that an animal model for disrupted tes-
ticular development, used as model for endocrine
disruptors in the generation of TDS, indicates the
same window (Welsh et al. 2008). The possible role of
androgens in the pathogenesis of type II GCTs is also
suggested on the basis of the various types of patients
with DSD, with a higher or lower risk of a type II
GCT. These will be discussed below.



44

L.H.J. Looijenga

2.6.3 Disorders of Sex Development

This group of developmental anomalies, previously
referred to intersex, is defined as conditions of incom-
plete or disordered genital or gonadal development
leading to a discordance between genetic sex (i.e.,
determined by the chromosomal constitution, of the X
and Y chromosomes), gonadal sex (the testicular or
ovarian development of the gonad), and phenotypic sex
(the physical appearance of the individual). Recently, a
revised classification system has been proposed, with
the aim to reduce uncertainties on description (Hughes
et al. 2006). Because of the topic of this review, a num-
ber of relevant issues in the context of type II GCTs will
be discussed here. Indeed, as expected, these patients
have no increased risk for the type I and IIT GCTs.

2.6.3.1 Parameters Related to Tumor Risk

DSD patients with either hypovirilization or gonadal
dysgenesis can show an increased risk for the devel-
opment of type II GCTs. A number of recent reviews
have been published recently (Cools et al. 2006b;
Looijenga et al. 2007c). The most important issues
will be summarized here. The precursor can indeed be
CIS or gonadoblastoma, related to the level of viril-
ization of the gonad. This can nicely be demonstrated
by the use of protein detection by immunohistochem-
istry for SOX9 (indicative for SRY function and
Sertoli cell differentiation), and FOXL2 (granulosa
cell differentiation) (Hersmus et al. 2008a). In con-
trast to the link between ovarian differentiation and
FOXL2 and that between testicular differentiation and
SOXO9, the correlation between the presence of the
Y chromosome and testicular development is less
obvious (Cools et al. 2007). In fact, no correlation
between the Y chromosome and testis development
has been identified in patients with sex chromosomal
mosaicisms, for which no explanation is available so
far. It is suggested that in fact CIS and gonadoblas-
toma are the same type of lesion (Hersmus et al.
2008b), of which the histological context is deter-
mined by the level of virilization.

The anatomical position of the gonad also seems to
be significantly related to the risk of malignant trans-
formation. This is in line with the fact that cryptorchid-
ism is indeed one of the strongest risk factors for type

II GCTs of the testis (Batata et al. 1980; Muller et al.
1984; Giwercman et al. 1987; Abratt et al. 1992).
Interestingly, it has been demonstrated that a semi-
noma is more frequently found in intraabdominal
gonads than in gonads localized in the scrotum
(Ogunbiyi et al. 1996). This likely also explains the
preferential occurrence of dysgerminomas in the ovary,
which are always abdominal (Susnerwala et al. 1991;
Dietl et al. 1993; Chow et al. 1996; Cusido et al. 1998;
Tewari et al. 2000). In addition, it has been shown that
an early age of orchiopexy indeed reduces the risk for
a type II GCT of the testis (Walsh et al. 2007; Jones
et al. 1991; Engeler et al. 2000). This is likely related
to the still ongoing maturation of PGC/gonocyte like
cells to spermatogonia. Moreover, complete absence
or very low level of testosterone also diminishes the
risk of a type II GCT. This is nicely illustrated by
patients with hypogonadotropic hypogonadism, who
always have cryptorchid testis, but never will develop
a GCT. In addition, patients with CAIS have a signifi-
cantly lower risk compared to patients with the partial
form of this disorder (Cools et al. 2005, 2006b;
Hannema et al. 2006). Most likely this is related to the
induction of apoptosis of the germ cells in the testis of
CALIS patients, as observed in Klinefelter patients (see
above).

Development of type II GCTs in DSD patients
seems to be related to formation of specific histologi-
cal structures. In patients with a certain level of viril-
ization and therefore testis formation, it results in the
characteristic lesion of CIS, as also found in men with-
out any sign of DSD, but related possibly to TDS
(see above). In contrast, DSD patients lacking such a
level of virilization will develop gonadoblastoma,
which may in rare cases be combined with seminifer-
ous tubules with CIS. The precursor lesion of gonado-
blastoma is known as undifferentiated gonadal tissue
(UGT), which allows a better diagnosis at early devel-
opmental stages (Cools et al. 2006c¢). Interestingly,
the various genetic anomalies related to an increased
risk for type II GCTs indicate that it has a link to the
function of Sertoli cells (Hersmus et al. 2008b). This
might be the missing link between TDS and DSD
(Hutchison et al. 2008). The structures, being the pre-
cursors of invasive type II GCTs, contain double posi-
tive cells for OCT3/4 and TSPY. The latter is the most
interesting candidate gene for the involvement of the
Y chromosome, which will be discussed in the next
paragraph.



2 Risk Factors and Genetical Characterization

45

2.6.3.2 Involvement of the Y Chromosome;
TSPY as Candidate Gene

The risk of development of a type II GCTs in DSD
patients is directly related to presence of a specific part
of the Y chromosome, known as the gonadoblastoma
region of the Y chromosome (GBY) (Page 1987). This
area maps around the centromeric region, and excludes
the SRY gene as candidate. This is indeed supported
by the clinical observation of patients with a transloca-
tion of the SRY gene to an X chromosome or an auto-
some, resulting in 46,XX men, who have no increased
risk of this type of cancer. Although SRY is not the
gene of interest in this context, knowledge of its func-
tion is relevant. The first downstream target of SRY is
the transcription factor SOX9, which in the testis is
Sertoli cell specific (see Fig. 2.1d). It has been assumed
that simply the absence of this pathway results in for-
mation of an ovary, which has been recently challenged
by a number of observations, including identification
of FOXL2 (Baron et al. 2005; Uhlenhaut and Treier
2006; Ottolenghi et al. 2007) as the gene required for
granulosa cell formation (see Fig. 2.2e). A recent study
reports that SOX9 and FOXL2 are indeed highly infor-
mative to identify the testicular and ovarian differenti-
ation lineages in gonads of patients with DSD (Hersmus
et al. 2008a). The presence of SOX9 is associated with
CIS and FOXL2 with gonadoblastoma.

Several candidate genes map within the GBY
region, of which TSPY is one of the most interesting
ones. It stands for testis specific protein on the Y chro-
mosome, which is in fact a multicopy gene (Vogel and
Schmidtke 1998). It has similarities to the DEK/CAN
family of proteins; it interacts with cyclin B1 and is
therefore supposed to be involved in cell cycle regula-
tion. Various splice variants have been reported, which
indeed can be present in type II GCTs. Protein expres-
sion analysis demonstrate that the corresponding pro-
tein is present in spermatogonia during normal
development. The level of protein is increased in CIS
and gonadoblastoma, for which the mechanistic basis
is unknown so far (Lau 1999; Schnieders et al. 1996;
Hildenbrand et al. 1999; Kersemaekers et al. 2005;
Delbridge et al. 2004; Li et al. 2007b). The consistent
aneuploidy of type II GCTs might be related to this. In
fact, the increased level of this protein is used as sup-
portive parameter to distinguish a malignant germ cell
from a germ cell showing delayed maturation. Upon
invasive growth, expression of the gene is mostly lost,

associated with subsequent absence of the protein,
although the Y chromosome can still be retained.
Therefore, this is due to downregulation of expression.
Transfection expression analysis demonstrated that
induction of TSPY in human cells lacking this protein
results in an increase in proliferation, both in vitro and
in vivo. In fact, the cells show a shorter G2 phase of the
cell cycle (Oram et al. 2006). Interestingly, a subse-
quent study shows that a number of the upregulated
genes in the TSPY transfected cells map to the short
arms of chromosome 12. In fact, a correlation between
the level of TSPY and expression of these genes,
including KRAS2 and NANOG, was found only in the
precursor lesion CIS, and not in the invasive tumors
(Li et al. 2007c). This observation nicely fits with the
downregulation of TSPY upon progression of the
tumor towards invasiveness.

Mice lack TSPY. Transgenic animals containing a
human TSPY genomic fragment interestingly show
integration in the Y chromosome, in a tandem repeat
organization, like the organization in the human
genome (Schubert et al. 2003). This is intriguing but
unexplained so far. However, no GCTs were identified,
not at younger or older age. In other words, the simple
overexpression of TSPY in Oct3/4 positive cells is not
enough to generate a type II GCT in the mouse.

2.6.4 Cell of Origin and Markers
of Diagnosis

The presence of the different markers in the precursor
cells of type II GCTs of the testis, known as carcinoma
in situ (CIS) (Skakkebak 1972), testicular intratubular
neoplasia (TIN) (Loy and Dieckmann 1990), and intra-
tubular germ cell neoplasia unclassified (IGCNU)
(Woodward et al. 2004), is supportive to an embryonic
origin. As indicated, the counterpart in dysgenetic
gonads, with a low level of virilization, is known as
gonadoblastoma (Scully 1970). These lesions also con-
tain germ cells showing the same characteristics as CIS
cells. The nonmalignant counterpart is most likely a
PGC or gonocyte. The difference between these two is
only that a gonocyte is a PGC that has arrived in the
genital ridge, after migration from the yolk sac region.
In other words, they only differ in anatomical localiza-
tion. The consistent biallelic expression of imprinted
genes in invasive type II GCTs, as well as CIS, is in
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agreement with this origin (Van Gurp et al. 1994; Szabo
and Mann 1995; Rachmilewitz et al. 1996; Verkerk
et al. 1997; Looijenga et al. 1998; Ross et al. 1999;
Sievers et al. 2005b; Kawakami et al. 2006; Lind et al.
2007). Interestingly, induction of erasement of imprint-
ing in mouse embryonic stem cells results in develop-
ment of a number of hematopoietic and solid cancers,
including a single testicular seminoma (Holm et al.
2005). Although this is a single observation, and the
histology of the tumor is not confirmed independently,
its existence is highly relevant, because it indicates that
an animal model can possibly be generated, and that an
erased pattern of genomic imprinting is required.

During this migratory and early gonadal stage of
germ cell development, the cells are positive for c-KIT,
PLAP, OCT3/4, NANOG, etc., the markers of which are
also found to be expressed in CIS and gonadoblastoma,
as well as seminoma (Oosterhuis and Looijenga 2005;
Rajpert-De Meyts 2006). Normally, upon maturation
from the gonocytes to spermatogonia, these markers are
downregulated, and others, including MAGE-4A, are
initiated (Gashaw et al. 2007; Biermann et al. 2006). In
addition, high throughput expression profiling shows
that CIS cells shows strong overlap with embryonic
stem cells regarding expression profile (Almstrup et al.
2005). This supports the model of an embryonic origin
of type Il GCTs, which is in line with the epidemiologi-
cal observation of the dip in the incidence of this type of
cancer in men who were conceived during World War 11
(Moller 1993; Moller and Skakkebak 1996), as well as
other risk factors. This clearly distinguishes this popula-
tion of cells from the adult stem cell identified of the
spermatogenetic lineage (Hofmann et al. 2005; Chen
et al. 2005; Kanatsu-Shinohara et al. 2006). The alterna-
tive model in which type II GCTs originate from a
pachytene spermatocyte is in disagreement with these
observations (Chaganti and Bosl 1995). Possibly, the
most convincing argument against this latter model is
the fact that patients with various forms of DSD, most of
whom will never develop proper spermatogenesis, not
even spermatogonia, have an increased risk for this type
of cancer. Therefore, it can be concluded that the cell of
origin of type II GCTs is a germ cell blocked in their
PGC/gonocyte stage. This also explains why similar
tumors can be found in the ovary, as well as extrago-
nadal sites. The occurrence of mediastinal type II GCTs
in Klinefelter patients also strongly argues against a
pachytene spermatocyte as cell of origin, as these
patients have no spermatogenesis.

That indeed OCT3/4 has additional diagnostic
value for the detection of CIS is demonstrated by a
recent study. This is a retrospective analysis on testic-
ular biopsies of men for fertility related problems.
None of these was initially diagnosed as having CIS,
although they all in time developed an invasive tumor.
Expert pathology review identified in 50% of the cases
the malignant cells, which were identified in 70%
using immunohistochemistry for OCT3/4 (unpub-
lished observations). The rule of thumb is that every
marker showing a specific pattern of expression in
embryonic germ cells and which becomes negative
upon differentiation will be informative for the diag-
nosis of CIS and gonadoblastoma, as well as semi-
noma. This was recently confirmed for newly identified
markers. Because of the consistency and specificity of
OCT3/4 in staining in the adult testis, there is no need
for identification of additional markers from the diag-
nostic point of view. However, they will be useful in
dissecting the biology of these tumors.

There are two exceptions in which OCT3/4 is not as
informative as would be needed for the diagnosis of
the precursor of type II GCTs. That is in the case of
tissue obtained during the first year of life, and in case
of gonads showing germ cell maturation delay. Under
these conditions, OCT3/4 staining can still be present
in germ cells which have not undergone malignant
transformation. These cells are also positive for TSPY,
as well as SOX17. On the basis of the morphology, as
well as additional criteria, supportive arguments can
be obtained to diagnose or rule out. These criteria are
not easy to apply in routine pathology, and they are not
without any restriction (Cools et al. 2005). For this
purpose, availability of a more informative marker
would be of great clinical diagnostic value in these
patients. A possible marker fulfilling these criteria will
be discussed in the next paragraph.

2.6.5 SCF as Marker for Early Malignant
Germ Cells

As mentioned, SCF is the ligand of ¢-KIT. It is crucial
for proper migration and survival of PGCs. Experiments
in vitro support this model, and indicate that SCF pre-
vents induction of apoptosis by, among others, activa-
tion of the PLLK pathway (De Miguel et al. 2002;
Shivakrupa et al. 2003). Two variants of SCF can be
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generated by Sertoli cells by alternative exon usage.
One is membrane bound and is highly effective in sup-
porting survival of PGCs (Lev et al. 1994; Yan et al.
2000). The soluble form is related to activation of the
Leydig cells present in the stromal compartment of the
testis. Under normal physiological conditions, both
embryonic and adult, no SCF can be identified in
human gonads by immunohistochemistry using a
specific antibody (Stoop et al. 2008). However, it is
consistently present in testis with CIS, but not in case
of the presence of germ cells showing delayed matura-
tion. This is in contrast to OCT3/4 (NANOG and
c-KIT) being present under all these conditions. Upon
invasive growth of the tumor cells, SCF, like c-KIT
(Biermann et al. 2000), is predominantly downregu-
lated although it can be present heterogeneously in
various histological elements. It could be demon-
strated that SCF has a significant additional value to
detect the earliest malignant changes in germ cells
(see Fig. 2.2f). No specific upregulation of gene
expression could be identified using Q-RT-PCR,
although mRNA ISH data indicate that the gene is pre-
dominantly expressed in CIS cells. This suggests the
presence of an autocrine loop, which is in line with
the observation of both c-KIT and SCF in a subpopu-
lation of cells of the embryonal carcinoma cell lines,
while it is found in all cells of the seminoma cell line
TCam-2. Also the effect of inhibition of ¢-KIT sup-
ports an autocrine loop (Goddard et al. 2007). This
observation is both biologically and diagnostically
relevant. It suggests that during the early stages in the
pathogenesis of type Il GCTs, a switch occurs between
a paracrine to an autocrine loop of the SCF and c-KIT
pathway. Upon development of an invasive tumor,
either seminoma or nonseminoma, this mechanism is
overruled, and not under selective pressure anymore
(see Fig. 2.3).

2.6.6 Possibilities for Early
(Noninvasive Diagnosis)

Various attempts have been undertaken to develop a
method for early diagnosis of preferentially the precur-
sor lesions of type II GCTs. This has been on the basis
of their aneuploidy (see below), as well as their protein
expression profiling (Giwercman et al. 1990a, b;
Giwercman 1992; Meng et al. 1998; Hoei-Hansen

et al. 2007). Overall, most studies show rather disap-
pointing results. This is likely related to the heteroge-
neous expression of the markers used, as well as the
selection of patients for screening. A recent study
shows that if OCT3/4 is used as marker for diagnosis,
the majority of patients known to have CIS (80%) can
be identified on the basis of the presence of positive
cells in semen (Dieckmann 2009; van Casteren et al.
2008). Although various questions have to be answered
before this protocol will be applicable in a clinical set-
ting, it was proven that in principle the approach can be
informative, using the optimal marker, protocol, and
selected patient cohort. This will especially be of inter-
est in populations with an increased risk of develop-
ment of testicular type II GCTs, such as those with
infertility, bilateral microlithiasis, and a previous uni-
lateral tumor. A prospective study will be needed to
show the power of the method compared to that of the
surgical biopsy, which is considered as the gold stan-
dard. In addition, the presence of activating c-KIT
mutations in bilateral type II GCTs can also be an
interesting target for clinical implementation although,
as mentioned, the sensitivity of the detection system
might be a limiting factor.

2.6.7 Chromosomal Constitution

Many studies have been performed to investigate the
chromosomal constitution of type II GCTs, including
its precursor lesion (Kraggerud et al. 2002; Oosterhuis
et al. 1989a; Castedo et al. 1989; Samaniego et al.
1990; Skotheim et al. 2001; Summersgill et al. 2001;
von Eyben 2004). In fact, this started with total DNA
content analysis using flow cytometric studies, fol-
lowed by conventional karyotyping and targeted ISH,
and more recently c- and a-CGH as well as single
nucleotide polymorphism (SNP) arrays. Overall, the
different approaches showed the same results; type 11
GCTs are highly aneuploid with specific and charac-
teristic changes. The seminomas and CIS are hyper-
triploid and the nonseminomas hypotriploid. Specific
chromosomal gains and losses are identified, some of
which are suggested to be histology related. The only
recurrent structural imbalance is the gain of the short
arm of chromosome 12, mostly as isochromosomes
(see Table 2.1). Most studies indicate that gain of 12p
is progression related; it occurs when the CIS cells
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become independent for their interaction with Sertoli
cells (Summersgill et al. 2001; Rosenberg et al. 2000).
The presence of additional copies of 12p is indepen-
dent from the histological constitution, as well as ana-
tomical localization. It is interesting that human
embryonic stem cells cultured for an extensive period
of time also show this anomaly (Draper et al. 2003;
Cowan et al. 2004; Li et al. 20006). In spite of many
attempts, there is no single 12p-target gene identified.
A number of genes have been suggested to be relevant,
including KRAS2, NANOG, although the actual proof
is lacking so far.

The X chromosome is gained in the majority of
tumors, for which a link with familial predisposition
has been suggested (see above). The presence of addi-
tional X chromosomes is relevant in the context of
understanding the biology of type II GCTs, including
in the Klinefelter syndrome patients, as well as in
patients with various forms of DSD. Moreover, it has a
molecular diagnostic value (see below).

SNP analysis in type II GCTs demonstrated the
presence of so-called uniparental disomies (Lu et al.
2005). These have been more frequently detected in
nonseminomas than in seminomas. The proposed
explanation is that the latter originates from fusion of
a haploid (postmeiotic) germ cell with a diploid germ
cell, also explaining their consistent peritriploid DNA
content (Oosterhuis et al. 1989b). This hypothesis
is highly unlikely, because these tumors can develop
without the presence of spermatogenesis, as discussed
before. In addition, this pattern of uniparental disomy
has also been found in an ovarian type II GCT
(unpublished observations). The most likely explana-
tion is that the tumor cells undergo significant mitotic
recombination.

Of interest is that currently an integrated analysis of
expression of genes and proteins as well as DNA copy
changes is initiated (Skotheim et al. 2002, 2005, 2003a,
b; Korkola et al. 2005, 2006, 2008; Mclntyre et al.
2004, 2007). Overall, the data suggest a close correla-
tion between the two, in which the expression drives
the chromosomal imbalances or vice versa. For exam-
ple, gain of a specific region of chromosome 17 is
found to be overrepresented in seminoma, which
includes the SOX17 gene (Korkola et al. 2008), which
is characteristic for seminoma (see above). These mod-
els are highly relevant to explain the chromosomal
changes as observed in solid tumors, which likely will
also have clinical impact.

2.6.8 Epigenetic Modification

In spite of a wealth of information about the genomic
make up of type I GCTs, increasing knowledge on the
epigenetic constitution is evolving (Kawakami et al.
2006; Lind et al. 2006, 2007; Peltomaki 1991; Ishii
et al. 2007; Zhang et al. 2005; Honorio et al. 2003;
Smiraglia et al. 2002; Koul et al. 2002; Okamoto and
Kawakami 2007). The role of epigenetics in germ cell
development has been reviewed recently (Biermann
and Steger 2007). Targeted — as well as genome wide
studies demonstrate that overall the seminomas show a
hypomethylated DNA status, in contrast to the various
histological types of nonseminomas. Interestingly, the
supernumerical X chromosomes are inactivated in
nonseminomas by methylation (Looijenga et al. 1997).
This is, like during normal embryogenesis, the result
of the function of the non(protein)-coding XIST gene.
This unique phenomenon in men is correlated with
hypomethylation of the promoter region, which can be
used as molecular target for type II GCTs in men
(Kawakami et al. 2003, 2004). The difference in meth-
ylation status can indeed be demonstrated using
expression profiling for the different forms of the DNA
methyltransferases (see Fig. 2.2g). The DNMTI is
required for maintenance of the methylated status dur-
ing cell division, and previously found to be present in
differentiated form of nonseminomas (Omisanjo et al.
2007), while DNMT3A and B are needed for de novo
methylation (Karpf and Matsui 2005), as happens dur-
ing early embryogenesis. DNMT3L has a role in the
establishment of the pattern of genomic imprinting
(Oakes et al. 2007). Overall, a specific upregulation
is observed in the embryonal carcinomas compared
to the seminomas. Indeed, this is also reflected by
immunohistochemistry using a MC-specific antibody.
Representative examples are shown in Fig. 2.2g. This
pattern of methylation is in accordance to the expected
pattern based on observations during embryogenesis,
i.e., PGCs are hypomethylated and differentiated
derivatives (locally) hypermethylated. In this context,
it is relevant to remember that in vitro culturing may
induce specific changes in DNA methylation, which
may bias the findings made in type II GCT-derived cell
lines. Interestingly, indeed, the TCam-2 cell line, rep-
resentative for seminoma, being hypomethylated,
shows a hypermethylated pattern based on immuno-
histochemistry. Therefore, the observations made in
cell lines must always be verified in in vitro tumors.
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That possibly the hypermethylated pattern of this sem-
inoma cell might have a biological function is sug-
gested by the hypermethylation of chemotherapy
resistant seminomas (see Fig. 2.2h) (unpublished
observation). It remains to be investigated whether this
relates to specific genetic changes in this cell line (see
below). Interestingly, a methylation study was recently
done for the promoter region of OCT3/4. In seminoma
and embryonal carcinoma, the promoter region is pre-
dominantly hypomethylated, in in vitro cell lines as
well as in vivo tumors (De Jong et al. 2007a).
Microdissection of the embryonal carcinoma cells
even demonstrated a complete demethylated pattern.
Upon differentiation of the embryonal carcinoma cells,
OCT3/4 is downregulated in expression, associated
with hypermethylation of the promoter region. Most
likely, this pattern is reflecting the situation in most
genes related to pluripotency, showing the same pat-
tern of expression as OCT3/4, like NANOG.

Histone modification has also been identified as a
significant regulatory element in specification of which
genes will be hypermethylated upon differentiation
from an undifferentiated stem cell. This is related to
the histone H3 methylated at lysine 27 by polycomb
proteins, which is a repressive mark, as well as the
active mark methylated H3K4 (Ohm et al. 2007).
Interestingly, this was indeed found to be the case in
cell lines derived from type II GCTs, i.e., embryonal
carcinomas, in which two additional repressive marks
are identified, being dimethylated H3K9 and trimethy-
lated H3KO9, both associated with DNA hypermethyla-
tion in adult cancers. This is nicely fitting with the
observed pattern of expression of the histone deacety-
lase (HDAC) in these tumors (Omisanjo et al. 2007).
More recently, a related study investigated the expres-
sion of BLIMP-1 and PRMT-5 (unpublished observa-
tions). These proteins are involved in the suppression
of the somatic differentiation program in PGCs/gono-
cytes, related to dimethylated histone H2A and H4
(Ancelin et al. 2006). Knock out of these genes results
in differentiation of mouse PGCs (Hayashi et al. 2007;
Ohinata et al. 2005). Indeed, these proteins and epige-
netic changes are present in embryonic germ cells, as
well as CIS and seminoma, including the representa-
tive cell line TCam-2. As expected, upon formation of
embryonal carcinoma, these proteins are downregu-
lated, and the dimethylated H2A and H4 are removed.
Again, these studies demonstrated the close relation-
ship between normal embryogenesis and type Il GCTs.

It remains a challenge to identify which of the mecha-
nisms are reflecting normal development, and which
are related to the pathogenetic process. For this pur-
pose, investigation of genetic anomalies affecting
genes or pathways might be highly informative.
Therefore, the next section will be related to this
topic.

2.6.9 Mutational Status

Various studies with the goal to identity pathogenetic
mutations have been performed on type II GCTs.
These included a large number of targets, among oth-
ers, NRAS, KRAS-2, and HRAS (Goddard et al. 2007,
Mulder et al. 1989; Ganguly et al. 1990; Ridanpaa
et al. 1993; Przygodzki et al. 1996; Oosterhuis et al.
1997), and BCL10 (van Schothorst et al. 1999;
Kakinuma et al. 2001). Although mutations have
been identified, these seem to be limited in frequency,
with the possible exceptions of ¢c-KIT and KRAS-2
(see above), and more recently BRAF. This latter
proto-oncogene has been shown to be mutated in a
variety of cancers, including melanoma. Interestingly,
the affected pathway is the MEK-pathway, in which
RAS also act. Activating mutations of KRAS and
BRAF are mutually exclusive in type II GCTs. A cor-
relation between BRAF mutation and hypermethyla-
tion of the promoter of hMLHI has been reported
(Imai 2007). hMLH1 is involved in mismatch repair,
and improper function of this protein. Absence of or
mutations in this gene result in microsatellite instabil-
ity (MSI). Indeed, MSI instability has been reported to
be related to treatment resistance (i.p. cisplatin-based)
in multiple studies (Mayer et al. 2002; Devouassoux-
Shisheboran et al. 2001; Velasco et al. 2004, 2007).
However, the exact link between BRAF status, MSI,
and treatment sensitivity of type II GCTs has to be
clarified. For this approach, the TCam-2 cell line might
be a suitable tool.

An overall low mutation frequency is rather excep-
tional for solid cancers, although it seems to be the rule
for type II GCTs. That this is indeed not due to the
preselection of genes under investigation, but an over-
all phenomenon is supported by the results of a high
throughput investigation on the mutation status of the
kinome (Bignell et al. 2006; Greenman et al. 2007).
This might again be related to the embryonic origin of
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the tumors. In fact, embryonic stem cells have a unique
mechanism in which one of the two DNA strands is
kept protected against any form of mutations (Hong
and Stambrook 2004). This protects the DNA from
anomalies to be transmitted to the next generation. The
activation of pluripotency of the germ cell after disrup-
tion of the integrity of the genome, in type I GCTs (see
above), might be related to loss of pluripotency of the
immortal strand. Therefore, the power of the mutation
status analysis in type II GCTs is limited in elucidating
the involvement of various pathogenetic mechanisms
and pathways. However, on the basis of the observa-
tions made, a number of interesting conclusions can be
drawn, especially when different platforms of data are
combined. Besides the already mentioned role of
KRAS?2 and c-KIT, this also accounts for the role of
the TP53 in the pathogenesis of type II GCTs.

2.6.9.1 TP53 and MicroRNAs

One of the intriguing observations is that also TP53 is
hardly mutated in type II GCTs (Guillou et al. 1996;
Moore et al. 2001; Kersemaekers et al. 2002a, b;
Mayer et al. 2003; Emanuel et al. 2000). It is however,
interesting that TP53 target genes have been found to
be frequently hypermethylated in type II GCTs
(Christoph et al. 2007). The absence of TP53 muta-
tions has been a matter of much discussion, especially
because the observations in the supposed mouse
model are counterindicative. The absence of low level
of P53 mutations in type II GCTs is a rare phenome-
non among solid cancers. The mutations found in
TP53 in type I GCTs are predominantly detected in
so-called nongerm cell malignancies (Houldsworth
et al. 1998). These are somatic cancers formed as a
result of progression of a teratomatous element. In
fact, these mimic the mutational status of solid cancer
in adults, including the mutational status of TP53.
The reason for the presence of wild type TP53
remained elusive for a long period of time. The selec-
tive pressure on TP53 to be inactivated in many solid
cancers is related to its function in overruling cellular
senescence upon for example mutation of a proto-
oncogene (Lundberg et al. 2000; Yeager et al. 1998).
Thereby the organism is protected from the forma-
tion of cancers due to single mutations. The explana-
tion for the wild type TP53 status in type II GCTs
was obtained as a result of the expression analysis of

certain miRNAs. MiRNAs are a subgroup of nonpro-
tein-encoding RNA, which interacts with mRNAs to
block translation (Dalmay and Edwards 2006; Mattick
and Makunin 2005; Hall and Russell 2005; Sontheimer
and Carthew 2005). A close link between miRNA and
genetics (Calin and Croce 2006) and epigenetics
(Chuang and Jones 2007) has been indicated. Several
thousands of miRNAs are expected to exist within the
mammalian genome, which underwent an increase in
evolution in the human genome (Wienholds and
Plasterk 2005). It is assumed that about one-third of
the protein-encoding mRNAs are also regulated by
miRNAs. In type II GCTs, a specific pattern of expres-
sion of miRNA has been observed using a high
throughput approach (Gillis et al. 2007). In fact, the
tumors were classified into undifferentiated and dif-
ferentiated components, which indeed support the
model that shows that miRNA are involved in regula-
tion of differentiation. The miRNA cluster 371-373
(mapped to chromosome 19) is specifically expressed
in the seminomas and embryonal carcinomas. As
expected, this set of miRNAs is also expressed in
human embryonic stem cells (Suh et al. 2004). This
cluster of miRNAs was previously found to be able to
mimic the presence of a mutated TP53 in overruling
cellular senescence in a high throughput in vitro
model system (Voorhoeve et al. 2006). Using a unique
series of type II GCTs and cell lines, a good correla-
tion between the level of expression of these miRNAs
and the mutational status of TP53 was identified. The
miRNAs interact with the 3" UTR of the mRNA
encoding the tumor suppressor gene protein LATS-2,
which is involved in the regulation of G1-S transition
in the cell cycle. LATS-2 is indeed a downstream tar-
get of TP53, and inactivation of TP53 results in
absence of LATS-2 protein, thereby overruling cellu-
lar senescence. A role of LATS-2 in polyploidization
has also been suggested (Aylon et al. 2006).
Intriguingly, DND is recently identified to be a regu-
latory element is this process. In brief, the miRNAs
371-373 mimic the effect of mutated TP53 regarding
the interaction with LATS-2. However, this does not
influence the function of TP53 in the DNA damage
response. That miRNAs have a significant role in the
causation and possibly also in differentiation of type
IT GCTs is supported by the observation of the dis-
crepancy between mRNA and protein of E2F1, which
is regulated by the miRNA 17-92 cluster (Novotny
et al. 2007). In addition, two miRNAs (miR-145 and
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324-5p) are highly expressed in seminoma and the
cell line TCam-2, and not in the other histologies,
including cell lines (De Jong et al. 2008b). These
miRNAs are predicted to interact with the mRNA of
SOX2, which is indeed specifically expressed in
embryonal carcinoma and cell lines but not in semi-
noma (see above). It is highly interesting to investi-
gate the involvement of these miRNA in the transition
of CIS/seminoma to embryonal carcinoma, likely
related to the process of activation of pluripotency
(reprogramming), which also occurs during normal
development (see Figs. 2.2a and 2.3). In addition, it
can be related to the mechanism of suppression of the
somatic expression program (omnipotency), which is
essential for germ cells.

The role of miRNAs in the pathogenesis of type II
GCTs opens an exciting area of research, in which
indeed the interactive analysis of miRNA and mRNA
expression, DNA copy number changes, and protein
expression will be highly informative and also useful for
understanding treatment sensitivity (Duale et al. 2007).
Currently, a number of histological subtype-specific
miRNAs have been, besides the above mentioned exam-
ples. These miRNA may give insight into the regulatory
elements involved in the pluripotency of type II GCTs,
and may be of diagnostic and therapeutic relevance. To
facilitate the selection of in vitro and/or in vivo models
for type II (and also I and IIT) GCTs, the following para-
graph gives an update on the existing models.

2.6.10 Available Cell Lines and Models

Till recently, only cell lines representative for nonsemi-
nomas, i.p. embryonal carcinomas, were available.
These have been proven to be of value for many differ-
ent studies. The most frequently used cell lines are
NT2, Tera-1, 833KE, NCCIT, and 2102Ep. It must be
kept in mind that NCCIT originates from a primary
extragonadal type II GCT, and lacks a functional P53
(Voorhoeve et al. 2006; Damjanov et al. 1993). The
JKT-1 cell line proposed to be representative for semi-
noma has been proven to be unrelated and therefore not
informative in the context of type II GCTs (Jo et al.
1999; Kinugawa et al. 1998; Eckert et al. 2007; de Jong
et al. 2007b). Therefore, the data published are not rel-
evant for GCTs. In contrast, the TCam-2 cell line is of
interest. This cell line has indeed most characteristics

of seminoma (Goddard et al. 2007; Eckert et al. 2007,
de Jong et al. 2007b), although some nonseminoma-
tous features also are found (to be published else-
where). One of the intriguing observations is that this
cell line has a mutated BRAF, which is rare in type 11
GCTs (see above). This probably explains the success
in generating this cell line. One of the other type
II-derived cell lines, i.e., 833KE, contains a KRAS?2
mutation. In spite of this possible limitation, for sure
the TCam-2 cell line will be valuable for investigation
of pathogenetic mechanisms related to the develop-
ment of type Il GCTs, i.p. transition from a seminoma-
tous to a nonseminomatous phenotype. It has to be kept
in mind that cell lines have a high incidence of mutated
proto-oncogenes compared to an unselected series of
type II GCTs of patients. This might be due to an
enhanced in vitro survival caused by these mutations.

2.6.11 Pathogenetic Model

On the basis of the different levels of information
described, a comprehensive model for the pathogene-
sis of type I GCTs can be proposed (Fig. 2.3). For sure
it does not contain all available information, but it
reflects the most interesting observations, and demon-
strates the close link with mechanisms involved in nor-
mal development.

2.6.11.1 Concluding Points Type Il GCTs

PGC/gonocyte origin

Various identified risk factors, mostly related to
germ cell maturation delay

Histologically composed of seminoma or non-
seminoma

Nonseminoma are omnipotent

OCT3/4 is informative diagnostic marker in adult
testis

Seminoma is characterized by OCT3/4+, SOX2-,
SOX17 +

Embryonal carcinoma is characterized by OCT3/4+,
SOX2+, SOX17-

Predominantly diagnosed in adolescent and young
adults



52

L.H.J. Looijenga

Consistently aneuploid with multiple structural
anomalies

Gain of short arm of chromosome 12 is characteristic

Mutations are rarely found

TSPY is a candidate gene for the Y-involvement

Multiple representative cell lines available, includ-
ing a seminoma cell line

Possible model for suppression of somatic differen-
tiation program

No representative animal model identified

2.7 Overall Conclusions

Different types of human GCT can be recognized; the
subclassification proposed here allows a better under-
standing of the pathogenesis of this type of cancer,
regarding cell of origin as well as mechanisms of pro-
gression. Overall, GCTs mimic normal germ cell
development to a certain extent, which explains both
the biology and clinical behavior of the subtypes.
Specific markers for diagnosis for the various histo-
logical elements have been identified, on the basis of
targeted- as well as high throughput approaches. These
give insight into the fundamental mechanisms involved
in proliferation, differentiation, and apoptosis, also
during normal development. An integrated analysis of
the different data sets will allow a high level of under-
standing of the processes involved. On the basis of
these observations, novel approaches are under devel-
opment, in the field of early (noninvasive) diagnosis,
treatment, and generation of informative in vitro and
in vivo model systems.
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