
Chapter 1

Introduction to Poncelet Porisms

Figure 1.1: Jean Victor Poncelet

“One of the most important and also most beautiful theorems in clas-
sical geometry is that of Poncelet (. . . ) His proof was synthetic and
somewhat elaborate in what was to become the predominant style in
projective geometry of last century. Slightly thereafter, Jacobi gave an-
other argument based on the addition theorem for elliptic functions. In
fact, as will be seen below, the Poncelet theorem and addition theorem
are essentially equivalent, so that at least in principle Poncelet gave
a synthetic derivation of the group law on an elliptic curve. Because
of the appeal of the Poncelet theorem it seems reasonable to look for
higher-dimensional analogues. . . Although this has not yet turned out
to be the case in the Poncelet-type problems. . . ”
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These introductory words from [GH1977], written by Griffiths and Harris
exactly 30 years ago, serve as a motto of the present book.

In a few years, we are going to reach a significant anniversary, the bicen-
tennial of Jean Victor Poncelet’s proof of one of the most beautiful and most
important theorems of projective geometry. As is well known, he proved it during
his captivity in Russia, in Saratov in 1813, after Napoleon’s wars against Russia.
The first proof was in a sense an analytic one. In 1822, Poncelet published an-
other, purely geometric, synthetic proof in his Traité des propriétés projectives des
figures [Pon1822]. Suppose that two ellipses are given in the plane, together with a
closed polygonal line inscribed in one of them and circumscribed about the other
one. Then, Poncelet’s theorem states that infinitely many such closed polygonal
lines exist – every point of the first ellipse is a vertex of such a polygon. Besides,
all these polygons have the same number of sides. Later, using the addition theo-
rem for elliptic functions, Jacobi gave another proof of the theorem in 1828 (see
[Jac1884a]). Essentially, Poncelet’s theorem is equivalent to the addition theorems
for elliptic curves and his proof represents a synthetic way of deriving the group
structure on an elliptic curve. Another proof of Poncelet’s theorem, in a modern,
algebro-geometrical manner, was done quite recently by Griffiths and Harris (see
[GH1977]). There, they also presented an interesting generalization of the Pon-
celet theorem to the three-dimensional case, considering polyhedral surfaces both
inscribed and circumscribed about two quadrics.

If we have in mind the geometric interpretation of the group structure on a
cubic (see Figure 1.2), then the question of finding an analogous construction of
the group structure in higher genera arises.

Figure 1.2: The group law on the cubic curve

Thus, thirty years ago, Griffiths and Harris announced a program of under-
standing higher-dimensional analogues of Poncelet-type problems and a synthetic
approach to higher genera addition theorems.

The main aim of the present book is to report on progress made in settling
and completing of this program. We will also present in a quite systematic way
the most important results and ideas around Poncelet’s theorem, both classical
and modern, together with their historical origins and natural generalizations.
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A natural question connected with Poncelet’s theorem is to find an analyt-
ical condition determining, for two given conics, if an n-polygon inscribed in one
and circumscribed about the second conic exists. In a short paper [Cay1854], Cay-
ley derived such a condition in 1853, using the theory of Abelian integrals. He
had dealt with Poncelet’s porism in a number of other papers [Cay1853,Cay1855,
Cay1857,Cay1858,Cay1861]. Inspired by [Cay1854], Lebesgue translated Cayley’s
proof to the language of geometry. Lebesgue’s proof of Cayley’s condition, de-
rived by methods of projective geometry and algebra, can be found in his book
Les coniques [Leb1942]. In modern settings, Griffiths and Harris derived Cayley’s
theorem by finding an analytical condition for points of finite order on an elliptic
curve [GH1978a].

It is worth emphasizing that Poncelet, in fact, proved a statement that is
much more general than the famous Poncelet theorem [Ber1987,Pon1822], then
deriving the latter as a corollary. Namely, he considered n+1 conics of a pencil in
the projective plane. If there exists an n-polygon with vertices lying on the first of
these conics and each side touching one of the other n conics, then infinitely many
such polygons exist. We shall refer to this statement as the Full Poncelet theorem
and call such polygons Poncelet polygons .

A nice historical overview of the Poncelet theorem, together with modern
proofs and remarks is given in [BKOR1987]. Various classical theorems of Pon-
celet type with short modern proofs are reviewed in [BB1996], while the algebro-
geometrical approach to families of Poncelet polygons via modular curves is given
in [BM1993,Jak1993].

Figure 1.3: Elliptical billiard table

The Poncelet theorem has an important mechanical interpretation. An El-
liptical billiard [KT1991,Koz2003] is a dynamical system where a material point
of the unit mass is moving under inertia, or in other words, with a constant ve-
locity inside an ellipse and obeying the reflection law at the boundary, i.e., having
congruent impact and reflection angles with the tangent line to the ellipse at any
bouncing point. It is also assumed that the reflection is absolutely elastic. It is
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well known that any segment of a given elliptical billiard trajectory is tangent to
the same conic, confocal with the boundary [CCS1993]. If a trajectory becomes
closed after n reflections, then the Poncelet theorem implies that any trajectory
of the billiard system, which shares the same caustic curve, is also periodic with
the period n.

The Full Poncelet theorem also has a mechanical meaning. The configuration
dual to a pencil of conics in the plane is a family of confocal second-order curves
[Arn1978]. Let us consider the following, a little bit unusual billiard. Suppose
n confocal conics are given. A particle is bouncing on each of these n conics
respectively. Any segment of such a trajectory is tangent to the same conic confocal
with the given n curves. If the motion becomes closed after n reflections, then,
by the Full Poncelet theorem, any such trajectory with the same caustic is also
closed.

The statement dual to the Full Poncelet theorem can be generalized to the
d-dimensional space [CCS1993] (see also [Pre1999,Pre]). Suppose vertices of the
polygon x1x2 . . . xn are respectively placed on confocal quadric hypersurfaces Q1,
Q2, . . . , Qn in the d-dimensional Euclidean space, with consecutive sides obeying
the reflection law at the corresponding hypersurface. Then all sides are tangent to
some quadrics Q1, . . . , Qd−1 confocal with {Qi}; for the hypersurfaces {Qi,Qj},
an infinite family of polygons with the same properties exist.

But, more than one century before these quite recent results, in 1870, Dar-
boux proved the generalization of Poncelet’s theorem for a billiard within an el-
lipsoid in the three-dimensional space [Dar1870]. It seems that his work on this
topic is completely forgotten nowadays.

Darboux was occupied by Poncelet’s theorem for almost 50 years, and many
of his results and ideas, in one way or another, are going to be incorporated
throughout the book.

Let us mention that in the same year, 1870, appeared another very important
work: [Wey1870] of Weyr. It can be treated as the historic origin of the modern
Griffits–Harris Space Poncelet Theorem. A few years later, Hurwitz used Weyr’s
results to get a new proof of the standard Poncelet theorem (see [Hur1879]).

It is natural to search for a Cayley-type condition related to generaliza-
tions of the Poncelet theorem. Such conditions for the billiard system inside
an ellipsoid in the Eucledean space of arbitrary finite dimension were derived
in [DR1998a,DR1998b]. In recent papers [DR2004,DR2005,DR2006b,DR2006a],
algebro-geometric conditions for existence of periodical billiard trajectories within
k quadrics in d-dimensional Euclidean space were derived. The second important
goal of these papers, actually for the present book as well, was to offer a thorough
historical overview of the subject with a special attention on the detailed analysis
of ideas and contributions of Darboux and Lebesgue. While Lebesgue’s work on
this subject has been, although rarely, mentioned by experts, on the other hand,
it seems to us that relevant Darboux’s ideas are practically unknown in contempo-
rary mathematics. We give natural higher-dimensional generalizations of the ideas
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and results of Darboux and materials presented by Lebesgue, providing the proofs
also in the low-dimensional cases if they were omitted in the original works. Be-
sides other results, interesting new properties of pencils of quadrics are established
– see Theorems 5.30 and 5.33. The latter gives a nontrivial generalization of the
Basic Lemma from Lebesgue’s book.

In our presentation of the development connected with the Griffiths–Harris
program, we follow the recent paper [DR2008]. We present a geometric construc-
tion generalizing a summation procedure on the elliptic curve for the case of hy-
perelliptic Jacobians. These ideas are continuations of those of Reid, Donagi and
Knörrer, see [Rei1972], [Knö1980], [Don1980]. Further development, realization,
simplification and visualization of their constructions is obtained by using the
ideas of billiard dynamics on pencils of quadrics developed in [DR2004].

The projective geometry nucleus of that billiard dynamics is the Double
Reflection Theorem, see Theorem 5.27 below. There are four lines belonging to
a certain linear space and forming the Double reflection configuration: these four
lines reflect to each other according to the billiard law at some confocal quadrics.

In higher genera, we construct the corresponding, more general, billiard con-
figuration, again by using the Double Reflection Theorem. This configuration,
which we call s-brush, is in one of the equivalent formulations, a certain billiard
trajectory of length s ≤ g and the sum of s elements in the brush is, roughly
speaking, the final segment of that billiard trajectory.

The milestones of this presentation are [Knö1980] and [DR2004] and the key
observation, from [DR2008], giving a link between them is that the correspondence
g �→ g′ in Lemma 4.1 and Corollary 4.2 from [Knö1980] is the billiard map at the
quadric Qλ.

Thus, after observing and understanding the billiard nature behind the con-
structions of [Rei1972], [Knö1980], [Don1980], we become able to use the billiard
tools to construct and study hyperelliptic Jacobians, and particularly their real
part. It may be realized as a set T of lines in Rd simultaneously tangent to given
d− 1 quadrics Q1, . . . , Qd−1 of some confocal family. It is well known that such
a set T is invariant under the billiard dynamics determined by quadrics from the
confocal family. By using the Double Reflection Theorem and some other billiard
constructions we construct a group structure on T , a billiard algebra. The usage
of billiard dynamics in algebro-geometric considerations appears to be, as usual
in such a situation, of a two-way benefit. We derive a fundamental property of T :
any two lines in T can be obtained from each other by at most d−1 billiard reflec-
tions at some quadrics from the confocal family. The last fact opens a possibility
to introduce new hierarchies of notions: of s-skew lines in T , s = −1, 0, . . . , d− 2
and of s-weak Poncelet trajectories of length n. The last are natural quasi-periodic
generalizations of Poncelet polygons. By using billiard algebra, we obtain complete
analytical descriptions of them. These results are further generalizations of our re-
cent description of Cayley’s type of Poncelet polygons in arbitrary dimension, see
[DR2006b]. Let us emphasize that the method used in [DR2008], based on billiard
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algebra, differs from the methods exposed in [DR2006b], see also [DR2010]. Both
of the methods will be presented in the sequel.

The interrelations between billiard dynamics, subspaces of intersections of
quadrics and hyperelliptic Jacobians developed in [DR2008], enable us to obtain
higher-dimensional generalizations of several classical results. To demonstrate the
power of the methods, generalizations of Weyr’s Poncelet theorem (see [Wey1870])
and also the Griffiths–Harris Space Poncelet theorem (see [GH1977]) in arbitrary
dimension are derived and presented here. We also give an arbitrary-dimensional
generalization of the Darboux theorem [Dar1914].

Let us mention at the end of a brief outline of main results which are go-
ing to be presented here, that the line we are going to establish and follow, is to
demonstrate the deep intimate relationship between on one hand general hyper-
elliptic Jacobians and integrable billiard systems generated by pencils of quadrics
on the other hand. This can be seen as a very simple and specialized level of gen-
eral ideology of integrable systems which culminated with the so-called Novikov’s
conjecture, solved by Shiota in 1985.

Let us recall that Novikov’s conjecture demonstrates the deepest relationship
between the theory of integrable dynamical systems and theory of algebraic curves.
It solved a century old, general and important Riemann–Schottky problem of
description of period matrices of Jacobians among Riemannian matrices through
the solutions of the Kadomtsev–Petviashvili integrable hierarchy.

There is another, very important connection of our subject with some of the
most prominent parts of contemporary mathematics.

The Euler–Chasles correspondences, or symmetric (2-2)-correspondences
play one of the main roles in our exposition. They were used by Jacobi, then
by Trudi [Tru1853,Tru1863] and finally, Darboux extended their use in the theory
of Poncelet porisms essentially.

One of the central objects in mathematical physics in the last 25 years is the
R-matrix, or the solution R(t, h) of the quantum Yang–Baxter equation

R12(t1 − t2, h)R13(t1, h)R
′23(t2, h) = R23(t2, h)R13(t1, h)R12(t1 − t2, h),

as a paradigm of modern understanding of the addition relation. Here t is a so-
called spectral parameter and h is the Planck constant . If the h dependence satisfies
the quasi-classical property R = I + hr +O(h2), the classical r-matrix r satisfies
the classical Yang–Baxter equation. Classification of the solutions of the classical
Yang–Baxter equation was done by Belavin and Drinfeld in 1982 [BD1982]. The
problem of classification of the quantum R-matrices is still open. However, some
important results of classification have been obtained in the basic 4 × 4 case by
Krichever in [Kri1981], and following his ideas in [Dra1992a,Dra1993].

Krichever in [Kri1981] applied the idea of “finite-gap” integration to the
theory of the Yang equation:

R12L13L
′23 = L

′23L13R12.
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The principal objects that are considered are 2n × 2n matrices L, understood
as 2 × 2 matrices whose elements are n × n matrices; L = Liα

jβ is considered as
a linear operator in the tensor product Cn ⊗ C2. The theorem from [Kri1981]
uniquely characterizes them by the following spectral data:

1. the vacuum vectors, i.e., vectors of the form X⊗U , which L maps to vectors
of the same form Y ⊗ V , where X,Y ∈ Cn and U, V ∈ C2;

2. the vacuum curve Γ : P (u, v) = detL = 0, where Li
j = V βLiα

jβUα, (V β) =
(1,−v), Xn = Yn = U2 = V2 = 1; U1 = u, V1 = v;

3. the divisors of the vector-valued functions X(u, v), Y (u, v), U(u, v), V (u, v),
which are meromorphic on the curve Γ.

It appeared that vacuum curves in 4 × 4 case are exactly Euler–Chasles
correspondences. The Yang–Baxter equation itself provides the condition of com-
mutation of the two Euler–Chasles correspondences. The classification follows by
application of the Euler theorem in the general case, and by studying possible
degenerations.

This is practically the same picture we meet in the study of the Poncelet
theorem. The hope is that our study of higher-dimensional analogues of the Pon-
celet theorem could provide us the intuition that will help us in classification of
higher-dimensional solutions of the Yang–Baxter equation.

Thus, we include the story about Krichever’s algebro-geometric approach
to 4 × 4 solutions of the Quantum Yang–Baxter equation in the last chapter.
We explained there the relationship between the Poncelet theorem for a triangle
and the Darboux theorem from one side and Krichever’s commuting relation of
vacuum curves from another side (see Theorem 10.12). We underline connection of
classification results for 4× 4 R-matrices to the classification of pencils of conics,
see Theorem 10.12 and Proposition 10.13. Pencils of conics and their classification
played a crucial role in previous chapters. Finally, we point out a sort of billiard
construction within the Algebraic Bethe Ansatz associated to four-dimensional
R-matrices, see Lemma 10.14 and Theorem 10.15.

The Poncelet theorem is usually called the Poncelet porism. Let us give some
explanation of the meaning of the word porism. It has roots in ancient Greek
mathematics, and it is usually translated in two ways. The first one is lemma
or corollary. The second one goes deeper into the philosophy of ancient Greek
mathematics. Scientists of that time used to divide mathematical statements into
two categories:

• Theorems – where something has to be proven, and
• Problems – where something needs to be constructed.

Nevertheless, they recognized the third, intermediate, class as well, called Porisms,
directed to finding what is proposed. The most famous collection of porisms of
ancient times was the book The Porisms of Euclid. Unfortunately, this work is
lost, and the trace which survived leads through The Collection of Pappus of
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Alexandria. Even then, there was much discussion about the definition of the
notion of porism as well as about Euclid’s porisms. These discussions continue
today. In the XVII century, important contributions were made by Albert Girard
and Pierre Fermat. In the XVIII century, we can mention Robert Simson and John
Playfair. Here is Simson’s definition of a porism.

“Porisma est propositio in qua proponitur demonstrate rem aliquam vel
plures Batas ease, cui vel quibus, ut et cuilibet ex rebus innumeris non
quidem datis, sed quae ad ea quae data sunt eandem habent relationem,
convenire ostendendum est affectionem quandam communem in proposi-
tione descriptam. Porisma etiam in forma problematis enuntiari potest,
si nimirum ex quibus data demonstranda aunt, invenienda proponan-
tur.”

Playfair, continuing the work of Simson, tried to understand the probable
origin of porisms, to find out what led the ancient geometers to the discovery of
them. He remarked that the careful investigation of all possible particular cases
of a proposition would show that:

(1) under certain conditions a problem becomes impossible;
(2) under certain other conditions, indeterminate or capable of an infinite number

of solutions.

For more details see [1911, E.B.].
This is exactly the situation we recognize in the Poncelet theorem. For two

given conics, there are two possibilities. Either, a polygon inscribed in one of
them and circumscribed about the other has an infinite number of sides, or the
number of sides is finite. If it is finite, then the number of sides does not depend
on an initial point. We want to stress here that the idea of porism of Poncelet
type, in a very special case, existed almost 70 years before Poncelet. This case of
Poncelet’s theorem is the one with two circles, inscribed and circumscribed about
the same triangle. We come to such a situation starting from an arbitrary triangle,
and considering its inscribed and circumscribed circle. Denote by r and R their
radii respectively, and by d the distance between the centers of the circles. The
formula connecting these three values, sometimes referred as “Euler’s formula” is
well known:

d2 = R2 − 2rR.

However, this relation was discovered by English mathematician Chapple in 1746,
and he caught sight of the poristic nature of the problem: if there are two circles
satisfying the last Chapple formula, then there are infinitely many triangles in-
scribed in one and circumscribed about the other circle. Probably, this is the first
known appearance of porisms of Poncelet type.

The Euler school was also interested in that subject. Nicolas Fuss, one of
Euler’s personal secretaries, and after Euler’s death the secretary of St. Petersburg
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Academy of Sciences, published several works on study of bicentric polygons. In
1797 he published the formula for bicentric quadrilaterals:

(R2 − d2)2 = 2r2(R2 + d2).

But, although it was 50 years after Chapple, Fuss did not understand the poristic
nature of the problem.

It was Jacobi in 1828 who understood the relationship between Poncelet
porism in general and study of bicentric polygons of Fuss, Steiner and others.

Some parts of the material presented here were used by the authors for grad-
uate courses they taught: V. D. in 2002/2003 in the International School of Ad-
vanced Studies in Trieste [Dra2003], and M. R. in 2006 in the Weizmann Institute
of Science in Rehovot. Both authors read mini-courses on the subject, M. R. in the
Weizmann Institute of Sciences in 2005 and V. D. at the University of Lisbon in
2007. Also, both authors gave several lectures on seminars and conferences in Italy,
France, Germany, Serbia, Spain, Portugal, Montenegro, Israel, Czechia, Poland,
Hungary, Great Britain, Austria, Russia, Brazil, USA, Canada, and Bulgaria. One
of our observations was that there was a visible division between the communi-
ties of Algebraic and Projective Geometry, although some 50 years ago these fields
were quite a unified subject. Having this experience in mind, we decided to include
introductions to both subjects in order to make the book self-contained as much
as possible and usable for both communities and for the mathematical community
at large.
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