
Chapter 4
Boundary Element Methods

In Chap. 3 we transformed strongly elliptic boundary value problems of second
order in domains� � R3 into boundary integral equations. These integral equations
were formulated as variational problems on a Hilbert space H :

Find u 2 H W b .u; v/ D F .v/ 8v 2 H; (4.1)

which, in the simplest cases, was chosen as one of the Sobolev spacesH s .�/, s D
�1=2; 0; 1=2. The functional F 2 H 0 denotes the given right-hand side, which, in
the case of the direct method (see Sect. 3.4.2), may again contain integral operators.
The sesquilinear form b .�; �/ has the abstract form

b .u; v/ D .Bu; v/L2.�/

with the integral operator

.Bu/ .x/ D �1 .x/ u .x/C �2 .x/
Z
�

k .x; y; y� x/ u .y/ dsy x 2 � a.e. (4.2)

Convention 4.0.1. The inner product .�; �/L2.�/ is again identified with the contin-
uous extension on H�s .�/ �H s .�/.

The coefficients �1, �2 are bounded. For �1 D 0, a.e., one speaks of an integral
operator of the first kind, otherwise of the second kind. In some applications the
kernel function is not improperly integrable, and the integral is defined by means of
a suitable regularization (see Theorem 3.3.22).

The sesquilinear form in (4.1) associated with the boundary integral operator in
(4.2) satisfies a Gårding inequality: There exist a � > 0 and a compact operator
T W H ! H 0 such that

8u 2 H W jb .u; u/C hT u; uiH 0�H j � � kuk2H : (4.3)
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184 4 Boundary Element Methods

The variational formulation (4.1) of the integral equations forms the basis of
the numerical solution thereof, by means of finite element methods on the boundary
� D @�, the so-called boundary element methods. They are abbreviated by “BEM”.

Note: Readers who are familiar with the concept of finite element methods
will recognize it here. One essential conceptual difference between the BEM and
the finite element method is the fact that, in the BEM, the resulting finite ele-
ment meshes usually consist of curved elements and therefore, in general, no affine
parametrization over a reference element can be found.

Primarily, we consider the Galerkin BEM, which is the most natural method for
the variational formulation (4.1) of the boundary integral equation. In Sect. 4.1 we
will describe the Galerkin BEM for the boundary value problems of the Laplace
equation with Dirichlet, Neumann and mixed boundary conditions, all of which
lead to boundary integral equations of the first kind with positive definite bilinear
forms. We obtain quasi-optimal approximations and prove asymptotic convergence
rates for the Galerkin BEM. In Sect. 4.2 we will then study Galerkin methods in
an abstract form for operators that are only positive with a compact perturbation.
We will also present a general framework for the convergence analysis of Galerkin
methods. In Sect. 4.3 we will finally prove the approximation properties of the
boundary element spaces.

4.1 Boundary Elements for the Potential Equation in R3

We will first introduce the Galerkin BEM for integral equations of the classi-
cal potential problem in R3 and derive relevant error estimates for the simplest
boundary elements.

4.1.1 Model Problem 1: Dirichlet Problem

Let �� � R3 be a bounded polyhedral domain, the boundary � D @�� of which
consists of finitely many, disjoint, plane faces �j , j D 1; : : : ; J : � D SJ

jD1 �j .

In the exterior�C D R3n�� we consider the Dirichlet problem

�u D 0 in �C; (4.4a)

u D gD on �; (4.4b)

ju.x/j D O.kxk�1/ for kxk ! 1: (4.4c)

In Chap. 2 (Theorem 3.5.3) we have shown the unique solvability of Problem
(4.4).
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Proposition 4.1.1. For all gD 2 H 1=2.�/ Problem (4.4) has a unique solution
u 2 H 1.L;�C/ with L D ��.

Proof. Theorem 2.10.11 implies the unique solvability of the variational formulation
associated with (4.4) in H 1

�
L;�C

�
with L D ��. In Sect. 2.9.3 we have shown

that the solution also solves (4.4a) and (4.4b) almost everywhere.
Decay Condition: Theorem 3.5.3 provides us with the unique solvability of the

boundary integral equation that results from (4.4) (with the single layer ansatz)
in H�1=2 .�/. The associated single layer potential is in H 1

�
L;�C

�
(see Exer-

cise 3.1.14) and, thus, is the unique solution.
Finally, in (3.22) we have shown that the single layer potential satisfies the decay

condition (4.4c). �

We will now reduce (4.4) to a boundary integral equation of the first kind. We
ensure that (4.4a), (4.4c) are satisfied by means of the single layer ansatz (see
Chap. 3)

u.x/ D .S'/.x/ D
Z
�

'.y/
4� kx � yk dsy; x 2 �C: (4.5)

The unknown density ' from (4.5) is the solution of the boundary integral
equation

V' D gD on � (4.6)

with the single layer operator

.V'/.x/ WD
Z
�

'.y/
4� kx � yk dsy x 2 �: (4.7)

(4.6) defines a boundary integral equation of the first kind. The Galerkin boundary
element method is based on the variational formulation of the integral equation.
Instead of imposing (4.6) for all x 2 � , we multiply (4.6) by a “test function” and
integrate over � . This gives us: Find ' 2 H�1=2.�/ such that

Z
�

.V'/� dsx D
Z
�

�Z
�

'.y/
4� kx � yk dsy

�
�.x/dsx

D
Z
�

gD.x/ �.x/ dsx 8� 2 H�1=2 .�/ : (4.8)

For the Laplace operator we only consider vector spaces over the field R and not
over C, so that in (4.8) there is no complex conjugation.

The “integrals” in (4.8) should be interpreted as duality pairings in H
1
2 .�/ �

H� 1
2 .�/ in the following way. For ' 2 H�1=2.�/ we have V' 2 H 1=2.�/ and, by

Convention 4.0.1, we can write (4.8) as

Find ' 2 H�1=2.�/ W .V'; �/L2.�/ D .gD ; �/L2.�/ 8� 2 H�1=2.�/: (4.9)



186 4 Boundary Element Methods

The left-hand side in (4.9) defines a bilinear form b.�; �/ on the Hilbert space
H D H�1=2.�/ with

b.'; �/ WD .V'; �/L2.�/; (4.10)

and the right-hand side defines a linear functional on H�1=2 .�/ W

F.�/ WD .gD ; �/L2.�/: (4.11)

Keeping the duality of H�1=2 .�/ and H 1=2 .�/ in mind, it follows from

jF.�/j �
 

sup
	2H�1=2.�/nf0g

j .gD;	/L2.�/ j
k	kH�1=2.�/

!
k�kH�1=2.�/ D kgDkH1=2.�/k�kH�1=2.�/

that F is continuous on H�1=2 .�/.
For sufficiently smooth functions '; � in (4.10) we have, by virtue of Fubini’s

theorem,

b.'; �/ D
Z
�

Z
�

�.x/'.y/
4� kx � yk dsy dsx D b .�; '/ (4.12)

and therefore the form b.�; �/ is symmetric. Furthermore, it is also H�1=2-elliptic
(see Theorem 3.5.3). According to the Lax–Milgram lemma (see Sect. 2.1.6), Prob-
lem (4.9) has a unique solution ' 2 H�1=2.�/ for all gD 2 H 1=2.�/. In the
representational formula (4.5) this ' gives us the unique solution u of the exterior
problem (4.4).

The discretization of the boundary integral equation consists in the approxima-
tion of the unknown density function ' in (4.6) by means of a function Q' which
is defined by finitely many coefficients .˛i /

N
iD1 in the basis representation. In the

Galerkin boundary element method, this is achieved by restricting '; � in the vari-
ational form (4.9) to finite-dimensional subspaces, the boundary element spaces,
which we will now construct.

4.1.2 Surface Meshes

Almost all boundary elements are based on a surface mesh G of the boundary � .
A surface mesh is the finite union of curved triangles and quadrilaterals on the
boundary � , which satisfy suitable compatibility conditions. A general element of
G is called a “panel”.

For the definition we introduce the reference elements

Unit triangle: bS2 WD ˚.
1; 
2/ 2 R2 W 0 < 
2 < 
1 < 1
�

Unit square: bQ2 WD .0; 1/2:
(4.13)

Our generic notation for the reference element is O� .
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Definition 4.1.2. A surface mesh G of the boundary � is a decomposition of �
into finitely relatively open, disjoint elements � � � that satisfy the following
conditions:

(a) G is a covering of � W
� D

[
�2G �:

(b) Every element � 2 G is the image of a reference element O� under a regular
reference mapping �� . Then �� is called regular if the Jacobian J� D D��
satisfies the condition

0 < �min � inf
O�2O�

inf
v2R2

kvkD1

D
J�
� O
� v; J�

� O
� v
E
� sup
O�2O�

sup
v2R2

kvkD1

D
J�
� O
� v; J�

� O
� v
E

� �max <1:

(c) For a plane triangle � 2 G with straight edges and vertices P0, P1 and P2, the
regular mapping �� is affine:

��

� O
� D P0 C O
1 .P1 � P0/C O
2 .P2 � P1/ : (4.14)

For a plane quadrilateral � 2 G with straight edges and vertices P0, P1, P2 and
P3 (the numbering is counterclockwise) the mapping is bilinear:

��

� O
� D P0 C O
1 .P1 � P0/C O
2 .P3 � P0/C O
1 O
2 .P2 � P3 C P0 � P1/ :
(4.15)

Figure 4.1 illustrates Definition 4.1.2 for a triangular and a quadrilateral element.

affine

affineaffine

Fig. 4.1 Schematic illustration of the reference mappings; triangular panel (left), parallelogram
(right)
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Exercise 4.1.3. Show the following:

(a) The affine mapping�� in (4.14) is regular if and only if P0, P1, P2 are vertices of
a non-degenerate (plane) triangle � , i.e., they are not colinear. Find an estimate
for the constants �min, �max from Definition 4.1.2(b) in terms of the interior
angles of � .

(c) Let P0;P1;P2;P3 be the vertices of a plane quadrilateral � with straight edges.
The mapping �� from (4.15) is regular if all interior angles are smaller than �
and larger than 0.

In some cases we will impose a compatibility condition for the intersection of
two panels.

Definition 4.1.4. A surface mesh G of � is called regular if:

(a) The intersection of two different elements �; � 0 2 G is either empty, a common
vertex or a common side.

(b) The parametrizations of the panel edges of neighboring panels coincide: For
every pair of different elements �; � 0 2 G with common edge e D � \ � 0 we
have

�� j Oe D �� 0 ı ��;� 0 j Oe ;
where Oe WD ��1� .e/ and ��;� 0 W O� ! O� is a suitable affine bijection.

Remark 4.1.5. Throughout this section we assume that the boundary � is Lipschitz
and admits a regular surface mesh in the sense of Definitions 4.1.2 and 4.1.4. This
is a true restriction since not every Lipschitz surface admits a regular surface mesh.

For later error estimates we will introduce a few geometric parameters, which
represent a measure for the distortion of the panels as well as bounds for their
diameters.

Assumption 4.1.6. There exist open subsets U; V � R3 and a diffeomorphism�� W
U ! V with the following properties:

(a) � � U .
(b) For every � 2 G, there exists a regular reference mapping �� W O� ! � of the

form
�� D �� ı �affine

� W O� ! �;

where �affine
� W R2 ! R3 is a regular, affine mapping.

Example 4.1.7.

1. Let � be a piecewise smooth surface that has a bi-Lipschitz continuous para-
metrization over the polyhedral surface O�: �� W O� ! � . Let Gaffine WD˚
� affine
i W 1 � i � N � be a regular surface mesh of O� with the associated ref-

erence mappings �affine
�affine W O� ! � affine. Then G WD ˚

��
�
� affine

� W � affine 2 Gaffine
�

defines a regular surface mesh of � which satisfies Assumption 4.1.6.
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2. For the unit sphere � WD ˚x 2 R3 W kxk D 1� one can choose the inscribed dou-
ble pyramid with vertices .˙1; 0; 0/|, .0;˙1; 0/|, .0; 0;˙1/| as a polyhedral
surface O�, while �� W O� ! � is defined by �� .x/ WD x= kxk. By means of �� ,
regular surface meshes on � can then be generated through lifting of regular
surface meshes of the polyhedral surface O� .

In order to construct a sequence of refined surface meshes for � , in many cases
the procedure is as follows.

Remark 4.1.8. Let � be the surface of a bounded Lipschitz domain � � R3. In
the first step we construct a polyhedron O� along a bi-Lipschitz continuous map-
ping �� W O� ! � (see Example 4.1.7). Let Gaffine

0 be a (very coarse) surface
mesh of O� . Then G0 WD

˚
� D ��

�
� affine

� W � affine 2 Gaffine
0

�
defines a coarse sur-

face mesh of � . We can obtain a sequence
�Gaffine
`

�
`

of finer surface meshes if,
during each refinement, we decompose every panel in Gaffine

0 into new panels by
means of a fixed refinement method. For triangular elements, for example, we
interconnect the midpoints of the sides and for quadrilateral elements we connect
both pairs of opposite midpoints. This gives us a sequence of surface meshes by
G` WD

˚
� D ��

�
� affine

� W � affine 2 Gaffine
`

�
.

Convention 4.1.9. If � and � affine appear in the same context the relation between
the two is given by � D ��

�
� affine

�
.

The following definition is illustrated in Fig. 4.2.

Definition 4.1.10. Let Assumption 4.1.6 be satisfied. The constants caffine > 0

(Caffine > 0) are the maximal (minimal) constants in

caffine kx� yk�k�� .x/� �� .y/k �Caffine kx � yk 8x; y 2 � affine;8� affine 2Gaffine

and describe the distortion of curved panels � compared to their affine pullbacks
� affine.

The diameter of a panel � 2 G is given by

h� WD sup
x;y2�
kx � yk

and the inner width 
� by the incircle diameter of � affine.

Fig. 4.2 Diameter of a panel and incircle diameter; triangular panel (left), parallelogram (right)
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The mesh width hG of a surface mesh G is given by

hG WD maxfh� W � 2 Gg: (4.16)

We write h instead of hG if the mesh G is clear from the context.

Remark 4.1.11. For plane panels � , 
� is the incircle diameter of � .
The diameters of � and � affine satisfy

C�1affineh� � sup
x;y2�affine

kx � yk D h�affine � c�1affineh� :

Definition 4.1.12. The shape-regularity constant �G is given by

�G WD max
�2G

h�


�
: (4.17)

For some theorems we will assume, apart from the shape-regularity, that the
diameters of all triangles are of the same order of magnitude.

Definition 4.1.13. The constant qG that describes the quasi-uniformity is given by

qG WD hG=min fh� W � 2 Gg :
Remark 4.1.14. In order to study the convergence of boundary element methods,
we will consider sequences .G`/`2N of surface meshes whose mesh width h` WD hG`

tends to zero. It is essential that the constant for the shape-regularity �` WD �G`

remains uniformly bounded above:

sup
`2N

�` � � <1: (4.18)

In a similar way the constants of quasi-uniformity q` WD qG`
have to be bounded

above in some theorems:
sup
`2N

q` � q <1: (4.19)

We call a mesh family .G`/`2N with the property (4.18) shape-regular and with the
property (4.19) quasi-uniform.

Exercise 4.1.15. Show the following:

(a) If the surface mesh G0 is regular and if finer surface meshes .G`/` are con-
structed according to the method described in Remark 4.1.8 then all surface
meshes .G`/` are regular.

(b) The constants concerning shape-regularity and quasi-uniformity are, under the
conditions in Part (a), uniformly bounded with respect to `.
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4.1.3 Discontinuous Boundary Elements

The boundary element method defines an approximation of the unknown density '
in the boundary integral equation (4.6) which is described by finitely many parame-
ters. This can, for example, be achieved by (piecewise) polynomials on the elements
� of a mesh G.

Example 4.1.16. (Piecewise Constant Boundary Elements)
Let � D @� be piecewise smooth and let G be a – not necessarily regular –

surface mesh on � . Then S0G denotes all piecewise constant functions on the mesh G

S0G WD f 2 L1 .�/ j 8� 2 G W  j� is constantg : (4.20)

Since  2 L1 .�/, we only need to define  in the interior of an element, as the
boundary @� , i.e., the set of edges and vertices of the panel, is a set of zero measure.

Every function  2 S0G is defined by its values  � on the elements � 2 G and can
be written in the form

 .x/ D
X
�2G

 �b� .x/ (4.21)

with the characteristic function b� W � ! R of � 2 G:

b� .x/ WD
(
1 x 2 �;
0 otherwise:

(4.22)

In particular, S0G is a vector space of dimension N D #f� W � 2 Gg with basis
fb� W � 2 Gg.

In many cases the piecewise constant approximation of the unknown density
converges too slowly and, instead, one uses polynomials of degree p � 1. In the
same way as in Example 4.1.16 this leads to the boundary element spaces SpG . For
their definition we need polynomials of total degree p on the reference element as
well as the convention for multi-indices from (2.67)

P�p D span
˚

� W 	 2 N2

0 ^ j	j � p
�
: (4.23)

For p D 1 and p D 2, P�p contains all polynomials of the form

a00 C a10
1 C a01
2 8a00; a10; a01 2 R for p D 1;

a00 C a10
1 C a01
2 C a20
21 C a11
1
2 C a02
22 8a00; a10; a01; a20; a11; a02 2 R for p D 2:

Definition 4.1.17. Let � D @� be piecewise smooth and let G be a surface mesh
of � . Then, for p 2 N0,

S
p
G WD

n
 W � ! K j 8� 2 G W  ı �� 2 P�p

o
: (4.24)

We simply write Sp or only S if the reference to the surface mesh G is obvious.
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Remark 4.1.18. Note that in (4.24) the functions  2 Sp do not constitute poly-
nomials on the surface � . Only once they have been “transported back” to the
reference element O� by means of the element mapping �� (see Fig. 4.1) is this the
case. The parametrizations �� of the elements � 2 G in Definition 4.1.2 (b,c)
are thus part of the set SpG . A change in parametrization �� will lead (with the
same mesh G) to a different SpG . Therefore for a mesh G we summarize the element
mappings �� in the mapping vector

� WD f�� W � 2 Gg (4.25)

and instead of (4.24) we write SpG;�.

Remark 4.1.19. Note that (4.24) also holds for meshes G with quadrilateral ele-
ments, i.e., with reference element O� D .0; 1/2. Since Sp does not require continuity
across element boundaries, the space of polynomials P�p in (4.23) can also be
applied to quadrilateral meshes.

For the realization of the boundary element spaces we need a basis for P�p , which

we denote by bN .i;j /. O
1; O
2/ and which satisfies

P�p D span
nbN .i;j / W 0 � i; j � p; i C j � p

o
: (4.26)

For example, bN .i;j / .
1; 
2/ WD O
i1 O
j2 , 0 � i C j � p as in (4.23), would be
admissible basis functions.

Remark 4.1.20. (Nesting of Spaces)
We have P�p � P�q for all p � q. Therefore we can always choose a basis in P�q

which contains the basis functions from P�p as a subset. The basis functions bN .i;j /

in (4.23) have this property.

Once we have determined a basis bN .i;j /. O
/ on O� , every  2 SpG;� on a panel
� 2 G can be written as

 j� D
X

0�iCj�p
˛i;j

�bN .i;j / ı ��1�
�

and
N �
.i;j / WD bN .i;j / ı ��1� 0 � i C j � p

spans the restriction f j� W  2 Sp .�;G; �/g. In order to give a basis of SpG;�
suitable indices, we define

�p WD
˚
	 2 N2

0 W j	j � p
�
:

Thus we have
S
p
G;� D span

˚
b.�;�/.x/ W .	; �/ 2 �p � G� ; (4.27)
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where the global basis functions bI .x/ with the multi-index I D .	; �/ denote the
zero extension of the element functionN �

� to �: For

I D .	; �/ 2 �p � G DW I .G; p/ DW I (4.28)

we explicitly have

bI .x/ WD
(
N �
�.x/; x 2 �;

0 otherwise:
(4.29)

Hence, every  can be written as a combination of the basis function bI .x/:

 .x/ D
X
I2I

 I bI .x/; x 2 �; � 2 G: (4.30)

Let jGj be the number of elements in the mesh G. The dimension of SpG;� or the
number of degrees of freedom is then given by

N D jGj .p C 1/.p C 2/=2 D dim.SpG;�/: (4.31)

Every function in 2SpG;� is then uniquely characterized by the vector . I /I2I.G;p/
� RN Š RI.G;p/ as in (4.30).

4.1.4 Galerkin Boundary Element Method

The simplest boundary element method for Problem (4.6) consists in approximating
the unknown density ' in (4.9) by a piecewise constant function 'S 2 S0.�;G/.
Convention 4.1.21. The boundary element functions depend on the boundary ele-
ment space Sp .�;G; �/; in particular, they depend on � , the surface mesh G and
the polynomial degree p. We will, whenever possible, use the abbreviated notation
'S instead of 'Sp

G;�
.

Inserting (4.30) into (4.6) or into the variational formulation (4.8) leads to a con-
tradiction: since, in general, we have 'S 6D ', (4.6) and (4.8) cannot be satisfied with
' D 'S , which is why the statements have to be weakened. As 'S is determined
by N parameters

�
'SI
�
I2I [see (4.29)–(4.31)], we are looking for N conditions to

determine 'SI . In the Galerkin boundary element method we only let the test func-
tion � run through a basis of SpG in the variational formulation of the boundary
integral equation (4.9). The Galerkin approximation of the integral equation (4.9)
then reads:



194 4 Boundary Element Methods

Find 'S 2 SpG;� such that

b.'S ; �S / D F.�S / 8�S 2 SpG;�; (4.32)

with b.�; �/ and F.�/ from (4.10) and (4.11) respectively.

Remark 4.1.22. (i) The Galerkin discretization (4.32) of (4.8) is achieved by res-
tricting the trial and test functions '; � to the subspace SpG;� � H�1=2.�/ in
the variational formulation (4.8).

(ii) The boundary element solution 'S in (4.32) is independent of the basis chosen
for the subspace.

The computation of the approximation 'S requires that we choose a concrete
basis for the subspace. Therefore, [see (4.29)–(4.31)] for a fixed p 2 N0, we choose
the basis

.bI W I 2 I .G; p// (4.33)

for SpG;�. Then (4.32) is equivalent to the linear system of equations:

Find ' 2 RN such that
B' D F: (4.34)

Here the system matrix B D .BI;J /I;J2I.G;p/ and the right-hand side F D
.FJ /J2I.G;p/ 2 RN with I D .	; �/ and J D .�; t/ are given by

BI;J WD b.bI ; bJ / (4.35)

D
Z
�

Z
�

bJ .x/ bI .y/
4� kx� yk dsy dsx D

Z
t

Z
�

N t
� .x/N

�
�.y/

4� kx � yk dsy dsx

FJ WD F.bJ / D
Z
�

gD.x/bJ .x/ dsx D
Z
t

gD.x/N t
� .x/ dsx: (4.36)

Remark 4.1.23. The matrix B in (4.34) is dense because of (4.35), which means
that all entriesBI;J are, in general, not equal to zero. Furthermore, the twofold sur-
face integral in (4.35) can very often not be computed exactly, even for polyhedrons,
and requires numerical integration methods for its approximation. The influence of
this additional approximation will be discussed in Chap. 5. In this chapter we will
always assume that the matrix B can be determined exactly.

Proposition 4.1.24. The system matrix B in (4.34) is symmetric and positive defi-
nite.

Proof. From the symmetry of b.'; �/ D b.�; '/ we immediately have

BI;J D b.bI ; bJ / D b.bJ ; bI / D BJ;I ;

and subsequently B D B|. Now let ' 2 RN be arbitrary. Then we have
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'|B' D
X

I;J2I.G;p/
'J'IBI;J D

X
I;J

'J'Ib.bI ; bJ / D b
 X

I

'IbI ;
X
J

'J bJ

!

D b.'S ; 'S / � �k'Sk2H�1=2.�/
> 0

if and only if 'S 6D 0. Since fbI W I 2 Ig is a basis of Sp, we have 'S 6D 0 if and
only if ' 6D 0 2 RN . Therefore B is positive definite. �

Thus the discrete problem (4.32) or (4.34) has a unique solution 'S 2 SpG .
The following proposition supplies us with an estimate for the error ' � 'S .

Proposition 4.1.25. Let ' be the exact solution of (4.9). The Galerkin solution 'S
of (4.32) converges quasi-optimally

k' � 'SkH�1=2.�/ �
kbk
�

min
	S2Sp

k' � �SkH�1=2.�/: (4.37)

The error satisfies the Galerkin orthogonality

b.' � 'S ; �S / D 0 8�S 2 Sp : (4.38)

Proof. We will first prove the statement in (4.38). If we only consider (4.10) for test
functions from Sp we can subtract (4.32) and obtain

b.' � 'S ; �S / D b.'; �S /� b.'S ; �S / D F.�S /� F.�S / D 0 8�S 2 Sp:

Next we prove (4.37). For the error eS D ' � 'S we have by the ellipticity and
the continuity of the boundary integral operator V and (4.38)

�k' � 'Sk2H�1=2.�/
� b.eS ; eS / D b.eS ; ' � 'S/
D b.eS ; '/ � b.eS ; 'S / D b.eS ; '/ � b.eS ; �S / D b.eS ; ' � �S/
� kbkkeSkH�1=2.�/k' � �SkH�1=2.�/

for all �S 2 Sp .
If we cancel keSkH�1=2.�/ and minimize over �S 2 Sp we obtain the assertion

(4.37). �
The inequality in (4.37) shows that the Galerkin error k' � 'SkH�1=2.�/ coin-

cides with the error of the best approximation of ' in Sp up to a multiplicative
constant. This is where the term quasi-optimality for the a priori error estimate
(4.37) originates.

Remark 4.1.26 (Collocation). We obtained the Galerkin discretization (4.32) from
(4.8) by restricting the trial and test functions '; � to the subspace Sp � S .
Alternatively, one can insert 'S into (4.6) and impose the equation
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.V'S/.xJ / D gD.xJ / J 2 I .G; p/ (4.39)

only in N collocation points fxJ W J 2 Ig. The solvability of (4.39) depends
strongly on the choice of collocation points fxJ W J 2 Ig. Equation (4.39) is also
equivalent to a linear system of equations, where the entries of the system matrix
Bcol l are defined by

Bcol lI;J WD
Z
�

bJ .y/
4� kxI � ykdsy: (4.40)

Note that Bcol l is again dense, but not symmetric.
The collocation method (4.39) is widespread in the field of engineering, because

the computation of the matrix entries (4.40) only requires the evaluation of one
integral over the surface � , instead of, as with the Galerkin method, a twofold inte-
gration over � . However, the stability and convergence of collocation methods on
polyhedral surfaces is still an open question, especially with integral equations of
the first kind. For integral operators of zero order or equations of the second kind
we only have stability results in some special cases. For a detailed discussion on
collocation methods we refer to, e.g., [6, 8, 87, 187, 207, 215] and the references
contained therein.

We now return to the Galerkin method.

Remark 4.1.27 (Stability of the Galerkin Projection). The Galerkin method
(4.32) defines a mapping

…
p
S W H�1=2.�/! S

p
G;� W …

p
S' WD 'S ;

which is called the Galerkin projection. Clearly, …p
S is linear and because of the

ellipticity of the boundary integral operator V we have

�k…p
S'k2H�1=2.�/

D �k'Sk2H�1=2.�/
� b.'S ; 'S / D b.'; 'S/

� kbkk'kH�1=2.�/k…p
S'kH�1=2.�/;

from which we have, after canceling, the boundedness of the Galerkin projection
…
p
S W H�

1
2 .�/! H� 1

2 .�/ independent of the mesh G:

k…p
S'kH�1=2.�/ �

kbk
�
k'kH�1=2.�/: (4.41)

The quasi-optimality (4.37) and the boundedness of the Galerkin projection
combined with the following corollary give us the convergence of the Galerkin
BEM.

Corollary 4.1.28. Let .G`/`2N be a sequence of meshes on � with a mesh width
h` D hG`

and let h` ! 0 for ` ! 1. Then the sequence .'`/`2N of boundary
element solutions (4.32) in S` D SpG`

converges to ' for every fixed p 2 N0.
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Proof. Since S0
`
� Sp

`
for all p 2 N0, we will only consider the case p D 0. S0

`
are

step functions on meshes whose mesh width converges to zero. The density follows
from the construction of the Lebesgue spaces

[
`2N

S0
`

k�k
L2.�/ D L2 .�/

and from Proposition 2.5.2 we have the dense embeddingL2 .�/ � H�1=2.�/.
For ' 2 H�1=2 .�/ and an arbitrary " > 0 we can therefore choose a Q' from

L2 .�/ and an ` 2 N , combined so that Q'` 2 S0` , such that

k' � Q'kH�1=2.�/ � "=2 and k Q' � Q'`kL2.�/ � "=2:

From this we have

k' � Q'`kH�1=2.�/ � k' � Q'kH�1=2.�/ C k Q' � Q'`kH�1=2.�/ �
"

2
C "

2
� ":

The quasi-optimality of the Galerkin method gives us

k' � '`kH�1=2.�/ �
kbk
�
k' � Q'`kH�1=2.�/ � "

kbk
�
:

As " > 0 is arbitrary, we have the assertion for `!1. �

4.1.5 Convergence Rate of Discontinuous Boundary Elements

We have seen in Proposition 4.1.25 that the approximations 'S 2 S from the
Galerkin boundary element method approximate the exact solution ' of the equa-
tion of the first kind (4.9) quasi-optimally: the error ' � 'S , which is measured in
the “natural”H�1=2.�/-norm, is – up to a multiplicative constant – just as large as

min
˚k' �  SkH�1=2.�/ W  S 2 S

�
(4.42)

which is the error of the best approximation in the space S . The convergence rate of
the BEM indicates how fast the error converges to zero in relation to an increase in
the degrees of freedomN . Here we will only prove the convergence rate for p D 0,
while the general case will be treated in Sect. 4.3. We begin with the second Poincaré
inequality on the reference element O� .

Convention 4.1.29. Variables on the reference element are always marked by a
“ˆ”. If the variables x 2 � and Ox 2 O� appear in the same context this should
always be understood in terms of the relation x D �� .Ox/. Derivatives with respect
to variables in the reference element are also marked by a “ˆ”. We will write, for
example, br as an abbreviation for rOx . Should the functions u W � ! K and Ou W O� !
K appear in the same context, they are connected by the relation u ı �� D Ou.



198 4 Boundary Element Methods

Proposition 4.1.30. Let O� � R2 be the reference element, O' 2 H 1. O�/ and O'0 WD
1
j O� j
R
O� O' d Ox. Then there exists some Oc > 0 such that

k O' � O'0kL2. O�/ � Ockbr O'kL2. O�/; (4.43)

where Oc depends only on O� .

Proof. The assertion follows directly from the proof of Corollary 2.5.10. �
In the following we will derive error estimates for a simplified situation. We will

discuss the general case in Sect. 4.3. Here we let � be a plane manifold in R3 with
a polygonal boundary. As integrals are invariant under rotation and translation, we
assume without loss of generality that

� is a two-dimensional polygonal domain, (4.44)

i.e., we restrict ourselves to the two-dimensional approximation problem in the
plane.

Furthermore, let G D f�i W 1 � i � N g be a surface mesh on � of shape-regular
triangles with straight edges and with mesh width h > 0. Then the triangles � 2 G
are affinely equivalent to the reference element O� via the transformation (4.14):

� 3 x D �� .Ox/ D P0 C JOx; Ox 2 O�; (4.45)

where J is the matrix with the columns P1 � P0 and P2 � P1 (see Fig. 4.1). With
(4.45) and the chain rule

@

@x˛
D @

@ Ox1
@ Ox1
@x˛
C @

@ Ox2
@ Ox2
@x˛

˛ D 1; 2;

the relation
r D �J�1�| br; dx D .det J/ d Ox D 2 j� j d Ox (4.46)

follows. This leads to the transformation formula for Sobolev norms

kbr O'k2
L2. O�/ D

Z
O�
jbr O'j2 d Ox D jO� jj� j

Z
�

.r'/>JJ>.r'/dx

� jO� jj� j��
Z
�

kr'k2 dx; (4.47)

where �� denotes the largest eigenvalue of JJ| 2 R2�2. Furthermore, we have for
the left-hand side of (4.43)

k O' � O'0k2L2. O�/ D
jO� j
j� j k' � '0k

2
L2.�/

(4.48)
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with '0 WD 1
j� j
R
�
'dx. If we combine (4.48) with (4.43) and (4.47) we obtain

k' � '0k2L2.�/ D
j� j
j O� j k O' � O'0k

2
L2.O�/
� Oc2 j� jj O� j k

br O'k2
L2.O�/
� Oc2�� kr'k2L2.�/ 8� 2 G:

(4.49)
Exercise 4.1.32 shows that

�� � kP1 � P0k2 C kP2 � P1k2 � 2h2� : (4.50)

From this we have
k' � '0kL2.�/ �

p
2 Och� j'jH1.�/: (4.51)

Squaring and then summing over all � 2 G leads to the following error estimate.

Proposition 4.1.31. Let (4.44) hold. Let G be a surface mesh of � . Let ' 2 L2.�/
with 'j� 2 H 1.�/ for all � 2 G. Then we have the error estimate

min
 2S0

G
k' �  kL2.�/ �

p
2 Oc
 X
�2G

h2� j'j2H1.�/

!1=2
: (4.52)

For ' 2 H 1.�/ the error estimate can be simplified to

min
 2S0

G
k' �  kL2.�/ �

p
2 OchG j'jH1.�/: (4.53)

Exercise 4.1.32. Let � be a plane triangle with straight edges in R2 with vertices
P0, P1, P2. Let the matrix J and the eigenvalue �� be defined as in (4.45) and (4.47)
respectively. Show that

�� � kP1 � P0k2 C kP2 � P1k2 :

From the approximation property we will now derive an error estimate for the
Galerkin solution.

Theorem 4.1.33. Let � be the surface of a polyhedron. Let the surface mesh G
consist of triangles with straight edges.

For the solution ' of the integral equation of the first kind (4.6) we assume that
for an 0 � s � 1 we have

' 2 H s.�/: (4.54)

Then the Galerkin approximation 'S 2 S0G satisfies the error estimate

k' � 'SkH�1=2.�/ � C hsC1=2k'kH s.�/: (4.55)

Proof. The conditions of the theorem allow us to apply Proposition 4.1.31. With
(4.37) we obtain for the Galerkin solution 'S the error estimate
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k' � 'SkH�1=2.�/ D k' �…0
S 'kH�1=2.�/ �

kbk
�

min
 S2S0

G
k' �  SkH�1=2.�/:

The definition of the H�1=2 .�/-norm gives us

k' �  SkH�1=2.�/ D sup
	2H1=2.�/nf0g

.' �  S ; �/L2.�/

k�kH1=2.�/

: (4.56)

We will first consider the case ' 2 H 1.�/ and choose  S elementwise as the mean
value of '

P' WD  S with  S j� WD
1

j� j
Z
�

' dx; � 2 G;

i.e., P is the L2-orthogonal projection onto S0G . Hence it follows from Proposi-
tion 4.1.31 that

k SkL2.�/�k'kL2.�/; k' �  SkL2.�/� 2k'kL2.�/; k' �  SkL2.�/� chk'kH1.�/:

(4.57)

If in Proposition 2.1.62 we choose T D I � P we have T W L2 .�/ ! L2 .�/

and T W H 1 .�/! L2 .�/. For the norms we have, by (4.57), the estimates

kT kL2.�/ L2.�/ � 2 and kT kL2.�/ H1.�/ � ch:

Proposition 2.1.62 implies that T W H s .�/! L2 .�/ for all 0 � s � 1 and that

kT kL2.�/ H s.�/ � chs :

This is equivalent to the error estimate

k' �  SkL2.�/ � c hsk'kH s.�/: (4.58)

In order to derive an error estimate for the H�1=2 .�/-norm, we use (4.56) and note
that the equality

j .' �  S ; �/L2.�/ j D j .' �  S ; � � �S /L2.�/ j

holds for an arbitrary �S 2 S0G . By using ' 2 H s.�/, � 2 H 1=2.�/ and (4.58) and
by choosing �S elementwise as the integral mean value of �, we obtain the estimate

ˇ̌
.' �  S ; �/L2.�/

ˇ̌ D ˇ̌.' �  S ; � � �S /L2.�/

ˇ̌ � k' �  SkL2.�/ k� � �SkL2.�/

� chsk'kH s.�/h
1=2k�kH1=2.�/:

�
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The error estimate (4.55) shows that the convergence rate hsC1=2 of the BEM
depends on the regularity of the solution '. In Sect. 3.2 we stated the regularity –
the maximal s > 0 such that ' 2 H�1=2Cs .�/ – without knowing the exact solu-
tion ' explicitly. Ideally, ' is smooth on the entire surface .s D 1) or at least
on every panel. The convergence rate would then be bounded by the polynomial
order p of the boundary elements, due to the fact that the following generalization
of Theorem 4.1.33 holds.

Corollary 4.1.34. Let the exact solution of (4.9) satisfy ' 2 H s.�/ for an s � 0.
Then the boundary element solution 'S 2 SpG satisfies the error estimate

k' � 'SkH�1=2.�/ � ch1=2Cmin.s;pC1/
G k'kH s.�/; (4.59)

for a surface mesh G of the boundary � , which consists of triangles with straight
edges. Here the constant c depends on p and the shape-regularity of the surface
mesh.

The proof of Corollary 4.1.34 will be completed in Sect. 4.3.4 (see Remark
4.3.21).

4.1.6 Model Problem 2: Neumann Problem

Let �� � R3 be a bounded interior domain with boundary � and �C WD R3n��.
For gN 2 H�1=2.�/ we consider the Neumann problem

�u D 0 in �C; (4.60)

�1u D gN on �; (4.61)

ju .x/j � C kxk�1 for kxk ! 1: (4.62)

The exterior problem (4.60)–(4.62) has a unique solution u, which can be
represented as a double layer potential

u.x/ D 1

4�

Z
�

'.y/
@

@ny

1

kx � yk dsy; x 2 �C: (4.63)

Thanks to the jump relations (see Corollary 3.3.12)

1

4�

Z
�

@

@ny

1

kx � yk dsy D

8̂
<̂
ˆ̂:

�1 x 2 ��;
�1
2

x 2 � and � is smooth in x

0 x 2 �C
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u.x/ in (4.63) does not change if a constant is added to '. If we put (4.63) into the
boundary condition (4.61) we obtain the equation

�W' D @

@nx

�
1

4�

Z
�

'.y/
@

@ny

1

kx � yk dsy

�
D gN .x/; x 2 �: (4.64)

The following remark shows that the derivative @=@nx and the integral do not
commute.

Remark 4.1.35. The normal derivative @=@nx, applied to the kernel in (4.64), yields

@2

@nx@ny

1

kx � yk D
˝
nx;ny

˛
kx � yk3 � 3

hnx; x � yi ˝ny; x � y
˛

kx � yk5 :

Therefore the kernel of the associated hypersingular integral operator is not inte-
grable.

There are three possibilities of representing the integral operator W' on the
surface: (a) by extending the definition of an integral to strongly singular kernel
functions (see [201, 211]), (b) by integration by parts (see Sect. 3.3.4) and (c) by
introducing suitable differences of test and trial functions (see [117, Sect. 8.3]). In
this section we will consider option (b). The notation and theorems from Sect. 3.3.4
can be simplified for the Laplace problem, so that they read

curl� ' WD �0 .gradZ�'/ � n;

b.'; �/ D
Z
�

Z
�

hcurl� ' .y/; curl� � .x/i
4� kx � yk dsydsx;

where Z� W H 1=2 .�/ ! H 1 .��/ is an arbitrary extension operator (see Theo-
rem 2.6.11 and Exercise 3.3.25).

The variational formulation of the boundary integral equation is given by (see
Theorem 3.3.22): Find ' 2 H 1=2.�/=K such that

b.'; �/ D � .gN ; �/L2.�/ 8� 2 H 1=2.�/=K: (4.65)

In Theorem 3.5.3 we have already shown that the density ' in (4.63) is the unique
solution of the boundary integral equation (4.65). The proof was based on the fact
that the bilinear form b .�; �/ is symmetric, continuous andH 1=2 .�/ =K-elliptic.

4.1.7 Continuous Boundary Elements

The Galerkin method is based on the concept of replacing the infinite-dimensional
Hilbert space by a finite-dimensional subspace. The bilinear form that is asso-
ciated with the hypersingular integral operator is defined on the Sobolev space
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H 1=2 .�/ =K. As the discontinuous boundary element functions from Example
4.1.16 and Definition 4.1.17 are not contained in H 1=2 .�/ =K (see Exercise 2.4.4),
we will introduce continuous boundary element spaces for the Neumann problem.

We again start with a mesh G on the boundary � . In order to define continuous
boundary elements, we assume (see Definition 4.1.4):

The surface mesh G is regular. (4.66)

This means that the intersection � \ � 0 of two different panels is either empty, a
vertex or an entire edge. Furthermore, the boundary elements are either triangles
or quadrilaterals and are images of the reference triangle or quadrilateral O� respec-
tively (see Fig. 4.1). Note that the boundary edges of the panels “have the same
parametrization on both sides” in the case of continuous boundary elements (see
Definition 4.1.4).

We assume that the boundary � is piecewise smooth (see Definition 2.2.10 and
Fig. 4.1) so that the reference mappings �� W O� ! � can be chosen as smooth dif-
feomorphisms. As in the case for discontinuous boundary elements, the continuous
boundary elements are also piecewise polynomials on the surface � . When using
discontinuous elements, a boundary element function 'S is locally a polynomial of
degree p in each element � 2 G:

8� 2 GW 'S ı �� 2 P�p . O�/:

With continuous elements we have for � 2 G:

'S ı �� 2 P �p WD
8<
:

P�p if � is a triangular element,

P �
p if � is a quadrilateral element,

(4.67)

where for p � 1 the polynomial space P�p is defined as in (4.23) and

P �
p WD spanf O
i1 O
j2 W 0 � i; j � pg:

Now we come to the definition of continuous boundary element functions of
degree p � 1.

Definition 4.1.36. Let � be a piecewise smooth surface, G a regular surface mesh
of � and � D f�� W � 2 Gg the mapping vector. Then the space of continuous
boundary elements of degree p � 1 is given by

S
p;0
G;� WD f' 2 C 0.�/ j 8� 2 G W 'j� ı �� 2 P �pg:

In order to make the distinction between continuous and discontinuous boundary
elements of degreep we will from now on denote discontinuous elements by Sp;�1G;� .
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Just like the space Sp;�1 of discontinuous boundary elements, the space Sp;0 is
also finite-dimensional. In the following we will introduce a basis f'I W I 2 Ig of
Sp;0. In contrast to Sp;�1, the support of the basis functions in general consists of
more than one panel and the basis functions are defined piecewise on those panels.
We begin with the simplest case, p D 1.

Example 4.1.37. (Linear and Bilinear, Continuous Boundary Elements)
The shape functions bN.Ox/, Ox D . Ox1; Ox2/ on the reference element O� are:

� In the case of the unit triangle with vertices P0 D .0; 0/|, P1 D .1; 0/|, P2 D
.1; 1/| [see (4.13)], given by

bN 0.Ox/ D 1 � Ox1; (4.68)

bN 1.Ox/ D Ox1 � Ox2;
bN 2.Ox/ D Ox2

and
� In the case of the unit square with vertices P0 D .0; 0/|, P1 D .1; 0/|, P2 D
.1; 1/|, P3 D .0; 1/|, given by

bN 0.Ox/ D .1 � Ox1/.1 � Ox2/; (4.69)

bN 1.Ox/ D Ox1.1 � Ox2/;
bN 2.Ox/ D .1 � Ox1/ Ox2;
bN 3.Ox/ D Ox1 Ox2:

We notice that the shape function bN i is equal to 1 at the vertex Pi of the reference
element 1 and vanishes at all other vertices (see Fig. 4.3).

It holds P�1 . O�/ D spanfbN i W i D 0; 1; 2g and P �
1 .b�/ D spanfbN i W i D 0; : : : 3g.

For the definition of the boundary element spaces of polynomial degree p we
have to distinguish between quadrilateral elements and triangular elements. For the
reference element O� 2 G and p 2 N0 we define the index set

Fig. 4.3 Reference elements
O� D S2 (left) and O� D Q2

(right) and nodal points for
P O�
1

1 1

2

2
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Fig. 4.4 Nodal points OP.2/i;j
for the reference triangle (left)
and for the unit square (right)

2,1

1,0 1,0

1,1 0,1 2,1

1,2

1,1

� O�p WD
	 ˚
.i; j / 2 N2

0 W 0 � j � i � p
�

in the case of the unit triangle,˚
.i; j / 2 N2

0 W 0 � i; j � p
�

in the case of the unit square.
(4.70)

We will omit the index O� in � O�p if the reference element is clear from the context.

Example 4.1.38 (Boundary elements of degree p > 1). The trial spaces P�p , P �
p

in (4.67) are spanned by the functions bN .p/

.i;j /
2 P O�p which will be defined next. The

nodal points for the reference element O� are given by

bP .p/.i;j / WD
�
i

p
;
j

p

�|
; 8 .i; j / 2 � O�p (4.71)

(see Fig. 4.4).
For .i; j / 2 � O�p the shape function bN .p/

.i;j /
is characterized by

bN .p/

.i;j /
2 P O�p and bN .p/

.i;j /
.bP .p/.k;`// D

	
1 .k; `/ D .i; j / ;
0 .k; `/ 2 � O�pn f.i; j /g

(see Theorem 4.1.39).

Theorem 4.1.39. Let k 2 N . Then every q 2 P O�
k

is uniquely determined by its

values in †k WD
n
.i=k; j=k/ W .i; j / 2 � O�

k

o
.

The set †k is called unisolvent for the polynomial space P O�
k

because of this
property.

Proof. A simple calculation shows that

dim P O�k D ]†k:

Therefore it suffices to prove either one of the following statements (a) or (b):

(a) For every vector .bz/z2†k
there exists a q 2 P O�

k
such that q .z/ D bz for all

z 2 †k:
(b) If q 2 P O�

k
and q .z/ D 0 for all z 2 †k then q 	 0.
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Case 1: O� D .0; 1/2: For 	 2 � O�
k

we define the function bN� by

bN� .x/ WD Q2
jD1

Qk
ijD0
ij¤�j

kxj � ij
	j � ij :

Then bN� 2 P O�
k

with bN� .	=k/ D 1 and bN�

�
i1
k
; i2
k

�
D 0 for all .i1; i2/ 2 � O�kn f	g.

Now let
�
b�
�
�2
 O�

k

be arbitrary. Then the polynomial q 2 P O�
k

q .x/ D
X
�2
 O�p

b�bN� .x/

satisfies property (a).
Case 2: O� is the reference triangle. As in Example 4.1.37 we set

O�1 .x/ WD 1 � Ox1; O�2 .x/ WD Ox1 � Ox2; O�3 .x/ WD Ox2:

Clearly, these functions are in P O�1 and have the Lagrange property

81 � i; j � 3 W O�i
�
Aj
� D ıi;j with A1 D .0; 0/| , A2 D .1; 0/| , A3 D .1; 1/| :

1. k D 1W For a given .bi /
3
iD1 2 R3, q 2 P1W

q .x/ D
3X
iD1

bi O�i .x/

clearly has the property (a).
2. k D 2W For 1 � i < j � 3, A.i;j / WD

�
Ai C Aj

�
=2 denote the midpoints of the

edges of O� . We define

bN i WD O�i
�
2 O�i � 1

�
1 � i � 3;

bN .i;j / WD 4 O�i�j 1 � i < j � 3:

Then we clearly have bN k , bN .i;j / 2 P O�2 and

bN i

�
Aj
� D ıi;j bN i

�
A.k;`/

� D 0 8i; k; `;
bN .i;j / .Ak/ D 0 bN .i;j /

�
A.k;`/

� D ıi;kıj;` 8i; j; k; `:
For a given fbz W z 2 †2g D

˚
bi ; b.k;`/

�
, the polynomial q 2 P O�2 defined by

q .x/ WD
3X
iD1

bibN i .x/C
X

1�k<`�3
b.k;`/bN .k;`/ .x/

has the property (a).
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3. k D 3W This case will be treated in Exercise 4.1.40.
4. k � 4W Let q 2 P�

k
with q .z/ D 0 for all z 2 †k . Then q vanishes on all edges

of O� . Therefore there exists a  2 P�
k�3 such that

q D O�1 O�2 O�3 and 8z 2 †k \ O� W  .z/ D 0:

(Note that O� is open.) The problem can thus be reduced to

�
 2 P�k�3

�
^ .8z 2 †k \ O� W  .z/ D 0/ H)  	 0: (4.72)

Property (b) follows by induction over k as follows.

Let O� 0 be the triangle with vertices A D �
2
kC1 ;

1
kC1

�|
, B D

�
k
kC1 ;

1
kC1

�|
, C D�

k
kC1 ;

k�1
kC1

�|
. Then we have †k \ O� DW †0k �b� 0. The transformation

T W O� ! O� 0 W T 
 D AC
�
1� 3

k C 1
�



is affine and therefore Q D  ı T 2 P�
k�3. Furthermore, we have T �1†0

k
D

†k�3. Hence (4.72) is equivalent to

� Q 2 P�k�3
�
^ �8z 2 †k�3 W Q .z/ D 0

� H) Q 	 0:

This, however, is statement (b) for k  k � 3. Since the induction hypothesis
for k D 1; 2; 3 is given by steps 1–3 in the proof, the assertion follows by virtue
of the equivalence of the two statements (a) and (b). �

Exercise 4.1.40. Let O� be the unit triangle. For P O�3 construct a Lagrange basis for
the set of mesh points †3 (see Theorem 4.1.39).

In combination with the polynomial space P O�p on O� we define an interpolation

operator bIp for the set of nodal points †p D
�bP .p/.i;j /

�
.i;j /2
p

for continuous

functions ' 2 C 0
�
O�
�

by

bIp' WD X
.i;j /2
 O�p

'
�bP .p/.i;j /

� bN .p/

.i;j /
: (4.73)

The Sobolev embedding theorem (Theorem 2.5.4) proves the continuity of the

embedding H t . O�/ ,! C 0
�
O�
�

thanks to O� � R2 for t > 1 and therefore bIp is

defined on H t . O�/, thus
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Fig. 4.5 Quadratic triangular and quadrilateral elements which share a common edge. The com-
patibility of the parametrizations ensures that the midpoints (cross marks) of the pullbacks of the
common edge in the reference elements are mapped to the same surface points

bIp W H t . O�/! P O�p and continuous:



bIp





C0. O�/ H t .O�/ <1:

One obtains the set of nodal points on the surface by lifting the set of nodes on
the reference element by means of the element parametrization

I WD
n
��

�bP .i;j /
�
W 8� 2 G, 8 .i; j / 2 � O�p

o
: (4.74)

Clearly, in a mesh G on � there will be nodal points that lie in more than one
element, more precisely, that lie in their closures. As an example, consider Fig. 4.5
with two panels that have a common edge.

If the parameter representation �� ; �� 0 of the panels �; � 0 2 G is not compatible,
the edge midpoint “�” on the common edge will be mapped to different points
in O� , b� 0, depending on whether it is associated with � or � 0. Thus, regular element
mappings (see Definition 4.1.4) must parametrize edges e D �\� 0 “identically from
both sides”. In the following we will always assume in the definition of continuous
boundary elements Sp;0G;� that G and � are regular.

Example 4.1.41 (p-Parametric Boundary Elements). Let G be a regular mesh on
� and let q � 1 be given and fixed. Then we can approximate a regular, generally
non-linear, parametrization �� W O� �! � 2 G by means of a p-parametric element
mapping

e�� .Ox/ WD X
.i;j /2
 O�q

P.q/
.i;j /

.�/bN .q/

.i;j /
.Ox/; Ox 2 O�; (4.75)

where P.q/
.i;j /

.�/ WD ��
�bP .q/.i;j /

�
denotes the lifted nodes of the reference element.
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Remark 4.1.42. In practical applications the construction (4.75) is used for p D 1
and p D 2 with the shape functions bN .p/

.i;j /
for the set of points bP .p/.i;j / in (4.71). In

every case the approximation panel Q� WDe�� . O�/ interpolates the exact panel � at the
points P.p/

.i;j /
. It is known from interpolation theory (see Sect. 7.1.3.1) that, for the

quality of the approximation, the choice of interpolation points becomes essential
for high orders of approximation such as p � 3. For p � 3 the images of the
Gauss–Lobatto points for the unit square represent a better choice for the set of
nodes P.p/

.i;j /
. Similar sets of points are known for the unit triangle (see [16, 130]).

In the following we will always assume that the � describe the surface � exactly.
The influence of the approximation of the domain on the accuracy of the boundary
element solution is discussed in Chap. 8.

We define the space of the continuous, piecewise polynomial boundary elements
of degree p � 1 by a basis bI . For this, let I be, as in (4.74), the set of all nodal
points in the mesh G. The basis function bP for the nodal point P 2 I is characterized
by the conditions

bP 2 Sp;0G and bP.P0/ WD
(
1 for P0 D P;

0 for P0 6D P; P0 2 I:
(4.76)

For a nodal point P 2 I we define a local neighborhood of triangles by �P WDSf� W � 2 G; P 2 �g. Then we have

supp.bP/ D �P: (4.77)

In order to derive a local representation of the basis functions by element shape
functions, we need a relation between global indices P 2 I and local indices .i; j / 2
� O�p. For � 2 G and I D .i; j / 2 � O�p we define a mapping ind W G � � O�p ! I by

ind .�; I / WD ��
�bP .i;j /

�
2 I. (4.78)

With this we have, for � 2 G, I D .i; j / 2 � O�p and P D ind .�; I / 2 I, the relation

bPj� D N �
.i;j / WD bN I ı ��1� : (4.79)

In the following we will show that the functions in Sp;0G;� are Lipschitz continuous
and are thus contained in H 1 .�/. In order to compare the Euclidian distance with
the surface distance, we introduce the geodesic distance

dist� .x; y/ WD inf
˚
length

�
�x;y

� W �x;y is a path in � that connects x and y
�

and the constant g�
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g� WD sup
x;y2�

	
dist� .x; y/
kx � yk

�
: (4.80)

Remark 4.1.43. The functions 'S 2 Sp;0G;� are Lipschitz continuous

j'S .x/� 'S .y/j � C kx � yk 8x; y 2 �;

where C depends on � , G, � and g� .

Proof. The continuity of 'S 2 Sp;0G;� follows directly from the definition so that we
only need to prove the Lipschitz continuity. Let x; y 2 � and let �x;y be a connecting
path with minimal length on � . Let

�
�j
�q
jD0 � G be a minimal subset of G with the

property:

x 2 �0, y 2 �q , �x;y �
q[
jD1

�j

81 � j � q W �j�1 \ �j is a common edge ej and ej \ �x;y ¤ ;.

We fix the points Mj on ej \ �x;y, 1 � j � q and set M0 D x and MqC1 D y.

Without loss of generality we assume that all
�
Mj

�qC1
jD0 are distinct; otherwise we

simply eliminate points that appear in the sequence more than once. Then, by the
continuity of 'S , we have

'S .y/� 'S .x/ D 'S
�
MqC1

� � 'S .M0/ D
qX
jD0

�
'S
�
MjC1

� � 'S �Mj

��
:

The points MjC1, Mj are in the panel �j . Since 'S j� is the composition of a
polynomial with a diffeomorphism, these restrictions are Lipschitz continuous. With

c� WD sup
x;y2�

j'S .x/� 'S .y/j
kx � yk

we have

ˇ̌
'S
�
MjC1

� � 'S �Mj

�ˇ̌ � c� 

MjC1 �Mj



 � c�L ��Mj ;Mj C1

�
;

where L
�
�Mj ;Mj C1

�
denotes the length of the shortest connecting path in � that

connects Mj with MjC1. Finally, with (4.80) we have

j'S .y/� 'S .x/j �
�

max
1�j�q c�j

�
L
�
�x;y

� � g�
�

max
1�j�q c�j

�
kx � yk ;

which is the Lipschitz continuity of 'S . �
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4.1.8 Galerkin BEM with Continuous Boundary Elements

The inclusion Sp;0G;� � H 1=2 .�/ of the continuous boundary elements permits the
Galerkin discretization of the hypersingular boundary integral equation:
Find 'S 2 Sp;0G =K such that

b.'S ; �S / D .gN ; �S /L2.�/ 8�S 2 Sp;0G =K: (4.81)

The ellipticity (Theorem 3.5.3) implies the existence of a unique solution of Prob-
lem (4.81). The system matrix of the hypersingular integral equation has similar
properties to the matrix of the single layer potential (see Proposition 4.1.24).

Proposition 4.1.44. The system matrix W of the bilinear form b W Sp;0G =R �
S
p;0
G =R! R in (4.65) is symmetric and positive definite. The entries WI;J , I; J 2

I have the explicit form

WI;J D
Z
�

Z
�

hcurl� bI .x/; curl� bJ .y/i
4� kx � yk dsydsx D WJ;I : (4.82)

The integrals in (4.82) are, according to Remark 4.1.43, weakly singular and
therefore the matrix entries are well defined. We can write the actual generation
of the matrix by means of integrals over single panels, with the help of the index
allocation (4.78). In the following we will give an algorithmic description in the
form of a pseudo programming language.

procedure generate system matrix;
for all �; t 2 G do begin

for all I D .i; i 0/ 2 � O�p, J D .j; j 0/ 2 � pOt do begin

W
I;J
�;t WD

Z
�

Z
t

G .x�y/
D
curl�

�bN .i;i 0/ı��1� .x/
�
; curl�

�bN .j;j 0/ ı ��1t .y/
�E
dsydsxI

K WD ind .�; I / I L WD ind .t; J / I WK;L WD WK;L CW I;J
�;t I

(4.83)
end;end;

Exercise 4.1.45. Let �; t 2 G be panels with reference elements O� , Ot and refer-
ence mappings �� , �t . The Jacobian of the transformation is denoted by J� WDhO@1�� ; O@2��

i
and we set br? WD �O@2;�O@1

�
. For sufficiently smooth functions

u W � ! R prove the relation

g� curl� u ı �� D J�br? Ou;
where g� WD

q
det

�
J|
� J�

�
and Ou WD u ı �� .
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For the local system matrix W I;J
�;t in (4.83) we have the representation

Z
O�

Z
Ot

D�
J�br?bN .i;i 0/

�
.Ox/ ;

�
Jtbr?bN .j;j 0/

�
.Oy/
E

4� k�� .Ox/� �t .Oy/k d Oyd Ox:

(Hint: Use Exercise 3.3.25.)

In the same way as in Proposition 4.1.25 we obtain a quasi-optimal estimate for
the Galerkin error for continuous boundary elements on a regular mesh G.

Proposition 4.1.46. The Galerkin approximation 'S 2 Sp;0G of the solution ' of
the hypersingular boundary integral equation converges quasi-optimally:

k' � 'SkH1=2.�/=K �
kbk
�

min
 S2Sp;0

G

k' �  SkH1=2.�/=K: (4.84)

The Galerkin projection ….p/
G W H 1=2.�/=K! S

p;0
G =K, given by ….p/

G ' D 'S , is
stable:

k….p/
G kH1=2.�/=K H1=2.�/=K � kbk=�; (4.85)

where the norm of the bilinear form b.�; �/ is given by

kbk WD sup
'2H1=2.�/nf0g

sup
	2H1=2.�/nf0g

b.'; �/

k'kH1=2.�/=Kk�kH1=2.�/=K

[see (2.29)].

Thanks to the stability result (4.85), the search for convergence rates of the
Galerkin BEM is again reduced to the study of the approximation properties of
the spaces Sp;0G .

4.1.9 Convergence Rates with Continuous Boundary Elements

In order to find convergence rates for the boundary element approximation 'S in
(4.81) of the hypersingular equation (4.65), we need approximation properties of
the continuous boundary element spaces, which we will now specify. For this, let
the boundary � be bounded and piecewise smooth in the sense of Definition 2.2.10.

Remark 4.1.47. The partitioning of � which is employed in Definition 2.2.10 of
piecewise smoothness is denoted here by C D f�i W 1 � i � qg instead of G in
order to distinguish the notation from the boundary element mesh G and its panels
� 2 G (cf. Definition 4.1.2). In this light, the cardinality q of C depends only on
� and is, in particular, independent of the discretization parameters. However, we
always assume that the boundary element mesh is compatible with C in the sense
that, for any � 2 G, there exists a �i 2 C with � � �i .
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We will prove the approximation property and the convergence rates for the
Galerkin solution under the assumption that the exact solution belongs to the space
H t

pw .�/ which we will define next.

Definition 4.1.48. Let � be piecewise smooth with partitioning CWD f�i W1� i � qg:
(a) For t > 1, the space H t

pw .�/ contains all functions  2 H 1 .�/ which satisfy

8�i 2 C W  j�i
2 H t .�i /

and is furnished with the graph norm

k kH t
pw.�/

WD
0
@X
�i2C
k k2H t .�i /

1
A
1=2

: (4.86)

(b) For 0 � t � 1, the space H t
pw .�/ equals H t .�/ and the norm k�kH t

pw.�/
is the

usual H t .�/-norm.

Some properties of the H t
pw .�/- and the H t .�/-norms are stated in the next

lemma.

Lemma 4.1.49. (a) Let t � 1. For any  2 H t .�/, we have

k kH t
pw.�/

� k kH t .�/ :

(b) Let s � 0. Let � denote a finite index set and let fvi W i 2 �g be a set of functions
in H s .�/. If the supports !i WD supp vi satisfy

ˇ̌
!i \ !j

ˇ̌ D 0 8i; j 2 � with i ¤ j ,

then 





X
i2


vi







2

H s.�/

� 5

2

X
i2

kvik2H s.�/ :

Proof. Part a: Let t 2 N0. Then

k k2H t .�/ D
X
�i2C
k k2

H t .�i /
D k k2

H t
pw.�/

:

For t 2 R�0nN0, let t D btc C � with � 2 �0; 1Œ. We employ (2.85) to obtain

k k2H t .�/ D
X
j˛j�btc

j ˛ j2L2.�/
C

X
j˛j�btc

Z
���
j ˛ .x/�  ˛ .y/j2
kx � yk2C2�

dsxdsy
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�
X
�i2C

8<
:
X
j˛j�btc

k ˛k2L2.�i /
C

X
j˛j�btc

Z
�i��i

j ˛ .x/�  ˛ .y/j2
kx � yk2C2� dsxdsy

9=
;

D
X
�i2C
k k2H t .�i /

:

Part b: The proof of Part b is as in [91, Satz 3.26]. First, we will consider the
case s 2 �0; 1Œ. We write

v D
X
i2


vi ; Di WD supp vi ; D WD
[
i2

Di D supp v

and introduce the shorthand

Z
� 0

Z
� 00

Œw�2s WD
Z
� 0

Z
� 00

jw .x/� w .y/j2
kx � yk2C2s dsxdsy

for any measurable subsets � 0; � 00 � � and w 2 H s .�/.
For any i 2 �, we get

Z
�

Z
�

Œvi �
2
s D

Z
Di

Z
Di

Œvi �
2
s C 2

Z
Di

Z
�nDi

Œvi �
2
s C

Z
�nDi

Z
�nDi

Œvi �
2
s

„ ƒ‚ …
D0

D
Z
Di

Z
Di

Œvi �
2
s C 2

Z
Di

jvi .x/j2
Z
�nDi

kx � yk�2�2s dsydsx: (4.87)

On the other hand,

Z
�

Z
�

Œv�2s D
Z
D

Z
�

Œv�2s C
Z
�nD

Z
D

Œv�2s C
Z
�nD

Z
�nD

Œv�2s
„ ƒ‚ …

D0

D
X
i2


Z
Di

Z
Di

Œv�2s„ƒ‚…
DŒvi �

2
s

C
X
i2


Z
Di

Z
�nDi

Œv�2s C
Z
D

Z
�nD

Œv�2s (4.88)

and

Z
Di

Z
�nDi

Œv�2s D
Z
Di

Z
�nDi

jv .x/� v .y/j2
kx � yk2C2s dsxdsy

� 2
Z
�nDi

jv .x/j2
�Z

Di

1

kx � yk2C2s dsy

�

„ ƒ‚ …
DWJi

dsx
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C 2

Z
Di

jv .y/j2„ ƒ‚ …
Djvi .y/j2

Z
�nDi

1

kx � yk2C2s dsxdsy

(4.87)D
Z
�

Z
�

Œvi �
2
s �

Z
Di

Z
Di

Œvi �
2
s C 2Ji :

Inserting this into (4.88) results in

Z
�

Z
�

Œv�2s �
X
i2


�Z
�

Z
�

Œvi �
2
s C 2Ji

�
C
Z
D

Z
�nD

Œv�2s : (4.89)

Next, we will investigate the sum over the quantities Ji . Let �i denote the
characteristic function for �nDi . Then

X
i2

Ji D

X
i2


Z
�nDi

jv .x/j2
�Z

Di

1

kx � yk2C2s dsy

�
dsx

D
X
i2


Z
�

�i .x/ jv .x/j2
�Z

Di

1

kx � yk2C2s dsy

�
dsx

D
Z
�

jv .x/j2
 X
i2

�i .x/

Z
Di

1

kx� yk2C2s dsy

!

„ ƒ‚ …
DWf .x/

dsx: (4.90)

Let j 2 � and let x be an interior point of Dj , i.e., x 2 ıDj . For any i 2 �, we have

�i .x/ WD
	
1 if x 2 �nDi
0 if x 2 Di

�
D �1 � ıi;j � :

For x 2 ıDj we have

f .x/ D
X
i2
nfj g

Z
Di

1

kx � yk2C2s dsy D
Z
DnDj

1

kx � yk2C2s dsy:

Inserting this into (4.90) results in

2
X
i2

Ji D

X
j2


2

Z
Dj

jv .x/j2„ ƒ‚ …
jvj .x/j2

 Z
DnDj

1

kx � yk2C2s dsy

!
dsx

(4.87)�
X
j2


Z
�

Z
�

�
vj

2
s
: (4.91)
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It remains to estimate the second term in (4.89). We have

Z
D

Z
�nD

Œv�2s D
Z
D

jv .x/j2
�Z

�nD
1

kx � yk2C2s dsy

�
dsx

D
X
i2


Z
Di

jv .x/j2„ ƒ‚ …
Djvi .x/j2

�Z
�nD

1

kx � yk2C2s dsy

�
dsx

�
X
i2


Z
Di

jvi .x/j2
�Z

�nDi

1

kx � yk2C2s dsy

�
dsx

(4.87)� 1

2

X
i2


Z
�

Z
�

Œvi �
2
s : (4.92)

The combination of (4.89), (4.91), and (4.92) leads to

Z
�

Z
�

Œv�2s �
5

2

X
i2


Z
�

Z
�

Œvi �
2
s :

Because the L2 .�/-norm is additive we obtain







X
i2


vi







2

H s.�/

D kvk2L2.�/
C
Z
�

Z
�

Œv�2s �
X
i2

kvik2L2.�/

C 5

2

X
i2


Z
�

Z
�

Œvi �
2
s

� 5

2

X
i2

kvik2H s.�/ :

The proof for s 2 R>1nN can be carried out in the same way. Note that the
expression Œv�s has to be replaced by Œv˛�s, where v˛ is defined as in (2.86). �

Proposition 4.1.50. Let � be piecewise smooth and let G be a surface mesh of �:

(a) Let1 ' 2 H t
pw.�/ for some t > 1. Then there exists a continuous interpolation

I
p
G ' 2 Sp;0G with

k' � IpG 'kH s.�/ � C hminft;pC1g�s
G k'kH t

pw.�/
; s 2 f0; 1g ; (4.93)

where the constant C depends only on p and on the constant �G from Defini-
tion 4.1.12, which describes the shape-regularity of the mesh.

(b) Let 0 � s � t � 1. Then there exists a continuous operator QG W H t .�/ !
S
p;0
G such that, for every ' 2 H t .�/, we have

1 In Sect. 4.3.3, we will prove the continuous embedding Ht
pw.�/ ,! C0 .�/ for t > 1 and

piecewise smooth Lipschitz surfaces.
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k' �QG'kH s.�/ � Cht�sG k'kH t .�/ :

The operatorQG is stable for 0 � s � 1

kQGkH s.�/ H s.�/ � C:

The proof of Proposition 4.1.50 is postponed to Sect. 4.3.5.
With Proposition 4.1.50 we can now derive quantitative error estimates from the

quasi-optimality (4.84) of the Galerkin solution 'S .

Theorem 4.1.51. Let � be a piecewise smooth Lipschitz surface. Furthermore, let
G be a regular surface mesh on � . Let ' 2 H t

pw.�/ with t � 1=2. Then we have for

the Galerkin approximation 'S 2 Sp;0G of (4.65) the error estimate

k' � 'SkH1=2.�/=K � Chmin.t;pC1/�1=2 k'kH t
pw.�/

; (4.94)

where the constant C depends only on p and, via the constant �G from Defini-
tion 4.1.12, on the shape-regularity of the mesh.

Proof.
Case 1: t D 1=2.
For ' 2 H 1=2.�/=K it follows from (4.84) that by choosing  S D 0 we obtain
the boundedness of the error k' � 'SkH1=2.�/=K by .kbk =�/ k'kH1=2.�/=K. This
yields (4.94) for t D 1=2.

Case 2: t > 1.
Now let ' 2 H t

pw.�/ with t > 1. Let T pG W H t
pw .�/! S

p;0
G be defined by

T
p
G WD

	
QG if t D 1;
I
p
G if t > 1:

Proposition 4.1.50 implies that T pG is continuous. The estimate

k' � 'SkH1=2.�/=K �
kbk
�
k' � T pG 'kH1=2.�/=K �

kbk
�
k' � T pG 'kH1=2.�/

follows from the quasi-optimality (4.84), and we have used k'kH1=2.�/=K D
min
c2R
k' � ckH1=2.�/ � k'kH1=2.�/.

If we apply Proposition 2.1.65 with X0 D L2 .�/, X1 D H 1 .�/ and � D 1=2

we obtain the interpolation inequality

k'k2
H1=2.�/

� k'kL2.�/ k'kH1.�/ :

With this and with Proposition 4.1.50 it follows for t � 1 that
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k' � T pG 'k2H1=2.�/
� C k' � T pG 'kL2.�/k' � T pG 'kH1.�/

� C h2min.t;pC1/�1k'k2H t
pw.�/

(4.95)

and therefore we have (4.94) for t > 1.

Case 3: 1=2 < t � 1:
In this case we prove (4.94) by interpolation. We have for the operator I �QG the
estimate [cf. Proposition 4.1.50(b)]

kI �QGkH1=2.�/ H1=2.�/ � C; kI �QGkH1=2.�/ H1.�/ � C h1=2:

As in the proof of Theorem 4.1.33, the estimate

k.I �QG/'kH1=2.�/ � Cht�
1
2 k'kH t .�/:

follows for 1=2 � t � 1 by interpolation of the linear operator I �QG : H t .�/!
H

1
2 .�/ (see Proposition 2.1.62). �

4.1.10 Model Problem 3: Mixed Boundary Value Problem	

We consider the mixed boundary value problem for the Laplace operator:

�u D 0 in ��, u D gD on �D , @u=@n D gN on �N (4.96)

for given boundary data gD 2 H 1=2.�D/, gN 2 H�1=2.�2/. For the associated
variational formulation we refer to Sect. 2.9.2.3. The approach that allows the dis-
cretization of mixed boundary value problems by means of the Galerkin boundary
element method is due to [220, 239]. For the treatment of problems with more
general transmission conditions we refer to [233].

The problem can be reduced to an integral equation for the pair of densities
.'; �/ 2 H D eH�1=2 .�D/� eH 1=2 .�N /. The solution of (4.96) can be represented
with the help of Green’s representation formula

u .x/ D .S�/.x/� .D'/.x/; x 2 ��:

The variational formulation of the boundary integral equation reads [see (3.89)]:
Find .'; �/ 2 H such that

bmixed

  
'

�

!
;

 
�

�

!!
D .gD ; �/L2.�D/

C .gN ; �/L2.�N /
8 .�; �/ 2 H

(4.97)

� This section should be read as a complement to the core material of this book.
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with

bmixed

  
'

�

!
;

 
�

�

!!
D .VDD'; �/L2.�D/

� .KDN�; �/L2.�D/
C �K 0ND'; ��L2.�N /

C .WNN �; �/L2.�N /
:

The boundary element discretization is achieved by a combination of different
boundary element spaces on the pieces �D ; �N . For this let GD , GN be surface
meshes of �D; �N , while we assume that GN is regular (see Definition 4.1.4). We
use discontinuous boundary elements of order p1 � 0 on �D . The inclusion

S
p1;�1
GD

� eH�1=2.�D/; (4.98)

results, because the zero extension  ? of every function  2 Sp1;�1
GD

satisfies the

inclusion  ? 2 L2.�/ � H�1=2.�/ and thus we have  2 eH�1=2 .�D/.
For the approximation of � 2 eH 1=2.�N / we define for p2 � 1

S
p2;0
GN ;0

D
n
� 2 Sp2;0

GN
W �j@�N

D 0
o

(4.99)

and therefore the boundary values of the functions � 2 Sp2;0
GN ;0

vanish on @�N .

Remark 4.1.52. The zero extension �? of functions � 2 S
p;0
GN ;0

satisfies �? 2
S
p;0
G � H 1=2.�/, where we have set G WD GD [ GN .

With these spaces we can finally formulate the boundary element discretization
of (4.97). In the following we will summarize the polynomial orders p1 � 0 and
p2 � 1 in the vector p D .p1; p2/.

Find .'S ; �S / 2 Sp WD Sp1;�1
GD

� Sp2;0
GN ;0

such that

bmixed

��
'S
�S

�
;

�
�S
�S

��
D .gD ; �S /L2.�D/

C.gN ; �S /L2.�N /
8.�S ; �S / 2 Sp:

(4.100)
The norm for functions .'; �/ 2 H is given by k.'; �/kH WD k'k QH�1=2.�D/

C
k�k QH1=2.�N /

. Once more the unique solvability of the boundary element dis-
cretization of the integral equation follows from the H-ellipticity (3.112) of the
bilinear form bmixed , and from the Galerkin orthogonality of the error, we have
the quasi-optimality.

Theorem 4.1.53. Let .'; �/ 2 H be the exact solution of (4.97). The discretization
(4.100) has a unique solution .'S ; �S / 2 Sp, p D .p1; p2/, which converges quasi-
optimally:

k.'; �/ � .'S ; �S /kH � C1 min
.	;
/2Sp

k.'; �/ � .�; �/kH : (4.101a)
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If the exact solution satisfies .'; �/ 2 H s
pw .�D/ �H t

pw .�N / for s; t � 0 we have
the quantitative estimate

k.'; �/ � .'S ; �S /kH � C2
�
hminfs;p1C1gC 1

2 k'kH s
pw.�D/

Chminft;p2C1g� 1
2 k�kH t

pw.�N /

�
: (4.101b)

Here the constant C2 depends only on C1 in (4.101a), the shape-regularity (see
Definition 4.1.12) of the surface meshes GD , GN and the polynomial degrees p1
and p2.

Proof. For the proof we only need to show the approximation property on the bound-
ary pieces �D and �N . Here we use (4.59) on �D and (4.93) on �N for a sufficiently
large t > 1. Hence the interpolation IpG ' in (4.93) is well defined and we have
'j@�N

D I
p
G '
ˇ̌
@�N
D 0. Therefore the zero extension of the difference function

satisfies
�
' � IpG '

�? 2 H 1=2.�/ and from (4.93) with s D 0; 1 we have:

k �' � IpG '�? kL2.�/ D k' � IpG 'kL2.�N /
� Chmin.t;pC1/k'kH t

pw.�N /;

k �' � IpG '�? kH1.�/ D k' � IpG 'kH1.�N /
� Chmin.t;pC1/�1k'kH t

pw.�N /
:

(4.102)
Then, by interpolation as in the proof of Theorem 4.1.51 and by the boundedness of
the Galerkin projection (see Remark 4.1.27), (4.101b) follows. �

4.1.11 Model Problem 4: Screen Problems	

In this section we will discuss the Galerkin boundary element method for the screen
problem from Sect. 3.5.3, which is due to [219].

Hence we again assume that an open manifold�0 is given, which can be extended
to a closed Lipschitz surface � in R3 in such a way that we have for �c0 D �n�0

� D �0 [ �c0 :

In order to avoid technical difficulties, we require that �0 and �c0 be simply con-
nected. We have already introduced the integral equations for the Dirichlet and
Neumann screen problems in Sect. 3.5.3:

Dirichlet Screen Problem: For a given gD 2 H 1=2.�0/ find ' 2 eH�1=2.�0/ such
that

.V'; �/L2.�0/
D .gD ; �/L2.�0/

8� 2 eH�1=2.�0/: (4.103)

� This section should be read as a complement to the core material of this book.
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Neumann Screen Problem: For a given gN 2 H�1=2.�0/ find � 2 eH 1=2.�0/ such
that

.W�; �/L2.�0/
D .gN ; �/L2.�0/

8� 2 eH 1=2.�0/: (4.104)

The Galerkin BEM for (4.103) and (4.104) are based on a regular mesh G of
�0 and a boundary element space of polynomial degree p1 � 0 for the Dirichlet
problem (4.103) and p2 � 1 for the Neumann problem (4.104).
Dirichlet Screen Problem: For a given gD 2 H 1=2.�0/ find 'S 2 Sp1;�1

G such that

.V S ; �S /L2.�0/
D .gD ; �S /L2.�0/

8�S 2 Sp1;�1
G : (4.105)

Neumann Screen Problem: For a given gN 2 H�1=2.�0/ find �S 2 Sp2;0
G;0 such that

.W�S ; �S /L2.�0/
D .g; �/L2.�0/

8� 2 Sp2;0
G;0 : (4.106)

Note that in Sp2;0
0 the boundary data of �S on @�0 is set to zero (see Remark 4.1.52).

With the ellipticity from Theorem 3.5.9 we immediately have the quasi-optimality
of the discretization.

Theorem 4.1.54. Equations (3.116), (3.117) as well as (4.105), (4.106) have a
unique solution and the Galerkin solutions converge quasi-optimally:

k �  Sk QH�1=2.�0/
� C min

	S2Sp1;�1

G

k � �Sk QH�1=2.�0/
; (4.107a)

k� � �Sk QH1=2.�0/
� C min


S2Sp2;0

G;0

k� � �Sk QH1=2.�0/
: (4.107b)

If the exact solution of the Dirichlet problem (3.116) is contained in H s
pw .�0/ for

an s � 0 we have

k �  Sk QH�
1
2 .�0/

� C1 hmin.s;p1C1/C 1
2 k kH s

pw.�0/: (4.108a)

If the exact solution of the Neumann problem is contained inH t
pw .�0/ for a t > 1=2

we have

k� � �Sk QH1=2.�0/
� C2 hmin.t;p2C1/� 1

2 k�kH t
pw.�0/: (4.108b)

Here the constants C1; C2 depend only on the respective constant C in (4.107), the
shape-regularity (see Definition 4.1.12) of the mesh and the polynomial degrees p1
and p2.

Remark 4.1.55. In general, the exact solutions of the screen problems have edge
singularities and therefore they do not have a very high order of regularity s or
t in (4.108). Therefore the convergence rates of the Galerkin solutions in (4.108)
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are low, even for higher order discretizations. This problem can be overcome by an
anisotropic mesh refinement near @�0. For details we refer to [221].

4.2 Convergence of Abstract Galerkin Methods

All boundary integral operators in Chap. 4.1 were elliptic, which allowed the use
of the Lax–Milgram lemma to prove existence and uniqueness. As we have already
seen with the Helmholtz problem, however, in certain practical cases we encounter
indefinite boundary integral operators. Here we will show for very general subspaces
and especially for non-symmetric and non-elliptic sesquilinear forms, under which
circumstances the Galerkin solution uS 2 S exists and the error converges quasi-
optimally. An early study on this subject can be found in [223]. For a study on the
convergence of general boundary element methods we refer to [215].

4.2.1 Abstract Variational Problem

We would first like to recall the abstract framework from Sect. 2.1.6 and, again, refer,
e.g., to [9, Chap. 5], [151, 166, 174] as standard references and additional material.

Let H1;H2 be Hilbert spaces and a.�; �/ W H1 � H2 ! C a continuous
sesquilinear form:

kak D sup
u2H1nf0g

sup
v2H2nf0g

ja.u; v/j
kukH1

kvkH2

<1; (4.109)

and let the (continuous) inf–sup conditions hold: There exists a constant � > 0 such
that

inf
u2H1nf0g

sup
v2H2nf0g

ja.u; v/j
kukH1

kvkH2

� � > 0; (4.110a)

and we have
8v 2 H2n f0g W sup

u2H1

ja.u; v/j > 0: (4.110b)

Then for every functional F 2 H 02 the problem

Find u 2 H1 W a.u; v/ D F.v/ 8v 2 H2 (4.111)

has a unique solution, which satisfies

kukH1
� 1

�
kF kH 0

2
: (4.112)
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4.2.2 Galerkin Approximation

We require the following construction of approximating subspaces for the definition
of the Galerkin method, which we use to solve (4.111).

For i D 1; 2, let
�
S i
`

�
`2N

be given sequences of finite-dimensional, nested
subspaces of Hi whose union is dense in Hi

8` � 0 W S i` � S i`C1; dimS i` <1 and
[

`2N
S i
`

k�kHi D Hi ; i D 1; 2
(4.113)

and whose respective dimensions satisfy the conditions

N` WD dimS1
`
D dimS2

`
<1; 8` 2 N W N` < N`C1;

N` !1 for `!1: (4.114)

Since the dimensions of S1
`

and S2
`

are equal, it follows that the system matrix for
the boundary element method is square.

The density implies the approximation property

8ui 2 Hi W lim
`!1

minfkui � vkHi
W v 2 S i`g D 0: (4.115)

Every ui in Hi can thus be approximated by a sequence vi
`
2 S i

`
. In Sect. 4.1 we

have already encountered the spaces Sp;0G and Sp;�1G , and one obtains a sequence of
boundary element spaces by, for example, successively refining an initially coarse
mesh G0.

With the subspaces
�
S i
`

�
`2N
� Hi the Galerkin discretization of (4.111) is given

by: Find u` 2 S1` such that

a.u`; v`/ D F.v`/ 8v` 2 S2` : (4.116)

A solution of (4.116) is called a Galerkin solution. The existence and uniqueness
of the Galerkin solution is proven in the following theorem.

Theorem 4.2.1. (i) For every functional F 2 H 02, (4.116) has a unique solution
u` 2 S1` if the discrete inf–sup condition

inf
u2S1

`
nf0g

sup
v2S2

`
nf0g

ja.u; v/j
kukH1

kvkH2

� �` (4.117)

holds with a stability constant �` > 0 and if

8v 2 S2` n f0g W sup
u2S1

`

ja.u; v/j > 0 (4.118)

is satisfied.
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(ii) For all ` let (4.118) and (4.117) be satisfied with �` > 0. Then the sequence
.u`/` � H1 of Galerkin solutions satisfies the error estimate

ku � u`kH1
�
�
1C kak

�`

�
min
v2S1

`

ku � vkH1
: (4.119)

Proof. Statement (i) follows from Theorem 2.1.44.
For (ii): The difference between (4.116) and (4.111) with S2

`
� H2 yields the

Galerkin orthogonality of the error:

a.u � u`; v/ D 0 8v 2 S2` : (4.120)

Owing to the discrete inf–sup condition (4.117) we have

�` ku`kH1
� sup

v2S2
`
nf0g

ja.u`; v/j
kvkH2

D sup
v2S2

`
nf0g

jF .v/ j
kvkH2

� sup
v2H2nf0g

jF .v/ j
kvkH2

D sup
v2H2nf0g

ja.u; v/j
kvkH2

� kak kukH1
:

This means that the statement Q`u WD u` defines a linear mappingQ` W H1 ! S1
`

with kQ`kH1 H1
� kak=�`. For all w 2 S1

`
� H1 it follows from (4.117) and

(4.120) that we have the estimate

kw �Q`wkH1
� 1

�`
sup

v2S2
`
nf0g

ja.w �Q`w; v/j
kvkH2

D 0;

from which we have the projection property:

8w 2 S1` W Q`w D w:

It then follows for all w 2 S1
`
� H1, that

ku � u`kH1
� ku � wkH1

C kw �Q`ukH1

D ku � wkH1
C kQ`.u � w/kH1

�
�
1C kak

�`

�
ku � wkH1

:

Since w 2 S1
`

was arbitrary, we have proven (4.119). �

Remark 4.2.2. (i) The Galerkin method (4.116) is called uniformly stable if there
exists a constant � > 0 that is independent of ` such that �` � � > 0. In this
case (4.119) implies the quasi-optimal convergence of the Galerkin solution.
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(ii) The subspaces S1
`

and S2
`

contain different functions: S1
`

serves to approximate
the solution and guarantees the consistency, while S2

`
guarantees the stability,

because of the discrete inf–sup condition [which is equivalent to (4.117)]

8u 2 S1` W sup
v2S2

`
nf0g

ja.u; v/j
kvkH2

� �` kukH1
: (4.121)

Remark 4.2.3. In Sect. 4.1 we have seen that for the integral equations for the
Laplace problem we can always choose S1

`
D S2

`
. The same property holds for

the integral equation formulation of the Helmholtz equation.

Remark 4.2.4. Equations (4.117) and (4.118) are equivalent to the conditions

inf
v2S2

`
nf0g

sup
u2S1

`
nf0g

ja.u; v/j
kukH1

kvkH2

� �	` (4.122)

with �	
`
> 0 and

8u 2 S1` n f0g W sup
v2S2

`

ja.u; v/j > 0: (4.123)

Remark 4.2.5. For H1 D H2 D H and S1
`
D S2

`
D S`, (4.117) implies the

condition (4.122) with �	
`
D �` and vice-versa.

The Galerkin method (4.116) is equivalent to a linear system of equations. To see

this we need to choose bases
�
bij

�N`

jD1 of S i
`
, i D 1; 2:

S1` D spanfb1j W j D 1; : : : ; N`g; S2` D spanfb2j W j D 1; : : : ; N`g:

Therefore every u 2 S1
`

and v 2 S2
`

has a unique basis representation

u D
NX̀
jD1

uj b
1
j ; v` D

NX̀
jD1

vj b
2
j : (4.124)

If we insert (4.124) into (4.116) we obtain:

8v 2 S2` W a.u; v/� F.v/ D 0 H)

8v D �vj �N`

jD1 2 CN` W
NX̀
jD1

vj

0
@
8<
:
NX̀
kD1

uk a.b
1
k; b

2
j /

9=
; � F.b2j /

1
A D 0 H)

K`u D F`; (4.125)

where the matrix K` and the vectors u, F` are given by u D �uj �N`

jD1 and
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.K`/j;k WD a.b1
k
; b2j /

.F`/j WD F.b2j /

)
1 � j; k � N`:

The linear system of equations in (4.125) is the basis representation of (4.116). In
engineering literature the system matrix K` is also called the stiffness matrix of the
Galerkin method (4.116) and the vector F` on the right-hand side is called the load
vector.

Proposition 4.2.6. The stiffness matrix K` in (4.125) is non-singular if and only if
we have (4.121) with �` > 0.

Proof. Let K` be singular. Then there exists a vector u D �
uj
�N`

jD1 2 CN`n f0g
with K`u D 0. Since

�
b1j

�N`

jD1 is a basis of S1
`

we have for the associated function

u D PN`

jD1 uj b1j 6D 0. It follows from (4.125) that a.u`; v`/ D 0 for all v` 2 S2` .
This is a contradiction to (4.121) with �` > 0.

The inverse statement is proven in the same way. �

4.2.3 Compact Perturbations

Boundary integral operators often appear in the form

.AC T /u D F (4.126)

with a principal part A 2 L.H;H 0/ for which the associated sesquilinear form
a .�; �/ W H �H ! C satisfies the inf–sup conditions

inf
u2Hnf0g

sup
v2Hnf0g

ja.u; v/j
kukH kvkH � � > 0; (4.127)

8v 2 Hn f0g W sup
u2H
ja.u; v/j > 0 (4.128)

and a compact operator T 2 L.H;H 0/. Let t W H � H ! C be the sesquilinear
form that is associated with T . The variational formulation:
Find u 2 H such that

a.u; v/C t.u; v/ D F.v/ 8v 2 H (4.129)

is equivalent to (4.126).
The discretization of the variational problem (4.129) is based on a dense sequence

of finite-dimensional subspaces .S`/`2N in H :
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For a given F 2 H 0 find u` 2 S` such that

a.u`; v`/C t.u`; v`/ D F.v`/ 8v` 2 S`: (4.130)

The following theorem states that the inf–sup condition for the principal part of the
sesquilinear form together with the injectivity of the operator A C T ensure well
posedness of the continuous problem. Furthermore, the discrete inf–sup conditions
for a dense sequence of subspaces imply (a) the well-posedness of the discrete prob-
lem, (b) the unique solvability of the continuous problem, and (c) the convergence
of the Galerkin solutions to the continuous solution.

Theorem 4.2.7. Let (4.127) and (4.128) hold, let T 2 L.H;H 0/ be compact and
AC T injective,

.AC T /u D 0 H) u D 0: (4.131)

Then problem (4.126) has a unique solution u 2 H for every F 2 H 0.
Furthermore, let .S`/` be a dense sequence of finite-dimensional subspaces inH

and t.�; �/ the sesquilinear form associated with the compact operator T . We assume
that there exist an `0 > 0 and a � > 0 such that for all ` � `0 the discrete inf–sup
conditions

inf
u`2S`nf0g

sup
v`2S`nf0g

ja.u`; v`/C t.u`; v`/j
ku`kH kv`kH � � (4.132a)

and

inf
v`2S`nf0g

sup
u`2S`nf0g

ja.u`; v`/C t.u`; v`/j
ku`kH kv`kH � � (4.132b)

are satisfied uniformly with respect to `. Then we have:

(i) For all F 2 H 0 and all ` � `0 the Galerkin equations (4.130) have a unique
solution u`.

(ii) The Galerkin solutions u` converge for `!1 to the unique solution u 2 H of
the problem (4.126) and satisfy the quasi-optimal error estimate

ku � u`kH � C minfku � v`kH W v` 2 S`g; ` � `0
with a constant C > 0 which is independent of `.

Proof. As a .�; �/ satisfies the inf–sup conditions, the associated operatorA W H!H 0
is an isomorphism with kAkH 0 H � ��1 [see (2.38)]. Hence (4.126) is equivalent
to the Fredholm equation

�
I C A�1T � u D A�1f

with the compact operator A�1T W H ! H (see Lemma 2.1.29). By (4.131), �1
is not an eigenvalue of A�1T and, from the Fredholm alternative (Theorem 2.1.36),
I C A�1T is an isomorphism



I C A�1T 


H H � C . This yields the unique

solvability of (4.126) and the continuous dependence on the data.
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of (i): Theorem 2.1.44 implies both (i) and the fact that the Galerkin solution
depends continuously on the data:

ku`kH �
1

�
kF kH 0 : (4.133)

of (ii): Let
b.u; v/ WD a.u; v/C t.u; v/:

Because of (4.133) the sequence .u`/` of Galerkin solutions is uniformly bounded
inH . Theorem 2.1.26 thus guarantees the existence of a subsequence u`i

* u 2 H
that converges weakly in H (in the following we will again denote this sequence by
u`). We will now show that, with this limit u, b.u; v/ D F.v/ for all v 2 H . For an
arbitrary v 2 H , P`v 2 S` denotes the orthogonal projection:

8w` 2 S` W .v � P`v;w`/H D 0:

Then we have

jb.u; v/� F.v/j � jb.u; v/� b.u`; v/j„ ƒ‚ …
T1

C jb.u`; v/� b.u`; P`v/j„ ƒ‚ …
T2

Cjb.u`; P`v/� F.P`v/j„ ƒ‚ …
T3

C jF.P`v/� F.v/j„ ƒ‚ …
T4

:

For a fixed v 2 H
b .�; v/ W H ! C

defines a continuous functional in H 0. The definition of weak convergence then
yields the convergence of T1 to 0 for `!1.

Since
[
`

S` is dense inH , according to the conditions, we consequently have the

consistency of the discretization sequence

ku � P`ukH D inf
v`2S`

ku � v`kH
`!1! 0: (4.134)

Thus we have for T4

jT4j D jF .v � P`v/j � kF kH 0 kv � P`vkH
`!1! 0:

Since .u`/` is uniformly bounded, we have

jT2j � .kAkH 0 H C kT kH 0 H / ku`kH kv � P`vkH ;
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and the consistency again implies that T2 ! 0 for `!1. Finally, we have T3 D 0
since b.u`; v`/ D F.v`/ for all v` 2 S`. Therefore u is a solution of (4.126). By
(4.131), u is unique.

We have thus shown the unique solvability of Problem (4.126) in H .
By (4.132), b.�; �/ satisfies the conditions of Theorem 4.2.1 for ` � `0, from

which we obtain the quasi-optimality.
�

Remark 4.2.8. Theorem 4.2.7 only holds if the discrete inf–sup conditions (4.132)
are satisfied. In general, the discrete inf–sup conditions do not follow from the den-
sity of .S`/` in H combined with (4.127) and (4.128). Instead, they have to be
verified for each specific problem.

In applications concerning boundary integral equations we often encounter the
following special case of Theorem 4.2.7.

Theorem 4.2.9. Let H be a Hilbert space and .S`/` a dense sequence of finite-
dimensional subspaces in H . We assume that for the sesquilinear forms a .�; �/ and
t .�; �/ of the variational problem (4.129) we have

(i) a.�; �/ satisfies the ellipticity condition (2.44), i.e., there exists a constant ˛ > 0
such that

8u 2 H W ja.u; u/j � ˛kuk2H : (4.135)

(ii) The operator T 2 L.H;H 0/ that is associated with the sesquilinear form
t.�; �/ W H �H ! C is compact.

(iii) We assume that, for F D 0, (4.129) only has the trivial solution:

8v 2 Hn f0g W a.u; v/C t.u; v/ D 0 H) u D 0: (4.136)

Then the variational problem (4.129) has a unique solution u 2 H for every
F 2 H 0.

There exists a constant `0 > 0 such that for all ` � `0 the Galerkin equations
(4.130) have a unique solution u` 2 S`. The sequence .u`/` of the Galerkin solutions
converges to u and, for ` � `0, satisfies the quasi-optimal error estimate

ku � u`kH � C min
v`2S`

ku � v`kH (4.137)

with a constant C which is independent of `.

Proof. TheH -ellipticity of a .�; �/ implies the inf-sup condition (4.127), (4.128), and
therefore the unique solvability of (4.129) follows from Theorem 4.2.7.

Now we will turn our attention to the Galerkin equations and prove the inf-sup
condition for a sufficiently large `.

We set b .�; �/ D a .�; �/C t .�; �/ and define the associated operatorsB W H ! H 0
and B` W S` ! S 0

`
by
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8 u; v 2 H W hBu; viH 0�H WD b .u; v/ and

8 u`; v` 2 S` W hB`u`; v`iS 0

`
�S`
WD b .u`; v`/ :

The norm of B`u` 2 S 0` is given by

kB`u`kS 0

`
D sup

v`2S`nf0g
jb .u`; v`/j
kv`kH

and the discrete inf-sup condition (4.132a) is equivalent to

8u` 2 S` with ku`kH D 1 we have: 9`0 > 0 s.t. kB`u`kS 0

`
� � 8` � `0:

We will prove this statement by contradiction by using the conditions given in the
theorem. For this we assume:

9 .w`/`2N with w` 2 S` and kw`kH D 1 such that: kB`w`kS 0

`
!0 for `!1:

(4.138)
As .w`/` is bounded in H there exists, according to Theorem 2.1.26, a weakly
convergent subsequence (which we again denote by .w`/`) such that w` * w 2 H .

For all v 2 H , b .�; v/ defines a continuous, linear functional on H and so we
have

8v 2 H W b .w`; v/! b .w; v/ for `!1.

It follows that

kBwkH 0 D sup
v2Hnf0g

jb .w; v/j
kvkH

D sup
v2Hnf0g

lim
`!1

jb .w`; v/j
kvkH

: (4.139)

In the following we will estimate the numerator on the right-hand side and for this
purpose we use the decomposition

b .w`; v/ D b .w`; v`/C b .w`; v � v`/ (4.140)

with the H -orthogonal projection v` D P`v 2 S`. From assumption (4.138) we
have

jb .w`; v`/j � kB`w`kS 0

`
kv`kH � kB`w`kS 0

`
kvkH

`!1! 0:

The fact that the spaces S` are dense in H yields for the second term in (4.140)

jb .w`; v � v`/j � kbk kw`kH kv � v`kH � kbk kv � v`kH
`!1! 0:

Hence for all v 2 H we have the convergence lim`!1 b .w`; v/ D 0 and from
(4.139) we have Bw D 0, which, combined with the injectivity of (4.136), finally
gives us w D 0.
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We will now show the strong convergence w` ! w and begin with the estimate

˛ kw � w`k2H � ja .w � w`;w � w`/j D ja .w � w`;w/ � a .w;w`/C a .w`;w`/j :
(4.141)

Since T is compact, there exists a subsequence (which we again denote by .w`/`2N)
such that Tw` ! Tw in H 0. This can be written in the form

sup
v2HkvkHD1

jt .w`; v/ � t .w; v/j DW ı` `!1! 0;

from which we deduce by using kw`kH D 1 that

jt .w`;w`/� t .w;w`/j � ı` kw`kH D ı`
`!1! 0:

This result, combined with assumption (4.138), yields

0
`!1 jb .w`;w`/j D ja .w`;w`/C t .w`;w`/j � ja .w`;w`/C t .w;w`/j C ı`;

in other words:

a .w`;w`/ D �t .w;w`/C Qı` with lim
`!1

Qı` D 0: (4.142)

If we insert this into (4.141) we obtain

˛ kw � w`k2H �
ˇ̌
ˇa .w � w`;w/ � b .w;w`/C Qı`

ˇ̌
ˇ :

The first two terms on the right-hand side are equal to zero because of w D 0. We
also determined lim`!0 Qı` D 0 in (4.142) so that we have proven w` ! w D 0.
This, however, is a contradiction to the assumption that kw`kH D 1.

Condition (4.132b) can be proven similarly.
The solvability of the Galerkin equation for ` � `0 and the error estimate (4.137)

then follow from Theorem 4.2.7. �

4.2.4 Consistent Perturbations: Strang’s Lemma

In this section we will consider variational formulations of boundary integral equa-
tions of abstract form:
Find u 2 H such that

b.u; v/ D F.v/ 8v 2 H (4.143)

with F 2 H 0.
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In general we assume that the sesquilinear form b.�; �/ is continuous and injective
and that it satisfies a Gårding inequality.

Continuity:
8u; v 2 H W jb .u; v/j � Cb kukH kvkH : (4.144)

Gårding Inequality:

8u 2 H W jb .u; u/C .T u; u/H 0�H j � ˛ kuk2H (4.145)

with ˛ > 0 and a compact operator T 2 L.H;H 0/.
Injectivity:

8v 2 Hn f0g W b.u; v/ D 0 H) u D 0: (4.146)

Conditions (4.144)–(4.146) yield the prerequisites (i)–(iii) from Theorem 4.2.9 with
t .�; �/ WD � hT �; �iH 0�H and a WD b � t . From Theorem 4.2.9 we derive the
unique solvability of (4.143) as well as the stability (and thus the quasi-optimal
convergence) of the Galerkin method as follows. For a dense sequence of finite-
dimensional boundary element spaces .S`/` in H there exists some `0 > 0 such
that for all ` � `0 the discrete inf–sup conditions

inf
u2S`nf0g

sup
v2S`nf0g

jb.u; v/j
kukH kvkH � � > 0

inf
v2S`nf0g

sup
u2S`nf0g

jb.u; v/j
kukH kvkH � � > 0

(4.147)

hold, while � > 0 is independent of `. The Galerkin equations

Find u` 2 S` W b.u`; v/ D F.v/ 8v 2 S` (4.148)

are, by Theorem 4.2.7, uniquely solvable for ` � `0 and we have

ku � u`kH � C min
v2S`

ku � vkH : (4.149)

In practical implementations of the Galerkin boundary element method in the form
of a computer program it is usually not possible to realize the exact sesquilinear
form b .�; �/. Instead, one usually uses an approximative sesquilinear form b`.�; �/.
Reasons for this are:

(a) The approximation of the system matrix by means of numerical integration
(b) The use of compressed, approximative representations of the Galerkin equations

with cluster or wavelet methods,
(c) The approximation of the exact boundary � by means of, for example a

polyhedral surface.
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The perturbation of the sesquilinear form b.�; �/ as well as the functional F leads
to the perturbed Galerkin method:

Find Qu` 2 S` such that

b`.Qu`; v/ D F`.v/ 8v 2 S`: (4.150)

For the algorithmic realization of boundary element methods, one of the essential
aims is to define the approximations (4.150) in such a way that the solutions Qu`
exist, converge quasi-optimally and – in comparison with the computation of the
exact Galerkin solution – can be calculated reasonably rapidly and with little use of
computational memory. A sufficient condition in this respect is that the difference
b`.�; �/�b.�; �/ is “sufficiently small”. We will specify this statement in the following.

For the Galerkin discretization we will generally assume in the following that
we have chosen a dense sequence .S`/` � H of subspaces of dimension N` WD
dimS` <1 which satisfies (4.114).

Let sesquilinear forms b` W S` � S` ! C be defined for all ` 2 N . These are
uniformly continuous if there exists a constant eC b which is independent of ` such
that

jb` .u`; v`/j � eC b ku`kH kv`kH 8u`; v` 2 S`: (4.151)

The forms b` satisfy the stability condition if there exists a null sequence .c`/`2N
such that

jb.u`; v`/� b`.u`; v`/j � c`ku`kH kv`kH 8u`; v` 2 S`: (4.152)

The stability condition will imply the existence of a unique solution of the perturbed
Galerkin equations for a sufficiently large ` (see Theorem 4.2.11).

For the error estimate of the perturbed Galerkin solution we may measure
the function u` on the right-hand side in (4.152) in a stronger norm (see Theo-
rem 4.2.11). In this context k�kU W S` ! R�0 defines a stronger norm on S` if there
exists a constant C > 0 independent of ` such that

kukH � C kukU 8u 2 S`:

The perturbed sesquilinear forms b` W S` � S` ! C satisfy the consistency con-
dition with respect to a stronger norm k�kU if there exists a zero sequence .ı`/`2N
such that

jb.u`; v`/ � b`.u`; v`/j � ı`ku`kU kv`kH 8u`; v` 2 S`: (4.153)

Remark 4.2.10. (a) The stability condition and the continuity of b .�; �/ imply the
uniform continuity of the sesquilinear form b` .�; �/.
(b) The consistency condition follows from the stability condition with ı` D Cc`.
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(c) In many practical applications the use of the stronger norm k�kU in (4.153)
permits the use of a zero sequence .ı`/` which converges more rapidly than in
(4.152). The convergence rate of the perturbed Galerkin solution is influenced
by .ı`/` and not by .c`/`.

Theorem 4.2.11. Let the sesquilinear form b.�; �/: H � H ! C be continu-
ous, injective and let it satisfy a Gårding inequality [see (4.144)–(4.146)]. Let the
stability condition (4.152) be satisfied by the approximations b`.

Then the perturbed Galerkin method (4.150) is stable. That is, there exist Q� > 0,
`0 > 0 such that for all ` � `0 the discrete inf–sup conditions

inf
u`2S`nf0g

sup
v`2S`nf0g

jb`.u`; v`/j
ku`kH kv`kH � Q�;

inf
v`2S`nf0g

sup
u`2S`nf0g

jb`.u`; v`/j
ku`kH kv`kH � Q�

(4.154)

hold. The perturbed Galerkin equations (4.150) have a unique solution for ` � `0.
If in addition the approximative sesquilinear forms are uniformly continuous and

satisfy the consistency condition (4.153) the solutions Qu` satisfy the error estimate

ku � Qu`kH � C
(

min
w`2S`

.ku � w`kH C ı`kw`kU /C sup
v`2S`nf0g

jF.v`/� F`.v`/j
kv`kH

)
:

(4.155)

Proof. According to the assumptions, the exact sesquilinear form b.�; �/ satisfies the
inf–sup conditions (4.147) as well as the stability condition (4.149). We will verify
(4.154). For this let 0 6D u` 2 S` � H be arbitrary. Then we have

sup
v`2S`nf0g

jb`.u`; v`/j
kv`kH � sup

v`2S`nf0g

� jb.u`; v`/j
kv`kH � jb.u`; v`/� b`.u`; v`/jkv`kH

�

� �ku`kH � sup
v`2S`

jb.u`; v`/ � b`.u`; v`/j
kv`kH

� .� � c`/ ku`kH : (4.156)

If we choose `0 > 0 so that c` < � for all ` � `0 we have verified the first condition
in (4.154). The second condition can be verified in a similar way.

Combined with (4.154), it follows from Theorem 4.2.1(i) that the perturbed
Galerkin equations (4.150) have a unique solution for ` � `0.

Next, we will prove the error estimate (4.155). Let u` 2 S` be the exact Galerkin
solution from (4.148). For ` � `0 we have, according to (4.156), the following
estimate for the perturbed Galerkin solution Qu` 2 S`
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ku� Qu`kH � ku� u`kH Cku` � Qu`kH
� ku� u`kH C .� � c`/�1 sup

v`2S`nf0g

jb`.u` � Qu`; v`/j
kv`kH

D ku� u`kH C .� � c`/�1 sup
v`2S`nf0g

jb`.u`; v`/� F`.v`/j
kv`kH

� ku� u`kH C .� � c`/�1 sup
v`2S`nf0g

jb`.u`; v`/� b.u`; v`/j C jF.v`/� F`.v`/j
kv`kH :

We consider the difference term jb`.u`; v`/ � b.u`; v`/j and obtain, by using the
continuity of b` and b as well as the consistency condition, for an arbitrary w` 2 S`

jb`.u`; v`/� b.u`; v`/j � jb` .u` � w`; v`/j C jb` .w`; v`/� b .w`; v`/j
C jb .w` � u`; v`/j

� eC b ku` � w`kH kv`kH C ı` kw`kU kv`kH
CCb kw` � u`kH kv`kH :

From this we have

sup
v`2S`nf0g

jb`.u`; v`/ � b.u`; v`/j
kv`kH � C min

w`2S`

.ku � w`kH C ı` kw`kU / :

With c` < � and the consistency condition (4.153) we finally obtain

ku � Qu`kH � C min
w`2S`

	
ku � w`kH C 1

� � c` .ku � w`kH C ı`kw`kU (4.157)

C sup
v`2S`nf0g

jF.v`/� F`.v`/j
kv`kH

!)
:

�

Remark 4.2.12. In connection with the boundary integral operator V for the single
layer potential we haveH D H�1=2 .�/. Since all the boundary element spaces we
have considered so far are contained in L2 .�/, we can choose k�kU D k�kL2.�/ as
a stronger norm on S`. The term kw`kL2.�/ on the right-hand side in (4.155) can be
easily estimated if the boundary integral operator is L2-regular, more specifically if
V �1 W H 1 .�/ ! L2 .�/ is continuous. Let u 2 L2 .�/ be the exact solution and
w` WD …`u the L2-orthogonal projection of u onto the boundary element space S`.
Then we have kw`kL2.�/ � kukL2.�/ � C kF kH1.�/ and, thus for a sufficiently
large ` � `0 W

ku � Qu`kH�1=2.�/ � C
(
ku �…`ukH�1=2.�/ C ı`kF kH1.�/

C sup
v`2S`nf0g

jF.v`/ � F`.v`/j
kv`kH�1=2.�/

)
:
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From this we can deduce how the null sequence .ı`/` and the consistency of the
approximation affect the right-hand side in the error estimate.

The error ku�…`ukH�1=2.�/ can be traced back to the approximation proper-
ties of S`. The choice w` D …`u yields, for an arbitrary v` 2 S`

ku �…`ukH�1=2.�/ D sup
v2H1=2.�/nf0g

ˇ̌
.u �…`u; v/L2.�/

ˇ̌
kvkH1=2.�/

D sup
v2H1=2.�/nf0g

ˇ̌
.u �…`u; v� v`/L2.�/

ˇ̌
kvkH1=2.�/

:

Now we take the infimum over all v` 2 S` and obtain

ku �…`ukH�1=2.�/ �
 

sup
v2H1=2nf0g

inf
v`2S`nf0g

kv � v`kL2.�/

kvkH1=2.�/

!

�
�

inf
w`2S`

ku � w`kL2.�/

�
: (4.158)

4.2.5 Aubin–Nitsche Duality Technique

Boundary integral equations were derived with the help of the integral equation
method (direct and indirect method) for elliptic boundary value problems. In many
cases our goal thus is to find the solution of the original boundary value problem
by solving the boundary integral equation. The numerical solution of the boundary
integral equation then only represents a part of the entire process. (Note, however,
that with the direct method the boundary element method yields a quasi-optimal
approximation of the unknown Cauchy data.) More importantly, the aim is to find
the solution u of the original elliptic differential equation in the domain �. This
solution can, as we will show here, be extracted from the Galerkin solution of the
boundary integral equations with an increased convergence rate, a fact which stems
from the representation formula.

Example 4.2.13 (Dirichlet Problem in the Interior, �). Let��R3 be a bounded
Lipschitz domain with boundary � and given Dirichlet data gD 2 H 1=2.�/. Find
u 2 H 1.�/ such that

�u D 0 in �; uj� D gD : (4.159)

The fundamental solution for the Laplace operator is given byG .z/ WD .4� kzk/�1.
The single layer potential u.x/ D R

�
G .x � y/ �.y/dsy, x 2 �, leads to the

boundary integral equation: Find � 2 H�1=2.�/ such that
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.V�; �/L2.�/ D .gD ; �/L2.�/ 8� 2 H�1=2.�/; (4.160)

where .�; �/L2.�/ again denotes the continuous extension of the L2 inner-product to
the dual pairing h�; �iH1=2.�/�H�1=2.�/.

For a subspace S` � H�1=2.�/ the Galerkin approximation �` 2 S` is defined
by: Find �` 2 S` such that

.V�`; �/L2.�/ D .gD ; �/L2.�/ 8� 2 S`: (4.161)

Equation (4.161) has a unique solution which satisfies the quasi-optimal error
estimate

k� � �`kH�1=2.�/ � C min
˚k� � vkH�1=2.�/; v 2 S`

�
: (4.162)

We obtain the approximation of the solution u.x/ of the boundary value problem
(4.159) by

u`.x/ WD
Z
�

G .x � y/ �`.y/ dsy; x 2 �: (4.163)

In this section we will derive error estimates for the pointwise error ju.x/� u`.x/j.

4.2.5.1 Errors in Functionals of the Solution

The Aubin–Nitsche technique allows us to estimate errors in the linear functionals
of the Galerkin solution. We will first introduce this method for abstract problems as
discussed in Sect. 4.2.1. The abstract variational problem reads: For a given F.�/ 2
H 0 find a function u 2 H such that

b.u; v/ D F.v/ 8v 2 H: (4.164)

Let .S`/` � H be a family of dense subspaces that satisfy the discrete inf–sup
conditions (4.117), (4.118). Then the Galerkin discretization of (4.164), i.e., find
u` 2 S` such that

b.u`; v`/ D F.v`/ 8v` 2 S`; (4.165)

has a unique solution. The error e` D u � u` satisfies the Galerkin orthogonality

b.u � u`; v`/ D 0 8v` 2 S` (4.166)

as well as the quasi-optimal error estimate

ku � u`kH � C

�`
minfku� '`kH W '` 2 S`g: (4.167)

The Aubin–Nitsche argument estimates the error in functionals of the solution.



238 4 Boundary Element Methods

Theorem 4.2.14. Let G 2 H 0 be a continuous, linear functional on the set of
solutions H of Problem (4.164) which satisfies the assumptions (4.109), (4.110).
Let u` 2 S` be the Galerkin approximation from (4.165) of the solution u. Fur-
thermore, let the discrete inf–sup conditions (4.117), (4.118) be uniformly satisfied:
�` � � > 0:

Then we have the error estimate

jG.u/�G.u`/j � C ku � '`kH kwG �  `kH (4.168)

for an arbitrary '` 2 S`,  ` 2 S`, where wG is the solution of the dual problem:

Find wG 2 H W b.w;wG/ D G.w/ 8w 2 H: (4.169)

Proof. From the continuous inf-sup conditions (4.110) Remark 2.1.45 gives us the
inf-sup conditions for the adjoint problem, from which we have the existence of a
unique solution.

Remark 4.2.4 shows that the discrete inf-sup conditions for b .�; �/ induce the
discrete inf-sup conditions for the adjoint form b	.u; v/ D b.v; u/. Therefore the
adjoint problem (4.169) has a unique solution wG 2 H for every G.�/ 2 H 0. By
virtue of S` � H and (4.169), (4.166) it follows that

jG.u/�G.u`/j D jG.u� u`/j D jb.u� u`;wG/j
D jb.u� u`;wG � v`/j 8v` 2 S`:

The continuity (4.109) of the form b.�; �/ and the error estimate (4.119) together
yield (4.168). �

The error estimate (4.168) states that linear functionals G.u/ of the solution may
under certain circumstances converge more rapidly than the energy error ku�u`kH .
The convergence rate is superior to the rate in the energy norm by a factor inffkwG�
 `kH :  ` 2 S`g. The following example, for which G.�/ represents an evaluation
of the representation formula (4.163) in the domain point x 2 �, makes this fact
evident.

Example 4.2.15. With the terminology used in Example 4.2.13, for the error ju.x/�
u`.x/j we have the estimate

ju.x/� u`.x/j � C min
˚k� � '`kH�1=2.�/ W '` 2 S`

�
�min

˚kve �  `kH�1=2.�/ W  ` 2 S`
� (4.170)

with the solution ve 2 H�1=2.�/ of the dual problem:

Find ve 2 H� 1
2 .�/ such that

.V ve ; �/L2.�/ D .G.x � �/; �/L2.�/ 8� 2 H�1=2.�/: (4.171)



4.2 Convergence of Abstract Galerkin Methods 239

With Corollary 4.1.34 we deduce the convergence rate for S` D Sp;�1G`

ju.x/� u`.x/j � C hmin.s;pC1/C1
2Cmin.t;pC1/C 1

2

`
k�kH s.�/kvekH t .�/ (4.172)

for s; t > �1
2

if k�kH s.�/ and kvekH t are bounded. If we have maximal regularity,
i.e., s D t D p C 1, the result is a doubling of the convergence rate of the Galerkin
method. For example, for piecewise constant boundary elements p D 0 and (4.172)
with s D t D 1 we obtain the estimate

ju.x/� u`.x/j � C h3`k�kH1.�/kvekH1.�/ (4.173)

and, thus, third order convergence for all x 2 �. Note that the constant C tends to
infinity for dist .x; �/! 0.

Remark 4.2.16 (Regularity). Inequality (4.172) only gives a high convergence
rate if the solutions �; ve are sufficiently regular. For the boundary integral operator
V on smooth surfaces � , the property gD 2 H 1=2Cs.�/ with s � 0 is sufficient
so that � 2 H�1=2Cs.�/, and the property G.x � �/ 2 H 1=2Ct .�/ with t � 0 is
sufficient so that ve 2 H�1=2Ct .�/ (see Sect. 3.2). Then we have the estimates

k�kH�1=2Cs .�/�C.s/kgDkH1=2Cs.�/; kvekH�1=2Ct .�/ � C.t/kG.x; �/kH1=2Ct .�/;

(4.174)
with a constant C.�/ which is independent of gD andG. Because of the smoothness
of the fundamental solution G.x� �/ for x 2 �, y 2 � we have G.x� �/ 2 C1.�/.
On smooth surfaces this implies the estimate (4.174) for all t � 0. With this (4.172)
becomes

ju.x/� u`.x/j � C1.p/ C2.x/ h2.pC1/C1`
; (4.175)

where we have C2.x/ D kvekHpC1.�/ � C.p/kG.x � �/kHpC2.�/.

Note that especially for elements of higher order, C2.x/ can become very large
for x near � . Formula (4.163) should therefore only be used for points x in the
domain that are sufficiently far away from � . For points x which are very close
to the boundary or even lie on � , a bootstrapping algorithm has been developed to
extract the potentials and arbitrary Cauchy data and their derivatives near and up to
the boundary (see [213]).

If a quantity which has been computed or postprocessed by using the Galerkin
method converges with an order that is higher than the order of the Galerkin error
in the energy norm one speaks of superconvergence. Similar to the superconver-
gence (4.168) of functionals G.�/ of the Galerkin solution u`, one can also study the
convergence of u` in norms below the energy norm.

Now let H D H s.�/ be the Hilbert space for the boundary integral operator
B W H s.�/! H�s.�/ of order 2s and let b.�; �/ be theH s .�/-elliptic and injective
sesquilinear form associated with B:

b.u; v/ D .Bu; v/L2.�/ W H s.�/ �H s.�/! C:
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Here the continuous extension of the L2 .�/ inner-product for the dual pairing
h�; �iH s.�/�H�s.�/ is again denoted by .�; �/L2.�/. Furthermore, let .S`/` be a dense
sequence of subspaces in H s.�/and let the discrete inf–sup conditions (4.117),
(4.118) hold. Then we have for t > 0

ku � u`kH s�t .�/ D sup
v2H�sCt .�/nf0g

.v; u � u`/L2.�/

kvkH�sCt .�/

:

Let wv be a solution of the adjoint problem: Find wv 2 H s .�/ such that

b.w;wv/ D .v;w/L2.�/ 8w 2 H s .�/ : (4.176)

Then with the Galerkin orthogonality (4.166) we have (transferred to the adjoint
problem)

ku � u`kH s�t .�/ D sup
v2H�sCt .�/nf0g

b .u � u`;wv/

kvkH�sCt .�/

D sup
v2H�sCt .�/nf0g

b .u � u`;wv � w`/

kvkH�sCt .�/

� C ku � u`kH s.�/ sup
v2H�sCt .�/nf0g

kwv � w`kH s.�/

kvkH�sCt .�/

:

Since w` 2 S` was arbitrary, we obtain

ku � u`kH s�t .�/ � Cku � u`kH s.�/ sup
v2H�sCt .�/nf0g

inf
w`2S`

kwv � w`kH s.�/

kvkH�sCt .�/

:

(4.177)
For t > 0 higher convergence rates are therefore possible for u` than in the H s-
norm, assuming that the adjoint problem (4.176) has the regularity

v 2 H�sCt .�/ H) wv 2 H sCt .�/ ; 80 � t � t : (4.178)

In order to obtain quantitative error estimates with respect to the mesh width h` we
again consider a dense sequence of boundary element spaces .S`/` of order p on
regular meshes G` of mesh width h`. Then the approximation property

inf
w`2S`

kwv � w`kH s.�/ � C hmin.pC1;sCt/�s
`

kwvkH sCt .�/

holds. These ideas are summarized in the following theorem.

Theorem 4.2.17. Let the sesquilinear form b .�; �/ of problem (4.164) satisfy the
conditions (4.109), (4.110). Let the exact solution satisfy u 2 H r .�/ with r � s.
We assume that the adjoint problem (4.176) has the regularity (4.178) with t � 0.
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Furthermore, let .S`/` be a dense sequence of boundary element spaces of order p
in H s .�/ on regular meshes G` of mesh width h`.

Then we have for the Galerkin solution u` 2 S` and 0 � t � t the error estimate

ku � u`kH s�t .�/ � C hmin.pC1;r/Cmin.pC1/;sCt/�2s
`

kukHr .�/: (4.179)

In particular, in the case of maximal regularity, i.e., for r � pC1, t � pC1�s, it
thus follows that we have a doubling of the convergence rate of the Galerkin method:

ku � u`kH2s�p�1 � C h2.pC1/�2skukHpC1.�/:

4.2.5.2 Perturbations

The efficient numerical realization of the Galerkin BEM (4.165) involves, for exam-
ple, perturbations of the sesquilinear form b.�; �/ by quadrature, surface and cluster
approximation of the operator or the functional G.�/, used for the evaluation of the
representation formula at a point x 2 �. Instead of (4.165) one implements a per-
turbed boundary element method:
Find Qu` 2 S` such that

b`.Qu`; v/ D F`.v/ 8v 2 S` (4.180)

and instead of G.u`/ one implements an approximation G`.Qu`/. Here we will study
the error

G.u/�G`.Qu`/ (4.181)

of a linear functional of the solution, for example of the representation formula
(see Example 4.2.13). According to Theorem 4.2.11, (4.180) has a unique solu-
tion for a sufficiently large ` if the exact form b.�; �/ satisfies the discrete inf–sup
conditions

inf
u`2S`nf0g

sup
v`2S`nf0g

jb.u`; v`/j
ku`kH kv`kH � � > 0;

inf
v`2S`nf0g

sup
u`2S`nf0g

jb.u`; v`/j
ku`kH kv`kH � � > 0

(4.182)

on S`�S` and if the perturbed form b`.�; �/ is uniformly continuous [see (4.151)] and
at the same time satisfies the stability and consistency conditions (4.152), (4.153).
Then for a sufficiently large ` we have the error estimate

ku � Qu`kH � C
(

min
w`2S`

.ku � w`kH C ı`kw`kU /C sup
v`2S`nf0g

jF.v`/� F`.v`/j
kv`kH

)
:

(4.183)
The perturbations of the right-hand side F and of the functional G define the

quantities
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f` WD sup
v`2S`nf0g

jF` .v`/� F .v`/j
kv`kH

and g` WD sup
v`2S`nf0g

jG` .v`/�G .v`/j
kv`kH

:

(4.184)
Note that in many practical applications the perturbationsF` and G` are not defined
on H but only on S`. We assume that .f`/` and .g`/` are null sequences and, thus,
that there exist constants CF and CG such that

kGkH 0 DW CG <1 and kF kH 0 C f` � CF 8` 2 N:

Theorem 4.2.18. Let the form b.�; �/ satisfy (4.182) and let the perturbed form
b`.�; �/ satisfy the conditions (4.151)–(4.153). Then, for a sufficiently large `, the
error (4.181) has the estimate

jG.u/�G`.Qu`/j � Cku � u`kH min
 `2S`

kwG �  `kH C
CG

�
c` kQu` � ukH C

CG

�
f`

C CG
�

min
'`2S`

.c` ku � '`kH C ı` k'`kU /C
CF

�
g`: (4.185)

Proof. By the definition (4.170) of wG and the orthogonality of the Galerkin error
we have

jG.u/�G.Qu`/j D jb.u� Qu`;wG/j
D jb.u� u`;wG �  `/j C jb.u` � Qu`;wG/j

(4.186)

for an arbitrary  ` 2 S`. Furthermore, let wG
`
2 S` be the solution of the Galerkin

equations
b.w`;w

G
` / D b.w`;wG/ D G.w`/ 8w` 2 S`:

Then, taking the Galerkin orthogonality into consideration, we have

jb.u` � Qu`;wG/j D jb.u` � Qu`;wG
` /j D jb.u`;wG

` /� b.Qu`;wG
` /j

� jF.wG
` / � b`.Qu`;wG

` /j C j.b` � b/.Qu`;wG
` /j

D jF.wG
` / � F`.wG

` /j C j.b � b`/.Qu`;wG
` /j:

We consider the difference b � b` and with the stability and consistency conditions
we obtain for an arbitrary '` 2 S` the estimate

ˇ̌
ˇ.b � b`/.Qu`;wG

` /
ˇ̌
ˇ �

ˇ̌
ˇ.b � b`/ .Qu` � '`;wG

` //
ˇ̌
ˇC

ˇ̌
ˇb
�
'`;w

G
`

�
� b`

�
'`;w

G
`

�ˇ̌
ˇ

� c` kQu` � '`kH



wG

`





H
C ı` k'`kU




wG
`





H
: (4.187)
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With this result and with (4.186) we obtain

jG.u/�G`.Qu`/j � jG.u/�G.Qu`/j C jG.Qu`/�G`.Qu`/j

� jb.u � u`;wG �  `/j C j.F � F`/.wG
`
/j

Cj.b � b`/.Qu`;wG
`
/j C j.G �G`/.Qu`/j

� Cku � u`kH kwG �  `kH C f`



wG

`





H

C



wG

`





H
.c` kQu` � '`kH C ı` k'`kU /C g` kQu`kH :

(4.188)

According to Theorem 4.2.11, for a sufficiently large ` the sequence .Qu`/` of the
perturbed Galerkin solutions is stable and with `0 from Theorem 4.2.11 we have

kQu`kH � 1

�
.kF kH 0 C f`/ � CF

�
8` � `0: (4.189)

We use the discrete inf–sup conditions (4.182) to find a bound for the term



wG

`





H

:

�kwG
` kH � sup

w`2S`nf0g
jb.w`;wG

`
/j

kw`kH D sup
w`2S`nf0g

jG.w`/j
kw`kH � kGkH

0 D CG

for ` � `0. This yields

jG.u/�G`.Qu`/j � Cku � u`kH kwG �  `kH C CG

�
f`

C CG
�
.c` kQu` � '`kH C ı` k'`kU /C

CF

�
g`:

The triangle inequality kQu` � '`kH � kQu` � ukH C ku � '`kH finally yields the
assertion. �

The inequality (4.185) can be used to bound the size of the perturbations c`, ı`,
f` and g` in such a way that the functional G` .Qu`/ converges with the same rate as
the functional G .u`/ for the original Galerkin method.

To illustrate this we consider H D H s .�/ and a discretization with piece-
wise polynomials of order p. Then the optimal convergence rate of the unperturbed
Galerkin method is given by ku � u`kH � ChpC1�s`

.

Inequality (4.183) shows that the two conditions ı` � Ch
pC1�s
`

and f` �
Ch

pC1�s
`

imposed on the size of the perturbations guarantee that ku � Qu`kH �
Ch

pC1�s
`

converges with the same rate as the unperturbed Galerkin method. The

optimal convergence rate for the dual problem is also



wG � wG

`





H
� ChpC1�s

`
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and it is our aim to control the size of the perturbation in such a way that the
functional G` .Qu`/ converges at the rate Ch2pC2�2s

`
.

For this to hold, the perturbed sesquilinear forms, the right-hand sides and
functionals in (4.152), (4.153) and (4.184) all have to satisfy the estimates

c` � ChpC1�s`
; ı` � Ch2pC2�2s`

; f` � Ch2pC2�2s`
; g` � Ch2pC2�2s`

:

In the following theorem we will determine a bound for the effect of perturbations
b � b` and F � F` on negative norms of the Galerkin error.

Theorem 4.2.19. Let the assumptions from Theorem 4.2.18 hold for H D H s.�/,
b W H s .�/�H s .�/! C. Furthermore, let the adjoint problem (4.176) satisfy the
regularity assumption (4.178) for a t > 0. Then for a sufficiently large ` we have
the error estimate

ku � Qu`kH s�t .�/ � C
˚
d`;s;sCt ku � u`kH s.�/ C c` ku � Qu`kH s.�/

Cf` C inf
'`2S`

�
c` ku � '`kH s.�/ C ı` k'`kU

��
(4.190)

for 0 � t � t with

d`;s;sCt WD sup
w2H sCt .�/nf0g

 
inf

 `2S`

kw�  `kH s.�/

kwkH sCt .�/

!
:

Proof. Let v 2 H�sCt .�/ be arbitrary and let wv be the solution of the adjoint
problem (4.176) with the right-hand side v. We then have

.v; u � Qu`/L2.�/ D b .u � Qu`;wv/

D b .u � u`;wv/C b .u` � Qu`;wv/„ ƒ‚ …
.	/

: (4.191)

We consider .
/. Let w`v 2 S` be the Galerkin approximation of w`v :

b
�

v`;w
`
v

�
D .wv; v`/L2.�/ 8v` 2 S`:

With v` D u`�Qu` 2 S` it follows from the Galerkin orthogonalityb
�
v`;wv � w`v

� D
0 that we have the relation

.
/ D b .u` � Qu`;wv/ D b
�

u` � Qu`;w`v
�

D .b � b`/
�

u` � Qu`;w`v
�
C b`

�
u` � Qu`;w`v

�
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D .b � b`/
�

u` � Qu`;w`v
�
C b`

�
u`;w

`
v

�
� F`.w`v/

D .b � b`/
�

u` � Qu`;w`v
�
C .b` � b/

�
u`;w

`
v

�
C b

�
u`;w

`
v

�
� F`.w`v/

D .b � b`/
�
�Qu`;w`v

�
C F.w`v/ � F`.w`v/:

With this we will estimate (4.191) by using (4.166) as follows. For every  ` 2 S`
we have

j .v; u� Qu`/L2.�/ j � jb .u � u`;wv �  `/ j

C
ˇ̌
ˇ.b � b`/

�
Qu`;w`v

�ˇ̌
ˇC

ˇ̌
ˇF.w`v/� F`.w`v/

ˇ̌
ˇ : (4.192)

As in (4.187), we use the consistency condition to prove for an arbitrary '` 2 S`
the estimate

ˇ̌
ˇ.b � b`/.Qu`;w`v/

ˇ̌
ˇ � �c` kQu` � '`kH s.�/ C ı` k'`kU

� 


w`v





H s.�/

; (4.193)

where k�kU again denotes a stronger norm thanH s .�/.
The regularity assumption (4.178) and the stability of the Galerkin approxima-

tions
�
w`v
�
`

of the adjoint problem yield for all 0 � t < t and all v 2 H�sCt .�/ the
estimate

kw`vkH s.�/ � C kwvkH s.�/ � C kvkH�s .�/ � C kvkH�sCt .�/: (4.194)

Therefore it follows from (4.192) and (4.193) with (4.184) that

ku � Qu`kH s�t .�/ D sup
v2H�sCt .�/nf0g

j .v; u � Qu`/L2.�/ j
kvkH�sCt .�/

� C ku � u`kH s.�/ sup
v2H�sCt .�/nf0g

 
inf

 `2S`

kwv �  `kH s.�/

kvkH�sCt .�/

!

C C inf
'`2S`

�
c` kQu` � '`kH s.�/ C ı` k'`kU

�C Cf`:

The regularity assumption imposed upon the adjoint problem yields the estimate
kvkH�sCt .�/ � C�1 kw�kH sCt .�/. Hence we have

sup
v2H�sCt .�/nf0g

 
inf

 `2S`

kwv �  `kH s.�/

kvkH�sCt .�/

!

� C sup
w2H sCt .�/nf0g

 
inf

 `2S`

kw �  `kH s.�/

kwkH sCt .�/

!
D Cd`;s;sCt :
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Note that d`;s;t represents an approximation property of the space S`. Combining
these results we have proved that

ku � Qu`kH s�t .�/ � C
˚
d`;s;sCt ku � u`kH s.�/ C c` ku � Qu`kH s.�/

Cf` C inf
'`2S`

�
c` ku � '`kH s.�/ C ı` k'`kU

��
:

�
With the help of inequality (4.190) we can determine sufficient conditions on the

admissible magnitude of the perturbations c`, ı`, f` and g` so that the Galerkin error
ku � Qu`kH s�t .�/ converges with the same rate as the unperturbed Galerkin solution.

In order to illustrate this, we consider a discretization with piecewise polyno-
mials of order p and assume that the continuous solution satisfies u 2 HpC1 .�/.
Then the optimal convergence rate of the unperturbed Galerkin method is given by
ku � u`kH s�t .�/ � ChpC1�sCmin.pC1�s/;t/

`
kukHpC1.�/.

Inequality (4.183) shows that the two conditions ı` � Ch
pC1�s
`

and f` �
Ch

pC1�s
`

imposed on the size of the perturbations guarantee that ku � Qu`kH s.�/ �
Ch

pC1�s
`

converges with the same rate as the unperturbed Galerkin method (with
respect to the H s-norm). The optimal convergence rate of the term d`;s;sCt is

d`;s;sCt � Ch
minfpC1�s;tg
`

and it is our goal to control the size of the per-
turbations in such a way that the term ku � Qu`kH s�t .�/ converges at the rate

Ch
pC1�sCmin.pC1�s/;t/
`

. This leads to the following condition for the quantities
c`, ı`, f`

C
�
h

minfpC1�s;tgCpC1�s
`

C c`hpC1�s C f` C c`hpC1�s C ı`
�

� ChpC1�sCmin.pC1�s/;t/
`

:

For this the perturbed sesquilinear form, right-hand sides and functionals in
(4.152), (4.153) and (4.184) have to satisfy the estimates

c`�ChminfpC1�s;tg
`

; ı`�ChminfpC1�s;tgCpC1�s
`

; f`�ChminfpC1�s;tgCpC1�s
`

:

4.3 Proof of the Approximation Property

In Sects. 4.1–4.2.5 we have seen that the Galerkin boundary element method pro-
duces approximative solutions of boundary integral equations which converge quasi-
optimally. Here we will present the proofs of the convergence rates (4.59) and (4.93)
of discontinuous and continuous boundary elements on surface meshes G with mesh
width h > 0.

In general we will assume that Assumption 4.1.6 holds, i.e., that the panel
parametrizations can be decomposed into a regular, affine mapping �affine

� and
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a diffeomorphism �� , independent of � , since �� D �� ı �affine
� . For �affine

� there
exist b� 2 R3 and B� 2 R3�2 such that

�affine
� .Ox/ D B� OxC b� :

The Gram matrix of this mapping is denoted by G� WD B|
�B� 2 R2�2. It is

symmetric and positive definite.

Note: The proof of the approximation property has the same structure as the
proofs for the finite element methods (see, for example, [27,33,68,115]) and is also
based on concepts such as the pullback to the reference element, the shape-regularity
and the Bramble–Hilbert lemma.

4.3.1 Approximation Properties on Plane Panels

We use the same notation as in Sect. 4.1.2. Let O� be a polyhedral surface with plane
sides and let Gaffine be a surface mesh of O� which consists of plane triangles or
parallelograms. The panels � 2 Gaffine are images of the reference elementb� under
a regular, affine transformation �affine

� W O� ! � .
As in (4.23), for the reference element O� and p � 0 we denote the space of

all polynomials of total degree p by P�p . O�/, while � O�p denotes the index set for the
associated unisolvent set of nodal points [see (4.70) and Theorem 4.1.39].

In preparation for Proposition 4.3.3 we will first prove a norm equivalence.

Lemma 4.3.1. Let k 2 N�1. Then

Œu�kC1 WD jujkC1 C
X

.i;j /2
 O�p

ˇ̌
ˇ̌u
�
i

p
;
j

p

�ˇ̌
ˇ̌ (4.195)

defines a norm onH kC1 . O�/ which is equivalent to k�kkC1.

Proof. The continuity of the embedding H kC1 . O�/ ,! C
�
O�
�

follows from the

Sobolev Embedding Theorem (see Theorem 2.5.4), and thus Œ��kC1 is well defined.
Therefore there exists a constant c1 2 R>0 such that

Œu�kC1 � c1 kukkC1 8u 2 H kC1 . O�/ :

Therefore it remains to show that there exists a constant c2 2 R>0 such that

kukkC1 � c2 Œu�kC1 8u 2 H kC1 . O�/ :

We prove this indirectly and for this purpose we assume that there exists a sequence
.un/n2N � H kC1 . O�/ such that
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8n 2 N W kunkkC1 D 1 and lim
n!1 Œun�kC1 D 0: (4.196)

We deduce from Theorem 2.5.6 by induction over k that there exists a subsequence�
unj

�
j2N

that converges to some u 2 H k . O�/:

lim
j!1



unj
� u




k
D 0:

The second assumption in (4.196) yields

lim
j!1

ˇ̌
unj
� u

ˇ̌
kC1 D 0:

Hence u 2 H kC1 . O�/ with jujkC1 D 0 and we have

lim
j!1



unj
� u




kC1 D 0:

Since jujkC1 D 0, we have u 2 Pk and the Sobolev Embedding Theorem implies
the convergence in the nodal points

u .z/ D lim
j!1 unj

.z/ 8z D
�
i

p
;
j

p

�
; .i; j / 2 � O�p:

Theorem 4.1.39 therefore yields a contradiction to the first assumption in (4.196).
�

Lemma 4.3.2 (Bramble–Hilbert Lemma). Let k 2 N0. Then

inf
p2Pk

ku � pkkC1 � c2 jujkC1

for all u 2 H kC1 . O�/, with c2 from the proof of Lemma 4.3.1.

Proof. For k D 0 the statement follows from the Poincaré inequality (see Corol-
lary 2.5.10).

In the following let k � 1 and u 2 H kC1 . O�/. Thanks to the Sobolev Embedding
Theorem the point evaluation of u is well defined. Let .bz/z2†k

be the vector that

contains the values of u at the nodal points: bz D u .z/ for all z 2 †k . Let p 2 P O�
k

be the, according to Theorem 4.1.39, unique polynomial with bz D p .z/ for all
z 2 †k . Then, by Lemma 4.3.1,

inf
q2Pk

ku � qkkC1 � ku � pkkC1 � c2 Œu � p�kC1 D c2 jujkC1 :

�
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Proposition 4.3.3. Let b… W HpC1. O�/ ! H s. O�/ be linear and continuous for 0 �
s � p C 1 such that

8q 2 P�p . O�/ W b…q D q: (4.197)

Then there exists a constant c D c.b…/ so that

8v 2 HpC1. O�/ W kv � b…vkH s. O�/ � Oc jvjHpC1. O�/: (4.198)

Proof. Let v 2 HpC1. O�/. Then by (4.197) for all q 2 P�p . O�/ we have

v � b…v D vC q � b….vC q/
kv � b…vkH s. O�/ � Oc kvC qkHpC1. O�/

Oc WD kI � b…kH s. O�/ HpC1. O�/;

where I denotes the identity. Since q 2 P�p . O�/ was arbitrary, with Lemma 4.3.2 we
deduce

8v 2 HpC1. O�/ W kv �…vk
H s.b�/ � Oc inf

q2P�
p . O�/
kvC qkHpC1. O�/ D Oc jvjHpC1.b�/:

�
The estimate of the approximation error is proven by a transformation to the

reference element.
First we will need some transformation formulas for Sobolev norms. Let � � R2

be a plane panel as before (triangle or parallelogram) with an affine parametrization
�affine
� W O� ! � . Tangential vectors on � are defined by bi WD @�affine

� =@ Oxi for
i D 1; 2. The (constant) normal vector n� is oriented in such a way that .b1;b2;n� /
forms a right system. For " > 0 we set I" D .�"; "/ and define a neighborhood
U" � R3 of � by

U" WD
˚
z 2 R3 W 9 .x; ˛/ 2 � � I" W z D xC ˛n�

�
: (4.199)

A function u 2 H kC1 .�/ can be extended as a constant on U":

u? .xC ˛n� / D u .x/ 8 .x; ˛/ 2 � � I":

The surface gradient rSu is defined by

rSu D ru?
ˇ̌
�
; (4.200)

which gives us

juj2H1.�/ D
Z
�

hrSu;rSui :

The pullback of the function u to the reference element is denoted by Ou WD uı�affine
� .
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Lemma 4.3.4. We have

kuk2L2.�/
D j� jj O� j

Z
O�
jOuj2

juj2H1.�/
D j� jj O� j

Z
O�

DbrOu;G�1� brOuE ;

where br denotes the two-dimensional gradient in the coordinates of the reference
element.

Proof. The transformation formula for surface integrals yields the first equation

Z
�

juj2 D j� jj O� j
Z
O�
jOuj2 :

We define � W R3 ! R3 for Ox 2 O� and x3 2 R by

� .Ox; Ox3/ WD �affine
� .Ox/C Ox3n� D B� OxC Ox3n� C b�

and we set bU " WD ��1 .U"/. With this we can define the function Ou? W bU " ! K by

Ou? WD u? ı �

and it satisfies Ou?j O� D Ou in the sense of traces. The chain rule then yields

.rSu/ ı �affine
� D �ru?

� ı �affine
� D �J�1� �| rOu?: (4.201)

with the Jacobian J� D ŒB� ;n� � of the transformation �. From this we have

.rSu/ ı �affine
� D �

J�1�
�| brOu?

ˇ̌
ˇO� :

Elementary properties of the vector product give us

J�1�
�
J�1�

�| D
�

G�1� 0

0 1

�

and from this it follows that



.rSu/ ı �affine
�



2 D DbrOu;G�1� brOuE on O� :

Combined with the transformation formula for surface integrals we obtain the
assertion. �



4.3 Proof of the Approximation Property 251

Lemma 4.3.5. We have

kG�k � 2h2� ; kG�1� k �
2

�2

�
h�


�

�4
h�2� : (4.202)

Proof. The Jacobian B� of the affine transformation �affine
� has the column vectors

b1, b2. The maximal eigenvalue of the symmetric, positive definite matrix G� can
be bounded by the row sum norm

kG�k � max
iD1;2

n
kbik2 C hb1;b2i

o
� 2h2� ;

since bi are edge vectors of � (see Definition 4.1.2). For the inverse matrix we have

G�1� D
1

det G�

� kb2k2 � hb1;b2i
� hb1;b2i kb1k2

�
D
� j O� j
j� j
�2 � kb2k2 � hb1;b2i
� hb1;b2i kb1k2

�
:

From this we have for the largest eigenvalue



G�1�


 �

� j O� j
�
2�

�2
2h2� �

2

�2

�
h�


�

�4
h�2� :

�
Lemma 4.3.4 can be generalized for derivatives of higher order.

Lemma 4.3.6. Let � 2 Gaffine be the affine image of the reference element O�

� D �affine
� . O�/ with �affine

� .Ox/ D B� OxC b� :

Then
v 2 H k.�/”Ov WD v ı �affine

� 2 H k. O�/; (4.203)

which gives us for all 0 � ` � k

jvjH`.�/ � C1h1�`� jOvjH`. O�/; (4.204a)

jOvjH`. O�/ � C2h`�1� jvjH`.�/ (4.204b)

with constants C1, C2 that depend only on k and the constant �G , which describes
the shape-regularity (see Definition 4.1.12).

Proof. The equivalence (4.203) follows from the chain rule, as the transformation
is affine and therefore all derivatives of �affine

� are bounded. We will only prove the
first inequality, the second can be treated in the same way.

Since C1 .�/\H ` .�/ is dense inH ` .�/ (see Proposition 2.3.10), it suffices to
prove the statement for smooth functions.
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Let v?, Ov, U", bU ", Ov?, �, J� be as in the proof of Lemma 4.3.4. In the following
˛ will always denote a three-dimensional multi-index ˛ 2 N3

0 and O@ denotes the
derivative in the coordinates of the reference element. Then we have

jvj2
H`.�/

D
X
j˛jD`

Z
�

ˇ̌
@˛v?

ˇ̌2 D j� jjb� j
X
j˛jD`

Z
O�

ˇ̌�
@˛v?

� ı �ˇ̌2 :

The chain rule then yields

��
@˛v?

� ı �� D ��J�1� �| br?�˛ Ov?;

where br? denotes the three-dimensional gradient (while, in the following, the two-
dimensional gradient will be denoted by br, as before). For the (transposed) inverse
of the Jacobian of � we have

�
J�1�

�| D ŒA� ;n� � with

A� WD Œa1; a2� 2 R3�2; a1 WD jO� jj� j .b2 � n� / ; a2 WD jO� jj� j .n� � b1/ :

Since O@3 Ov? D 0 we obtain

��
@˛v?

� ı ��ˇ̌O� D
�

A�br
�˛ Ov:

We use the convention

X
��˛

: : : WD
˛1X

�1D0

˛2X
�2D0

˛3X
�3D0

: : : ;
�
˛
�

� D �˛1

�1

��
˛2

�2

��
˛3

�3

�
and a� D

3Y
iD1

a�i

i :

for the multi-indices 	; ˛ 2 N3
0 . With this we have

�
Abr�˛ Ov DX

��˛

�
˛
�

�
a�1 a˛��2

O@�1 O@˛��2 Ov:

In order to estimate the absolute value, we use

ˇ̌
ai;j

ˇ̌ � kaik � h�

�
2�
� �2G
�
h�1�

and obtain with j˛j D `
ˇ̌
ˇ
�

Abr�˛ Ov .Ox/
ˇ̌
ˇ2 � Ch�2`�

X
��˛

ˇ̌
ˇO@�1 O@˛��2 Ov .Ox/

ˇ̌
ˇ2 (4.205)
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with a constant C , which depends only on ` and the constant �G . By integrating
over O� we obtain



@˛v?


2
L2.�/

D j� jj O� j




�

Abr�˛ Ov



2
L2. O�/ � Ch

2�2`
� jOvj2H`.O�/ :

If we sum over all ˛ with j˛j D ` we obtain the assertion. �
The following corollary is a consequence of (4.205).

Corollary 4.3.7. Let � 2 Gaffine be the affine image of the reference element O�

� D �affine
� . O�/ with �affine

� .Ox/ D B� OxC b� :

Then
v 2 C k.�/”Ov WD v ı �affine

� 2 C k. O�/;
which gives us for all 0 � ` � k

jvjC`.�/ � C1h�`� jOvjC`. O�/; (4.206a)

jOvjC`. O�/ � C2h`� jvjC`.�/ (4.206b)

with constants C1, C2 that depend only on k and the constant �G , which describes
the shape-regularity (see Definition 4.1.12).

Theorem 4.3.8. Let � 2 Gaffine be the affine image of the reference element � D
�affine
� . O�/. Let the interpolation operator b… W H s. O�/ ! H t . O�/ be continuous for
0 � t � s � k C 1 and let

8q 2 P O�k W b…q D q (4.207)

hold. Then the operator… W H s.�/! H t .�/, which is defined by:

…v WD
�b…Ov� ı ��affine

�

��1
with Ov WD v ı �affine

� ; (4.208)

satisfies the error estimate

8v 2 H kC1.�/ W jv �…vjH t .�/ � Chs�t� jvjH s.�/ (4.209)

for 0 � t � s � k C 1. The constant C depends only on k and the shape-
regularity of the surface mesh, more specifically, it depends on the constant �G in
Definition 4.1.12.

Proof. According to Proposition 4.3.3, on the reference element O� we have




Ov � b…Ov




H t . O�/ � OcjOvjH s. O�/:
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We transport this estimate from O� to � D �affine
� . O�/. With Lemma 4.3.6 we obtain

the error estimate for s D k C 1
jv �…vjH t .�/ � Ch1�t�

ˇ̌
ˇOv � b…Ov

ˇ̌
ˇ
H t . O�/ � Ch

1�t
� jOvjHkC1. O�/ � ChkC1�t� jvjHkC1.�/:

For s < k C 1, (4.209) follows from the continuity of b… W H s . O�/ ! H t .b�/ by
means of interpolation (see proof of Theorem 4.1.33). �
Remark 4.3.9. The interpolation operatorbI k from (4.73) satisfies the prerequisites
of Proposition 4.3.3 with p  k � 1 by virtue of the Sobolev Embedding Theorem.

For k D 0, b… can be defined as a mean value:

�b…v
�
.x/ D 1

j O� j
Z
O�

v 8x 2 O�:

4.3.2 Approximation on Curved Panels	

In this section we will prove the approximation properties for curved panels that
satisfy the following geometric assumptions (see Assumption 4.1.6 and Fig. 4.6).

For x 2 � 2 G, n� .x/ 2 S2 denotes unit normal vector to � at the point x. The
orientation is chosen as explained in Sect. 2.2.3 with respect to the chart �� .

Assumption 4.3.10. For every � 2 G with the associated reference mapping �� W
O� ! �:

� There exists a regular, affine mapping �affine
� W R3 ! R3 of the form

�affine
� .Ox; x3/ D

�
a 0
0 1

�� Ox
Ox3
�
C
�

b�
0

�

with a 2 R2�2, .Ox; Ox3/ 2 R2 �R, b� 2 R2 and det a > 0.

Fig. 4.6 Left: curved surface panel � and three-dimensional neighborhood U� . Middle: flat surface
panel � affine with neighborhood U affine

� . Right: reference element O� 
 R2

� This section should be read as a complement to the core material of this book.
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� There exists a C1-diffeomorphism � W U ! V that is independent of G, with
open sets U; V � R3 that satisfy

� affine
" � U; � affine

" WD ˚�affine
� .Ox; 0/ W Ox 2b�� � .�"; "/;

�" � V; �" WD fxC ˛n� .x/ W x 2 � , ˛ 2 .�"; "/g

for an " > 0 such that
�� .Ox/ D � ı �affine

� .Ox; 0/ :
� For every function u 2 H k .�/ with a constant extension

u? .xC ˛n� .x// D u .x/ (4.210)

we have
@
�
u? ı � ı �affine

�

�
=@ Ox3 D 0: (4.211)

A situation of this kind was introduced in Example 4.1.7 (also see [170, Chap. 2]).
First we will prove a transformation formula for composite functions.

Lemma 4.3.11. Let � W U ! V be a C1-diffeomorphism and let U; V � R3 be
open sets. For a function u 2 H k .V / we set Qu D u ı �. Then Qu 2 H k .U / and for
all ˛ 2 N3

0 , 1 � j˛j � k, we have

.@˛ Qu/ ı ��1 D
j˛jX
jˇ jD1

cˇ@
ˇu (4.212)

with coefficients cˇ that are real linear combinations of products of the form

jˇ jY
rD1

@�r�nr
: (4.213)

The relevant indices for 1 � r � jˇj satisfy the relations 1 � nr � 3, 	r 2 N3
0 andPjˇ j

rD1 j	r j D j˛j.
Proof. For the equivalence u 2 H k .V / ” Qu 2 H k .U / it suffices to prove
(4.212) for smooth functions. We will prove Formula (4.212) by induction. Let ek
be the k-th canonical unit vector in R3.

Initial case: For j˛j D 1 we obtain explicitly

.@˛ Qu/ ı ��1 D
X
jˇ jD1

cˇ@
ˇu; where for ˇ D ek we have cˇ D @˛�k :

Hypothesis: Let the statement hold for j˛j � i � 1.



256 4 Boundary Element Methods

Conclusion: Let j˛j D i , choose k D 1; 2, or 3, and let Q̨ D ˛ � ek 2 N3
0 . Thus

we obtain

.@˛ Qu/ ı ��1 D @k
�
@ Q̨ Qu

�
ı ��1 D

0
@@k

i�1X
jˇ jD1

cˇ

�
@ˇu

�
ı �
1
A ı ��1

D
i�1X
jˇ jD1

�
@kcˇ

�
@ˇuC

i�1X
jˇ jD1

3X
jD1

�
cˇ@k�j

� �
@j @

ˇu
�
:

This proves the assertion if we show that @kcˇ and cˇ
�
@k�j

�
are of the form

(4.213). With the Leibniz product rule we obtain

@k

jˇ jY
rD1

@�r�nr
D
jˇ jX
jD1

.@k@
�j / �nj

jˇ jY
rD1
r¤j

@�r�nr

and the expression on the right-hand side is a linear combination of terms of the
form

jˇ jY
rD1

@ Q�r�nr

with
Pjˇ j
rD1 j Q	r j D i . The assertion follows analogously for the product cˇ

�
@k�j

�
.

�

Corollary 4.3.12. 1. Let the conditions of Lemma 4.3.11 be satisfied. Then

C�11 kQukL2.U / � kukL2.V / � C2 kQukL2.U /

and

jQuj2
Hk.U /

� C1
kX
iD1
juj2
H i .V /

and juj2
Hk.V /

� C2
kX
iD1
jQuj2
H i .U /

:

The constants C1; C2 depend only on k and the derivatives of �, ��1 up to the
order max f1; kg.

2. Let Assumption 4.3.10 and the conditions of Lemma 4.3.11 be satisfied with � 
�. For � 2 G, � affine WD ��1 .�/ and u 2 H k .�/, Qu .Ox/ WD u ı � .Ox; 0/ we have

C�13 kQuk2L2.�affine/ � kuk2L2.�/
� C4 kQuk2L2.�affine/
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and

jQuj2
Hk.�affine/ � C3

kX
iD1
juj2
H i .�/

and juj2
Hk.�/

� C4
kX
iD1
jQuj2
H i.�affine/ :

The constants C3; C4 again depend only on k and the derivatives of �, ��1 up to
the order k.

Proof. Statement 1 follows from the transformation formula (4.212).
For the second statement we define a constant extension of u in the direction of

the normal as a function u?, according to (4.210), and note that the normal derivative
of u? vanishes, i.e., we have ju?jHk.�"/

D jujHk .�/.
From (4.211) we have ju? ı �jHk.�affine

" / D jQujHk.�affine/ and, thus, we have the
assertion in Part 1. �

At the next step we will apply Lemma 4.3.11 to the composite reference mapping
and study how far this depends on the panel diameter h� .

Lemma 4.3.13. Let Assumption 4.3.10 and the conditions of Lemma 4.3.11 hold
with � �. For � 2 G and u 2 H k .�/, � � V , Ou WD u ı �� we have

v 2 H k.�/”Ov WD v ı �� 2 H k. O�/ (4.214)

and

juj2
Hk.�/

� C1h2�2k�

kX
iD1
jOuj2H i .O�/ ; (4.215a)

jOuj2Hk. O�/ � C2h2k�2�

kX
iD1
juj2
H i .�/

: (4.215b)

The constants C1, C2 depend only on k, the constant �G of the shape-regularity (see
Definition 4.1.12) and the derivatives �, ��1 up to the order k.

Proof. It follows from Corollary 4.3.12 that

juj2Hk .�/
� C

kX
iD1
jQuj2
H i.�affine/ :

We can therefore apply the transformation formulas from Lemma 4.3.6, which gives
us the estimates
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juj2
Hk.�/

� C1h2�
kX
iD1

h�2i jQuj2
H i.�affine/ � C2h2�2k�

kX
iD1
jOuj2H i . O�/ ;

jOuj2Hk.O�/ � C3h2k�2� jQuj2
Hk.�affine/ � C4h2k�2�

kX
iD1
juj2
H i .�/

:

�
With this we obtain the analogy of Theorem 4.3.8 for curved panels.

Theorem 4.3.14. Let Assumption 4.3.10 and the conditions from Lemma 4.3.11
hold with �  �. Let � 2 G be the image of the reference element O� as given
by � D � ı �affine

� . O�/. Let the interpolation operator b… W H s. O�/ ! H t . O�/ satisfy
the conditions from Theorem 4.3.8 for 0 � t � s � k C 1.

Then we have for the operator… W H s.�/! H t .�/, which is defined by

…v WD
�b…Ov� ı ��1� with Ov WD v ı �� ;

the error estimate for 0 � t � s � k C 1

8v 2 H kC1.�/ W jv �…vjH t .�/ � Chs�t� kvkH s.�/ : (4.216)

The constant C depends only on k, the shape-regularity of the surface mesh via the
constant �G in Definition 4.1.12 and the derivatives of �, ��1 up to the order k.

Theorem 4.3.8 and Theorem 4.3.14 contain the central, local approximation
properties that are combined in Sects. 4.3.4 and 4.3.5 to form error estimates for
boundary elements. The easiest way of constructing a global approximation for
continuous boundary elements and sufficiently smooth functions is by means of
interpolation. For this the functions u 2 H s

pw .�/ need to be continuous. In the
following section we will show that this is the case for s > 1.

4.3.3 Continuity of Functions in Hs
pw.�/ for s > 1

In order to avoid technical difficulties, we will generally assume in this section that
we are dealing with the geometric situation from Example 4.1.7(1).

Assumption 4.3.15. � is a piecewise smooth Lipschitz surface that can be para-
metrized bi-Lipschitz continuously over a polyhedral surface O�: �� W O� ! � .

Then the Sobolev spaces H s.�/ on � are defined invariantly for jsj � 1, which
means that they do not depend on the chosen parametrization of � (see Proposi-
tion 2.4.2). For a higher differentiation index s > 1,H s

pw .�/ is defined as in (4.86).
These spaces form a scale with
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L2.�/ D H 0
pw.�/ � H s

pw.�/ � H t
pw.�/; 0 < s < t: (4.217)

Lemma 4.3.16. For s > 1 every u 2 H s
pw.�/ is continuous on � , i.e., H s

pw.�/ �
C 0.�/.

Proof. � is the bi-Lipschitz continuous image of a polyhedral surface: � D ��
� O��

and therefore it suffices to prove the statement for polyhedral surfaces. Let O�j , 1 �
j � J , be the plane, relatively closed polygonal faces of the polyhedron.

Let u 2 H s
pw

� O�� for s > 1. The Sobolev Embedding Theorem implies that

u 2 C 0
� O�j� for all 1 � j � J and, thus, it suffices to prove the continuity across

the common edges of the surface pieces O�j . For this we consider two pieces O�i and
O�j with a common edge bE . Then there exists an (open) polygonal domain U � R2

and a bi-Lipschitz continuous mapping � W U ! O�i [ O�j with the properties

U 1 WD ��1
� O�i

�
; U 2 WD ��1

� O�j
�
; and �jUk

is affine for k D 1; 2:
U1, U2 are disjoint and U D U1 [ U2:
e WD ��1

�bE� D U1 \ U2:
We only need to show that w WD u ı � is continuous over e. Clearly, we have
wk WD w ı �k 2 H s .Uk/, k D 1; 2, and w 2 H 1 .U /. If we combine this result
with the statements from Theorem 2.6.8 and Remark 2.6.10 we obtain the assertion.

�

4.3.4 Approximation Properties of Sp;�1G

We will now prove the error estimate (4.59) for the following two geometric
situations.

Assumption 4.3.17 (Polyhedral Surface). � is the surface of a polyhedron. The
mesh G on � consists of plane panels with straight edges with mesh width h > 0:

Assumption 4.3.18 (Curved Surface). Assumption 4.3.10 holds and the condi-
tions from Lemma 4.3.11 are satisfied with � �.

Theorem 4.3.19. Let either Assumption 4.3.17 or Assumption 4.3.18 hold. Let
s � 0. Then there exists an operator Ip;�1G W H s

pw .�/! S
p;�1
G such that




u � Ip;�1G u




L2.�/

� C hmin.pC1;s/ kukH s.�/ : (4.218)

For a polyhedral surface the constantC depends only on p and the shape-regularity
of the mesh G via the constant �G from Definition 4.1.12. In the case of a curved
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surface it also depends on the derivatives of the global transformations �, ��1 up
to the order k.

Proof. Let b…p

O� W H s . O�/! P�p be the L2-projection:

�b…p

O� u; q
�
L2.O�/ D .u; q/L2

�b�� 8q 2 P�p : (4.219)

We lift this projection to the panels � 2 G by means of

�
…p
� u�

�
.x/ WD

�b…p

O� Ou�
�
ı ��1� .x/ 8x 2 �;

where u� WD uj� and Ou� WD u� ı �� . The operator Ip;�1G then consists of the
panelwise composition of …p

� :

I
p;�1
G u

ˇ̌
ˇ
�
WD …p

� u 8� 2 G:

Obviously, this defines a mapping fromH s
pw .�/ to Sp;�1G . The operator b…p

O� satisfies
the prerequisites of Theorem 4.3.8, because we have for the orthogonal projection:

1.



b…p

O� Ov




0
� kOvk0 8Ov 2 L2 . O�/ :

Since b…p

O� Ov is a polynomial in a finite-dimensional space P�p , all norms are equiv-
alent and there exists a constant Cp > 0 such that for all 0 � t � s � p C 1 we
have




b…p

O� Ov




s
� Cp




b…p

O� Ov




0
� Cp kOvk0 � Cp kOvkt 8Ov 2 H s . O�/ :

2. It follows immediately from the characterization (4.219) that

b…q D q 8q 2 P�p :

Therefore we can apply (4.209) or (4.216) with t D 0 and obtain the error
estimate ˇ̌

ˇv � Ip;�1G v
ˇ̌
ˇ
L2.�/

� Chs� kvkH s.�/ (4.220)

for all v 2 H s .�/ with 0 � s � p C 1. If we then square and sum over all � 2 G
we obtain the assertion. �

Theorem 4.3.19 gives us error estimates in negative norms by means of the
same duality argument as in the proof of Theorem 4.1.33. This is the subject of
the following theorem.

Theorem 4.3.20. Let the assumption from Theorem 4.3.19 be satisfied. Then we
have for the interpolation Ip;�1G and 0 � t � s � p C 1 and all u 2 H s

pw .�/ the
estimate

ku � Ip;�1G ukH�t .�/ � ChsCtkukH s.�/: (4.221)
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Proof. The continuous extension of the L2 inner-product to H�tpw .�/ �H t
pw .�/ is

again denoted by .�; �/0. Since Ip;�1G consists locally of L2-orthogonal projections,

we have for an arbitrary 'G 2 Sp;�1G




u � Ip;�1G u




H�t .�/

D sup
'2H t .�/nf0g

ˇ̌
ˇ
�

u � Ip;�1G u; '
�
0

ˇ̌
ˇ

k'kH t .�/

D sup
'2H t .�/nf0g

ˇ̌
ˇ
�

u � Ip;�1G u; ' � 'G
�
0

ˇ̌
ˇ

k'kH t .�/

(4.222)

(see proof of Theorem 4.1.33). If we choose 'G D Ip;�1G ' 2 Sp;�1G , (4.221) follows
by means of a twofold application of (4.218). �

Remark 4.3.21. Corollary 4.1.34 follows from (4.221) with t D 1
2

.

4.3.5 Approximation Properties of Sp;0G

Here we will prove approximation properties of continuous boundary elements that
have already been introduced in Proposition 4.1.50.

Theorem 4.3.22. Let Assumption 4.3.17 or Assumption 4.3.18 hold:

(a) Then there exists an interpolation operator Ip;0G W H s
pw.�/! S

p;0
G such that




u � Ip;0G u




H t .�/

� Chs�t kukH s
pw.�/

(4.223)

for t D 0; 1, 1 < s � p C 1 and all u 2 H s
pw .�/. For a polyhedral surface

the constant C depends only on p and on the shape-regularity of the mesh G
via the constant �G from Definition 4.1.12. In the case of a curved surface it
also depends on the derivatives of the global transformations �, ��1 up to the
order k.

(b) Let u 2 H s .�/ for some 1 < s � p C 1. Then, for any 0 � t � 1, we have




u � Ip;0G u




H t .�/

� Chs�t kukH s.�/ :

Proof. Part a: Lemma 4.3.16 implies that u 2 H s
pw.�/ � C 0 .�/ for s > 1. We

define Ip;0G u on � 2 G by

�
I
p;0
G u�

�
.x/ WD

�bIp Ou�
�
ı ��1� .x/ 8x 2 � (4.224)
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with u� WD uj� , Ou� WD u� ı �� and the interpolation operator bIp from (4.73) for
the set of nodal points †p from Theorem 4.1.39. By Theorem 4.1.39 this operator
is well defined and satisfies

�bIp Ou�
�
.z/ D Ou� .z/ 8z 2 †p;

bIpq D q 8q 2 P O�p:

By Lemma 4.3.1 we have on the reference element




bIp Ou�




H t .O�/ �




bIp Ou�




HpC1.O�/ � c2

 ˇ̌
ˇbIp Ou�

ˇ̌
ˇ
HpC1.O�/ C

X
z2†p

ˇ̌
ˇ
�bIp Ou�

�
.z/
ˇ̌
ˇ
!

D c2
X

z2†p

jOu .z/j

� c2 kOukC0. O�/ � Cc2 kOukH s.O�/ :

Therefore Theorem 4.3.8 or Theorem 4.3.14 is applicable and for 1 < s � p C 1
and t 2 f0; 1g we obtain the estimate

8u 2 H s.�/ W
ˇ̌
ˇu� � Ip;0G u�

ˇ̌
ˇ
H t .�/

� Chs�t� ku�kH s.�/ : (4.225)

If we square (4.225) and sum over all � 2 Gaffine we obtain (4.223).
Part b: By using Lemma 4.1.49 we derive from Part a the estimate




u � Ip;0G u




H t .�/

� Chs�t kukH s.�/ (4.226)

for t 2 f0; 1g. We apply Proposition 2.1.62 with T D I �Ip;0G , Y0 D Y1 D H s .�/,
X0 D L2 .�/, X1 D H 1 .�/, and � D t 2 .0; 1/ to interpolate the inequality
(4.226). The result is

kT kH t .�/ H s.�/ � kT k1�tL2.�/ H s.�/ kT ktH1.�/ H s.�/

� �ChsG�1�t �Chs�1G
�t D Chs�tG

and this implies the assertion of Part b. �

Next we investigate the approximation property for functions in H s
pw .�/ for

0 � s � 1. Recall that H s
pw .�/ D H s .�/ in this case. In general, functions in

H s .�/ are not continuous and the application of the pointwise interpolation Ip;0G is
not defined. We will introduce the Clément interpolation operator QG W L1 .�/!
S
1;0
G for the approximation of functions in H s .�/ if 0 � s � 1 (cf. [69]). To avoid

technicalities, we consider only the case that all panels are (possibly curved) sur-
face triangles. Let I denote the set of panel vertices with corresponding continuous,
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piecewise linear nodal basis .bz/z2I . For z 2 I and � 2 G, we introduce local
meshes Gz and G� by

Gz WD f� 2 G j � � supp bzg , G� WD
˚
t 2 G j t \ � ¤ ;� :

The corresponding surface patches on � are denoted by

!z WD
[
�2Gz

� , !� WD
[
t2G�

t :

For functions f 2 L1 .�/ and z 2 I, the functional �z W L1 .�/! C is defined by

�z .f / WD 1

j!zj
Z
!z

f .y/ dsy:

Remark 4.3.23. For z 2 I, we set hz WD max�2Gz h� . There exists a constant C0
which depends only on the shape-regularity constant �G such that

hz � C0h� 8� 2 Gz:

Definition 4.3.24 (Clément interpolation). The Clément interpolation operator
QG W L1 .�/! S

1;0
G is given by

QGf WD
X
z2I

�z .f / bz:

The proof of the stability and the approximation property of the Clément inter-
polation employs local pullbacks to two-dimensional polygonal parameter domains
and then follows the classical convergence proof in the two-dimensional parameter
plane. The next assumption is illustrated in Fig. 4.7.

Assumption 4.3.25. (a) For any z 2 I, there is a two-dimensional convex and
polygonal parameter domain e!z � R2 along with a bi-Lipschitz continuous
mapping �z W e!z ! !z which satisfies: For any � 2 Gz, the pullback Q� WD

Fig. 4.7 Pullback of a surface patch to a two-dimensional parameter domain
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��1z .�/ is a plane panel with straight edges. The pullback Q� can be transformed
to the reference element O� by a regular, affine mapping which is denoted by
�affine.

(b) The reference mapping (see Definition 4.1.2) is denoted by �� W O� ! � , where
the reference element is always the unit triangle O� D bS2 because we only
consider triangular panels. For curved panels, Assumption 4.3.18 holds so that

�� D � ı �affine
�

where �affine
� is affine and � W U ! V is independent of G.

(c) For any � 2 G, the image �affine
� . O�/ is the plane triangle with straight edges

which has the same vertices as � , i.e., �affine
� is the componentwise affine

interpolation of �� .

Notation 4.3.26. If � , Q� , O� , �� , �affine
� , etc., appear in the same context their

relationships are always as in Assumption 4.3.25.

Let gz 2 L1 .e!z/ denote the surface element

gz .x/ WD
q

det
�
J|

z .x/ Jz .x/
� 8x 2 e!z a.e.,

where Jz denotes the Jacobian of �z. Let the constants �;‚ be defined by



g�1z




L1.e!z/

DW � je!zj
j!zj and kgzkL1. Q!z/

DW ‚ j!zj
je!zj : (4.227)

Lemma 4.3.27. Let Assumption 4.3.17 or Assumption 4.3.18 hold:

(a) Then, � , respectively ‚, in (4.227) can be bounded from below, respectively
from above, by constants which depend only on the shape-regularity of the mesh,
the ratios

c1 WD max
z2I max

�2Gz

	 j!zj
j� j

�
and C1 WD max

z2I max
�2Gz

	 j Q!zj
j Q� j

�
; (4.228)

and, for curved panels, on the global mapping � (cf. Assumption 4.3.10).
(b) There exists a constant C2 so that, for i 2 f1; 2g and any Qx 2 Q� � e!z, we have



@i ˚��� � �affine
�

� ı �affine .Qx/�

 � C2 diam Q�
2 j Q� j h

2
� : (4.229)

Proof. Proof of part a. Let � 2 Gz and Q� WD ��1z .�/. The restriction �z;� WD �zjQ�
can be written as

�z;� D �� ı �affine;

where �� W O� ! � is the reference mapping as in Definition 4.1.2 and O� is the unit
triangle as in (4.13). Further, �affine W Q� ! O� is some affine map. For x 2 � , let
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Ox WD ��1� .x/ and Qx WD ��affine
��1

.Ox/. Then

Jz;� .Qx/ D J� .Ox/ Jaffine .Qx/ ; (4.230)

where Jz;� , J� , Jaffine are the Jacobi matrices of �z;� , �� , �affine, and

gz .Qx/ D
q

det
�
J|

affine .Qx/G� .Ox/ Jaffine .Qx/
�

with G� .Ox/ WD J|
� .Ox/ J� .Ox/ :

We introduce Gaffine WD J|
affineJaffine and employ the multiplication theorem for

determinants to obtain

gz .Qx/ D jdet Jaffinej
p

det G� .Ox/ D
p

det G� .Ox/
2 j Q� j : (4.231)

If � is a plane triangle with straight edges then

p
det G� .Ox/ D 2 j� j :

For curved panels, we have �� D � ı �affine
� (cf. Assumption 4.3.10) and obtain by

arguing as in (4.231)

c�2
ˇ̌
� affine

ˇ̌ � pdet G� .Ox/ � C�2
ˇ̌
� affine

ˇ̌
with � affine WD �affine

� . O�/ ;

where the constants 0 < c� � C� depend only on �, i.e., are independent of the
discretization parameters. From this we derive, by using the bi-Lipschitz continuity
of � and the shape-regularity of the surface mesh, the estimate

2cc� j� j � 2c�h2� �
p

det G� .Ox/ � 2C�h2� � 2CC� j� j ;

where c; C depend only on the shape-regularity constant �G . Thus

cc�

c1

j!zj
je!zj � cc�

j� j
j Q� j � jgz .Qx/j � CC� j� jj Q� j � CC�C1

j!zj
je!zj :

Proof of part b. The statement is trivial for plane triangles with straight edges
because the left-hand side in (4.229) is zero.

Let z 2 I and assume that � 2 Gz is a curved panel. For any Qx 2 Q� � e!z, we
have



@i ˚��� � �affine
�

� ı �affine .Qx/�

 �
2X
jD1



@j ��� � �affine
�

�
.Ox/

 ˇ̌@i�affine

j .Qx/ˇ̌ ;
(4.232)

where Ox D �affine .Qx/ 2 O� .
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Let cTp�� denote the p-th order Taylor expansion of �� about the barycenter bM
of O� and let �affine

� D bI1�� be the affine interpolation at the vertices of O� . Then

����affine
� D

�
�� � bT1��

�
C
�bT1�� � �affine

�

�
D
�
�� � bT1��

�
CbI1

�bT1�� � ��
�
:

For k D 0; 1, this splitting leads to the estimate



�� � �affine
�




Ck. O�/ �

�
1C




bI1




Ck. O�/ Ck. O�/

�


�� � bT1��




Ck. O�/

:

Standard error estimates for two-dimensional Taylor expansions result in




�� � bT1��




C0. O�/

� 1

2
max
0�j�2




@j1@2�j2 ��





C0. O�/

:

Because @j bT1�� D bT0 �@j�� � we obtain




@j�� � @j bT1��




C0. O�/

D



@j�� � bT0@j��





C0. O�/

� max
0�i�1



@i1@1�i2 @j��



C0. O�/ :

Thus



�� � �affine
�




Ck. O�/ �

�
1C




bI1




Ck. O�/ Ck. O�/

�
max
0�j�2




@j1@2�j2 ��





C0. O�/

:

(4.233)

Next, we will estimate the first factor in (4.233). For any w 2 C 0
�
O�
�

, we have




bI1w




C0. O�/

D max
Ox is a vertex of O�

jw .Ox/j � kwk
C0.O�/ :

We denote the vertices of O� by bP 1 D .0; 0/, bP 2 D .1; 0/, bP 3 D .1; 1/ and the
values of a continuous function w at bP j by wj , 1 � j � 3. It is easy to see that




@1bI1w




C0. O�/

D jw2 � w1j � jw2 � w1j


bP 2 � bP 1



 � sup

Ox;Oy2O�
jw .Ox/ � w .Oy/j
kOx � Oyk � kwk

C1. O�/

and, similarly, we obtain the stability of the derivative @2. Hence we have proved
that the first factor in (4.233) is bounded from above by 2.

To estimate the second derivative of �� in (4.233) we write the mapping �affine
� in

the form
�affine
� .Ox/ D B� OxC b�

with the (constant) Jacobi matrix B� 2 R3�2 and b� 2 R3. The columns of B� are
denoted by a1; a2 2 R3. As in the proof of Lemma 4.3.6, we use
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@�
�
� ı �affine

�

� D X
ˇ2N3

0jˇ jD�1

X
�2N3

0j�jD�2

	Š

ˇŠ�Š
aˇ1 a�2

�
@ˇC��

�
ı �affine

� :

Next, we employ
ˇ̌
.B� /i;j

ˇ̌ � h� and obtain for any 	 2 N2
0 with j	j D 2

sup
Ox2O�

ˇ̌
@�
�
� ı �affine

�

�
.Ox/ˇ̌ � C3h2� ;

where C3 depends only on the derivatives of � which, by Assumption 4.3.10, are
independent of G. Thus we have proved that



�� � �affine
�




Ck. O�/ � 2C3h2� (4.234)

and it remains to estimate the last factor in (4.232). Because �affine is affine, it is
straightforward to show that J�1affine 2 R2�2 [cf. (4.230)] has column vectors B � A
and C � B, where A, B, C denote the vertices of Q� . Hence

Jaffine D 1

2 j Q� j
�
.C � B/2 � .C � B/1
� .B � A/2 .B �A/1

�
:

Consequently ˇ̌
@i�

affine
j

ˇ̌ � diam Q�
2 j Q� j : (4.235)

�
As a measure for the distortion of the local patches !z by the pullback, we

introduce the constant Cd by

Cd WD max
z2I

n
je!zj�1=2 diam e!z

o
: (4.236)

Theorem 4.3.28. Let Assumption 4.3.25 be satisfied.
There exist two constants c1, c2 depending only on the shape-regularity constant

�G [cf. (4.17)], the constants Cd and C1 [as in (4.228)], and, for curved panels, on
the global chart � so that

kv �QGvkL2.�/ � c1h� kvkH1.!� /
and kQGvkH1.�/ � Qc1 kvkH1.!� /

(4.237a)
for all v 2 H 1 .�/ and all triangles � 2 G. Also,

kv �QGvkH� .�/ � c2hs��G kvkH s.�/ and kQGkH s.�/ H s.�/ � Qc2
(4.237b)

for any 0 � � � s � 1 and v 2 H s .�/.
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Proof. We present the proof in eight steps (a)–(h).

(a) For z 2 I, let �z W e!z ! !z be the mapping as in Assumption 4.3.25. For
' 2 H 1 .!z/, the pullback to e!z is denoted by Q' WD ' ı �z. The Lipschitz
continuity of �z implies that Q' 2 H 1 .e!z/.

We consider �z .'/ 2 C as a constant function and obtain

k' � �z .'/k2L2.!z/
D
Z
Q!z

gz .Qx/ j Q' .Qx/ � �z .'/j2 d Qx: (4.238)

Case 1: First, we consider the case of flat panels with straight edges. Note that, for
any t 2 Gz and Qt WD ��1z .t/, we have gzjQt D jt j =

ˇ̌eT ˇ̌.
Let � 2 Gz. Then for any Qx 2 Q� D ��1z .�/

Q' .Qx/ � �z' D Q' .Qx/� 1

j!zj
Z
!z

' D Q' .Qx/� 1

j!zj
Z
Q!z

gz Q'

D Q' .Qx/� 1

j!zj
X
t2Gz

Z
Qt
gz Q' D Q' .Qx/� 1

j!zj
X
t2Gz

jt jˇ̌eT ˇ̌
Z
Qt
Q' (4.239)

D
X
t2Gz

jt j
j!zj . Q' .Qx/� �Qt Q'/

with �Qt Q' WD 1

jQtj
R
Qt Q'. Applying the L2-norm to both sides yields

k Q' � �z'kL2.Q�/ �
X
t2Gz

jt j
j!zj k Q' � �Qt Q'kL2.Q�/ : (4.240)

Because eT � e!z are both convex we may apply Corollary 2.5.12 to obtain

k Q' � �Qt Q'kL2.Q�/ � k Q' � �Qt Q'kL2.e!z/ �
 
1C

s
je!zjˇ̌Qt ˇ̌

!
diam e!z

�
j Q'jH1. Q!z/

�
�
1C

p
C1

� diam e!z

�
j Q'jH1. Q!z/

; (4.241)

where C1 is as in (4.228). Inserting this into (4.240) yields

k Q' � �z'kL2.Q�/ �
�
1C

p
C1

� diam e!z

�
j Q'jH1. Q!z/

:

We sum over all Q� � e!z and apply a Cauchy–Schwarz inequality to derive the
estimate

k Q' � �z'kL2. Q!z/
�
p

cardGz

�
1C

p
C1

� diam e!z

�
j Q'jH1. Q!z/

;
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where the number of panels .cardGz/ is bounded by a constant which depends only
on the shape-regularity of the surface mesh.

The combination with (4.238) leads to

k' � �z .'/kL2.!z/
�
q
kgzkL1. Q!z/

k Q' � �z'kL2. Q!z/

(4.227)� C4
p
j!zjdiam e!zpje!zj

j Q'jH1. Q!z/

� C4Cdhz j Q'jH1. Q!z/

with C4 WD
p
‚ cardGz

�
1CpC1

�
=� . From Lemma 4.3.6 resp. Lemma 4.3.13 we

obtain
j Q'j2H1. Q!z/

D
X
Q�
e!z

j Q'j2H1.Q�/ � C5
X
�2Gz

j'j2H1.�/
(4.242)

and, finally, for any � � !z

k'��z .'/kL2.!z/
�eC 6hz j'jH1.!z/

�C0eC 6h� j'jH1.!z/
with eC 6 D CdC4

p
C5:

(4.243)
Case 2: Next, we consider the general case of curved panels. As in (4.239) we derive

Q' � �z' D
X
t2Gz

jt j
j!zj

 
Q' � 1ˇ̌eT ˇ̌

Z
Qt

ˇ̌eT ˇ̌
jt j gz Q'

!

D
X
t2Gz

jt j
j!zj

(
. Q' � �Qt Q'/C

1ˇ̌eT ˇ̌
Z
Qt
dt Q'

)
(4.244)

with dt WD 1 � jeT jjt j gzjQt . The first difference in (4.244) can be estimated as in the
case of flat panels while, for the second one, we will derive an estimate of dt . We
use the notation as in Assumption 4.3.25 and employ the splitting

dt D
 
1 �

ˇ̌
t affine

ˇ̌
jt j

!
C 1

2 jt j
�
2
ˇ̌
t affine

ˇ̌� 2 ˇ̌eT ˇ̌ .gzjQt /
�
; (4.245)

where t affine D �affine
t . O�/ is the plane triangle with straight edges which interpolates

� at its vertices.
We start by estimating the second term in (4.245). We employ the representation

(4.231) for Gram’s determinant to obtain

2
ˇ̌eT ˇ̌ .gzjQt / D gt ;

where gt is Gram’s determinant of the reference map �t W O� ! t , i.e.
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gt D k@1�t � @2�tk :

The area 2
ˇ̌
t affine

ˇ̌
can be expressed by

2
ˇ̌
t affine

ˇ̌ D 

@1�affine
t � @2�affine

t



 DW gaffine
t (4.246)

Hence

ˇ̌
2
ˇ̌
t affine

ˇ̌� 2 ˇ̌eT ˇ̌ .gzjQt /
ˇ̌D ˇ̌gaffine

t � gt
ˇ̌D ˇ̌

@1�affine

t � @2�affine
t



�k@1�t � @2�tkˇ̌
(4.247)

� 

@1�affine
t � @2�affine

t � .@1�t � @2�t /




� 

@1 ��t � �affine
t

� � @2�t


C 

@1�affine

t � @2
�
�t � �affine

t

�

 :
We employ (4.234) to obtain

ˇ̌
2
ˇ̌
t affine

ˇ̌ � 2 ˇ̌eT ˇ̌ .gzjQt /
ˇ̌ � 2C3h2t

�
k@2�tkL1

�b�� C


@1�affine

t




L1.O�/

�
:

The estimate


@1�affine

t




L1. O�/ � ht is obvious because t affine interpolates t in its

vertices. For the other term, we use

k@2�tkL1. O�/ D







3X
jD1

�
@j� ı �affine

t

�
@2
�
�affine
t

�
j








L1. O�/

� Cht ;

whereC depends only on the global chart � but not on the discretization parameters.
In summary we have proved that

ˇ̌ˇ̌
t affine

ˇ̌ � ˇ̌eT ˇ̌ .gzjQt /
ˇ̌

jt j � C3Cht

c
;

where c depends only on the shape-regularity of the mesh and the global chart �.
The first term of the sum in (4.245) can be estimated by using (4.247)

ˇ̌
ˇ̌
ˇ1 �

ˇ̌
t affine

ˇ̌
jt j

ˇ̌
ˇ̌
ˇ D

ˇ̌
ˇ̌
ˇ
jt j � ˇ̌t affine

ˇ̌
jt j

ˇ̌
ˇ̌
ˇ � jt j�1

Z
O�

ˇ̌
gt � gaffine

t

ˇ̌
dx

� C3Ch
3
t

jt j � C3Cht

c
:

This finishes the estimate of dt
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jdt j � 2C3C
c
ht :

Inserting this into (4.244) and proceeding as in the case of flat panels yields

k Q' � �z'kL2.Q�/ �
X
t2Gz

jt j
j!zj k Q' � �Qt Q'kL2.Q�/ C

X
t2Gz

jt j
j!zj2

C3C

c
ht

s
j Q� jˇ̌eT ˇ̌ k Q'kL2. QT /

(4.241)�
�
1C

p
C1

� diam e!z

�
j Q'jH1. Q!z/

C 2C3C
p
C1

c
hz k Q'kL2. Q!z/

:

We sum over all Q� � e!z and apply a Cauchy–Schwarz inequality to derive the
estimate

k Q' � �z'kL2. Q!z/
�
p

cardGz

( �
1C

p
C1

� diam e!z

�
j Q'jH1. Q!z/

C 2
C3C
p
C1

c
hz k Q'kL2. Q!z/

)
:

From Lemma 4.3.6 resp. Lemma 4.3.13 we obtain the scaling relations

j Q'j2H1. Q!z/
�C5 j'j2H1.!z/

and Qc5 je!zj
j!zj k'k

2
L2.!z/

�k Q'k2L2. Q!z/
�eC 5 je!zj

j!zj k'k
2
L2.!z/

and, finally, for any � � !z

k' � �z'kL2.!z/
� bC 6hz k'kH1.!z/

� C0bC 6h� k'kH1.!z/
; (4.248)

where bC 6 depends on C1, Cd, C5, Qc5, eC 5, and cardGz. Let C6 WD max
neC 6;bC 6

o
[cf. (4.243)].

(b) Let � 2 G. The set of vertices of � is denoted by I� . Then

X
x2I�

bx D 1 on �:

By using Step a, we derive

k' �QG'kL2.�/ D







X
z2I�

bz .' � �z .'//








L2.�/

�
X
z2I�

kbz .' � �z .'//kL2.�/

�
X
z2I�

k' � �z .'/kL2.�/ �
X
z2I�

k' � �z .'/kL2.!z/
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� C0C6h�
X
z2I�

k'kH1.!z/

� p3C0C6h�
sX

z2I�

k'k2H1.!z/
(4.249)

� p3C0C6h�
sX
t2!�

X
z2I� Wt
!z

k'k2H1.t/

� C7h� k'kH1.!� /
(4.250)

with C7 WD 3C0C6.
(c) By summing over all panels we obtain

k' �QG'k2L2.�/
D
X
�2G
k' �QG'k2L2.�/

� C 27 h2G
X
�2G
k'k2H1.!� /

D C 27 h2G
X
t2G

X
�2GWt
!�

k'k2H1.t/ � C 28 h2G k'k2H1.�/ ;

where C8 D C7C 1=2]
and

C] WD max
t2G card f� 2 G W t � !� g

depends only on the shape-regularity constant.

(d) For the L2 .�/-stability we repeat the first steps of (4.249) to obtain

kQG'kL2.�/ �
X
z2I�

k�z .'/kL2.!z/
:

The Cauchy-Schwarz inequality yields

j�z .'/j � j!zj�1=2 k'kL2.!z/

and as in (4.250) we derive

kQG'kL2.�/ �
X
z2I�

k'kL2.!z/
� p3 k'kL2.!� /

: (4.251)

A summation as in Step c results in theL2 .�/-stability of the Clément interpolation
operator

kQG'kL2.�/ �
p
3C] k'kL2.�/ : (4.252)
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(e) From Step c and Step d we conclude that

k' �QG'kL2.�/ � C9 k'kL2.�/ and k' �QG'kL2.�/ � C8hG k'kH1.�/

hold with C9 WD 1 C p
3C]. Hence the approximation result for the intermedi-

ate Sobolev spaces H s .�/, s 2 �0; 1Œ, follows by interpolation as in the proof of
Theorem 4.1.33.

(f) For the local H 1-stability we proceed as in Step d, respectively as in (4.249).
Recall the definition of the surface gradient as in (4.200) and (4.201) to derive

jQG'jH1.�/ D







X
z2I�

�z .'/rSbz








L2.�/

D







X
z2I�

�
�z .'/ � �z0

.'/
�rSbz








L2.�/

(4.253)

for any fixed z0 2 I� . Let N'� WD 1
j!� j

R
!�
'. Then �z . N'� / D �z0

. N'� / D N'� and

ˇ̌
�z .'/ � �z0

.'/
ˇ̌ � j�z .'/ � �z . N'� /j C

ˇ̌
�z0

. N'� /� �z0
.'/
ˇ̌

�
ˇ̌
ˇ̌ 1
j!zj

Z
!z

.' � N'� /
ˇ̌
ˇ̌C

ˇ̌
ˇ̌
ˇ
1ˇ̌
!z0

ˇ̌
Z
!z0

. N'� � '/
ˇ̌
ˇ̌
ˇ

� k' � N'�kL2.!z/

j!zj1=2
C
k' � N'�kL2.!z0/ˇ̌

!z0

ˇ̌1=2 :

In a similar fashion to (4.243) and (4.248) one derives forD 2 ˚!z; !z0

�

k' � N'�kL2.D/ � k' � N'�kL2.!� /
� eC 7 .diam!� / k'kH1.!� /

:

Hence ˇ̌
�z .'/ � �z0

.'/
ˇ̌ � C10 k'kH1.!� /

; (4.254)

whereC10 depends only on the shape-regularity constant and the global parametriza-
tion �.

In Theorem 4.4.2 (with ` D 1 and m D 0), we will prove the inverse inequality
and, thus, obtain the estimate

krSbzkL2.�/ � Ch�1� kbzkL2.�/ � Ch�1� j� j1=2 � C11; (4.255)

where C11 depends only on the shape-regularity of the mesh and the global
parametrization �.

By inserting (4.254) and (4.255) into (4.253) we derive

jQG'jH1.�/ � 3C10C11 k'kH1.!� /
:
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The combination with (4.251) leads to the local stability with respect to the k�kH1.�/-
norm and a summation over all panels as in Step c results in the globalH 1-stability

kQG'kH1.�/ � C12 k'kH1.�/ :

(g) Applying Proposition 2.1.62 with X0 D Y0 D L2 .�/ and X1 D Y1 D H 1 .�/

we obtain by interpolation of (4.252)

kQGkH s.�/ H s.�/ � kQGk1�sL2.�/ L2.�/
kQGksH1.�/ H1.�/

� C13

with C13 WD
�
3C]

� 1�s
2 cs12.

(h) Part e and g imply that

k' �QG'kL2.�/�C8hsGk'kH s.�/ and k'�QG'kH s.�/ � .1C C13/k'kH s.�/ :

We apply Proposition 2.1.62 with T D I �QG , Y0 D Y1 D H s .�/, X0 D L2 .�/,
X1 D H s .�/, and � D �=s 2 Œ0; 1� to interpolate these two inequalities. The
result is

kT kH� .�/ H s.�/ � kT k1��L2.�/ H s.�/ kT k�H s.�/ H s.�/ �
�
C8h

s
G
�1��

.1C C13/�
D C14hs��G

with C14 WD C 1��=s8 .1C C13/�=s and this implies the first estimate in (4.237b). �

In Sect. 9 we will need an estimate of the surface metric on !z compared with
the two-dimensional Euclidean metric on e!z. Since!z may consist of several panels,
the local Assumptions 4.3.17 and 4.3.18 have to be supplemented by the following,
more global Assumption 4.3.29 which states that � has to satisfy a cone-type con-
dition and that the minimal angle of the surface mesh has to be bounded below by a
positive constant (see Fig. 4.8).

Assumption 4.3.29. 1. For all � 2 G, x 2 �n� and y 2 � , there exist c > 0 and an
x0 2 � such that

kx � x0k D dist .x; �/ and kx � yk2 � c
�
kx � x0k2 C kx0 � yk2

�
:

Fig. 4.8 Illustration of the cone and the angle condition for the surface mesh
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2. For all �; t 2 G whose intersection consists of at most one point, there exists a
point p of t such that

kx � yk � c .kx � pk C kp� yk/ 8x 2 �;8y 2 t:

3. For all �; t 2 G with exactly one common edge � \ t D E and for all x 2 � , y 2 t
there exists a point p 2 E such that

ky � xk � c .ky � pk C kp� xk/ :

Lemma 4.3.30. Let Assumption 4.3.29 be satisfied and let Assumption 4.3.17 or
Assumption 4.3.18 hold. Then

c kQx � Qyk � diam e!z

hz
k�z .Qx/ � �z .Qy/k � C kQx � Qyk 8Qx; Qy 2 e!z;

where C depends only on the global chart � but is independent of the surface mesh.

Proof. (a) Let � 2 Gz be a surface triangle with vertices A, B, C. First, we will prove
the statement for Qx, Qy 2 Q� D ��1z .�/.

Let � affine WD �affine
� . O�/ be the plane triangle with straight edges which interpo-

lates � in its vertices. Note that �
�
� affine

� D � . Hence

� .x/� � .y/ D J� .w/ .x � y/ 8x; y 2 � affine

where J� 2 R3�3 is the Jacobi matrix of the global chart � and w is some point in
xy. Note that the largest and the smallest eigenvalues �max and �min of the positive
definite Gram matrix G� depend only on the global chart � and are, in particular,
independent of the discretization parameters. Thus

p
�min kx � yk � k� .x/� � .y/k �

p
�max kx � yk 8x; y 2 � affine:

Let Gaffine
� 2 R2�2 denote the (constant) Gram matrix of �affine

� . From Lemma 4.3.5
we conclude that



�affine
� .Ox/ � �affine

� .Oy/

 D ˝Gaffine
� .Ox � Oy/ ; .Ox � Oy/˛1=2 � p2h� kOx � Oyk

for all Ox; Oy 2 O� . Because the matrix Gaffine
� is symmetric and positive definite, its

minimal eigenvalue �affine
min can be expressed by

�affine
min D




�Gaffine
�

��1


�1 :
We employ Lemma 4.3.5 to obtain



�affine
� .Ox/ � �affine

� .Oy/

 � ch� kOx � Oyk
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for all Ox; Oy 2 O� , where C depends only on the shape-regularity of the mesh. Thus
we have proved that

c
p
�minh� kOx � Oyk � k�� .Ox/ � � .Oy/k �

p
2�maxh� kOx � Oyk

for all Ox; Oy 2 O� . Finally, we replace Ox and Oy by �affine .Qx/ and �affine .Qy/. From (4.235)
we derive the estimate for the largest eigenvalue �max

	 of the Gram matrix G	 of
�affine q

�max
	

(4.235)� p
2

diam Q�
2 j Q� j � C diam�1 Q�;

where C depends only on the shape-regularity constant and the global chart �.
For the smallest eigenvalue we use

G�1	 D
� kQe1k2 hQe1; Qe2i
hQe1; Qe2i kQe2k2

�
;

where eA;eB;eC denote the vertices of Q� and Qe1 D eB �eA, e2 D eC �eB. Thus



G�1	


 � 2 diam Q�

and the minimal eigenvalue �min
	 satisfies

q
�min
	 D



G�1	


�1=2 � 1p

2 diam Q� :

The combination of these estimates leads to

c
h�

diam Q� kQx � Qyk � k�z .Qx/� �z .Qy/k � C h�

diam Q� kQx � Qyk 8Qx; Qy 2 Q�:
(4.256)

(b) We assume that Gz contains more than one panel and consider the case that x
and y belong to different panels �; t 2 Gz. Note that

c
hz

diam e!z
� h�

diam Q� � C
hz

diam e!z
8� 2 Gz;

where c and C depend only on the global chart � and the shape-regularity
constant. Assumption 4.3.29 implies that one of the following two cases is
satisfied:

(i) The panels � and t share exactly one common edge � \ t D E . Then there
exists a point p 2 E such that

ky � xk � c .ky � pk C kp � xk/ :
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The combination of (4.256) and a triangle inequality leads to

ky � xk � Qc hz

diam e!z
.kQy � Qpk C kQp � Qxk/ � Qc hz

diam e!z
kQy � Qxk

with Qp WD ��1z .p/. For the upper estimate we use QxQy � e!z since e!z is
convex. Let .epi /qiD0 be the minimal number of points lying on QxQy such that

Qp0 D Qx; Qpq D y; and 81 � i � q W Qpi�1 Qpi is contained in some Q� � e!z:

Let pi D �z . Qpi /, 1 � i < q. Then the upper estimate follows from

ky � xk�
qX
iD1
kpi � pi�1k�C hz

diam e!z

qX
iD1
kQpi � Qpi�1k D C hz

diam e!z
kQy � Qxk :

(ii) � and t share exactly one common point fzg D � \ t . Then

kx � yk � c .kx � zk C kz � yk/

and the rest of the proof is just a repetition of the arguments as in Case i. �

Lemma 4.3.31. Let Assumption 4.3.17 or Assumption 4.3.18 be satisfied. For � 2
Gz, let �z;� WD �zjQ� , where Q� WD ��1z .�/. Then, for any 	 2 N2

0 with k WD j	j,

k@��z;�kL1.Q�/ � C
�

hz

diam e!z

�k
;

where C depends only on k, C1 as in (4.228), Cd as in (4.236), and the global
chart �.

Proof. Recall that �z;� D � ı �affine, where �affine D �affine
� ı �affine is affine. As in the

proof of Lemma 4.3.6, we use

@�
�
� ı �affine� D X

ˇ2N2
0jˇ jD�1

X
�2N2

0j�jD�2

	Š

ˇŠ�Š
aˇ1 a�2

�
@ˇC��

�
ı �affine;

where a1, a2 are the column vectors of the Jacobi matrix of �affine, that is,

.ai /j D @j �affine
i D

2X
kD1

@k�
affine
�;i @j �

affine
j :
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We have
ˇ̌
ˇ@k�affine

�;i

ˇ̌
ˇ � h� and from (4.235) we conclude that

ˇ̌
ˇ@i�affine

j

ˇ̌
ˇ �

diam Q�= .2 j Q� j/. This leads to
ˇ̌
.ai /j

ˇ̌ � h� diam Q�= j Q� j. Thus

ˇ̌
@�
�
� ı �affine

�ˇ̌ � C
�
h� diam Q�
j Q� j

�k
� C

�
C1Cd

hz

diam e!z

�k
;

where C depends only on k and the global chart �. �

4.4 Inverse Estimates

The spaces H s.�/ form a scale:

H s.�/ � H t .�/; for t � s (4.257)

with a continuous embedding: there exists some C.s; t/ > 0 such that

kukH t .�/ � C.s; t/ kukH s.�/ ; 8u 2 H s.�/: (4.258)

Note that the range of s and t may be bounded by the smoothness of the surface (see
Sect. 2.4). In general, the inverse of this inequality is false.

Exercise 4.4.1. Find a sequence of functions .un/n2N 2 C1 .Œ0; 1�/ which contra-
dicts the inverse of (4.258) for s D 0 and t D 1, i.e., which satisfies

lim
n!1 kunkH1.Œ0;1�/ = kunkL2.Œ0;1�/ D 1:

However, for boundary element functions there is a valid inverse of (4.258), a
so-called inverse inequality, where the constant C depends on the dimension of the
boundary element space. In the following we will assume that the maximal mesh
width h is bounded above by a global constant h0. For example, we can choose
h0 D diam� or otherwise h0 D 1 for sufficiently fine surface meshes. Recall the
definition of P �

k
as in (4.67):

Theorem 4.4.2. Let either Assumption 4.3.17 or Assumption 4.3.18 hold. We have
for 0 � m � `, all � 2 G and all v 2 P �

k
:

kvkH`.�/ � Chm�`� kvkHm.�/ :

The constant C depends only on h0, `, k and, for a polyhedral surface, on the
shape-regularity of the mesh G via the constant �G from Definition 4.1.12. In the case
of a curved surface it also depends on the derivatives of the global transformations
�, ��1 up to the order k.
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Proof. Owing to the h-independent equivalence of the norms kvkH`.�/ and
kQvkH`.�affine/ from Corollary 4.3.12, it suffices to consider the case of a plane
polyhedral surface.
Case 1: m D 0. Since P �

k
is finite-dimensional, all norms on P �

k
are equivalent:

There exists a positive constant C` such that for 0 � j � `

kOvkHj . O�/ � C` kOvkL2.O�/ 8Ov 2 P O�k :

With Lemma 4.3.6 or Lemma 4.3.13 it follows for all v 2 P �
k

that

jvjHj .�/ � C1h1�j� jOvjHj . O�/ � C`C1h1�j� kOvkL2. O�/ � C`C1C2h�j� kvkL2.�/ :

For the k�kH` -norm, by summing the squares of the seminorm we obtain

kvkH`.�/ � Ch�`� kvkL2.�/ ; (4.259)

where C depends on `, k and the upper bound of the mesh width h0.
Case 2: 0 < m � `. For ` �m � n � ` and j˛j D n we write @˛v D @ˇ@˛�ˇ with
jˇj D ` �m and ˇ � ˛ componentwise. Then with Case 1 we have

k@˛vkL2.�/ �
ˇ̌
ˇ@˛�ˇ v

ˇ̌
ˇ
H`�m.�/

� Chm�`�




@˛�ˇ v




L2.�/

� Chm�`� jvjHn�`Cm.�/ :

Since j˛j D n was arbitrary, this result and n � `Cm � m together yield

jvjHn.�/ � Chm�`� jvjHn�`Cm.�/ � Chm�`� kvkHm.�/ (4.260)

for an arbitrary ` � m � n � `. (Note that the constant C in (4.260) depends on
n;m; and `. However, n and m are from the finite set f0; 1; : : : ; `g and – by taking
the maximum over n and m – results in a constant C which does not depend on
n and m but on ` instead.) Inequality (4.259) for `  ` � m as well as Estimate
(4.260) finally yield the assertion

kvk2
H`.�/

D kvk2
H`�m.�/

C
mX

nD`�mC1
jvj2Hn.�/

� C
8<
:h2.m�`/� kvk2L2.�/

C
mX

nD`�mC1
h2.m�`/� kvk2Hm.�/

9=
;

� Ch2.m�`/� kvk2Hm.�/ :

�
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The global version of Theorem 4.4.2 requires the quasi-uniformity of the surface
mesh G.

Theorem 4.4.3. Let either Assumption 4.3.17 or Assumption 4.3.18 hold. Then we
have for all t; s 2 f0; 1g, t � s, the estimate

8v 2 Sp;0G W kvkH s.�/ � Cht�skvkH t .�/: (4.261)

The constant C depends only on h0, p and, for a polyhedral surface, on the shape-
regularity and quasi-uniformity of the mesh G via the constants �G and qG from
Definitions 4.1.12 and 4.1.13. In the case of a curved surface it also depends on the
derivatives of the global transformations �, ��1 up to the order k.

Proof. From Theorem 4.4.2 we have

kvk2H s.�/ D
X
�2G
kvk2H s.�/ � C

X
�2G

h2.t�s/� kvk2H t .�/ � C
�

min
�2G h�

�2.t�s/
kvk2H t .�/

�
�
Cq

2.s�t/
G

�
h2.t�s/ kvk2H t .�/ :

�
Theorem 4.4.3 can be generalized in various ways. In the following we will cite

results from [75].

Remark 4.4.4. (a) Theorem 4.4.3 holds for all t; s 2 R with 0 � t � s � 1 or
�1 � t � 0 ^ s D 0 (see [75, Theorems 4.1, 4.6]).

(b) Theorem 4.4.3 is valid for the space Sp;�1G for all t; s 2 R with t D 0 ^ 0 �
s < 1=2 or �1 � t � 0 ^ s D 0 (see [75, Theorems 4.2, 4.6]).

We will also require estimates between different Lp-norms and discrete `p-
norms for boundary element functions and, thus, we again start with a local result.
Here we will always consider the situation where a Lagrange basis is chosen for P O�

k

on O� . †
 D
nbPi W i 2 � O�k

o
denotes the set of nodal points onb� . The Lagrange basis�bN i

�
i2
 O�

k

of P O�
k

satisfies

bN i

�bPj
�
D ıi;j 8i; j 2 � O�k :

A vector of coefficients w WD .wi /i2
 O�
k

is put into relation with the associated

polynomial Ow 2 P O�
k

on the reference element by means of

Ow WD bPw WD
X
i2
 O�

k

wibN i :
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We define the “lifted” function

w WD P�w WD
X
i2
 O�

k

wiNi with Ni D bN i ı ��1�

analogously.

Theorem 4.4.5. Let either Assumption 4.3.17 or Assumption 4.3.18 hold. For all
� 2 G and all w WD .wi /i2
 O�

k

we have

Qch� kwk`2 � kP�wkL2.�/ � eCh� kwk`2 :

The constants Qc and eC depend on the parameters qualitatively in the same way as
does C in Theorem 4.4.3.

Proof. From Lemma 4.3.6 or Lemma 4.3.13 we have

ch� k OwkL2
�b�� � kwkL2.�/ � Ch� k OwkL2

�b�� with Ow WD w ı �� :

Since all norms are equivalent on P O�
k

, we have

ck k OwkHkC1. O�/ � k OwkL2. O�/ � Ck k OwkHkC1
�b�� :

The equivalence of the H kC1 . O�/-norm and the Œ��kC1-norm follows from Lemma
4.3.1. Since Ow 2 P O�

k
,

Œ Ow�kC1 D j OwjHkC1.O�/C
X

z2†k

j Ow .z/j D
X

z2†k

j Ow .z/j D
X
i2
 O�p
jwi j D kwk`1 : (4.262)

Since ]†k is finite, there exist positive constants c; C depending only on the
cardinality of †k , i.e., on k, such that

c kwk`2 � kwk`1 � C kwk`2 :

Combining all these results, we have thus proved that

Qch� kwk`2 � kwkL2.�/ � eCh� kwk`2 :

�

Corollary 4.4.6. Let the conditions from Theorem 4.4.5 be satisfied. Then

Och� kwkL1.�/ � kwkL2.�/ � bCh� kwkL1.�/
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for all w 2 P �
k

. The constants Oc;bC qualitatively depend on the parameters in the
same way as do Qc;eC in Theorem 4.4.3.

Proof. If we combine Theorem 4.4.5 with the norm equivalence on finite-
dimensional spaces for w D .wi /i2
 O�p and w D P�w it follows that

kwkL2.�/ � Ch� kwk`2 � bCh� kwk`1 � bCh� kwkL1.�/ :

Conversely, with the notation from the proof of Theorem 4.4.5 we have

kwkL1.�/ D k OwkL1.O�/ � C k OwkHkC1.O�/ � C 0 Œ Ow�kC1 (4.262)D C 0 kwk`1

� C 00 kwk`1 � C 000 kwk`2 :

Note that the constants in this estimate depend on the cardinality of †k , i.e., on k.
From Theorem 4.4.5 we thus have the lower bound. �

The global version of Theorem 4.4.5 shows an equivalence between boundary
element functions and the associated coefficient vector. Let .bi /

N
iD1 be the Lagrange

basis of the boundary element space S . We define the operator P W RN ! S for
w D .wi /NiD1 by

Pw D
NX
iD1

wibi :

Theorem 4.4.7. Let Assumption 4.3.17 or Assumption 4.3.18 hold. Then for all
w 2 RN

Lch kwk`2 � kPwkL2.�/ � LCh kwk`2 :

The constants Lc; LC qualitatively depend on the parameters in the same way as Qc;eC
do in Theorem 4.4.5.

Proof. Let w 2 RN be the coefficient vector of the boundary element function
w D Pw. For � 2 G we can associate a global index ind .m; �/ 2 f1; 2; : : : ; N g
on � with every local degree of freedom m 2 � O�

k
. We set w� WD .w�;m/m2
 O�

k

WD�
wind.m;�/

�
m2
 O�

k

. With Theorem 4.4.5 we obtain

kPwk2L2.�/ D
X
�2G
kP�wk2L2.�/ � Ch2

X
�2G
kw�k2`2 :

The constant

M WD max
i2f1;2;:::;N g

]
n
.m; �/ 2 � O�p � G W i D ind .m; �/

o
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depends only on the polynomial degree k and on the shape-regularity of the surface
mesh. It thus follows that

kPwk2L2.�/
� CMh2 kwk2`2 :

The lower bound can be found in a similar way. �

Corollary 4.4.8. Let either Assumption 4.3.17 or Assumption 4.3.18 hold and let
.bi /i2I denote the nodal basis for the boundary element space S . Then

kbikL1.�/ � MC1: (4.263)

The constant MC1 depends only on the shape-regularity of the mesh and the polyno-
mial degree of S .

If S D Sk;0G for some k � 1 then

jbi jW 1;1.�/ WD krSbikL1.�/ � MC2h�1� for any � � supp bi : (4.264)

The full W 1;1 .�/-norm is given by k�kW 1;1.�/ WD max
˚k�kL1.�/ ; j�jW 1;1.�/

�
and hence

kbikW 1;1.�/ � MC3h�1� for any � � suppbi : (4.265)

Proof. Let ei 2 RI denote the vector with .ei /i D 1 and .ei /j D 0 otherwise, i.e.,
bi D P ei , Let � � supp bi . The combination of Corollary 4.4.6 and Theorem 4.4.5
leads to

kbikL1.�/ � . Och� /�1 kbikL2.�/ � eC= Oc:
Because bi j� D 0 for all � 2 Gi with � 6� suppbi we have proved (4.263).

For the proof of the second estimate we observe that – as in the proof of Theo-
rem 4.4.3 – it suffices to consider plane panels with straight edges. Hence rSbi is a
polynomial on every panel � so that

Och� krSbikL1.�/

Cor. 4.4.6� krSbikL2.�/

Theo. 4.4.2� Ch�1� kbikL2.�/

Theo. 4.4.5� CeC keik`2 D CeC
from which the assertion follows. �

We can also analyze how far the constants in the norm equivalences depend on
the mesh width h in the case of the `p and Lp .�/-norms with 1 � p � 1. Here
we will only require the cases p D 2 and p D 1 and refer to [75] for the more
general case.
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4.5 Condition of the System Matrices

One of the first applications of the inverse inequalities is the estimation of the
condition of the system matrices of the integral operators.

Lemma 4.5.1. Let Assumption 4.3.17 or Assumption 4.3.18 hold. Let K be the sys-
tem matrix associated with the Galerkin discretization of the single layer operator
V for the Laplace problem. Then we have

cond2.K/ � Ch�1:

The constant C depends only on the polynomial degree p and the shape-regularity
and the quasi-uniformity of the surface mesh G, more specifically on the constants
�G and qG from Definitions 4.1.12 and 4.1.13. In the case of curved surfaces it also
depends on the derivatives of the global transformations �, ��1 up to the order k.

Proof. Since K is symmetric and positive definite, we have

cond2.K/ D �max.K/
�min.K/

:

In the following we will thus estimate the eigenvalues of K. It follows from the
continuity and the H�1=2-ellipticity of the bilinear form .V �; �/0 W H�1=2 .�/ �
H�1=2 .�/! K that there exist two positive constants � and Cc such that

� kuk2H�1=2.�/
� .V u; u/0 � Cc kuk2H�1=2.�/

8u 2 H�1=2 .�/ :

From this it follows with Theorem 4.4.7 that

�max .K/ D max
wD.wi /i2RN nf0g

hKw;wi
kwk2 � Ch2 max

w2Snf0g
.V w;w/0
kwk2L2.�/

� Ch2Cc max
w2Snf0g

kwk2
H�1=2.�/

kwk2L2.�/

� Ch2Cc:

By Theorem 4.4.7 and Remark 4.4.4 we have for the smallest eigenvalue

�min .K/ D min
wD.wi /i2RN nf0g

hKw;wi
kwk2 � Ch2 min

w2Snf0g
.V w;w/0
kwk2L2.�/

� Ch2� min
w2Snf0g

kwk2
H�1=2.�/

kwk2L2.�/

� C 0h2�h:

Thus
�max .K/ =�min .K/ � Ch�1

and the lemma follows. �
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Exercise 4.5.2. Show that the system matrix K associated with the hypersingular
operator also satisfies the estimate

cond2 .K/ � Ch�1

under the conditions of Lemma 4.5.1.

Remark 4.5.3. For the condition of the mass matrix M WD
��
bi ; bj

�
L2.�/

�N
i;jD1

we have
cond2 .M/ � C:

Proof. Since
hw;Mwi D .Pw; Pw/L2.�/

we can apply Theorem 4.4.7:

Lc2h2 � min
w2RN nf0g

hMw;wi
kwk2 � max

w2RN nf0g
hMw;wi
kwk2 � LC 2h2;

from which we have the estimate of the condition with C D LC 2= Lc2. �

Estimating the condition of system matrices for equations of the second kind is
more problematic, as the stability of the Galerkin discretization for these equations
is in many cases still an open question. If we assume that the h-independent stability
of the discrete operators is given, the condition of the system matrices for equations
of the second kind can be determined in terms of an h-independent constant in the
same way as before.

4.6 Bibliographical Remarks and Further Results

In the present chapter, we introduced spaces of piecewise polynomial functions
on the boundary manifold � , and established approximation properties of these
spaces, as the meshwidth h tends to zero, in several function spaces of Sobolev
type on � . These boundary element spaces are, in a sense, Finite Element spaces
on the boundary surface � . We also presented a general framework for the conver-
gence analysis of Galerkin boundary element methods, in particular necessary and
sufficient conditions for the quasi-optimality of the Galerkin solutions to hold.

For reasons of space, our presentation does not cover the most general cases.
For example, the surface meshes upon which the boundary element spaces are built
did not allow for local mesh refinement or, more importantly, for anisotropic local
refinements for example in the vicinity of edges (see, e.g., [75, 87, 234]).

Most of our results do extend to so-called graded, anisotropic meshes (cf. [104,
107, 108]). In addition, besides mesh refinement, analogs of spectral methods or
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even a combination of mesh refinement and order increase, the so-called hp-Version
BEM; is conceivable (cf. [222] and the references therein).

Further, for particular classes of boundary integral equations, special choices of
subspaces may yield large gains in accuracy versus number of degrees of freedom.
Let us mention, for example, the case of high frequency acoustic scattering. Here,
the stability of the boundary integral operators depends, of course, on the problem’s
wave number but, in addition, also the solutions contain high-frequency compo-
nents which are smooth, but highly oscillatory at large wave numbers, and therefore
poorly captured by standard boundary element spaces, unless the fine scale of the
unknown functions on the boundary is resolved by sufficient mesh refinement. This
strategy may lead, however, to prohibitively large numbers of degrees of freedom.
A better approach may be to augment the standard boundary element spaces by
explicitly known, dominant asymptotic components of the unknown solution. In
high frequency acoustics and electromagnetics, in particular for BIEs obtained from
the direct method (where the unknowns are Cauchy data of the domain unknowns),
strong results on the asymptotic structure of the solution are available from geo-
metrical optics. These can be used to build boundary element spaces with no or
a reduced preasymptotic convergence regime at high wave numbers. We refer e.g.
to [5, 57, 153] for recent work on wave number independent Galerkin BEM for
acoustics problems.

In this chapter, and throughout this book, we focused on Galerkin BEM. We do
emphasize, however, that the alternative collocation BEM do constitute a powerful
competition; for collocation BEM on polyhedra, however, the theory of stability and
quasi-optimality is much less mature that in the Galerkin case. Still, since colloca-
tion methods do not require the numerical evaluation of double surface integrals,
they offer a substantial gain in accuracy versus CPU time.

For this reason, in recent years substantial work has been devoted to collocation
based BIEs for high frequency acoustic and electromagnetic scattering. We mention
in particular the work of O. Bruno et al. (e.g. [34,35,161]) which is a collocation type
boundary element method which combines incorporation of high frequency asymp-
totics with a degenerate coordinate transformation of the surface in the presence of
edges or vertices and a Nyström type collocation procedure. The mathematical error
analysis of this method is in progress.

The a priori asymptotic error bounds for Galerkin BEM developed in Sect. 4.2
show that Galerkin BEM exhibit superconvergence in negative Sobolev norms on
� . This allows us, in particular, to deduce corresponding results for postprocessed
Galerkin approximations which can be obtained as smooth functionals of the solu-
tion. Importantly, the insertion of the Galerkin solution into the representation
formula is such a postprocessing operation. Therefore superconvergent pointwise
approximations of the solution to the underlying boundary value problem at interior
points of the domain result usually from Galerkin boundary element approxi-
mations. Note that our analysis in Sect. 4.2 reveals the crucial role of Galerkin
orthogonality of the discretization in the derivation of superconvergence estimates
in negative order norms (indeed, for other discretization schemes such as colloca-
tion or Nyström methods, such superconvergence results either do not hold or only



4.6 Bibliographical Remarks and Further Results 287

with a much smaller gain in asymptotic convergence order). We finally note that
the superconvergence error bounds for the solution at points x in the interior of
both the domain � or its complement deteriorate as x approaches � . Nevertheless,
this deterioration can be remedied and postprocessing procedures can be designed
to recover superconvergent solution values and normal and tangential derivatives
(required, for example, in shape optimization or uncertainty quantification) of arbi-
trary order from the Galerkin solution such that the superconvergence bounds are
uniform in the distance of x to the boundary � . For the details, we refer to [213].
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