
Short Contents

Preface xvii

Foreword xix

Glossary of Notation xxiii

I First Concepts 1

1 Two Definitions of Lattices 1

2 How to Describe Lattices 21

3 Some Basic Concepts 28

4 Terms, Identities, and Inequalities 66

5 Free Lattices 75

6 Special Elements 97

II Distributive Lattices 109

1 Characterization and Representation Theorems 109

2 Terms and Freeness 126

3 Congruence Relations 138

4 Boolean Algebras R-generated by Distributive Lattices 149

5 Topological Representation 166

6 Pseudocomplementation 191

III Congruences 207

1 Congruence Spreading 207

2 Distributive, Standard, and Neutral Elements 223

3 Distributive, Standard, and Neutral Ideals 234

4 Structure Theorems 244

vii



viii Contents

IV Lattice Constructions 255
1 Adding an Element 255
2 Gluing 262
3 Chopped Lattices 269
4 Constructing Lattices with Given Congruence Lattices 276
5 Boolean Triples 294

V Modular and Semimodular Lattices 307
1 Modular Lattices 307
2 Semimodular Lattices 329
3 Geometric Lattices 342
4 Partition Lattices 359
5 Complemented Modular Lattices 373

VI Varieties of Lattices 409
1 Characterizations of Varieties 409
2 The Lattice of Varieties of Lattices 423
3 Finding Equational Bases 438
4 The Amalgamation Property 454

VII Free Products 467
1 Free Products of Lattices 467
2 The Structure of Free Lattices 493
3 Reduced Free Products 508
4 Hopfian Lattices 526

Afterword 533

Bibliography 539

Index 589



Contents

Preface xvii

Foreword xix

Glossary of Notation xxiii

I First Concepts 1
1 Two Definitions of Lattices 1

1.1 Orders 1
1.2 Equivalence relations and preorderings 2
1.3 Basic order concepts 4
1.4 Ordering and covers 5
1.5 Order diagrams 6
1.6 Order constructions 7
1.7 Two more numeric invariants 8
1.8 Lattices as orders 9
1.9 Algebras 11
1.10 Lattices as algebras 12
Exercises 15

2 How to Describe Lattices 21
2.1 Lattice diagrams 21
2.2 Join- and meet-tables 21
2.3 Combinations 22
Exercises 24

3 Some Basic Concepts 28
3.1 The concept of isomorphism 28
3.2 Homomorphisms 30
3.3 Sublattices and extensions 31
3.4 Ideals 31
3.5 Intervals 35

ix



x Contents

3.6 Congruences 36
3.7 Congruences and homomorphisms 40
3.8 Congruences and extensions 41
3.9 Congruences and quotients 42
3.10 ♦Tolerances 43
3.11 Direct products 45
3.12 Closure systems 47
3.13 Galois connections 49
3.14 Complete lattices 50
3.15 Algebraic lattices 52
3.16 ♦Continuous lattices by Jimmie D. Lawson 54
3.17 ♦Algebraic lattices in universal algebra 57
Exercises 59

4 Terms, Identities, and Inequalities 66
4.1 Terms and polynomials 66
4.2 Identities and inequalities 68
4.3 Distributivity and modularity 71
Exercises 73

5 Free Lattices 75
5.1 The formal definition 75
5.2 Existence 77
5.3 Examples 82
5.4 Partial lattices 83
5.5 Free lattices over partial lattices 89
5.6 ♦Finitely presented lattices 91
Exercises 92

6 Special Elements 97
6.1 Complements 97
6.2 Pseudocomplements 99
6.3 Other types of special elements 101
6.4 ♦Axiomatic games 102
Exercises 104

II Distributive Lattices 109
1 Characterization and Representation Theorems 109

1.1 Characterization theorems 109
1.2 Structure theorems, finite case 112
1.3 ♦Structure theorems, finite case, categorical variant 115
1.4 Structure theorems, infinite case 116
1.5 Some applications 118
1.6 Automorphism groups 120
1.7 ♦Distributive lattices and general algebra 122
Exercises 123



Contents xi

126
2 Terms and Freeness 126

2.1 Terms for distributive lattices 126
2.2 Boolean terms 128
2.3 Free constructs 130
2.4 Boolean homomorphisms 131
2.5 ♦Polynomial completeness of lattices by Kalle Kaarli 133
Exercises 136

3 Congruence Relations 138
3.1 Principal congruences 138
3.2 Prime ideals 141
3.3 Boolean lattices 142
3.4 Congruence lattices 145
Exercises 146

4 Boolean Algebras R-generated by Distributive Lattices 149
4.1 Embedding results 149
4.2 The complete case 154
4.3 Boolean lattices generated by chains 156
Exercises 164

5 Topological Representation 166
5.1 Distributive join-semilattices 167
5.2 Stone spaces 168
5.3 The characterization of Stone spaces 170
5.4 Applications 175
5.5 Free distributive products 177
5.6 ♦Priestley spaces by Hilary A. Priestley 180
5.7 ♦Frames by Aleš Pultr 184
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