Chapter 2

The Laplace Transform

In this chapter the emphasis of the discussion shifts from Laplace integrals f (M) and
dF()\) to the Laplace transform £ : f — f and to the Laplace-Stieltjes transform

Ls:F dF. The Laplace transform is considered first as an operator acting on
L (R4, X) and the Laplace-Stieltjes transform as an operator on

Lipy (R4, X) := {F Ry — X F(0) =0, [[FllLip, ry,x) =
Fit)—-F
b 1 £(t) ()l <OO}.

ts>0 [t —s]

These domains of £ and Lg are relatively easy to deal with and have immediate
and important applications to abstract differential and integral equations.

The following observation is the key to one of the basm structures of Laplace
transform theory. If f € L*®(Ry, X), then t — F(t) := fo s)ds belongs to
Lipy(R4, X) and

o0 o0
LN = [N s0dr= [N ar) =Tr(e-y)
0 0
where Tr : g — [, g(s)dF(s) is a bounded linear operator from L'(R.) into
X, and where e_, denotes the exponential function ¢ — e~**. The operator
Tr is fundamental to Laplace transform theory. In Section 2.1 it is shown that
®g : F + T is an isometric isomorphism between Lip, (R4, X) and £(L'(R,), X)
(Riesz-Stieltjes representation theorem). This representation is crucial for the fol-
lowing reason. The main purpose of Laplace transform theory is to translate prop-
erties of the generating function F into properties of the resulting function A=
= [;Ce M dF(t) and vice versa. Since F(t) = Trx[oq = [5 X[0,4(8) dF(s)
and r(A) = Tre_x = [, e **dF(s), the generating function F as well as the
resulting function r are evaluations of the same bounded linear operator acting on
different total subsets of L!(IRy).
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In Section 2.2, the range of the Laplace-Stieltjes transform acting on
Lipy(Ry, X) is characterized. It is shown that a function r : Ry — X has a
Laplace-Stieltjes representation r = Lg(F') for some F' € Lip,(R+, X) if and only
if r is a C°°-function whose Taylor coefficients satisfy the estimate

n+1

|lr|lw := sup sup ||r(")()\)\| < 00. (2.1)

n€ENg A>0 n!
This can be rephrased by saying that the Laplace-Stieltjes transform is an isometric
isomorphism between the Banach spaces Lip,(Ry, X) and

Cv ((0,00), X) :={r € C*°((0,00), X) : ||7|lw < c0}.

If the Banach space X has the Radon-Nikodym property (see Section 1.2), then
(and only then) “Widder’s growth conditions” (2.1) are necessary and sufficient for
r to have a Laplace representation r = L(f) for some f € L>® (R, X); i.e., Banach
spaces with the Radon-Nikodym property are precisely those Banach spaces in
which the Laplace transform is an isometric isomorphism between L>° (R, X') and
C3((0,00), X). For X = C, this is a classical result usually known as “Widder’s
Theorem”.

If r = Lg(F) for some F € Lipy(Ry, X), then the inverse Laplace-Stieltjes
transform has many different representations. A few of them, such as

_ 1 A TN s = G4+1 _tnj .
F(t) = 27Ti/pe 3 dAfnlgr&;( 1) "™ r(nyg)

k+1 gk
I N ar (r)
= Jm D57 dtk \ A

will be proved in Section 2.3.

In Section 2.4, the results of the previous sections are extended to functions
with exponential growth at infinity; i.e., we investigate the Laplace transform
acting on functions f with esssup,~ [[e"“!f(t)| < oo.

In applications it is usually impossible to verify whether or not a given
function r satisfies Widder’s growth conditions (2.1). Thus, in Sections 2.5 and
2.6 some complex growth conditions are discussed which are necessary (and in
a certain sense sufficient) for a holomorphic function r : {ReA > w} — X to
have a Laplace representation. In Section 2.5, the growth condition considered is
SUPRe xsw [ATOT(N)]] < oo for some b > 0.

In Section 2.6, we discuss functions r which are holomorphic in a sector
Y = {Jarg(\)| < § + ¢} and satisfy supycy [[Ar(N)]| < co. We will see that
any such r is the Laplace transform of a function which is holomorphic in the
sector {|arg(\)| < e}. The final class of functions which we will consider are the
completely monotonic ones; i.e., C'°°-functions r with values in an ordered Banach
space such that (—1)"r(™()\) > 0 for all n € Ny and A\ > w. In the scalar case,

9

A=k/t
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Bernstein’s theorem states that a function r is completely monotonic if and only
if it is the Laplace-Stieltjes transform of an increasing function. In Section 2.7 we
investigate for which ordered Banach spaces Bernstein’s theorem holds.

2.1 Riesz-Stieltjes Representation

In the following sections the emphasis will be on the properties of the Laplace
transform £ : f — f and the Laplace-Stieltjes transform Lg : F dF. As is
the case with all linear operators, the choice of the domain is crucial. For the
Laplace-Stieltjes transform Lg the most convenient choice of the domain space is

Lipy(R4, X) := {F Ry = X0 F(0) =0, [[FllLip, Ry, x) =
F(t)—F
NLUESCTRN]

ts>0  [t—s

It F(t) = [, f(s)ds for f € L®(Ry, X), then F € Lipy(R4, X) and

v [T
/O dF (1) / Fdt (A>0),

0

by Proposition 1.10.1. Thus, any result for L£g acting on Lipy(Ry, X)) translates
into one for £ acting on L*° (R, X). However, since there are Banach spaces
in which not every Lipschitz continuous function is the antiderivative of an L°°-
function (see Section 1.2), the Laplace-Stieltjes transform is a true generalization
of the Laplace transform. It is the generalization needed to deal effectively with
Laplace transforms of vector-valued functions.

In this section we investigate the Riesz-Stieltjes operator ®g which assigns
to I € Lipy(Ry, X) a bounded linear operator Tr : L'(R;) — X such that

Trf = /Ooof(s) dF(s) := lim Tf(s) dF(s),

T—00 0

when f € L'(R.) is continuous. It will be shown that ®g is an isometric isomor-
phism between Lipy(R4, X) and £(L'(Ry), X), the space of all bounded linear
operators from the Banach space L!'(R,) into X (Riesz-Stieltjes representation).
This observation is fundamental for the whole chapter. To see why the Riesz-
Stieltjes representation is such an important tool, observe that

F(t) = Texpy (t>0), and dF(X) =Tre_x (A > 0).

Thus, if one knows F', then the operator TF is specified on the set of characteristic
functions x[o, (¢t > 0), which is total in L*(R,). Therefore, Ty and, in partic-

ular, the Laplace integrals Tpe_y = dF (A) (A > 0) are completely determined.
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Conversely, the Laplace integrals dF (M) determine Tr on the set of exponential
functions e_y (A > 0), which is also total in L*(R;) (Lemma 1.7.1). Hence, the

Laplace integrals dF'(\) determine the properties of Tr and, in particular, the
properties of F'(t) = Trx[o,q (t > 0).

Theorem 2.1.1 (Riesz-Stieltjes Representation). There exists a unique isometric
isomorphism ®g : F — Tr from Lipg(R4, X) onto L(L*(Ry), X) such that

TrXjo, = F(t) (2.2)

for allt >0 and F € Lipy(Ry, X). Moreover,

t
Tro =,

o(s) dF(s) = /O 7 o(s) dF(s) (2.3)

0
for all continuous functions g € L*(R,).

Note that it is part of the claim that the improper integral in (2.3) converges.
We shall call the isomorphism ®g the Riesz-Stieltjes operator.

Proof. Let D := span{x[o4) : t > 0}, the space of step functions, which is dense
in L'(R,). For each f € D there exists a unique representation

n
f = Z O‘iX[ti,l,ti)v
1=1

where 0 =tp) <t; < ...<tn, s € C(i=1,...,n). Let F € Lipy(R, X). Define

Tr(f)=Tr (i aiX[til,ti)> = zn:ai(F(ti) — F(ti—1)).
i=1 i=1
Then,
1Tr ()Nl < 1F | Lip, (R, x) 2": lovi|(t: — tie1) = ([ F'l|Lipy R, x) | f1]1-
i=1
Hence, Tr has a unique extension Tr € L£(L'(R,), X). Moreover,
ITe [l < I ILipy Ry, x)-

Conversely, if T € L(L'(Ry),X), let F(t) := Tx,) for t > 0. Then for
t>s>0,

IE (@) = F(s)l = ITxs.0 | < N1 Ixs,elle = [T = s).
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Thus, F € Lipy(Ry, X) and || F[|Lip,®, . x) < [|T]. It follows from the definitions
that T'= T and if T = T then F' = G. This shows that ' +— TF is an isometric
isomorphism.

Finally, let g € L*(R;) be a continuous function and let F' € Lipy(R4, X).
Take ¢ > 0, and let 7 be a partition of [0, ¢] with partitioning points 0 = tg < t; <
... <t, =t and intermediate points s; € [t;_1,t;]. Let

f7T = Zg(si)x[ti_l,ti)'
i=1
Thus, $(g, F,7) = Tp(f). As 7] = 0, [« — gxonlli = 0, s0

A9®M®=Hmm»

As t — 00, [lgx(o,s) — 9l = 0, so
/g@w@:n@. O
0

We conclude this section by discussing convergence of functions and their
Laplace-Stieltjes transforms. In fact, the Laplace-Stieltjes transform allows us to
give a purely operator-theoretic proof of the following approximation theorem.
Note, however, that the essential implication (i) = (iv) can also be obtained with
the help of Theorem 1.7.5 (which may easily be strengthened by merely considering
convergence on a sequence of equidistant points).

Theorem 2.1.2. Let M > 0, F, € Lipg(Ry, X) with || Fy|lvip,ry ,x) < M for all
n €N, and r, = Ls(F,). The following are equivalent:

(i) There exist a,b > 0 such that lim, o 7, (a + kb) exists for all k € Ny.

(ii) There exists r € C*((0,00), X) such that r,, — r uniformly on compact
subsets of (0,00).

(iii) lmy, oo F(t) exists for all t > 0.

(iv) There exists F' € Lipy(Ry, X) such that F,, — F uniformly on compact
subsets of R.

Moreover, if r and F' are as in (ii) and (iv), then r = Lg(F).

Proof. By the Riesz-Stieltjes Representation Theorem 2.1.1, there exist T, €
L(L'(Ry),X) such that |T.] = ||Fulluip,,,x) < M, The_x = ru(A), and
ToXp, = Fu(t) (n € N, t >0, A > 0). Each of the statements imply that the
uniformly bounded family of operators T), converges on a total subset of L!(R,)
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(see also Lemma 1.7.1). By equicontinuity (see Proposition B.15), for any uni-
formly bounded sequence of operators, the topology of simple convergence on a
total subset equals the topology of simple convergence and the topology of uniform
convergence on compact subsets. Thus there exists T € £(L'(R4), X) such that
Tng — Tgasn — oo for all g € L*(R ) (simple convergence). For all b > 0 the sets
Ky :=={xj0,y: 0 <t <b}and B} :={e_y: % < X < b} are compact in L'(R,)
(continuous images of compact sets are compact). Hence, T,, — T uniformly on
K} and Ejp (uniform convergence on compact subsets). Now the statements follow
from the Riesz-Stieltjes representation. O

2.2 A Real Representation Theorem

In this section the range of the Laplace-Stieltjes tfe\msforrn Ls: F— dF acting
on Lipy(R, X) will be characterized. Since A — dF(\) = AF()) is holomorphic
and, by Proposition 1.7.2, functions like A — (sinA)a (z € X) cannot be in the
range of Lg, the range must be a proper subset of C*°((0,00), X ). The following
observations will lead to a complete description of the range.

Let F' € Lipy(R4,X) and Tp := ®g(F), where ®g is the Riesz-Stieltjes
operator of Section 2.1. Define

o~

r(\) = dE(N) :/ e MARE) (A 0).
0
Then, by Theorem 1.10.6, r € C*°((0, ), X) and
0 = [N dF ) = Lok,
0

where kna(t) == e M(=t)" (t >0, A >0, n € Ny). Since [[koa|l1 = [~ e Mt dt
=n!/A" and ||Tp|| = | FllLip, &, ,x), it follows that

I )< 1F [Lipg (4 x0ynt/ A"

for all n € Ny and A > 0. Thus, r is a C*°-function whose Taylor coefficients satisfy

)\k-‘rl 0
[rllw = sup TIIT( M < [1FLipy e )
A>0,keN, K-

This shows that the Laplace-Stieltjes transform Lg : F — dF maps Lipy(Ry, X)
into the space

OW((0,00),X) = {T’ € Coo((o’ OO)vX) : ”T”W < OO}

In 1936, Widder showed that the Laplace transform maps L*°(R;,R) onto
C3((0,00),R). The following result is the vector-valued version of Widder’s clas-
sical theorem.
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Theorem 2.2.1 (Real Representation Theorem). The Laplace-Stieltjes transform
Ls is an isometric isomorphism between Lipy(Ry, X) and Cjp((0,00), X).

Proof. We have already shown that £g maps Lip, (R4, X) into C52((0,00), X) and
that || Ls(F)|lw < | FllLipg (e, .x)- If Ls(F) = dF = 0 for some F € Lipy(Ry, X),
then Tpe_) = [ e MdF(t) = dF(X\) = 0 for all A > 0. Since the exponential
functions e_y (A > 0) are total in L*(Ry) (Lemma 1.7.1), it follows that T = 0.
In particular, Trx[o, = F(t) = 0 for all ¢ > 0. Thus, Lg is one-to-one.

The hard part of the proof is to show that Lg is onto. Let r € Cy2((0, 00), X).
Define Ty, € L(L*(Ry), X) by

Tnf = /Ooof(t)(l)k;! (’;)Hl (k) <’Z> dt  (keNp).

The operators T}, are uniformly bounded by |7||w since | Tk f|| < [|r||w] f|l1 for
all f € L'(R,). We will show below that Tye_ — r(\) as k — oo for all A > 0.
Since the exponential functions e_, (A > 0) are total in L'(R) it then follows
from Proposition B.15 that there exists 7' € £L(L'(R4), X) with ||T|| < ||r||w such
that Ty f — Tf for all f € L'(Ry). In particular,

r(A) = lim Tre_n = Te_,.

k—o0

The Riesz-Stieltjes Representation Theorem 2.1.1 then yields the existence of some
F € Lipg(Ry, X) with | Flluip, e x) = ||| < |r|lw such that Tg = [g(t) dF(t)
for all continuous functions g € L'(R). Hence, for all A > 0,

r(\) = Te_y = /Oooe—*t dF(t) = dF()).

Thus, £ is onto and [|£(F)lw = |2 lw = | Fllpy(s., x) for F € Lip(Ry, X).
It remains to be shown that Tpe_ — r(\) as k — oo for all A > 0. Observe

that
o 1 (k\"! k
Tie « — Atk (B k) [ F
RE—\ /0 e M (-1) o (t) r " dt

(—1)’“7“{ _1 1)!/0oo (e”‘k/“ukfl) r(k)(u) du

k—1

= (71)76(16%1)! [Z(l)JW (efz\k/uuk71> T(kfjfl)(u)

dul
i=0

+(1)k/OOOCZ; (e*’\k/“ukﬂ) r(u) du].

To discuss the derivatives of u +— e~ /Uy*=1 define G(z,u) = e */* (%)k_l.
Then G(sz,su) = G(z,u) for all s > 0. Differentiating both sides of the last

(o9}

u=0
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equality with respect to s and then setting s = 1 yields x%—f(m, u) +u‘g—g(:r, u) =0
or %g—f(:c,u) = - %%—S(m,u). This implies that

o —a/u uk:fl o —a/u uk72
— le — === e — .
ou xk oz k-1

By induction on j, it follows that

aj —x uuk_l i 8j —x uuk_j_l .
w(e /7>=(—1)j@<6 o ) (0<j<k),

or
Y (pmw/uy k=1 o q\ik, k=1 Y _
Dud (e u ) (=1)7z"u i (xkj ) (2.4)
Hence,
k—1 .
Y
— LY —x/u, k—1 (k—j—1)
h(w) (15 (e u )r ()
7=0
k—1 z/u
= xkﬁ e/ =i =1p(k=i=1)(y)
: xd \ ak—I
7=0
Since

. . — 7 —=1)!
”ukﬂ,lr(k,],l)(u)” < Irl|w(k —j—1)!
U

QI [emw/u
a7 ( ak=i ) ’ )
It follows that lim, .o h(u) = 0 = lim, 0 h(u). Therefore, letting = = Ak,

1 > dk —Ak/u, k—1
TkG,A = WA W (6 u ) T(U) du.

)

one obtains that

u

k—1 .
[rflw (k=35 = 1! 4
[A(u)[| < x

Since by (2.4),

0_’“(e_x/uuk_1) :(_1)kwk6_k(€_x/u) g

duk u Ok uk+1 ’

it follows that

Neghk oo 1
_ —Ak/u
The_y = —(k—l)!/o e ukHr(u)du

_ )\kkk—"_l/ooe—)\kttk—lr Y
o, 7
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Define f(t) := 2r(3) and s := +. Then

s (kK\FT e
Tre_y = k'<s> / e FstR (t) di
: 0

oy () ()

Finally, one concludes from the Post-Widder Inversion Theorem 1.7.7 that

lim The s = sf(s) = (1> =r())

S

for all A > 0. O

For later use in Section 2.5, we observe that in the Widder conditions it is
not necessary to consider all values of k.

Proposition 2.2.2. Let r € C*°((0,00), X), and suppose that limy_,oc 7(A) =0 and

there exist M > 0 and infinitely many integers m such that supy | )‘:Il rm ||
<M. Then r € Cip((0,00), X) and ||r||w < M.

Proof. Tt suffices to show that if |r™ (\)|| < Mm!/A™+1 for all A > 0, then
[r®F ()| < MEN1 for all A >0 and 0 < k < m. Let
. (=™ /°° -1
A) = [ (A= )™ () dpe.
7(A) EESyA (A =)™ ™ () dp
Note that the integral is absolutely convergent, 7™ (\) = r(™)()), and the sub-
stitution t = A/ gives

u)\ml _ Mm pym=1 M
I7( H<Mm/ - / ar=

Hence r — 7 is a polynomial and limy_,o (7 — 7)(A) = 0, so r = 7. It follows that

- > m—k—1,.(m
PO = S [0
Mm! /°° (p—A)m—k=t p
(m—Fk—1)! pmtl a
ME!
T kL
for A>0and 0 <k <m. O

Now it will be shown that the Laplace transform is an isometric isomorphism
between L>(R4, X) and C{2((0, 00), X) if and only if the Banach space X has the
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Radon-Nikodym property. Recall from Section 1.2 that X has the Radon-Nikodym
property if every F € Lipy(R4, X) is differentiable a.e., or equivalently if every
absolutely continuous function F' : Ry — X is differentiable a.e. As shown in
Theorem 1.2.6 and Corollary 1.2.7, every separable dual space (for example, [!)
and every reflexive Banach space have the Radon-Nikodym property. However,
LY(R,) and ¢q do not have the property (Propositions 1.2.9 and 1.2.10).

Theorem 2.2.3. Let X be a Banach space. The following are equivalent:
(i) X has the Radon-Nikodym property.

(ii) The Laplace transform L : f f s an isometric isomorphism between
L>* (R4, X) and C3((0,00), X).

(ii) The Riesz operator ® : f — Ry, Rypg = [“g(t)f(t)dt is an isometric
isomorphism between L= (R, X) and L(L'(R), X).

Proof. Define the normalized antiderivative I : L*°(R;,X) — Lipy(R4,X) by
I(f):=F, F(t) := fotf(s) ds (t > 0). Then I is one-to-one and |[1(f)||Lip, &, ,x) <
| flloo for all f € L°(R4, X). If I is onto, then X has the Radon-Nikodym property
(see Proposition 1.2.2). Conversely, if X has the Radon-Nikodym property and
F € Lipy(R4, X) then f(t) := F'(t) exists for almost all ¢ > 0. Since f(t) =
limy, w a.e., one concludes that || f|le < [|F||Lip, (. x)- In particular,
f € L*(R4,X) and by Proposition 1.2.3, F = I(f). Thus X has the Radon-
Nikodym property if and only if I is an isometric isomorphism.

The Riesz-Stieltjes operator ®g : F +— T, where Tpg = fooog(t) dF(t) for
all continuous g € L'(R,), is an isometric isomorphism between Lip, (R, X) and
L(LY(R,), X), and the Laplace-Stieltjes transform

Lo:Frsdf, dF(A) = / M AR(D),
0

is an isometric isomorphism between Lipy(Ry, X) and Cjp((0,00), X). When F =
I(f), Trg = fooog(t)f(t) dt for all g € L'(R,), by Proposition 1.9.11 and conti-
nuity in L'-norm. Now the statements follow from the fact that ® = &g o I and
L=Lgolon L>®(Ry,X). O

Example 2.2.4. a) Consider X = L'(Ry). Let F(t) := x[o,y (t > 0) and r(\) :=
e_x (ReX > 0), where e_,(t) = e"*. Then F € Lipy(Ry, L'(Ry)) and

r(\) = /OOO e MAF(t) = dF(N).

Since F' is nowhere differentiable (see Proposition 1.2.10), there does not exist
f € L®(Ry, L' (Ry)) such that

() = /0 T e p(t) dr.
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b) Consider Cy(R;) as a subspace of L>(R,). Define F' : Ry — Co(Ry) by
F(t)(s) == (t — s)X[o,q(s), and f : Ry — L*(Ry) by f(t) := X[o,q- Then F €
Lipy (R4, Co(R4)) and F(t) = f(f f(s)ds as a Riemann integral in L>° (R, ), but F'
is nowhere differentiable and f is not measurable (see Examples 1.2.8 and 1.9.7).

Moreover,

1 oo o0

Lo = / M Ap(t) = / =M F (1) dt

A 0 0
as (improper) Riemann-Stieltjes and Riemann integrals, but A — %e, A is not the
Laplace transform of any function in L'(R,, L>=°(R)). O

2.3 Real and Complex Inversion

We have shown in Section 2.2 that the Laplace-Stieltjes transform Lg is an iso-
metric isomorphism between Lipy(Ry, X) and C5((0,00), X). In this section we
will derive several representations of the inverse Laplace-Stieltjes transform Egl.

Theorem 2.3.1 (Post-Widder Inversion). Let F' € Lipy(Ry, X), r = Lg(F), and

t > 0. Then
1 (EN" ak [r())
I _1\Ve =\
F(t) = Jim (-1) k:!(t) dAk( A )

Proof. Since w(F') <0 and F(0) = 0, it follows from (1.22) that
A oo
r) _ / e ME(t) dt
A 0

for all A > 0, where the integral is an absolutely convergent Bochner integral. Now
the statement follows from Theorem 1.7.7. O

Applying Leibniz’s rule (f - r)*) = Z?:o I;

A=k/t

fE=Dr) o f(A) == % and
r one can rewrite the Post-Widder inversion of the Laplace-Stieltjes transform as

k

F(t) = lim ;)(_1)j;! (’;)J () (f) (t > 0). (2.5)

Compared to the Post-Widder inversion, it is remarkable that in the following
Phragmén-Doetsch inversion formula only the values r(k) for large k € N are
needed and that the convergence is uniform for all ¢ > 0.

Theorem 2.3.2 (Phragmén-Doetsch Inversion). Let F' € Lipy(R;, X) and r =
Ls(F). Then

(_1)j+1
;!

F -3

Jj=1
for allt >0 and k € N, where ¢ = 1.0159..., and |7|lw = || F'l|Lip, &, x)-

e™r (k)| < Zllrllw
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Proof. By the Riesz-Stieltjes Representation Theorem 2.1.1 and the Real Rep-
resentation Theorem 2.2.1, there exists T € L(L'(R4),X) such that r(\) =
fo e MdAF(t) = Te_y (A > 0), Txp,g = F(t) (t > 0) and ||T] = [[r]lw =
HFHLIPO R+,X) ThUS,

> (—1)i+1 ] . 0 1 ]
_ Z %eﬂwr(k‘]) <7 X0 — Z(_l)']-i_lf'etk]efkj
— ! — 4!
j j 1
Define pg(s) :==1— T Zj_ (— )ﬁ_l jeIe_1j(s). Then,
o) — prclln = / es) = 1lds + [ [puats)] ds
0 t

t 00
_ / eiek(,—s) ds + / (1 _ 678k,(,—s)) ds
0 t
kt
1[4 e™ 1 [f1—em

oo L —u 14 _—u
< 1(/ ‘ du+/ L-e du)
k 1 u 0 u

for all ¢ > 0 and k € N. Now the claim follows from the fact that [ Le™*du +

fol 1= du = —2FEi(—1) + v &~ 1.0159..., where Ei(z) is the exponential integral

and 7 is Euler’s constant (see [Leb72, Section 3.1]). O

The following corollary shows that the Phragmén-Doetsch inversion is invari-
ant under exponentially decaying perturbations for small values of ¢.

Corollary 2.3.3. Let F' € Lip,(R4, X), r = L5(F), and g(\) = r(N)+a(N) (A >0),
where a : (0,00) — X is a function such that limsup,,_, ., +log|la(n)| < =T for
some T > 0. Then .
T e e VAR gy
F(t) = khjgo; e q(kj)
forallO<t<T.

Proof. Let 0 < Ty < T and choose kg such that [ja(k)| < e~ToF for all k > ko.
Then,

(To—t)k

2 — 1 tkj —Tokj 2 e~
Tl + > e < Slirfy +e -1
j=17"

IN
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The Post-Widder inversion and the Phragmén-Doetsch inversion are called
real inversions of the Laplace-Stieltjes transform since they use only properties
of r(\) for large real A. For the follovving complex inversion formula we use the
fact that if 7(A) = [;¥ e M dF(t) (A > 0) for some F € Lipy(Ry, X), then r
admits a holomorphlc extension for Re A > 0 which we denote by the same sym-
bol (see Theorem 1.10.6). We shall give here a proof based on the Riesz-Stieltjes
representation, but we shall give another, rather simple, proof in Section 4.2.

Theorem 2.3.4 (Complex Inversion). Let F' € Lipy(Ry, X) and r = Ls(F). Then
1 ct+ik )\
F(t) = lim — / MY d\,
c—ik A
where the limit is uniform for t € [0,a] for any a > 0, and ¢ > 0 is arbitrary.

Proof. By the Riesz-Stieltjes Representation Theorem 2.1.1, there exists T €
L(L'(Ry),X) such that r(A) = Te_y (ReX > 0) and F(t) = Txjoy (t > 0).

Thus,
1 ctik r(A) 1 etik ey
F(t)— — ML AN < ||IT ——/ )Y
0 =5m [ MR <7 xon -5 [ 1
Now the statement follows from the next lemma. O

Lemma 2.3.5. Let t > 0 and a,c > 0. Then the functions
1 c+ik e
hip o= =— M2 dA
kit 271 —ik € A
converge towards X[o4 in L'(Ry) as n — oo, uniformly for t € [0, al.

Proof. Let ||hx: — Xjo.4ll1 = Ax + By , where Ay := fot\hk,t(s) —1|ds and By, :=
ftoo |hit(s)|ds. We show first that limy_oo Ar = 0. The residue of the function
A= e’\(t_s)/)\ at the point 0 is 1. By Cauchy’s theorem,

hea(s) L </F+ / /F()) /\(t—s) N

where Ty :== {A: A=u=ik; 0<u<c}, Tg:={N:A=ke"; 7/2 <u<3r/2}.
Along I' | and similarly along I'_, it follows from 0 < s <t that

e)\(tfs) c e(quik)(tfs)
/ dA| = /
. )\ 0 U + Zk

Along I'y, for 0 < s < t,
37/2 i
/ ek(t—s)e du
/2

A(t—s)
/ ¢ d/\‘ -
To >\

37/2
</ ek(t—s)cosudu.
- /2
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Hence,
t
A = /|h,€,t(t—s)—1|ds
0
t cs 37/2
< / ce + i eks cosu g | dg
o \ Tk 2T )i
—- 0

as k — oo, uniformly for ¢t € [0,a] for all @ > 0, by the monotone convergence
theorem, or by explicit estimation.

In order to estimate By, we define ['y. := {ANiA=utik; c<u<k}, Lo :=
{\: A= kvV2e™ ; —71/4 < u < 7/4}. By Cauchy’s theorem,

B a(s) = — / / / N
S)=-—|— + + .
kit 271 T, i To A

Along f+, and similarly along f_, it follows from s —t > 0 that

A(t—s) k (utik)(t—s) 1 rk
/ € N = / & g—/ et =0 gy
f+ )\ C k C

u+ ik
e—c(s—t) _ e—k(s—t)
k(s —1t)
Along Ty,
/ et d)\‘ = /M4 ekV2=9)e™ gy | < /Tr/4 ekV2(t=s)cosu g,
T A —m/4 —7/4
/4
— 2/ ek\/ﬁ(tfs) cos(u) du < zekﬁ(tfs) cos(m/4) _ zefk(sft).
-2 2
0

Hence, for all t > 0,

0 1 00 efc(sft) _ efk(sft) 1 00
h ds < = d - —k(s=t) g
A R R Y AR

T
1 [ 1
= — d o
7T/o zk(s)ds + 1
where z(s) = (e — e %) < e for k > ¢ by the mean value theorem

applied to e~* over [cs, ks|. By the dominated convergence theorem, or by explicit
estimation, By — 0 as k — oo, uniformly for ¢ € [0, a] for all a > 0. O
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2.4 Transforms of Exponentially Bounded Functions

So far in this chapter, Laplace transforms have been considered for bounded or
globally Lipschitz continuous functions. We shall now adapt the results of the
previous sections to functions with exponential growth at infinity, by an elemen-

tary “shifting” procedure (see Proposition 1.6.1 a) and Proposition 1.10.3). More
precisely, for w € R we consider the Laplace-Stieltjes transform acting on

Lip, (R4, X) := {G Ry = X1 G(0) =

G(t) — G(s
1G i s ) = sup MG Z GO oo}
t>s>0 fs ewr dr

and the Laplace transform acting on
B (R0 X) = {9 € LR X) ¢ ol 1= esssup [e'g(0)] < o0}

It is easy to see that

S W if w >0,
GllLip, (R, x) = |G(t) —G(s)|| .
SUPp<s<t T —s)e if w<0.

It is clear that the multiplication operator M, : g — e “¢g(-) is an isometric
isomorphism between L (R4, X) and L (R4, X), and we now set up the corre-
sponding isomorphism between Lip,, (R, X) and Lip, (R4, X).

For G € Lip, (R4, X) and f € BSV,.(R4), it follows from the definition of
the Riemann-Stieltjes integral that

b
/ £(t)dG(2)

b
< 11Cllip ) / F@Oetdt (0<a<b).  (26)

Let .
(LLG)(1) = / =% dG(s).
0
Then (2.6) implies that
I,G € Lipg(Ry, X) and [|L,GllLip, ey, x) < [IGllLip, (R, ,x)-

Similarly if F' € Lipy(Ry, X) and

(JF)(t) = /O €5 dF(s),
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then J, I € Lip,, (R, X) and || J, F'l|Lip_ . x) < [[Fl|Lip, ., x)- Moreover, J,[,G
=G and I,J,F = F, by Proposition 1.9.10. Hence, I, is an isometric isomorphism
of Lip,, (R4, X) onto Lipy(Ry, X).

Note that if G € L2 (R, X) then w(G) < w and abs(dG) < w by Theorem
1.10.5. Thus, the Laplace-Stieltjes transform

(LsuG)(N) = dG(N) = / =M aG(t)
0
exists for A > w. By Proposition 1.10.3,

(‘CSUJG)()\) = (‘CSIwG)()‘ - w)' (27)

Let

Cyy (w,00), X) := {7’ € C*®((w,0), X) :

A—w
[lrlw := sup 7( k)
A>w,keNy

CIN <oo}.

This is a Banach space, and it is clear that the shift S, : r — r(- — w) is an
isometric isomorphism of Cyp((0,00), X) onto Cpp((w, 00), X). The equation (2.7)
may be written as Lg,, = S, 0 Lg o0 1,,.

Now we can give the following reformulation of the Real Representation The-
orem 2.2.1.

Theorem 2.4.1. Let w € R. The Laplace-Stieltjes transform is an isometric iso-
morphism of Lip,(Ry, X) onto Cyp((w,00),X). In particular, for M > 0 and
r € Oy ((w,00),X), the following are equivalent:

1) A —w)k e <M (A>w, ke Ny).

(ii) There emists G : Ry — X satisfying G( ) =0 and ||G(t +h) - G@)] <
Mth “rdr (t,h >0), such that r(A) = [[“e " dG(t) for all A > w.

Proposition 1.6.1 a) gives
L,=5,0L0M,

where £ and L, are the Laplace transforms on L (R, X) and L (R4, X). Hence
Theorem 2.2.3 can be reformulated as follows.

Theorem 2.4.2. Let M > 0, w € R. If X has the Radon-Nikodym property then
for any r € Cip((w,00), X) the following are equivalent:

1) [A=w)HLr®N) <M (A>w, keNy).

(i) There emzsts g€ LIOC(R+7X) with [|g(t)|| < Me“t for almost all t > 0 such
that r(A) = [;ZeMg(t)dt for all X > w.



2.4. TRANSFORMS OF EXPONENTIALLY BOUNDED FUNCTIONS 79

As in Theorem 2.1.1 one shows that there exists an isometric isomorphism
®g,, between the spaces Lip, (R4, X) and £(LL(R4), X), where

LR = {h € Ll Re): [hllai= [ etinolae < oo}

The isomorphism &g, assigns to every function G € Lip, (R, X) an operator
T € L(LL(Ry), X) with ||| = [|GLip_ (v, ,x) such that

Th = / Tht) de)
0

for all continuous functions h € LL(R..), Txo,g = G(t) forallt > 0, and Te_y =
dG(N) if Re A > w.

The inversion theorems in Section 2.3 all remain valid, with almost no changes
in the proofs (the version of Theorem 2.3.4 for Lip,, (R, X) can be deduced directly

from the case w = 0 by using the isomorphism I,). Thus, if r = dF for some
F € Lip, (R4, X), then

k+1
. 1 [k d r(A)
F(t) = lim (-1)*— (= — (== . 2.8
(8) = Jim (=1)"5 (t) dAk< ) ) gt (28)
If ¢ > max(w,0), then
ct+ik
~ lim ()
F(t) 7k1i>n;0 57 /Ciik e dA, (2.9)
where the limit exists uniformly on compact subsets of R . Finally,
> 1
F(t) = lim Y (=1)7T —e™r(kj), (2.10)
ki}ooj:l j'

where the limit exists uniformly on R .
The following is a consequence of the Phragmén-Doetsch inversion (2.10).

Proposition 2.4.3. Lete > 0 and f € L}, (R, X) with abs(f) < co. The following
are equivalent.

(i) limsupy_,. 5 log || f(V)]| < —¢.

(ii) f =0 a.e. on [0,¢].
Proof. Let F(t) := fot f(s)ds and G(t) := fot F(s)ds. Since abs(f) < o0, w(F) <

oo by Theorem 1.4.3 and hence G € Lip,, (R4, X) for some w € R. By Corollary
1.6.5 and Proposition 1.10.1,

FO) = AF(N) = MG(N) = A2G(N)
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for Re A > w. Define )
r(A) == Xf(A) = F(\) =dG())

for A > w. If (i) holds, then limsupy_, ., 1 log|[r(A)[| < —e. Let 0 < £ < e. Then
there exist M, \og > 0 such that [|r()\)|| < Me™¢ for all A > \g. Let ¢t € [0,€).
Then, for A\ < k € N,

00 —1 j+1 ) o 1 ‘ )
Z %etkjr(kj) <M fe(tfﬁ)kj - M (66(1 L 1) 0
, 4! E

Jj=1 s

=

as k — oco. Since r = dG, it follows from (2.10) that G = 0 on [0,&) for all
0 < ¢ <e. Thus, G =0 on [0,e] and hence f = 0 a.e. on [0,¢], by Proposition
1.2.2. This proves that (i) = (ii).

Suppose that (ii) holds. Then F =0 on [0, ¢]. Thus

r()\):/ e—MF(t)dtz/ e"\tF(t)dt:e"\E/ e ME(t+¢e)dt.
0 € 0

Since t — F(t+¢) is exponentially bounded, it follows that || [ e * F(t+¢) dt|| <
C for some C > 0 and therefore ||r()\)|| < Ce=** for all sufficiently large A. This
proves that (ii) = (i). O

If fe L (Ry, X) with abs(f) < oo, then it follows from Corollary 1.6.5 and

loc

the exponential boundedness of F' that there exist M, Ao > 0 such that || f(\)| <
M for all A > Ag. Thus, limsupy_,., ;log|[f(A)|| < 0. This and the previous
proposition yield the following corollary.

Corollary 2.4.4. Let f € L}, (R, X) with abs(f) < oo. Then the following are
equivalent:

(i) limsupy o § log|f(N)] = 0.

(ii) For every e > 0, the restriction of f to [0,¢] does not vanish a.e.

2.5 Complex Conditions

It was shown in the previous section that a holomorphic function ¢ : {Re A > w} —
X has a Laplace-Stieltjes or multiplied Laplace representation

q(\) :/ e MAF(t) = )\/ e ME(t) dt
0 0
if there exists a constant M > 0 such that the Taylor coefficients %q(k)()\) are

bounded by M/(\ — w)**! for all A > w and k € Ny. Since only properties of the
function ¢ along the real half-line (w, 00) are involved, Widder’s growth conditions
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are also referred to as “real conditions”. In many instances, these real conditions
are too difficult to be checked because all derivatives of ¢ have to be considered,
whereas the growth of ¢ in a complex half-plane Re A > w can be estimated. In
these cases one can apply the following representation theorem.

Theorem 2.5.1 (Complex Representation). Let w > 0, let ¢ : {Re X > w} = X
be a holomorphic function with SUPRe x>, [AG(A)|| < 0o and let b > 0. Then there
exists f € C(Ry, X) with sup,~ |le” "t~ f(t)|| < oo such that g(\) = AP f(\) for
Re\ > w.

Proof. Let o« > w and define

1o g\ 1 [ e q(o+ar)
t) ;= 1. —_— At d)\ N (aJrZ’l‘)ti d
Jt)= i '/CH-R CN o ) (atint "

Observe that the latter integral is absolutely convergent, by the assumption on ¢, so
the limit exists uniformly for ¢ in compact subsets of R . Hence, f is continuous on
R . By applying Cauchy’s theorem over rectangles with vertices a£iR, f+iR, and
using the assumption on g, it is easy to see that the definition of f is independent
of a > w.

For a > w and R > 0, let I'y g be the path consisting of the vertical half-line
{a+ir: r < —R}, the semicircle {o + Re® : =X < § < Z}, and the half-line
{a+ir: r > R}. By Cauchy’s theorem,

1 AN

H = — BA g

1) 2mi /Fa,R TN

_ 1 /_R e(“ﬂr)tqi(a +ir) dr
21 J_ o (a +ir)b

2m —m/2 (a + Rew)b
1 o0 Jlackint q(a+ir)

27 (o +ir)b

/2 %
1 / e(a+Re’i9)tQ(O‘ + Re 0) Rei9 &0

Hence,

on < M
> T rb+1 ot a2 I
Met  Meot [7/2 [
T R T ARY / efiteos dp,

where M := SUpge x>0, [ Ag(N)|. Choosing R = 1/t, we obtain that || f(¢)|| < CtPe®!
for some C independent of a > w. Hence, || f(t)|| < Ctbe®t.
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Given A with Re A > w, choose w < o < Re A. By the dominated convergence
theorem and Fubini’s theorem,

o 0 a+iR
/ eiAtf(t) dt = lim e*)‘ti/ th( )d di
0

R—o0 0 211 a—iR

a+iR
lim i / ﬂ dz.
a—iR ()‘ - Z)Zb

By Cauchy’s residue theorem around the path consisting of the semicircle {o +
Re: —71/2 <0 < 7/2} and the line-segment {a +ir: —R < r < R},

1 ot 1 [7/? 0\ 0
7/ az) . _ 7/ gla+ Re®)Re” N q(\)
210 Jo_in (A —2)20 210 J_j2 (A — a— Re®?)(a + Re'?)? AP
a(A)
S
as R — oo, using the assumption on gq. O

We mention that Theorem 2.5.1 does not hold for b = 0. In fact, Desch and
Priiss [DP93] construct a scalar-valued holomorphic function ¢ on C satisfying

sup [lg(A)[[(1 +|A]) < oo

Re A>0

such that ¢ is not the Laplace transform of a function f € L?.(0, c0).

On the other hand, if Ag()\) and A\2¢’()\) are bounded on the right half-plane,
then ¢ is the Laplace transform of a bounded continuous function, as we show in
the following corollary.

Corollary 2.5.2 (Priiss). Let ¢ : {ReX > 0} — X be holomorphic. If there exists
M > 0 such that |Ag(\)|| < M and |N2¢'(\)|| < M for ReX > 0, then there
exists a bounded function f € C((0,00),X) such that g(A fo *Atf dt for
Re X > 0. In particular, ¢ € Cyp((0,00), X).

Proof. Tt follows from Theorem 2.5.1 that there are functions f; € C(R4, X) (i =
0,1) and C' > 0 such that || f;(¢)| < Ct for t > 0,

=\ /0 e Mfo(t)dt, and Ag'(\) = A /0 e Mf () dt

for Re A > 0. By Theorem 1.5.1,

q’()\):/oooe_’\tfo(t) dt—A/Oooe—*ttfo(t) dt:/oooe—”fl(t) dt.

Integration by parts (or Corollary 1.6.5) yields

)\/Oooe_/\t (/Otfo(s) ds — tfo(t)> dt = )\/Oooe_/\t/otfl(s) dsdt.
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Since the Laplace transform is one-to-one, it follows that ¢fy(t) fo fo(s)ds —

fofl s)ds. Thus, fo € C1((0,00), X) and tf(t) = —f1(t). Therefore, 17t )|| <C
for all t > 0 and

q(\) = A/Oooe‘“fo(t) dt = /Oooe—”f(g(t) dt (Re)>0). O

Remark 2.5.3. If f € L°°((0,00),X), then r = f is holomorphic on the right
half-plane and

A
Ar(A <
Ol < g

o < (2) il Rer>0)

[[flloos

In particular, Ar(\) and A?r’()\) are bounded on each sector X, = {re? : r >
0, |v| < a} where o € (0,7/2). In Corollary 2.5.2 the estimate is required uni-
formly on the right half-plane, which is more. On the other hand, continuity is
obtained as an additional result. O

We close this section with a characterization of Laplace transforms of func-
tions in L, (R4, X) with || f(¢)|]| < M¢t" for some M,n > 0 and almost all ¢ > 0
(if X has the Radon-Nikodym property) or the Laplace-Stieltjes transforms of
functions H : Ry — X with H(0) = 0 and ||H(t) — H(s)| < Mf: r™ dr for some
M >0 and all 0 < s < ¢ (for general X).

Corollary 2.5.4. Let M > 0, n € Ny, and r € C*°((0,0), X). The following are
equivalent:
. k+nt1
(i) ||/}k+n), r N <M (A>0, k€Ny).
(ii) There exists H : Ry — X satisfying H(0) = 0 and |H(t) — H(s)|| <
Mf; rdr (0 <s<t), such that r( ﬁ) “AAH(t) for all X > 0.

Proof. By the Real Representation Theorem 2.2.1, the statement holds for n = 0.
Therefore, let n > 1. To show that (i) implies (ii), define

m(\) = (—1)"/A o

for A > 0. Then, m(*¥) (X) = r#=m()) for all k > n and A > 0. Since |22 =m®) (\)|

= ||’\ZT17’(’“*”)()\)|| < M for all A > 0 and k£ > n, it follows from Pr0p0s1t10n
2.2.2 that m € Cf((0,00), X) and ||m|lw < M. By Theorem 2.2.1, there exists
G: Ry — X with G(0) = 0 and ||G(t) — G(s)|| < M|t —s| for all ¢, s > 0 such that
m(A) = [, e dG(t) for all A > 0. By Theorem 1.5.1 and Proposition 1.9.10,

o 1

(u—N)""r(u) du

) = m™ () = /0 T e Ny dG () = /0 T e N am ),
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WhereH . Now the statement (ii) follows from || H (¢t)—H (s)|| =
0

Hf |<Mfr dr for all 0 < s <t.
To show that (ii) implies (i), let 2* € X*. The function 2* o H is lo-
cally Lipschitz continuous, hence absolutely continuous and differentiable a.e. If

h(t) == L(H(t),2z*), then |h(t)| < Mt"||z*| and ( = [, e Mh(t)dt, by
Proposition 1.9.11. Hence,
A\k+n+1 " . D A
()] - ‘<k+n>!/o oo
< Mz
Now (i) follows from the Hahn-Banach theorem. O

2.6 Laplace Transforms of Holomorphic Functions

In this section those functions are characterized which are Laplace transforms of
holomorphic, exponentially bounded functions defined on some open sector ¥, :=
{re” :r >0,—a < vy < a} for some 0 < a < 7/2. The closure of %, is denoted
by .. We shall use the same notation for 0 < a < 7. Note that Yz =Cy =
{Re X > 0}.

Theorem 2.6.1 (Analytic Representation). Let 0 < o < Z, w € R and ¢ : (w,00)
— X. The following are equivalent:

(1) There is a holomorphic function f : Xo — X such that sup,cy, [[e=“* f(2)||
< oo forall0 < B < a and g(\) = f(\) for all A > w.

(ii) The function q has a holomorphic extension G : w + Yot+z — X such that
SUPACwT,, 5 [[(A = w)g(N)]| < oo forall 0 < v < a.

Proof. Assume that (i) holds. Let 0 < 8 < c. Then there exists M > 0 such that
|£(2)]| < M|e¥?| for all z € ¥4\ {0}. Define paths 'y by I'y := {se®# : 0 < s <

oo}. By Cauchy’s theorem,
/ e Mf(t)dt = / e M f(2)dz
0 Ty

= T / e~ £(se£P) ds (2.11)
0

q(N)

forall A > w. Let 0 <e < § — 3, and let A € C with -5 — f+¢ <arg(A —w) <
Z—fB—e.Then —3 +¢ < arg((A—w)e”) < Z—¢, so Re((A\—w)e?) > [A—w|sine.
It follows that

He—)\semf(sezﬂ)” < Me—s\)\—w|sins-
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Consequently, the integral

0o ) )
q+(N) = ew/ e f(se'P) ds
0

is absolutely convergent and defines a holomorphic function in the region —7 —

B+e<arg(A—w) <G — B —¢, with [[(A —w)g (N)|| < M/sine. Similarly,

qg-(N) = e*iﬁ/ e f(se™ ) ds
0

defines a holomorphic function in the region —% + 3 +¢ < arg(A —w) < T+ B8 —¢,
with [[(A —w)g—(N)|| < M/sine. By (2.11), both ¢4 and ¢_ are extensions of g,
and together they define a holomorphic extension ¢ to w + Xz 15 ., satisfying
[(A = w)g(N)|| < M/sine in the sector. Since f < aand 0 < ¢ < § — 8 are
arbitrary, this proves (ii).

Assume that (ii) holds. Let 0 < v < o and § > 0. There exists M > 0 such
that [[(A —w)g(\)|| < M for all A € (w+X,4z)\ {w}. Consider an oriented path
T' (depending on v and §) consisting of

Iy = {w+refi0*+™/2: §<r} and To:= {w+de?: —y—
Let 0 < & < v and consider z € ¥,_.. For A = w + re*0+7/2) ¢ T |

Re(Az) = wRez+r|z|cos(argz £ (v + 7/2))

< wRez—r|z|sine.

Hence,
oM
||e)\2q~()\)H < ez,uReze—r\z\slns7 ()\ c Fi) (212)
This shows that 1
1) = o /F (1) dA (2.13)

is absolutely convergent, uniformly for z in compact subsets of ¥, and therefore
defines a holomorphic function in X,. By Cauchy’s theorem, this function is in-
dependent of § > 0, and also independent of v < « so long as arg z < 7 (here we
use the assumption on § to estimate the integral of e**G(\) over arcs {w + Re :
1+ 5 < 10| <2+ §}). Hence (2.13) defines a holomorphic function f € 3.

To estimate f(z), we choose 6 = |z|~1, and choose v and ¢ such that v < «
and |argz| <y —e. On Ty, A=w+ |z|7te? (—y—7/2<0<~y+7/2), 50

1 1 [rtr/? :
— / ekzg()\) d)‘H - ey Re zecos(arg z+9)Md9
27 Jp, 2T ) )2

IN

< MeltwRez, (2.14)
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On T, A =w+re®0+7/2) and the estimate (2.12) gives

o
L/ e)\zd()\) d\ < i ewReze—r|z|sinaM dr
2 Jp, 21 J)z r
MewRez /OO efrsina
= dr
27 1 r
MewRez
< —_— 2.15
~  27msine ( )

Now (2.14) and (2.15) establish that

sup [e™**f(z)] < o0
zE€EX, e

forany 0 <e <7 < a.

Next we will show that f(A) = ¢(\) whenever A > w. Given such ), choose
0<d<A—w,and 0 <y < a. Then A is to the right of the path I'; and Fubini’s
theorem and Cauchy’s residue theorem imply that

R 00 1
A = —M—/ Mt G( 1) du dt
FN) /O = q(p) dp
1 q(p)
- 2m'/FA—ud”

_ .1 q(w)
— N+ lim — [ Ay
a( )+Rinio2m/fR>\—u o

where 'y := {w+ Re® : —y —7/2 <6 <~ +x/2}. Then
~ y+m/2 M
o] = [
1:73 )‘_:u’ —y—7/2 |UJ+R61 - )“

— 0
as R — co. This proves that f(\) = g(\). O

When f is as in Theorem 2.6.1 (i), it is an easy consequence of Cauchy’s
integral formula for derivatives that

sup sze_“zf(k)(z)H < 0
z€Xg

for all 0 < 8 < a.
Recall from Sections 1.4 and 1.5 that, for f € L} (R, X),

loc
w(f) = inf {w €R: suplle ¥ f(t)] < oo},
>0

abs(f) := inf{ReA: f exists },
hol(f) := inf {weR: f has a holomorphic extension for Re A > w}.
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Moreover, hol(f) < abs(f) < w(f). We will now show that equalities hold when f
is holomorphic and exponentially bounded on a sector.

Theorem 2.6.2. Let 0 < a < 7w/2, let f : X, — X be holomorphic, and suppose that

there exists w € R such that sup_cx,_ |le™“* f(2)|| < co. Then hol(f) = abs(f) =
w(f).

Proof. By Theorem 2.6.1, there exists v > 0 such that f has a holomorphic exten-

sion (also denoted by f) to w + Yyt and Ci=supyey | (A =w)fN)] < oc.

By definition of hol( f), f also has a holomorphic extension to hol( f) + Y52 =

{Re\ > hol(f)}.
Let w’ > hol(f). There exists 4" > 0 such that

W + T 4rsa C (W + Sypay2) U (hol(f) + Sy 0).
Hence, f is holomorphic on w’ 4 ¥/, /5 and continuous on the closure. Let
Ui={re W +Zyinp2)N(W+Tyir2): A—w|<2A—w|}.

If A\ € U, then [|[(A — ') f(N)| < 2C. Moreover, (w' + 3, 47/2) \ U is compact.

Hence, SUDNew 45/, /s [(A=w")f(N)]| < oo. It follows from Theorem 2.6.1, and the

fact that the Laplace transform is one-to-one, that sup.cy, le=«"#f(2)|| < oo for

some 8 > 0, and in particular, w(f) < w’. Since this holds whenever w’ > hol(f),

it follows that w(f) < hol(f), completing the proof. O

In the remainder of this section we will consider asymptotic behaviour of f(t)
as t — oo and as t — 0. In the case of holomorphic functions defined on a sector
it can be described completely in terms of the Laplace transform. This is not the
case in general, and in Chapter 4 a systematic treatment of this question will be
given. However, here we can use contour arguments directly on the basis of the
representation formula (2.13).

First we show that asymptotic behaviour along one ray and on the whole
sector are equivalent. This is a consequence of Vitali’s theorem (Theorem A.5).

Proposition 2.6.3. Let 0 < o < m and let f: X, — X be holomorphic such that

sup | f(z)]| < oo
z€Xg

forall0 < B <. Let x € X.

a) Iflimy_, o f(t) =z, then limmEoo f(z)=a forall0 < B < a.
z€Xg

b) Iflim o f(t) = x, then lim i+ o0 f(z) =x for all0 < 8 < a.
zesg
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Proof. a) Let fi(z) = f(kz). It follows from Vitali’s theorem that limy_, fi(2) =
2 uniformly on compact subsets of 3. Let 0 < 8 < a. Let € > 0. There exists
ko € N such that ||fx(z) — z|| < & whenever z € X3, 1 < |z| < 2, k > ko. Let
z € ¥, |z| > ko. Choose k € N such that k < |z] < k+ 1. Then

1f(2) =l = Ife(2/k) — a| <e.

This proves a).
b) This follows by applying a) to the function z — f(z71). O

Now we consider the asymptotic behaviour of f(¢) as ¢t — oo and ¢ | 0.

Theorem 2.6.4 (Tauberian Theorem). Consider the situation of Theorem 2.6.1,
and let x € X.

a) One has lim, o f(t) = z if and only if limy_, o Ag(\) = .
b) Assume that w = 0. Then lim;_,o f(t) = x if and only if limy o Ag(\) = .

Proof. We can assume that w = 0 for both cases a) and b) by replacing f(z) by
e~ “%f(z) otherwise. Replacing f(t) by f(t) — x, we can also assume that x = 0.
For simplicity, we shall denote the function ¢ of Theorem 2.6.1 by q.

Assume that limy_ o, Ag(\) = x. Let 0 < v < «. By Proposition 2.6.3,
lim 3o Ag(A) = 2. Let € > 0. There exists o > 0 such that ||[Ag(N\)|| < ¢

€Ty r/2
whenever [A[ > dp, A € ¥y z. Let 0 <t < 1/5p. Now we choose the contour I' as

in the proof of Theorem 2.6.1, (ii) = (i), with § = 1/¢. Then

1 1 y+m/2 ; 0 - 10
o] - ()
2mi Jp, 2m g2 t t
y+m/2
i 60050 do
27 —y—7/2
< c¢e,
and
1 At
— A)dA
211 /Fie ey
1 > t-reTi(rtT/2) +i /2 +i /2 dr
= ||— e q(re (y+m/ ))re (y+m/2) 20
2mi 1y T
_ | L / T et (S im/2)) S kirbn)2) 5
Q'ITZ 1 t t S
—- 0

as t | 0 by the dominated convergence theorem. It follows from the representation
(2.13) that limsup, o [|f(1)] < ee.
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The converse implication is easy and does not depend on holomorphy. Assume
that limg o || f(¢)]| = 0. Let € > 0. There exists 7 > 0 such that || f(t)|| < e for all
t €10,7]. Then

IN

liz sup [Ag(V)] nmsup{A [ erwan+ix [~ e dtn}
0 T

A—00 A—00

IN

(oo}
€+ limsup)\/ e MMet dt

A—00

A—w)T

A
€+ limsupMie_( =g,
A—w

A—00

where w > w(f) and M is suitable. This completes the proof of a).
The assertion b) is proved in the same way as a). O

2.7 Completely Monotonic Functions

Throughout this section, X will be an ordered Banach space with normal cone (see
Appendix C). Let f: Ry — X be increasing. Then f is of bounded semivariation
on each interval [0, 7], by Proposition 1.9.1. Assume that w(f) < oo. Then the
Laplace-Stieltjes transform

df(\) = lim [ e Mdf(t) = / e M df () (2.16)
T—r 00 0 0
converges on the half-plane {Re A > abs(df)}, and defines a holomorphic function

df on {Re X > abs(df)}. Recall from Theorem 1.10.5 that abs(df) < oo if and only
if w(f) < 0.

Theorem 2.7.1. Let f : Ry — X be an increasing function. Assume that —oo <
abs(df) < oco. Then abs(df) is a singularity of df .

Proof. Replacing f(t) by fot e~ abs(df)s gf (s), we can assume that abs(df) = 0.

Assume that &J\” has a holomorphic extension to a neighbourhood of 0. Then there
exists 6 > 0 such that

~ s 1) (n)
F-0)= 3 (v oy L,
n=0 '

Let 2* € X7 . Then

(@ (o), =y LT

n=0

/oo e d(F (1), 7).
0

n!
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Since all expressions are positive we may interchange the sum and the integral and
obtain

/ T ta(p(), ") = / T et (1), )

0 0
RN CE R o
= S o

= (@ (~8),a") < .

Since X7 spans X* (see Proposition C.2), it follows that abs(z* o f) < —¢ for
all z* € X*. It follows from (1.25) that abs(df) < —¢, which contradicts the
assumption. O

Corollary 2.7.2. Let f € L}, .(Ry, X) such that f(t) > 0 a.e. Assume that —oo <
abs(f) < oo. Then abs(f) is a singularity of f. Hence, hol(f) = abs(f).

Proof. This is immediate from Proposition 1.10.1 and Theorem 2.7.1. O

Our aim is to characterize functions of the form z@“ where f: Ry — X is
increasing. Then
(0" = [ eNedr 20
0

for alln € Ny, A > w. Thus dAf is completely monotonic in the sense of the following
definition.

Definition 2.7.3. A function r : (w,00) — X is completely monotonic if r is
infinitely differentiable and

(=)™ (X)) >0 for all \ > w, n € Ny. (2.17)

In the following, we shall assume that w = 0 for simplicity (otherwise, we
can replace r(\) by r(A +w) and f(¢) by fot e~ df(s)). Recall that by Theorem
1.10.5 abs(df) < 0 if and only if w(f) < 0.

Definition 2.7.4. We say that Bernstein’s theorem holds in X if for every com-
pletely monotonic function r : (0,00) — X there exists an increasing function

o~

f:Ry — X such that w(f) <0 and r(X) = df(N\) for all X > 0.

Bernstein’s theorem does hold in X = R; this is just Bernstein’s classical
theorem from 1928 [Ber28]. Here we will prove it, as a special case of Theorem
2.7.7, with the help of the Real Representation Theorem 2.2.1.

Definition 2.7.5. The space X has the interpolation property if, given two sequences
(xn)neNa (yn)neN in X such that

Tn < Tpt1 < Ynt1 < Yn (n € N) (2‘18)
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there exists z € X such that
Tp <z<wy, forallneN. (2.19)

Examples 2.7.6. a) Assume that X = Y™ where Y is an ordered Banach space with
normal cone. Then X has the interpolation property.

Proof. Let x}, < a7 < wyr.1 <y (neN). Replacing x}, by x;, — 2] and y;; by
yh — x} we can assume that 2} > 0. Define z* € X* by (x,2*) = sup, cn(, z,).
Then z* is linear and positive, and hence continuous (see Appendix C).

b) If X is reflexive, then X has the interpolation property. This follows from a).

c) Each von Neumann algebra (i.e., a x-subalgebra of £(H) which is closed in
the strong operator topology, where H is a Hilbert space) has the interpolation
property. This follows from a) and [Ped89, Theorem 4.6.17].

d) Every o-order complete Banach lattice (i.e., a Banach lattice in which each
countable order-bounded set has a supremum) has the interpolation property.

e) If X has order continuous norm (i.e., each decreasing positive sequence con-
verges) then X has the interpolation property.

f) The space C[0,1] does not have the interpolation property.

See the Notes for further comments on the interpolation property. O

Now we can formulate the following characterization, which is the main result
of this section.

Theorem 2.7.7. Bernstein’s theorem holds in X if and only if X has the interpo-
lation property.

The proof of Theorem 2.7.7 will be carried out in several steps. On the way
we will prove a characterization of completely monotonic functions which is valid
without restrictions on the space. First, we study convex functions.

Let J C R be an interval. A function F : J — X is called conver if

Fs + (1— \)t) < AF(s) + (1 — N F(t)

for all s,t € J, 0 < A < 1. Many order properties of convex functions carry over
from the scalar case since for x € X we have

x>0 ifandonly if (z,2") >0 forall 2* € X}.
For example, a twice differentiable function F' is convex if and only if F > 0.

Lemma 2.7.8. Let [a,b] be a closed interval in the interior of J and let F: J — X
be convexr. Then F is Lipschitz continuous on [a,b]. Moreover, if F(J) C Xy and
F(a) =0, then F is increasing on [a,b].
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Proof. Let ¢ < a, d > b such that [¢,d] C J. Then for a <t < s <b,

Fla)~ F(e) _ F(s) = F(t) _
a—c - s—t - d

F(d) — F(b)
_ b :

Since the cone is normal this implies that F is Lipschitz continuous on [a, b]. The
second assertion is easy to see. O

We notice in particular that every convex function defined on an open interval
is continuous.

Let —o0 < a < b < oo and let f : [a,b) — X be increasing. Then f is
Riemann integrable on [a,t] whenever a <t < b (see Corollary 1.9.6). Let

F(t) = /t f(s)ds (a<t<Db). (2.20)

Then F': [a,b) — X is convex.
If X has the interpolation property, then the following converse result holds.

Proposition 2.7.9. Assume that X has the interpolation property. Let F : [a,b) —
X4 be convex such that F(a) = 0, where —co < a < b < co. Then there exists an
increasing function f :[a,b) — X4 such that (2.20) holds.

Proof. The following two properties follow from convexity:
a) Let a < s < b. Then the difference quotient

1
- (F(s + h) = F(5))
is positive and increasing for h € (0,b — s).

b)Leta <s<s+h<t<t+k<b Then

L(F(s+h) - F(s)) <

- (F(t+k) — F(t)). (2.21)

T =

Put f(a) = 0. It follows from the interpolation property, a) and b) that for each
t € (a,b) there exists f(t) € X such that

(F(s+h) = F(s)) < f(t) < 7 (F(t+ k) = F(t)) (2.22)

==
T =

whenever a < s < s+ h <t <t+k <b. It follows from (2.21) and (2.22) that
f:la,b) — X is increasing.

Let G(t) := f; f(s)ds. We show that FF= G. Let a <t < b. Let a < tg <
t;1 < ...<t, =t be a partition of [a,t]. Setting h; := t; — t;_1, we obtain from
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(2.22) that

CRCELIEDD hi (F(tics + hi) = Flti)
= Z ti— 1))

- nw—ﬂ@:Fm.

It follows from the definition of the Riemann integral that G(t) < F(t). Also by
(2.22),

> A=t > ZW@ )
= F(t).
Hence G(t) > F(t). -

Next, we prove a converse version of Proposition 2.7.9.

Proposition 2.7.10. Assume that for every convex function F' : Ry — X, with
F(0) = 0 and w(F) = 0 there exists an increasing function f : Ry — X such

that F(t fo s)ds (t >0). Then X has the interpolation property.

Proof. Let x,, < zpi1 < Ynt1 < yn (n € N). We can assume that x1 > 0 (replacing
Zp by @, —x1 and y,, by y, — x1 otherwise). Define f: Ry — X by

Ty ifte[”—_l,il);nZL

n n—+
. vy ift € ]2,00),
0 ift=1.
Then f € L}, (R4, X). Let F(t fo s)ds. Then F': Ry — X is convex and

F(0) = O By assumptlon there ex1sts an increasing function g : Ry — X such
that F(t) = [ g( (t >0). Then

F(t— fi)hf P < O h})L — F(#)

for all £ > 0 and h > 0 small enough. It follows that g( ) = F'(t) whenever F
is differentiable at t. Consequently, g(t) = =, if t € (*— ,nil) and g(t) = y, if
t e (2t —n) Hence, z,, < g(1) < y,. Thus, z := g(1) interpolates between the
two sequences. O

For completeness, we also give the usual representation of convex functions
as a corollary of Proposition 2.7.9.
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Corollary 2.7.11. Assume that X has the interpolation property. Let F' : (a,b) — X
be convez, and let ¢ € (a,b). Then there exist x € X and an increasing function
f:(a,b) = X such that

Ft)=F(c)+ (t—c)z +/ f(s)ds

for allt € (a,b).
Proof. We may assume that ¢ = 0. It follows from convexity that

1 1
S (F(0) = (1)) <

whenever 0 < s < b, 0 < t < —a. Moreover, the left-hand difference quotient is
decreasing in ¢, and the right-hand one is increasing in s. By the interpolation

property, there exists x € X such that
1 1
s

(F'(s) = £(0))

S

S (F(O0) — P(-t) < v <

for all 0 <t < —a, 0 < s < b. In particular, the function

(F(s) = F(0))

G(t) == F(t)— F(0) —tz (t € (a,b))

is positive, convex and satisfies G(0) = 0.
By Proposition 2.7.9, there exist increasing functions f; : [0,b) — X, and
f2 1[0, —a) — X such that

G(t) = /Ot fi(s)ds forte[0,b) and

a4)zléh@@ for t € [0, —a).

We can assume that f1(0) = f2(0) = 0. Let f(¢t) := fi(t) for t € [0,b) and
f(t) := —fa(—t) for t € (a,0). Then f is increasing and G(t) = fot f(s)ds for all
t € (a,b). O

Now we will study completely monotonic functions. We need the following

formulas (2.23) and (2.24) (the latter is merely needed for n = 1 and n = 2). In
the remainder of this section we shall sometimes use loose notation such as TT)‘) to

/ (n)
denote the function \ — L}\A)7 and (@) and (@) to denote its derivatives

of orders 1 and n.

Lemma 2.7.12. Let r € C*°((0,00), X). Then

n!

n (n) n m
(_1) At (7"(/\)) — Z (=1) )\mr(m)()\) (2.23)
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and

N
(A’”" (9)) k) = A ) (2.24)

for all X > 0, k,n € Ny. In particular, if r is completely monotonic, then A\ —
r(A)/A is also completely monotonic.

Proof. The first formula (2.23) is immediate from Leibniz’s rule. It follows that if
r is completely monotonic, then A — r(\)/\ is also completely monotonic.
We show by induction over n that (2.24) holds for all & € Ny. It is obvious

for n = 0. Moreover,
e {3 (1) e (1))

Aep(bD) ()) = b ()\T’(/\))(k'H)
_ <>\k+1 <r()\)\))(k)>/

A
for A > 0. This shows that (2.24) holds for n = 1.
Now assume that (2.24) holds for a fixed n € N and k € Ny. Then, applying

(2.24) to ' yields
oy (0 Y
Akp(ktntD) (3) — (A’”" <T A@) ) (2.25)

for A > 0. Observe that
i
(}\k+n+1(r(/\)/>\n+1)(k))

= (xR )Y

nAT T (XFFL ) /AT ) 4 A (X (1) A )
= AT (W )N B ) 4 AR () /AT D),
by applying (2.24) for n = 1 to the function r())/A" instead of r. Hence,
(Wt ) amey @)
= AT () /AT B X () /A7 — () /A
= AR ) /am
for A > 0. Tt follows from (2.25) that

(n)

()\k-&-n—&-l(r()\)/)\n—&-l)(k))(n+l) _ ()\n+k(r/()\>/)\n)(k)) _ /\kT()\)(k—&-n—&-l).

Thus, (2.24) holds when n is replaced by n + 1. O
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Proposition 2.7.13. Let F' € Lipy(Ry, X)) and let
r(\) = ME(\) = A/ e MAF(t) (A>0).
0

Then r is completely monotonic if and only if F is convex and F(t) >0 (¢t > 0).

Proof. Assume that r is completely monotonic. Note that T(;‘) = fooo e M dF(t).
Thus, by the Post-Widder formula (Theorem 2.3.1), for ¢ > 0 we have F(t) =
limg 00 Fi(t), where

F — ._ ﬂ k+1 2\ (k)

k(1) = Gi(k/t), Ggp(N\):= 5 A (r(N) /)

By Lemma 2.7.12, A\ ~ 7()\)/A\? is completely monotonic, and it follows that

F(t) > 0. We show that Fj, is convex; i.e., that F}/(t) = — (kt_QGz(k/t))l > 0.
Let H(X) := —A?kG),(kA). Then F}/(t) = £ H(1/t) = —t=2H’(1/t). Thus it

suffices to show that H'(\) < 0 or equivalently 2A\kG/ (k) + A2k2GY(kX) > 0 for

A > 0. Letting p := kA we have to show that

(1Gr ()" = 2G (1) + pGi () = 0 (> 0).

This is true since (2.24) for n = 2 gives

—_1)* ” _1)k
wGx(w)” = S (w2 ) ®) " = E a2 2 0 (> 0),

This proves one implication.

Conversely, suppose that F'is convex and F(t) > 0 for all £ > 0. Let 2* € X7 .
Then x* o F' is convex, positive and Lipschitz continuous. There is an increasing,
bounded function g : Ry — Ry such that g(t) = &£ (F(t),z*) a.e., and (F(t),2*) =
fotg(s) ds for all t > 0 (see Proposition 2.7.9). We may assume that ¢g(0) = 0. By
Proposition 1.10.1 and (1.22),

(r(A),z*y = AMdF(A\),2*) = Ag(A\) =dg(A\) (A >0).
Hence, x* or is completely monotonic for all z* € X} and therefore r is completely
monotonic. O

Next we prove a representation theorem for completely monotonic functions
defined on R (and not merely (0, 00)).

Proposition 2.7.14. Let r € C™°(Ry, X) such that (—1)"r(M(\)
there exists a convex function F' € Lipg(Ry, X) such that F(t)

(A >0). Then

>0
>0(t>0) and

r(A) = AF(\) (A > 0). (2.26)
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Proof. Tt follows from (2.23) that for k¥ € N and A > 0,

(k) k m
pey) = C e (7”(;)> =3 E ) 2 0

m=0
Moreover, limy o pr(A) = r(0). It follows from (2.24) for n = 1 that
/ (_1)k k,.(k+1)
pi(A) = T)\ r A <0 (A>0).

Thus 0 < pi(A) < 7(0) for all A > 0. Since the cone is normal, this implies that the
function ()f‘) is in C{p((0, 00), X). By Theorem 2.2.1, there exists F' € Lipy (R4, X)

such that @ = Jl\?()\) (A > 0). It follows from Proposition 2.7.13 that F' is
positive and convex. O

Theorem 2.7.15. A function r : (0,00) — X is completely monotonic if and only
if there exists a convex function F : Ry — X satisfying F(0) =0 and w(F) <0
such that

\) = /\/ e MAF(t) (A >0). (2.27)
0
In that case, F' is uniquely determined by r.

Proof. a) Assume that r is of the form (2.27). Let 2* € X7} . Then there exists an
increasing function f : Ry — Ry such that f(0) =0 and

:z:*)z/of(s)ds (t >0).

(r(\),z") = /OOO e Mdf(t) (A >0).

Thus

Hence, (r(-),x*) is completely monotonic and

(107 = 17 (5] ) 20

Since z* € X7 is arbitrary, it follows that 7 is completely monotonic.

b) Conversely, let r be completely monotonic. By Proposition 2.7.14, there
exists a convex function G' € Lip, (R, X) such that G(¢) > 0 (¢ > 0) and r(A+1) =
)\f e M dG(t) (A > 0). Let

Ft) = /O (1= (t— 5))e" dG(s).
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Then F is positive and convex. In fact, let x* € X . Then there exists an increas-

ing function g : Ry — Ry such that (G( fo s)ds and g(0) = 0. By
Proposition 1.9.10, Fubini’s Theorem and (1 20)

[ eraras— [[eserats)as
= /Ot (esg(s) — /05 e"g(r) dr> ds
_ /Ot/OSerdg(r)ds (t > 0).

Thus z* o I is positive and convex for all z* € X7, so F' is positive and convex.
By Proposition 1.10.1 and (1.22),

(F(t),2")

(At 1),2%) = () = / T e dg(t)

for A > 0. By Proposition 1.10.3, for A > 1,

(r(A)z*) = / TNt dg(r) = / T,

where

1) = / e dg(s) = 'a(t) — [ egl)ds,

by (1.20). Since (F( fo s)ds, it follows that r(A) = A [~ e M dF(t

for A > 1. By Theorem 2.7.1, abs(dF) is a singularity of dF. Moreover7 applylng
Proposition 2.7.14 to r(- + ¢) shows that » has a holomorphic extension to {\ €
C: ReA > ¢} for all § > 0, and hence to {A € C: ReX > 0}. It follows from
the uniqueness of holomorphic extensions that abs(dF) < 0 and dF (A) =r(A) for
A > 0. By Theorem 1.10.5, w(F') < 0 (actually, w(F') = 0 unless r = 0). Finally,
uniqueness of F' follows from the Post-Widder formula (Theorem 2.3.1). O

Theorem 2.7.16. Assume that X has the interpolation property. Letr : (0,00) — X
be completely monotonic. Then there exists an increasing function f : Ry — X4
such that f(0) =0, w(f) <0 and

r(\) = /OOO e Mdf(t) (A >0).

Proof. By Theorem 2.7.15, there exists a convex function F': Ry — X satisfying
F(0) = 0 and w(F) < 0 such that r(A) = A [(“ e *dF(t) for all A > 0. By
Proposition 2.7.9, there exists an increasmg function f : ]R+ — X, such that
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fo (t > 0). We can assume that f(0) = 0. Let w > 0. There exists
M 2 0 such that ||F( )|| < Me*t. Since f is increasing we have

SH02) < [ f)ds < PG,

t/2

It follows that w(f) < 0 (actually, w(f) = 0 unless r» = 0). By Proposition 1.10.2,
/ e Mdf(t) = )\/ e MAF(t) =r(\) (A>0). O
0 0

Now we can prove Theorem 2.7.7.

Proof of Theorem 2.7.7. One direction is given by Theorem 2.7.16. In order to prove
the other, assume that Bernstein’s theorem holds in X. We show that X has the in-
terpolation property. Let F': Ry — X be convex such that F(O) =0and w(F) =
0. By Proposition 2.7.10, it suffices to show that F(¢ fo (t > 0) for some
increasing function f : Ry, — X. By Proposition 2. 7 13, r(A) := )\f e MdAF(t
defines a completely monotonic function on (0,00). By assumptlon there ex1sts
an increasing function f : Ry — X such that

r(\) = /OOO e Mdf(t).

We may assume that f( ) =0. Let H(t fo s)ds. Using Proposition 1.10.2
and (1.22), X2H(\) = df(\) = r(A) = )\QF( ) for all A > 0. It follows from the
uniqueness theorem that H(t) = F(t) for all ¢ > 0. O

If r : (0,00) — X is completely monotonic, there may be many increasing
functions f : Ry — X, such that r = Jf However, if X has order continuous
norm, then we may pick out a normalized version of f.

Let f : Ry — X be increasing and assume that X has order continuous norm.
For ¢t > 0 we define f(t+) = lim, ¢ f(s), and for ¢t > 0 we let f(t—) = limgss f(s).
We say that f has a jump att > 0if f(t+) # f(t—).

Lemma 2.7.17. Assume that X has order continuous norm and that f : Ry — X
1s increasing. Then the number of jumps of f is countable.

Proof. Let 7 > 0 and J := {t € (0,7) : f(t+) # f(t—)}. Let £ > 0 and J, :=
{t € J: ||f(t+) — f(t—)| > }. We claim that J. is finite. Otherwise there
exist t, € J. (n € N), &, # ty, for n # m. Let ©, = f(t,+) — f(tn—). Then
S an < f(7) — f(0) for all m € N. Since X has order continuous norm, the
sum y >, x, converges. Hence, |z,| — 0 as n — oco. This is a contradiction.

Since J = {J,,cn J1/n, it follows that J is countable. O
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We continue to assume that X has order continuous norm. Let f: Ry — X
be increasing. We define the normalization f* : Ry — X of f by

R N (3 if t =0,
;0= {;(f(t+)+f(t—)) if t > 0.

The function f is called normalized if f = f*.
It follows from the definition of the Riemann-Stieltjes integral that

/ g(s) di(s) = / g(s) dr(s)

for every t > 0 and every continuous function g : [0,¢] — C. In fact, one may take
a sequence of partitions (7, )nen with intermediate points which avoid the jumps
of f). Then S(g, f,m,) = S(g, f*,7,) for all n € N, and so

[ a(s)drts) = i S(g. £.m,) = Jim S(a. 1" m) = [ a(s)df ().
0 0

In conclusion, we obtain the following result.

Theorem 2.7.18 (Bernstein’s theorem). Assume that X has order continuous
norm. Let r : (0,00) — X be completely monotonic. Then there exists a unique
normalized increasing function f : Ry — X such that f(0) =0, w(f) <0 and

r(\) = /OOO e Mdf(t) (A >0).

Proof. Since X has the interpolation property7 existence follows from Theorem
2.7.16. For uniqueness bupp%e that r( fo e M df (/\ > 0). By Proposition

1.10.2, 7(A) = A [T e M dF(t) (A > 0) where F(t fo s)ds. It follows from
Theorem 2 7.15 that F'is umquely determined by 7. Smce

F'(t+) := lim ]11 (F(t+h)— F(t) = f(t+)

h10
if ¢ > 0, and
P/(t=) = lim & (F(0) = F(t — b)) = £(t-)
if ¢ > 0, the normalized function f is also unique. O
2.8 Notes
Section 2.1

Representation of operators from a space of the form L'(Q,u) into a Banach space
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X by vector measures is a classical subject (see [DU77, Section IIL.1]). In view of the
applications to Cauchy problems, Stieltjes integrals seem more appropriate than vector
measures in our context. In the context of Laplace transform theory, the Riesz-Stieltjes
Representation Theorem 2.1.1 appeared in a paper of Hennig and Neubrander [HN93]
(see also [Neu94] and [BN94]). For a discussion of the representation of bounded linear
operators in £(L?(R4), X) as functions of bounded p’-variation (1/p+1/p’ = 1,p" > 1),
see the work of Weis [Wei93] and Vieten [Vie95].

Section 2.2

For real-valued functions, Theorem 2.2.1 was proved by Widder in 1936 [Wid36] (see also
[Wid41]). In trying to extend scalar-valued Laplace transform theory to vector-valued
functions, Hille [Hil48] remarks on several occasions that Widder’s theorem can be lifted
to infinite dimensions if the space is reflexive, but not in general (see [Hil48, p.213] or
[Miy56]). In fact, it was shown by Zaidman [Zai60] (see also [Are87b] or Theorem 2.2.3)
that Widder’s theorem extends to a Banach space X if and only if X has the Radon-
Nikodym property (for example, if X is reflexive). In 1965, Berens and Butzer [BB65]
gave necessary and sufficient complex conditions for the Laplace-Stieltjes representabil-
ity of functions in reflexive and uniformly convex Banach spaces. However, these results
were of limited applicability. In general, important classes of Banach spaces that appear
in studying evolution equations do not possess the Radon-Nikodym property. As a conse-
quence, in the 1960s and 1970s Laplace transform methods were applied mainly to special
vector-valued functions, like resolvents and semigroups, which have nice additional alge-
braic properties. In the theory of Cp-semigroups the link between the generator A and
the semigroup 7T is given via the Laplace transform

A= A) g = /OOQ e MNT(zdt (z € X).

The crucial algebraic property which made it possible to extend classical Laplace trans-
form results to this abstract setting is the algebraic semigroup law T'(t + s) = T'(¢t)T'(s),
(t,s > 0). Hille and Phillips comment in the foreword to [HP57] that “... in keeping
with the spirit of the times the algebraic tools now play a major role....” and that “.... the
Laplace-Stieltjes transform methods..... have not been replaced but rather supplemented by
the new tools.” The major disadvantage of the “algebraic approach” to linear evolution
equations becomes obvious if one compares the mathematical theories associated with
them (for example, semigroup theories, cosine families, the theory of integro-differential
equations, etc.). It is striking how similar the results and techniques are. Still, without
a Laplace transform theory for functions with values in arbitrary Banach spaces, every
type of linear evolution equation required its own theory because the algebraic properties
of the operator families changed from one case to another. In the late 1970s, in search
of a general analytic principle behind all these theories, the study of Laplace transforms
of functions with values in arbitrary Banach spaces was revitalized by Sova (see [Sov77]
up to [Sov82]). An important result for Laplace transforms in Banach spaces is Theorem
2.6.1, proved by Sova in 1979 [Sov79b], [Sov79c|. This analytic representation theorem is
behind every generation result for analytic solution families of linear evolution equations.

The Real Representation Theorem 2.2.1 shows that the statement of Widder’s The-
orem extends to arbitrary Banach spaces if the Laplace transform is replaced by the
Laplace-Stieltjes transform. It is due to [Are87b] where it was deduced from the scalar
result by Widder [Wid41] by duality arguments. The proof of Theorem 2.2.1 given here is



102 2. THE LAPLACE TRANSFORM

a modification of Widder’s original proof given in [Wid41]; see [HN93]. Further extensions
of these results are given in [Bob97a], [Bob97b], [Kis00], [Bob01] and [Cho02].

The characterization of the range of the Laplace-Stieltjes transform acting on
Lipy (R4, X) given in Theorem 2.2.1 is based on the Post-Widder inversion formula in
Theorem 1.7.7. Corresponding to other inversion formulas, equivalent descriptions can
be formulated. Employing the complex inversion formula (see [Sov80b], [BN94]), or the
Phragmén-Doetsch inversion (see [PC98]), one can prove that the following growth and
regularity conditions are equivalent.

Theorem 2.8.1. Let r : (0,00) — X be continuous. The following are equivalent:

(i) € C*((0,00),X) and

k+1
sup A r® )| < oo.
x>0 || Kl
kENg

(i1) limrxooo7(A) = 0 and r has an extension to a holomorphic function r : {ReX >
0} — X such that, for all v > 0, supg, s, [[7(A)[| < o0 and

1 [ r(y+it)
—— 5 dt
n |l2n / (1 —ist)kt2 <0

kENg

(iii) supysg [[Ar(N)] < oo and
j—1

ke .
Z j—l e Ar(jN)

Jj=1

sup
220

For a discussion of the LP-conditions

/oo E k-‘rllr(k) E p
AN ! ¢

and their connection to the representability of r as the Laplace transform of a function of
bounded p-variation (p > 1), see [Wid41, Chapter VII], [Lev69], [Sov8la], [Wei93], and
[Vie95]. It is shown in [KMV03] that a function r € C*°((0, 00), X) is the finite Laplace-
Stieltjes transform r(\) = [ e~ * dF(t) of a Lipschitz continuous function F : [0, 7] — X

0
with ||F(t) — F(s)|| < M|t — s| for all 0 < ¢,s <7 if and only if

dt < M for all k>0,

k+1

sup sup —'r<k)()\)H <M
keNg A>k/T k!
and
sup  sup ‘T_kehr(k)(k)” < 0.
keN A€ (0,k/T)
Section 2.3

Theorem 2.3.2 goes back to Phragmén’s proof of the Uniqueness Theorem 1.7.3 (see
[Phr04]), and to Doetsch [Doe37] who recognized the usefulness of the formula as an
inversion procedure (see also [Doe50, Volume I, Section 8.1]). The Phragmén-Doetsch
inversion formula shows that a Laplace transformable function f is determined by the
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values of f(/\n), where A\, = n > ng. An extension of the Phragmén-Doetsch inversion
to arbitrary Miintz sequences (A,) C Ry (ie., Ang1 — An > Land 0% A" = oo), has
been obtained by Baumer [Bau03] (see also [BLN99]). There does not seem to be any
inversion formula that holds for arbitrary uniqueness sequences (see Theorem 1.11.1).
Corollary 2.3.3 is taken from [BN96] and is one of the key ingredients in the theory of
asymptotic Laplace transforms (see [LN99], [LNO1]). Whereas the complex inversion for-
mula in Theorem 2.3.4 (the proof given here is from [HN93]) is in general affected by
exponentially decaying perturbations of the Laplace transform, the following modifica-
tion, due to Lyubich [Lyu66], gives a complex inversion formula which holds locally even
if the transform undergoes such perturbations.

Theorem 2.8.2. Let 7 > 0, w > 0, F € Lipy(Ry,X), and q(\) = [7e M dF(t) +
a(X) (A > 0), where a € Lj,.(Ry, X) is a function with limsup,_, o, 3 log[la(A)| < —7.

Then 0
1 [ t
H(p) = — R ANEA
W)= 55 A <

is well defined for Rep < 0, has a holomorphic continuation to the sliced half-plane
{p:Rep<7}\[0,7), and

F(t) =lim(H(t+ i) — H(t —ie)) for allt € [0, 7).

e—0
Haase [Haa08] has given a different approach to Theorem 2.3.4 and Lemma 2.3.5.

Section 2.4

With the exception of Proposition 2.4.3 which is due to Doetsch (see [Doe50, Volume I,
Section 14.3]) and Corollary 2.4.4, the results are straightforward reformulations of the
main theorems of the sections 2.1-2.3. Using a Phragmén-Doetsch type inversion formula
along sequences (A,) C Ry with Any1 — Ay > 1and 300 | A\, ' = oo (Miintz sequences),

n=

one can strengthen the statement of Proposition 2.4.3 as follows (see [Bau03]).
Theorem 2.8.3. Let 0 < 7 and let f € L},.(Ry, X) with abs(f) < oo. Then the following
are equivalent:

(i) f(t) =0 almost everywhere on [0,7] and T € supp(f).

(ii) Ewery Miintz sequence (3,) satisfies limsup,, , ., ﬁ log || £(Bn)|| = —.

(iii) For every Mintz sequence (8,) there exists a Mintz subsequence (Bn, ) such that

1 : _

klggo m log Hf(ﬂ”k)” =T
(iv) There exists a Miintz sequence (3,) with limsup,, , ﬁ log || £(Bn)l| = —.
(v) limsup,_,., 3 log IF)) = —.

As a consequence of these equivalences one obtains the following short proof of
Titchmarsh’s theorem (see [B&u03], [BLN99] or [MB87, Section VL.7]).

Corollary 2.8.4 (Titchmarsh’s Theorem). Let k € L'[0,7] with 0 € supp(k) and f €
L'([0,7],X). If k% f =0 on [0,7], then f = 0.
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Proof. We extend k and f by zero to Ri. Then, by Proposition 2.4.3 and Corollary
2.4.4, limsup,_, %10g|]2:()\)| = 0 and limsup,_, ., 3 log|lk* f(\)|| < —T. By taking
subsequences, it follows from the theorem above that there exists a Miintz sequence (35)

such that lim,, o0 ﬁ log |l;(ﬁn)| =0 and

. 1 — . 1 N . 1 N
-7 2 lim o-logllkx f(Bu)ll = lim -loglk(fn)|+ lim =-log|lf(Bn)]

o1 2
Aim - log [|£(Bn)ll
Thus, f =0 on [0, 7]. O

A function k € L,.(R+) with abs(k) < oo is a regularizing function if

lim sup 1 log |[k(\)] = 0,
A— 00 A

or, equivalently, if 0 € supp(k) (by Corollary 2.4.4). By the Titchmarsh-Foiag theorem
(see [BLN99]), the condition 0 € supp(k) is necessary and sufficient for the convolution
operator K : f — kx f, (kx f)(t) := fot k(t — s)f(s) ds to be an injective operator on
C(R4, X) with dense range in the Fréchet space C. (R4, X) of all continuous functions
g : Ry — X such that g(0) = 0, equipped with the seminorms ||g|[n := sup,¢(g ) [l9(t)]]-
Moreover, || fllx,n = sup,e(o,n) [[Cf(¢)]| defines a family of seminorms on C(R4, X) and
K extends to an isomorphism between the Frechet completion C'*] (Ry, X) of C(R4, X)
with respect to that family of seminorms and the Fréchet space C. (R4, X). Typical
examples of regularizing functions are

b—1
k(1) = tr(b) with  k(\) = % (b>0), or
1 tA—N0 . 2 Y
kg(t)zfm_/ Py with k() = (0<5< ).
w1

Note that ki/2(t) = ﬁfsme*l/“ (see Lemma 1.6.7).

If £ is a regularizing function, then the elements of the Fréchet space C (] (Ry, X)
are called k-generalized functions. A k-generalized function wu is said to be Laplace trans-
formable if the continuous function f := kxu € Ci(Ry, X) is Laplace transformable and
the Laplace transform of u is defined as

Let H = {\ : ReA > w} and m : H — C be holomorphic. A meromorphic function
q : H — X is said to have an m-multiplied Laplace representation if there exists f €
Cy (R4, X) with abs(f) < w such that mq = f on H. If m = k for some regularizing
function k, then the meromorphic function ¢ has a Laplace representation ¢ = u for
uw=K'f e CF(R,,X) (see [Bau97], [BLN99], and [LN99]).

Section 2.5
Theorem 2.5.1 is a standard result of Laplace transform theory. Corollary 2.5.2 is due to
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Priss [Prii93], the proof given here is from [BN94]. Corollary 2.5.4 is a special case of
results in [DVWO02] (see also [DHWOIT]).

Theorem 2.5.1 can be interpreted in terms of k-generalized functions and Laplace
transforms (see the Notes of Section 2.4; we use the same notation here). Let ¢ : H — X
be holomorphic with sup, ¢4, [[Ag(A)|| < co. As shown in Theorem 2.5.1, for all b > 0 there

exists f € C.(Ry,X) such that g(A) = A*f(\) on H. Thus, g(\) = 4(\) = ié;;, where
k(t) = ﬁtbﬂ and u = K~'f € C*I(Ry, X) coincides with the b-th (distributional)
derivative of f. More generally, if ¢ is a meromorphic function on some half-plane H with
values in X for which X — Ako(\)g(\) is holomorphic on # and

sup [[Ako(A)g(V)]| < oo
AEH

for some regularizing function ko, then it follows from Theorem 2.5.1 that there exists
f € Cu(Ry, X) such that +ko(\)g(\) = k(\)g(\) = f(A) or g(A) = a(\), where k :=
1% ko and u € O (R4, X) is a generalized function such that f = k*u. Notice that if k;
are regularizing functions and ki * k2 = ks, then lollld (R4, X) is continuously embedded
in C’[k3](R+, X). Thus, a faster growing ¢ will have a less regular u such that ¢ = 4.

Section 2.6
Theorem 2.6.1 is due to Sova [Sov79b] and Theorem 2.6.2 is taken from [Neu89b].

Section 2.7.

In 1893, Stieltjes proved in a letter to Hermite that a bounded continuous function
f:R, — R is positive if and only if £ (X) > 0 for all n € Ny and all X sufficiently large
(see [BB05]). Bernstein proved his theorem in 1928 [Ber28].

The characterization of those ordered Banach spaces in which Bernstein’s theorem
(Theorem 2.7.7) holds is due to Arendt [Are94a].

The interpolation property is of particular interest for spaces of the form C(K),
where K is a compact space. Then it can be described in terms of K: the space C(K)
has the interpolation property if and only if K is an F-space (i.e., if A, B C K are open
and disjoint F,-sets, then AN B = (). Note that C(K) is o-order complete if and only
if K is quasi-stonean (i.e., if A C K is an open F,-set, then A is open). For example,
K := BN\ N is a F-space which is not quasi-stonean (where SN denotes the Stone-Clech
compactification of N). Whereas every quasi-stonean space K is totally disconnected
(i.e. the connected component of each point z is {z}), there exist connected compact F-
spaces. One reason why these spaces have been studied is that C(K') has the Grothendieck
property (see Section 4.3) if K is an F-space. We refer to the article by Seever [See68]
for this and further information.

The interpolation property is also equivalent to two other vector-valued versions
of classical theorems; namely, Riesz’s representation theorem for positive functionals on
C[0,1] and Hausdorfl’s theorem on the moment problem. More precisely, the following
is proved in [Are94a].

Theorem 2.8.5. Let X be an ordered Banach space with normal cone. The following are
equivalent:
(i) X has the interpolation property.

(if) For every positive T € L(C0,1], X) there exists an increasing function f : [0,1] —
X such that Tg = fol g(t) df(t) for all g € C[0,1].
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(iii) For each completely monotonic sequence (Tn)nen in X there exists an increasing
function f:[0,1] = X such that x,, = fol t" df(t) (n € N).

Here, a sequence & = (2 )nen is called completely monotonic if (—A)*z > 0 for all k € N
where A : XV — XV is given by Az = (n41 — Tn)nen.

Bernstein’s theorem in ordered Banach spaces with order continuous norm (The-
orem 2.7.18) is proved in [Are87a] with the help of the classical scalar theorem. A first
vector-valued version of Bernstein’s theorem is due to Bochner [Boc42]. But Bochner
considered convergence in order, whereas for our purposes norm convergence of Riemann-
Stieltjes sums and improper integrals is essential in order to make the results applicable
to operator theory. Here we deduce Bernstein’s theorem from the Real Representation
Theorem 2.2.1.

One can obtain Widder’s theorem (the scalar case of Theorem 2.2.1) as an easy
corollary of Bernstein’s classical result (see [Wid71, Section 6.8]). However this argument
is restricted to the scalar case. On the other hand, it is possible to deduce the vector-
valued version of Theorem 2.2.1 from the scalar case by a duality argument (see [Are87b]
and the Notes of Section 2.2).
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