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Abstract. We relate the ascent and descent of n-tuples of multiplication op-
erators Ma,b(u) = aub to that of the coefficient Hilbert space operators a, b.
For example, if a = (a1, . . . , an) and b∗ = (b∗1, . . . , b

∗
m) have finite non-zero

ascent and descent s and t, respectively, then the (n + m)-tuple (La, Rb) of
left and right multiplication operators has finite ascent and descent s + t− 1.
Using these results we obtain a description of the Browder joint spectrum of
(La, Rb) and provide formulae for the Browder spectrum of an elementary
operator acting on B(H) or on a norm ideal of B(H).
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Introduction

The Browder spectrum of a Banach space operator is obtained by removing from
the ordinary spectrum all eigenvalues of finite multiplicity which are poles of
the resolvent. Let H be a complex Hilbert space and B(H) the collection of
bounded operators on H . An elementary operator on B(H) is an operator of
the form E : B(H) → B(H), u 
→ a1ub1 + · · · + anubn where a = (a1, . . . , an),
b = (b1, . . . , bn) ∈ B(H)n. Spectral properties of elementary operators have been
considered by various authors (see [2, 3, 5, 6, 7, 9, 10]). In this article we obtain
formulae for the Browder spectrum of E . These formulae may have applications to
Weyl and Browder type theorems for elementary operators.

The ascent of a linear mapping a acting on a vector space X is usually
described as the length of the increasing chain of null spaces

{0} ⊆ ker a ⊆ kera2 ⊆ ker a3 ⊆ · · ·
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This value is also the smallest non-negative integer r for which kera∩ran ar = {0}.
The descent of a is the length of the decreasing chain of range spaces

X ⊇ rana ⊇ rana2 ⊇ rana3 ⊇ · · ·

and equals the smallest r for which ker ar + rana = X . Let a = (a1, . . . , an) be
an n-tuple of linear mappings on a vector space X . We write N(a) =

⋂n
j=1 ker aj

and R(a) =
∑n

j=1 ranaj . We denote by ar the lexicographically ordered nr-tuple
of operators on X consisting of all products aj1 . . . ajr . For example if n = 2 then

a = (a1, a2)

a2 = (a2
1, a1a2, a2a1, a2

2)

a3 = (a3
1, a2

1a2, a1a2a1, a1a
2
2, a2a

2
1, a2a1a2, a2

2a1, a3
2) etc.

In the terminology of [8], the ascent of a = (a1, . . . , an) on X is the smallest r such
that N(a) ∩ R(ar) = {0}. The descent of a = (a1, . . . , an) on X is the smallest r
such that N(ar)+R(a) = X . If the ascent and descent of a = (a1, . . . , an) are both
finite then they are equal ([8, Proposition 1.9]). We will denote the ascent of an
n-tuple a = (a1, . . . , an) by α(a, X) or simply α(a) if the space X is understood.
Similarly we write δ(a, X) or simply δ(a) for the descent of a = (a1, . . . , an).

For operators a, b ∈ B(H) define the multiplication operator Ma,b : B(H) →
B(H), u 
→ aub. With I the identity operator on H , the left multiplication operator
is La = Ma,I and the right multiplication operator is Rb = MI,b. Given an n-tuple
a = (a1, . . . , an) of operators on H we write La = (La1 , . . . , Lan) and Ra =
(Ra1 , . . . , Ran). More generally, we will consider multiplication operators acting
on ideals I of B(H) such as the compact operators, the trace-class operators, the
Hilbert-Schmidt operators and all p-Schatten classes of operators.

In Section 1 we show that if a = (a1, . . . , an) and b∗ = (b∗1, . . . , b∗m) have
finite non-zero ascent and descent s and t respectively then the (n + m)-tuple
(La, Rb) = (La1 , . . . , Lan , Rb1 , . . . , Rbm) has finite ascent and descent s + t − 1.
We also obtain bounds for the ascent and descent of Ma,b = (Mai,bj )

n, m
i=1,j=1.

In [8] a Browder joint spectrum σb was introduced for n-tuples of Banach space
operators. In Section 2 we obtain a description of the Browder joint spectrum of
(La, Rb) and collect formulae for the Browder spectrum of an elementary operator
acting on B(H) or on a norm ideal of B(H),

σb(E) =
(
σl(a) ◦ σ−

b (b)
)
∪
(
σ+

b (a) ◦ σr(b)
)
∪
(
σr(a) ◦ σ+

b (b)
)
∪
(
σ−

b (a) ◦ σl(b)
)

= (σH(a) ◦ σb(b)) ∪ (σb(a) ◦ σH(b))

= (σT (a) ◦ σTb(b)) ∪ (σTb(a) ◦ σT (b))

Here σl and σr are the left and right spectra, σ+
b and σ−

b are analogues of the
semi-Browder spectra of an operator, σH is the Harte spectrum, σT is the Taylor
spectrum and σTb is the Taylor–Browder spectrum.
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1. Ascent and descent

Theorem 1.1. Let a = (a1, . . . , an) be an n-tuple of operators on a Hilbert space H.
Let I be a left ideal of B(H). Then

(i) α(La, I) = α(a, H)
(ii) δ(La, I) = δ(a, H)

Proof. (i) If u ∈ N(La) ∩ R((La)r) then ranu ⊆ N(a) ∩ R(ar). We conclude
that α(La) ≤ α(a). For the reverse inequality, suppose x ∈ N(a) ∩ R(ar). Then
x =

∑
ai1 . . . air (xi1...ir ) for some xi1...ir ∈ H . Choose y ∈ H such that 〈x, y〉 = 1.

For each xi1...ir consider the rank one operator pi1...ir ∈ I given by pi1...ir (z) =
〈z, y〉xi1...ir for all z ∈ H . Let p =

∑
ai1 . . . airpi1...ir . Then p ∈ N(La)∩R((La)r)

and x = p(x). We conclude that α(a) ≤ α(La).
(ii) Suppose N((La)r) + R(La) = I. Let x ∈ H and let p ∈ I be a rank

one operator with p(x) = x. Then p = u + v for some u ∈ N((La)r) and some
v ∈ R(La). We have v = La1(v1)+ · · ·+Lan(vn) for some v1, . . . , vn ∈ I. Now x =
(u+v)(x) = u(x)+(a1v1+· · ·+anvn)(x) ∈ N(ar)+R(a). Hence N(ar)+R(a) = H
and so δ(a) ≤ δ(La).

For the reverse inequality, suppose N(ar) + R(a) = H . Let q ∈ B(H) be the
orthogonal projection onto N(ar). Define T : Hn+1 → H by T (x, y1, . . . , yn) =
q(x) + a1(y1) + · · · + an(yn). Note that T is surjective and so there exists a right
inverse operator C : H → Hn+1. Write C(z) = (f(z), g1(z), . . . , gn(z)) where
f, g1, . . . , gn ∈ B(H). Then for all u ∈ I we have

u = (T ◦ C)u = (q ◦ f)u + (a1 ◦ g1)u + · · · + (an ◦ gn)u ∈ N((La)r) + R(La)

We conclude that N((La)r) + R(La) = I and so δ(La) ≤ δ(a). �

By appealing to adjoints we can obtain further equalities. Given an n-tuple
a = (a1, . . . , an) we denote by a∗ = (a∗

1, . . . , a
∗
n) the n-tuple of adjoint operators.

Theorem 1.2. Let a = (a1, . . . , an) be an n-tuple of operators on a Hilbert space H.
Let I be a two-sided ideal of B(H). Then

(i) α(Ra, I) = α(a∗, H)
(ii) δ(Ra, I) = δ(a∗, H)

Proof. Note that the operator Ra : I → I is similar to the operator La∗ : I → I
where similarity is provided by the involution τ : I → I, b 
→ b∗. Applying this
similarity we have α(Ra, I) = α(La∗ , I) and δ(Ra, I) = δ(La∗ , I). The result
now follows from Theorem 1.1. �

Remark 1.3. The ascent and descent of the right multiplication Ra behave some-
what differently to left multiplication. For example if a is the unilateral shift oper-
ator on �2 then δ(a, �2) = δ(La, B(�2)) = ∞ but δ(Ra, B(�2)) = 0. (This is noted
in [1, Remark 2.3].) For a general Hilbert space operator, if ar+1 has closed range
where r = α(a) then α(a, H) = δ(Ra, B(H)). The necessity of the closed range
condition is illustrated by the self-adjoint operator a(ej) = 1

2j ej on �2. In this case
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α(a, �2) = 0 and a does not have closed range. It follows from the above theorem
that δ(Ra, B(�2)) = ∞.

For a single operator a ∈ B(H) with finite ascent and descent we have equal-
ities α(a) = δ(a) = α(a∗) = δ(a∗) = α(La) = δ(La) = α(Ra) = δ(Ra). The
following example shows that this is not always true in the multivariable case.

Example. Let H be the Hilbert space with orthonormal basis (ei,j)∞i,j=1. Define
a = (a1, a2) where

a1(ei,j) =
{

ei−1,j if i > 1
0 if i = 1 and a2(ei,j) =

1
2j

ei,j

Then α(a) = δ(a) = 0 but α(a∗) = 0 and δ(a∗) = ∞.

Theorem 1.4. Let a = (a1, . . . , an) and b = (b1, . . . , bm) be tuples of operators on
a Hilbert space H. Let I be a two-sided ideal of B(H).

(i) If α(a) > 0 and α(b∗) > 0 then α(a) + α(b∗) − 1 ≤ α((La, Rb), I).
(ii) If δ(a) > 0 and α(b) > 0 then δ(a) + α(b) − 1 ≤ δ((La, Rb), I).

Proof. (i) Suppose there exist non-zero elements x ∈ N(a)∩R(as) and y ∈ N(b∗)∩
R((b∗)t). Define the rank one operator p ∈ I by p(z) = 〈z, y〉x for all z ∈ H . Now
x =

∑
ai1 . . . ais(xi1...is) for some xi1...is ∈ H . Also y =

∑
b∗j1 . . . b∗jt

(yj1...jt) for
some yj1...jt ∈ H . For each i1, . . . , is = 1, . . . , n and each j1, . . . , jt = 1, . . . , m
define the rank one operator pi1...isj1...jt ∈ I by pi1...isj1...jt(z) = 〈z, yj1...jt〉xi1...is

for all z ∈ H . Then we can verify that p =
∑

ai1 . . . aispi1...isj1...jtbj1 . . . bjt . We
have p ∈ N(La, Rb)∩R((La, Rb)s+t) and so s+ t+1 ≤ α(La, Rb). It follows that
α(a) + α(b∗) − 1 ≤ α(La, Rb).

(ii) Suppose there exists x ∈ N(b) ∩ R(bt) with ‖x‖ = 1 and suppose there
exists y ∈ H with y /∈ N(as)+R(a). Define the rank one operator q ∈ I by q(z) =
〈z, x〉y for all z ∈ H . If δ(La, Rb) ≤ s + t then N((La, Rb)s+t) + R(La, Rb) = I.
Thus we can write q = v+w for some v ∈ N((La, Rb)s+t) and some w ∈ R(La, Rb).
Now v(x) ∈ N(as) and w(x) ∈ R(a). Thus y = q(x) = v(x)+w(x) ∈ N(as)+R(a)
which is a contradiction. We conclude that s + t + 1 ≤ δ(La, Rb). It now follows
that δ(a) + α(b) − 1 ≤ δ((La, Rb), I). �

Corollary 1.5. Let a = (a1, . . . , an) and b = (b1, . . . , bm) be tuples of operators on a
Hilbert space H. Let I be a two-sided ideal of B(H). Suppose s = α(a) = δ(a) < ∞
and t = α(b∗) = δ(b∗) < ∞. Then

(i) α((La, Rb), I) = δ((La, Rb), I) = 0 if s = 0 or t = 0;

(ii) α((La, Rb), I) = δ((La, Rb), I) = s + t − 1 if s, t > 0.

Proof. By Theorem 1.1 we have α(La) = δ(La) = s and by Theorem 1.2, α(Rb) =
δ(Rb) = t. (i) is clear so suppose s, t > 0. The operators in La commute with the
operators in Rb and so from the argument in [8, Proposition 2.1], (La, Rb) has
finite ascent and descent at most s + t − 1. Now apply Theorem 1.4. �
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Lemma 1.6. Let s = (s1, . . . , sn) and t = (t1, . . . , tm) be tuples of linear mappings
on a vector space X such that sitj = tjsi for all i, j. Let st = (sitj)

n,m
i=1,j=1. Then

(i) α(st) ≤ max(α(s), α(t))
(ii) δ(st) ≤ max(δ(s), δ(t))

Proof. Suppose r = max(α(s), α(t)) < ∞. If x ∈ N(st) ∩ R((st)r) then tj(x) ∈
N(s) ∩ R(sr) = {0} for all j Hence x ∈ N(t) ∩ R(tr) = {0}. We conclude that
α(st) ≤ r. Considering transpose operators acting on the algebraic conjugate
of X (and noting [8, Proposition 3.4]) we have δ(st) = α((st)′) = α(s′t′) ≤
max(α(s′), α(t′)) = max(δ(s), δ(t)). �

Theorem 1.7. Let a = (a1, . . . , an) and b = (b1, . . . , bm) be tuples of operators on a
Hilbert space H. Let I be a two-sided ideal of B(H) and let Ma,b = (Mai,bj )

n, m
i=1,j=1.

Then
(i) min(α(a), α(b∗)) ≤ α(Ma,b, I) ≤ max(α(a), α(b∗))
(ii) min(δ(a), α(b)) ≤ δ(Ma,b, I) ≤ max(δ(a), δ(b∗))

Proof. By Lemma 1.6 we have α(Ma,b) ≤ max(α(La), α(Rb)) and δ(Ma,b) ≤
max(δ(La), δ(Rb)). Now Theorem 1.1 and Theorem 1.2 show the rightmost in-
equalities in (i) and (ii) hold.

Suppose there are non-zero elements x ∈ N(a) ∩ R(as) and y ∈ N(b∗) ∩
R((b∗)t). Define p ∈ I by p(z) = 〈z, y〉x. Then p ∈ N(Ma,b) ∩ R((Ma,b)r) where
r = min(s, t). It follows that min(α(a), α(b∗)) ≤ α(Ma,b).

Suppose there exists x ∈ H with x /∈ N(as) + R(a) and y ∈ N(b) ∩ R(bt)
with ‖y‖ = 1. Define p ∈ I by p(z) = 〈z, y〉x. Let r = min(s, t) and suppose
N((Ma,b)r) + R(Ma,b) = I. Then p = v + w for some v ∈ N((Ma,b)r) and some
w ∈ R(Ma,b). Now v(y) ∈ N(as) and w(y) = 0. Hence x = p(y) = v(y) ∈ N(as).
This is a contradiction and so min(s, t) < δ(Ma,b). The result follows. �

2. Browder spectrum of (La, Rb)

Throughout this section H is a complex Hilbert space and we consider multipli-
cation operators acting on B(H) or on a norm ideal I of B(H). For a general
reference on joint spectra we cite [11]. An n-tuple a = (a1, . . . , an) of operators on
a Banach space X is left (resp. right) invertible if there exists b1, . . . , bn ∈ B(X)
with b1a1 + · · · + bnan = I (resp. a1b1 + · · · + anbn = I). Denote by I left the
collection of left invertible tuples and by Iright the collection of right invertible
tuples. Recall the left and right spectra for a tuple of operators are

σl(a) = {λ ∈ Cn : a− λ /∈ I left}
σr(a) = {λ ∈ Cn : a− λ /∈ Iright}

An n-tuple a = (a1, . . . , an) is called upper semi-Fredholm if the column operator
X → Xn, x 
→ (a1(x), . . . , an(x)) has finite-dimensional kernel and closed range.
An n-tuple a = (a1, . . . , an) is lower semi-Fredholm if the row operator Xn →
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X, (x1, . . . , xn) 
→ a1(x) + · · · + an(x) has finite codimensional range. We denote
by F+ and F− respectively the collection of upper and lower semi-Fredholm tuples.
The upper and lower Fredholm spectra are

σ+
e (a, X) = {λ ∈ Cn : a − λ /∈ F+}

σ−
e (a, X) = {λ ∈ Cn : a − λ /∈ F−}

An n-tuple is called Fredholm if it is both upper and lower semi-Fredholm. We
will make use of the following formulae which can be found in [2].

σ+
e ((La, Rb), I) =

(
σl(a) × σ−

e (b)
)
∪
(
σ+

e (a) × σr(b)
)

(2.1)

σ−
e ((La, Rb), I) =

(
σr(a) × σ+

e (b)
)
∪
(
σ−

e (a) × σl(b)
)

(2.2)

We denote by B+ the collection of upper semi-Fredholm tuples with finite ascent
and by B− the collection of lower semi-Fredholm tuples with finite descent. Define

σ+
b (a) = {λ ∈ Cn : a − λ /∈ B+}

σ−
b (a) = {λ ∈ Cn : a − λ /∈ B−}

σb(a, X) = σ+
b (a) ∪ σ−

b (a)

In [8] it is shown that for commuting tuples σb is a compact-valued joint spectrum
which satisfies a spectral mapping theorem. We note the following inclusions,

σ+
e (a) ⊆ σ+

b (a) ⊆ σl(a)

σ−
e (a) ⊆ σ−

b (a) ⊆ σr(a)

Theorem 2.1. Let a = (a1, . . . , an) and b = (b1, . . . , bm) be tuples of operators on
a complex Hilbert space H and let I be either B(H) or a norm ideal of B(H).
Then σb((La, Rb), I) = S1 ∪ S2 where

S1 =
(
σl(a) × σ−

b (b)
)
∪
(
σ+

b (a) × σr(b)
)

S2 =
(
σr(a) × σ+

b (b)
)
∪
(
σ−

b (a) × σl(b)
)

Proof. First we show the inclusion σb(La, Rb) ⊇ S1∪S2. Suppose λ /∈ σb(La, Rb).
For simplicity we assume λ = 0 ∈ Cn+m. Then (La, Rb) is Fredholm with finite
ascent and finite descent. Using (2.1) and (2.2) we have four possible cases to
consider:

(i) 0 /∈ (σl(a) × σr(b)) and 0 /∈ (σr(a) × σl(b))
(ii) 0 /∈ σl(a) × σr(b) and 0 ∈ (σr(a)\σ−

e (a)) × (σl(b)\σ+
e (b))

(iii) 0 /∈ σr(a) × σl(b) and 0 ∈ (σl(a)\σ+
e (a)) × (σr(b)\σ−

e (b))
(iv) 0 ∈ (σr(a)\σ−

e (a)) × (σl(b)\σ+
e (b)) and 0 ∈ (σl(a)\σ+

e (a)) × (σr(b)\σ−
e (b))

If (i) holds then clearly 0 /∈ S1 ∪ S2. Suppose (ii) holds. Since 0 ∈ σr(a) we have
δ(a) > 0. Since 0 ∈ σl(b) and b is upper semi-Fredholm we have α(b) > 0. Thus
by Theorem 1.4, δ(a) + α(b) − 1 ≤ δ(La, Rb) < ∞. From (ii) we have either
0 /∈ σl(a) or 0 /∈ σr(b). If 0 /∈ σl(a) then α(a) = 0. But this forces α(a) = δ(a) = 0
which is a contradiction. Similarly if 0 /∈ σr(b) then α(b) = δ(b) = 0 which is a
contradiction. We conclude that (ii) cannot hold. A similar argument shows that
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(iii) cannot hold. If (iv) holds then a and b are both Fredholm tuples with non-zero
ascent and descent. Since b is Fredholm we have α(b∗) = δ(b) ([8, Proposition
3.5]). Applying Theorem 1.4 we see that a and b both have finite ascent and finite
descent. Hence 0 /∈ S1 ∪ S2. This shows that σb(La, Rb) ⊇ S1 ∪ S2.

Next we show the inclusion σb(La, Rb) ⊆ S1 ∪ S2. Suppose λ /∈ S1 ∪ S2.
Again we will assume λ = 0 ∈ Cn+m. Using (2.1) and (2.2) we see that (La, Rb)
is Fredholm. To show that (La, Rb) has finite ascent and descent we consider four
possibilities:

(i) 0 /∈ (σl(a) × σr(b)) and 0 /∈ (σr(a) × σl(b))
(ii) 0 /∈ σl(a) × σr(b) and 0 ∈ (σr(a)\σ−

b (a)) × (σl(b)\σ+
b (b))

(iii) 0 /∈ σr(a) × σl(b) and 0 ∈ (σl(a)\σ+
b (a)) × (σr(b)\σ−

b (b))
(iv) 0 ∈ (σr(a)\σ−

b (a)) × (σl(b)\σ+
b (b)) and 0 ∈ (σl(a)\σ+

b (a)) × (σr(b)\σ−
b (b))

If (i) holds then we obtain one of the four conditions

α(a) = δ(a) = 0 α(b∗) = δ(b∗) = 0

α(a) = δ(b∗) = 0 α(b∗) = δ(a) = 0

From Theorem 1.1 and Theorem 1.2, each condition gives α(La, Rb) = δ(La, Rb) =
0. If (ii) or (iii) holds then we have either α(a) = δ(a) = 0 or α(b∗) = δ(b∗) = 0.
Again this implies α(La, Rb) = δ(La, Rb) = 0. If (iv) holds then both a and b∗ are
Fredholm tuples with finite non-zero ascent and descent. By Corollary 1.5 we have
α(La, Rb) = δ(La, Rb) < ∞. Hence 0 /∈ σb(La, Rb). This shows σb(La, Rb) ⊆
S1 ∪ S2. �

We use below the standard notation A ◦B = {
∑n

i=1 λiμi : λ ∈ A, μ ∈ B} for
subsets A, B of Cn.

Corollary 2.2. Let a = (a1, . . . , an) and b = (b1, . . . , bn) be commuting n-tuples
of operators on a complex Hilbert space H and let I be B(H) or a norm ideal of
B(H). Let E : I → I be the elementary operator E(u) = a1ub1 + · · ·+anubn. Then

σb(E , I) =
(
σl(a) ◦ σ−

b (b)
)
∪
(
σ+

b (a) ◦ σr(b)
)
∪
(
σr(a) ◦ σ+

b (b)
)
∪
(
σ−

b (a) ◦ σl(b)
)

Proof. Write E = p(La, Rb) where p is the polynomial p(z1, . . . , zn, w1, . . . , wn) =∑n
i=1 ziwi. Applying the spectral mapping theorem for σb ([8, §4]) we obtain

σb(E) = p(σb((La, Rb), I)) and so the result follows from Theorem 2.1. �

The Taylor–Browder spectrum of a commuting n-tuple a = (a1, . . . , an) is

σTb(a) = acc (σT (a)) ∪ σTe(a)

where σT is the Taylor spectrum, σTe is the essential Taylor spectrum and acc
denotes the set of accumulation points. The Taylor–Browder spectrum of (La, Rb)
is readily deduced from [5],

σTb((La, Rb), I) = (σT (a) × σTb(b)) ∪ (σTb(a) × σT (b))

Application of the spectral mapping theorem for σTb ([4]) yields

σb(E , I) = (σT (a) ◦ σTb(b)) ∪ (σTb(a) ◦ σT (b))
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Combining this with Corollary 2.2 and noting inclusions we obtain the formula

σb(E , I) = (σH(a) ◦ σb(b)) ∪ (σb(a) ◦ σH(b))

where σH = σl ∪ σr denotes the Harte spectrum.
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