
Chapter 2
Multi-domain Hierarchical Free-Sketch
Recognition Using Graphical Models

Christine Alvarado

2.1 Introduction

Consider the following physics problem:

An 80-kg person is standing on the edge of a 3.6-m cliff. A 3-meter rope is attached to a
point directly above his head, and on the end of the rope is a 40-kg medicine ball. The ball
swings down and knocks the person off the cliff. Fortunately, there is a (padded) cart at the
bottom. How far away from the cliff must the cart be placed in order to catch the person?

The above problem illustrates the central role of pictures and diagrams in under-
standing. It is almost impossible to read this problem without picturing the scenario
in your head, and, for most people, the diagram is essential in solving the problem.

Because of the power of diagrams in thinking and design [8, 12, 56], people rely
heavily on hand-sketched diagrams as a quick, lightweight way to put their ideas on
paper and help them visualize solutions to their problems. Students, designers, sci-
entists and engineers use sketches in a wide variety of domains, from physical (e.g.,
mechanical and electrical engineering designs) to conceptual (e.g., organizational
charts and software diagrams).

Diagrams drawn on paper are just static pictures, but when drawn on a tablet
computer, diagrams have the potential to be interpreted by the computer, and then
made interactive. With the rise of pen-based technologies, the number of sketch-
based computer tools is increasing. Sketch recognition-based computer systems
have been developed for a variety of domains including (but not limited to) me-
chanical engineering [2, 21, 51], electrical engineering [16], user interface design
[9, 34, 42], military course of action diagrams [11, 13], mathematical equations
[33, 41], physics [39], musical notation [7, 14], software design [24, 36], note tak-
ing (Microsoft OneNote), and image editing [46]. In addition, a few multi-domain
recognition toolkits have been proposed [3, 25, 35, 40].

C. Alvarado (�)
Harvey Mudd College, 301 Platt Blvd., Claremont, CA, USA
e-mail: alvarado@cs.hmc.edu

J. Jorge, F. Samavati (eds.), Sketch-based Interfaces and Modeling,
DOI 10.1007/978-1-84882-812-4_2, © Springer-Verlag London Limited 2011

19

mailto:alvarado@cs.hmc.edu
http://dx.doi.org/10.1007/978-1-84882-812-4_2

20 C. Alvarado

Fig. 2.1 A diagram drawn by
a student in a digital design
class (stroke thickness altered
for illustration)

The problem of two-dimensional sketch recognition is to parse the user’s strokes
to determine the best set of known patterns to describe the input. This process in-
volves solving two interdependent subproblems: stroke segmentation and symbol
recognition. Stroke segmentation (or just segmentation) is the process of determin-
ing which strokes should be grouped to form a single symbol. Symbol recognition
is the process of determining what symbol a given set of strokes represents.

Despite the growing number of systems, this two-dimensional parsing problem
remains a challenging problem for a real-time system. Sketched symbols rarely
occur in their canonical form: both noise in the sketch and legal symbol varia-
tions make individual symbols difficult to recognize. Furthermore, segmentation and
symbol recognition are inherently intertwined. In the sketch in Fig. 2.1, if the system
could correctly group the three bold strokes in this sketch, it likely could identify
those strokes as an XOR gate using a standard pattern matching technique. Un-
fortunately, simple spatial and temporal grouping approaches do not work: the three
strokes that form the XOR gate are not all touching each other, but they are touching
the input and output wires. If the computer somehow can find the correct grouping, it
probably will be able to match the strokes to a shape in its library. However, naïvely
trying all combinations of stroke groups is prohibitively time-consuming.

Researchers have employed different techniques to cope with these challenges.
Some of the systems listed above perform only limited recognition by design. Scan-
Scribe, for example, uses perceptual guidelines to support image and text editing but
does not attempt to recognize the user’s drawing [46]. Similarly, the sketch-based
DENIM system supports the design of web pages but recognizes very little of the
user’s sketch [42]. Systems of this sort are powerful for their intended tasks, but they
do not support a the creative sketch-based design process in more complex domains.

Other recognition systems place restrictions on the user’s drawing style in order
to make recognition easier. We list four common drawing style restrictions that ad-
dress these challenges, ordered from most restrictive to least restrictive, and give
examples of systems that use each:

1. Users must draw each symbol using a pre-specified pattern or gesture (e.g., Palm
Graffiti®, ChemPad [54]).

2. Users must trigger recognition after each symbol (or pause notably between sym-
bols) (e.g., HHreco [28], QuickSet [11]).

3. Users must draw each symbol using temporally contiguous strokes (e.g., AC-
SPARC [16]).

2 Multi-domain Hierarchical Free-Sketch Recognition Using Graphical Models 21

4. Some systems place few restrictions on the way users draw, but rely on user
assistance or specific domain assumptions to aid recognition. To trigger recog-
nition in MathPad2, for example, the user must circle pieces of the sketch [39].
The approach presented by Kara and Stahovich performs robust recognition of
feedback control system diagrams, but relies on the assumption that the diagram
consists of a number of shapes linked by arrows, which is not the case in many
other domains [31].

While these previous systems have proven useful for their respective tasks, we aim
to create a general sketch recognition system that does not rely on the drawing style
assumptions of any one domain. This chapter describes a general-purpose recog-
nition engine that can be applied to a number of symbolic domains by inputting
the shapes and commonly occurring combinations of shapes using a hierarchical
shape description language, described below. Based on these descriptions, we use a
constraint-based approach to recognition, evaluating potential higher-level interpre-
tations for the user’s strokes by evaluating their subcomponents and the constraints
between them. To achieve recognition robustness and efficiency, we use a com-
bined bottom–up and top–down recognition algorithm that generates the most likely
(possibly incomplete) interpretations first (bottom–up) and then actively seeks out
lower-level parts of those interpretations that are still missing (top–down).

This chapter presents a synthesis of work presented in [3] and [4], as well as
recent work that builds on this prior work. We begin by exploring the challenges
of recognizing real-world sketches. Next, we present our approach to recognition,
including how we represent knowledge in our system, how we manage uncertainty,
and our method of searching for possible interpretations of the user’s sketch. Next
we analyze our system’s performance on real data in two domains. We conclude with
a discussion of the major remaining challenge for multi-domain sketch recognition
revealed by our evaluation: the problem of efficient and reliable sketch segmenta-
tion. We present an emerging technique that attempts to solve this problem.

2.2 The Challenges of Free-Sketch Recognition

Like handwriting and speech understanding, sketch understanding is easy for hu-
mans, but difficult for computers. We begin by exploring the inherent challenges of
the task.

Figure 2.2 shows the beginning of a sketch of a family tree, with the strokes
labeled in the order in which they were drawn. The symbols in this domain are
given in Fig. 2.3. This sketch is representative of drawing patterns found in real-
world data [5], but it has been redrawn to illustrate a number of challenges using a
single example. The user started by drawing a mother and a father, then drew three
sons. He linked the mother to the sons by first drawing the shafts of each arrow and
then drawing the arrowheads. (In our family tree diagrams, each parent is linked to
each child with an arrow.) He will likely continue the drawing by linking the father
to the children with arrows and linking the two parents with a line.

22 C. Alvarado

Fig. 2.2 A partial sketch of a
family tree

Fig. 2.3 The symbols in the family tree domain

Although relatively simple, this drawing presents many challenges for sketch
recognition. The first challenge illustrated in Fig. 2.2 is the incremental nature of the
sketch process. Incremental sketch recognition allows the computer to seamlessly
interpret a sketch as it is drawn and keeps the user from having to specify when the
sketch is complete. To recognize a potentially incomplete sketch, a computer system
must know when to recognize a piece of the sketch and when to wait for more
information. For example, Stroke 1 can be recognized immediately as a female, but
Stroke 6 cannot be recognized without Stroke 7.

The second challenge is that many of the shapes in Fig. 2.2 are visually messy.
For example, the center arrowhead (Stroke 11) looks more like an arc than two
lines. Next, the stroke used to draw the leftmost quadrilateral (Stroke 3) looks like
it is composed of five lines—the top of the quadrilateral has a bend and could be
reasonably divided into two lines by a stroke parser. Finally, the lines in the right-
most quadrilateral (Strokes 6 and 7) obviously do not touch in the top-left corner.

The third issue is segmentation: It is difficult to know which strokes are part of
which shapes. The shapes in this drawing are not clearly spatially segmented, and
naïvely trying different combinations of strokes is prohibitively time-consuming.
There are also some inherent ambiguities in how to segment the strokes. For ex-
ample, lines in our domain indicate marriage, but not every line is a marriage-link.
The shaft of the leftmost arrow (Stroke 8) might also have been interpreted as a
marriage-link between the female (Stroke 1) and the leftmost male (Stroke 3). In
this case, the head of that arrow (Stroke 12) could have been interpreted as a part
of the drawing that is not yet complete (e.g., the beginning of an arrow from the
leftmost quadrilateral (Stroke 3) to the top quadrilateral (Stroke 2)).

2 Multi-domain Hierarchical Free-Sketch Recognition Using Graphical Models 23

Finally, how shapes are drawn can also present challenges to interpretation. The
head of the right-most arrow (part of Stroke 10) is actually made of three lines,
two of which are meant to overlap to form one side of the arrowhead. In order to
recognize the arrow, the system must know how to collapse those two lines into one,
even though they do not actually overlap. Another challenge arises because the same
shape may not always be drawn in the same way. For example, the arrows on the
left (Strokes 8 and 12, and Strokes 9 and 11) were drawn differently from the one
on the right (Stroke 10) in that the user first drew the shaft with one stroke and then
drew the head with another. This variation in drawing style presents a challenge for
segmentation and recognition because a system cannot know how many strokes will
be used to draw each object, nor the order in which the parts of a shape will appear.

Many of the difficulties described in the example above arise from the messy
input and visual ambiguity in the sketch. It is the context surrounding the messy or
ambiguous parts of the drawing that allows humans to interpret these parts correctly.
We found that context also can be used to help our system recover from low-level
interpretation errors and correctly identify ambiguous pieces of the sketch. Context
has been used to aid recognition in speech recognition systems; it has been the sub-
ject of recent research in computer vision [52, 55] and has been used to some extent
in previous sketch understanding systems [2, 16, 22, 42, 49, 50]. In the work pre-
sented here, we formalize the notion of context suggested by previous sketch recog-
nition systems. This formalization improves recognition of freely-drawn sketches
using a general engine that can be applied to a variety of domains.

2.3 Knowledge Representation

The goal of any recognition system is to match its input against an internal repre-
sentation of a shape or set of shapes and identify the best match or matches (if any)
for the given input. However, how each system represents the shape or shapes to be
recognized (and consequently how each system matches the input to this internal
representation) varies from system to system. For example, one system might repre-
sent each shape as a bit-mapped image template of the canonical form of that shape.
Then, to perform recognition, that system would apply a series of legal transforma-
tions to the input data (e.g., rotation, scaling) to determine whether or not the pixels
in the input can be made to line up with the pixels in the template. In contrast, a
different system might represent each shape not as an image but as a collection of
features extracted from the shapes. Examples of potential features include the ratio
between the height and width of the bounding box of the shape, the total length
of the strokes in the shape relative to the size of the bounding box, the number of
corners in the shape, etc. Recognition in this system would then extract the same
features from the input data and determine whether or not the features extracted
from the input data are close enough to the features stored for each shape.

While many different representations can be used to perform recognition, the
choice of internal shape representation affects the recognition task difficulty. In the

24 C. Alvarado

example above, recognition using the feature-based approach is more straightfor-
ward than the template-matching approach as it involves only a relatively small
number of easy to calculate features rather than multiple transformations of the
whole input. However, depending on the shapes in the domain, it may be extremely
difficult to devise a set of features that reliably separates one shape from another.

Our system represents symbols to be recognized using a probabilistic, hierar-
chical description language. In choosing our representation, we considered several
desired functionalities of our recognition system. First, the system should be exten-
sible to new domains, requiring few training examples. Second, the system should
be able to distinguish between legal and illegal shape transformations when per-
forming recognition. Legal transformations include not only rotation, translation
and scaling but also some non-rigid shape transformations. For example, the angle
between a line in the head of an arrow and the shaft may range from about 10 degrees
to about 80 degrees, but an angle greater than 90 degrees is not acceptable. Third,
we would like to use this recognition system to compare various techniques for pro-
viding recognition feedback to the user, so the system should be able to recognize
the sketch as the user draws to allow the system to potentially provide recognition
feedback at any point in the drawing process. Finally, the system should be able to
cope with the noise inherent in hand-drawn diagrams (e.g., lines that are not really
straight, corners that do not actually meet, etc.).

This section describes our hierarchical description language and discusses how
this choice of representation allowed us to construct a system that meets the require-
ments above. We begin by introducing the deterministic properties of the language,
then discuss how uncertainty is incorporated into the descriptions. Finally, we dis-
cuss the advantages and disadvantages of this choice of representation.

2.3.1 Hierarchical Shape Descriptions

Each shape in the domain to be recognized is described using a hierarchical de-
scription language, called LADDER, developed by Hammond and Davis [25]. We
introduce the language through examples from the family tree and circuit domains.

We refer to any pattern recognizable in a given domain as a shape. Compound
shapes are those composed of subshapes. Compound shapes must be non-recursive.
Describing a compound shape involves specifying its subshapes and any necessary
constraints between those subshapes. As an example, the description of an arrow is
given in Fig. 2.4. The arrow has three subshapes—the line that is the shaft and the
two lines that combine to make the head. The constraints specify the relative size,
position and orientation necessary for these three lines to form an arrow shape (as
opposed to just being three arbitrary lines). Once a shape has been defined, other
shapes may use that shape in their descriptions. For example, the child-link symbol
in the family tree domain (Fig. 2.5) and the current source symbol in the circuit
domain (Fig. 2.6) both use an arrow as a subshape.

Shapes that cannot be broken down into subshapes are called primitive shapes.
The set of primitive shapes includes free-form strokes, lines, arcs and ellipses.

2 Multi-domain Hierarchical Free-Sketch Recognition Using Graphical Models 25

Fig. 2.4 The description of
the shape “arrow.” Once
defined, this shape can be
used in descriptions of
domain-specific shapes, as in
Figs. 2.5 and 2.6

Fig. 2.5 Descriptions of
several domain shapes
(Female, Male and
Child-Link) and one domain
pattern (Mother–Son) in the
family tree domain

Although primitive shapes cannot be decomposed into subshapes, they may have
named subcomponents that can be used when describing other shapes, e.g., the end-
points of a line, p1 and p2, used in Fig. 2.4.

Domain shapes are shapes that have semantic meaning in a particular domain.
Child-link and current-source are both domain shapes, but arrow and line are not
because they are not specific to any one domain. Domain patterns are combinations
of domain shapes that are likely to occur, for example the child-link pointing from
a female to a male, indicating a relationship between mother and son in Fig. 2.5.
Compound shape descriptions with no constraints (e.g., the child-link description)
are used to rename a generic geometric shape (e.g., the arrow) as a domain shape so
that domain-specific semantics may be associated with the shape.

26 C. Alvarado

Fig. 2.6 The description of a
Current Source from the
circuit domain

2.3.2 Handling Noise in the Drawing

The system’s goal in recognition is to choose the best set of domain shapes for
a given set of strokes. While this task appears to be straightforward, Sect. 2.2 il-
lustrated that ambiguity in the drawing can make recognition more difficult. Here,
we describe the language constructs that help the system cope with the inevitable
noise and ambiguities in the drawing. We discuss two different types of variation
supported by our representation: signal-level noise and description-level variation.

2.3.2.1 Signal-Level Noise: Objective vs. Subjective Measures

Shape descriptions specify the subshapes and constraints needed to form a higher-
level shape; however, people rarely draw shapes perfectly or constraints that hold
exactly. For example, although a user intends to draw two parallel lines, it is unlikely
that these lines will be exactly parallel. We call this type of variation signal-level
noise.

Because of signal-level noise, low-level shape and constraint interpretations must
be based both on the data and on the context in which that shape or constraint ap-
pears. Consider whether or not the user intended for the two bold lines in each
drawing in Fig. 2.7 to connect. In Figs. 2.7(a) and (b), the bold lines are identically
spaced, but the context surrounding them indicates that in Fig. 2.7(b) the user in-
tended for them to connect, while in Fig. 2.7(a) the user did not. On the other hand,
the stroke information should not be ignored. The thin lines in Figs. 2.7(b) and (c)
are identical, but the distance between the endpoints of the bold lines in these fig-
ures indicate that the these lines are intended to connect in Fig. 2.7(b) but not in
Fig. 2.7(c).

For each low-level shape and constraint we identify an objectively measurable
property that corresponds to that shape or constraint. For example, the property re-
lated to the constraint coincident is the distance between the two points in question
normalized by the length of the lines containing the points in question. This objec-
tively measurable property allows the system to separate the information provided
by the stroke data from the information provided by the surrounding context to de-
termine whether or not the constraint actually holds. Section 2.5 discusses precisely
how these low-level measurements and the contextual data are combined.

2 Multi-domain Hierarchical Free-Sketch Recognition Using Graphical Models 27

Fig. 2.7 The importance of both data and context in determining whether or not the bold lines
were intended to connect

Fig. 2.8 The ground symbol
from the Circuit Diagram
domain

2.3.2.2 Description-Level Variation: Optional Components and Constraints

All of the shapes considered so far have been modeled using a fixed number of sub-
shapes and a set of required constraints between those subshapes. These descriptions
signify that, when a user draws these symbols, she should draw all of the subparts
specified.

In contrast, some shapes have subcomponents that can be omitted legally when
they are drawn. For example, consider the ground symbol described in Fig. 2.8. The
user may draw up to six horizontal lines, but three of these lines optionally may be
omitted. These three lines are flagged as optional in the shape description. We call
this type of variation description-level variation.

Constraints may also be flagged as optional, indicating that they often hold, but
are not required in the description of a symbol. For example, we could define the
domain shape wire as having the single subshape line and the optional constraint
that the line is horizontal or vertical. This constraint is not strictly required, as wires
may be drawn diagonally, but they are often drawn either horizontally or vertically.

28 C. Alvarado

Fig. 2.9 Battery (left) and ground (right) symbols from the Circuit Diagram domain. Note that the
battery symbol is a subset of the ground symbol

Constraints pertaining to optional components are considered to be required if the
optional component is present unless they are explicitly flagged as optional.

Understanding the difference between signal-level noise and description-level
variation is central to understanding our representation of uncertainty. Signal-level
noise is distinguished from description-level variation by considering the user’s in-
tent when she draws a symbol. For example, in a ground symbol the base line should
be perpendicular to line l1. In a given drawing, the angle between those lines may
actually be far from 90 degrees due to signal-level noise (which might be caused
by the user’s sloppiness), but the lines are still intended to be perpendicular. On the
other hand, the ground symbol may not contain line l6, not because the user was
being sloppy, but because the user did not intend to include it when drawing the
symbol. We discuss how we model each variation in Sect. 2.5.

2.3.3 Strengths and Limitations

We chose this symbolic, hierarchical representation based on the recognition system
guidelines presented in the first part of this section. Here, we consider how this re-
presentation supports the creation of a multi-domain free-sketch recognition system.
As every representation choice has trade-offs, we also consider the limitations of this
approach and briefly discuss how these limitations can be addressed.

The first requirement was that our system must be extensible to new domains,
requiring few training examples. To extend the system to a new domain, a user must
simply describe the domain shapes and patterns for the new domain. Because the
system can use the same hierarchical recognition process, it does not need to be
trained with a large number of examples for each new shape. Furthermore, basic
geometric shapes can be defined once and reused in a number of domains.

The second requirement was that our system must accept legal non-rigid trans-
formations of sketched symbols without accepting illegal transformations. This re-
quirement is handled by the fact that constraints can be defined to accept a wide
range of relationships between shapes. For example, acuteAngle refers to any an-
gle less than 90 degrees. Furthermore, only constraints explicitly stated in the shape
definition are verified. Constraints that are not specified may vary without affecting
the system’s interpretation of the shape. For example, the definition of a quadrilat-
eral would not constrain the relative lengths of the lines or the angles between those
lines, leaving the system free to interpret any set of four correctly connected lines
as a quadrilateral.

2 Multi-domain Hierarchical Free-Sketch Recognition Using Graphical Models 29

The third requirement was that the system be able to recognize a sketch as it is
being drawn. To support this goal, our representation in terms of a shape’s subcom-
ponents allows the system to detect when it has seen only some of the subcompo-
nents of a given shape. Using these partial interpretations, the system can decide
which interpretations are likely complete and which might still be in the process
of being drawn. This capability is particularly important when shape descriptions
overlap, as in the battery and the ground symbol in the circuit domain (Fig. 2.9).
When the user draws what could look like a battery or part of a ground symbol, the
system can detect the partial ground interpretation and wait until the user has drawn
more strokes to give its final interpretation instead of immediately interpreting the
strokes as a battery.

The final requirement was that our system must deal with the noise in hand-drawn
diagrams. Our representation allows us to handle signal-level noise by separating
low-level objective measurements from judgements about whether or not constraints
hold.

Although our representation satisfies the above requirements, it also imposes
some restrictions. First, even with a well designed language, specifying shape de-
scriptions may be difficult or time-consuming. Others have developed systems to
learn shape descriptions from few examples. In work by Vesselova and Davis [57],
as the user draws a shape, the learning system parses the user’s strokes into low level
components such as lines, arcs, and ellipses. The learner then calculates the existing
constraints between these components and uses perceptual cues to deduce which
constraints are most important the shape description. Once the system has learned a
shape (e.g., a rectangle) it can then use that shape in its description of other shapes
(e.g., a house). Hammond and Davis extended this work with an interactive system
that helps users debug shape descriptions generating and displaying “near-miss” ex-
amples (i.e. shape patterns that vary only slightly from the current description) [27].
The output of both systems is a description of a domain shape in the visual language.

Second, even if we could build a system to learn shape descriptions, some shapes
may be difficult or impossible to describe in terms of any simple low-level com-
ponents or constraints. Those domains with free-form shapes, such as architecture,
may have many shapes that cannot be easily described. Our representation is appro-
priate only for domains with highly structured symbols.

Finally, using this representation it is difficult to represent text or unrecognized
strokes. This limitation must be addressed in the recognition system itself. The sys-
tem should be capable of detecting text or unrecognized strokes and processing them
using a different recognition technique or leaving them as unrecognized. Separating
text from diagrams is a challenging problem that we do not address here, although
recent approaches have proven quite successful at this task [6, 58].

2.4 Recognition Overview

As described above, a core challenge in two-dimensional sketch recognition is the
problem of simultaneous segmentation and symbol recognition. Low-level inter-

30 C. Alvarado

pretations potentially can help guide the search for possible higher-level interpre-
tations; for example, if the system detects two connected lines, it can first try to
match a quadrilateral whose corner lines up with the connection between the lines.
However, noise in the input makes it impossible for the system to recognize low-
level shapes with certainty or to be sure whether or not constraints hold. Low-level
misinterpretations cause higher-level interpretations to fail as well. Trying all possi-
ble interpretations of the user’s strokes guarantees that an interpretation will not be
missed, but it is infeasible due to the exponential number of possible interpretations.

To solve this problem we use a combined bottom–up and top–down recognition
algorithm that generates the most likely interpretations first (bottom–up) and then
actively seeks out parts of those interpretations that are still missing (top–down).
Our approach uses a novel application of dynamically constructed Bayesian net-
works to evaluate partial interpretation hypotheses and then expands the hypothesis
space by exploring the most likely interpretations first. The system does not have
to try all combinations of all interpretations, but can focus on those interpretations
that contain at least a subset of easily-recognizable subshapes and can recover any
low-level subshapes that may have been mis-recognized.

We use a two-stage generate-and-test method to explore possible interpretations
for the user’s strokes. In the first stage, the system generates a number of hypotheses,
or possible interpretations for the user’s strokes, based on the shape descriptions
described in Sect. 2.3. We refer to each shape description as a template with one
slot for each subpart. A shape hypothesis is a template with an associated mapping
between slots and strokes. Similarly, a constraint hypothesis is a proposed constraint
on one or more of the user’s strokes. A partial hypothesis is a hypothesis in which
one or more slots are not bound to strokes. Our method of exploring the space of
possible interpretations depends on our ability to assess both complete and partial
hypotheses for the user’s strokes. Section 2.5 describes our hypothesis evaluation
technique; Sect. 2.6 describes how these hypotheses are generated.

2.5 Hypothesis Evaluation

We evaluate our shape hypotheses using dynamically constructed Bayesian net-
works specifically targeted to the task of constraint-based recognition. Our frame-
work is closely related to previously proposed frameworks ([32, 37, 44]) but it was
designed to handle the specific problems presented above that arise in the recogni-
tion task. Our method offers two advantages over previous constraint-based recogni-
tion approaches (e.g., [15, 20, 26]). First, missing data can be treated as unobserved
nodes in the network when the system assesses likely hypotheses for the strokes that
have been observed thus far. This allows our system to evaluate partial hypotheses
(e.g., an arrow with no shaft) in order to interpret drawings as they develop, and to
allow the strength of partial hypotheses to guide the interpretation of new strokes as
they are processed. Second, the system’s belief in a given hypothesis can be influ-
enced both by the stroke data (through the node’s children) and the context in which
those shapes appear (through the node’s parents), allowing the system to cope with
noise in the drawing.

2 Multi-domain Hierarchical Free-Sketch Recognition Using Graphical Models 31

2.5.1 Dynamically Constructed Graphical Models

Time-based graphical models, including Hidden Markov Models (HMMs) and Dy-
namic Bayesian Networks (DBNs), have been applied successfully to time-series
data in tasks such as speech understanding. To the extent that stroke order is pre-
dictable, HMMs and DBNs may be applied to sketch understanding (see [47] for one
approach). Ultimately, however, sketch understanding is different because we must
model shapes based on two-dimensional constraints (e.g., intersects, touches) rather
than on temporal constraints (i.e., follows), and because our models cannot simply
unroll in time as data arrive (we cannot necessarily predict the order in which the
user will draw the strokes, and things drawn previously can be changed). Therefore,
our network represents spatial relationships rather than temporal relationships.

It is not difficult to use Bayesian networks to model spatial relationships. The
difficult part of using Bayesian networks for sketch understanding is that they are
traditionally used to model static domains in which the variables and relationships
between those variables are known in advance. Static networks are not suitable for
the task of sketch recognition because we cannot predict a priori the number of
strokes or symbols the user will draw in a given sketch. In fact, there are many
tasks in which the possible number of objects and relationships may not be modeled
a priori. For example, when reasoning about military activity, the number of military
units and their locations cannot be known in advance. For such tasks, models to rea-
son about specific problem instances (e.g., a particular sketch or a particular military
confrontation) must be dynamically constructed in response to a given input. This
problem is known as the task of knowledge-based model construction (KBMC).

A number of researchers have proposed models for the dynamic creation of
Bayesian networks for KBMC. Early approaches focused on generating Bayesian
networks from probabilistic knowledge bases [18, 19, 23, 45]. A recently proposed
representation, called Network Fragments, represents generic template knowledge
directly as Bayesian network fragments that can be instantiated and linked to-
gether at run-time [37]. Finally, Koller et al. have developed a number of a num-
ber of object-oriented frameworks including Object-Oriented Bayesian Networks
(OOBNs) [32, 44] and Probabilistic Relational Models (PRMs) [17]. These models
represent knowledge in terms of relationships among objects and can be instantiated
dynamically in response to the number of objects in a particular situation.

Although the above frameworks are powerful, they are not directly suitable for
sketch recognition because they are too general in some respects and too specialized
in others. First, with this type of general model, it is a challenge simply to decide
how to frame our recognition task in terms of objects, network fragments, or log-
ical statements. Second, because these models are general, they do not make any
assumptions about how the network will be instantiated. Because of the size of the
networks potentially generated for our task, it is sometimes desirable to generate
only part of a complete network, or to prune nodes from the network. In reasoning
about nodes that are in the network, we must account for the fact that the network
may not be fully generated or relevant information may have been pruned from the
network. Finally, these models are too specific in that they have been optimized for

32 C. Alvarado

Fig. 2.10 A single current source hypothesis (CS1) and associated lower-level hypotheses. Shape
descriptions for the arrow and current source (with labeled subshapes) are given in Figs. 2.6 and 2.4

responding to specific queries, for example, “What is the probability that a particu-
lar battery in our military force has been hit?” In contrast, our model must provide
probabilities for a full set of possible interpretations of the user’s strokes.

2.5.2 Shape Fragments: Evaluating a Single Hypothesis

Briefly, Bayesian networks consist of two parts: a Directed Acyclic Graph that en-
codes which factors influence one another, and a set of Conditional Probability Dis-
tributions which specify how these factors influence one another.1 Each node in the
graph represents something to be measured, and a link between two nodes indicates
that the value of one node is directly dependent on the value of the other. Each
node contains a conditional probability function (CPF), represented as a conditional
probability table (CPT) for discrete variables, specifying how it is influenced by its
parents.

To introduce our Bayesian network model, we begin by considering how to evalu-
ate the strength of a single current source (CS) hypothesis for the stokes in Fig. 2.10.
The description of a current source symbol is given in Fig. 2.6. Based on the hierar-
chical nature of the shape descriptions, we use a hierarchical method of hypothesis
evaluation. Determining the strength of a particular current source hypothesis is a

1We provide enough background on Bayesian networks to give the reader a high-level understand-
ing of our model. To understand the details, those unfamiliar with Bayesian networks are referred
to [10] for an intuitive introduction and [30] for more details.

2 Multi-domain Hierarchical Free-Sketch Recognition Using Graphical Models 33

matter of determining the strengths of its corresponding lower-level shape and con-
straint hypotheses. A particular current source hypothesis, CS1, specifies a mapping
between the subparts in the current source description and the user’s strokes via
lower-level hypotheses for the user’s strokes (Fig. 2.10). E1 is an ellipse hypothesis
for s1, A1 is an arrow hypothesis involving strokes s2, s3 and s4 (through its line hy-
potheses), and C1 is a constraint hypothesis that an ellipse fit for stroke s1 contains
strokes s2, s3, and s4. A1 is further broken down into three line hypotheses (L1, L2
and L3) and six constraint hypotheses (C2, . . . ,C7) according to the description of
the arrow (Fig. 2.4). Thus, determining the strength of hypothesis CS1 can be trans-
formed into the problem of determining the strength of a number of lower-level
shape and constraint hypotheses.

2.5.2.1 Network Structure

The Bayesian network for this recognition task is shown in Fig. 2.11. There is one
node in the network for each hypothesis described above, and each of these nodes
represents a Boolean random variable that reflects whether or not the corresponding
hypothesis is correct. The nodes labeled O1, . . . ,O11 represent measurements of
the stroke data that correspond to the constraint or shape to which they are linked.
The variables corresponding to these nodes have positive real numbered values. For
example, the variable O2 is a measurement of the squared error between the stroke
s1 and the best fit ellipse to that stroke. The value of O2 is a real number between
0 and the maximum possible error between any stroke and an ellipse fit to that
stroke. The boxes labeled s1, . . . , s4 are not part of the Bayesian network but serve
to indicate the stroke or strokes from which each measurement, Oi , is taken (e.g.,
O2 is measured from s1). P(CS1 = t | ev) (or simply P(CS1 | ev))2, where ev is
the evidence observed from the user’s strokes, represents the probability that the
hypothesis CS1 is correct.

There are three important reasons why the links are directed from higher-level
shapes to lower-level shapes instead of in the opposite direction. First, whether or
not a higher-level hypothesis is true directly influences whether or not a lower-level
hypothesis is true. For example, if the arrow hypothesis A1 is true, then it is ex-
tremely likely that all three line hypotheses, L1,L2,L3, are also true. Second, this
representation allows us to model lower-level hypotheses as conditionally indepen-
dent given their parents, which reduces the complexity of the data needed to con-
struct the network. Finally, continuous valued variables are difficult to incorporate
into a Bayesian network if they have discrete valued children. Our representation en-
sures that the measurement nodes, which have continuous values, will be leaf nodes.
These nodes can be pruned when they do not have evidence, thus simplifying the
inference process.

Each shape description constrains its subshapes only relative to one another. For
example, an arrow may be made from any three lines that satisfy the necessary con-
straints. Based on this observation, our representation models a symbol’s subshapes

2Throughout this section, t means true, and f means false.

34 C. Alvarado

Fig. 2.11 A Bayesian network to verify a single current source hypothesis. Labels come from
Fig. 2.10

separately from the necessary constraints between those subshapes. For example,
node L1 represents the hypothesis that stroke s2 is a line. Its value will be true if
the user intended for s2 to be any line, regardless of its position, size or orientation.
Similarly, C2 represents the hypothesis that the line fit to s2 and the line fit to s3 are
coincident.

The conditional independence between subshapes and constraints might seem a
bit strange at first. For example, whether or not two lines are of the same length
seems to depend on the fact that they are lines. However, observation nodes for
constraints are calculated in such a way that their value is not dependent on the true
interpretation for a stroke. For example, when calculating whether or not two lines
are parallel, which involves calculating the different in angle between the two lines,
we first fit lines to the strokes (regardless of whether or not they actually look like
lines), then measure the relative orientation of those lines. How well these lines fit
the strokes is not considered in this calculation.

The fact that the shape nodes are not directly connected to the constraint nodes
has an important implication for using this model to perform recognition: There is
no guarantee in this Bayesian network that the constraints will be measured from
the correct subshapes because the model allows subshapes and constraints to be
detected independently. For example, C3 in Fig. 2.11 indicates that L2 and L3 (the
two lines in the head of an arrow) must be the same length, not simply that any
two lines must have the same length. To satisfy this requirement, The system must
ensure that O6 is measured from the same strokes that O3 and O4 were measured
from. We use a separate mechanism to ensure that only legal bindings are created
between strokes and observation nodes.

The way we model shape and constraint information has two important advan-
tages for recognition. First, this Bayesian network model can be applied to recog-
nize a shape in any size, position and orientation. CS1 represents the hypothesis that

2 Multi-domain Hierarchical Free-Sketch Recognition Using Graphical Models 35

s1, . . . , s4 form a current source symbol, but the exact position, orientation and size
of that symbol is determined directly from the stroke data. To consider a new hy-
pothesis for the user’s strokes, the system simply creates a copy of the necessary
Bayesian network structure whose nodes represent the new hypotheses and whose
measurement nodes are linked to a different set of the user’s strokes. Second, the
system can allow competing higher-level hypotheses for a lower-level shape hypoth-
esis to influence one another by creating a network in which two or more hypotheses
point to the same lower-level shape node. For example, the system may consider an
arrow hypothesis and a quadrilateral hypothesis involving the same line hypothe-
sis for one of the user’s strokes. Because the line hypothesis does not include any
higher-level shape-specific constraint information, both an arrow-hypothesis node
and a quadrilateral hypothesis node can point to the single line hypothesis node.
These two hypotheses then become alternate, competing explanations for the line
hypothesis. We further discuss how hypotheses are combined below.

Our model is generative, in that we can use the Bayesian network for generation
of values for the nodes in the network based on the probabilities in the model. How-
ever, our model is fundamentally different from the standard generative approach
used in computer vision in which the system generates candidate shapes (for ex-
ample, a rightward facing arrow) and then compares these shapes to the data in the
image. The difference is that the lowest level of our network represents measure-
ments of the strokes, not actual stroke data. So, although our model can be used to
generate values of stroke data measurements, it cannot be used to generate shapes
which can be directly compared to the user’s strokes. However, because the system
can always take measurements from existing stroke data, our model is well suited
for hypothesis evaluation.

2.5.2.2 Conditional Probability Distributions

Next, we consider the intuition behind the CPTs for a node given its parents for
the hypotheses in Fig. 2.10. We begin by considering the distribution P(E1 | CS1).
Intuitively, we set P(E1 = t|CS1 = t) = 1 (and conversely, P(E1 = f | CS1 = t) =
0), meaning that if the user intended to draw CS1, she certainly intended to draw E1.
This reasoning follows from the fact that the ellipse is a required component of the
CS symbol (and that the user knows how to draw CS symbols). P(E1 | CS1 = f),
on the other hand, is a little less obvious. Intuitively, it represents the probability
that the user intended to draw E1 even though she did not intend to draw CS1. This
probability will depend on the frequency of ellipses in other symbols in the domain
(i.e., higher if ellipses are common).

Because CS1 has no parents, it must be assigned a prior probability. This proba-
bility is simply how likely it is that the user will draw CS1. This probability will be
high if there are few other shapes in the domain or if CS symbols are particularly
prominent, and low if there are many symbols or if the CS symbol is rare. Exactly
how these prior probabilities are determined is beyond the scope of this chapter but
is discussed further in [1].

36 C. Alvarado

The bottom layer of the network accounts for signal-level noise by modeling
the differences between the user’s intentions and the strokes that she draws. For
example, even if the user intends to draw L1, her stroke likely will not match L1
exactly, so the model must account for this variation. Consider P(O2 | E1 = t). If the
user always drew perfect ellipses, this distribution would be 1 when O2 = 0, and 0
otherwise. However, most people do not draw perfect ellipses (due to inaccurate pen
and muscle movements), and this distribution allows for this error. It should be high
when O2 is close to zero, and fall off as O2 gets larger. The wider the distribution,
the more error the system will tolerate, but the less information a perfect ellipse will
provide.

The other distribution needed is P(O2 | E1 = f) which is the probability distri-
bution over ellipse error given that the user did not intend to draw an ellipse. This
distribution should be close to uniform, with a dip around 0, indicating that if the
user specifically does not intend to draw an ellipse, she might draw any other shape,
but probably will not draw anything that resembles an ellipse. Discussion of how
we determined the conditional probability distributions between primitive shapes
and constraints and their corresponding measurement nodes can be found in [1].

2.5.2.3 Observing Evidence from Stroke Data

Finally, we discuss how information from the user’s strokes is incorporated into the
network to influence the system’s belief in CS1. If we assume that the user is done
drawing, the values of O1, . . . ,O11 are fully observable by taking measurements of
the strokes. The system can then use those values to infer P(CS1|O1, . . . ,O11). If
we do not assume the user is done drawing, we may still evaluate P(CS1|ev) where
the set ev contains all Oi corresponding to strokes the user has drawn so far.

We may model the current source (partial) hypothesis CS1 even before the draw-
ing is complete. An observation node that does not have an observed value intu-
itively corresponds to a stroke that the user has not yet drawn. Because observation
nodes are always leaf nodes, the missing data have neither a positive nor a negative
effect on the system’s belief in a given interpretation. CS1 may be strongly believed
even if O1 is missing. As described in Sect. 2.6, the system uses the strength of
incomplete interpretations to help guide the search for missed low-level interpreta-
tions.

2.5.3 Recognizing a Complete Sketch

The Bayesian network introduced above can be used to detect a single instance of
a CS symbol in any size, position or orientation. However, a typical sketch contains
several different symbols as well as several instances of the same symbol.

To detect other shapes in our domain, we may create a Bayesian network simi-
lar to the network above for each shape. We call each of these Bayesian networks

2 Multi-domain Hierarchical Free-Sketch Recognition Using Graphical Models 37

Fig. 2.12 Four strokes, three
of which form an arrow. The
system might try both s2 and
s3 as a line in the head of the
arrow

a shape fragment because these fragments can be combined to create a complete
Bayesian network for evaluating the whole sketch.

Above, we assumed that we were given a mapping between the user’s strokes
and the observation nodes in our network. In fact, the system must often evaluate a
number of potential mappings between strokes and observation nodes. For example,
if the user draws the four strokes in Fig. 2.12, the system might try mapping both
s2 and s3 to L2. As described above, each interpretation for a specific mapping
between strokes and observation nodes is called a hypothesis, and each hypothesis
corresponds to a single node in the Bayesian network. In this section we discuss
how multiple hypotheses are combined to evaluate a complete sketch.

Given a set of hypotheses for the user’s strokes, the system instantiates the cor-
responding shape fragments and links them together to form a complete Bayesian
network, which we call the interpretation network. To illustrate this process, we
consider a piece of a network generated in response to Strokes 6 and 7 in the ex-
ample given in Fig. 2.2, which is reproduced in Fig. 2.13. Figure 2.14 shows the
part of the Bayesian network representing the possible interpretations that the sys-
tem generated for these strokes. Each node represents a hypothesized interpretation
for some piece of the sketch. For example, Q1 represents the system’s hypothesis
that the user intended to draw a quadrilateral with strokes 6 and 7. A higher-level
hypothesis is compatible with the lower-level hypotheses it points to. For example,
if M1 (the hypothesis that the user intended to draw a male with strokes 6 and 7)
is correct, Q1 (the hypothesis that the user intended to draw a quadrilateral with
strokes 6 and 7) and L1, . . . ,L4 (the hypotheses that the user intended to draw four
lines with strokes 6 and 7) will also be correct. Two hypotheses that both point to
the same lower-level hypothesis represent competing interpretations for the lower-
level shape and are incompatible. For example, A1, Q1 are two possible higher-level
interpretations for line L1, only one of which may be true.

Each observation node is linked to a corresponding stroke or set of strokes. In
a partial hypothesis, not all measurement nodes will be linked to stroke data. For
example, A1 is a partial hypothesis—it represents the hypothesis that L1 and L2
(and, hence, Stroke 6) are part of an arrow whose other line has not yet been drawn.
Line nodes representing lines that have not been drawn (L5 and L6) are not linked
to observation nodes because there is no stroke from which to measure these obser-
vations. We refer to these nodes (and their corresponding hypotheses) as virtual.

38 C. Alvarado

Fig. 2.13 The partial sketch
of a family tree from Sect. 2.1

Fig. 2.14 A portion of the interpretation network generated while recognizing the sketch in
Fig. 2.13

The probability of each interpretation is influenced both by stroke data (through
its children) and by the context in which it appears (through its parents), allowing the
system to handle noise in the drawing. For example, there is a gap between the lines
in the top-left corner in Q1 (see Fig. 2.13); stroke data only weakly support the cor-
responding constraint hypothesis (not shown individually). However, the lines that
form Q1 are fairly straight, raising probabilities of L1, . . . ,L4, which in turn raise
the probability of Q1. Q1 provides a context in which to evaluate the coincident
constraint, and because Q1 is well supported by L1, . . . ,L4 (and by the other con-
straint nodes), it raises the probability of the coincident constraint corresponding to
Q1’s top-left corner.

The fact that partial interpretations have probabilities allows the system to assess
the likelihood of incomplete interpretations based on the evidence it has seen so far.
In fact, even virtual nodes have probabilities, corresponding to the probability that
the user (eventually) intends to draw these shapes but either has not yet drawn this
part of the diagram or the correct low-level hypotheses have not yet been proposed
because of low-level recognition errors. As we describe below, a partial interpre-

2 Multi-domain Hierarchical Free-Sketch Recognition Using Graphical Models 39

tation with a high probability cues the system to examine the sketch for possible
missed low-level interpretations.

2.5.3.1 Linking Shape Fragments

When Bayesian network fragments are linked during recognition, each node Hn

may have several parents, S1 . . . Sm, where each parent represents a possible higher-
level interpretation for Hn. We use a noisy-OR function to combine the influences
of all the parents of Hn to produce the complete CPT for P(Hn | S1, . . . , Sm). The
noisy-OR function models the assumption that each parent can independently cause
the child to be observed. For example, a single stroke might be part of a quadrilateral
or an arrow, but both interpretations would favor that interpretation of the stroke as
a line.

The intuition behind Noisy-OR is that each parent that is true will cause the
child to also be true unless something prevents it from doing so. The probability
that something will prevent a parent Si = t from causing Hn = t to be true is qi =
P(Hn = f | Si = t). Noisy-OR assumes that all the qi ’s are independent, resulting
in the following:

P(Hn = t | S1, S2, . . . , Sm) = 1 −
∏

i

qi

for each Si = t . We set qj = P(Hn = f | Sj = t) = 0 for all parents Sj in which
Hn is a required subshape or constraint, and we set qk = P(Hn = f | Sk = t) = 0.5
for all parents Sk in which Hn is an optional subshape or constraint. A consequence
of these values is that Sj = t ⇒ P(Hn | S1, . . . , Sm) = 1 for any Sj in which Hn is
required, which is exactly what we intended.

Noisy-OR requires that P(Hn | S1 = S2, . . . , Sm = f]) = 0. The result of this
requirement is that any shape or constraint has zero probability of appearing if it
is not part of a higher-level shape or pattern. This behavior may be what is desired;
however, if it is not, we may create an additional parent, Sa , to model the probability
that the user intends to draw Hn alone, not as part of a shape or pattern.

2.5.3.2 Missing Nodes

Throughout this process, we have assumed that all of the hypothesized interpreta-
tions will exist as a node in the Bayesian network. However, for reasons discussed
in Sect. 2.6, there are two reasons a hypothesis might be missing from the network.
First, the system does not always initially generate all higher-level interpretations
for a shape. Second, the system prunes unlikely hypotheses from the network to
control the network’s size.

We would like hypotheses that have not yet been generated or that have been
pruned nevertheless to influence the strength of the hypotheses in the network. For

40 C. Alvarado

example, if there are two potential interpretations for a stroke—a line and an arc—
and the system prunes the line interpretation because it is too unlikely, the probabil-
ity of the arc should go up. On the other hand, if the system has only generated an
arc interpretation, and has not yet considered a line interpretation, the probability of
the arc should remain modest because the stroke might still be a line.

We model nodes not present in the network through an additional parent, Snp , for
each node Hn in the graph. We define qnp = P(Hn = f | Snp = t) and set Snp = t .
The value of qnp takes into account which nodes have been eliminated from the
graph and which have not (yet) been instantiated, and it is calculated as follows.
Let T1, . . . , Tp be the set of shapes that have an element of type Hn as a child but
do not exist as parents of Hn in the network. We refer to T1, . . . , Tp as potential
parents of Hn. For example, for node L1 in Fig. 2.14, this set would contain the
single element ML because the marriage-link is the only shape in the family tree
domain that has a line as a subshape but is not already a parent of L1 in the graph.
Let T1, . . . , Ti be the subset of potential parents that have never appeared as a parent
for Hn, and let Ti+1, . . . , Tp be the subset with elements that were once parents
for Hn but have been pruned from the network. Then, qnp = ∏i

j=1 1 − P(Tj). We
call P(Tj) the simple marginal probability of Tj . It is calculated by calculating the
marginal probability based only on the priors of the parents and ancestors of Tj in a
network containing exactly one instance of each parent of Tj .

The effect of qnp is to allow only those shapes that have not yet been instantiated
as parents of Hn to contribute to the probability that Hn = t . If the simple marginal
probabilities of the missing parents are high, qnp will be low, and thus will help
raise P(Hn | S1, . . . , Sm,Snp). If all the potential parents of Hn have previously
been pruned, qnp will be 1 and thus have no effect on P(Hn | S1, . . . , Sm,Snp).

2.5.4 Implementation and Bayesian Inference

Our system updates the structure of the Bayesian network in response to each stroke
the user draws. To perform this dynamic Bayesian network construction, we use
an off-the-shelf, open source Bayesian network package for Java called BNJ [61].
Our system manages the hypotheses for the user’s strokes as they are generated and
pruned. When these hypotheses need to be evaluated (e.g., before they are pruned),
our system creates a Bayesian network in BNJ by creating the necessary nodes and
links as BNJ Java objects. Our system can then use a number of methods that are
built into BNJ for reasoning about the probability of each node.

Generating and modifying the BNJ networks can be time-consuming due to the
exponential size of the conditional probability tables (CPTs) between the nodes. We
use two techniques to improve the system’s performance. First, BNJ networks are
only generated when the system needs to evaluate the likelihood of a given hypoth-
esis. This on-demand construction is more efficient than continuously updating the
BNJ network because batch construction of the CPTs is often more efficient than
incremental construction of these tables. Second, the system modifies only the por-
tion of the BNJ network that has changed between strokes instead of creating it from

2 Multi-domain Hierarchical Free-Sketch Recognition Using Graphical Models 41

scratch every time. The process of keeping track of the added and removed hypothe-
ses adds a slight bookkeeping overhead, but this overhead is far less than the work
required to regenerate the entire network after each stroke.

To determine the likelihood of each hypothesis, our system uses the BNJ net-
work to find the marginal posterior probability for each node in the network. We
experimented with several inference methods including the junction tree algorithm
[29, 38], Gibbs sampling, and loopy belief propagation (loopy BP) [43, 59]. Both
the junction tree algorithm and loopy BP produced meaningful marginal posterior
probabilities, but after some experimentation we were unable to obtain useful results
using Gibbs Sampling. We discovered that although the junction tree algorithm gave
meaningful results, the networks produced by our system were often too complex
for the algorithm to process in a reasonable amount of time. We found that when the
junction tree algorithm produced a clique including more than 11 nodes the process-
ing took too long to be acceptable. Unfortunately, for more complicated diagrams
and domains, clique sizes greater than 11 were quite common.

Fortunately, we found loopy BP to be quite successful for our task. Although
the algorithm is not guaranteed to converge to correct values, we found that on our
data the algorithm almost always converged. There were probably only two or three
instances in hundreds of tests where the values did not converge. We initialized the
messages to 1 and ran the algorithm until node values were stable to within 0.001.

Loopy BP was significantly faster than the junction tree algorithm, but for com-
plex data it was still occasionally slower than we wished. To speed up the system’s
performance, we added two restrictions. First, we terminated the belief propagation
algorithm after 60 seconds of processing if it had not converged by this time. This
restriction was needed only about a dozen times in the 80 circuit diagrams we pro-
cessed, but it prevented the rare case where belief propagation took 20 minutes to
converge. Second, we allowed each node to have no more than eight parents (i.e.,
only eight higher-level hypotheses could be considered for a single hypothesis). This
restriction ensured a limit on the complexity of the graphs produced by the system.
For the family tree domain, this limitation had no effect on the system’s perfor-
mance because the system never generated more than eight higher-level hypotheses
for a lower-level hypothesis. However, in the circuit domain, higher-level hypothe-
ses were occasionally prevented from being considered due to this limitation. For
complex domains such as circuit diagrams, we will need to work on finding more ef-
ficient inference algorithms to allow the system to process more complex networks
in a reasonable amount of time. We will also explore other methods of simplify-
ing the network structure that do not prevent the system from considering possibly
correct hypotheses.

2.6 Hypothesis Generation

The major challenge in hypothesis generation is to generate the correct interpreta-
tion as a candidate hypothesis without generating too many to consider in real-time.

42 C. Alvarado

Our method of evaluating partial interpretations allows us to use a bottom–up/top–
down generation strategy that greatly reduces the number of hypotheses considered
but still generates the correct interpretation for most shapes in the sketch.

Our hypothesis generation algorithm has three steps.

1. Bottom–up step: As the user draws, the system parses the strokes into primitive
objects using a domain-independent recognition toolkit developed in previous
work [48]. Compound interpretations are hypothesized for each compound ob-
ject that includes these low-level shapes, even if not all the subshapes of the
pattern have been found.

2. Top–down step: The system attempts to find subshapes that are missing from the
partial interpretations generated in step 1, often by reinterpreting strokes that are
temporally and spatially proximal to the proposed shape.

3. Pruning step: The system removes unlikely interpretations.

This algorithm, together with the Bayesian network representation presented
above, deals successfully with the challenges presented in Sect. 2.2. Using the ex-
ample in Fig. 2.13, we illustrate how the system generates hypotheses that allow the
Bayesian network mechanism to resolve noise and inherent ambiguity in the sketch,
how the system manages the number of potential interpretations for the sketch, how
the system recovers from low-level recognition errors, and how the system allows
for variation in drawing style. For a more detailed description of how we handle
specific challenges in hypothesis generation, see [1].

Based on low-level interpretations of a stroke, the bottom–up step generates a
set of hypotheses to be evaluated using the Bayesian network mechanism presented
in the previous section. In the sketch in Fig. 2.13, the user’s first stroke is correctly
identified as an ellipse by the low-level recognizer, and from that ellipse the sys-
tem generates the interpretation ellipse, and in turn, partial interpretations (tem-
plates) for mother-son, mother-daughter, father-daughter, marriage, partner-female,
and divorce. These proposed interpretations have empty slots into which future in-
terpretations will be filled in.

Naive bottom–up interpretation easily can generate too many hypotheses to con-
sider in real-time. We employ three strategies to control the number of hypotheses
generated in the bottom–up step. First, when an interpretation can be fit into more
than one slot in a higher-level template (e.g., in Fig. 2.14, L1 could be the shaft or
either of the lines in the head of A1), the system arbitrarily chooses one of the valid
slots rather than generating one hypothesis for each potential fit. Later, the system
can shuffle the shapes in the template when it attempts to fit more subshapes.

Second, the system does not generate higher-level interpretations for interpre-
tations that are only partially filled. The lines generated from Strokes 4 and 5
in Fig. 2.13 result in one partial hypothesis—arrow (A1)—and two complete
hypotheses—quadrilateral (Q1) and marriage-link (ML1) (Fig. 2.14).
Continuing to generate higher-level templates from partial hypotheses would yield
a large number of hypotheses (one hypothesis for each higher-level domain pattern
involving each existing partial hypothesis). To avoid this explosion, the system con-
tinues to generate templates using only the complete hypotheses (in this case, ML1
and Q1).

2 Multi-domain Hierarchical Free-Sketch Recognition Using Graphical Models 43

Third, when the system processes polylines, it assumes that all the lines in a
single polyline will be used in one interpretation. While this assumption does not
always hold, in practice we find that it is often true and greatly reduces the number
of possible interpretations. The system recognizes Stroke 2 as a four-line polyline.
The bottom–up step generates only a quadrilateral because that is the only shape in
the domain that requires four lines.

The top–down step allows our system to recover from low-level recognition er-
rors. Stroke 3 is incorrectly, but reasonably, parsed into five lines by the low-level
recognizer. Because the system does not know about any five-line objects, but does
know about things that contain fewer than five lines, it attempts to re-segment the
stroke into two lines, three lines and four lines (with a threshold on acceptable error).
It succeeds in re-segmenting the stroke into four lines and successfully recognizes
the lines as a quadrilateral. Although the four-line fit is not perfect, the network al-
lows the context of the quadrilateral in addition to the stroke data to influence the
system’s belief in the four-line interpretation. Also note that the five lines from the
original segmentation remain in the interpretation network.

The system controls the number of interpretations in the network through prun-
ing, which occasionally causes it to prune a correct hypothesis before it is complete.
The top–down step regenerates previously pruned hypotheses, allowing the system
to correctly interpret a symbol despite variations in drawing order. The left-most
arrow in Fig. 2.2 was drawn with two non-consecutive strokes (Strokes 8 and 12).
In response to Stroke 8, the system generates both an arrow partial hypothesis and
a marriage-link hypothesis (using the line hypothesis generated for this stroke). Be-
cause the user does not immediately complete the arrow, and because the competing
marriage-link hypothesis is complete and has a high probability, the system prunes
the arrow hypothesis after Stroke 9 is drawn. Later, Stroke 12 is interpreted as a
two-line polyline and a new arrow partial hypothesis is generated. The top–down
step then completes this arrow interpretation using the line generated previously
from Stroke 8, effectively regenerating a previously pruned interpretation.

2.6.1 Selecting an Interpretation

As each stroke is drawn, the sketch system uses a greedy algorithm to select the best
interpretation for the sketch. It queries the Bayesian network for the strongest com-
plete interpretation, sets aside all the interpretations inconsistent with this choice,
chooses the next most likely remaining domain interpretation, and so forth. It leaves
strokes that are part of partial hypotheses uninterpreted. Although the system selects
the most likely interpretation at every stroke, it does not eliminate other interpreta-
tions. Partial interpretations remain and can be completed with the user’s subsequent
strokes. Additionally, the system can change its interpretation of a stroke when more
context is added.

44 C. Alvarado

Fig. 2.15 Examples that illustrate the range of complexity of the sketches collected

2.7 Application and Results

Applying our complete system, called SketchREAD (Sketch Recognition Engine
for mAny Domains), to a particular domain involves two steps: specifying the struc-
tural descriptions for the shapes in the domain and specifying the prior probabilities
for the domain patterns and any top-level shapes (i.e., those not used in domain pat-
terns, which, consequently, will not have parents in the generated Bayesian network.
See [1] for details on how probabilities are assigned to other shapes). We applied
SketchREAD to two domains: family trees and circuits. For each domain, we wrote
a description for each shape and pattern in that domain and estimated the necessary
prior probabilities by hand. Through experimentation, we found the recognition per-
formance to be insensitive to the exact values of these priors.

We ran SketchREAD on a set of ten family tree diagrams and 80 circuit dia-
grams we collected from users.3 Examples of these sketches are given in Fig. 2.15.
We present qualitative results, as well as aggregate recognition and running time re-
sults for each domain. Our results illustrate the complexity our system can currently
handle, as well as the system’s current limitations. We discuss those limitations be-
low, describing how best to use the system in its current state and highlighting what
needs to be done to make the system more powerful. Note that to apply the system to
each domain, we simply loaded the domain’s shape information; we did not modify
the recognition system.

3To collect these sketches we asked users to perform synthesis tasks (i.e. not to copy pre-existing
diagrams) and performed no recognition while they were sketching.

2 Multi-domain Hierarchical Free-Sketch Recognition Using Graphical Models 45

Fig. 2.16 Recognition
performance example.
Overall recognition results (#
correct/total) are shown in the
boxes

Figure 2.16 illustrates how our system is capable of handling noise in the sketch
and recovering from missed low-level interpretations. In the baseline case, one line
from each ground symbol was incorrectly interpreted at the low-level, causing the
ground interpretations to fail. SketchREAD was able to reinterpret those lines using
the context of the ground symbol in three of the four cases to correctly identify the
symbol. In the fourth case, one of the lines was simply too messy, and SketchREAD
preferred to (incorrectly) recognize the top two lines of the ground symbol as a
battery.

In evaluating our system’s performance, direct comparisons with previous work
are difficult, as there are few (if any) published results for this type of recogni-
tion task, and those that are published are tested on different (unavailable) datasets.
We compared SketchREAD’s recognition performance with the performance of a
strictly bottom–up approach of the sort used in previous systems [2, 42]. This strictly
bottom–up approach combined low-level shapes into higher-level patterns without

46 C. Alvarado

Table 2.1 Recognition rates
for the baseline system (BL)
and SketchREAD (SR) for
each sketch for the family
tree domain. The size column
indicates the number of
strokes in each sketch

Size #Shapes % Correct

BL SR

Mean 50 34 50 77

S1 24 16 75 100

S2 28 16 75 87

S3 29 23 57 78

S4 32 22 31 81

S5 38 31 54 87

S6 48 36 58 78

S7 51 43 26 72

S8 64 43 49 74

S9 84 49 42 61

S10 102 60 57 80

top–down reinterpretation. Even though our baseline system did not reinterpret low-
level interpretations, it was not trivial. It could handle some ambiguities in the draw-
ing (e.g., whether a line should be interpreted as a marriage-link or the side of a
quadrilateral) using contextual information in the bottom–up direction. To encour-
age others to compare their results with those presented here we have made our test
set publicly available at http://rationale.csail.mit.edu/ETCHASketches.

We measured recognition performance for each system by determining the num-
ber of correctly identified objects in each sketch (Tables 2.1 and 2.2). For the fam-
ily tree diagrams SketchREAD performed consistently and notably better than our
baseline system. On average, the baseline system correctly identified 50% of the
symbols, while SketchREAD correctly identified 77%, a 54% reduction in the num-
ber of recognition errors. Due to inaccurate low-level recognition, the baseline sys-
tem performed quite poorly on some sketches. Improving low-level recognition
would improve recognition results for both systems; however, SketchREAD reduced
the error rate by approximately 50% independent of the performance of the baseline
system. Because it is impossible to build a perfect low-level recognizer, Sketch-
READ’s ability to correct low-level errors will always be important.

Circuit diagrams present SketchREAD with more of a challenge for several rea-
sons. First, there are more shapes in the circuit diagram domain and these shapes are
more complex. Second, there is a stronger degree of overlap between shapes in the
circuit diagrams. For example, it can be difficult to distinguish between a capacitor
and a battery. As another example, a ground symbol contains within it (at least one)
battery symbol. Finally, there is more variation in the way people draw circuit dia-
grams, and their sketches are messier causing the low-level recognizer to fail more
often. They tend to include more spurious lines and over-tracings.

Overall, SketchREAD correctly identified 62% of the shapes in the circuit dia-
grams, a 17% reduction in error over the baseline system. It was unable to handle
more complex shapes, such as transistors, because it often failed to generate the

http://rationale.csail.mit.edu/ETCHASketches

2 Multi-domain Hierarchical Free-Sketch Recognition Using Graphical Models 47

Table 2.2 Aggregate
recognition rates for the
baseline system (BL) and
SketchREAD (SR) for the
circuit diagrams by shape

Total % Correct # False Pos

BL SR BL SR

AC Source 4 100 100 35 29

Battery 96 60 89 56 71

Capacitor 39 56 69 27 14

Wire 1182 62 67 478 372

Ground 98 18 55 0 5

Resistor 330 51 53 7 8

Voltage Src. 43 2 47 1 8

Diode 77 22 17 0 0

Current Src. 44 7 16 0 0

Transistor 43 0 7 0 14

correct mapping between strokes and pieces of the template. Although the system
attempts to shuffle subshapes in a template in response to new input, for the sake
of time it cannot consider all possible mappings of strokes to templates. We discuss
below how we might extend SketchREAD to improve its performance on complex
domains such as circuit diagrams.

We measured SketchREAD’s running time to determine how it scales with the
number of strokes in the sketch. Figure 2.17 graphs the median time to process each
stroke for each domain. The vertical bars in the graph show the standard deviation
in processing time over the sketches in each domain. (One family tree diagram took
a particularly long time to process because of the complexity of its interpretation
network, discussed below. This sketch affected the median processing time only
slightly but dominated the standard deviation. It has been omitted from the graph for
clarity.) Three things about these graphs are important. First, although SketchREAD
does not yet run in real-time, the time to process each stroke in general increased
only slightly as the sketch got larger. Second, not every stroke was processed by
the system in the same amount of time. Finally, the processing time for the circuit
diagrams is longer than the processing time for the family trees.

By instrumenting the system, we determined that the processing time is domi-
nated by the inference in the Bayesian network, and all of the above phenomena can
be explained by examining the size and complexity of the interpretation network.
The number of nodes in the interpretation network grows approximately linearly as
the number of strokes increases. This result is encouraging, as the network would
grow exponentially using a naïve approach to hypothesis generation. The increase
in graph size accounts for the slight increase in processing time in both graphs.
The spikes in the graphs can be explained by the fact that some strokes not only
increased the size of the network, but had more higher-level interpretations, creat-
ing more fully connected graph structures, which causes an exponential increase
in inference time. After being evaluated, most of these high-level hypotheses were
immediately pruned, accounting for the sharp drop in processing time on the next

48 C. Alvarado

Fig. 2.17 The median
incremental time it took the
system to process each stroke
in the family tree and circuit
diagrams. Vertical bars show
the standard deviation across
the sketches in each domain

stroke. Finally, the fact that circuits take longer to process than family trees is related
to the relative complexity of the shapes in the domain. There are more shapes in the
circuit diagram domain and they are more complex, so the system must consider
more interpretations for the user’s strokes, resulting in larger and more connected
Bayesian networks.

2.8 Remaining Challenges and Extensions

SketchREAD significantly improves the recognition performance of unconstrained
sketches. However, its accuracy, especially for complicated sketches and domains,
is still too low to be practical in most cases. Here we consider how to improve the
system’s performance, and in particular, describe a promising method for aiding
with segmentation, without placing constraints on the users’ drawing style.

2 Multi-domain Hierarchical Free-Sketch Recognition Using Graphical Models 49

First, while SketchREAD always corrected some low-level interpretation errors,
its overall performance still depended on the quality of the low-level recognition.
Our low-level recognizer was highly variable and could not cope with some users’
drawing styles. In particular, it often missed corners of polylines, particularly for
symbols such as resistors. Recently proposed, more accurate corner-finding tech-
niques [60] will help address these problems.

Second, although in general SketchREAD’s processing time scaled well as the
number of strokes increased, it occasionally ran for a long period. The system had
particular trouble with areas of the sketch that involved many strokes drawn close
together in time and space and with domains that involve more complicated or over-
lapping symbols. This increase in processing time was due almost entirely to in
increase in Bayesian network complexity.

We suggest two possible solutions. First, part of the complexity arises because the
system tries to combine new strokes with low-level interpretations to form correct
high-level interpretations (e.g., the four lines that make a quadrilateral). These new
interpretations were pruned immediately, but they increased the size and complex-
ity of the network temporarily, causing the bottlenecks noted above. In response,
we are testing methods for “confirming” older interpretations and removing their
subparts from consideration other higher-level interpretations as well as confirming
their values in the Bayesian network so that their posterior probabilities do not have
to be constantly re-computed. Second, we can modify the belief propagation algo-
rithm we are using. We currently use Loopy Belief Propagation, which repeatedly
sends messages between the nodes until each node has reached a stable value. Each
time the system evaluates the graph, it resets the initial messages to one, essentially
erasing the work that was done the last time inference was performed, even though
most of the graph remains largely unchanged. Instead, this algorithm should begin
by passing the messages it passed at the end of the previous inference step.

Third, because our recognition algorithm is stroke-based, spurious lines and over-
tracing hindered the system’s performance in both accuracy and running time. A pre-
processing step to merge strokes into single lines would likely greatly improve the
system’s performance. Also, in the circuit diagram domain, users often drew more
than one object with a single stroke. A preprocessing step could help the system
segment strokes into individual objects.

2.8.1 Using Single-Stroke Classification to Improve Grouping

Many of the above problems were caused by the difficulty of performing simultane-
ous segmentation and recognition. In SketchREAD, recognition and segmentation
are inherently intertwined: the various hypotheses dictate different stroke segmenta-
tions. Using our template-based recognition approach to dictate segmentation means
that our system cannot rely on segmentation to limit the number of possible inter-
pretations, nor can it apply vision-based algorithms efficiently to sets of strokes
known to comprise a single object. However, as discussed in Sect. 2.2, there is no

50 C. Alvarado

Fig. 2.18 Single-stroke recognition and grouping

reliable purely spatial or temporal method to segment strokes into individual objects
in freely-drawn sketches.

Recently, researchers have developed a technique to roughly classify single
strokes, and this classification be used to inform the process of sketch segmenta-
tion. The technique relies on the fact that strokes can be roughly grouped into cat-
egories individually by looking at their local properties and their relationships to
other strokes in the diagram. For example, in the circuit diagram in Fig. 2.18 the
strokes that make up the gates tend to be shorter and have a higher curvature than
the strokes that make up the wires. The wire strokes and gate strokes also have a
well-defined relationship to one another. Then, once strokes individually are clas-
sified as either wires or gates (Fig. 2.18(a)) they are sufficiently separated in both
time and space that simple clustering algorithms can successfully group strokes into
individual objects (Fig. 2.18(b)), which can then be recognized by any number of
sketch recognition algorithms, including the Bayesian network approach presented
in this chapter.

Szummer and Qi [53] developed a method for classifying individual strokes
based on local and contextual information based using conditional random fields.
They illustrate its success on organizational chart diagrams. We have applied their
approach to the more complex domain of circuit diagrams and find that it performs
quite well.

Briefly, a CRF is an undirected graphical model that represents the conditional
probability distribution P(y | x) where x is a set of input data and y is a set of labels
for these data. The actual CRF consists of a graph G = (V ,E) and an associated
set of potential functions that together define P(y | x). Each node in V corresponds
to an element to label (i.e. the members of y), and each edge in E quantifies a
probabilistic dependence between these elements. For more details, see [53].

In our application, the vector x represents the stroke data while the vector y re-
presents the labels for each stroke. P(y | x), then, is simply the probability of a given
labeling for each stroke, given properties of the stroke data.

2 Multi-domain Hierarchical Free-Sketch Recognition Using Graphical Models 51

We automatically create the graph by creating a node for each stroke and linking
nodes for strokes that are spatially or temporally proximal. We find that for some do-
mains, including the digital circuit domain, fragmenting strokes at their corners be-
fore creating the graph, as in [53], degrades performance. We consider two types of
potential functions: site potentials that measure the compatibility between a stroke
and its associated label, and pairwise interaction potentials that measure the compat-
ibility between neighboring labels. Both types of potentials measure compatibility
by linearly combining parameters with a set of feature functions and passing the
result through a non-linearity (we use the exponential).

After labeling each stroke, we group strokes into individual objects. Even with
perfect labels, stroke grouping is not trivial. For example, different wires may over-
lap in space and the same wire may be separated in time. We use a graph theoretic
method for stroke grouping that treats each labeled stroke as a node in a graph, with
edges between adjacent strokes. The algorithm then finds the connected components
in the graph.

Two strokes are adjacent if their minimum distance is lower than a given thresh-
old. We designed specific distance metrics for the digital circuit domain. Given two
strokes, if neither stroke is a wire, then the minimum distance between the strokes
is the minimum distance between any two points in the strokes. If either stroke is
a wire, the minimum distance between the strokes is the distance from an endpoint
to any other point on the other stroke. We use this modified distance because wires
frequently overlap even when they are not meant to represent the same component.
In both cases, the minimum distance is normalized by the sum of the diagonals of
the smallest bounding box around each of the strokes. This normalization provides
a unitless measure that is invariant under uniform scaling.

Although this work is still in progress, our initial results in this area are promis-
ing. We tested our CRF for single-stroke classification on digital circuit diagrams,
classifying strokes as text, wires or gates, and achieve 93% overall accuracy and
77% accuracy in stroke segmentation. Figure 2.18 shows one example result.

2.9 Conclusion

This chapter has presented an approach to multi-domain sketch recognition using
dynamically constructed Bayesian networks. We have shown how to use context to
improve online sketch interpretation and demonstrated its performance in Sketch-
READ, an implemented sketch recognition system that can be applied to multiple
domains. We have shown that SketchREAD is more robust and powerful than previ-
ous systems at recognizing unconstrained sketch input in a domain. The capabilities
of this system have applications both in human computer interaction and artificial
intelligence. Using and building on this approach, we will be able to explore further
the nature of usable intelligent computer-based sketch systems and gain a better
understanding of what people would like from a drawing system that is capable
of understanding their freely-drawn sketches as more than just strokes. This work

52 C. Alvarado

provides a necessary step in uniting artificial intelligence technology with novel in-
teraction technology to make interacting with computers more like interacting with
humans.

Acknowledgements This work is based on my PhD thesis, supervised by Randall Davis at the
Massachusetts Institute of Technology. Recent work is funded by an NSF CAREER award (IIS-
0546809).

References

1. Alvarado, C.: Multi-domain sketch understanding. PhD thesis, MIT (2004)
2. Alvarado, C., Davis, R.: Resolving ambiguities to create a natural sketch based interface. In:

Proceedings of IJCAI-2001 (2001)
3. Alvarado, C., Davis, R.: Sketchread: A multi-domain sketch recognition engine. In: Proc.

UIST (2004)
4. Alvarado, C., Davis, R.: Dynamically constructed Bayes nets for sketch understanding. In:

Proceedings of IJCAI ’05 (2005)
5. Alvarado, C., Lazzareschi, M.: Properties of real-world digital logic diagrams. In: Proc. of the

1st International Workshop on Pen-Based Learning Technologies (PLT-07) (2007)
6. Bishop, C.M., Svensen, M., Hinton, G.E.: Distinguishing text from graphics in on-line hand-

written ink. In: IWFHR ’04: Proceedings of the Ninth International Workshop on Frontiers in
Handwriting Recognition, pp. 142–147. IEEE Computer Society, Washington (2004)

7. Blostein, D., Haken, L.: Using diagram generation software to improve diagram recognition:
A case study of music notation. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 21(11) (1999)

8. Buxton, B.: Sketching User Experiences: Getting the Design Right and the Right Design.
Morgan Kaufmann, San Mateo (2007)

9. Caetano, A., Goulart, N., Fonseca, M., Jorge, J.: Sketching user interfaces with visual patterns.
In: Proceedings of the 1st Ibero-American Symposium in Computer Graphics (SIACG02),
pp. 271–279 (2002)

10. Charniak, E.: Bayesian networks without tears: making Bayesian networks more accessible to
the probabilistically unsophisticated. Artificial Intelligence 12(4), 50–63 (1991)

11. Cohen, P.R., Johnston, M., McGee, D., Oviatt, S., Pittman, J., Smith, I., Chen, L., Clow, J.:
Quickset: Multimodal interaction for distributed applications. In: ACM Multimedia’97, pp.
31–40. ACM Press, New York (1997)

12. Do, E.Y.L., Gross, M.D.: Drawing as a means to design reasoning. AI and Design (1996)
13. Forbus, K.D., Usher, J., Chapman, V.: Sketching for military course of action diagrams. In:

Proceedings of IUI (2003)
14. Forsberg, A.S., Dieterich, M.K., Zeleznik, R.C.: The music notepad. In: Proceedings of UIST

’98. ACM SIGGRAPH. ACM, New York (1998)
15. Futrelle, R.P., Nikolakis, N.: Efficient analysis of complex diagrams using constraint-based

parsing. In: ICDAR-95 (International Conference on Document Analysis and Recognition),
Montreal, Canada, pp. 782–790 (1995)

16. Gennari, L., Kara, L.B., Stahovich, T.F.: Combining geometry and domain knowledge to in-
terpret hand-drawn diagrams. Computers and Graphics: Special Issue on Pen-Based User In-
terfaces (2005)

17. Getoor, L., Friedman, N., Koller, D., Pfeffer, A.: Learning probabilistic relational models. In:
IJCAI, pp. 1300–1309 (1999). http://citeseer.nj.nec.com/friedman99learning.html

18. Glessner, S., Koller, D.: Constructing flexible dynamic belief networks from first-order prob-
abilistinc knowledge bases. In: Symbolic and Quantitative Approaches to Reasoning and Un-
certainty, pp. 217–226 (1995)

http://citeseer.nj.nec.com/friedman99learning.html

2 Multi-domain Hierarchical Free-Sketch Recognition Using Graphical Models 53

19. Goldman, R.P., Charniak, E.: A language for construction of belief networks. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 13(3) (1993)

20. Grimson, W.E.L.: The combinatorics of heuristic search termination for object recognition in
cluttered environments. IEEE Transactions on PAMI 13(9), 920–935 (1991)

21. Gross, M.D.: The electronic cocktail napkin—a computational environment for working with
design diagrams. Design Studies 17, 53–69 (1996)

22. Gross, M., Do, E.Y.L.: Ambiguous intentions: A paper-like interface for creative design. In:
Proceedings of UIST 96, pp. 183–192 (1996)

23. Haddawy, P.: Generating Bayesian networks from probability logic knowledge bases. In: Pro-
ceedings of UAI ’94 (1994)

24. Hammond, T., Davis, R.: Tahuti: A geometrical sketch recognition system for UML class
diagrams. In: AAAI Spring Symposium on Sketch Understanding, 59–68 (2002)

25. Hammond, T., Davis, R.: LADDER: A language to describe drawing, display, and editing in
sketch recognition. In: Proceedings of the 2003 International Joint Conference on Artificial
Intelligence (IJCAI) (2003)

26. Hammond, T., Davis, R.: Automatically transforming symbolic shape descriptions for use
in sketch recognition. In: Proceedings of the Nineteenth National Conference on Artificial
Intelligence (AAAI-04) (2004)

27. Hammond, T., Davis, R.: Interactive learning of structural shape descriptions from automat-
ically generated near-miss examples. In: IUI ’06: Proceedings of the 11th International Con-
ference on Intelligent User Interfaces, pp. 210–217. ACM, New York (2006)

28. Hse, H., Newton, A.R.: Recognition and beautification of multi-stroke symbols in digital ink.
Computers and Graphics (2005)

29. Jensen, F.V., Lauritzen, S.L., Olesen, K.G.: Bayesian updating in causal probabilistic networks
by local computations. Computational Statistics Quarterly 4, 269–282 (1990)

30. Jensen, F.V.: Bayesian Networks and Decision Graphs. Statistics for Engineering and Infor-
mation Science. Springer, Berlin (2001)

31. Kara, L.B., Stahovich, T.F.: Hierarchical parsing and recognition of hand-sketched diagrams.
In: Proc. of UIST ’04 (2004)

32. Koller, D., Pfeffer, A.: Object-oriented Bayesian networks. In: Proceedings of the Thirteenth
Annual Conference on Uncertainty, Providence, RI, pp. 302–313 (1997)

33. Labahn, G., MacLean, S., Marzouk, M., Rutherford, I., Tausky, D.: Mathbrush: An experi-
mental pen-based math system. In: Dagstuhl Seminar Proceedings, Challenges in Symbolic
Computation Software (2006)

34. Landay, J.A., Myers, B.A.: Interactive sketching for the early stages of user interface design.
In: Proceedings of CHI ’95: Human Factors in Computing Systems, pp. 43–50 (1995)

35. Lank, E.H.: A retargetable framework for interactive diagram recognition. In: Proceedings of
the Seventh International Conference on Document Analysis and Recognition (ICDAR’03)
(2003)

36. Lank, E., Thorley, J.S., Chen, S.J.S.: An interactive system for recognizing hand drawn UML
diagrams. In: Proceedings for CASCON (2000)

37. Laskey, K.B., Mahoney, S.M.: Network fragments: Representing knowledge for constructing
probabilistic models. In: Proceedings of UAI ’97 (1997)

38. Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on graphical struc-
tures and their application to expert systems. Journal of the Royal Statistical Society 50(2),
157–224 (1988)

39. LaViola, J., Zeleznik, R.: Mathpad2: A system for the creation and exploration of mathe-
matical sketches. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2004) 23(3)
(2004)

40. Lu, W., Wu, W., Sakauchi, M.: A drawing recognition system with rule acquisition ability. In:
Proceedings of the Third International Conference on Document Analysis and Recognition,
vol. 1, pp. 512–515 (1995)

41. Matsakis, N.: Recognition of handwritten mathematical expressions. Master’s thesis, Mas-
sachusetts Institute of Technology (1999)

54 C. Alvarado

42. Newman, M.W., Lin, J., Hong, J.I., Landay, J.A.: DENIM: An informal Web site design tool
inspired by observations of practice. Human-Computer Interaction 18(3), 259–324 (2003)

43. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, San Mateo (1988)

44. Pfeffer, A., Koller, D., Milch, B., Takusagawa, K.: SPOOK: A system for probabilistic object-
oriented knowledge representation. In: Proceedings of UAI ’99, pp. 541–550 (1999)

45. Poole, D.: Probabilistic horn abduction and Bayesian networks. Artificial Intelligence (1993)
46. Saund, E., Fleet, D., Larner, D., Mahoney, J.: Perceptually supported image editing of text and

graphics. In: Proceedings of UIST ’03 (2003)
47. Sezgin, T.M., Davis, R.: Sketch interpretation using multiscale models of temporal patterns.

IEEE Computer Graphics and Applications 27(1), 28–37 (2007). doi:10.1109/MCG.2007.17
48. Sezgin, T.M., Stahovich, T., Davis, R.: Sketch based interfaces: Early processing for sketch

understanding. In: The Proceedings of 2001 Perceptive User Interfaces Workshop (PUI’01),
Orlando, FL (2001)

49. Shilman, M., Pasula, H., Russell, S., Newton, R.: Statistical visual language models for ink
parsing. In: Sketch Understanding, Papers from the 2002 AAAI Spring Symposium, pp. 126–
132. AAAI Press, Stanford (2002)

50. Shilman, M., Viola, P., Chellapilla, K.: Recognition and grouping of handwritten text in di-
agrams and equations. In: Proceedings of the International Workshop on Frontiers in Hand-
writing Recognition (IWFHR) (2004)

51. Stahovich, T., Davis, R., Shrobe, H.: Generating multiple new designs from a sketch. Artificial
Intelligence 104(1–2), 211–264 (1998)

52. Strat, T.M., Fischler, M.A.: Context-based vision: Recognizing objects using information from
both 2-d and 3-d imagery. IEEE Transactions on Pattern Analysis and Machine Intelligence
13(10), 1050–1065 (1991)

53. Szummer, M., Qi, Y.: Contextual recognition of hand-drawn diagrams with conditional ran-
dom fields. In: Proceedings of the 9th Int. Workshop on Frontiers in Handwriting Recognition
(IWFHR), pp. 32–37 (2004)

54. Tenneson, D.: Technical report on the design and algorithms of chempad. Technical report,
Brown University (2005)

55. Torralba, A., Sinha, P.: Statistical context priming for object detection. In: Proceedings of
ICCV ’01, pp. 763–770 (2001)

56. Ullman, D.G., Wood, S., Craig, D.: The importance of drawing in the mechanical design
process. Computers and Graphics 14(2), 263–274 (1990)

57. Veselova, O., Davis, R.: Perceptually based learning of shape descriptions. In: Proceedings of
the Nineteenth National Conference on Artificial Intelligence (AAAI-04) (2004)

58. Wang, X., Biswas, M., Raghupathy, S.: Addressing class distribution issues of the drawing
vs writing classification in an ink stroke sequence. In: SBIM ’07: Proceedings of the 4th
Eurographics Workshop on Sketch-based Interfaces and Modeling, pp. 139–146. ACM, New
York (2007). doi:10.1145/1384429.1384458

59. Weiss, Y.: Belief propagation and revision in networks with loops. Technical report, AI Memo
No. 1616, CBCL Paper No. 155, Massachusetts Institute of Technology (1997)

60. Wolin, A., Hammond, T.: Shortstraw: A simple and effective corner finder for polylines. In:
Alvarado, C., Cani, M.P. (eds.) Eurographics Workshop on Sketch-Based Interfaces and Mod-
eling (SBIM) (2008)

61. Bayesian network tools in java (bnj). http://bnj.sourceforge.net

http://dx.doi.org/10.1109/MCG.2007.17
http://dx.doi.org/10.1145/1384429.1384458
http://bnj.sourceforge.net

http://www.springer.com/978-1-84882-811-7

	Multi-domain Hierarchical Free-Sketch Recognition Using Graphical Models
	Introduction
	The Challenges of Free-Sketch Recognition
	Knowledge Representation
	Hierarchical Shape Descriptions
	Handling Noise in the Drawing
	Signal-Level Noise: Objective vs. Subjective Measures
	Description-Level Variation: Optional Components and Constraints

	Strengths and Limitations

	Recognition Overview
	Hypothesis Evaluation
	Dynamically Constructed Graphical Models
	Shape Fragments: Evaluating a Single Hypothesis
	Network Structure
	Conditional Probability Distributions
	Observing Evidence from Stroke Data

	Recognizing a Complete Sketch
	Linking Shape Fragments
	Missing Nodes

	Implementation and Bayesian Inference

	Hypothesis Generation
	Selecting an Interpretation

	Application and Results
	Remaining Challenges and Extensions
	Using Single-Stroke Classification to Improve Grouping

	Conclusion
	References

