The Browder Spectrum of an
Elementary Operator
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Abstract. We relate the ascent and descent of n-tuples of multiplication op-
erators M, »(u) = aub to that of the coefficient Hilbert space operators a, b.
For example, if a = (a1,...,a,) and b* = (b1,...,b},) have finite non-zero
ascent and descent s and t, respectively, then the (n + m)-tuple (La, Ry) of
left and right multiplication operators has finite ascent and descent s +¢ — 1.
Using these results we obtain a description of the Browder joint spectrum of
(La, Rp) and provide formulae for the Browder spectrum of an elementary
operator acting on B(H) or on a norm ideal of B(H).
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Introduction

The Browder spectrum of a Banach space operator is obtained by removing from
the ordinary spectrum all eigenvalues of finite multiplicity which are poles of
the resolvent. Let H be a complex Hilbert space and B(H) the collection of
bounded operators on H. An elementary operator on B(H) is an operator of
the form € : B(H) — B(H), u — ajuby + - -+ + anub, where a = (ay,...,an),
b = (b1,...,b,) € B(H)™. Spectral properties of elementary operators have been
considered by various authors (see [2, 3, 5, 6, 7, 9, 10]). In this article we obtain
formulae for the Browder spectrum of £. These formulae may have applications to
Weyl and Browder type theorems for elementary operators.

The ascent of a linear mapping a acting on a vector space X is usually
described as the length of the increasing chain of null spaces
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This value is also the smallest non-negative integer r for which ker aNrana” = {0}.
The descent of a is the length of the decreasing chain of range spaces

X Drana Drana® Drana® D -

and equals the smallest r for which kera” + rana = X. Let a = (a1,...,a,) be
an n-tuple of linear mappings on a vector space X. We write N(a) = ﬂ?zl ker a;
and R(a) = Z;.lzl rana;. We denote by a” the lexicographically ordered n"-tuple
of operators on X consisting of all products aj, ...a;, . For example if n = 2 then

a = (al,ag)

2 2 2
a‘ = (a7, a1a2, azay, a3)

a’ = (a:f, a%ag, aiasai, alag, aga%, asaias, a%al, ag) ete.

In the terminology of [8], the ascent of a = (a1, ..., a,) on X is the smallest r such
that N(a) N R(a") = {0}. The descent of a = (ay,...,a,) on X is the smallest r
such that N(a")+ R(a) = X. If the ascent and descent of a = (ay, ..., ay) are both
finite then they are equal ([8, Proposition 1.9]). We will denote the ascent of an
n-tuple a = (ay,...,a,) by a(a, X) or simply a(a) if the space X is understood.
Similarly we write d(a, X) or simply d(a) for the descent of a = (a1, ..., a,).

For operators a,b € B(H) define the multiplication operator M, : B(H) —
B(H), u +— aub. With I the identity operator on H, the left multiplication operator
is Lq = M, 1 and the right multiplication operator is Ry, = My ;. Given an n-tuple
a = (a1,...,a,) of operators on H we write L, = (Lal,... L,,) and R, =
(Ray,- .-, Ra,). More generally, we will consider multiplication operators acting
on ideals Z of B(H) such as the compact operators, the trace-class operators, the
Hilbert-Schmidt operators and all p-Schatten classes of operators.

In Section 1 we show that if a = (a,...,a,) and b* = (b3,...,b%,) have
finite non-zero ascent and descent s and t respectively then the (n + m)-tuple
(La, Rv) = (Lay,---,La,, Ry, Ry, ) has finite ascent and descent s + ¢ — 1.
We also obtain bounds for the ascent and descent of M,y = (Mai,bj)?z’szy
In [8] a Browder joint spectrum o, was introduced for n-tuples of Banach space
operators. In Section 2 we obtain a description of the Browder joint spectrum of
(La, Rp) and collect formulae for the Browder spectrum of an elementary operator
acting on B(H) or on a norm ideal of B(H),

op(€) = (Ul(a) oo, (b ) U (U;(a) o O',n(b)) U (Ur(a) o U;r(b)) U (U; (a) ooy (b))
= (om(a) ooy (b)) U (os(a) o o (b))
= (or(a) o ors(b)) U (o1(a) o o7 (b))

< —=

Here 0; and o, are the left and right spectra, Ugr and o, are analogues of the
semi-Browder spectra of an operator, oy is the Harte spectrum, o is the Taylor
spectrum and opy is the Taylor—Browder spectrum.
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1. Ascent and descent

Theorem 1.1. Let a = (ay,...,a,) be an n-tuple of operators on a Hilbert space H.
Let T be a left ideal of B(H). Then

(i) a(La, Z) = a(a, H)
(i) 6(La,Z) =6(a, H)

Proof. (i) If w € N(La) N R((La)") then ranu C N(a) N R(a”). We conclude
that o(La) < a(a). For the reverse inequality, suppose € N(a) N R(a”). Then
x=> ay...a; (x; ;) for some x;  ,; € H.Choosey € H such that (x,y) = 1.
For each z;, ;. consider the rank one operator p;, ;. € Z given by p;, .. (z) =
(z,y)xi, 4, forall z€ H. Let p=>a;, ...a; piy..i,- Then p € N(La) N R((La)")
and x = p(x). We conclude that a(a) < a(La).

(ii) Suppose N((La)") + R(La) = Z. Let z € H and let p € 7 be a rank
one operator with p(z) = z. Then p = u + v for some u € N((La)") and some
v € R(La). We have v = Lg, (v1) + - - - + Lq,, (vy) for some vy,...,v, € Z. Now x =
(utv)(z) = w(@)+(arv1+- - +anvy)(z) € N(a")+R(a). Hence N(a")+R(a) = H
and so d(a) < §(La).

For the reverse inequality, suppose N(a”) + R(a) = H. Let ¢ € B(H) be the
orthogonal projection onto N(a”). Define T : H"™' — H by T(z,y1,...,Yyn) =
q(z) +ai1(y1) + -+ + an(yn). Note that T is surjective and so there exists a right
inverse operator C' : H — H""L. Write C(2) = (f(2),91(2),...,9n(2)) where
fs91,---,gn € B(H). Then for all u € Z we have

u=(ToClu=(go flu+(azogi)u+- -+ (anogn)u € N((La)") + R(La)
We conclude that N((La)") + R(La) = Z and so 6(La) < d(a). O

By appealing to adjoints we can obtain further equalities. Given an n-tuple

a=(ai,...,a,) we denote by a* = (aj,...,a’) the n-tuple of adjoint operators.

N

Theorem 1.2. Let a = (ay,...,a,) be an n-tuple of operators on a Hilbert space H.
Let T be a two-sided ideal of B(H). Then

(i) a(Ra, ) = a(a*, H)
(ii) 6(Ra, ) =0(a*, H)

Proof. Note that the operator R, : Z — Z is similar to the operator Ly« : Z — T
where similarity is provided by the involution 7 : Z — Z, b +— b*. Applying this
similarity we have a(Ra, Z) = a(La+, Z) and 6(Ra, Z) = d(La+, Z). The result
now follows from Theorem 1.1. O

Remark 1.3. The ascent and descent of the right multiplication R, behave some-
what differently to left multiplication. For example if a is the unilateral shift oper-
ator on (2 then §(a,l?) = 6(L,, B(£?)) = oo but §(R,, B(¢?)) = 0. (This is noted
in [1, Remark 2.3].) For a general Hilbert space operator, if a"*! has closed range
where 7 = a(a) then a(a, H) = §(R4, B(H)). The necessity of the closed range

condition is illustrated by the self-adjoint operator a(e;) = 21j e; on £2. In this case
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a(a,?) = 0 and a does not have closed range. It follows from the above theorem
that §(R,, B({?)) = <.

For a single operator a € B(H) with finite ascent and descent we have equal-
ities a(a) = d(a) = a(a*) = d6(a*) = a(Ly) = 6(Ly) = a(Rs) = 0(R,). The
following example shows that this is not always true in the multivariable case.

Ezample. Let H be the Hilbert space with orthonormal basis (ei,j);?,‘}:r Define
a = (a1, as) where

0 if i=1 95 €4
Then a(a) = d(a) = 0 but a(a*) =0 and d(a*) = cc.

T 1
ai(e;;) = { ei-1y i i>1 and ag(e; ;) =

Theorem 1.4. Let a = (a1,...,a,) and b = (by,...,by) be tuples of operators on
a Hilbert space H. Let T be a two-sided ideal of B(H).

(i) If a(a) > 0 and a(b*) > 0 then a(a) + a(b*) — 1 < a((La, Rp), Z).

(ii) Ifo(a) > 0 and a(b) > 0 then §(a) + a(b) —1 < 6((La, Rp), Z).

Proof. (i) Suppose there exist non-zero elements € N(a)NR(a®) andy € N(b*)N
R((b*)"). Define the rank one operator p € Z by p(z) = (z, y)x for all z € H. Now
x=> ay .. .a;(zy. ) for some xz; ; € H.Alsoy = Zb}’fl b3 (yj,...5,) for
some yj,..;, € H. For each i1,...,i, = 1,...,n and each ji,...,5: = 1,...,m
define the rank one operator pi,. i.j,...5, € Z BY Diy.ivii..ie (2) = (2, Yj1 . ju ) Tir i
for all z € H. Then we can verify that p = > a;, ... @i, Diy..isj1...5. 051 - - - bj, - We
have p € N(La, Rp) NR((La, Rp)**") and so s +t+1 < a(La, Ryp). It follows that
a(a) + a(b*) =1 < a(La, Rp).

(ii) Suppose there exists z € N(b) N R(b") with ||z|| = 1 and suppose there
exists y € H with y ¢ N(a®)+ R(a). Define the rank one operator ¢ € Z by ¢(z) =
(z,x)y for all z € H. If §(La, Rp) < s+t then N((La, Rp)*"") + R(La, Rp) = Z.
Thus we can write ¢ = v+w for some v € N((La, Rp)*"") and some w € R(La, Ry).
Now v(x) € N(a®) and w(z) € R(a). Thus y = ¢q(z) = v(z)+w(z) € N(a®)+ R(a)
which is a contradiction. We conclude that s + ¢+ 1 < §(La, Rp). It now follows
that d(a) + a(b) — 1 < §((La, Rp), Z). O

Corollary 1.5. Leta = (a1,...,a,) andb = (by,...,by) be tuples of operators on a
Hilbert space H. Let T be a two-sided ideal of B(H). Suppose s = a(a) = d(a) < oo
and t = a(b*) = 6(b*) < co. Then

(i) a((La, Rb),Z) =0((La, Rp), Z) =0 if s=0 ort=0;

(il) a((La, Rb), T) = 6((La, Rp), I) =s+t—1 ifs,t > 0.

Proof. By Theorem 1.1 we have a(La) = 0(La) = s and by Theorem 1.2, a(Rp) =
d(Rp) = t. (i) is clear so suppose s,t > 0. The operators in L, commute with the
operators in Ry and so from the argument in [8, Proposition 2.1], (La, Rp) has
finite ascent and descent at most s + ¢ — 1. Now apply Theorem 1.4. O
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Lemma 1.6. Let s = (s1,...,8,) and t = (t1,...,tm) be tuples of linear mappings
on a vector space X such that sit; = t;s; for all i,j. Let st = (sit;);2}';_,. Then
(i) a(st) < max(a(s), a(t))
(ii) d(st) < max(d(s), o(t))

Proof. Suppose r = max(a(s), a(t)) < oco. If 2 € N(st) N R((st)") then ¢;(z) €
N(s) N R(s") = {0} for all j Hence z € N(t) N R(t") = {0}. We conclude that
a(st) < r. Considering transpose operators acting on the algebraic conjugate
of X (and noting [8, Proposition 3.4]) we have d(st) = «a((st)) = a(s't’) <
max(a(s'), a(t’)) = max(d(s), 4(t)). O

Theorem 1.7. Let a = (a1,...,a,) andb = (b1, ..., by, ) be tuples of operators on a
Hilbert space H. Let T be a two-sided ideal of B(H) and let Map, = (Ma, b,);21 j=1 -
Then

(i) min(a(a), a(b”)) < a(Map, I) < max(a(a), a(b”))
(ii) min(d(a), (b)) < §(Map, Z) < max(d(a), 6(b*))

Proof. By Lemma 1.6 we have a(Map) < max(a(La), a(Rp)) and 6(Map) <
max(d(La), d(Rp)). Now Theorem 1.1 and Theorem 1.2 show the rightmost in-
equalities in (i) and (ii) hold.

Suppose there are non-zero elements x € N(a) N R(a®) and y € N(b*) N
R((b*)"). Define p € Z by p(z) = (z,y)z. Then p € N(Map) N R((Map)") where
r = min(s, ). It follows that min(a(a), a(b*)) < a(Map).

Suppose there exists z € H with z ¢ N(a®) + R(a) and y € N(b) N R(b")
with |ly]| = 1. Define p € T by p(z) = (z,y)z. Let r = min(s,¢) and suppose
N((Map)") + R(Map) =Z. Then p = v + w for some v € N((Map)") and some
w € R(Map). Now v(y) € N(a®) and w(y) = 0. Hence = = p(y) = v(y) € N(a®).
This is a contradiction and so min(s,t) < §(Ma,p). The result follows. O

2. Browder spectrum of (L., Ry,)

Throughout this section H is a complex Hilbert space and we consider multipli-
cation operators acting on B(H) or on a norm ideal Z of B(H). For a general
reference on joint spectra we cite [11]. An n-tuple a = (a1, ..., a,) of operators on
a Banach space X is left (resp. right) invertible if there exists b1,...,b, € B(X)
with bia; + -+ + bpa, = I (resp. ajby + -+ + apb, = I). Denote by I'®’* the
collection of left invertible tuples and by I"%9"* the collection of right invertible
tuples. Recall the left and right spectra for a tuple of operators are

o(a)={AeC":a— )¢
or(a)={AeC":a—\¢ Iright}

An n-tuple a = (ay, ..., a,) is called upper semi-Fredholm if the column operator
X — X", z+— (a1(x),...,an(2z)) has finite-dimensional kernel and closed range.
An n-tuple a = (ay,...,ay) is lower semi-Fredholm if the row operator X" —
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X, (x1,...,2n) — a1(z) + - -+ + an(z) has finite codimensional range. We denote
by F'T and F'~ respectively the collection of upper and lower semi-Fredholm tuples.
The upper and lower Fredholm spectra are

olf(a, X)={AeC":a- ¢ F"}
o, (a, X)={AeC':a- ¢ F}

An n-tuple is called Fredholm if it is both upper and lower semi-Fredholm. We
will make use of the following formulae which can be found in [2].

0 (La, Bp), I) = (01(a) x 0. (b)) U (0 (a) x 0v(b)) (2.1)
¢ (La; Rp), I) = (0r(a) x o/ (b)) U (0. (a) x 0y(b)) (2.2)

We denote by BT the collection of upper semi-Fredholm tuples with finite ascent
and by B~ the collection of lower semi-Fredholm tuples with finite descent. Define

o (@) ={\eC":a— )¢ B'}
o,(a)={AeC":a-\¢ B}
op(a, X)—ab( )Uo, (a)

In [8] it is shown that for commuting tuples o}, is a compact-valued joint spectrum
which satisfies a spectral mapping theorem. We note the following inclusions,

ol (a) C o) (a) C o(a)
0. (a) S 0, (a) C or(a)

Theorem 2.1. Let a = (a1,...,a,) and b = (by,...,by) be tuples of operators on
a complex Hilbert space H and let T be either B(H) or a norm ideal of B(H).
Then op((La, Ryp), Z) = S1 U Sy where

S1 = (01(a) x 0, (b)) U (0 (a) x o,(b))
Sy = (0,(a) x 07 (b)) U (0, (a) x 0y(b))

Proof. First we show the inclusion op(La, Rp) 2 S1USs. Suppose A ¢ op(La, Rb).
For simplicity we assume A = 0 € C"*™. Then (La, Rp) is Fredholm with finite
ascent and finite descent. Using (2.1) and (2.2) we have four possible cases to
consider:

(i) 0 ¢ (01(a) x o (b)) and 0 & (or-(a) x a1(b))

(i) 0 ¢ 0i(a) x 0(b) and 0 € (0,(a)\o. (a)) x (01(b)\o (b))

(iif) 0¢0r( ) x 01(b) and 0 € (0u(a)\o/ (a)) x (0r(b)\o, (b))

(iv) 0 € (or(a)\o; (a)) x (a1(b)\o (b)) and 0 € (01(a)\c (a)) x (o (b)\o: (b))
If (i) holds then clearly 0 ¢ Sy U Sa. Suppose (ii) holds. Since 0 € o, (a) we have
d(a) > 0. Since 0 € o;(b) and b is upper semi-Fredholm we have a(b) > 0. Thus
by Theorem 1.4, é(a) + a(b) — 1 < §(La, Rp) < oo. From (ii) we have either
0¢oi(a)or0¢ o.(b). If 0 ¢ oy(a) then a(a) = 0. But this forces a(a) = §(a) =0
which is a contradiction. Similarly if 0 ¢ o,(b) then a(b) = d(b) = 0 which is a
contradiction. We conclude that (ii) cannot hold. A similar argument shows that
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(iil) cannot hold. If (iv) holds then a and b are both Fredholm tuples with non-zero
ascent and descent. Since b is Fredholm we have a(b*) = §(b) ([8, Proposition
3.5]). Applying Theorem 1.4 we see that a and b both have finite ascent and finite
descent. Hence 0 ¢ S; U Sy. This shows that o,(La, Rp) 2 S1 U So.

Next we show the inclusion o4(La, Rp) C S; U Sa. Suppose A ¢ S; U Ss.
Again we will assume A = 0 € C"*™. Using (2.1) and (2.2) we see that (La, Rp)
is Fredholm. To show that (La, Rp) has finite ascent and descent we consider four
possibilities:

(i) 0 ¢ (01(a) x o (b)) and 0 & (or-(a) x a1(b))

(ii) 0 ¢ ou(a) x 0,(b) and 0 € (o (a)\o;, (a)) x (o1(b)\ey (b))
(iii) 0 ¢ or(a) x o1(b) and 0 € (o (a)\% (a)) x (or(b)\o b_(b))
(iv) 0€ (or(a)\o, (a)) x (1(b)\ey) (b)) and 0 € (a1(a)\0; (a)) x (0v(b)\o, (b))
If (i) holds then we obtain one of the four conditions

a(a) =46(a) =0 a(b®)=46(b") =0

a(a) =0(b") =0 a(b*)=4d(a)=0
From Theorem 1.1 and Theorem 1.2, each condition gives a(La, Rp) = 0(La, Rp) =
0. If (ii) or (iii) holds then we have either a(a) = d(a) = 0 or a(b*) = §(b*) = 0.
Again this implies a(La, Rp) = (La, Rp) = 0. If (iv) holds then both a and b* are
Fredholm tuples with finite non-zero ascent and descent. By Corollary 1.5 we have
a(La, Rp) = 0(La, Rp) < co. Hence 0 ¢ 0y(La, Rp). This shows o4(La, Rp) C
S U Ss. O

We use below the standard notation Ao B = {31 | \ju; : A € A, p € B} for
subsets A, B of C".

Corollary 2.2. Let a = (a1,...,a,) and b = (by,...,b,) be commuting n-tuples
of operators on a complex Hilbert space H and let T be B(H) or a norm ideal of
B(H). Let £ : T — T be the elementary operator £(u) = ajuby +- - -+ anub,. Then

op(E,7) = (Ul(a) o O';(b)) U (a;(a) o O'T(b)) U (U,,(a) o O';r(b)) U (0; (a)o O'l(b))

Proof. Write & = p(La, Rp) where p is the polynomial p(z1, ..., zn, w1, ..., wy,) =
i, zw;. Applying the spectral mapping theorem for oy, ([8, §4]) we obtain
ou(€) = p(op((La, Rp), Z)) and so the result follows from Theorem 2.1. O

The Taylor-Browder spectrum of a commuting n-tuple a = (a1, ..., a,) is

orp(a) = acc (op(a)) Uore(a)
where op is the Taylor spectrum, o7, is the essential Taylor spectrum and acc
denotes the set of accumulation points. The Taylor-Browder spectrum of (La, Rp)
is readily deduced from [5],
orb((La, Rb), I) = (or(a) x os(b)) U (a1s(a) x o7 (b))
Application of the spectral mapping theorem for o, ([4]) yields

op(€, I) = (or(a) o orp(b)) U (o1s(a) 0 o7 (b))
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Combining this with Corollary 2.2 and noting inclusions we obtain the formula
os(€, I) = (ou(a) o op(b)) U (dp(a) o o (b))
where o = 07 U g, denotes the Harte spectrum.
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