Chapter 2
Basic Nonlinear Control Methods

Overview This chapter gives a survey of the basic nonlinear control methods.
First, the main classes of nonlinear systems are summarized, then some examples
are presented how to find the dynamic model of simple systems and an overview of
the stability methods is given. It is followed by an introduction to the concepts of
some often used nonlinear control methods like input/output linearization, flatness
control, backstepping and receding horizon control.

2.1 Nonlinear System Classes

At the interface of a nonlinear system X, we can observe input and output signals.
We can denote the input signal by u(-) and its value at time moment ¢ by u(¢). Simi-
larly, y(-) is the output signal and y(¢) is its value at time moment ¢. We can assume
that the signals are elements of functions spaces which are usually linear spaces hav-
ing an appropriate norm and some topological properties (convergence of Cauchy
sequences of functions, existence of scalar product etc.). The chosen function space
(Banach space, Hilbert space etc.) may depend on the control problem to be solved.

The state x of the nonlinear dynamic system is an abstract information which
represents the entire past signals of the system observed at the interface, that is,
x(t) = x represents in abstract form all the signals u(o0'), y(0), Yo < 7. The system
can be characterized by the state transition function x(t) = ¢ (¢, 7, x, u(-)) and the
output mapping y(t) = g(¢, x(¢), u(¢)) where ¢ is the actual time, T and x are the
initial time and initial state respectively, and for causal systems u(-) denotes the
input signal between t and ¢.

Specifically, for linear systems the transients can be written as x () = @ (¢, T)x +
O, t)u(-) and y(t) = C(t)x(t) + D(t)u(t). The state transition for linear systems
can be thought as the superposition of the initial state transient and the result of the
input excitation.
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Fig. 2.1 Block scheme of the

nonlinear system u(t X X t
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2.1.1 State Equation of Nonlinear Systems

If the state transition function satisfies some continuity conditions, then the state is
the solution of the nonlinear state differential equation with appropriately chosen
f(t, x,u) and the system is called continuous time smooth nonlinear system:

x=f(t, x,u)),

y=g(t, x,u),

2.1

where “dot” denote time derivative and we used short forms in notation instead
of x(t) = f(¢t,x(¢),u(t)) and y(tr) = g(t, x(t), u(t)). We shall consider dominantly
smooth systems in the book therefore “smooth” will be omitted and the system is
called continuous time nonlinear time variant system (NLTV). If f does not depend
explicitly on 7, that is, f(x, y), the nonlinear system is time invariant (NLTI). We
shell usually assume that x € R", u € R™, y € R?. The block scheme of the nonlin-
ear system is shown in Fig. 2.1.

Linear systems are special cases of nonlinear ones. Continuous time linear time
varying (LTV) systems have linear state differential equation:

x=A@)x + B(t)u,
y=C({t)x+ D()u,

2.2)

The solution of the state equation for LTV system can be expressed by the funda-
mental matrix @ (¢, 7) which is the solution of the matrix differential equation
b, 1) =AP(t, 1), P(r,7r)=1. (2.3)
The fundamental matrix has some important properties:
D, 1)P(1,0) =P (t,0), D, t)P(t,1)=1,

do(t, 1) (2.4)
e _(t, 1)AM).
dt

Based on these properties, the solution of the state differential equation for linear
systems can be expressed by the fundamental matrix:

t
xt)=@t, t)x + / D(t,0)B(O)u(@)do. (2.5)

The block scheme of the LTV system is shown in Fig. 2.2.
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Fig. 2.2 Block scheme of the
LTV system

o)

Fig. 2.3 Mathematical
scheme for solving nonlinear
state equation

For continuous time linear time invariant (LTI) systems, A, B, C, D are constant
matrices and the fundamental matrix is the exponential matrix @ (¢, ) = A=),
moreover the initial time can be chosen 7 = 0 because the system is time invariant.
The LTI system has transfer function G (s). The solution of the state (“differential”
will be omitted) equation and the transfer function are

t
x(t) =eMx + / A= Bu(0)do, (2.6)
0

G(s)=C(sI — A~ 'B+D, 2.7

where (sI — A)~! is the Laplace-transform of e .

The state equation of nonlinear systems can usually be solved only numerically
hence we show some numerical methods to find the approximate solution. Here, we
assume that the control u(¢) := ug(¢) is known therefore x(t) = f (¢, x(t), ug(t)) =:
f*(t, x(1)), and for simplicity we omit “star” in the notation. Assume x (¢,,) is known
and we want to determine x (¢, + h), see Fig. 2.3.

Euler method:
x(ty 4+ h) = x(ty) + hx'(ty) = x(ty) + hf (ta, x(tn)). (2.8)

Second order Taylor series:

]’12
x(ty +h) ~ x(ty) + hx/(tn) + TX//(tn)

= x(ty) + hf (tn, x (1))
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h2

+ j{f)é(tn» x(tn)) : f(tna x(tn)) + ft/(tnv x(tn))}- (2.9)

Unfortunately, higher order Taylor series are hard to determine hence Runge and

Kutta developed such methods which differ from the n-th order Taylor series only
in o(h"). Now we show two of such methods.

Second order Runge-Kutta method:

X(ta +h) ~ x(ty) +h{ar f (tn, x(t2)) + @z f (tn + ah, x (1)
+ Bf (tn. x(ta))) }, (2.10)

where the unknowns are ai, az, «, 8. In order to guarantee 0(h2) (small ordo) pre-
cisiona;=1—ap, a = ﬁ, B= % should be satisfied. For the remaining param-
eter, two methods are wide-spread:
Heun'’s trapezoidal algorithm: a, = %
Modified Euler—Cauchy algorithm: ay = 1.

Fourth order Runge-Kutta method:

The essence of the method is that the change of the function x () will be estimated
from the values of the derivatives determined at four points of the function (once at
the left end of the interval, twice in the middle and once at right end), and take the
average of them with weights assuring o(h*) approximation at the right end point
of the interval:

hf(tns x(tn))

=hf<tn+ x(tn)+;k1>
:hf(t,,+z Xt + Lk ) @.11)

hf(tn + /’l X(tn) + k3)
x(t, +h)~x(t,) + 8(/(1 + 2ky + 2k3 + ka).

The computation is usually performed with variable step size. The goal is to
find the solution as quick as possible while guaranteeing the necessary precision for
which simple step change strategies are available.

Multistep methods: Other type of methods assume equidistant step size and try to
find exact solution for polynomial form x(¢). The solution is assumed in the form

k k
Xnp1 =Y @iXn_i+ Y bihf(ta_is Xni). (2.12)

i=0 i=—1
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Performing the normalization of the running time ..., #,_1, f;, 41 to normalized
time ..., —1,0, 1 the following conditions appear:

k k
1= "ai(=i)/ + Y bij(=iy~", jell,m],
i=0 i=—1

(2.13)
k
1= Zai.
i=0

The accuracy can be influenced by m and k. Wide-spread methods are:

e Adams—Bashforth method: k=m — 1, ay=---=a;, =0, b_1 =0.

o Adams—Moulton method: k =m —2, aj=---=a, =0, b_1 #0.

e Predictor—corrector method: The first Adams—Bashforth (predictor) step deter-
mines the estimation x,4| because now b_; = 0 and thus x,; does not appear
on the right side of the equation system. After this, the last x,, 1 can cyclically
be applied on the right side of the Adams—Moulton (corrector) steps gradually
improving the approximation.

2.1.2 Holonomic and Nonholonomic Systems

Nonlinear systems have often to satisfy constraints that restrict the motion of the
system by limiting the paths which the system can follow. For simplicity, we as-
sume that the configuration space Q is an open subset of R"” with coordinates
g =(q1,...,q,)T. More general configuration spaces can be handled by an ap-
propriate choice of local coordinates.

A simple example is the case of two particles attached by a massless rod. The
configuration of each particle is described by a point r; € R>, but all trajectories of
the particles have to satisfy

2_ ;2
r1 —rall”=L",

where L is the length of the rod. The constraints act through the application of
constraint forces modifying the motion of the system such that the constraints are
always satisfied. The constraint is an example of a holonomic constraint.

In the sequel, we shall define holonomic and nonholonomic constraints accord-
ing to Murray and Li, and Sastry, see [103]. Then we investigate how the motion
equation can be simplified by using coordinate transformation.

2.1.2.1 Holonomic Constraints

More generally, a constraint is called holonomic if it restricts the motion of the
system to a smooth hypersurface in the unconstrained configuration space Q. Holo-
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nomic constraints can be represented locally by algebraic constraints on the config-
uration space:

hi(@)=0, i=1,... k. (2.14)

We shall assume that the constraints are linearly independent, that is, the matrix
% has full row rank. Since holonomic constraints define a smooth hypersurface
in the configuration space, it is possible to eliminate the constraints by choosing a
set of coordinates for this surface. These new coordinates parametrize all allowable
motions of the system and are not subject to any further constraints.

The constraint forces are linear combinations of the gradients of the constraint
functions #; : Q — R. Leth: Q — R¥ represent the vector valued constraint func-
tion then the constraint forces can be written as

T
Fcz[%] . 2.15)
dq

where A € R¥ is called Lagrange multiplier vector measuring the relative magni-
tudes of the constraint forces. No work is done if the system is moved along feasible
trajectories since

oh d
Flg=x"—¢=2"—(h(g)=0.
cq=rg a=hy (@)

A fundamentally more general constraint occurs in some robotics and mechani-
cal applications (multifingered grasping, rolling disk etc.) where the constraint has
the form

AT (g)g =0. (2.16)

Such constraint is called Pfaffian constraint. Notice that AT (¢) is k x n and ¢ ap-
pears linearly in the constraint equations. This linearity gives chance to eliminate the
constraints using a nonlinear coordinate transformation based on the fundamental
results of differential geometry summarized in Appendix B. On the other hand, we
shall consider mechanical systems and will also refer to the results in Appendix A,
especially we shall use the Lagrange equation describing the dynamic model.

Since Pfaffian constraints restrict the allowable velocity of the system but not
necessarily the configurations, we cannot always represent it as an algebraic con-
straint on the configuration space. The Pfaffian constraint is called integrable if there
exists a vector valued function 4 : Q — R¥ such that

AT(@)g=0 — ac]:O. (2.17)

Thus, an integrable Pfaffian constraint is equivalent to a holonomic constraint. No-
tice that we do not require that A7 = %, but only that they define the same subspace
of the allowable velocities at every g € Q.
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2.1.2.2 Nonholonomic Constraints

Pfaffian constraint that is not integrable is an example of nonholonomic constraint.
For such constraints, the instantaneous velocities of the system are constrained to an
n — k dimensional subspace, but the set of reachable configurations is not restricted
to some n — k dimensional hypersurface in the configuration space. Since not all
Pfaffian constraints are integrable, hence the motion equations have to be extended
to this case.

It is still possible to speak about constraint forces. Such forces are generated by
the Pfaffian constraints to insure that the system does not move in the directions
given by the rows of the constraint matrix A7 (¢). The constraint forces at ¢ € Q
are defined by F, = A(g)A, where the Lagrange multiplier A € R¥ is the vector of
relative magnitudes of the constraint forces. If the constraints are integrable, then
this is identical to the holonomic case since A(g) and [%]T have the same range
space.

The constraint forces for Pfaffian constraints prevent motion of the system in
directions which would violate the constraints. In order to include these forces in
the dynamics, we have to add an additional assumption, namely forces generated
by the constraints do no work on the system. This assumption is often referred as
d’ Alambert principle.

By using the Lagrangian L(q, ¢) for the unconstrained system and assuming the
constraints in the form A7 (q)¢ = 0 the equation of motion can be written in the
form

dOL L _ s r+F (2.18)
drog  oaq M ’ '

where F' represents the nonconservative and externally applied forces.
For systems having Lagrangian L(q, q) = %c}TM (@9)g — P(g) (kinetic energy
minus potential energy), the motion equations can be written as

M(g)g +C(q.9)q +n(q,q) = Al@)L+ F,

where n(q, ¢g) denotes nonconservative and potential forces and F is the external
force. Differentiating the constraint equation yields

AT ()G + AT ()¢ =0. (2.19)

By solving the motion equation for ¢ and substituting it into the differentiated con-
straint equation, we obtain:

G=M Y AL+ F —C4—n),
ATM A =ATM Y (C4g+n—-F)—ATq, (2.20)
= (ATM 1 A) T (ATM N (CG+n— F) - AT§),

where we suppressed the dependence on ¢ and q.
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2.1.2.3 Lagrange—d’Alambert Equations

It is useful to derive the equations without solving for the instantaneous constraint
forces present in the system. It means that we project the motion of the system
onto the feasible directions by ignoring the forces in the constrained directions. The
resulting dynamics is in a form well suited for closed-loop control.

At a given configuration ¢ the directions at which the system is allowed to move
is given by the null space of A7 (¢). We adopt the classical notation of virtual dis-
placement 8g € R which satisfies AT (q)8q = 0. If F is a generalized force applied
to the system, then we call SW = F - §¢ the virtual work due to F acting along a vir-
tual displacement §g, where “dot” denotes scalar product. D’ Alambert’s principle
states that the constraint forces do no virtual work, hence

(A(g)r)-8¢ =0 for AT (q)g =0. 2.21)

Notice that §g is not the same as g. The generalized velocity ¢ satisfies both the
velocity constraints and the motion equations, while the virtual displacement only
satisfies the constraints.

In order to eliminate the constraint forces from the motion equations, we can
project the motion onto the linear subspace generated by the null space of A7 (¢).
Since (AL) - g = 0, we obtain the so called Lagrange—d’Alambert equations:

_____ F) 8q =0, (2.22)

AT(¢)8q =0. (2.23)

Specifically, if ¢ = (¢7,¢7)T and AT(q) =[AT(q) AT ()], where AL (q) is
square and invertible, then we can use the constraint ¢, = —(A2T )_IA]qu to elimi-
nate ¢, and g from the motion equations. The method is illustrated in the following
example.

2.1.2.4 Dynamics of Rolling Disk

Consider a disk rolling on the horizontal plane such that the disk plane remains
orthogonal to the horizontal plane during motion. The configuration of the disk is
given by the position (x, y) of the contact point, the heading angle 8, and the orienta-
tion of the disk with respect to the vertical, ¢. We use the notation ¢ = (x, y, 6, ¢)7.
Let R denote the radius of the disk. We assume as input the driving torque on the
wheel, 79, and the steering torque about the vertical axis, 4. Let m be the mass
of the disk, /; its inertia about the horizontal (rolling) axis, and /5 its inertia about
the vertical axis. We assume that the disk rolls without slipping hence the following
velocity constraints have to be satisfied:

F—RCo=0, y—R$S=0 = AT(@)i= [3 o0 _’;gﬂ ;0.
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These constraints assume that the disk rolls in the direction in which it is heading.
It is evident that the constraints are everywhere linearly independent.
The unconstrained Lagrangian is the kinetic energy associated with the disk:

N TIPS EUS R
L(q,q):im(x2+y2)+§1192+Elquz.

Denote 8g = (8x,8y,380,8¢)" the virtual displacement of the system. The
Lagrange—d’ Alambert equations are given by

m 0 0 0 0
0 m 0 0, |0 _ 1 0 0 —RGy], _
0 0 1 077 |g|] 090 where [0 10 —RSQ:|8q_O‘
00 0 %

From the constraints, we can solve for §x and §y:
8x = RCyé¢, 8y = RSyé¢.

The scalar product can be written as

(N P R R

and since §6 and §¢ are free, we obtain the motion equation

0 0 [E] [ o 6] [
mRCy mRSp||¥ 0 Lll|le| |w]
Differentiating the constraints, we obtain

X¥=RCogd — RSp0p, ¥ =RSpd+ RCyb¢,

and substituting the results into the motion equation we obtain the system dynamics

as follows:
I 0 9 | e
0 L+mR*|[d| ||

Note that in this simple example the system of equations does not depend on x
and y, but in general it is not valid.

The motion of the x- and y-position of the contact point can be obtained from
the first order differential equations

¥=RCsp,  y=RSpo,

which follow from the constraints. Thus, given the trajectory of 6 and ¢, we can
determine the trajectory of the disk rolling on the horizontal plane. Dividing the
motion equations into a set of second-order differential equations in a reduced set of
variables plus a set of first-order differential equations representing the constraints
is typical for many nonholonomic systems.
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2.1.2.5 Holonomic Property Related to Frobenius Theorem

Consider the nonlinear system satisfying constraints in which beside the generalized
coordinate g € R" appears also its derivative ¢ € R":

AT(¢)g=0, rankAT(¢)=k <n. (2.24)

Assume that AT(q) is k x n and denote its null (kernel) space ker AT(q) at qo.

Let us define the function A(qg) := ker AT(qo) which maps g into a linear sub-
space ker AT (90), hence it is a distribution. If this distribution is involutive, that is, it
is closed for Lie bracket defined by [ f, g] = 3—2 f— %g for vector fields f(q), g(q)

then, based on Frobenius theorem, we may find local coordinates g = (g1, .. ., c]n)T
such that (2.24) can be written as

Gntr1=""=4u=0 <  Gunoks1 =Cnktl,---:qn =2Cn (2.25)
for appropriately chosen constants ¢,_k+1, ..., c, determined by the initial con-
ditions and thus we can eliminate the coordinates g,—x+1, - .., gn. Therefore, we

call the constraints (2.24) holonomic if the distribution A is involutive, otherwise
the constraints are nonholonomic. Notice that the application of Frobenius theorem
needs to solve a set of partial differential equations which is a hard problem. Hence,
we seek for other methods simplifying the motion equation in the presence of con-
straints.

2.1.2.6 Motion Equation in Hamiltonian Form

The equation of motion for the constrained mechanical system can be assumed in

Lagrange form
d (0L oL
—( = )-(=)=4a@r,  AT(@q=0, 2.26
dz(@)g) (8q> (@) (@)q (2.26)

where A(g)A describes the constrained forces, A € R* are the Lagrange multipli-
ers. For simplicity of notation, the generalized external force was neglected. The
Lagrangian L(g, q) is defined by L = K — P where K is the kinetic energy and P
is the potential energy. The kinetic energy is the quadratic form K = %(M @)q,q).
Here, M (q) is the generalized inertia matrix. We can assume that no simplifications
were applied hence M (q) is positive definite and hence

92L
det| ——— | #0. (2.27)
04;0q

In order to eliminate the Lagrange multipliers and find the state equation of the

mechanical system, the Legendre transformation p := g—é = M(g)q and the Hamil-
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tonian H = K + P =2K — L will be applied. Because of K = %(p, q), the Hamil-
tonian can be written as

n

. oL .
H(Q:P)=Zpi61i—L(q,q), Pi= e i=1,...,n. (2.28)
i=1 !

It follows from the new form of the kinetic energy and the positive definiteness of
M (q) that p is an independent system, hence the motion equation of the constrained
mechanical system can be written in the Hamiltonian form

. 0dH(q.p) . 0H(q, p)
q=7aq b , P=—7q P + A(@)A,
)4 dq
- (2.29)
AT () q,p) _0.
op

The constraint forces A(g)A can be determined by differentiating the constraint
equation by the time and expressing A, that is,

[amq) dH(q, p>]T dH (q, p)

dq op op
2
+ AT (- P) [—M(q’p) +A(q)x] —o0. (2.30)
ap dq

Notice that here a matrix AT is differentiated by a vector ¢ therefore it is a
problem how to implement it. Fortunately not the derivative has to be determined
but the derivative multiplied by a vector % which is easier to obtain.

Let us consider the following mathematical problem. Let A be any matrix of
type m x n and the vector x have dimension n. Then A can be assumed as
A =3, ;aijE;j where the only nonzero element of the matrix E;; is in the in-
tersection of the i-th row and the j-th column. Hence, differentiating by a;; and
applying the result for the vector x we obtain E;;jx which is a column vector with
the only nonzero element in the i-th row which is x ;. Repeating the process for all
the elements of A we obtain %x which is an m x (mn) type matrix each column
containing the above result for one element of A.

Now we can apply this result for the matrix A7 and the vector %. Since rank AT

is k, hence it follows from (2.27) and (2.28)

3’H(q, p)

det[AT(q) 52 A(q):| £0, (2.31)

thus A can be expressed from (2.30) and put into (2.29) which results in the motion
equation of the constrained (holonomic or nonholonomic) system.
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2.1.2.7 Coordinate Transformation of Constrained Motion Equations

Here we try to eliminate the constraint equations without the solution of partial dif-
ferential equations. The idea is to introduce a coordinate transformation p = T'(g) p
and partition p as p = (p'7 p*7)T where jp? = 0 suits to the constraints. Notice that
this is only possible if the constraints are holonomic, otherwise we obtain the mo-
tion equation in the variables g and the new p and the constraints are not eliminated.
Of course the goal is to eliminate the constraints and assure 5> = 0.

By the assumptions A7 (¢) has type k x n and rank A7 (¢) = k thus there exists a
matrix S(q) of type n x (n — k) satisfying A (¢)S(g) = 0 and having rank S(g) =
n — k. Hence, we are able to define the coordinate transformation according to

AT@S@=0 = S@=[s"@...5" "] (2.32)

T
ro=30] p=t@r e p-r@h e

H(q.p)=H(q. T~ (@)p). (2.34)

In order to f}nd the transformed motion equations, we have to determine the
derivatives of H and the relations to the derivatives of H. During this process,
we can apply the rule about the derivative of any inverse matrix A~! by a scalar
variable a: % = —A_lg—gA_l. Denote ¢; the i-th standard unit vector and
(a,b) =a’b=b"a = (b,a) the scalar product of a and b, respectively. Then

H(q,p) = H(q, T~ () Zﬁj€j>,
j

aﬁ(q,ﬁ>:<aH(q,p> Tl(q)e~> < T )8H<q 2 >
ap

op; ap
BH;q: p) _ T_T(q)BH(q,p) o dH(q, p) _Tr(q)aH(C{, p)’ (2.35)
p ap ap d
dH(q,p) 0H(q, 9H (q, 3
a(61 p) _9H(g.p) +< @.r) _, -1 ) (q) 1(q)p>’
qi 9g; op
OH(q.p) d0H(q.p) [ 7 3H(q p) 0T (q)
5 = @——F————p)
qi 9g; aqi
9H(q,p) _ 3H(q. P) +<8H(q~, p)7 BT(q)p>' (2.36)
g g, ap 9qi

Let us consider now the time derivative of p. Since p = T(¢)p, p' = ST (¢)p,
7%= AT (q)p, therefore

. dT
p= —p+T(q)<—

dH (g, p)
dt aq

+ A(q)/\). (2.37)
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Since ST (9)A(g) = 0, thus the constraint forces AT (g)A(g)A appear only in p

. L2
For simplicity of the next derivations, we suppress writing down the variables ¢, p
First, using (2.33) and (2.37), it follows

£1 dsiT

i OH
pl dt _SlT_

. 2.38
oq (2.38)
Second, if the constraints are satisfied then, using (2.35) and (2.38), it yields

oH 0H
0=ATg=AT—=AT[s A]—

—ATAB—H & ﬁ—0 (2.39)
ap ap ap2 apz
dsit aS' 9H 798 F]
— S Y —k o
P < S ap> Bq[ q)-. (q)]

= (2.40)
ap!
dH dT 3S 9AT9H 3S oH
<—~,—p>=p [ } =p' == (2:41)
ap Oq dq1 9q1 | 9p dq1 dp
Third, using (2.36) the second term in (2.38) can be determined

S;TBH

Zz -y s <ﬂ+ Tﬁﬁ)

; dar ¥ g 0p)
y (2.42)
T8H Z TZ<[851 as"— k]S,.>a_H
- 13611 dq  q apl

1
It is easy to show that, for example, ), %igl = aasq S’ which together with the
appropriate term from (2.40) and (2.38) results in the Lie bracket with negative sign

~[s', 8=~ (asls 8—Si51>

243
0 o7 (2.43)
and in the state equations of p!,i=1,...,n —k,
oH ; OH
' =—8T— + (-p"[s', s st snk : 2.44
p==STI (pT[S 8] T[S S I 2ad
Using similar steps the state equations of p;7,i =1, ..

., k can be obtained:

P2 = —AiTaa—H—1—(—pT[Ai,Sl]n-—pT[A",S"*k]) 3{‘1
q

ap!
+ AT (@) A(@)r.

(2.45)
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Introducing the notation

0 N
—pT[Sl,Sl] —pT[Sl,Sn_k]
—sT : : :
B _ _ T Sn_k,Sl .. _pT Sn_k,Sn_k
I, p)= Pl | Pl I (2.46)
—pT[A", s1T - —pT[Al, 5]
—AT : : :
—pT[Ak, ST - —pT[Ak snh]

the dynamic model will be

9 T 0 9l (g, p)
il=ia.mn| |+ 0 T Ean Xy
I3 LD | \AT () Ag)2 P

As can be seen, although %gz’ﬁ) =0, that is, H does not depend on 152, there is
no guarantee that by using the above transformation the derivative of 15% is zero and
the constraint equation can be omitted. The reason is that, denoting by J; (¢, pl) the
upper part of J(q, p),

0 S

—pTist, sty ... —pTst, sn X
. . . ., (2.48)

—pT[Sn_k,Sl] _pT[Sn—k’Sn—k]

abracket {, }, can be defined for scalar valued functions F,, G, mapping (¢, p') in
R! by

3G,
(Fr.Goi(a ') = (55 95) Jria. Y (ﬁ) ST
ap!

This bracket is skew-symmetric, satisfies the Leibniz rule, but usually does not
satisfy the Jacobi identity. Is also the Jacobi identity satisfied then the bracket {, },
is a so called Poisson bracket, in which case the derivative of ﬁ2 is zero and the
constraint equations can be omitted, see [128].

2.1.3 Differentially Flat Systems

In Appendix B, we have shown that under special conditions, perhaps locally, the
nonlinear system can be linearized using static or dynamic feedback and then it can
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be further compensated by using well known linear control methods. However, it
remains a serious problem to obtain the symbolic solution of a system of partial dif-
ferential equations (Frobenius equations) for which no general and efficient methods
are available. All these offer reason for seeking special solutions in which range the
flatness control is a possible approach.

The idea of differentially flat systems arose at the 90th years based on the works
of David Hilbert and Elie Cartan at the beginning of the 20th century. We shall
discuss differentially flat systems using the results of [39]. Fundamentals of differ-
ential geometry and novel results in flatness control can be found in [1] and [80],
respectively.

First, the idea of dynamic system will be extended to infinite dimensional man-
ifolds which can be obtained from conventional systems through prolongation of
vector fields. For infinite dimensional system, the so called Lie-Bécklund transfor-
mation will be defined which is equivalent to an endogenous dynamic feedback and
state transformation performed on an appropriate finite dimensional system. Based
on this result, the class of differentially flat systems will be defined in such a way
that the systems belonging to it can be converted to the trivial series of integrators
by the help of the Lie—Bicklund transformation.

First of all, we start with a new interpretation of the vector field. In Appendix B,
the idea of the manifold X € R", its tangent space T X and the Lie derivative L sh
of smooth scalar valued function & relative to a vector field f have already been
defined. Considering L fh =Y 7, fi % allow us to identify the vector field f by

" 9
f= "~ fig (2.50)
i=1 !

which can be assumed the componentwise or differential operator expression of the
vector field f. This interpretation can easily be generalized for infinite dimension.

2.1.3.1 Prolongation of Vector Fields, the Cartan Fields

Let us consider the system given by the differential equation
x=f(x,u) (2.51)

where x is a point of an 7 dimensional manifold M, u € R™ and f is C® vector
field on M which can be described by the local coordinates % (i=12,...,n)in

the form f =", f; % It is assumed u (1) € C(*). Let us introduce the infinite
dimensional vector

E =&t 1" =[x u® a@)’ ]T

for which & € M x R™ x Rm_x ~-=MXxRl = M, that is, Eis anint of an infinite
dimensional manifold. Let f be a vector field over M x RZ = M derived from f
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by using

f&1,8)

. &3
E§=f¢&)= £4 . (2.52)

Notice that, despite of the infinite dimensional vector field, every row depends
only on a finite number of elements of £. The vector field f can be written in local
coordinates

Z ﬁ FrRDD Z A - (]) (2.53)

j=0i=1

which will be called a Cartan field. It follows from the construction of the vector
field f that if a path r — (x(¢),u(t)) is a solution of (2.51) then the path t —
(x(@), u(@),u(),ii(t),...)is a solution of (2.52).

In what follows, we shall understand under control system the ordered pair
(M, f) where M is an infinite dimensional manifold and f is a Cartan field of
the form (2.53) over M.

Now consider the linear dynamic system consisting of the series of integrators:

(k1)

X, =up
(k2)
Xt =u
2 2 r1=1;ri=r,-_1+K,-_1;ZK,~=n.
i
xﬁ,ﬁ"’) Um

In the above form, r; denotes the dimension, «; is the order (number of integrators).
The infinite dimensional vector field in local coordinates belonging to this system
can be written in the form

r 1
fuiv=_ Z A (j) (2.54)
j=0i=1 ox

This vector field will be called the trivial vector field. Notice that there is a one-to-
one relation between the integral curves ¢t — (x(¢), u(t)) of the trivial system and
the properly regular (differentiable) time functions t — (x,, (?), ..., X, (t)).

2.1.3.2 Lie-Bicklund Transformation

Consider the control systems M, f) and (N, g) derived from qle differential
equations X = f(x,u) and y = g(y,v) (dimu = dimv) where M = M x R,
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(dimM =n)and N = N x R (dim N =1), that is, the traditional dimension num-
ber of the two systems are different, while the number of inputs is the same. Fur-
thermore consider an invertible C(®® mapping which defines a coordinate trans-
formation between M and N: &£ = & (), £ € M and ¢ € N. Denote ¥ the inverse
coordinate transformation which is also C(® and let { = ¥ (£). Only such coordi-
nate transformations will be considered for which each of their components depends
only on a finite number of coordinates, similarly to the prolonged vector fields. Thus

=vY161), o =v2(82), ..., ¢ = Vi (&), ... where & = (&1, ..., &) and r; are
finite.

Now consider an integral curve  — &(t) of the vector field f. Its image over the
manifold N is t — ¢ (1) = ¥ (£(r)). Denote W, f that vector field over the manifold
N whose integral curve is ¢t — {(t) = ¥ (£(¢)). Differentiating the curve ¥ (£(¢))
by the time yields

d

o -
AV EO) =70 FO=10).

but since ¥, f : N — T'N thus

(2.55)

i 9 9
Vef =(Lj¥)o® = (L)oo + 2 (Lpjan) 0@

j=0

Notice that in the above expression all terms are finite since the transformation and
each element of the vector field depend on finite number of coordinates.

For transformation ¥ of general form, it is not satisfied that the resulting vector
field (2.55) is a Cartan field, that is, (2.55) can be derived from a “traditional” form
dynamic system over N. To this it has to be required that the prolongation is a series
of integrators, that is,

dv¥) . .
dr Ly, o =07V =yj1200,

from which using (2.55) follows

9
Ly v = (Lyn)op——+ Y (L ¥ur1)o av(k) =(Ljyjt1)o@

k>0

Comparing the right sides of the last two equations, we obtain that ¥, f is a Cartan
field over N, if and only if, L1 =vjs2 is guaranteed for every positive j.
Coordinate transformations mapping integral curves of Cartan fields into integral
curves of Cartan fields will be called Lie-Bécklund transformations.

The control systems M, f ) and (N, g) are called Lie—Bicklund equivalent if
there exists an invertible and C(® coordinate transformation ¥ : M — N, each
element of which is function of only a finite number of coordinates and ¥, f = 3.

The Lie-Bécklund transformation saves the number of inputs and the equilibrium
points. Consequently it follows that any two linear controllable systems of equal
number of inputs are Lie—Bicklund equivalent.
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2.1.3.3 Endogenous State Feedback
The state feedback is dynamic if it has own state:

= px,z,v),
(2.56)
u=u(x,z,v).

We shall deal only with such feedback where the number of inputs of the original
and fed-back system does not change, that is, dimu = dimv. Using (2.56) for the
original system (2.51), the differential equation of the closed loop will be

X = f(x,a(x, Z, v)),

z=B(x,z,v).

(2.57)

The dynamic feedback does not necessarily save the controllability properties.
An example for this is the common use of state observer and state feedback for
linear systems where the closed loop system obtained by using dynamic feedback
because the states of the feedback are the state variables x of the observer. The
system obtained so is not state controllable since the observer was designed to assure
exponential decaying the estimation error according to the differential equation (x —
X) = F(x — x) (where F is stable and quick), hence there is no input making the
behavior of X independent of x. In order to eliminate such phenomenon, we restrict
the investigations to so-called endogenous dynamic feedback defined as follows.

Let be given a system (M, f). The feedback given in the form (2.56) is called
endogenous dynamic feedback if the prolongation of the closed loop system given
by (2.57) is Lie—Bicklund equivalent to the system (M, f).

Theorem 2.1 Existence condition for endogenous state feedback.

Consider the systems (M, f) and (N, g). If they are Lie—Bcicklund equivalent,
then there exist an endogenous state feedback of type (2.56) and a traditional coor-
dinate transformation (diffeomorphism) which transfer the system x = f(x, u) into
the system prolonged with finite number of integrators:

y=g(,w),
wr ) =y,
2.1.3.4 Flat Output Variable

The system (M, f) is differentially flat if it is Lie—Bicklund equivalent to the trivial
system given by the vector field

m
Fav=D_ > 3 w9 (2.58)

)
j>0i=I dy;
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The variables of the vector y (their number is equal to the number of inputs of
(M, f)) will be called the flat outputs.

Corollary Differentially flat systems can be linearized by dynamic state feedback
and a coordinate transformation since (2.58) is arisen from a linear system pro-
longed with a series of integrators. According to this property, y is often called the
linearizing output.

Theorem 2.2 Differentially flat system can be characterized by the flat output vari-
able.

Consider the differentially flat system (M, f) arisen from the prolongation of the
system X = f(x,u). Denote ¥ the Lie—Bdicklund transformation which transfers
(M, f) into a trivial system and denote ® the inverse transformation. It follows
from the definition of differential flatness that there is a finite q such that

x=¢1(y,)'1,j5,...,y(‘1)),

2.59
(q+1)), ( )

M=¢2(yv)')»j;1"'1y

and x and u identically satisfy the equation x = f(x,u) describing the system.
Furthermore, there is a finite p yielding

y=vi(x,u i, ..., u?). (2.60)

According to (2.59) and (2.60), the path of x and u can be determined from y and
its derivatives and there is a one-to-one correspondence between the integral curves
t — (x(t), u(t)) satisfying x = f(x, u) and the properly regular time functions t —
y(t). It means that in case of differentially flat systems there exists a set of variables
inside of which the differential constraints defining the system disappear.

The system (2.51) is differentially flat around a point < it is possible to find an
output variable y, dimy = dimu = m, which smoothly depends around that point
on x, u, and a finite number of derivatives of u, such that the resulting square system
is left and right input—output invertible with trivial zero dynamics [39].

Corollary In order to admit the differential flatness property, it is “enough” to find
the output y and the functions ¢1, ¢2 and 1 appearing in (2.59) and (2.60).

2.1.3.5 Path Design for Differentially Flat Systems

Beside the linearizability (which not always can be exploited because many times
not all the components of the state vector can be measured), differential flatness can
play important role for path design. Namely, the path design can be performed in
the space of the variables of y. Then the path of the state and the inputs can simply
be determined using the time derivatives according to (2.59), without the integration
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of the differential equations. Hence, during path design it is sufficient to choose a
properly regular path satisfying the goals of the control in the space of the variables
of y using simple interpolation techniques (Lagrange polynomials etc.).

2.1.3.6 Application Possibilities for Different System Classes

Recently, there are strong necessary and sufficient conditions to decide whether the
system is differentially flat or not (see, for example, [80, Theorem 6.7]), however
the steps to be performed are too complicated for general nonlinear systems. Ex-
ceptions are SISO nonlinear systems for which necessary and sufficient conditions
are available [56] and the linearizing feedback remains static (if it exists). There are
also necessary and sufficient conditions for some kind of driftless systems [90]. For
people dealing with robotics, it has been known for a long time that open chain, rigid
and in all degrees of freedom actuated mechanical systems can be linearized using
static nonlinear feedback (called nonlinear decoupling in robotics) which, as men-
tioned above, is equivalent to the differential flatness property. On the other hand,
there exist also differentially flat mechanical systems that are underactuated or non-
holonomic. A counter example is the inverted pendulum which is not differentially
flat.

2.2 Dynamic Model of Simple Systems

Some simple examples will be shown for finding the dynamic model of simple me-
chanical systems using physical laws. We try to apply as simple knowledge as pos-
sible in the discussions. For example, the kinetic energy and the potential energy
of a mass point are K = %mv2 and P = mgh, respectively, where g is the gravity
acceleration and £ is the hight of the mass point over the horizontal plane. Similarly,
the kinetic energy of a mass point rotating around an axis is K = %@a)z where w is
the angular velocity, ® = mi? is the inertia moment to the rotation axis and / is the
length of the massless rod containing the mass point at its end.

For a bit more complicated case of a single rigid body, we can apply the results
in Appendix A. For example, for a rigid body having velocity v., angular veloc-
ity w and inertia matrix /. belonging to the center of mass the kinetic energy is
K = %(vc, veym + %(lcw, w). However, this result was also derived from the above
relations because the rigid body is the limit of infinite many point masses. From the
physical laws, we shall apply the Lagrange equations, see also Appendix A.

2.2.1 Dynamic Model of Inverted Pendulum

Consider a pendulum mounted on a moving car (see Fig. 2.4).
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Fig. 2.4 The model of the
inverted pendulum

2L

=) «—O—

Let L be the length of the rod mounted on the car and M the mass of the rod then
the inertial moment of the rod belonging to the center of mass:

L L M MBIt M ML?
@:/ 12dm=/ P—dl=——| =—213=" (2.61)
1 ;. 2L 2L 3|, 6L 3

The generalized coordinates are x and ¢. The coordinates of the center of mass
of the rod are xp; and yjyy, its velocity is vys. For simplicity, let us introduce the
usual notations in robotics: S, = sin(¢), Cy, = cos(¢). Then

xM=x+LS¢ = )'CMZ)'C-l—gbLCw,
ywm=LCy = yy=—¢LS,,

DL iy : : (2.62)
vy =i+ 94 =% +2LCk¢ + L2C£<p2 + LzSéga2
=12 4 2LC i + L2¢2.
The kinetic energy K and the potential energy P are respectively,
1 1 1
K = —mi2 4 ~Mv2 + -0¢?
MU T 300
(2.63)

1 1 1
= mez + EM(xz +2LCyi¢ + L*¢?) + §@¢2,

P=MgLC,.
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The derivatives, needed to Lagrange equations, are as follows:

K
ax
K
ox
9P
ax
K
B9
9K
By
P
g
d 9K
dr ax
d 9K

. .. A
i MLCy% — MLSyx¢+ (6 + ML?)§.

=mi + Mi + MLCy9,

=MLCyx + ML*¢ + ©¢,
= —MLS,i¢,
=—MgLS,,

= (m+ M)X +MLC,§ — MLS,¢?,

If the car is pulled with force F', then the Lagrange equations yield:

d oK 0K 0P

dr ax  9x = dx

=F = (m+M3Ji+MLCy§—MLS,¢*=F,
d oK 9K 9P
dt d¢  d¢  dg

=0 = MLCy¥+(0+ML*)§— MgLS,=0.

From here, it can be obtained firstly

. F—MLCy§+ MLS,¢?
X =
m+M

3

then after some algebraical manipulations

F — MLCy§ + MLS,¢*
m+ M

4 MCj C MLS,C,y¢?

L ¢ G=gS, - ¢ _p_ pCo?

m+M m+M

4
MLC, + ML2§¢ —~ MgLS, =0,

3 m+M

(2.64)

(2.65)

(2.66)

(2.67)

(2.68)
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m le

Fig. 2.5 Simplified model of
a car active suspension

x
m, Iz
7/

road surface

w

T T by inertia reference

and finally
C .
. 88y = g (F+MLS,¢%) (2.69)
¢ = T . .
L(§ T m+tM

The state vector is (x, x, ¢, ¢)T and the input signal is F. The two output signals
are x and ¢. The system is underactuated because there are two output signals and
only one input signal.

2.2.2 Car Active Suspension Model

Let us consider a vehicle (car, bus etc.) divided into 4 parts in case of 4 wheels, each
part is a composite mechanical spring-damper system consisting of the quarter part
of the mass of the body (together with the passengers) and the mass of the wheel.
The vertical positions are described by upward directed x| and x», see Fig. 2.5. The
distance between the road surface and the wheel’s contact point is the disturbance
w varying together with the road surface. The connections between the different
parts are flexible modeled by viscous friction and spring constant. The suspension
is active which means that the actuator produces the force F (control signal).

A good suspension system should have satisfactory road holding stability, while
providing good traveling comfort when riding over bumps and holes in the road.
When the car is experiencing any road disturbance, it should not have large oscilla-
tions and the oscillations should dissipate quickly.
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Denote m| and m, the mass of the (quarter) body and the wheel respectively,
while the flexible connections are described by the viscous damping factors (b1, b)
and the spring constants (ki, k2). The motion equations, using also the action-
reaction (d’ Alambert) principle, are as follows:

miXy = F — b1 (X1 —x2) — k1(x1 — x2),

maXy = —F + b1 (X1 —x2) + ki1 (x1 —x2) — b2k — W) — ka(x2 — w).

As usual, the second derivatives will be expressed:

.. by . . k1 1
X = ——@ —x)— — & —x2)+—F,
mi mi mi
. by . . ki by . . ko 1
Xp = —@ —x)+—x —x)——x—-—w)— —x—w)— —F,
my my my my my

Y1 =X — X2,

. by . k1 1
X1 = ——)’1 —— +—F

ni
. by . ki 1
Y=o oo +—y1 - —(xz—w)— —(xz—w)— m—F
1 =% -1

by  by\. ki ko
() (B,
mi nmy nmi my

by . . k2 1 1
+ 22 G — )+ 2 —w) + (— + — ) F.
my myp mj ma

In order to eliminate w, the equation of y; will be integrated:

b b b
y'1=—<—1+—2> L+ (1 — w)
ma

mi m3

ky ky 1 1
+/{—<—+—>y1 +—(xz—w)+ (—+—)F}df~
mi mi m3

2

Denote y; the integral and let us differentiate it:
. ki ki 1 1
w=—\—+— y1+—(x2—w)+ —+ — | F.
mip  mz mp  m3
Perform the substitution x, = x; — y1:

. ko ki ki ko 1 1 ko
nw=—x-\—+—=+—In+|—+—|F - —w,
mj ma mj mj my
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b by by b b
2 —<—L+—£+—?»q+n——£w
mj mj

y1I=—x
my mp mp
" b by by by k1 1
Yl=——1—\—+—n+—i—y—-w+yr—-——yn+—F
my mi my my mi mi
bib by (b b b k b 1 bib
=12y +{—1<—1+—1+—2>——1}y1——1y2+—F+ 2 w.
mimy mi\m; mp mp mi m mi mimy
State equation:
X = A% + Bu, y=C#x,
%= (xp, &1, v, 907 u=(F,w’, y=x1—x2=y1,
- 0 1 0 0
bib bl b b b k b
R0 R Reiy-f
ATl m g gy i
myp mi mp myp
k k k k
B . e
B 0 0
1 b1by
mi minmy
B =
b ’
0o -
1 1 k
_(m—1+m—2) —m—22

C= [O 0 1 0] .
Some typical values for a bus in SI units:

m1 = 2500, b1 =350, k1 = 80000,
my = 320, by = 15020, ko = 500000.

Typical requirements in case of bus:

In order to assure the traveling comfort, settling time shorter than 10 s and overshoot
less that 5% is usually necessary. For example, when the bus runs onto a 10 cm high
step the body will oscillate within a range of £5 mm (i.e., £0.005 m) and should
return to smooth ride within 5 s.

2.2.3 The Model of the 2 DOF Robot Arm

Consider the two degree of freedom robot arm moving in the vertical plane, see the
block scheme in Fig. 2.6.

The generalized coordinates are ¢ = (g1, ¢2)” := (¢1, ¢2)T and the generalized
forces are the driving torques 7 := (71, )T, The position vectors pointing from
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Fig. 2.6 The model of a 2 DOF robot moving in vertical plane

the origin of the fixed frame (coordinate system) K into the origins of the moving
frames K| and K, are respectively,

po1 = 1C1, 11 S1,007,

(2.70)

po2 = (1C1 +1C12, 11 S1 +1S12,0)7,

where the notations Cp := cos(q1), ..., S12 = sin(gq] + ¢2) are used. The velocities
in the basis of the fixed frame K¢ can be obtained by formal differentiation of the

position vectors:

V] =

01)2 —

[—118,
hCr | qu,
0
- 2.71)
=181 =082 —hSi2 n
LC1+0hCi2  DhCi2 < )
0 0 q2

The inertia matrix is constant in the frame of the moving body but is nonconstant
in the fixed frame, hence we transform the velocities into the basis of the moving
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frame:
[Ci S 0 c0
V] = lul = —S] C] 0 0U1 = ll 6]1,
0 0 1 0
- 2.72)
Ciz Si2 0 IRy 0 q‘l
V2 ::21)2: —Si2 Cip O 01)22 HhCy+1 D < >
0 0 1 0 0]\

If each moving frame will be parallelly transferred to the origin of the center of
mass, then the velocity (v.) and the inertia matrix belonging to the center of mass
have to be used in the motion equation. In the block scheme, /1 and I, are already the
right lower elements of the inertia matrices I.; and I.;, respectively. The velocities
Ve, Ue2 can be immediately written down using simple geometrical considerations:

0

Vel = | Le1 | 41,

0

- (2.73)

115 0 i
vo=|0Ca+12lo < )
0 0 q2

From the geometrical image, the angular velocities are simply

w1 =(0,0,41)7,
w2 =1(0,0,41+¢)7,

which can also be written in matrix-vector form:

w1 =014,
1
- (2.74)

0 0 g
w=[0 0 (1)
1 1 q2

Hence, the kinetic and potential energy of the robot arm are respectively,

1 1
K= §<vcl,vcl)ml + §<11C01,a)1>

1 1
+ E(vcz, ve2)my + 5(120)2, @3), (2.75)

P =mgle1S1 +mag(1S1 +1:2812).
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After simple algebraic manipulations, the kinetic energy can be formulated in the
quadratic form

1 | ..
K= E(H(q)q,q) =5 ZZDMJ%
ik
where

Hg) = |:D11(q) D12(Q):|’

Di12(q) Dxn(q)

Dy =ml? +m2(l%+lfz+2lllczcz)+11 + Iy, (2.76)
D1y =ma(lhiCa +12)ler + I,

Dy = mzlczz + 1.

The dynamic model of the robot arm can be found using the Lagrange equations.
Performing the differentiations and introducing the notations

D112(q) = —mal1l2 S,

P
Di(g) = 5 =miglaCi +mg( C1 +LeaCro). (2.77)

JP
Dy (g) = 0 =magl2Cr2,

we obtain the following dynamic model of the two degree of freedom robot arm:

D11(9)d1 + D12(9)é> + D112(9) (24162 + ¢3) + Di(q) = 71,

(2.78)
D12(q)g1 + D2(q)ia — D112(q)¢? + Da(q) = 1.

The state vector may be x := (¢1, g2, 41, ¢2)” , the control signal (the input of
the model) is u = (11, ‘L’2)T. Since, from physical considerations, the matrix H (g)
is positive definite, thus invertible, therefore ¢; and ¢, can be expressed from (2.77)
and (2.78). Hence, the state equation can be written in the input affine form

x=fx)+GMx)u. (2.79)

2.3 Stability of Nonlinear Systems

The stability of nonlinear systems will be discussed in state space, in signal spaces
and in the class of dissipative systems. The discussion is based on the classical work
of Lyapunov [86] and more recent results of LaSalle and Lefschetz [77], Vidyasagar
[152], Khalil [62] and van der Schaft [127].
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x(2)

0

>t
)
Fig. 2.7 Illustration of Lyapunov stability definition
2.3.1 Stability Definitions
Let the state equation of the time varying nonlinear system be
x=ft,x,u),
(2.80)
y=2g(t, x,u).

Assuming u(t) = 0 or u(t) = up(t) known input signal, the nonlinear system
can be brought on the form x = f(¢, x). In what follows we shall assume f €
C,(ggl)([a, o0) X Dy), that is, f is continuous in ¢ and differentiable in x, further-
more a € R' and D, C R" is open, for example @ = 0 and D, = R". Although
different stability definitions exist for nonlinear systems, the most widespread is the
Lyapunov stability definition.

Lyapunov stability

Let £(¢) be the solution of the differential equation x = f (¢, x). We say that the
solution £(¢) is stable in Lyapunov sense, if for every 7y € [a, o0) and for every
& > 0 there exists §(¢, fp) > 0 such that if ||x(t9) — &(t9)|| < §(e, t9) and x(¢) is the
solution then ||x(z) — £(¢)|| < & for every ¢ € [ty, 00).

The definition can also be illustrated so that small perturbing the initial condition
everywhere with respect to £(¢) and starting the system from the perturbed initial
condition the new solution remains in the neighborhood of £(¢). A clear interpre-
tation is shown in Fig. 2.7. The solution £(#) may be an equilibrium point of the
system, a limit cycle (periodical solution) or any other solution of the state equation
(for example during chaos investigations).
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The following terminology is usual:

(i) The solution &(¢) of the system is unstable if £(t) is not stable.

(i1) The solution & (¢) of the system is uniformly stable if £(¢) is stable in Lyapunov
sense and §(¢, o) = §(¢) does not depend on 1.

(iii) The solution £(¢) of the system is asymptotically stable if £(t) is stable in
Lyapunov sense and for every g € [a, 0o) there exists 61(f9) > O such that
if ||x(t9) — E(tp)|| < 81(t9) and x(¢) is the solution then lim;_, o ||x(f) —
§@)=0.

The definition of (for the practice particularly important) asymptotic stability
means that small perturbing everywhere with respect to £(¢) and starting the system
from the perturbed initial condition then the new solution remains in the neighbor-
hood of &£(¢) and actually approaches &(¢) if + — oo.

We shall show that the stability investigation can be reduced to the stability
investigation of & = 0 (equilibrium point) of a modified system satisfying a spe-
cial condition. Namely, let us introduce the notation x(¢) := x(¢) — £(¢), that is,
x(t) =&(t) + x(1), then

di() _dx(t) ds@)
dr — dt dr

fLEO+E0) = f(1.E0) =: f(1.20)).

which means that the new form of the stability problem

dit) _ -
a —TE0) (2.81)

£(t) =0 (equilibrium point) <  f(¢,0)=0.

However, it should be stressed that the new system has to satisfy the condition
£(t,0) = 0. Henceforth, we assume that the transformation has already been per-
formed and omit the notation “~”.

The stability is a local property in the definition, see & (¢, fy) > 0. It does not say
anything directly about the region of attraction for the equilibrium point £ = 0. Fur-
ther results are needed to answer what is the region around the equilibrium point
from which choosing the initial condition the trajectory (solution) remains in the
neighborhood of the equilibrium point or even more it does approach the equilib-
rium point.

We shall speak about global stability if the domain of attraction is the whole
space. According to these, we shall use the abbreviations GAS, UGAS etc. meaning
that the system is globally asymptotically stable, uniformly globally asymptotically
stable etc.

2.3.2 Lyapunov Stability Theorems

In the stability investigations, the idea of positive definite function plays an impor-
tant role, in the applications it serves as Lyapunov function candidate.
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(i) The scalar valued function V (t, x) is positive definite, if there exists a scalar
valued function W(x) € C such that V (¢, x) > W(x) > 0 for every ||x|| # 0 and
Vi, 00=WwW(0)=0.

(i) V (¢, x) is negative definite if —V (¢, x) is positive definite.

2.3.2.1 Lyapunov’s Direct Method

Theorem 2.3 Lyapunov’s first theorem, direct method.
Let & =0 an equilibrium point, that is,

dx ©o.1)
E=f(f,x)y f(,0)=0, f,x)eCy. (2.82)

1. If3av(t,x) e C,(’lx’l) ([a, 00) x Dy) positive definite function (so called Lyapunov
function) such that for every x(t) solution along the trajectory yields

dv(t,x(1))

o <0 (V negative semidefinite), (2.83)

V(t,x) =
then the equilibrium point & = 0 is stable in Lyapunov sense.
2. If additionally

dvVi(t,x(t))

T <0 (Vv negative definite), (2.84)

V(t, Xx) =
then the equilibrium point &€ = 0 is asymptotically stable in Lyapunov sense.

Notice that

dv_avdx oV _av.. o oV 059
dr  oxdr ot ax’ VT '

The following simple proof can seldom be found in control books for this general
time variant case. The proof is based on the fact that any continuous function over a
compact (bounded and closed) set assumes its extremum value.

Proof (Stability part) Let ¢ > 0 and consider the spherical surface S = {x : ||x|| =
¢} that is evidently compact. Then W (x) € C assumes its minimum over S, that
is, 3x* € §,, such that infyes, W(x) = W(x*) =« > 0. Let 7y € (a, 00), then,
since V(t,x) is continuous and V(¢,0) = 0, hence 30 < §(#p, &) < ¢ such that
V{x : ||x|| <8} yields O < V(t,x) < «. Let ||x(t)|| < & and x(¢) (not identically
zero) solution of the state equation. It can be shown that the trajectory x(¢) re-
mains in the interior of the spherical surface S;: ||x(¢)|| < &, Vt € [tg, 00). Other-
wise, it would exist #; € [fg, 00), such that ||[x(f)] <8 <&, |[x@)| <&, Vt <1y,
but ||x(t1)|| = ¢. This leads to contradiction because dv/dt := V(t,x(t)) <0,
thus v(¢) is monotone nonincreasing along the trajectory, hence o < W(x(t1)) <
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V(t1,x(t1)) < V(tg, x(tp)) < a. Therefore, ||x(¢)| < €, Vt € [tg, 00), and thus the
equilibrium point & = 0 is stable. O

Proof (Asymptotic stability part) We already know that £ = 0 is stable. Let
llx (o) || < 81(2p) sufficiently small and x(¢) (not identically zero) solution. It has
to be proven that lim,_, o [|x(#)|| = 0. Now we know that dV /dt < O (negative def-
inite) along the trajectory.

First, we shall prove that, using the notation lim;_, o, V (¢, x(¢)) = inf; V (¢, x(¢))
=: «, it cannot be satisfied « > 0. If, in contradiction, we would assume « > 0,
then it would follow from o« > 0 that |[x(¢)|] > B8 > 0, Vt € [tg, 00). Other-
wise, that is, in case of 8 = 0, there would exist a sequence {t1,%2,...,%,...}
such that limy o V (f, x(t)) = 0, which would be a contradiction because of
lim;— 00 V(¢,x(t)) =a > 0. Hence, @ > 0= ||x(#)|| > B > 0, Vt € [ty, 00).

After this, we shall show that o > 0 leads also to contradiction. Namely, we
know that the equilibrium point is stable, thus we can assume there exists 0 <
B <|x@®| <e, Vtelt, o00). Since V(t,x) <0 (negative definite), there exists
Wi(x) € C positive definite and continuous function such that v(z) := V(t, x(1)) <
—Wi(x(1)) <0.Let y :=infg<|x|<e Wi(x), then y > 0 and by integration

t

v(t)=v(fo)+/

fo

t
V(e x@)dr vt - [ Widr vt -y - o).
0]

Hence, 3¢, v(¢#) < 0 which is a contradiction since V is positive definite, and thus
V (¢, x(t)) > 0 along the trajectory. Hence, in contradiction to the original assump-
tion, @ = 0 and therefore lim;_, o, V (¢, x(¢)) = 0.

It has yet to be shown that also the trajectory x(¢) approaches zero. But this fol-
lows from the fact that V' is positive definite, W € C is continuous and positive def-
inite, V (¢, x(t)) > W(x(¢)) > 0, thus 0 = lim;_. oo V (¢, x(2)) > limy—. 00 W(x(2)) >
0= lim;— o0 W(x(¢)) =0, and since W € C is positive definite thus lim;_, o, x (¢)
= 0. Hence, the equilibrium point £ = 0 is asymptotically stable in Lyapunov
sense. O

In order to use Lyapunov’s direct method, an appropriate Lyapunov function can-
didate has to be found from which we can deduce the stability of the equilibrium
point. Positive functions like norm, energy functions etc. can be suggested as Lya-
punov function candidates. In some simple cases other possibilities exist, for exam-
ple, the question arises whether is it possible to deduce the stability of the nonlinear
system from the stability of the linearized system.

2.3.2.2 Lyapunov’s Indirect Method

Theorem 2.4 Lyapunov’s second theorem, indirect method.

Let &€ =0 be an equilibrium point, i.e. fl—f = f(t,x), f(,0 =0, f(t,x) €

Cl(ggl), and let us introduce the notations A(t) := fl(t,x)|x=0 and fi(t,x) =

f(t,x) — A()x.
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If it is satisfied

(i) limyx—0sup;>g l\T -
(i1) A(:) is bounded.

(iii) x = A(t)x linear system is uniformly asymptotically stable,

then the equilibrium point &€ = 0 of the original nonlinear system is uniformly
asymptotically stable.

The sketch of the proof is as follows. Consider the linearized system x = A(#)x
and its fundamental matrix @ (z, 7). Let

P(t) = /oo T (1,nP(z,1)dr,
t

then (P(t)x, x) = ftoo |®(z,t)x||>dt > 0. Hence, (P(t)x, x) is a Lyapunov func-
tion candidate for which the following conditions are satisfied:

(1) P(¢) is positive definite and 3, B > 0, such that V¢, x colx)? 5 (P(t)x,x) <
Bllx |2, furthermore it yields P(t) + P(t)A(r) + AT (1) P(1) = —

(2) V(t,x):=(P(t)x, x) is positive definite function with W (x) := oz||x||2

3) V(t,x) = —|x|? +2(P(t)f1 (t,x),x) <0, since ||2(P(t) f1(t, x), x)| can be
made less than ||x||2 in some neighborhood of x = 0 because of assumption (i)
and properties (1).

Notice that Lyapunov’s indirect method does not give any information about the
attraction domain of the equilibrium, hence only the local stability of the equilibrium
has been proven.

For LTT systems, the classical stability idea is strongly related to the poles of the
transfer function which are equal to the eigenvalues of the state matrix. Stability
was defined for such systems so that the transients are decaying if the initial con-
ditions are changed from zero to nonzero value. The following theorem shows the
connection between classical and Lyapunov stability.

Theorem 2.5 Lyapunov equation characterizing stable LTI system.

Consider the continuous time linear time invariant system x = Ax for which ev-
idently & = 0 equilibrium point. Let P be a constant, symmetrical and positive def-
inite matrix (P > 0) and let V (x) := (Px, x) be the Lyapunov candidate function.
Perform the substitution X = Ax in the derivative of V: V = (Px,x) + (Px, %) =
((PA+ AT P)x, x). Then V<0 (negative definite), if 30 > 0 positive definite ma-
trix such that the Lyapunov equation is satisfied:

PA+ATP=-0, P>0, 0>0. (2.86)

The following statements are equivalent:

(1) For all eigenvalues, s; of the matrix A yields Res; < 0.
(ii) Forevery Q > 0, the Lyapunov equation has the positive definite solution P :=

I AT Qe dt > 0.

The proof is simple see, for example, [152].
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2.3.2.3 LaSalle’s Method for Time Invariant Systems

For the nonlinear time invariant (autonomous) system class x = f(x), f(0) =0
LaSalle [77] gave a stronger result than Lyapunov’s direct method which is based
on the idea of positive limit set and invariant set.

Positive limit set.

The positive limit set of the trajectory x(¢) is I'" := {y : 3{t,,} sequence, t,, — 00 as
n — 00, such that lim,_, o, x(t,) = y}. The positive limit set of the trajectory x (¢)
may be for example a limit point lim;_, 5, x (¢) (if it exists), or a limit cycle (isolated,
closed and periodical curve) to which the trajectory converges.

Invariant set.

The set M is invariant if each trajectory (solution of the differential equation
X = f(x)) going through any point of M lies entirely in M. If the set E is not
invariant then we can speak about its maximal invariant set M contained in E:
M =max{H C E : x(0) € H, x(¢t) solution = Vt:x(t) € H}. The positive limit
set I'" of a bounded trajectory x(z) is always nonempty, compact (bounded and
closed) and invariant.

Theorem 2.6 LaSalle’s maximal invariant set theorem for autonomous nonlinear
system.

Assume the system x = f(x) has equilibrium point 0 = f(0) and f(x) € C)(Cl).
Assume there exists V (x) Lyapunov function which satisfies the following conditions
for some fixed r > 0 over the compact set {x : |V (x)| <r}=: £2,:

@) V(x) is positive definite,i.e. V(x) >0and V(x) =0 x =0.
(i) V(x) = (gradV, f) <0 (negative semidefinite).
(i) Vix)eC ,((1) (continuously differentiable).

Let M be the maximal invariant set contained in E := {x € £2, : V(x) = 0}. Then
for every initial condition x(0) € §2, the resulting trajectory x(t) asymptotically
approaches the maximal invariant set M.

More detailed it means that for every & > 0 there exists 7', such that for every
t > T the trajectory x(¢) remains in the e-neighborhood of M: There exist y(z, ¢) €
M + {x :||x|| <e¢&}suchthat ||x(t) — y(t, &)| < e.

Notice that £2, is an attraction set of the equilibrium point although not neces-
sarily the largest one.

Corollary If M = {0} is the maximal invariant set contained in E = {x € §2; :
V(x) = 0}, then for every x(0) € §2, the corresponding x(t) trajectory asymptoti-
cally approaches the equilibrium point 0 = f(0).

Corollary Let x = (yT,z")T and assume that beside the conditions of LaSalle’s
theorem it is additionally satisfied:

(i) y=¢(y,2) and z=9(y, 2).
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(i) V(x)=V(y,z2)=0=y=0.
(iii) ¢(0,2) =04 z=0.

Then the equilibrium point y = 0, z = 0 is asymptotically stable. It is evident
namely, that according to (ii) and the definition of E in each point of M C E yields
y = 0. Since M is an invariant set and y is constant zero over it, therefore y =0
for each trajectory running in M, and thus by (iii) yields also z = 0. Hence, M
consists only of a single point and any trajectory x(t) starting in §2, asymptotically
approaches the equilibrium point.

2.3.2.4 K and KL Comparison Functions for Stability Investigations

In order to sharpen the stability theorems in the direction of global asymptotic sta-
bility, some further definitions are necessary.

(i) The function « : [0,a) — R™ is called K -function if a(-) is strictly monotone
increasing and «(0) = 0. Especially, if @ = oo and «(r) — oo if r — oo then
a(r) is a Ko -function.

(ii) The function B :[0,a) x Rt — R™T is called KL-function if B(r,s) satisfies
that B(-, s) is a K-function in the first variable for every fixed s, while B(r, -) is
monotone decreasing in the second variable for every fixed r and B(r, s) — 0 if
s — 00.

It is clear that, for example, «(r) = atan(r) is a K-function, but not a K-
function, however a(r) = r¢ is a Koo-function for ¢ > 0, while B(r,s) = r€e™*
is a KL-function for ¢ > 0.

The following theorems are valid for x = f (¢, x), the proofs can be found in [62].

Theorem 2.7 Relations between stability and comparison functions.
The equilibrium point £ =0 is

(1) Uniformly stable <> there exist o(r) K -function and ¢ > 0 independent of t
such that

[x@®| <e(|x@)|)., Yi=t=0, ¥|x@)| <c.

(i) Uniformly asymptotically stable <> there exist B(r,s) KL-function and ¢ > 0
independent of ty such that

|x@®] < B(]|x(t0)

l.t—10), Vi=1>0, V|x@)| <c.

(iii) Globally uniformly asymptotically stable < there exist S(r,s) KL-function
such that

x| < B(]xt0)

,t—1g), Vt>19>0, Vx(rp) € R".
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Theorem 2.8 Relations between Lyapunov function and qualified stability.
Let D C R" be an open set, 0 € D, V :[0,00) X D — R continuously differen-
tiable function satisfying

Wi(x) < V(r,x) < Wa(x),

where W1(x), Wa(x) are positive definite and continuous,
A% Vv
— f(, — <0.
gy /O 5=

Then the equilibrium point £ =0 is

(1) Uniformly stable.
(i1) Uniformly asymptotically stable if %—Zf(t, x) + %—‘t/ < —Wj3(x), where W3(x)
is positive definite and continuous.
(iii) If beside the previous condition it is also satisfied that r and c are chosen so
that B, :={x : ||x|| £r} C D and 0 < ¢ < min|y| =, Wi(x), then every trajec-
tory starting in {x € B, : Wa(x) < c} satisfies

[x®] = £(]x )|

1 —1p), Vi >1g>0

for some class KL-function. Specifically, if D = R" and W\ (x) is radially un-
bounded then the equilibrium is globally uniformly asymptotically stable.

Remark The proof of the strong result iii) needs the construction of the class
K-functions a1 (Jlx|)) < Wi(x), Wa(x) < ax(llx[]), as(llx[]) < W3(x), then o =
o3 o a{l, y() =: o(yo,t — tp) is the solution of the scalar nonlinear differ-
ential equation y = —a(y), y(tp) = V(t9,x(tp)) and finally B(x(ty),t — to) :=
ap (@ (@(Ix @)1, 1 = 10))-

Till now, the input signal has not appeared in the stability investigations, hence
the discussion should be extended to the input-state stability of nonlinear systems.
Consider the nonlinear system x = f (¢, x, u). We shall assume that the unexcited
system has equilibrium point £ = 0, that is, f (¢, 0,0) =0, and we shall investigate
the influence of the input signal u(#) on the stability.

2.3.2.5 Input-to-State Stability (ISS)

The nonlinear system x = f (¢, x,u) is called input-to-state stable (ISS), if there
exist B(r, s) class KL-function and y (r) class K-function such that for every initial
condition x (fy) and every bounded input u(¢) there exits the solution x(¢), V¢ > fg

satisfying the following inequality:

|x®] < B(]|x(0)

1 — o) +y<t iupq”u(r)”).
0=T=
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Notice that the above condition assures the boundedness of the trajectory x (¢) for
every bounded input u(¢). If 7 is increasing the solution x(¢) is uniformly bounded
by a K-function, in the argument of which stands sup,, llu(z)l, furthermore if
t — oo yields u(¢) — 0 then x(¢) — 0 is also valid. Since for u(¢) = 0 the inequal-
ity reduces to [|[x(®)|| < B(llx()|l,t — to), hence the equilibrium point &£(¢) = 0
of the unexcited system is globally uniformly asymptotically stable. The following
theorem gives a condition of ISS, the proof can be found in [62].

Theorem 2.9 Sufficient condition for ISS stability.
Let V : [0, 00) X R" — R be a continuously differentiable function satisfying the
conditions

ar(llxll) < vV, x) < az(lxll),
oV 04
S Exw+—m < =Ws@), Vil = p(llull) >0

for every (t,x,u) € [0,00) x R" x R™, where a1, ay are class Ko-functions, p
is class K -function and W5(x) is positive definite over R". Then x = f(t,x,u) is
input-to-state stable with the choice y := al_l owpop.

In the expressions, —1 denotes the inverse function and circle denotes the com-
position of functions.

2.3.3 Barbalat Lemmas

Functions like sin(r), e, log() etc. and combinations thereof often appear in dy-
namic system responses. Unfortunately, it is not an easy thing to deduce system
behavior from such signals. Against typical engineering feeling, if f — 0 it does
not follow that f(¢) has a limit as + — oo. For example, f(¢) = sin(log(z)) has
no limit as ¢t — oo while f (1) = w — 0 as t — oo. Similarly, the fact that
lim;_, o f(¢) exists, does not imply that lim;_, f (t) = 0. For example, f(¢) =
e~ sin(e?) tends to zero while its derivative f (1) = —e ™' sin(e?) + 2’ cos(e?') is
unbounded. On the other hand, if f(¢) is lower bounded and decreasing (f (1) <0),
then it converges to a limit.

To find reliable results, consider first the definition of the limit value of a function.
We know from standard calculus that lim;—. f(#) = a if for every ¢ > 0 there
exists T (¢) > 0 such that for all ¢+ > T follows | f(¢) — a| < €. As a consequence,
if lim;_, » f(t) # 0, then there exists a &9 > 0 such that for all 7 > 0 we can find a
Ty > T satistying | £ (T1)| = €o.

Uniformly continuous functions are especially important. We call f(¢) uniformly
continuous if for every € > 0 there exists §(g) > 0 such that | f(#2) — f(t1)| < ¢ if
|to — #1| < 8. According to the mean value theorem, if the function f: R — R is
differentiable, then f () — f(¢1) = f(t)(t2 —1t1) where T € (11, 1p). Iff € Lo, that
is, f is essentially bounded, then f is uniformly continuous and § can be chosen

&/l flloo-
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Lemma 2.1 (Barbalat lemmas)

1.

2.

3.

Let f : R — R be uniformly continuous on [0, 00). Suppose that limt_mofot
f(z)dr exists and is finite. Then lim; .~ f(t) =0.

Suppose that f € Lo, f € Lo and lim;_, oo fot f(z)dr exists and is finite. Then
lim/— o f () =0.

If f(1) is differentiable and has finite limit lim;_, o f(t) < 00, and if f is uni-
formly continuous, then f(t) — 0 as t — oo.

Proof

1.

If the first statement is not true, then there is a gy > 0 such that for all T > 0
we can find 77 > T satisfying | f(T1)| > &¢. Since f(¢) is uniformly continuous,
there is a positive constant § > O such that | f(t + 1) — f(¢)| < go/2 forall t > 0
and 0 < 7 < §. Hence,

lf®O|=|f®) — T+ T = |fTD|—|f®)— F(TD)] > e0—e0/2 =¢0/2

for every t € [T1, T1 + 8]. Therefore,

Ti+$
‘ / f@®)dt
T

where the equality holds because f(¢#) does not change the sign for ¢ € [T7,
T; + §8]. Thus, fot f(t)dt cannot converge to a finite limit as t — oo, which is a
contradiction. Hence, the first statement is valid.

The second statement follows from the fact that if f € Lo then f is uniformly
continuous and the first statement can be applied.

. The third statement follows from the fact that because of

T1+6
= / | f(O)]dt > g98/2
T,

f(co) — £(0) = /0 fde

the right side exists and is finite. Since f is uniformly continuous, we can apply
the first statement with f instead of f. 0

The following lemma gives an immediate corollary of Barbalat’s lemma, which

looks like an invariant set theorem in Lyapunov stability analysis of time varying
systems.

Lemma 2.2 (Lyapunov-like form of Barbalat’s lemma) If a scalar valued function
V(x,t) satisfies the following three conditions:

@) Vix,t)is lower bounded.

(1) V(x,t) is negative semidefinite.
@iii) V(x,t) is uniformly continuous in t.

Then V(x, t) > 0ast — oo.
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Observe that V (x, ) can simply be a lower bounded function instead of being
positive definite. Notice that V(x t) is uniformly continuous if V(x t) exists and is
bounded.

2.3.4 Stability of Interconnected Passive Systems

Stability problems can be considered also in function spaces for fixed (typically
zero) initial conditions. For p € [1, 00), the Lebesgue measurable function f :
[0, 00) — R! belongs to L,[0, 00) if fooo | f(#)|? dt < oo and then, with the norm
Ifly,= (fooo | £()|P dt)!/P the space L ,[0, 00) is a Banach space (linear normed
space in which the Cauchy sequences are convergent). If p = oo, then with the norm
Il flloo =esssup|f(t)] < oo the space Lso[0, 00) is also a Banach space.

The definition can easily be extended to vector valued functions f = (fi,...,
T, fie L,[0,00),i=1,...,n where, with the norm || |, := "7, ||f,»||§,)‘/2,
the space L’)[0, 00) is also a Banach space.

For p = 2 a scalar product (f, g) fo (f(t), g(¢))dt can be explained and the
norm can be defined by || f|| = ((f, f)) NY/2 Then L7510, o0) is a Hilbert space.

Further extensions are possible for functions which are not necessarily bounded
but satisfy the above conditions for every finite 7 > 0 if the function is substituted
by zero for V7 > T'. Such extended spaces are denoted by L7,. For simplicity, we
shall consider only L'[0, co) signal spaces.

2.3.4.1 Lp-Stable Nonlinear Systems
Let G: L;’, — L’;’ a nonlinear system mapping u € L’;,[O, 00) input signals into
yE L’Pf’ [0, o0) output signals. Then the nonlinear system is

(i) Lp-stable with finite gain (wfg) if there exist y,,, 8, > 0 constants such that

xely, = Iylp=vplxlp+Bp.

(ii) L p-stable with finite gain without bias (wb) if there exist y, > 0 constant such
that

xely, = |ylp=vplxll,.

The gain of the nonlinear system is defined by y, (G) = inf{y,} satisfying (i) for
wfg and (ii) for wb, respectively.

Let us consider now interconnected stable nonlinear systems according to
Fig. 2.8 and ask for the stability of the closed loop. The proofs of the following
two theorems are simple, see also [152].
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Fig. 2.8 Scheme of
nonlinear control system

Theorem 2.10 Small gain theorem.

Consider the closed loop system according to Fig. 2.8 and let p € [1, c0].
Assume that G1, Gy are causal and L,-stable wb (or wfg) nonlinear systems,
vip = V1p(G1) and y2p = v2p(G2). Then the closed loop system is L ,-stable,
i
if

Yip-vep < 1.

The inputs of nonlinear electrical circuits are voltage and current generators, the
outputs are voltages and currents and the instantaneous power is (y(¢), u(¢)). The
circuit is passive if the input energy (integral of the power) in the system does not
exceed the change of the stored energy. If the inductive and capacitive elements
are initially chargeless, then fooo(y(t), u(t))dr > 0 for passive electrical circuits.
Passive systems generalize this principle.

Notice, scalar product needs that the dimension of input and output signals is the
same.

2.3.4.2 Passive Systems

Let G : L5 — L% anonlinear system. We say that
(i) G is passive, if 38 € R! such that (u, Gu) = [;"(u(t), (Gu)(1))dt > B,

Yu € L.

(ii) G is strictly input passive, if 3o > 0, 8 € R! such that (u, Gu) > allull% + B,
Yu € L.

(iii) G is strictly output passive, if 3o > 0, 8 € R! such that (1, Gu) > «|| (Gu)ll% +
B,Yue L.

Notice that since u =0 € L, thus 0 > S. It can easily be shown that strictly output
passive system is L,-stable wfg.

Theorem 2.11 Passivity theorem in Lp space.
Consider the closed loop system in Fig. 2.8 with G1, G, € L’zl.

(1) If both G and G» are strictly output passive and both uy and uy are active
then, for the output (; ; ), the closed loop is strictly output passive and L-stable
wfg.

(i1) If Gy is strictly output passive, G is passive and uy = 0 (i.e., only u1 is active),
then for the output y1, the closed loop is strictly output passive and L,-stable
wfg.

(iii) If G is passive, G is strictly input passive and u, =0 (i.e., only u is active),
then for the output y1, the closed loop is strictly output passive and L-stable
wfg.
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2.3.4.3 Dissipative Systems

Dissipativity can be seen as passivity in state space. The storage function serves as
Lyapunov function. The number of inputs and outputs is the same, the input and
output signals are from L.

Consider the nonlinear system X : x = f(x,u),y=h(x,u),x € R",u,y € R™.
The real valued function s(u, y) will be called supply rate. The system is called
dissipative if there exist S : R" — R™ so called storage function such that for every
x(to) € R™ and for every | > to the following dissipative inequality yields:

1

S(x() 5S(x(to))+/ s(u(), y())dt. (2.87)

fo

Specifically, if equality holds then the system is called lossless.
As an example, consider the supply rate s(u, y) := (u, y). Assuming S > 0, then

T
/0 (u@®), y(0))dt = S(x(T)) — S(x(0)) = —S(x(0)) (2.88)

for every x(0), for every T > 0 and for every input u(-) which means that the input—
output mapping G () is passive with the choice f = —S(x(0)). Here, S can be
considered to be the stored energy motivating the following definitions.

Passive dissipative systems
Assume the nonlinear system has the form X : x = f(x,u),y = h(x,u), x € R",
u,y € R™, then the system

(1) Is passive, if it is dissipative with respect to the supply rate s(u, y) = (u, y).

(ii) Is strictly input passive if it is dissipative with respect to the supply rate
s(u,y) = (u, y) — 8||u||* where § > 0.

(i) Is strictly output passive if it is dissipative with respect to the supply rate
s(u,y) = (u,y) —e||y||*> where & > 0.

(iv) Is conservative if it is lossless and s(u, y) = (u, y).

(v) Has Ljp-gain < y if it is dissipative with respect to the supply rate s(u, y) =
372 ull® = 5 1ylI* where y > 0.

For example, in the last case

1 T
3 | el = o) dr = s(:1) = $(:0) = =5 ()

from which after regrouping follows

T T
/(;H}’(t)sztE)/Z/O || dt +25(x(0)),

which is equivalent to L ,-stability wig < y.
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The dissipativity condition (2.87) can be substituted by its differentiated form
which is sometimes easier to check. By dividing the inequality by #; — ¢y and letting
t1 — ty, we obtain the equivalent differential dissipation inequality

Se@) f(x,u) <s(u,h(x,w), Vx,u,
35S (2.89)
o)

0xy,

) S
S, () = (E(")"'

Specifically, in case of input affine nonlinear system, that is, X, : x = f(x) +
g(x)u,y = h(x), and assuming the system is passive with respect to the supply
rate s(u,y) = (u,y) = (u, h(x)), then the differential form for X, amounts to
SLLf(x) + gxu] < uTh(x), Vx,u, or equivalently (choosing first u = 0) to
the Hill-Moylan conditions

Sy (x) f(x) =0,

. (2.90)
S, (0)g(x) =h" (x).

Special cases:

(i) For LTI system, the conditions are equivalent to the Kalman—Yacubovitch—
Popov conditions if the storage function is S(x) = %xT Px,where P = PT >0,
namely ATP+PA<Oand BTP=C.

(ii) If the input affine system X, is strictly output passive with respect to the supply
rate s (u, y) = (u, y) — €||y||> where ¢ > 0, then (choosing first u = 0) yields

SL(0) f () < —eh” (Oh(),
(2.91)
S (g =h'(x).

(ii1) If the input affine system X, has finite L,-gain with respect to the supply rate
s, y) = gy lul® = 31ly[, then

1 1
S;(x)[f(x)+g(x)u]—§y2||u||2+§||h(x)}|250, Ve,u.  (2.92)

(iv) The maximum of the left side in the inequality (2.92) is reached at u* =
#gT(x)SXT(x) and substituting it back we obtain the Hamilton—Jacobi—

Bellman inequality
’ L ’ T 'T l T
Sx(X)f(X)Jrzyng(X)g(X)g (xS, (X)+2h (0)h(x) =0, Vx. (2.93)

Hence, ¥, has Ly-gain < y if and only if (2.93) has continuously differentiable
solution S > 0. We remark that the equality form is in strong connection with
the Hamilton—Jacobi—Bellman equality of dynamic programming.

The following theorems were proven in [127].
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Theorem 2.12 Extremum property of S, amongst storage functions.
Consider the nonlinear system X. The system is dissipative with respect to the
supply rate s(u, y) < for every initial condition x(0) = x yields

T
Sq(x) = sup —/ s(u(t), y(t)) dt < o0. (2.94)
u(-,T=0 Jo

Furthermore, every other storage function satisfies Sq(x) < S(x), Vx. Thus, S,(x)
can be considered the maximal energy which can be extracted from the system X if
the initial condition is x.

If each state x of X can be reached from x, within finite time, then X' is dissi-
pative & S, (x4) < 0o. Moreover, if Gy, is passive wb (8 =0), or has Ly-gain <y
wb, then S, (x,) = 0.

Zero-state detectability.

The nonlinear system X, is called zero-state detectable if u(r) =0, y(r) =0, Vt >
0= lim; oo x(#) = 0. S;(x4) = 0 is equivalent to the zero-state detectability con-
dition.

Theorem 2.13 Connection between passivity and asymptotic stability.

Consider the zero-state detectable nonlinear system X,. Let S > 0 with S(0) =0
be solution to (2.91) in case of strict output passivity, or (2.92) in case of finite
Ly-gain. Then & = 0 is asymptotically stable equilibrium point. Moreover if S(x)
is proper, that is, {x : S(x) < ¢} is compact, V¢ > 0, then the equilibrium point is
globally asymptotically stable.

Consider the closed loop nonlinear system according to Fig. 2.8 but at the place
of G; stands the system X : X; = fi(xi, e;), yi = hi(xi, e;), i = 1,2. Assume that
the strict dissipative conditions

n

Si(xz'(t1))§Si(xi(to))+/ ((ei(t)»yi(t»_Si”)’i(t)Hz)dta i=12 (295

fo

are satisfied.

Theorem 2.14 Stability of interconnected dissipative systems.

(i) Suppose both X\ and X, are passive (strictly output passive) and (uy,us)
external inputs are active, then the closed loop system with outputs (y1, y2) is
output passive (strictly output passive).

(i1) Suppose S; satisfies (2.95), is continuously differentiable and has (isolated)
local minimum at xl?*, i = 1,2, furthermore no external inputs are active, that
is, uy = up = 0. Then (x{,x3) is stable equilibrium point of the closed loop
system.

(i) Suppose X; is strictly output passive and zero-state detectable, S; satisfy-
ing (2.95), is continuously differentiable and has (isolated) local minimum at
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xi* =0,i =1, 2, furthermore no external inputs are active, that is, u1 = us = 0.
Then (0, 0) is asymptotically stable equilibrium point of the closed loop. If ad-
ditionally S; has global minimum at x;" =0,i=1,2, then (0,0) is globally
asymptotically stable equilibrium point of the closed loop system.

Theorem 2.15 Small gain theorem for interconnected dissipative systems.

(1) Suppose X; is zero-state detectable, has finite gain y;, i = 1,2, with y| - y» < 1.
Suppose S; satisfies (2.95), is continuously differentiable and has (isolated) lo-
cal minimum at x;" =0,i =1, 2, furthermore no external inputs are active, that
is, u1 = up = 0. Then (0, 0) is asymptotically stable equilibrium point of the
closed loop. If additionally S; has global minimum at x} = 0 and is proper,
i =1,2, then (0,0) is globally asymptotically stable equilibrium point of the
closed loop system.

(1) Suppose X,; is input affine system, has finite gain y;, i = 1,2, with y1 - y» < 1.
Suppose S; satisfies (2.95), is continuously differentiable and S;(0) = 0 (there-
fore S;(x) is positive semidefinite), and let x} = 0 be asymptotically stable equi-
librium point of the unexcited system x; = f;i(x;), i = 1,2, furthermore no ex-
ternal inputs are active, that is, u; = uy = 0. Then (0, 0) is asymptotically stable
equilibrium point of the closed loop system.

2.4 Input-Output Linearization

It is a meaningful idea to control the nonlinear system in such a way that first the
nonlinear system is linearized then the linearized system is compensated by using at-
tractive methods of linear control theory. For linearizing the nonlinear system, state
feedback and output feedback can be suggested, called input/state linearization and
input/output linearization, respectively. Their theories are well developed, see for
example [56, 57, 152], however their attractiveness is limited for low dimensional
systems because of computational problems, mainly because of the need for solving
partial differential equations, the so called Frobenius equations. The basic results
were also surveyed in Appendix B and we assume the reader became acquainted
with the main techniques from there.

Comparing the two approaches, input/state linearization has the advantage that
the number of inputs and outputs may be different, but has the drawback that a large
number of sets of Frobenius equations has to be solved.

On the other hand, input/output linearization has the disadvantage that the num-
ber of inputs and outputs must be equal, but the solution of Frobenius equation
can be evaded, which is a benefit, except for SISO system if the input should be
eliminated from the zero dynamics. Notice that eliminating the input from the zero
dynamics for MIMO nonlinear systems is usually not possible because the aris-
ing distribution spanned by the fix part of the nonlinear coordinate transformation
needed for linearization is usually not involutive and the Frobenius equation cannot
be applied.
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In both cases, the remaining part of the computations can be performed auto-
matically by using symbolic computation tools, like MATLAB Extended Symbolic
Toolbox, Mathematica, etc.

Now we summarize here the basic results regarding input/output linearization
discussed in Appendix B. The system is assumed to be input affine, that is,

m
E=fO0)+ Y uigi(x),
i=1
Vi) =hi(x), i=1.om b= k)
[& eV(X),hieS(X), i=1,....m,
where f, g; are vector fields and h; are real valued functions, all appropriately
smooth.
As can be seen, the input does not appear in the output mappings hence the idea
is to differentiate the outputs so many times that at the end the input appears in

the results. This will define the components of the possible vector degree for the
different outputs. For example, differentiating y; by the time yields

m m
Vi =Vhix = <dh,~, f+ Zg,-u,-> =Lyshi+Y ujLgh;.

i=1 j=1

If each L ; h; is zero, then the differentiation is continued and we get

m m
Vi=V(Lrhi)x = <d(thi), f+ Zgiui> = L%rhi + Zung,-(thi)-
i—1 =1

Let r; be the smallest integer for which

m
W =L+ L (L hi)u;.
j=1

The remaining problem is how to express the inputs from the formulas, which is
related to the linear independence of the functions weighting the inputs after differ-
entiation.

The MIMO input affine nonlinear system is said to have the relative degree vector
r=0(1,...,rm)T atthe point xg if 3U (xp) open set such that:

(i) Lg;L5hi(x)=0,VxeU,j=1,....mk=0,...,r; =2.

(ii) The matrix S(x) = [5;;(x)];nxm is nonsingular at xo where s;; = nger"-_lh,',
ie. '

Lo L'} 'y oo L, LMy

S(x) = : :

Lo L' 'hw oo L, L't 'hy,
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F= 100+ g9 o] ho) s

Fig. 2.9 Block scheme of the
MIMO input/output
linearized system

q(x) |«

Since S(xp) is nonsingular hence S(x) is also nonsingular in a sufficiently small
neighborhood of xg. The components g; (x) = L;ﬁh,-(x), i=1,...,m and the col-
umn vector ¢ (x) will also be needed to internal compensation, see Fig. 2.9.

Theorem 2.16 The MIMO nonlinear system can be input/output linearized in the
neighborhood U (xo) if it has relative degree vector and S(xq) is invertible. There
is a smooth nonlinear transformation z = T (x), where z = (Zg, Z,{)T, Zo 18 locally
observable while z,, is locally not observable. By using nonlinear static feedback
u(x) =51 - q(x)), the observable part consists of decoupled integrators in
Brunowsky canonical form. The not observable part remains nonlinear and has
the form z, = b, (20, zu) + Au(20, Zu)t. The observable part can be further com-
pensated by external linear feedback. The full system stability is influenced by the
stability of the unobservable part that is called the zero dynamics of the nonlinear
system.

In Appendix B, formulas can be found for computing the normal form of the
input affine system after coordinate transformation 7 (x). The system components
of the observable and not observable parts are given in (B.51a) and (B.51b), re-
spectively. The resulting observable system is given in (B.52a). The resulting zero
dynamics is given in (B.52b) containing # and in (B.54) containing v, respectively.

The fixed parts of the components of the coordinate transformation 7'(x) are
given in (B.50), these have to be extended with further functions to make the trans-
formation n-dimensional, that is, to a diffeomorphism. This step does not need the
solution of any Frobenius equation, see Lemma B.1 in Appendix B, but the price is
that the zero dynamics depends also on the input u.

An exception may be the SISO case where the distribution A spanned by
the single vector g is evidently involutive. Hence, by using Frobenius theorem
there are ny,...,n,—1 € S(X) functions whose differentials are independent at
xo and satisfy (dn;, g(x)) =0, Vx € U. Taking n — r pieces from these func-
tions, for example the first n — r, the coordinate transformation may be 7' (x) =
[dhT, ...,(der_lh)T, (dm)T, e, (dn,,,r)T]. By using this coordinate transfor-
mation, the input u will not appear in the zero dynamics, i.e. Z, = £, (2o, Zu)-

Further details can also be found in Appendix B regarding the stability test of
the zero dynamics and the extension of the minimum phase property to nonlinear
systems based on the stability of the zero dynamics. Another possibility is the use
of precompensator based on the dynamic extension algorithm if the vector relative
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degree does originally not exist. In this case, the compensator is a dynamic system,
see (B.56) and (B.57).

2.5 Flatness Control

We illustrate here how can the flatness property be exploited in the path design of
underactuated systems, for which not every path is realizable. Assuming underac-
tuated system, it means that for a separately designed path x(¢) it may be possible
that there is no appropriate control u(#) which can realize the path.

On the other hand, for differentially flat systems we know that both the state and
the control can be parametrized by the output variable and its derivatives. Hence,
choosing a fine sequence of “corner points” for the path in the output variable and
interpolating amongst them analytically, that is, determining also the derivatives in
the necessary order, we can simultaneously find both the state trajectory and the
corresponding nominal control.

Flatness properties of cable-driven crane.

We shall illustrate the flatness concept and its use in path design for a cable-driven
crane. For simplicity, only the two dimensional (2D) planar version is considered.
The scheme of the 2D crane is shown in Fig. 2.10. (Since the pulley’s mass in point
B has been neglected, hence L, and its actuator motor is omitted in the discussion.)
The planar crane is a 3-DOF system which is underactuated because the only inputs
are the two motor torques moving the ropes L and Ly + L3.

The model of the planar crane is differentially flat [69]. In simplified formula-
tion, it means that if X = f(x, u) is the dynamic model of the system then there
exist a new variable y (the flat output) and finite integers ¢ and p such that
X=¢1(. 3. o YD), w= oy 9.V Ty =y, u ).
For the crane, y := (x, 2)T where x, z are the coordinates of the load (point C)
in the plane of the crane. The coordinates of point B will be denoted by x5, zp. The
flatness relations for the 2D crane are summarized as follows:

6 = arctan(—%/(Z + g)),

Xz = (k+DCy) = E+g)x — (k+1)Sa)
- (Z+g)Sa — ¥Cq ’

B = arcsin((1 —d/1)Sut6),
y=(m+B—(a+0))/2,
Ly =1S4/5,.
Ly=1S,_4/S,. (2.96)
xp=(k+1)S¢ — L2Su—p,
5= (k+1DCq — L1Cy_p,

d
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Fig. 2.10 Block scheme of
the cable-driven 2D crane s S

[ L,
L2
B
A Ll Y
Z A
k 0\L;
=
C
a
=)C
Ly=+(x —xp)*+ (z —z8)%,
T3 = mioaa((Z + 8)Co — X S9),
Ji
uy="p — —Li,
p1
J ..
up =T3pp — = (L2 + L3).
P2
Ify,y,...,y® are known, then all system variables can be computed from them

except singularities. For prescribed initial yg and final y; and transient time TF,
five times differentiable y(#) polynomials can be found connecting the points with
straight line in the space from which all the system states x () and inputs u(¢) can
be reconstructed.

It follows from the equilibrium of the internal forces that the line AB in the di-
rection of the horizontal rope L is the bysectrix of the angle 2y between PB and
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BC. Hence, the magnitudes of the internal forces 73 for L, and T} for L are related
by T1 =2C, T3. By using the flat output all the variables describing the 2D crane
can be determined by (2.96). In order to avoid the first and second order symbolic
differentiation of the nonlinear expressions for L1, L», L3, numerical differentiation
can be applied (see spline, unmkpp, mkpp in MATLAB). Finally, the flatness
based input torques u1, u, for the motors can be determined, where J; and p; denote
the inertia and the radius of the winch, respectively.

Assuming zero derivatives until order five in the initial and final positions, the
11th order polynomial connecting (xg, zo) and (x1, z1) has the form

x(1) = x0 + (x1 —x0)7% x [a6 +a77 +agt? +aot +ajort + allrs], (2.97)

where T =t/ TF is the normalized time and the coefficients for both x(t) and z(7)
are

ae =0.462, a7 = —1.980, ag =3.465,
ag = —3.080, ajn = 1.386, ayl = —0.252.

(2.98)

Neglecting the feedforward compensated friction and the centripetal and Coriolis
effects (because of the slow angular velocities of typical cranes) the basic equations
of the underactuated system are

Jp o
—Ly=Tip1 —uy,
p1

(2.99)
J2 . .
—(L2 + L3) =T3py — us.
02
The system is submitted to constraints with respect to L; and L, hence La-
grange multipliers could have been used. Fortunately, instead of this relatively
complicated method, the equilibrium between internal forces can be exploited,
see Kiss [69], who developed a form of the dynamic model for the choice x =
(y,a—B,L3,y,(a— ,3), L3)T where o = const. However, the measured outputs
are L1, Ly + L3, th , L2 + Lg which depend on these state variables in a nonlinear
way and would make necessary the use of nonlinear state estimation.
Hence, a new model has been developed using x = (L1, Lo, L3, Li, Ly, LT,
see [74]. The idea is the use of the cosine theorem by which

2 2 2
I“—L{—-L;
2L1Ly

2 2 2
P+ 1-13

Cr = T

(2.100)
For L and L, the expressions in (2.96) can be used. By elementary geometry and
using
o=@/ = (y+@—p), O=1—2y+@—p),
it yields
X =kSq +L1Cyp+ L3Sg =kSo + L1Sy1+a—p) + L3529+ @—p)»
2=kCy+ L1Sy — L3Co =kCq + L1Cy4(a—p) + L3C2y 1 (a—p)-

(2.101)
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The main problem is the computation of 73 from the state variables which is
needed in (2.99). This can be performed using mx = —T13S5g, m(Z + g) = T3Cy for
the load, from which it follows

CoX+SpZ+8) =0, m(=Sek+Co(Z+g)=T5. (2.102)

Notice that the presented flatness based method computes only the nominal path
and the nominal (open loop) control but does not solve the feedback control prob-
lem. However, the results can be used for feedforward compensation or linearization
along the path.

2.6 Backstepping

Backstepping control is a popular method for controlling nonlinear systems given
in strictly feedback form

x1=G1(xpDx2 + fi(xp),
X2 = Ga(x2)x3 + fa(x2),

(2.103)
Xn—1=Gu_1(Xn-1)xs + fnfl (Xn—1),
Xp =G (xp)u + JnGn),
y=h(x1),
where x; € R™,i =1, ..., n are vector parts of the state vector, y € R™ is the output,
Xj = (xlT, ey xl.T)T is a short notation, £ is an invertible function (i.e. its Jacobian
h*! is an invertible matrix), G; are invertible matrices, i = 1, ..., n and all functions

are appropriately smooth.

We assume the task is to realize a prescribed path y;(6) € R™ for the output vari-
able y. The path is parametrizedin @ € R!. Let v;(6, 1) € R be the prescribed speed
of the path parameter to which a parameter speed error wy (é, 0,1t)=uv5(0,1) -6
may exist. The result of the path design subtask is the path parameter 8, the path
v4(6) and the desired path parameter speed vy (6, ). An extra problem is to make
the parameter speed error wg going to zero using high level control.

A special case is 8 =, vy = 1 in which case wy; = 0 is already satisfied and the
desired path is y;(f).

We shall often need the total derivative by the time of parameters of the form
oi_1(x;_1,0,1), that is,

daj—1  doj—1, do—1 dai—1 .
= P 9
d o T T g T e

=:0i_1 —i—a?_lé =0i_1 —l—aie_l(vs — wy). (2.104)
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Observe that the derivatives X; can be substituted by the right side of the state
equations. The first term o;_; in the total time derivative &;_ is that part which
does not contain 6. Notice that any variable in the upper index denote the partial
derivative by the variable, see also A™!.

Now we present the backstepping compensation method similarly to Skjetne,
Fossen and Kokotovich [130], but we neglect the disturbance effects for simplicity.

At every level, we design the virtual control «;_1, for stabilization purposes we
choose Hurwitz matrix A;, that is, matrix whose eigenvalues are on the open left
complex plane, choose positive definite matrix Q; > 0 and solve the Lyapunov
equation

P A; + Al-TP,- =—0;, Q;>0,P;,>0,A; is Hurwitz, (2.105)

to find the symmetric and positive definite matrix P; > 0 which will be used in the
construction of the Lyapunov function V;. The Lyapunov function for the composite
system willbe V = V,,.

During the process, the original variables x; will be changed to z; and the equi-
librium point will be z = (z]', ..., zI)T = 0 whose stability has to be guaranteed.
The backstepping algorithm consists of the following steps.

Stepi =1
In the first step, let z; =y — y4 and zp = x» — «1. Then

21 =h""% =Yg =" (Grx2+ f1) — Ya
=1""G(z2 +a1) + Y fi — ¥ (vs — wy).
Define the first virtual control by
a1 =Gy (W) [Arz — BV i+ o] (2.106)

Substituting o into z; then 21 = h*''Gzo + "' G oy — yg(vs — wy) and canceling
the appropriate terms with positive and negative sign yields

21 =h"Gza + Arz1 + Yoy, (2.107)

Define the first partial Lyapunov function by V| = lePl z1 and take into considera-
tion that V| = ZZITP121 and

2z{ PlA1z1 =2(z1, PLA1z1) = (21, (P1AL + A] P)z1) = —z{ Q12
then

Vi =22] PI[h" G12a + Arz + Yoo

=27 0121 + 221 P1h" 1G22 + 220 Pyl o, (2.108)
————

7
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T = ZZ{P1 yg.
Stepi =2
Since the desired path appears only in the definition of z1, therefore some differ-

ences will be in z>. In the second step, let z3 = x3 — «p. Then zp = X — &1 and
thus

2 =Ga(z3+ @) + fr— o1 —af (v5 — )
= Grz3+ Gron + fo — 01 — o (v5 — wy).
Define the second virtual control by
a2 =Gy [Asza — Py GT () Pizi — fo+ o1 + ] (2.109)

Substituting « into z» and canceling the appropriate terms with positive and nega-
tive sign yields

2 =Gazs + Asza — Py ' GT (W) Pizy + ooy (2.110)

Define the second partial Lyapunov function by V, = V| + ZZT P>z5 and take into
consideration that V> = V; +2z1 P22, and 221 Py Ayzo = —z1 02 then

Va=—zl Q121 + 2zl PR Giza + 1
+ 2Z§P2[G223 + Arzo — PZ_IG{(hx])TPml + Ol?a)x]

=21 0121 — 2§ 0222 + 228 PyGazz + (11 + 228 Poal) g, (2.111)
S —

o
D=1+ 2Z§P20l?.

Stepsi=3,...,n—1
Notice that o1, z1, V1, @2, 22 contain ™! but V, does not. Hence, in the next steps
some modifications are necessary:

i =X —0Qj—1,
—1 —1 T 0
ai=G; [Aizi— PTG} | Piizic1 — fi +oi1 +af_jvs],

. —1 T 0
2i=Gizi+1 +Aizi — P, G Pi—1zi—1 + o] ws,

i
Vi=Y zlPjz;. (2.112)
j=1

]
y T T
Vi= —sz Qjzj+2z; PiGizit1 + tiws,
Jj=1

T, =Ti—] + ZZiT PiOl?_l.
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Stepi=n
In the last step, let z, = x, — y—1, 2n = Gpu + f — 0p—1 — “2—1’ from which the

control law can be determined:

u=Gy ' [Anzn — Py Gl Pucizact — fo + 01 +al_ vs],

. —1~T 0
Zn=Anzn — P, G,_Pp_12p-1 +a,_ws,

n
_ Tp.,.
Vn—ZZj PJZ]a
Jj=1

n

y T

Vo= _ZZ]' Qij + Ty,
j=1

0

Ty =Th—1 + 2z,{ Py, .

The closed loop system can be brought on the form

Z.: A()Enves t)Z +b(£n71,97 t)a)s:

where
A(Xy,0,1)
Al G, 0
—P'GT ()T p A G
2 1 (B Py 2 2
— 0 —-P'GIp A
0 0
vi
of

Remark

(2.113)

(2.114)
0 0
0 0

G 0

0 -pP7'GI P A,

(2.115)

e The system stability depends on t,ws; where w; is the speed error depending
on the path parameter. However, if a high level controller makes w; convergent
to zero then the derivative of the Lyapunov function V = V,, becomes negative

definite.

o If the path is designed as function of the time, that is, & =t and the path is y;(¢),
then w; = 0, and the closed loop is globally asymptotically stable.
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o The notation ¢;_1 =0;_1 + ai@_ lé hides the complexity of the computation. In
reality, the formulas are early exploding with increasing n. The use of symbolic
computation tools is suggested to find the derivatives for n > 2.

2.7 Sliding Control

Sliding control is an important method in the class of variable structure control
approaches [8, 150]. Its importance is justified by the fact that sliding controller
does not need the precise model of the process to be controlled, it is enough to
know a simplified model and some upper bounds of the modeling errors. On the
other hand, important other methods exist which ever are not sliding controller but
integrate in their algorithms the sliding control principle too. Such a method is for
example self-tuning adaptive control. We try to introduce the sliding control concept
as simple as possible.

Assume the state variable is x = (v, y/, ..., y(”_l))T and the SISO system has
input affine model and error signal

Y = fx)+ g, 2.116)
y() = ya(®) — y(@), (2.117)
respectively. Suppose x;4(0) = x(0) otherwise the error will be composed by inte-

gration. The switching surface s(x,#) =0, called sliding surface, is defined by the
rule

dt

where A > 0. Itis evident that if the trajectory remains on the sliding surface (sliding
mode) then the error goes exponentially to zero. Notice that % |s|? can be considered
as Lyapunov function hence it is useful to require

d n—1
s(x, 1) = <—+A> (1), (2.118)

1d
§E|s|2=ss/s—n|s|, (2.119)
where n > 0.
If the above conditions are satisfied but in the beginning the trajectory is not on
the sliding surface, that is, s(0) # 0, then (since, for example, in case of s(0) > 0
yields s’ < n) the trajectory surely reaches the sliding surface s = 0 within the time

ty < @ (2.120)

The time for approaching the sliding surface can be influenced by the parameter
n while the time of decaying by the parameter A, which simplify the design. In
consequence, the main task of every control system, that is, eliminating the error, is
conceptually fulfilled.



2.7 Sliding Control 65

2.7.1 Sliding Control of Second Order Systems

The remaining question is how to choose the control law in order to satisfy the above
conditions. We illustrate it through examples for second order systems of increasing
complexity.

2.7.1.1 Proportional Control

Let the system to be controlled ¥ = f(x) + u, the error signal is y(¢), n = 2, and by
definition

SZ;_,_,\;’ (2.121)

S =Vi— Ay =4 — f —u+ry. (2.122)

Assume that instead of f(x) only its estimation f (x) is available. Let the form of
the control

u=u + k(x) sign(s). (2.123)

It is clear that on the sliding surface s = 0, sign(0) = 0 by definition, hence u = i.
Reaching the sliding surface the best concept is to remain on it since then the er-
ror goes exponentially to zero. But if s = 0 (constant), then s’ = 0, too. The only
information is f (x) therefore the strategy may be

0, fx) = =0 u=a, (2.124)
i=73q— fx)+Ay. (2.125)

N

However, if the sliding surface has not been reached yet, that is, s 7 0, then in order
to reach the sliding surface within finite time, ss” < —n/|s| has to be satisfied, hence

s'= f — f—k(x)sign(s), (2.126)
ss'=(f = f)s —k@)ls| <|f = fllsl —k@)ls] < =nls|.  (2.127)
k(x) = | f(x) = f0)] +n. (2.128)

Let the upper bound of the deviation between model and estimation be given by the
known function F(x),

|f(x) = f0)| < Fx) (2.129)
then k(x) can be chosen

k(x)=F(x)+n. (2.130)



66 2 Basic Nonlinear Control Methods
2.7.1.2 Integral Control

Let the system be again y = f(x) + u, but now the error is given by the integral
fg y(t)drt, for which formally n = 3 can be assumed. Then by definition

d 2 ot . t

s=<—+/\> fy(r)dr=&+2)\y+xzf y(r)dr, (2.131)
dt 0 0

s =Yg — 4+ 205 + A2 =Yg — f —u+ 205 + A5 (2.132)

Hence, similarly to the previous case, the strategy may be s = 0, f (x) =5 =0,
u = i yielding

=i+ k(x) sign(s), (2.133)
i = Jq— f(x)+215 + A%, (2.134)
k(x) = F(x) + 1. (2.135)

It is an advantage of integral control that s(0) = 0 can also be assured, that is, the
control can already start on the sliding surface eliminating f;, if we choose

t
s(x,1) =5+ 205 + Azf $(r)dt — $(0) — 215(0). (2.136)
0

Remark The difference between proportional and integral control is in the compu-
tation of s and i, however k(x) is the same. Henceforth, we shall deal only with
proportional control, and in case of integral control we modify the final s and &
according to the above results.

2.7.1.3 Proportional Control in Case of Variable Gain

In the above examples, we had unit gain. Now, we consider again the second order
system y = f(x)+ g(x)u but with state dependent gain having strictly positive sign.
Suppose that the estimation g(x) of the state dependent gain and a parameter 8 > 0
(may also be state dependent) is known, furthermore the relation between real and
estimated gain satisfies the special condition

pl<S<p. (2.137)

oQ | 09>

By definition

d )
s=<z+/\)y=y+w, (2.138)

S =Fi— A =Fa— f —gu+Ay. (2.139)
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(2.140)

Let the form of the controller
u=>hb"1 [12 +k(x) sign(s)],

and derive & from the strategy s = 0, f(x), l;(x) = s =0,u =1, then
(2.141)

i=3— f(x)+215.

Considering the general case s # 0 and supposing the sliding surface has not been
reached yet, then

sS'=f—f+(1-gg)a—gs  k(x)sign(s), (2.142)

ss' < |f = flisl+ |1 = g&~ ! [lalls| — g8~ k)ls| < —nlsl,  (2.143)

k@) = 887 f = fl+ |gg™" — 11l + g7, (2.144)

According to the bounds of g ~! the nonlinear gain k(x) can be chosen

(2.145)

k(x)=B(F +n)+ (B — Dlil.

Now let us consider the more practical case if minimal and maximal bounds of
(2.146)

the gain are known:
8min = & = Zmax-
This case can be transformed to the previous one by using the geometric average of
the minimal and maximal gains:
& = \/&min - &max» (2.147)
g o= |Emax (2.148)
&min
a_ 8
B = =<8 (2.149)
8

Notice that bpyin, bmax may be state dependent.

2.7.2 Control Chattering

Unfortunately, the realization of sliding control has an unpleasant problem. Since

k(x) is usually nonzero on the sliding surface and
+1, ifs >0,
0, if s =0,

sign(x) =
-1, ifs<0
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Fig. 2.11 Boundary layer for o
second order system

: ¢ thickness

AN y

NN

ct N Ny

precision

hence the control is discontinuous, the jump is +k(x). When the trajectory reaches
the sliding surface s(x, t) = 0, the control should perform +k(x) jump within zero
time, which is impossible. The trajectory steps over to the other side of the sliding
surface, then returns back to the sliding surface, but cannot stop within zero time
there, hence steps over to the first side, and repeats the process.

Meanwhile between the two sides of the sliding surface the change of the control
is £k(x) hence the control is chattering with high frequency (control chattering).
This high frequency excitation may be harmfully, especially if the system has non-
modeled structural frequency wsyct Of resonance character near to the frequency of
chattering, because the magnitude may be amplified which can damage the system.

2.7.2.1 Compensation of Control Chattering Using Boundary Layer

For eliminating high frequency control chattering, first the sign function will be
changed to the sat function:

+1, ifs> ¢,
sat(s/p) =3 s/¢p, if —p<s=<¢,
-1, ifs < —¢.

The price is that a boundary layer neighboring should be formed around the sliding
surface:

B(x,t)={x:|s(x,0)| <o}

Outside the boundary layer we save the original control while inside it u will be
interpolated by sat(s/¢). For example, in case of known gain, proportional control
and yg = const the boundary layer around the sliding surface s = —y 4+ A(ys — y)
can be characterized by its thickness ¢ and precision ¢, see Fig. 2.11.
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From theoretical point of view, it is an important consequence that both 3 and 3
are bounded within the boundary layer. Denoting the differential operator (Laplace
transform variable) by p = % then for x(0) = 0 initial condition

1

S N
R

(i) _ )4 _ 1 A !
= —5 = —\1- s.
(p+a1)" (p+a1)" (p+2)

By repeated application of the convolution theorem, it follows within the boundary
layer

<¢/A = |y =

t
/ e st —1)dr
0

t
‘1-[ re M dr
0
®

59 = Gt e =N G = @0

<2,

If the initial conditions differ from zero, then the error remains still bounded because
of the stability of the filter: x = x; + O(¢).

Now consider the design of the controller if a boundary layer is present. The
thickness ¢ of the boundary layer will be chosen time varying in order to decrease
the tracking error y. Hence, the condition for %sz will be modified to

1d .
S P =ss" < (@ =n)lsl, (2.150)

which means that we prescribe stronger condition for ¢ < 0 than for ¢ > 0.

2.7.2.2 Boundary Layer and Time Varying Filter for Second Order System

Consider first proportional control with constant gain g = 1. Evidently ¢ and » have
opposite effects, hence, assuming k(x) belongs to n without boundary layer, then in
case of boundary layer it needs

k(x) = k(x) — ¢, (2.151)
u =0+ k(x) sat(s /). (2.152)

Therefore, within the boundary layer yields

s'=f—f—kx)s/o, (2.153)
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from which it follows
s' = —k(xq)s/d + Af(xq) + O(e). (2.154)

Notice that s’ behaves as a first order linear system along the trajectory x4 (¢) under
the effect of bounded disturbance. Let choose the time constant equal to A then we
obtain the balance condition
k(xq)
¢

from which it follows for the varying boundary layer

=A, (2.155)

¢ +1p =k(xq). (2.156)

Consider now the case of state dependent gain. Then using (2.144) and 7 :=
n — ¢, it follows

éa)zk@>—§¢, 2.157)
$>0: k(x)>k(x)— (g) =kt - 74,

k(xq) =k(xa) — B~ ',

A (2.158)
¢ <0: ézku)+<§> (—¢) =k(x) — Bo.
k(xa) =k(xa) = .
Prescribe for variable gain the balance condition
k
Ca) gy (2.159)
¢
then we obtain for the thickness of the boundary layer the law
. 2 1 . B
¢>0: B =k(xa) =B ¢ = ¢ +xrp=pk(xa),
(2.160)
. P . . A 1
¢ <0: B =k(xa) =B = ¢+ E(p = Ek(xd)-

2.7.3 Sliding Control of Robot

Sliding control elaborated for SISO system can be applied for robots considering
each degree of freedom as a separate SISO system and modeling the coupling effects
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as disturbances [8].

Robot: Hi+h=r.

Controller: t=Hu + fz,

u = ? sliding control.

Closed loop: ¢ = H_l(fz — h) +H 'Hu.
All the functions are state dependent, x = (qT,¢™)T is the state, ¢ is the joint
variable. Suppose the estimation H,h is good enough, especially the elements
in the main diagonal of H™'H =1 + H-'(H~! — H) are strictly positive (i.e.,
the gains are positive). Denote (H —1y; the i-th row of H~!, let Ah =h — h and

xt = (x1], ..., |x,])T for any vector x. Develop for each subsystem a sliding con-
troller:

gi = (H_l)iAh + (H_ll:l)iiui + Z(H_lﬁ)ijuj’
i#]
&i,min < (H_lﬁ)ii < &i,max
Bi = \/m functions of ¢.
Gi=28;"' =1/y/Bimax " imin
Then the control law for the integrating sliding controller yields
ui = Gi(@){iti +ki(q, §) sar(si ¢},
i = Gai +20gi + 224,

t
si = gi +2Agi +)»2/ gi(0)do — q;(0) — 21g; (0),
0

. Z1y\ A 1+ .. 14
k@) zﬂi{(l Bl + () AR+ 3Gl | (HA) ) +n,-}.
J#
Notice that during the computation of k; the approximation u ~ G j§u; was applied

in order to avoid the solution of an equation system. For computing k; and ¢;, the
formulas elaborated above can be used.

2.8 Receding Horizon Control

Model Predictive Control (MPC) is a popular method especially in the process
industry where relatively slow process models allow online optimization. Linear
predictive control is well elaborated both in frequency (operator) domain [25] and
state space [87]. Depending on the type of constraints, optimal prediction leads to
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Quadratic (QP) or Nonlinear Programming (NP) which are well supported by exist-
ing softwares (e.g., MATLAB Optimization Toolbox).

2.8.1 Nonlinear Receding Horizon Control

For nonlinear systems, recent approaches are usually based on new optimum seek-
ing methods suited for the predictive control problem or traditional analytical opti-
mum conditions and gradient based optimization techniques [4, 65]. Basis for the
later ones is a general form of the Lagrange multiplicator rule which is also valid in
Banach spaces [73].

Here a version of the Receding Horizon Control (RHC) approach of model pre-
dictive control will be presented. Using RHC, the optimization is performed in the
actual horizon in open loop, then the first element of the optimal control sequence
will be performed in closed loop, the horizon is shifted to the right and the process
is repeated for the new horizon. For simplification of the notation, the start of the
moving horizon will be normalized to zero in every step.

It follows from the RHC principle that stability problems can arise if the objective
function does not contain any information about the behavior after the horizon. To
improve the stability properties, the techniques of Frozen Riccati Equation (FRE)
and Control Lyapunov Function (CLF) can be suggested [161]. From engineering
point of view, the increase of the horizon length N can improve the stability chance
however at the same time the real-time optimization problem will be more complex.

Critical may be the presence of constraints in form of limited control set or even
more in form of state variable constraints. Although efficient numerical optimization
techniques exist for constrained optimization like for example, active set method
or interior point method, however in real-time environment simpler gradient based
techniques are more realistic. They apply penalty function and control projection
instead of the constraints and use conjugate gradient or Davidon—Fletcher—Power
(DFP) method for unconstrained optimization. They are especially important for
quick systems like robots and vehicles where the necessary sampling time is typi-
cally in the order of 10-20 ms for the (high level) control system. Hence, we will
concentrate here only on quadratic objective function however the system may be
nonlinear.

Typical finite horizon nonlinear predictive control problems in discrete time lead
to optimization in finite dimensional space where the variables are x = {x;} lN: o and

u={u; }1N= 51, Q; > 0and R; > 0 punish large states and control signals respectively,
the optimality criterion to be minimized is

Nl 1
Fo(x,u) = > §[<Q,-xl-,xi> + (Riui, ui) | + S (Qnxw, xn),
= (2.161)
N-—1
Fo(x,u) = Y Li(xi,u;) + ®(xy),
i=0
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the constraints are the discrete time state equation
o(xi,ui) —xiy1 =0, (2.162)

the control set u; € M and the initial condition a — xg = 0. If (x™*, u™) is the optimal
solution then

JL* uM)x + I uu
is the derivative of
J(x,u) = Fo(x,u) + (ho, a — xo) + (A1, o(x0, ug) — x1)+ -+
+ (An, @1, un—1) — xN). (2.163)
By introducing the Hamiltonian functions
Hi = (ki1 (i, ui)) + Li (xi, up),

and using the results of [73] the necessary condition of the optimality are obtained
as

AN = ONXN, (2.164)
A =0H;/ox; = Qixi + (39 /dx)) Mit1, (2.165)
dH;/du; = Riui + (3¢/oui)T xit1, (2.166)
N—-1
dJ = Z(E)H,-/Bui, uf —u;) <0, Yu; € M. (2.167)
i=0

For the control design within the actual horizon, first the initial condition xo and
the approximation of u are needed. The latter may be the solution in the previous
horizon shifted to the left and supplying the missing term u y (for example, repeating
the last term etc.). Notice that for the very first horizon no initial control sequence
is present yet thus special method is necessary to supply it.

The optimization repeats the following steps:

Solution of the state equations in x = {x; }lN: 0

Computation of the Lagrange multipliers ;.

Computation of the derivatives 0 H; /du;.

Numerical optimization based on gradient type methods (gradient, conjugate gra-
dient, DFP etc.) to find u = {u;} .

Nonpredictive design method should be used to find the initial approximation for
the first horizon. If the original system is a continuous time one, then first it can be
approximated by a discrete time one, for example,

i=fex,u) = xip1=x+Tfelxi,u) =0k, u), (2.168)
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where T is the sampling time. If the full state can not be measured then xo can
be approximated by using extended Kalman filter or other state estimator/observer
[30].

If y = Cx is the system output and y = y; — y is the error, then the cost function
can be modified as

y=yq—Cx, (2.169)
2L (xi, ui) = (Qi¥i, i)+ (Sixi, xi) + (Riu, u;), (2.170)
20 (xy) = (ONFN. IN). 2.171)

and the derivatives can be computed by
dL;i/dxi = —C" Qi3 + Sixi, 2.172)
A® /dxy = —CT OnFn. (2.173)

Input constraints are enforced by projecting u; into the constraints set. State con-
straints can be taken into consideration as an additional penalty added to L(x;, u;)
in the cost function. The weighting in the term @ (x) has great influence on the sta-
bility and dynamic behavior of the system under predictive control. The appropriate
weighting term can be chosen in experiments.

The control design strategy can be summarized in the following steps:

e Development of the nonlinear dynamic model of the system.

e Optimal (suboptimal, flatness-based etc.) open loop control signal design used for
initial approximation of the control sequence in the horizon.

e Elaboration of the disturbance model reduced on the system input.

e Development of the model based nonlinear predictive controller and its use in
closed loop control. The first element of the control sequence in the actual horizon
is completed by the feedforward compensations of the disturbance.

Remark As can be seen from (2.165) and (2.166), d¢/0x; and d¢/du; are needed
during numerical optimization therefore their computation time has large influence
to the real-time properties. In mechanical systems often appear terms of the form
fx)= A~ (x)b(x) at the right side of the state equation. See, for example, robots
where § = —H '(q)h(q,¢) + H™'(¢)7. The following formula can speed up the
computation:

af

dA ab
A AT AT (2.174)
3x,- axi ax,-

2.8.2 Nonlinear RHC Control of 2D Crane

We can assume that the path and the nominal control for the differentially flat 2D
crane have already been designed, see Sect. 2.1.3. Now we shall concentrate only
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on the steps which can accelerate the RHC computation based on the above remark.
Since ¢(x;, u;) = x; + T fo(x;i, u;), hence it is enough to find f.(x, #) and then solve
its differentiation.

First, the Jacobian (dx) and Hessian (D2x) have to be found for which carefully
performed symbolic differentiation can be suggested. By using them the derivatives,
X, X, z, Z can be determined. For example, in the case of x(¢) yields

XZdX°(I;1L2L3)T,
N T N (2.175)
X¥=dx-(LiLaL3)" + (L1LaL3)- D2x - (L1LyL3)" .

The resulting continuous time dynamic model in MATLAB convention for in-
dexing is the following:

A(l,:)=Cgdx + Sgdz,
b(1) = (L1L2L3)(—CoD2x — Sy D22)(L1L2Ls)" — Spe,
A2,) =2C,m(Spdx — Codz)p1,
A2, 1D =AQ2, D+ Ji/p1,
b(2) = (L1L2L3)(2C, m(=SeD2x + CoD22)p1)(L1LaLs3)"
+2C,mCogp1,
AQB,:)) =m(Spdx — Codz)p2,
A@B3,2:3)=AG,2:3) +[)2/p2J2/ p2],
bB3) = (L1LaL3)(m(—SyD2x + CoD22)p2) (L1L2L3) +mCygpa,

(LrEals)" = A7 — A7 (Ouyun)T.

For RHC A and b have to be differentiated once more, see the above remark.
However, this can also be performed by using symbolic computation tools. Notice
that symbolic computations can be performed offline, only the final formulas have
to be implemented in real-time.

An important question remains the appropriate choice of the sampling time T so
that the approximation of the continuous time system by the discrete time one using
Euler formula is accurate enough. Do not forget that the sampling time has influence
on the horizon length because the effective horizon length in time units is N7 which
has to be fitted to the speed of the system. For large N, the use of basis functions
(splines etc.) can be suggested in order to decrease the number of variables to be
optimized.

Numerical results with RHC control of a small size model of a real cable-driven
crane of US Navy can be found in [74].
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2.8.3 RHC Based on Linearization at Each Horizon

Till now we discussed RHC based on the nonlinear dynamic model. Of course there
exist the possibility to linearize the system at the beginning of each horizon if the
linear approximation is accurate enough in the entire horizon. Applying RHC for
the LTV or LTI model, valid in the horizon, simple control implementations can be
found. Especially, if the objective function is quadratic and the constraints are linear
equalities and/or linear inequalities then in each horizon a Quadratic Programming
(QP) problem has to be solved for which efficient active set or interior point meth-
ods are available. Especially, if there are no constraints then analytical solution is
possible which enormously simplifies the real-time conditions.

2.9 Closing Remarks

The main goal of the chapter was to give a survey of the basic nonlinear control
methods. Central question was the introduction of the main control ideas and the
presentation of the results supporting the solutions of nonlinear control problems.
In the presentation, a compromise was sought between theoretical precision and
engineering view.

Nonlinear control systems have to be tested before application for which simu-
lation methods can be applied. During simulation, the real system is substituted by
its model. For modeling of continuous time dynamic systems, nonlinear and lin-
ear models can be used. Important problem is the computation of the transients for
which in case of nonlinear systems numerical methods should be used. For this
purpose, simple (Euler) and more accurate (Runge—Kutta and predictor—corrector)
methods were shown. For linear systems, the computation can be simplified by us-
ing the fundamental matrix (LTV systems) or the exponential matrix or transfer
function (LTI systems). Nonlinear systems can be divided into different classes.

Nonlinear systems often have to satisfy kinematic constraints in the space of
generalized coordinates and their derivatives. The constraints can be divided into
holonomic and nonholonomic ones. The kinematic constraints are usually given as
a set of equations linear in the derivatives of the generalized coordinates but non-
linear in the generalized coordinates (Pfaffian constraints). If there exist a nonlin-
ear coordinate transformation (diffeomorphism) after which the constraints can be
eliminated and the number of variables can be reduced, then the system is holo-
nomic, otherwise it is nonholonomic. In the dynamic model of nonholonomic sys-
tem appear constraint forces, too, described by parts of the kinematic constraints and
Lagrange multipliers. A method was shown how to determine the Lagrange multi-
pliers from the dynamic model. Based on energy concept, the Hamiltonian form
was introduced and an experiment was performed to simplify the Hamiltonian us-
ing a coordinate transformation which is related to the kernel space of the kinematic
constraints. Conditions for omitting the kinematic constraints were given based on
Poisson bracket.
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An other nonlinear system class is the class of differentially flat systems which
are Lie-Bicklund equivalent to a trivial system. Differentially flat systems can be
linearized by dynamic state feedback and a coordinate transformation. For such sys-
tem, there is a flat output variable, having the same dimension as the system input,
such that the state and the input can be expressed by the flat output variable and its
derivatives of finite order. The resulting square system is left and right input—output
invertible with trivial zero dynamics. Path design for differentially flat systems is a
simple problem because it can be reduced to smooth interpolation between points
in the space of the flat output variable. The result is not only the path but also the
nominal control along the path. The nominal (open loop) control can be used for
feedforward compensation or may be the basis for linearization along the path. The
differential flatness property is especially useful for underactuated systems where
not every path can be realized by control.

Modeling nonlinear systems is an often arising problem. Three simple examples
were considered to illustrate how to find the dynamic model of physical systems.
The first example was the dynamic modeling of an inverted pendulum mounted on
a moving car. To find the model the kinetic and potential energy was found and
the Lagrange equations were applied. The inverted pendulum is an underactuated
system. The second example was the dynamic model of a quarter car using active
suspension. The flexible connections between body and wheel were described by
viscous damping factors and spring constants. The resulting model is an LTI system
with active force input. The third model was a 2 DOF robot having revolute joints
and moving in vertical plane. First the position, velocity and angular velocity of
the links were determined then the dynamic model was derived from the Lagrange
equations. The coupling and centripetal effects were determined from the kinetic
energy by using differentiation. The dynamic model is nonlinear.

Stability is a central problem of every control system, especially for nonlinear
ones. First the stability, uniform stability and asymptotic stability of any solution
of the time varying nonlinear state equation were defined. Then the solution was
transformed to the equilibrium point at zero satisfying some conditions. The idea
of positive definite Lyapunov function was introduced and based on it Lyapunov’s
first theorem (direct method) was formulated for stability and asymptotic stability.
For time varying nonlinear systems, Lyapunov’s second theorem (indirect method)
was formulated allowing to conclude from the asymptotic stability of the linearized
system to the asymptotic stability of the nonlinear one. For LTI system, the stability
is equivalent to the solvability of the Lyapunov equation. For time invariant nonlin-
ear system, LaSalle’s theorem was formulated which gives also information about
the attraction domain of the stability and brings into relation the asymptotic stability
with the maximal invariant set. The classes of K and KL functions were introduced
and two theorems were given for showing the relation to the uniformly asymptot-
ically and the globally uniformly asymptotically stable systems. The input-to-state
stability (ISS) was defined and a sufficient condition was formulated for ISS.

Three forms of the Barbalat’s lemma were formulated which give sufficient con-
ditions for zero limit value of scalar-valued time functions as the time goes to in-
finity. As an immediate corollary of Barbalat’s lemma, a Lyapunov-like condition
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was given which looks like an invariant set theorem in Lyapunov stability analysis
of time varying systems.

The system behavior in Lp function spaces was characterized with the nonlinear
gain. A small gain theorem was formulated for closed loop systems in such function
spaces. The discussions implicitly assumed zero initial conditions. Passive systems,
amongst them passive, strictly input passive and strictly output passive systems were
introduced and a passivity theorem in Lp spaces was formulated which allows to
conclude from the stability of the open loop subsystems to the stability of the closed
loop if only one external input is active.

Dissipative systems allow to integrate the Lyapunov theory and the stability in
L2 spaces in some sense. Special is that the number of inputs and outputs must
be equal because the scalar product plays a central role. Dissipativity is defined by
using the idea of storage function and supply rate which have to satisfy the dissipa-
tivity inequality. Special classes of dissipative systems are the passive, the strictly
input passive, the strictly output passive systems and the system having finite L2
gain. The dissipative property can be expressed also in differential form which can
be checked easier. Three theorems were formulated giving connection between pas-
sivity and asymptotic stability, stability conditions of interconnected systems with-
out external input, and a small gain theorem for interconnected dissipative systems
without external inputs. These theorems will play important role in the stability in-
vestigations of multiagent systems moving in formation.

The control of nonlinear dynamic systems is a complex problem. In order to
simplify the problem, it is a useful idea to linearize the nonlinear system using ap-
propriate nonlinear coordinate transformation and then compensate it further using
linear control methods. Sufficient condition for the input—output linearization of the
MIMO nonlinear input affine system is the existence of vector relative degree and
the nonsingularity of a special matrix composed from repeated Lie derivatives. If
the conditions are satisfied, then a nonlinear coordinate transformation has to be de-
termined which can be formed by completing a set of functions appearing during
the process. Then an internal static nonlinear state feedback can be applied which
brings the system onto Brunovsky canonical form equivalent to decoupled integra-
tors. However, beside of this linear system appears also a nonlinear one called zero
dynamics which is not observable (has no influence on the output). The zero dy-
namics has to be stable in order to assure closed loop stability. For SISO system, the
zero dynamics is independent from the system input, but in this case the Frobenius
equation has to be solved in order to construct the nonlinear coordinate transfor-
mation. For MIMO systems, this process cannot be applied and the zero dynamics
depends also on the system input. The number of inputs and outputs must be the
same in the construction, however the output may differ from the physical system
output. The weak point of the method is the large number of symbolic computa-
tions, the solution of the Frobenius (partial differential) equation in SISO case or
the computation of the nonlinear coordinate transformation in the MIMO case, and
the computation of the inverse coordinate transformation which is also needed to
find the zero dynamics.

Some other nonlinear control methods were also discussed in detail, especially
because of the complexity of input—output linearization. In flatness control, only the
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path planning problem for differentially flat underactuated systems was considered.
It was demonstrated for the planar (2D) cable-driven crane. The flat output variable
was determined and it was shown that the state and the control can be computed
from the flat output and its derivatives. Then the path planning was reduced to poly-
nomial interpolation.

Backstepping control is a popular method for controlling nonlinear systems given
in strictly feedback form. The dimension of the portions of the state vector, the input
vector and the physical output must be the same and some invertability conditions
have to be satisfied. It was assumed that the path was designed in the space and
parametrized in a scalar path parameter which has to satisfy a parameter speed con-
straint, too. The design is decomposed in steps, in every step a nonlinear virtual
control is developed, the state variable portion is changed to a new variable and a
partial Lyapunov function is designed. At the end, the last Lyapunov function as-
sures the closed loop stability, but high level control has to eliminate the parameter
speed error. Especially, if the path is given as a function of time then the closed loop
is already stable without high level control. Backstepping plays also important role
in formation stabilization.

Sliding control is a kind of variable structure control. The sliding variable is the
output of a stable filter with equal time constants driven by the output error. The slid-
ing surface belongs to the zero value of the sliding variable. If the system remains on
the sliding surface, then the error goes exponentially to zero. If the sliding variable
is initially not on the sliding surface, then the sliding surface can be reached within
limited time. A method was presented for the design of sliding controller satisfying
the above conditions for SISO systems including proportional and integral control
with constant or state dependent gain. About the functions in the system model only
upper bounds were assumed. Since the method can cause high frequency control
chattering in the neighborhood of the sliding surface therefore a boundary layer
was introduced whose thickness determines the precision. Hence, the thickness was
chosen state dependent in order to decrease the error. It was shown that with some
modifications the sliding control developed for SISO systems can also be applied
for robots considering coupling effects amongst the joints as disturbances.

Receding Horizon Control (RHC) is a kind of optimal control considered in dis-
crete time in order to make the problem finite dimensional. Using RHC, the opti-
mization is performed in the actual horizon in open loop, then the first element of
the optimal control sequence is performed in closed loop, the horizon is shifted to
the right and the process is repeated for the new horizon. It follows from the RHC
principle that stability problems can arise if the objective function does not contain
any information about the behavior after the horizon. It is clear that the increase of
the horizon length can improve the stability chance however at the same time the
real-time optimization problem becomes more complex. Critical is the presence of
constraints for the control and/or state variables. In order to avoid time consuming
constrained optimization in real-time, the method of penalty function, control pro-
jection and unconstrained optimization using gradient based techniques (conjugate
gradient, DFP etc.) were suggested. Under these assumptions, the RHC algorithm
for nonlinear discrete time system was elaborated. The critical steps of the compu-
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tations were illustrated in the example of the RHC control of the planar (2D) crane
which is differentially flat but underactuated.

Another RHC strategy may be the linearization at the beginning of each horizon.
The linear approximation should be accurate enough in the entire horizon. Consid-
ering the actual LTV or LTI model and assuming the objective function is quadratic
and the constraints are linear equalities and/or linear inequalities, then in each hori-
zon a Quadratic Programming (QP) problem has to be solved for which efficient
numerical methods are available. This approach can also be applied in safety criti-
cal systems where high level RHC computes optimal reference signals for the low
level control system.
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