Chapter 4
Boundary Element Methods

In Chap.3 we transformed strongly elliptic boundary value problems of second
order in domains Q C R?3 into boundary integral equations. These integral equations
were formulated as variational problems on a Hilbert space H:

Findu € H: b, v)=F () VveH, 4.1

which, in the simplest cases, was chosen as one of the Sobolev spaces H® (I'), s =
—1/2,0,1/2. The functional F € H’ denotes the given right-hand side, which, in
the case of the direct method (see Sect. 3.4.2), may again contain integral operators.
The sesquilinear form b (-, -) has the abstract form

b (u,v) = (Bu,v)2(r)

with the integral operator

(Bu) (x) = A1 (X) u (x) + A5 (x) /1“ kxy y—x)u(y)dsy xelae (4.2)

Convention 4.0.1. The inner product (-, ) 2(r) is again identified with the contin-
uous extension on H= (I') x H® (T).

The coefficients A1, A, are bounded. For A; = 0, a.e., one speaks of an integral
operator of the first kind, otherwise of the second kind. In some applications the
kernel function is not improperly integrable, and the integral is defined by means of
a suitable regularization (see Theorem 3.3.22).

The sesquilinear form in (4.1) associated with the boundary integral operator in
(4.2) satisfies a Garding inequality: There exist a y > 0 and a compact operator
T : H — H’ such that

Yue H :|b@u)+ (Tu,u) gl = yllulz. (4.3)
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The variational formulation (4.1) of the integral equations forms the basis of
the numerical solution thereof, by means of finite element methods on the boundary
I' = 09, the so-called boundary element methods. They are abbreviated by “BEM”.

Note: Readers who are familiar with the concept of finite element methods
will recognize it here. One essential conceptual difference between the BEM and
the finite element method is the fact that, in the BEM, the resulting finite ele-
ment meshes usually consist of curved elements and therefore, in general, no affine
parametrization over a reference element can be found.

Primarily, we consider the Galerkin BEM, which is the most natural method for
the variational formulation (4.1) of the boundary integral equation. In Sect. 4.1 we
will describe the Galerkin BEM for the boundary value problems of the Laplace
equation with Dirichlet, Neumann and mixed boundary conditions, all of which
lead to boundary integral equations of the first kind with positive definite bilinear
forms. We obtain quasi-optimal approximations and prove asymptotic convergence
rates for the Galerkin BEM. In Sect.4.2 we will then study Galerkin methods in
an abstract form for operators that are only positive with a compact perturbation.
We will also present a general framework for the convergence analysis of Galerkin
methods. In Sect.4.3 we will finally prove the approximation properties of the
boundary element spaces.

4.1 Boundary Elements for the Potential Equation in R?

We will first introduce the Galerkin BEM for integral equations of the classi-
cal potential problem in R3 and derive relevant error estimates for the simplest
boundary elements.

4.1.1 Model Problem 1: Dirichlet Problem

Let Q= C R3 be a bounded polyhedral domain, the boundary I' = 9Q~ of which
consists of finitely many, disjoint, plane faces I'/, j = 1,...,J: T = UJJ-ZI .
In the exterior QT = R3\Q~ we consider the Dirichlet problem

Au=0inQT, (4.4a)
u=gponl, (4.4b)
lu(x)| = 0(||x||_1) for ||x|| — oo. (4.4¢)

In Chap.2 (Theorem 3.5.3) we have shown the unique solvability of Problem
(4.4).
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Proposition 4.1.1. For all gp € H?(I') Problem (4.4) has a unique solution
ue HY (L, Q%) with L = —A.

Proof. Theorem 2.10.11 implies the unique solvability of the variational formulation
associated with (4.4) in H'! (L, §2+) with L = —A. In Sect.2.9.3 we have shown
that the solution also solves (4.4a) and (4.4b) almost everywhere.

Decay Condition: Theorem 3.5.3 provides us with the unique solvability of the
boundary integral equation that results from (4.4) (with the single layer ansatz)
in H~Y/2 (). The associated single layer potential is in H' (L, Q%) (see Exer-
cise 3.1.14) and, thus, is the unique solution.

Finally, in (3.22) we have shown that the single layer potential satisfies the decay
condition (4.4c). O

We will now reduce (4.4) to a boundary integral equation of the first kind. We
ensure that (4.4a), (4.4c) are satisfied by means of the single layer ansatz (see
Chap. 3)

U(x) = (S@)(x) = [F %d% xeat. 45)

The unknown density ¢ from (4.5) is the solution of the boundary integral
equation
Vo =gp onT (4.6)

with the single layer operator

¢0) 4o xer @7

(Vo)(x) = [F ey Ay

(4.6) defines a boundary integral equation of the first kind. The Galerkin boundary
element method is based on the variational formulation of the integral equation.
Instead of imposing (4.6) for all x € I', we multiply (4.6) by a “test function” and
integrate over I'. This gives us: Find ¢ € H~'/2(T") such that

_ @(y)
[wemas = | (/1" an % =] dSy) Ty

= / gp(x)n(x)dsx  Vne H'2(I). (4.8)
I

For the Laplace operator we only consider vector spaces over the field R and not
over C, so that in (4.8) there is no complex conjugation.

The “integrals” in (4.8) should be interpreted as duality pairings in H 3 (') x
H~2(T) in the following way. For ¢ € H~1/2(T') we have Vg € H/2(T') and, by
Convention 4.0.1, we can write (4.8) as

Findg € H2(): Vo.n) oy = (gp M2y ¥n€ HV2(D). (4.9)
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The left-hand side in (4.9) defines a bilinear form b(-,-) on the Hilbert space
H = H™Y2(I') with
b(e.n) = (Vo.M r2r)- (4.10)

and the right-hand side defines a linear functional on H~1/2 (I'):
Fn) :=(gp. M2 4.11)

Keeping the duality of H~/2(T") and H'/2 (I") in mind, it follows from

| (gp. )2 |
[F(n)| < sup 7 | Inlla- v2(ry = ||gD||H1/2(r)||77||H 1/2(T)
pEH—/2(D\{0} ”N”H*I/Z(F)

that F is continuous on H /2 ().
For sufficiently smooth functions ¢, 1 in (4.10) we have, by virtue of Fubini’s

theorem,
blp.m) = / / W)y s — b (n. ) (4.12)
4 |x —y|

and therefore the form b(-,-) is symmetric. Furthermore, it is also H~!/2-elliptic

(see Theorem 3.5.3). According to the Lax—Milgram lemma (see Sect. 2.1.6), Prob-
lem (4.9) has a unique solution ¢ € H~Y2(T) for all gp € HY?(T'). In the
representational formula (4.5) this ¢ gives us the unique solution u of the exterior
problem (4.4).

The discretization of the boundary integral equation consists in the approxima-
tion of the unknown density function ¢ in (4.6) by means of a function ¢ which
is defined by finitely many coefficients (oc,-)fv:1 in the basis representation. In the
Galerkin boundary element method, this is achieved by restricting ¢, 7 in the vari-
ational form (4.9) to finite-dimensional subspaces, the boundary element spaces,
which we will now construct.

4.1.2 Surface Meshes

Almost all boundary elements are based on a surface mesh G of the boundary I.
A surface mesh is the finite union of curved triangles and quadrilaterals on the
boundary I', which satisfy suitable compatibility conditions. A general element of
G is called a “panel”.

For the definition we introduce the reference elements

Unit triangle: S, := {(1.6£2) eR?:0< & <& <1}
(4.13)
Unit square: Qz = (0,1)%

Our generic notation for the reference element is 7.
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Definition 4.1.2. A surface mesh G of the boundary I" is a decomposition of T’
into finitely relatively open, disjoint elements t C I' that satisfy the following
conditions:

(a) Gisacoveringof I':

= Ureg T.

(b) Every element T € G is the image of a reference element 7 under a regular
reference mapping y.. Then y. is called regular if the Jacobian J; = Dy,
satisfies the condition

0 < oy = nf ”vvi%ile (3 (8) vae (8)v) = up ||%11[§21 (3¢ (§) v.3- (€) v)

< Amax < 00.

(c) For a plane triangle t € G with straight edges and vertices Py, P; and P,, the
regular mapping y. is affine:

1e (§) =Po+ & (P1 —Po) + & (P — Py).. (4.14)

For a plane quadrilateral T € G with straight edges and vertices Py, P, P, and
P; (the numbering is counterclockwise) the mapping is bilinear:

1e (E) = Po+ & (P1 —Po) + & (P — Po) + 16 (P — P3 + Py — Py).
(4.15)

Figure 4.1 illustrates Definition 4.1.2 for a triangular and a quadrilateral element.

D

—_—> 4 5

Fig. 4.1 Schematic illustration of the reference mappings; triangular panel (left), parallelogram
(right)
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Exercise 4.1.3. Show the following:

(a) The affine mapping x in (4.14) is regular if and only if Py, Py, Py are vertices of
a non-degenerate (plane) triangle t, i.e., they are not colinear. Find an estimate
for the constants Amin, Amax from Definition 4.1.2(b) in terms of the interior
angles of t.

(c) Let Py, P, Py, P3 be the vertices of a plane quadrilateral T with straight edges.
The mapping x from (4.15) is regular if all interior angles are smaller than
and larger than 0.

In some cases we will impose a compatibility condition for the intersection of
two panels.

Definition 4.1.4. A surface mesh G of T’ is called regular if:

(a) The intersection of two different elements 7, t’ € G is either empty, a common
vertex or a common side.

(b) The parametrizations of the panel edges of neighboring panels coincide: For
every pair of different elements 7,7’ € G with common edge e = T N 7/ we
have

Xele = XvovVerlss

where é := y.!(e) and y; : T — 7 is a suitable affine bijection.

Remark 4.1.5. Throughout this section we assume that the boundary T is Lipschitz
and admits a regular surface mesh in the sense of Definitions 4.1.2 and 4.1.4. This
is a true restriction since not every Lipschitz surface admits a regular surface mesh.

For later error estimates we will introduce a few geometric parameters, which
represent a measure for the distortion of the panels as well as bounds for their
diameters.

Assumption 4.1.6. There exist open subsets U,V C R* and a diffeomorphism yr :
U — V with the following properties:

(a) T' CU.
(b) For every t € G, there exists a regular reference mapping y. : T — 1 of the
form
Xo = yro ez g
where y¥ne : R?2 — R3 is a regular; affine mapping.
Example 4.1.7.

1. Let T" be a piecewise smooth surface that has a bi-Lipschitz continuous para-
metrization over the polyhedral surface T': yr : T' — T. Let Gifire .=

A

{Iffﬁ“e :1<i <N } be a regular surface mesh of T with the associated ref-
erence mappings )(iff&ee 0T — e Then G = { T (fafﬁ"e) ; affine ¢ Qafﬁne}

defines a regular surface mesh of I" which satisfies Assumption 4.1.6.
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2. For the unit sphere " := {X eR3: x| = 1} one can choose the inscribed dou-
ble pyramid with vertices (£1,0,0)7, (0, £1,0)T, (0,0, £1)T as a polyhedral
surface [, while AT : [ > Tis defined by yr (x) := x/ ||x||. By means of xr,
regular surface meshes on I' can then be generated through lifting of regular
surface meshes of the polyhedral surface I.

In order to construct a sequence of refined surface meshes for I', in many cases
the procedure is as follows.

Remark 4.1.8. Let I' be the surface of a bounded Lipschitz domain Q CR3In
the first step we construct a polyhedron r along a bi-Lipschitz continuous map-
ping xr : [>T (see Example 4.1.7). Let gafﬁ"e be a (very coarse) surface
mesh of I Then Go = {r = xr ( afﬁ""’) . gaffine o gg“me} defines a coarse sur-
face mesh of T'. We can obtain a sequence (gafﬁ"e) of finer surface meshes if,
during each refinement, we decompose every panel in Qafﬁ“e into new panels by
means of a fixed refinement method. For triangular elements, for example, we
interconnect the midpoints of the sides and for quadrilateral elements we connect
both pairs of opposite midpoints. This gives us a sequence of surface meshes by
gé = {‘L’ =xr (Tafﬁne) : .L,afﬁne = ngﬁne}'

Convention 4.1.9. If t and t*M appear in the same context the relation between
the two is given by Tt = yr (fafﬁ"e).

The following definition is illustrated in Fig. 4.2.

Definition 4.1.10. Let Assumption 4.1.6 be satisfied. The constants c,gipe > 0
(Catfine > 0) are the maximal (minimal) constants in

Cattine X = Y[ < [l xr (%) = xr ]| = Catine [x —y[| Vx,y € ¢, wrifine g gatfine

and describe the distortion of curved panels t compared to their affine pullbacks
affine
e,
The diameter of a panel t € G is given by

he = sup [Ix —y]|

X,yET

and the inner width p, by the incircle diameter of 72/,

l p.

Fig. 4.2 Diameter of a panel and incircle diameter; triangular panel (left), parallelogram (right)




190 4 Boundary Element Methods

The mesh width hg of a surface mesh G is given by
hg := max{h; : T € G}. (4.16)

We write A instead of g if the mesh G is clear from the context.

Remark 4.1.11. For plane panels t, p; is the incircle diameter of t.
The diameters of T and " satisfy

Ca?ﬁlnehf = sup ”X - YH = hr“fﬁ‘lc = c;ﬁlnehf'

X,yE‘Eafﬁ"C
Definition 4.1.12. The shape-regularity constant kg is given by

h
Kg = max —. 4.17)
T€G Pz

For some theorems we will assume, apart from the shape-regularity, that the
diameters of all triangles are of the same order of magnitude.

Definition 4.1.13. The constant g¢ that describes the quasi-uniformity is given by
qg '= hg/min{h, : t € G}.

Remark 4.1.14. In order to study the convergence of boundary element methods,
we will consider sequences (Gg)yen of surface meshes whose mesh width hy := hg,
tends to zero. It is essential that the constant for the shape-regularity kg = Kg,
remains uniformly bounded above:

sup kg < kK < 00. (4.18)
LeN
In a similar way the constants of quasi-uniformity q¢ := qg, have to be bounded
above in some theorems:
sup gy < ¢q < 0. (4.19)
LeN

We call a mesh family (Gg)gen With the property (4.18) shape-regular and with the
property (4.19) quasi-uniform.

Exercise 4.1.15. Show the following:

(a) If the surface mesh Gq is regular and if finer surface meshes (Gy), are con-
structed according to the method described in Remark 4.1.8 then all surface
meshes (Gy), are regular.

(b) The constants concerning shape-regularity and quasi-uniformity are, under the
conditions in Part (a), uniformly bounded with respect to £.
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4.1.3 Discontinuous Boundary Elements

The boundary element method defines an approximation of the unknown density ¢
in the boundary integral equation (4.6) which is described by finitely many parame-
ters. This can, for example, be achieved by (piecewise) polynomials on the elements
7 of amesh G.

Example 4.1.16. (Piecewise Constant Boundary Elements)
Let T' = 0Q be piecewise smooth and let G be a — not necessarily regular —
surface mesh on I'. Then S g denotes all piecewise constant functions on the mesh G

Sy :={y € L®°(T) | VT €G: ¥|, is constant}. (4.20)

Since v € L (), we only need to define \ in the interior of an element, as the
boundary 01, i.e., the set of edges and vertices of the panel, is a set of zero measure.

Every function ¥ € Sg is defined by its values \; on the elements t € G and can
be written in the form

Yx) =) Yebe(x) 4.21)

T€G

with the characteristic function b, : T' — R of 1 € G:

l1xer,
b (x) ;= . (4.22)
0 otherwise.

In particular, Sg is a vector space of dimension N = #{t : t € G} with basis

{b: : Tt € G}.

In many cases the piecewise constant approximation of the unknown density
converges too slowly and, instead, one uses polynomials of degree p > 1. In the
same way as in Example 4.1.16 this leads to the boundary element spaces Sgp . For
their definition we need polynomials of total degree p on the reference element as
well as the convention for multi-indices from (2.67)

P2 = span {§" : u € N§ A|u| < p}. (4.23)
Forp=1and p =2, IPPA contains all polynomials of the form

ago + a1061 + ané Yay,aip. a1 € R for p =1,
2 2 _
ago + ark + aoks + axki + ankié + ank; Yae. a. aor. ax. ai.ap € R for p =2.

Definition 4.1.17. Let ' = 92 be piecewise smooth and let G be a surface mesh
of I'. Then, for p € Ny,

S§:={¢:F->K|vfeg:on,ePpA}. (4.24)

We simply write S# or only S if the reference to the surface mesh G is obvious.
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Remark 4.1.18. Note that in (4.24) the functions ¥ € S? do not constitute poly-
nomials on the surface I'. Only once they have been “transported back” to the
reference element T by means of the element mapping x. (see Fig.4.1) is this the
case. The parametrizations y. of the elements t € G in Definition 4.1.2 (b,c)
are thus part of the set Sé’ . A change in parametrization y. will lead (with the
same mesh G) to a different Sé’ . Therefore for a mesh G we summarize the element
mappings - in the mapping vector

X ={c:t€q} (4.25)

and instead of (4.24) we write Sg,x'

Remark 4.1.19. Note that (4.24) also holds for meshes G with quadrilateral ele-
ments, i.e., with reference element © = (0, 1). Since SP does not require continuity
across element boundaries, the space of polynomials Pﬁ in (4.23) can also be
applied to quadrilateral meshes.

For the realization of the boundary element spaces we need a basis for P2, which
we denote by N a j)(él , éz) and which satisfies

P2 — span {JT/(,-,]-) L0<ij<pit]< p}. (4.26)
For example, 1/\7(1-,]-) (&1,&) = gigé, 0 <i+j < pasin (423), would be

admissible basis functions.

Remark 4.1.20. (Nesting of Spaces)
We have IP’pA C IP’qA forall p < q. Therefore we can always choose a basis in IP’qA

which contains the basis functions from ]P’ﬁ as a subset. The basis functions N )
in (4.23) have this property.

Once we have determined a basis N a, j)(é) on 7, every Y € Sé’ , on a panel
T € G can be written as

V= D) iy (N(i,j) ° X?l)
0si+j<p

and R
NEy=Napoxs' 0<i+j<p

spans the restriction {y|, : ¥ € S (I',G, x)}. In order to give a basis of Sg,x
suitable indices, we define

= {p e N3 : ] < p}.

Thus we have
Sy = span{bgu 0 (x) © (11, 7) € 1p X G}, (4.27)
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where the global basis functions by (x) with the multi-index / = (u, t) denote the
zero extension of the element function N to I': For

I = 1)e,xgG=12(G p) =171 (4.28)
we explicitly have
NI(x), x €T,
br(x) = k) (4.29)
0 otherwise.

Hence, every ¥ can be written as a combination of the basis function by (x):

Y@ =Y vrbi(x). xer, t€g. (4.30)

IeZ

Let |G| be the number of elements in the mesh G. The dimension of S gp’ , or the
number of degrees of freedom is then given by

N =G| (p+ D(p +2)/2 =dim(S] ). 4.31)

Every functionin ¢ €S gp’ , is then uniquely characterized by the vector (Y1) ;ez(g, p)
C RN = RZEP) a5 in (4.30).

4.1.4 Galerkin Boundary Element Method

The simplest boundary element method for Problem (4.6) consists in approximating
the unknown density ¢ in (4.9) by a piecewise constant function g5 € S°(T, G).

Convention 4.1.21. The boundary element functions depend on the boundary ele-
ment space S? (', G, y); in particular, they depend on T, the surface mesh G and
the polynomial degree p. We will, whenever possible, use the abbreviated notation

@s instead Of‘/’sé’ e

Inserting (4.30) into (4.6) or into the variational formulation (4.8) leads to a con-
tradiction: since, in general, we have g5 # ¢, (4.6) and (4.8) cannot be satisfied with
¢ = @s, which is why the statements have to be weakened. As ¢g is determined
by N parameters ((p;9 ) ez [see (4.29)-(4.31)], we are looking for N conditions to
determine ¢ IS . In the Galerkin boundary element method we only let the test func-
tion 7 run through a basis of Sé’ in the variational formulation of the boundary
integral equation (4.9). The Galerkin approximation of the integral equation (4.9)
then reads:
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Find g5 € S§ , such that

blgs.ns) = F(ns)  Vns € S§ (4.32)
with b(-,-) and F(-) from (4.10) and (4.11) respectively.

Remark 4.1.22. (i) The Galerkin discretization (4.32) of (4.8) is achieved by res-
tricting the trial and test functions @, 1 to the subspace SQP,X c HV2(') in
the variational formulation (4.8).

(ii) The boundary element solution ¢s in (4.32) is independent of the basis chosen
for the subspace.

The computation of the approximation ¢g requires that we choose a concrete
basis for the subspace. Therefore, [see (4.29)—(4.31)] for a fixed p € Ny, we choose
the basis

(br: 1 €Z(G.p)) (4.33)
for S é’, »- Then (4.32) is equivalent to the linear system of equations:
Find ¢ € R¥ such that
By =F. (4.34)
Here the system matrix B = (B1,J); jer(. p) and the right-hand side F =
(Fr)yezg,p) € RN with I = (u,7) and J = (v, 1) are given by

B],J = b(b[ bJ) (4.35)

// bJ(X)bI(Y) //N’(X)N’(Y)d s

4m IIX—YII dr fx—yf Y
Fj = F(by) = [ gp(X)by(X)dsx = /gD(X)le(X) dsy. (4.36)

r t

Remark 4.1.23. The matrix B in (4.34) is dense because of (4.35), which means
that all entries By j are, in general, not equal to zero. Furthermore, the twofold sur-
face integral in (4.35) can very often not be computed exactly, even for polyhedrons,
and requires numerical integration methods for its approximation. The influence of

this additional approximation will be discussed in Chap. 5. In this chapter we will
always assume that the matrix B can be determined exactly.

Proposition 4.1.24. The system matrix B in (4.34) is symmetric and positive defi-
nite.

Proof. From the symmetry of b(¢, n) = b(n, ¢) we immediately have
Bry =0b(br.bs) =b(by.br) = By,

and subsequently B = BT. Now let ¢ € RY be arbitrary. Then we have
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0B =Y @By =) ¢sorb(br.bs)=b <Z¢1b1,2¢1b1>

1,J€Z(G.p) 1,J 1 J
= b(@s, (PS) = )’||‘PS||§{—1/2(F) >0
if and only if s # 0. Since {b; : I € T} is a basis of S, we have g # 0 if and
only if ¢ # 0 € RY . Therefore B is positive definite. O

Thus the discrete problem (4.32) or (4.34) has a unique solution ¢g € S, é’ .
The following proposition supplies us with an estimate for the error ¢ — ¢s.

Proposition 4.1.25. Let ¢ be the exact solution of (4.9). The Galerkin solution ¢g
of (4.32) converges quasi-optimally

Ibll .
le —esllg-1/2qry < B n;llelgp lo —nsllg—1/2(r)- (4.37)

The error satisfies the Galerkin orthogonality
bp —¢s.ns) =0  VngeSP. (4.38)

Proof. We will first prove the statement in (4.38). If we only consider (4.10) for test
functions from S? we can subtract (4.32) and obtain

b(p —¢s.ns) = b(p.ns) —b(ps.ns) = F(ns) — F(ns) =0  Vns € SP.

Next we prove (4.37). For the error es = ¢ — ¢s we have by the ellipticity and
the continuity of the boundary integral operator V' and (4.38)

vle —@s ||§,—1/z(r) < b(es,es) = b(es,p — ¢s)
= b(es,p) —b(es,ps) = b(es,p) —bles,ns) = b(es,p —ns)

< l1bllleslla=2)lle = nsll =12y

forall ng € SP.
If we cancel |les || g—1/2(ry and minimize over ng € S? we obtain the assertion
(4.37). O

The inequality in (4.37) shows that the Galerkin error ||¢ — @s|| g—1/2(r) coin-
cides with the error of the best approximation of ¢ in S? up to a multiplicative
constant. This is where the term quasi-optimality for the a priori error estimate
(4.37) originates.

Remark 4.1.26 (Collocation). We obtained the Galerkin discretization (4.32) from
(4.8) by restricting the trial and test functions ¢,n to the subspace SP? C S.
Alternatively, one can insert s into (4.6) and impose the equation
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(Ves)(xy) =gp(xy)  J €I(G.p) (4.39)

only in N collocation points {x; : J € ZI}. The solvability of (4.39) depends
strongly on the choice of collocation points {xy : J € I}. Equation (4.39) is also
equivalent to a linear system of equations, where the entries of the system matrix
B! are defined by

bj(y)
B! :=/—d : 4.40
SR Arey P (40

Note that B! s again dense, but not symmetric.

The collocation method (4.39) is widespread in the field of engineering, because
the computation of the matrix entries (4.40) only requires the evaluation of one
integral over the surface T, instead of, as with the Galerkin method, a twofold inte-
gration over I'. However, the stability and convergence of collocation methods on
polyhedral surfaces is still an open question, especially with integral equations of
the first kind. For integral operators of zero order or equations of the second kind
we only have stability results in some special cases. For a detailed discussion on
collocation methods we refer to, e.g., [6,8, 87, 187, 207, 215] and the references
contained therein.

We now return to the Galerkin method.

Remark 4.1.27 (Stability of the Galerkin Projection). The Galerkin method
(4.32) defines a mapping

nZ: H2(I) - SE % = ¢s,

which is called the Galerkin projection. Clearly, Hg is linear and because of the
ellipticity of the boundary integral operator V we have

YITISQ 1% 12y = YIes 1720y < b(95.95) = b9, ¢s)

IA

11l =120 1Tl =172y,

from which we have, after canceling, the boundedness of the Galerkin projection
Hg 0 (') —> H™S (T') independent of the mesh G:

1]l
ITS@l gr—-1/2ry < 7||</’||H—1/2(r)- (4.41)

The quasi-optimality (4.37) and the boundedness of the Galerkin projection
combined with the following corollary give us the convergence of the Galerkin
BEM.

Corollary 4.1.28. Let (Gy),en be a sequence of meshes on I' with a mesh width
he = hg, and let hy — 0 for £ — oo. Then the sequence (pg)ien of boundary
element solutions (4.32)in Sy = Sé’lz converges to ¢ for every fixed p € N.
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Proof. Since S € S/ forall p € Ny, we will only consider the case p = 0. S are
step functions on meshes whose mesh width converges to zero. The density follows
from the construction of the Lebesgue spaces

”'”LZ(T)
0 _ 72
UeeN St = L7(@)

and from Proposition 2.5.2 we have the dense embedding L2 (I') ¢ H~'/2(T").
For ¢ € H™'/2(T") and an arbitrary ¢ > 0 we can therefore choose a ¢ from
L? (T') and an £ € N, combined so that ¢; € S?, such that

lo —olg—1/2qry <€/2 and @ — @ell2(ry < &/2.

From this we have

o = Gel-12) < o = lu-12ay + 18 = Gl w12y < 5 +5 <.
The quasi-optimality of the Galerkin method gives us
o= oull-vary = Ol = ey < e,
As ¢ > 0 is arbitrary, we have the assertion for £ — oo. O

4.1.5 Convergence Rate of Discontinuous Boundary Elements

We have seen in Proposition 4.1.25 that the approximations ¢s € S from the
Galerkin boundary element method approximate the exact solution ¢ of the equa-
tion of the first kind (4.9) quasi-optimally: the error ¢ — @5, which is measured in
the “natural” H~1/2(I")-norm, is — up to a multiplicative constant — just as large as

min {|l¢ — Y5l g-1/2qry : ¥s € S} (4.42)

which is the error of the best approximation in the space S. The convergence rate of
the BEM indicates how fast the error converges to zero in relation to an increase in
the degrees of freedom N . Here we will only prove the convergence rate for p = 0,
while the general case will be treated in Sect. 4.3. We begin with the second Poincaré
inequality on the reference element .

Convention 4.1.29. Variables on the reference element are always marked by a
“~»_If the variables x € t and X € T appear in the same context this should
always be understood in terms of the relation x = y (X). Derivatives with respect
to variables in the reference element are also marked by a “”. We will write, for
example, V as an abbreviation for Vg . Should the functionsu : t — K and it : T —
K appear in the same context, they are connected by the relation u o x, = i.
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Proposition 4.1.30. Let ¢ C R? be the reference element, § € H' (%) and ¢ :=
ﬁ [; ¢ dX. Then there exists some ¢ > 0 such that

16— @ollL23) = ENVOllL2(s). (4.43)
where ¢ depends only on 1.

Proof. The assertion follows directly from the proof of Corollary 2.5.10. O

In the following we will derive error estimates for a simplified situation. We will
discuss the general case in Sect. 4.3. Here we let I" be a plane manifold in R3 with
a polygonal boundary. As integrals are invariant under rotation and translation, we
assume without loss of generality that

I' is a two-dimensional polygonal domain, (4.44)

i.e., we restrict ourselves to the two-dimensional approximation problem in the
plane.

Furthermore, let G = {t; : 1 <i < N} be a surface mesh on I" of shape-regular
triangles with straight edges and with mesh width 2 > 0. Then the triangles t € G
are affinely equivalent to the reference element 7 via the transformation (4.14):

t5x=y:R) =Py +Jk. ket (4.45)

where J is the matrix with the columns P; — Py and P, — P; (see Fig.4.1). With
(4.45) and the chain rule

0 d 0X; d 0X2

— :1,2,
Oxe 0% 0%y | 0%p 0y

the relation R
V=UHTV, dx=(det)) dk =2]|t|d%k (4.46)

follows. This leads to the transformation formula for Sobolev norms
~ . ~ . R |7?|
IV@I220 = | IVePds == [ (Vo) "I (Ve)dx
® T |T| T

?
< er / |Vol* dx, (4.47)

where A, denotes the largest eigenvalue of JJ7 € R?*2. Furthermore, we have for
the left-hand side of (4.43)

T |

. A |7
16 —Goll7>z) = e ol 72 (4.48)
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with ¢g 1= |17| fr @dx. If we combine (4.48) with (4.43) and (4.47) we obtain

Izl | l s
llo = @ollZ2) = 7 = Golljap) = aF |||V<p||L2(r) <A | Volise YT el
(4.49)
Exercise 4.1.32 shows that
Ae < |P1—Po|? + [Py — Py |* < 272, (4.50)
From this we have
lo = poll L2ey < V26h|¢| 1 (o). 4.51)

Squaring and then summing over all T € G leads to the following error estimate.

Proposition 4.1.31. Let (4.44) hold. Let G be a surface mesh of T'. Let ¢ € L*(T")
with ¢|, € H'(z) for all T € G. Then we have the error estimate

1/2
min, I~ Vllz2r) < V2 c(Zh|¢|H1(,)) : (4.52)

T€G

For ¢ € HY(T) the error estimate can be simplified to

min [l¢ — V|20 < V2¢hglel g1 - (4.53)
yesd

Exercise 4.1.32. Let © be a plane triangle with straight edges in R? with vertices
Py, Py, Ps. Let the matrix J and the eigenvalue A, be defined as in (4.45) and (4.47)
respectively. Show that

<[Py —Po|* + [[P2 — Py|*.

From the approximation property we will now derive an error estimate for the
Galerkin solution.

Theorem 4.1.33. Let ' be the surface of a polyhedron. Let the surface mesh G
consist of triangles with straight edges.
For the solution ¢ of the integral equation of the first kind (4.6) we assume that
foran 0 < s < 1 we have
p € H(T). (4.54)

Then the Galerkin approximation ¢s € Sg satisfies the error estimate

le — sl -2y < C B2l s (. (4.55)

Proof. The conditions of the theorem allow us to apply Proposition 4.1.31. With
(4.37) we obtain for the Galerkin solution ¢g the error estimate
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ol .
o — (pS”H*I/Z(l") = [l — Hg §0||H*1/2(F) <— min [¢— I,/fS||1rrl/2(r)-
YV ysesy

The definition of the H~'/2 (I')-norm gives us

— Vs, 2
lo=vslaong = sp LY M@

(4.56)
neH1/2(TM\{0} Il 172

We will first consider the case ¢ € H!(I") and choose ¥s elementwise as the mean
value of ¢

. 1
Py :=vys with yg|, = m[(de, T€g,
T

i.e., P is the L2-orthogonal projection onto Sg. Hence it follows from Proposi-
tion 4.1.31 that

1¥sllezay < llellzay. e = ¥sllzay <20ell2ay. e = ¥sliza < chllell g -
4.57)

If in Proposition 2.1.62 we choose T = I — P we have T : L2 (I') — L2?(T")
and T : H! (I') — L? (I"). For the norms we have, by (4.57), the estimates

ITlL2ryr2qy =2 and  ||T||L2ryepi ) < ch.
Proposition 2.1.62 implies that 7 : H* (I") — L2 (') for all 0 < s < 1 and that
ITN 22y ms(ry < ch’.
This is equivalent to the error estimate
lo — Vsl < ch’lellas). (4.58)

In order to derive an error estimate for the H ~'/2 (I")-norm, we use (4.56) and note
that the equality

[ —=V¥s.Mr2ay | = (@ —V¥s.n—ns) 21|

holds for an arbitrary ns € SJ. By using ¢ € H*(I'), n € H'Y2(I") and (4.58) and
by choosing s elementwise as the integral mean value of 7, we obtain the estimate

(e —Vs.m2my| = (@ —¥s.n=ns) 2| < le = ¥sli2wy In—nsllz2r

< ch* ol asa@h nll g ).
0
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The error estimate (4.55) shows that the convergence rate h° +1/2 of the BEM
depends on the regularity of the solution ¢. In Sect. 3.2 we stated the regularity —
the maximal s > 0 such that ¢ € H /2% (I") — without knowing the exact solu-
tion ¢ explicitly. Ideally, ¢ is smooth on the entire surface (s = oo) or at least
on every panel. The convergence rate would then be bounded by the polynomial
order p of the boundary elements, due to the fact that the following generalization
of Theorem 4.1.33 holds.

Corollary 4.1.34. Let the exact solution of (4.9) satisfy ¢ € H*(T') forans > 0.
Then the boundary element solution ¢s € Sé’ satisfies the error estimate

o — s lg-120y < chd ™ Pl s (), (4.59)

for a surface mesh G of the boundary ', which consists of triangles with straight
edges. Here the constant ¢ depends on p and the shape-regularity of the surface
mesh.

The proof of Corollary 4.1.34 will be completed in Sect.4.3.4 (see Remark
4.3.21).

4.1.6 Model Problem 2: Neumann Problem

Let 2~ C R? be a bounded interior domain with boundary I' and Q%1 := R3\ Q.
For gn € H~'/2(T") we consider the Neumann problem

Au=0 inQ", (4.60)
yiu = gN onT, (4.61)
lu(x)| < C |x||" for ||x| — oo. (4.62)

The exterior problem (4.60)—(4.62) has a unique solution u, which can be
represented as a double layer potential

1
u(x) = / go(y)mﬁ dsy, xeQt. (4.63)
Y

Thanks to the jump relations (see Corollary 3.3.12)
-1 xeQ,
1 0 1 1 . .
— | ———ds, =1 —3 x€ T and I' is smooth in x
any [x—y]

0 xeQ™t
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u(x) in (4.63) does not change if a constant is added to ¢. If we put (4.63) into the
boundary condition (4.61) we obtain the equation

d (1 3 1
- We ( /F‘P(Y)_—d):gN(X)v xel. (4.64)

=—|— s
ony \ 47 ony [x -y y

The following remark shows that the derivative d/dny and the integral do not
commute.

Remark 4.1.35. The normal derivative 9/ dny, applied to the kernel in (4.64), yields

92 1 (nx. ny) (nx.x— ) {ny.x—)
= 33 5
Inydny [Ix =y [Ix—y]| lIx —yll

Therefore the kernel of the associated hypersingular integral operator is not inte-
grable.

There are three possibilities of representing the integral operator W¢ on the
surface: (a) by extending the definition of an integral to strongly singular kernel
functions (see [201,211]), (b) by integration by parts (see Sect.3.3.4) and (c) by
introducing suitable differences of test and trial functions (see [117, Sect. 8.3]). In
this section we will consider option (b). The notation and theorems from Sect. 3.3.4
can be simplified for the Laplace problem, so that they read

curlr ¢ := yo (grad Z_¢) x n,

curlr ¢ (y), curlr 7 (x)
b(¢,ﬂ)=//( FZ) — A >dSydsx,
rJr mlx—yl

where Z_ : HY2(I') — H' (") is an arbitrary extension operator (see Theo-
rem 2.6.11 and Exercise 3.3.25).

The variational formulation of the boundary integral equation is given by (see
Theorem 3.3.22): Find ¢ € H'/?(I")/K such that

blp.n) =—(gn.Mr2qy  Yne HY*(D)/K. (4.65)

In Theorem 3.5.3 we have already shown that the density ¢ in (4.63) is the unique
solution of the boundary integral equation (4.65). The proof was based on the fact
that the bilinear form b (-, ) is symmetric, continuous and H /2 (I") /K-elliptic.

4.1.7 Continuous Boundary Elements

The Galerkin method is based on the concept of replacing the infinite-dimensional
Hilbert space by a finite-dimensional subspace. The bilinear form that is asso-
ciated with the hypersingular integral operator is defined on the Sobolev space
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H'2(I') /K. As the discontinuous boundary element functions from Example
4.1.16 and Definition 4.1.17 are not contained in H'/2 (I") /K (see Exercise 2.4.4),
we will introduce continuous boundary element spaces for the Neumann problem.

We again start with a mesh G on the boundary I'. In order to define continuous
boundary elements, we assume (see Definition 4.1.4):

The surface mesh G is regular. (4.66)

This means that the intersection T N 7’ of two different panels is either empty, a
vertex or an entire edge. Furthermore, the boundary elements are either triangles
or quadrilaterals and are images of the reference triangle or quadrilateral 7 respec-
tively (see Fig.4.1). Note that the boundary edges of the panels “have the same
parametrization on both sides” in the case of continuous boundary elements (see
Definition 4.1.4).

We assume that the boundary I' is piecewise smooth (see Definition 2.2.10 and
Fig.4.1) so that the reference mappings y, : T — 7 can be chosen as smooth dif-
feomorphisms. As in the case for discontinuous boundary elements, the continuous
boundary elements are also piecewise polynomials on the surface I'. When using
discontinuous elements, a boundary element function gy is locally a polynomial of
degree p in each element T € G:

VYVt eg: ¥s 0 Yt € IP’I,A(%).
With continuous elements we have for t € G:
]P’pA if 7 is a triangular element,

psoxc €Ppi= (4.67)
]P’E if 7 is a quadrilateral element,

where for p > 1 the polynomial space PPA is defined as in (4.23) and

PS = span{iéy : 0<i.j < p}.

Now we come to the definition of continuous boundary element functions of
degree p > 1.

Definition 4.1.36. Let " be a piecewise smooth surface, G a regular surface mesh
of I"'and y = {y; : © € G} the mapping vector. Then the space of continuous
boundary elements of degree p > 1 is given by

Sgp”)(() ={p e CO(F) |Vt egG: @l oxc € IP’;}

In order to make the distinction between continuous and discontinuous boundary
elements of degree p we will from now on denote discontinuous elements by S g ” '
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Just like the space S7~! of discontinuous boundary elements, the space S0 is
also finite-dimensional. In the following we will introduce a basis {¢7 : I € Z} of
S7:0 In contrast to S?>~!, the support of the basis functions in general consists of
more than one panel and the basis functions are defined piecewise on those panels.
We begin with the simplest case, p = 1.

Example 4.1.37. (Linear and Bilinear, Continuous Boundary Elements)
The shape functions N (X), X = (X1, X») on the reference element T are:

o In the case of the unit triangle with vertices Po = (0,0)T, Py = (1,0)T, P, =
(1, DT [see (4.13)], given by

No@®) =1— 3y, (4.68)
Ni®) = % — %2,
No(®) = £,

and

o In the case of the unit square with vertices Py = (0,0)T, Py = (1,0)T, P, =
(I, DT, P3 = (0, )7, given by

0oX) = (1 =% —%2), (4.69)
1(X) = x1(1 — X2),
2(X) = (1 = X1) X2,

3(X) = X1k

2 2 2 2

We notice that the shape function N i is equal to 1 at the vertex P; of the reference
element 1 and vanishes at a/l\l other vertices (see Fig.4.3). R
It holds PP (%) = span{N; : i = 0, 1,2} and PP(7) = span{N; : i =0,...3}.

For the definition of the boundary element spaces of polynomial degree p we
have to distinguish between quadrilateral elements and triangular elements. For the
reference element T € G and p € Ny we define the index set

0,

Fig. 4.3 Reference elements S,
7= S5 (left) and 7= Qz

(right) and nodal points for
IE»I? 0 1 0 1
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Fig. 4.4 Nodal points 131(2) 2,2 0,2 e 2,2
for the reference triangle (left) ’
and for the unit square (right)
1,1
L1 2,1 0,1 . 2,1
S, 0,
0,0 1,0 2,0 0,0 1,0 2,0
¢ ._ J1G,j)eNg:0<j <i<p} inthe case of the unit triangle, 4.70)
P {(i, j) e Ng :0<i,j < p} in the case of the unit square.

We will omit the index 7 in Lf, if the reference element is clear from the context.

Example 4.1.38 (Boundary elements of degree p > 1). The trial spaces P2, IP’E

in (4.67) are spanned by the functions N Ef’ }) € IP’I%, which will be defined next. The
nodal points for the reference element T are given by

NG i j)T R
Pi.ni=— =), V(i,j)et 4.71)
@.J) (p P p

(see Fig.4.4).

For(i,j) € Lf, the shape function N Ef’ }) is characterized by

F@) ¢ S 3P 1k =0G0.)).
Bihers wa MO = {3l Sy

(see Theorem 4.1.39).
Theorem 4.1.39. Let k € N. Then every q € IP’; is uniquely determined by its

values in Xy, 1= {(i/k,j/k) 1 (i, j) e L;é}

The set X is called unisolvent for the polynomial space P,f because of this
property.

Proof. A simple calculation shows that
dimP{ = 5.
Therefore it suffices to prove either one of the following statements (a) or (b):

(a) For every vector (b,),cx, there exists a g € IP’,f such that g (z) = b, for all
Z€Xy. R
(b) If g € Pf and g (z) = O forallz € Xy theng = 0.
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Case 1: © = (0,1)*: For pu € lk we define the functlon NM by

;=i
Ny ® = T2 115, =0 —_ L,
lj#“’j //Lj

Then Nu € P,f with Nu (n/k)=1 andN (" ’2) = Oforall (i1, i) € Lk\{/L}
Now let (b “)u af be arbitrary. Then the polynomial ¢ € IP’,:

gx) =Y buN,(x)

WELY,

satisfies property (a).
Case 2: 7 is the reference triangle. As in Example 4.1.37 we set

A

M) :=1-%1, J®:=% %,  Azx) := .
Clearly, these functions are in IP’f and have the Lagrange property
VI<i,j<3:X(A;) =68, with Aj = (0,07, A = (1,007, A3 = (1,1)T.

1. k = 1:Foragiven (b;);_, € R3, g € P;:

3
q(x) =Y biki(x)
i=1
clearly has the property (a).
2.k =2Forl <i<j<3,Aqj = (Ai +Aj) /2 denote the midpoints of the
edges of 7. We define

Then we clearly have N > N (Q.j) € ]P’Z% and

~

Ni(A))=38i; Ni(Agp) =0 Vi k.4,
NG, jyAr) =0Ng ) (A(k,@)) = 8,-,](51-,[ Vi, j, kL.

Foragiven{b,:z € X,} = {b,-, b(k’()}, the polynomial g € ]P’zf defined by

3
qX) =Y bNi®+ > baoNuyX)

i=1 1<k<{<3

has the property (a).
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3. k = 3: This case will be treated in Exercise 4.1.40.
4. k > 4:Letqg € ]P’kA with g (z) = O for all z € . Then g vanishes on all edges
of 7. Therefore there exists a ¢ € IP’kA_3 such that

g =MAAAsy and Vze ZpN?%:y(z)=0.
(Note that T is open.) The problem can thus be reduced to
(WEIP’kA_3)/\(Vz€Zkﬂf:W(z)=0)=>WEO. 4.72)

Property (b) follows by induction over k as follows.

Let 7/ be the triangle with vertices A = (L #)T B= (%, 6 L T C =
g =) P = \kFrR) Y T

T
( k k_l) .Thenwe have X, N T

Rl : X} C 7. The transformation

is affine and therefore 1} =vyoTl € IP’kA_3. Furthermore, we have 71 E;{ =
3k—3. Hence (4.72) is equivalent to

(&ePkA_3)A(vZezk_3:1/?(z):0):>1/}so.

This, however, is statement (b) for k <— k — 3. Since the induction hypothesis
for k = 1,2,3 is given by steps 1-3 in the proof, the assertion follows by virtue
of the equivalence of the two statements (a) and (b). O

Exercise 4.1.40. Let T be the unit triangle. For IP’; construct a Lagrange basis for
the set of mesh points X3 (see Theorem 4.1.39).

In combination with the polynomial space IP’; on T we define an interpolation

~(p)

operator 17 for the set of nodal points ¥ p = (P G.)) for continuous

)(i,j)EL,,
functions ¢ € C° (?) by

- S\ o
7g:= Y ga(P(l-jj)) N 4.73)
G.))ed

The Sobolev embedding theorem (Theorem 2.5.4) proves the continuity of the
embedding H? (t) — C° (?) thanks to 7 C R2 for ¢ > 1 and therefore 17 is
defined on H? (%), thus
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\_/k\ "o,

Fig. 4.5 Quadratic triangular and quadrilateral elements which share a common edge. The com-
patibility of the parametrizations ensures that the midpoints (cross marks) of the pullbacks of the
common edge in the reference elements are mapped to the same surface points

17 H'() —> ]P’;7 and continuous: H/I\p)

_ < 00
CO(3)«<H' (%)

One obtains the set of nodal points on the surface by lifting the set of nodes on
the reference element by means of the element parametrization

7= {Xr (’P(I-,,-)) VieG, V(,j)e z;} (4.74)

Clearly, in a mesh G on I there will be nodal points that lie in more than one
element, more precisely, that lie in their closures. As an example, consider Fig. 4.5
with two panels that have a common edge.

If the parameter representation y., y, of the panels 7,7’ € G is not compatible,
the eqz\ge midpoint “x” on the common edge will be mapped to different points

in 7, v/, depending on whether it is associated with t or t’. Thus, regular element
mappings (see Definition 4.1.4) must parametrize edges e = TNT’ “identically from
both sides”. In the following we will always assume in the definition of continuous

boundary elements S, g,’)? that G and y are regular.

Example 4.1.41 (p-Parametric Boundary Elements). Let G be a regular mesh on
I and let ¢ > 1 be given and fixed. Then we can approximate a regular, generally
non-linear, parametrization . : T —> t© € G by means of a p-parametric element
mapping

T® = Y PP OND %, ket (4.75)

(.)ed

where Pg{)j)(f) = Xt (/};g])])) denotes the lifted nodes of the reference element.
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Remark 4.1.42. In practical applications the construction (4.75) is used for p = 1
and p = 2 with the shape functions ]/\\/Ef’i) for the set of points ﬁg’i) in (4.71). In
every case the approximation panel T := ¥ (%) interpolates the exact panel t at the
points P(‘!J ) It is known from interpolation theory (see Sect. 7.1.3.1) that, for the
quality of the approximation, the choice of interpolation points becomes essential
for high orders of approximation such as p > 3. For p > 3 the images of the
Gauss—Lobatto points for the unit square represent a better choice for the set of

nodes P(p) Similar sets of points are known for the unit triangle (see [16, 130]).

In the following we will always assume that the y describe the surface I' exactly.
The influence of the approximation of the domain on the accuracy of the boundary
element solution is discussed in Chap. 8.

We define the space of the continuous, piecewise polynomial boundary elements
of degree p > 1 by a basis by. For this, let Z be, as in (4.74), the set of all nodal
points in the mesh G. The basis function bp for the nodal point P € 7 is characterized
by the conditions

2.0 , 1 forP =P,
bp € Sg’ and bp(P) := (4.76)
0 forP #P, P el

For a nodal point P € 7 we define a local neighborhood of triangles by I'p :=
\U{T : T € G, P € T}. Then we have

supp(bp) = T'p. 4.77)
In order to derive a local representation of the basis functions by element shape

fgnctions, we need a relation betvyeen global indices P € 7 and loca} indices (i, j) €
tp-Fort € Gand I = (i, j) € 1}, we define a mapping ind : G x 1}, — 7 by

ind (2, 1) := ye (ﬁ(,-,,-)) eT. (4.78)

With this we have, fort € G, I = (i, j) € Lf, and P = ind (z, I) € Z, the relation
bele = N& jy = Nrioyx;'. (4.79)
In the following we will show that the functions in S, gp”)(() are Lipschitz continuous

and are thus contained in H' (I"). In order to compare the Euclidian distance with
the surface distance, we introduce the geodesic distance

distr (x,y) := inf {length (yx,y) : Yx,y is a path in I" that connects x and y}

and the constant gr
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distr (x,y) }

gr = sup { (4.80)
x,yeI' ”X - y”

Remark 4.1.43. The functions ¢s € Sgp”)(() are Lipschitz continuous

lps (x) —@s(¥)| = C [x—y]| vx,y e,

where C depends on T', G, y and gr.

Proof. The continuity of ps € S gp”)(() follows directly from the definition so that we
only need to prove the Lipschitz continuity. Let x, y € I" and let yx y be a connecting
path with minimal length on I". Let (t j)‘j.zo C G be a minimal subset of G with the
property:

q

xe®m, yer, ny<JT
j=1

V1<j<gq:7T,-1NT,isacommonedgee; ande; N yyy # 0.

We fix the points M; one; Nyyy, 1 < j < gandset My = xand My =y.

q+1

Without loss of generality we assume that all (M /)j=0 are distinct; otherwise we

simply eliminate points that appear in the sequence more than once. Then, by the
continuity of ¢, we have

q
95 (¥) — s (x) = ¢s (Mg+1) — s (Mo) = Z (os Mj11) —os (M})).

Jj=0

The points M1, M; are in the panel 7;. Since ¢g|, is the composition of a
polynomial with a diffeomorphism, these restrictions are Lipschitz continuous. With

lps (x) — s ()|

Cp 1=
x,yer Ix —yll

we have
|‘/’S (M;41) —¢s (MJ)| =6 HMJ'+1 -M; ” =L (VM/:M/+1)7

where L ()/M M le) denotes the length of the shortest connecting path in I" that
connects M; with M 1. Finally, with (4.80) we have

s () — o5 ()] < (lrsn]a;q cr,-) L (xy) < gr (lrgja;q c,,) Ix =yl

which is the Lipschitz continuity of ¢g. |
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4.1.8 Galerkin BEM with Continuous Boundary Elements

The inclusion SZ° 2 C H'2(I") of the continuous boundary elements permits the

Galerkin d1scretlzat10n of the hypersingular boundary integral equation:
Find g5 € S; 20 /K such that

b(ps.ns) = (gn.Ns)L2(r) Vs € SEO/K. (4.81)

The ellipticity (Theorem 3.5.3) implies the existence of a unique solution of Prob-
lem (4.81). The system matrix of the hypersingular integral equation has similar
properties to the matrix of the single layer potential (see Proposition 4.1.24).

Proposition 4.1.44. The system matrix W of the bilinear form b Sgp’O/R X

Sé”o/]R — R in (4.65) is symmetric and positive definite. The entries Wy y, I, J €
T have the explicit form

Ir b Ir b
WI,‘] — [ / (Cur ror (X),Cur roJg (y)) dSdex — WJ’I. (482)
rJr 4r x =yl

The integrals in (4.82) are, according to Remark 4.1.43, weakly singular and
therefore the matrix entries are well defined. We can write the actual generation
of the matrix by means of integrals over single panels, with the help of the index
allocation (4.78). In the following we will give an algorithmic description in the
form of a pseudo programming language.

procedure generate_system_matrix;
for all 7,1 € G do begin
forall / = (i,i') € Lp, J=(.,j)e L ? do begin

d =/;/;G (x—y) <curlr (ﬁ(i,i/)o)(r_1 (X)),Curlr (1/\7(“-/) o ;! (y))>dsydsx;

=ind(r,/); L:=ind(¢,J); Wk, := WK,L—i-W

rt’

(4.83)
end;end;

Exercise 4.1.45. Let 1,1 € G be panels with reference elements T, t and refer-
ence mappings X, Xt The Jacobian of the transformation is denoted by J, :=

[81)(r, 82)&] and we set V+ = (82,—8 ) For sufficiently smooth functions
u: t — R prove the relation

greurlpuo y, = JrﬁJ‘ﬁ,

where g, := ,/det (JIJT) and it := uo yy.
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For the local system matrix W,{,’J in (4.83) we have the representation

[ (394N ) ® . (198 9 @))d&di
Tt Jt

4r || xe %) = e D]

(Hint: Use Exercise 3.3.25.)

In the same way as in Proposition 4.1.25 we obtain a quasi-optimal estimate for
the Galerkin error for continuous boundary elements on a regular mesh G.

Proposition 4.1.46. The Galerkin approximation ¢s € Sgp 0 of the solution ¢ of
the hypersingular boundary integral equation converges quasi-optimally:

bl .
lp —¢sllmizmyx < —= min e =Ysllgi2w)x. (4.84)
14 wSeSé"

The Galerkin projection Hép) cHY2(T)/K — Sé”o/K, given by H(gp)(p = @s, Is
stable:
I 120y mi2y e < 161/7. (4.85)

where the norm of the bilinear form b(-,-) is given by

bl = b(¢.n)
6]l :== sup sup
wer 12003 nem 17203 12 a2y Il 172y

[see (2.29)].

Thanks to the stability result (4.85), the search for convergence rates of the
Galerkin BEM is again reduced to the study of the approximation properties of
the spaces S 0,

4.1.9 Convergence Rates with Continuous Boundary Elements

In order to find convergence rates for the boundary element approximation ¢g in
(4.81) of the hypersingular equation (4.65), we need approximation properties of
the continuous boundary element spaces, which we will now specify. For this, let
the boundary I" be bounded and piecewise smooth in the sense of Definition 2.2.10.

Remark 4.1.47. The partitioning of I" which is employed in Definition 2.2.10 of
piecewise smoothness is denoted here by C = {I'; : 1 <i <gq} instead of G in
order to distinguish the notation from the boundary element mesh G and its panels
T € G (cf. Definition 4.1.2). In this light, the cardinality q of C depends only on
T and is, in particular, independent of the discretization parameters. However, we
always assume that the boundary element mesh is compatible with C in the sense
that, for any t € G, there existsa I'; € C with t C T;.
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We will prove the approximation property and the convergence rates for the
Galerkin solution under the assumption that the exact solution belongs to the space
H,,, (T') which we will define next.

Definition 4.1.48. Let I" be piecewise smooth with partitioning C:= {I';:1 <i <g}:

(a) Fort > 1, the space H;fw (T") contains all functions ¥ € H! (T") which satisfy
VFI' eC: I//|I~i EHt (Fl)

and is furnished with the graph norm

1/2

W lag,@ = D Wikiay | - (4.86)

I;eC

(b) For0 <t < 1, the space H}, (') equals H' (I') and the norm ||'||ng(r) is the
usual H* (T')-norm.

Some properties of the H;fw (T)- and the H' (T")-norms are stated in the next
lemma.

Lemma 4.1.49. (a) Lett > 1. For any ¥ € H' (I"), we have

”W”HI{W(F) < ¥l r)-

(b) Lets > 0. Let t denote a finite index set and let {v; : i € t} be a set of functions
in H® (). If the supports w; := suppv; satisfy

lwi Nw;| =0 Vi, jeuiwithi # j,

then
2

) 2
<32 illhsay-
Hs(T) i€L

Qv

i€t

Proof. Part a: Lett € Ny. Then

Wy = D0 W1,y = 1913 @)

T;ecC

Fort € R>9\Ny, lett = [t] + A with A € ]0, 1[. We employ (2.85) to obtain

_ 2
Wiy = 3 Waltaqy+ > [ el asas,

lal<lt] <1 X Ix =yl
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2
> Z Z ||I//“”L2(F)+ Z / Wu(X) Igiz(z’ﬂ dsydsy

rec \lal<Lt) jal=le) YT X =yl
=Y Wik, -
T;ecC

Part b: The proof of Part b is as in [91, Satz 3.26]. First, we will consider the
case s € ]0, 1[. We write

v:Zv,-, D; := suppv;, D::UD,- = suppv

i€t i€l

and introduce the shorthand

[ ] [

for any measurable subsets I'', T C T andw € H* (T).
Forany i € (, we get

[ fwe=[ [weeaf [ wpef [ wE
rJr D; JD; D; JT\D; r'\D; JT\D;
D e e —
=0
:/ / [v,-]§+2/ |vi (x)|2/ Ix —y|| 7> dsydsy. (4.87)
D; JD; D; '\D;

On the other hand,

/F/F[V]§=/’3/F[V]§+/F\D/[V] +/F\D/F\D
_Z/ /DJ,?_,JFZ/ /F\D +/D/F\D[V]§ (4.88)

1EL 1EL

_[Vl]_s

6=, [ S
D; JT\D; r'\D; Y||
1
52/ vxz(/ —als)alsX
ro, O U, ey

=:J;

and
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1
+ 2[ v (y)|? —————5-dsxdsy
p; —~—Jr\p; [x—y|***

=lvi W

@/r/r[”"]f_/]),. /D ]2 + 2.

Inserting this into (4.88) results in
[v < (/ / [v +2J; ) / / . (4.89)
Jo L= (f fomeean)« [ [

Next, we will investigate the sum over the quantities J;. Let y; denote the
characteristic function for I'\ D;. Then

1
YU = Z/ |v()| (/ sty)dsx

i€l 1EL

_Z/Xz x) v (x)? (/ mdsy)dsx

1€L

[ v () (sz( x) [ y”2+2sd y)dsx. (4.90)

1€L

=/

o
Let j € ¢ and let x be an interior pointof D;,i.e.,x € D ;. Forany i € ¢, we have

‘ | 1lifxe\D;| _ e
ri= | eI ).

o

Forx € D we have

f()—Z/

1
—__dsy= / B —
o ||x—y||2+2s o\, [x—yP**

Inserting this into (4.90) results in

1
2y Ui = Z/ v ) (/D\D,sty>dsx

i€t Jjet
|"/(X)|

(487)
<> / / vil; (4.91)

jeu
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It remains to estimate the second term in (4.89). We have

2 2 1
/;)/I“\D [V]s _[ |V(X)| (/I“\D ||X_y||2+2sdsy) dsx
1
_ Z/ v ()2 (/F\D —”X_y”msdsy) ds,

1€L
=|v; (X)|

1
< Vi (x —————dsy | dsy
Zf'””“@wbwmso

LEL

(4 87 1
Z / / vi]Z. (4.92)

i€l

The combination of (4.89), (4.91), and (4.92) leads to

Because the L2 (I")-norm is additive we obtain

= My + [ [ B8 = X bt + 5 Z/[W

Hs(T) i€l

2
<23 Wil

i€t

2
D

i€l

The proof for s € R~1\N can be carried out in the same way. Note that the
expression [v]; has to be replaced by [v], where vq is defined as in (2.86). |

Proposition 4.1.50. Let T" be piecewise smooth and let G be a surface mesh of T':

(a) Let' ¢ € Hlfw(F) for some t > 1. Then there exists a continuous interpolation
Ié’go € Sgp’0 with

le — 18 ellaswy < C g™ P lgllgg ). s €401}, (4.93)
where the constant C depends only on p and on the constant kg from Defini-
tion 4.1.12, which describes the shape-regularity of the mesh.

(b) Let 0 < s <t < 1. Then there exists a continuous operator Qg : H' (T') —
Sgp’o such that, for every ¢ € H' (T'), we have

"In Sect.4.3.3, we will prove the continuous embedding H, () — C O() for t > 1 and
piecewise smooth Lipschitz surfaces.
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lo — Qg@llmsary < Chg ™ llell gery -

The operator Qg is stable for 0 <s < 1

19¢l s ry—msa) = C.

The proof of Proposition 4.1.50 is postponed to Sect. 4.3.5.
With Proposition 4.1.50 we can now derive quantitative error estimates from the
quasi-optimality (4.84) of the Galerkin solution ¢g.

Theorem 4.1.51. Let " be a piecewise smooth Lipschitz surface. Furthermore, let
G be a regular surface mesh on T'. Let ¢ € Hlfw (') with t > 1/2. Then we have for
the Galerkin approximation ¢s € Sgp 0 of (4.65) the error estimate

lo = @sllgr/2qym < CH™ P2 o] gy 1y, (4.94)

where the constant C depends only on p and, via the constant kg from Defini-
tion 4.1.12, on the shape-regularity of the mesh.

Proof.

Case 1:t =1/2.

For ¢ € H'Y2(I")/K it follows from (4.84) that by choosing ¥s = 0 we obtain
the boundedness of the error |[¢ — @5 g1/2¢ry/x bY (DN /¥) ||l g1/2(ry/x - This
yields (4.94) fort = 1/2.

Case 2:t > 1.
Now let o € H} (T') with# > 1. Let TS Hy, () — Sg’o be defined by

rr._ | Qgift=1
¢ IE it > 1

Proposition 4.1.50 implies that T_Cf’ is continuous. The estimate

(L]
y

< » _IBl,
le —esllg2ryx = le = Tg el m2myx < 7”(/, — T2l g2y
follows from the quasi-optimality (4.84), and we have used [|¢|g1/2(ryx =
12;1]11’@1 ”(p - c”Hl/Z(F) = ||§0||H1/2(F).

If we apply Proposition 2.1.65 with Xo = L2 (I'), X; = H' (') and 6 = 1/2

we obtain the interpolation inequality

2
||<P||H1/2(r) < llellz@y lell ey -

With this and with Proposition 4.1.50 it follows for # > 1 that
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lo = T4 @312y = €l = T80l 2mylle = T3 @l
< C h2min(t,17+1)—1||(p||§{r @ (495)
pw

and therefore we have (4.94) for ¢t > 1.

Case3:1/2 <t <1.
In this case we prove (4.94) by interpolation. We have for the operator I — Qg the
estimate [cf. Proposition 4.1.50(b)]

11 = Qgllmi2@yenirzm < C. 11 = Qgll /2yt < C h'2.

As in the proof of Theorem 4.1.33, the estimate

_1
I = Qa)¢ll g2y < CR 2@l g (r).

follows for 1/2 < ¢ < 1 by interpolation of the linear operator I — Qg: H'(T") —
H? (T") (see Proposition 2.1.62). |

4.1.10 Model Problem 3: Mixed Boundary Value Problem™

We consider the mixed boundary value problem for the Laplace operator:
Au=0 inQ7, u=gp onlp, du/on =gy only (4.96)

for given boundary data gp € H'/?(T'p), gy € H™'/?(T'y). For the associated
variational formulation we refer to Sect.2.9.2.3. The approach that allows the dis-
cretization of mixed boundary value problems by means of the Galerkin boundary
element method is due to [220, 239]. For the treatment of problems with more
general transmission conditions we refer to [233].

The problem can be reduced to an integral equation for the pair of densities
(p,0) e H= H1/2 (I'p) x H/2 (T'n). The solution of (4.96) can be represented
with the help of Green’s representation formula

u(x) = (So)(x) - (Dy)(x),  xe€Q".

The variational formulation of the boundary integral equation reads [see (3.89)]:
Find (¢, 0) € H such that

bmixed ((i) (Z)) = (&p-Mr2rp) + @N-K)2(ry) V(n.k) eH
4.97)

* This section should be read as a complement to the core material of this book.
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with

@ n
bmixed ((0)’ (K)) = (Vpop@. M 12(rp) — (KpNo M) 12(r0) + (Kyp @ k) 121y
+ (WNNU, K)LZ(FN) .

The boundary element discretization is achieved by a combination of different
boundary element spaces on the pieces I'p, I'y. For this let Gp, Gy be surface
meshes of I'p, 'y, while we assume that Gy is regular (see Definition 4.1.4). We
use discontinuous boundary elements of order p; > 0 on I'p. The inclusion

st ¢ H-V2(Ip), (4.98)

results, because the zero extension {* of every function ¥ € Sg”l‘)’_1 satisfies the
inclusion y* € L2(T") ¢ H~"/2(T) and thus we have y € H~'/2 (T'p).
For the approximation of o € H'/2(I'y) we define for p, > 1

552’?0 = {'7 € Sé’i’o “nlory = 0} (4.99)

and therefore the boundary values of the functions € S é’i]’,% vanish on 0y .

Remark 4.1.52. The zero extension 6* of functions o € Sé),’\?,o satisfies 0* €
Sgp’o C H'2(T"), where we have set G == Gp U Gy.

With these spaces we can finally formulate the boundary element discretization
of (4.97). In the following we will summarize the polynomial orders p; > 0 and
p2 = 1in the vector p = (p1, p2).

Find (ps,0s) € SP := Sé’;’_l X Sé’i]”% such that

Brnived ((‘05) , (”S)) = (80715 12y + (N k) 2y V(05 Ks) € SP.

os Ks
(4.100)
The norm for functions (¢,0) € His given by [[(¢.0)|g := ¢l g-1/2¢,) +
lloll g1 /2(ry)- Once more the unique solvability of the boundary element dis-
cretization of the integral equation follows from the H-ellipticity (3.112) of the
bilinear form b,,;xeq, and from the Galerkin orthogonality of the error, we have
the quasi-optimality.

Theorem 4.1.53. Let (¢, 0) € H be the exact solution of (4.97). The discretization
(4.100) has a unique solution (ps,os) € SP, p = (p1, p2), which converges quasi-
optimally:

(@, 0) = (¢s,08)|lg = €1 _min_ (¢, 0) = (7, 6)l|q - (4.101a)

(n,k)€SP
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If the exact solution satisfies (¢,0) € Hlfw (I'p) x Hlfw (Tw) for s,t = 0 we have
the quantitative estimate

min 1
(9. 0) = (gs. 09l = Co (AP0 g g 1
; _1
+ e o gy ). @.101D)
Here the constant Cy depends only on Cy in (4.101a), the shape-regularity (see

Definition 4.1.12) of the surface meshes Gp, Gy and the polynomial degrees p;
and p;.

Proof. For the proof we only need to show the approximation property on the bound-
ary pieces 'p and I'y. Here we use (4.59) on I'p and (4.93) on I'y for a sufficiently
large ¢ > 1. Hence the interpolation Igp ¢ in (4.93) is well defined and we have
@lary = 15 ¢|arN = 0. Therefore the zero extension of the difference function

satisfies ((p — Ié’(p)* € H'2(I") and from (4.93) with s = 0, 1 we have:

* .
(e —18¢) N2y = le — 15 ¢ll2ry) < Chml"(t’pH)||</’||H,£W(FN),

* M —
(e —12¢) laiay =l —1fellgiry) < C pmin(tp+1) 1||¢||HI{W(FN)~

(4.102)
Then, by interpolation as in the proof of Theorem 4.1.51 and by the boundedness of
the Galerkin projection (see Remark 4.1.27), (4.101b) follows. O

4.1.11 Model Problem 4: Screen Problems*

In this section we will discuss the Galerkin boundary element method for the screen
problem from Sect. 3.5.3, which is due to [219].

Hence we again assume that an open manifold Iy is given, which can be extended
to a closed Lipschitz surface I in R? in such a way that we have for I'§ = T \To

=T, UTE.

In order to avoid technical difficulties, we require that T’y and I'§ be simply con-
nected. We have already introduced the integral equations for the Dirichlet and
Neumann screen problems in Sect. 3.5.3:

Dirichlet Screen Problem: For a given gp € H'Y?(Ty) find ¢ € H~1/2(Ty) such
that

Vo.M 2wy = €p. M2y Y0 € HV2(Ty). (4.103)

* This section should be read as a complement to the core material of this book.
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Neumann Screen Problem: For a given gy € H™1/2(Ty) find 0 € H'/%(Ty) such
that

(Wo.k)12rg) = (8N-K)2ryy Yk € HY?(T). (4.104)
The Galerkin BEM for (4.103) and (4.104) are based on a regular mesh G of
T'p and a boundary element space of polynomial degree p; > 0 for the Dirichlet

problem (4.103) and p, > 1 for the Neumann problem (4.104).
Dirichlet Screen Problem: For a given gp € H'/2(I'y) find g5 € S& =1 such that

(V¥s. 1) 2y = (€D 182y ¥ns € SEVTL (4.105)

Neumann Screen Problem: For a given gy € H~'/2(I'y) find o5 € Sgpfo’o such that

(Wos.ks)r2wy) = (8.K) 2@y Yk € S53°. (4.106)

Note that in S(‘;J 2:9 the boundary data of g on 9Ty is set to zero (see Remark 4.1.52).
With the ellipticity from Theorem 3.5.9 we immediately have the quasi-optimality
of the discretization.

Theorem 4.1.54. Equations (3.116), (3.117) as well as (4.105), (4.106) have a
unique solution and the Galerkin solutions converge quasi-optimally:

I —vs ||1§—1/2(r0) =C min . I —ns ||1§—1/2(r0)» (4.107a)
7]5€S§1A

lo — 05”1—71/2(1“0) <C min . lo — ks ”1511/2(1"0)' (4.107b)
SESg?d

If the exact solution of the Dirichlet problem (3.116) is contained in Hj, (To) for
an s > 0 we have

i 1
1V = Vsl -3 g, < CoR™ P2 Yy . (4.108a)

If the exact solution of the Neumann problem is contained in H;W (Do) forat > 1/2
we have

; _1
lo = ol 12y < C2 BP0 Y o gy ). (4.108b)

Here the constants Cy, Co depend only on the respective constant C in (4.107), the
shape-regularity (see Definition 4.1.12) of the mesh and the polynomial degrees p;
and p».

Remark 4.1.55. In general, the exact solutions of the screen problems have edge
singularities and therefore they do not have a very high order of regularity s or
t in (4.108). Therefore the convergence rates of the Galerkin solutions in (4.108)
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are low, even for higher order discretizations. This problem can be overcome by an
anisotropic mesh refinement near 01'y. For details we refer to [221].

4.2 Convergence of Abstract Galerkin Methods

All boundary integral operators in Chap. 4.1 were elliptic, which allowed the use
of the Lax—Milgram lemma to prove existence and uniqueness. As we have already
seen with the Helmholtz problem, however, in certain practical cases we encounter
indefinite boundary integral operators. Here we will show for very general subspaces
and especially for non-symmetric and non-elliptic sesquilinear forms, under which
circumstances the Galerkin solution us € S exists and the error converges quasi-
optimally. An early study on this subject can be found in [223]. For a study on the
convergence of general boundary element methods we refer to [215].

4.2.1 Abstract Variational Problem

We would first like to recall the abstract framework from Sect. 2.1.6 and, again, refer,
e.g., to [9, Chap. 5], [151, 166, 174] as standard references and additional material.

Let H,, H, be Hilbert spaces and a(-,-) : H; x H — C a continuous
sesquilinear form:

_ la(u,v)|
lall = sup  sup ————— <00, (4.109)

we Hy\{0} ve Ho\(0} lull iy VI Hs

and let the (continuous) inf—sup conditions hold: There exists a constant y > 0 such

that
inf  sup 2V oy (4.110a)
ue Hi\{0} e 1\ (o3 [l &y VI F,

and we have
Vv e H\{0}: sup |a(u,v)| > 0. (4.110b)

ue Hy
Then for every functional F € H) the problem

Findu € H; : a(u,v) = F(v) Vv e H, 4.111)

has a unique solution, which satisfies

1
lulle, < —11F |l ay- (4.112)
Y
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4.2.2 Galerkin Approximation

We require the following construction of approximating subspaces for the definition
of the Galerkin method, which we use to solve (4.111).

For i = 1,2, let (S}),y be given sequences of finite-dimensional, nested
subspaces of H; whose union is dense in H;

1Nl &
i 1

=H, i=122
(4.113)

VE>0:S{C Sy, dimS{<oco and [, S

and whose respective dimensions satisfy the conditions

Ny = dimSzl = dirnS(2 <00, VL eN: Ny < Nygq,

4.114
Ny — oo forl — oo. ( )

Since the dimensions of S [1 and S 62 are equal, it follows that the system matrix for
the boundary element method is square.
The density implies the approximation property

Yu; € Hj : [l_i)m min{||lu; —v|m, :v e S} =0. (4.115)
o0

Every u; in H; can thus be approximated by a sequence v% eS é In Sect. 4.1 we

have already encountered the spaces S gp %and S gp "~ and one obtains a sequence of
boundary element spaces by, for example, successively refining an initially coarse
mesh Gy.

With the subspaces (S;) .y C Hi the Galerkin discretization of (4.111) is given
by: Find u; € S, such that

a(ug,ve) = F(vy) Vv € S7. (4.116)
A solution of (4.116) is called a Galerkin solution. The existence and uniqueness

of the Galerkin solution is proven in the following theorem.

Theorem 4.2.1. (i) For every functional F € H), (4.116) has a unique solution
ug €S 61 if the discrete inf-sup condition

inf  sup W 4.117)

ueS;\{0} yes2\(0} el &2, 11Vl 11
holds with a stability constant yy, > 0 and if

Vv e SP\ {0} : sup |a(u,v)| >0 (4.118)

1
ues,

is satisfied.
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(ii) For all £ let (4.118) and (4.117) be satisfied with y; > 0. Then the sequence

(ug)y C Hy of Galerkin solutions satisfies the error estimate

lu—uella, < (1 + @) min [|u—v||#H,. 4.119)
(4

vESl}
Proof. Statement (i) follows from Theorem 2.1.44.
For (ii): The difference between (4.116) and (4.111) with S ez C H, yields the
Galerkin orthogonality of the error:

au—ug,v) =0 VveS;. (4.120)

Owing to the discrete inf—sup condition (4.117) we have

vl < sup 12Vl |F ()|
' eszvey Ml westvoy Vs
|F ()] _ |a(u,v)|

< su < llall llull &,
vemo\oy IWlE  vemngoy VAL

This means that the statement Q u := uy defines a linear mapping Q, : H; — S [1
with [|Q¢llm, < m, < llall/ye. Forallw € S} C Hj it follows from (4.117) and
(4.120) that we have the estimate

1 la(w — Qgw,v)|
w—Qewlln, <— sup ———— =

0,
{ vESez\{O} ”V”Hz
from which we have the projection property:
Yw e Sel : Qww =w.
It then follows forallw € S el C H,, that
lu—uellm, < llu—wla, + llw— Qeulla,
= llu—=wla, +11Qe(u—w)lla,
a
< (120 =l
Ve
Sincew € § el was arbitrary, we have proven (4.119). O

Remark 4.2.2. (i) The Galerkin method (4.116) is called uniformly stable if there
exists a constant y > 0 that is independent of £ such that y; > y > 0. In this
case (4.119) implies the quasi-optimal convergence of the Galerkin solution.
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(ii) The subspaces S 61 and S 62 contain different functions: S 61 serves to approximate
the solution and guarantees the consistency, while S ez guarantees the stability,
because of the discrete inf—sup condition [which is equivalent to (4.117)]

|a(u,v)|

YuesS, : > ye |lull o, - (4.121)

veS2\{0} V]| £,

Remark 4.2.3. In Sect. 4.1 we have seen that for the integral equations for the
Laplace problem we can always choose S el =S ez The same property holds for
the integral equation formulation of the Helmholtz equation.

Remark 4.2.4. Equations (4.117) and (4.118) are equivalent to the conditions

|a(u,v)| «

inf > y; (4.122)

veS7\0} yes)\{o} el 2, V]l e

with y; > 0 and
Yu € S;\ {0} : sup |a(u,v)| > 0. (4.123)

2
veS]

Remark 4.2.5. For Hy = H, = H and S} = S} = Sy, (4.117) implies the
condition (4.122) with y; = yy and vice-versa.

The Galerkin method (4.116) is equivalent to a linear system of equations. To see

AN .
this we need to choose bases (b;) ‘ of Sé, i=1,2:

j=1
S[1 = span{bjl- cj=1,...,Ng}, S[2 = span{bjz-: j=1,...,Ng}.

Therefore every u € S [1 andveS [2 has a unique basis representation

Ny Ny
w=Y ujbj,  vg=y_ v;b3. (4.124)
j=1 j=1

If we insert (4.124) into (4.116) we obtain:

VveSez: au,v)y— Fv) =0 =

N N
N, —
Vv = ()L, e CVe Y[ 9D Jualbp b))y - Fb) | = 0=
j=1 k=1
Kou = Fy, (4.125)

Ny

.~ and
Jj=1

where the matrix K, and the vectors u, Fy are given by u = (u j)
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(Kp)j i = a(b).b?)

) 1 <j,k =N,

(Fe); = F(b3)
The linear system of equations in (4.125) is the basis representation of (4.116). In
engineering literature the system matrix Ky is also called the stiffness matrix of the
Galerkin method (4.116) and the vector F; on the right-hand side is called the load
vector.

Proposition 4.2.6. The stiffness matrix Ky in (4.125) is non-singular if and only if
we have (4.121) with yg > 0.

Proof. Let Ky be singular. Then there exists a vector u = (u,)} L, € Che\{o}

Ny
with Ky,u = 0. Since (bl) : is a basis of S, ! we have for the associated function
j=

u = Z 1 ujb1 # 0. It follows from (4.125) that a(ug, v¢) = 0 for all vy € S2
Thisis a contradlctlon to (4.121) with y > 0.
The inverse statement is proven in the same way. O

4.2.3 Compact Perturbations

Boundary integral operators often appear in the form
A+Tu=F (4.126)

with a principal part A € L(H, H') for which the associated sesquilinear form
a(-,-): Hx H — C satisfies the inf-sup conditions

inf  sup AU, (4.127)

weH\(O}vemr\(oy llull o [IVIlE

Vv e H\{0}: sup la(u,v)| >0 (4.128)

u€eH

and a compact operator T € L(H, H'). Lett : H x H — C be the sesquilinear
form that is associated with 7'. The variational formulation:
Find u € H such that

a(u,v) +t(u,v) = F(v) Vve H 4.129)
is equivalent to (4.126).

The discretization of the variational problem (4.129) is based on a dense sequence
of finite-dimensional subspaces (S¢)ep in H:
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For a given F € H’ find uy € Sy such that
a(ug,ve) + t(ug,ve) = F(vy) Yve € Sg. (4.130)

The following theorem states that the inf—sup condition for the principal part of the
sesquilinear form together with the injectivity of the operator A + T ensure well
posedness of the continuous problem. Furthermore, the discrete inf—sup conditions
for a dense sequence of subspaces imply (a) the well-posedness of the discrete prob-
lem, (b) the unique solvability of the continuous problem, and (c) the convergence
of the Galerkin solutions to the continuous solution.

Theorem 4.2.7. Let (4.127) and (4.128) hold, let T € L(H, H') be compact and
A + T injective,
A4+THu=0=u=0. (4.131)

Then problem (4.126) has a unique solution u € H for every F € H'.
Furthermore, let (S¢), be a dense sequence of finite-dimensional subspaces in H

and t (-, ) the sesquilinear form associated with the compact operator T. We assume

that there exist an £y > 0 and a y > 0 such that for all £ > £y the discrete inf-sup

conditions
|a(ug, ve) + t(ug, vo)|

inf > (4.132a)
ueeS\0} y eso\oy  luella lvella
and
b t b
inf la(ug, ve) + t(ug, ve)l . (4.132b)
eSO} ypesp\oy  luella lvella

are satisfied uniformly with respect to £. Then we have:

(i) Forall F € H' and all { > £y the Galerkin equations (4.130) have a unique
solution uy.

(ii) The Galerkin solutions uy converge for £ — 0o to the unique solution u € H of
the problem (4.126) and satisfy the quasi-optimal error estimate

lu—uellr = C min{llu — vl cve € Sy £=4o

with a constant C > 0 which is independent of L.

Proof. As a (-, ) satisfies the inf-sup conditions, the associated operator A : H—H’
is an isomorphism with ||A| g g < y~! [see (2.38)]. Hence (4.126) is equivalent
to the Fredholm equation

(I+A'T)u=4a7"f

with the compact operator A'T : H — H (see Lemma 2.1.29). By (4.131), —1
is not an eigenvalue of A™!T and, from the Fredholm alternative (Theorem 2.1.36),
I + A7'T is an isomorphism ||I + A_IT”H(_H < C. This yields the unique
solvability of (4.126) and the continuous dependence on the data.
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of (i): Theorem 2.1.44 implies both (i) and the fact that the Galerkin solution
depends continuously on the data:

1
luell g < y I 7 - (4.133)

of (ii): Let
b(u,v) :=au,v) +t(u,v).
Because of (4.133) the sequence (1), of Galerkin solutions is uniformly bounded
in H. Theorem 2.1.26 thus guarantees the existence of a subsequence uy; — u € H
that converges weakly in H (in the following we will again denote this sequence by
ug). We will now show that, with this limit u, b(u,v) = F(v) for all v € H. For an
arbitrary v € H, Pyv € Sy denotes the orthogonal projection:

VYwg € S (v— Pev,wg)g = 0.
Then we have

|b(u.v) = FO)| < |b(u,v) = b(ug.v)| + |bug.v) — b(ug, Pyy)|

T T
+ |b(ug, Pev) — F(Pev)| + [ F(Pgv) — F(v)|.
Ts T,
Forafixedve H
b(v):H—C

defines a continuous functional in H’. The definition of weak convergence then
yields the convergence of T} to 0 for £ — oo.

Since US ¢ is dense in H , according to the conditions, we consequently have the

consistency of the discretization sequence
. {—00
lu— Peully = inf lu—ve|lg — O. (4.134)

veESy

Thus we have for Ty
£—o00
[Tal = 1F =P < [Fllg Iv=Pevllg — 0.
Since (uy), is uniformly bounded, we have

72| < (1 Allg'em + T <n) lluela Iv = Pevla,
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and the consistency again implies that 7, — 0 for { — oo. Finally, we have 75 = 0
since b(ug,v¢) = F(vy) for all vy € Sy. Therefore u is a solution of (4.126). By
(4.131), u is unique.
We have thus shown the unique solvability of Problem (4.126) in H.
By (4.132), b(-,-) satisfies the conditions of Theorem 4.2.1 for £ > £y, from
which we obtain the quasi-optimality.
|

Remark 4.2.8. Theorem 4.2.7 only holds if the discrete inf-sup conditions (4.132)
are satisfied. In general, the discrete inf-sup conditions do not follow from the den-
sity of (S¢); in H combined with (4.127) and (4.128). Instead, they have to be
verified for each specific problem.

In applications concerning boundary integral equations we often encounter the
following special case of Theorem 4.2.7.

Theorem 4.2.9. Let H be a Hilbert space and (S¢), a dense sequence of finite-
dimensional subspaces in H. We assume that for the sesquilinear forms a (-, -) and
t (-, ) of the variational problem (4.129) we have

(i) a(-,-) satisfies the ellipticity condition (2.44), i.e., there exists a constant ¢ > 0
such that
Yue H : la(u, u)| > ollull%. (4.135)

(ii) The operator T € L(H, H') that is associated with the sesquilinear form
t(-,): Hx H— C is compact.
(iii) We assume that, for F = 0, (4.129) only has the trivial solution:

Vv e H\{0}: a(,v) +t(u,v) =0= u=0. (4.136)

Then the variational problem (4.129) has a unique solution u € H for every
FeH.

There exists a constant Loy > 0 such that for all £ > L the Galerkin equations
(4.130) have a unique solution uy € Sy. The sequence (ug), of the Galerkin solutions
converges to u and, for £ > Ly, satisfies the quasi-optimal error estimate

lu—uellg <C min flu—ve|m (4.137)
veE€Sy

with a constant C which is independent of £.

Proof. The H -ellipticity of a (-, -) implies the inf-sup condition (4.127), (4.128), and
therefore the unique solvability of (4.129) follows from Theorem 4.2.7.

Now we will turn our attention to the Galerkin equations and prove the inf-sup
condition for a sufficiently large £.

Weseth (+,-) = a (-,+) +1 (-, -) and define the associated operators B : H — H’
and By : S¢ — S, by



230 4 Boundary Element Methods

YuveH:(Buv)gyy =b(u,v) and
Voug.ve € S¢: (Beug.ve)s;xs, = b (ue. ve) -

The norm of Byug € S is given by

_ b (ug, ve)|
| Beuellsy = sup ————
Cesovoy vella

and the discrete inf-sup condition (4.132a) is equivalent to
Yuy € S¢ with |Jug||y = 1 we have: 3 > 0 s.t. ||Bgug||5;Z >y VL= 4.

We will prove this statement by contradiction by using the conditions given in the
theorem. For this we assume:

I (we)geny With wy € Sgpand ||we||gy =1 such that: ||B[W(||Sé —0 for{ — oo.
(4.138)
As (wg), is bounded in H there exists, according to Theorem 2.1.26, a weakly
convergent subsequence (which we again denote by (wy),) such thatw, -~ w € H.
For all v € H, b (-,v) defines a continuous, linear functional on H and so we
have
Yve H:b(wgv)—b(w,v) forl— oo.

It follows that

b (w, . |b(we,
1Bl = sup 2000 lim 120ve VI (4.139)
ver\{oy VIl ver\(oy (=00 |IVllg

In the following we will estimate the numerator on the right-hand side and for this
purpose we use the decomposition

b (wg,v) =b(wg,ve) +b(wg,v—ry) (4.140)

with the H -orthogonal projection v = Pyv € S;. From assumption (4.138) we
have

{—>00
b (we,vo)l < | Bewells; Ivellg < 1 Bewells IVIlg = O.
The fact that the spaces Sy are dense in H yields for the second term in (4.140)
{—00
b we,v—=vol = b Iwellg v —vellg = 1BI1 IV —vellg — 0.
Hence for all v € H we have the convergence limy_, o, b (wg,v) = 0 and from

(4.139) we have Bw = 0, which, combined with the injectivity of (4.136), finally
givesus w = 0.
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We will now show the strong convergence wy; — w and begin with the estimate

a|w—well3 < law—wgw—wp)| = law—wgw)—aw,we) + a(wg, wp)|.

(4.141)
Since T is compact, there exists a subsequence (which we again denote by (wy) )
such that Twy — Twin H'. This can be written in the form

{—
sup |t (wg,v) —t (w,v)| =: 8¢ 2 0,
veH
vl =1
from which we deduce by using ||wg ||z = 1 that

{—00

[t (We,we) =t (w,wy)| < 8¢ [lwellyg =8¢ — 0.

This result, combined with assumption (4.138), yields

L—o00
0 <« [b(we,we)| = la(weg,we) +t (wg,wp)| < |a (wg,we) +t (W, we)| + 8y,
in other words:

a(we,wg) = —t (w,wg) + g[ with elim ge =0. (4.142)
—>00
If we insert this into (4.141) we obtain
o llw—wellgy < |a(w—we.w) =b (w,we) + 8|

The first two terms on the right-hand side are equal to zero because of w = 0. We
also determined limy_,¢ §; = 0 in (4.142) so that we have proven wy, — w = 0.
This, however, is a contradiction to the assumption that ||wg|| g = 1.

Condition (4.132b) can be proven similarly.

The solvability of the Galerkin equation for £ > £, and the error estimate (4.137)
then follow from Theorem 4.2.7. |

4.2.4 Consistent Perturbations: Strang’s Lemma

In this section we will consider variational formulations of boundary integral equa-
tions of abstract form:
Find u € H such that

b(u,v) = F(v) Vve H (4.143)

with F € H'.
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In general we assume that the sesquilinear form b (-, -) is continuous and injective
and that it satisfies a Garding inequality.

Continuity:
Yu,ve H: |bw,v)| < Cplullg IVllg - (4.144)

Garding Inequality:
VYue H:|bu)+ (Tu,u) gyl > alul (4.145)

with @ > 0 and a compact operator T € L (H, H’).

Injectivity:

VYve H\{0}: b(u,v) =0=u=0. (4.146)
Conditions (4.144)—(4.146) yield the prerequisites (i)—(iii) from Theorem 4.2.9 with
t(,) := —(T-,Yg/xyg and @ := b — t. From Theorem 4.2.9 we derive the

unique solvability of (4.143) as well as the stability (and thus the quasi-optimal
convergence) of the Galerkin method as follows. For a dense sequence of finite-
dimensional boundary element spaces (S¢), in H there exists some £y > 0 such
that for all £ > £, the discrete inf—sup conditions

b )
weSAMO} veso\toy lullm [IvIia

b 5
veSe\M0} yeso\foy lulle IvIia

(4.147)

hold, while y > 0 is independent of £. The Galerkin equations
Find u; € Sy : b(ug,v) = F(v) VveSy (4.148)
are, by Theorem 4.2.7, uniquely solvable for £ > £ and we have

lu—uel|lg < C min [lu—v|q. (4.149)
veSy

In practical implementations of the Galerkin boundary element method in the form
of a computer program it is usually not possible to realize the exact sesquilinear
form b (-, -). Instead, one usually uses an approximative sesquilinear form by (-, -).
Reasons for this are:

(a) The approximation of the system matrix by means of numerical integration

(b) The use of compressed, approximative representations of the Galerkin equations
with cluster or wavelet methods,

(c) The approximation of the exact boundary I" by means of, for example a
polyhedral surface.
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The perturbation of the sesquilinear form b (-, -) as well as the functional F leads
to the perturbed Galerkin method:

Find &1y € Sy such that
be(itg,v) = Fe(v) Vv e §y. (4.150)

For the algorithmic realization of boundary element methods, one of the essential
aims is to define the approximations (4.150) in such a way that the solutions i
exist, converge quasi-optimally and — in comparison with the computation of the
exact Galerkin solution — can be calculated reasonably rapidly and with little use of
computational memory. A sufficient condition in this respect is that the difference
be(-,-)—b(-,-)is “sufficiently small”. We will specify this statement in the following.

For the Galerkin discretization we will generally assume in the following that
we have chosen a dense sequence (Sy), C H of subspaces of dimension Ny :=
dim Sy < oo which satisfies (4.114).

Let sesquilinear forms by : Sy x S — C be defined for all { € N. These are
uniformly continuous if there exists a constant C, which is independent of £ such
that "

|be (ue.vo)l = Cp lluell g Ivellg - Yue.ve € Se. (4.151)

The forms by satisty the stability condition if there exists a null sequence (c¢)pen
such that

|b(ug,ve) — be(ug,ve)| < celluglla vellm Yug,ve € Sp. (4.152)

The stability condition will imply the existence of a unique solution of the perturbed
Galerkin equations for a sufficiently large £ (see Theorem 4.2.11).

For the error estimate of the perturbed Galerkin solution we may measure
the function u; on the right-hand side in (4.152) in a stronger norm (see Theo-
rem 4.2.11). In this context ||-||; : S¢ = Rx¢ defines a stronger norm on Sy if there
exists a constant C > 0 independent of £ such that

lulg = Cllully — Yu e Se.
The perturbed sesquilinear forms by : Sy x Sy — C satisfy the consistency con-
dition with respect to a stronger norm ||-||; if there exists a zero sequence (8¢)yen
such that

|b(ug,ve) — be(ug, ve)| < S¢lluellv vella Vug, v € Sg. (4.153)

Remark 4.2.10. (a) The stability condition and the continuity of b (-,) imply the
uniform continuity of the sesquilinear form by (-, -).

(b) The consistency condition follows from the stability condition with §; = Ccy.
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(c) In many practical applications the use of the stronger norm ||-||y; in (4.153)
permits the use of a zero sequence (8¢), which converges more rapidly than in
(4.152). The convergence rate of the perturbed Galerkin solution is influenced
by (8¢), and not by (cg),.

Theorem 4.2.11. Let the sesquilinear form b(-,-): H x H — C be continu-
ous, injective and let it satisfy a Gdrding inequality [see (4.144)—(4.146)]. Let the
stability condition (4.152) be satisfied by the approximations by.

Then the perturbed Galerkin method (4.150) is stable. That is, there exist y > 0,
Lo > 0 such that for all £ > Lg the discrete inf-sup conditions

. |be (g, ve)| .
inf —_—— >,
ueeSe\{0} \,es,\t0y luella [vellm
, (4.154)
o |be(ug, ve)l > 7

veeSOMO} ypeso\toy el Ivellm

hold. The perturbed Galerkin equations (4.150) have a unique solution for £ > £y.
If in addition the approximative sesquilinear forms are uniformly continuous and
satisfy the consistency condition (4.153) the solutions 1y satisfy the error estimate

3 . | F(ve) — Fy(ve)l
lu—ig|lg <C§ min (lu—welg + S¢llwellv) + sup —————
weESe v €So\{0} Ivell &
(4.155)

Proof. According to the assumptions, the exact sesquilinear form b (-, -) satisfies the
inf—sup conditions (4.147) as well as the stability condition (4.149). We will verify
(4.154). For this let 0 # uy € Sy C H be arbitrary. Then we have

|be (g, ve)| (|b(ue,Ve)| |b(ue,Ve)—be(ue,w)|)
su _— > su —

veesovoy Ivellr 7 vespvor \ el [vell e
b (g, ve) — by(ug, ve)|
> yllugllz — sup
ve€Sy ”Ve”H
> (y—co) luela- (4.156)

If we choose £y > 0 so that ¢, < y forall £ > £, we have verified the first condition
in (4.154). The second condition can be verified in a similar way.

Combined with (4.154), it follows from Theorem 4.2.1(i) that the perturbed
Galerkin equations (4.150) have a unique solution for £ > £.

Next, we will prove the error estimate (4.155). Let uy € S¢ be the exact Galerkin
solution from (4.148). For £ > £, we have, according to (4.156), the following
estimate for the perturbed Galerkin solution iy € Sy
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lu —tielln < llu—welle + llue = el

|bg (g — Tag, ve)|

<llu—wlly + @ —c)™" sup
veeS\{0} ”V[”H
= =y + (=)™ sup e (ue, ve) — Fe(ve)
veeS\{0} ”‘)Z”H
- be(ug, ve) — b(ug, vo)| + | F(ve) — F,
<lu—ully + @ —co)™" sup 1beue, ve) = bl vo)l + [F(ve) AW)'.
v €S\ {0} lvell

We consider the difference term |bg(ug, v¢) — b(ug, v¢)| and obtain, by using the
continuity of by and b as well as the consistency condition, for an arbitrary wy € Sy

|bg(ug, ve) — bug, ve)| < |be (ug —we,ve)| + |be (We, ve) — b (we, ve)l
+ b (we — ug, ve)|
< Cp llue —well g Ivell g + 8e Iwelly Ivell
+Cp [lwe —uell g vellgr-

From this we have

|be (g, ve) — blug, ve)| ,
Sp < C min ([Ju—wellz + 8¢ lIwelly) -
ve€S\{0} Vel we€Sy

With ¢; < y and the consistency condition (4.153) we finally obtain

~ . 1
lu—iigllg <C min |lu—wellg + —— (Ju—wellg + Sellwelly (4.157)
we€Sy Yy —¢Cg

v €S, \{0} [vell

+ s M)}

|

Remark 4.2.12. In connection with the boundary integral operator V for the single
layer potential we have H = H~'/2 (T). Since all the boundary element spaces we
have considered so far are contained in L* ('), we can choose |||y = ||l 2 (ry as
a stronger norm on Sy. The term ||\w¢| 21y on the right-hand side in (4.155) can be
easily estimated if the boundary integral operator is L?-regular, more specifically if
V1. H' (') — L2(T) is continuous. Let u € L? (") be the exact solution and
wy 1= Ilyu the L?-orthogonal projection of u onto the boundary element space Sy.
Then we have |wellp2ry < llullp2qry < C |Fll g1y and, thus for a sufficiently
large £ > Ly

lu = itgll 172y < €3l — Mgutll 1720y + Sell Fll g vy

|F(ve) — Fe(ve)|
+ sup —r——
vees\oy Vel a—172¢ry
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From this we can deduce how the null sequence (8¢), and the consistency of the
approximation affect the right-hand side in the error estimate.

The error ||u — Tlgu|| g—1/2(ry can be traced back to the approximation proper-
ties of Sy. The choice wy = Tlu yields, for an arbitrary vy € Sy

|(u — ng, V)L2(F)|

lu — Meull g-1/2(ry = sup
ve H1/2(T)\{0} IVl E 12y
| — Teu,v—ve) 2|
= sup
ve H1/2(T)\{0} IVl 7172

Now we take the infimum over all vy € Sy and obtain

V—y
lu— Meull g—1/2¢ry < sup inf M
veH1/2\{0} V¢ €S \0} ||V||H1/2(I‘)
X ( inf |ju— W[”Lz(r)) . (4.158)
we€Sy

4.2.5 Aubin-Nitsche Duality Technique

Boundary integral equations were derived with the help of the integral equation
method (direct and indirect method) for elliptic boundary value problems. In many
cases our goal thus is to find the solution of the original boundary value problem
by solving the boundary integral equation. The numerical solution of the boundary
integral equation then only represents a part of the entire process. (Note, however,
that with the direct method the boundary element method yields a quasi-optimal
approximation of the unknown Cauchy data.) More importantly, the aim is to find
the solution u of the original elliptic differential equation in the domain €2. This
solution can, as we will show here, be extracted from the Galerkin solution of the
boundary integral equations with an increased convergence rate, a fact which stems
from the representation formula.

Example 4.2.13 (Dirichlet Problem in the Interior, 2). Let Q2 C R3 be a bounded
Lipschitz domain with boundary T and given Dirichlet data gp € H'Y*(T). Find
u € HY(Q) such that

Au=0 inQ, ulr = gp. (4.159)
The fundamental solution for the Laplace operator is given by G (z) := (4n ||z||)_1.

The single layer potential u(x) = fr G(x—y)o(y)dsy, x € Q, leads to the
boundary integral equation: Find o € H~Y*(T") such that
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Vo iawy = (gp. M2y Yne H VD), (4.160)

where (-, ) 1 2(ry again denotes the continuous extension of the L? inner-product to
the dual pairing (-, ) g1/2(ryx g—1/2(r)-

For a subspace S¢ C H~'Y2(T") the Galerkin approximation o¢ € S is defined
by: Find oy € Sy such that

(Voe.m) 2y = (8D M) 2(1) Vn € Sg. (4.161)

Equation (4.161) has a unique solution which satisfies the quasi-optimal error
estimate

lo —o¢llg—1/2¢ry < € min {llo — vllg-1/2(ry. v € Sel. (4.162)

We obtain the approximation of the solution u(x) of the boundary value problem
(4.159) by

ue(x) := / G (x—y)og(y) dsy, X € Q. (4.163)
r

In this section we will derive error estimates for the pointwise error |u(x) — ug(x)|.

4.2.5.1 Errors in Functionals of the Solution

The Aubin—Nitsche technique allows us to estimate errors in the linear functionals
of the Galerkin solution. We will first introduce this method for abstract problems as
discussed in Sect. 4.2.1. The abstract variational problem reads: For a given F(-) €
H’ find a function u € H such that

b(u,v) = F(v) Vv e H. (4.164)
Let (S¢); C H be a family of dense subspaces that satisty the discrete inf—sup
conditions (4.117), (4.118). Then the Galerkin discretization of (4.164), i.e., find

ug € Sy such that
b(ue, V[) = F(V{) Yve € Sg, (4.165)

has a unique solution. The error e; = u — uy satisfies the Galerkin orthogonality
b(u—ug,vg) =0 Yve € S (4.166)

as well as the quasi-optimal error estimate
c .
lu— el < me{”“_(ﬂénH D e € Si} (4.167)

The Aubin—Nitsche argument estimates the error in functionals of the solution.
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Theorem 4.2.14. Let & € H' be a continuous, linear functional on the set of
solutions H of Problem (4.164) which satisfies the assumptions (4.109), (4.110).
Let ug € Sy be the Galerkin approximation from (4.165) of the solution u. Fur-
thermore, let the discrete inf—sup conditions (4.117), (4.118) be uniformly satisfied:
yezy>0.

Then we have the error estimate

& W) — G ue)| = C llu—eellallwg — Velln (4.168)
for an arbitrary g € Sy, Yy € Sy, where we is the solution of the dual problem:
Findwg € H : bw,wg) = &(w) VYwe H. (4.169)

Proof. From the continuous inf-sup conditions (4.110) Remark 2.1.45 gives us the
inf-sup conditions for the adjoint problem, from which we have the existence of a
unique solution.

Remark 4.2.4 shows that the discrete inf-sup conditions for b (-, -) induce the
discrete inf-sup conditions for the adjoint form b*(u,v) = b(v, u). Therefore the
adjoint problem (4.169) has a unique solution wg € H for every &(-) € H'. By
virtue of Sy C H and (4.169), (4.166) it follows that

& W) — G )| =16 (u—up)| = 1bu—ug, we)|
= [b(u—ug,we —ve)| Vv €Sy
The continuity (4.109) of the form b(-,-) and the error estimate (4.119) together
yield (4.168). O

The error estimate (4.168) states that linear functionals & () of the solution may
under certain circumstances converge more rapidly than the energy error |Ju—ug | g .
The convergence rate is superior to the rate in the energy norm by a factor inf{||wg —
Yellg: e € S¢}. The following example, for which & (+) represents an evaluation
of the representation formula (4.163) in the domain point x € €2, makes this fact
evident.

Example 4.2.15. With the terminology used in Example 4.2.13, for the error |u(x)—
ug(X)| we have the estimate

|u(x) — ue(x)| < C min {{lo — @¢llg-1/2(ry : ¢ € St}

' (4.170)
xmln{||ve —Vellg—12qy Yo € Sg}

with the solution ve € H~Y/2(T) of the dual problem:

Findv, € H™3 (T') such that

Vvesmoqy = (G =), M2 ¥ne H V(D). (4.171)
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With Corollary 4.1.34 we deduce the convergence rate for Sy = Sgplj_l

min(s, p+1)+ 4 +min(z, p+1)+ 1
lu(x) —ug(x)| < Ch, : *Nollas

O vellaiy — (4.172)
fors,t > —% if lollasa) and ||vel gt are bounded. If we have maximal regularity,
i.e, s =t = p+ 1, the result is a doubling of the convergence rate of the Galerkin
method. For example, for piecewise constant boundary elements p = 0 and (4.172)
with s =t = 1 we obtain the estimate

u(x) —ug(X)| < C hillo | g1 oy Ivell g ry (4.173)

and, thus, third order convergence for all x € Q. Note that the constant C tends to
infinity for dist (x, ') — 0.

Remark 4.2.16 (Regularity). Inequality (4.172) only gives a high convergence
rate if the solutions o, v, are sufficiently regular. For the boundary integral operator
V on smooth surfaces T, the property gp € HY2TS(T) with s > 0 is sufficient
so that o € H™V2%S(T"), and the property G(x —-) € HY2T(T') witht > 0 is
sufficient so that ve € H~Y2T1(T') (see Sect. 3.2). Then we have the estimates

012717245 @y SC@ gD a1 sscrye Vel 1201y < CONGE A gr17250ry.

(4.174)

with a constant C(-) which is independent of g p and G. Because of the smoothness

of the fundamental solution G(x — ) forx € Q,y € I we have G(x —-) € C*(I").

On smooth surfaces this implies the estimate (4.174) for all t > 0. With this (4.172)
becomes

Ju(x) — ue(®)| < Ci(p) Co(x) hy PV, (4.175)

where we have C2(x) = |[ve |l gr+1ry < C(PIIGX = )| gr+2(r)-

Note that especially for elements of higher order, C»(x) can become very large
for x near I'. Formula (4.163) should therefore only be used for points x in the
domain that are sufficiently far away from I'. For points x which are very close
to the boundary or even lie on I', a bootstrapping algorithm has been developed to
extract the potentials and arbitrary Cauchy data and their derivatives near and up to
the boundary (see [213]).

If a quantity which has been computed or postprocessed by using the Galerkin
method converges with an order that is higher than the order of the Galerkin error
in the energy norm one speaks of superconvergence. Similar to the superconver-
gence (4.168) of functionals & () of the Galerkin solution ug, one can also study the
convergence of u; in norms below the energy norm.

Now let H = H*(I") be the Hilbert space for the boundary integral operator
B : H5(I') —» H5(T") of order 2s and let b (-, -) be the H* (I")-elliptic and injective
sesquilinear form associated with B:

b(u,v) = (Bu,v) 2y : H(T) x H*(T') — C.
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Here the continuous extension of the L2 (T") inner-product for the dual pairing
(s ") ls (ryx -5 () 18 again denoted by (-, ) 2(r). Furthermore, let (S¢), be a dense
sequence of subspaces in H¥(I")and let the discrete inf—sup conditions (4.117),
(4.118) hold. Then we have for ¢t > 0

(v, u—ug) 2
le—uelgerqy = sup D
ve H—s+1(T)\{0} IVl zr=s+¢ ()
Let w, be a solution of the adjoint problem: Find w, € H* (T") such that

b(w,w,) = (v,w)2(r) Ywe H* (). (4.176)

Then with the Galerkin orthogonality (4.166) we have (transferred to the adjoint
problem)

b (u - Li[, Wv)
o — ugll grs—1 ) = sup T
veH—s+1(IM\{0} ”V”H—S‘H(I‘)

b (u—ug, w, — wy)

= sup
ve H—s+1(T)\{0} IVl E—s+2 1y

[wy —wellms

<Clu—ulgsqy  sup D

ve H—s+1(T)\{0} ||V||H—S+f(r)
Since wy € Sy was arbitrary, we obtain

o we = wellEs
lu—ucllrs—ry < Cllu—uellgsry  sup  inf S D
ve H=S+1(T)\{0} weESy ”V”H_S'H(F)
4.177)
For ¢ > 0 higher convergence rates are therefore possible for uy than in the H*-

norm, assuming that the adjoint problem (4.176) has the regularity
veHM () = w,e HST"(TI'), V0O<t<T. (4.178)

In order to obtain quantitative error estimates with respect to the mesh width iy we
again consider a dense sequence of boundary element spaces (S¢), of order p on
regular meshes Gy of mesh width 4. Then the approximation property

inf |lw, —wellgsay < C hzli“(p+l,s+t)—s

w K
nf. Wl &5+

holds. These ideas are summarized in the following theorem.

Theorem 4.2.17. Let the sesquilinear form b (-,-) of problem (4.164) satisfy the
conditions (4.109), (4.110). Let the exact solution satisfy u € H" (I') with r > s.
We assume that the adjoint problem (4.176) has the regularity (4.178) with t > 0.
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Furthermore, let (S¢), be a dense sequence of boundary element spaces of order p
in H® (") on regular meshes Gy of mesh width hy.
Then we have for the Galerkin solution ug € Sy and 0 < t < [ the error estimate

|| u— iy || Hs—1(F) S C hzlin(p-i-l,r)+min(p+1),s+t)—2s || u || Hr (D)- (4‘ 179)
In particular, in the case of maximal regularity, i.e., forr > p+1,7 > p+1—s, it
thus follows that we have a doubling of the convergence rate of the Galerkin method:

lu = ugll g2s—p—1 < C R2PEDT25 ]| iy .

4.2.5.2 Perturbations

The efficient numerical realization of the Galerkin BEM (4.165) involves, for exam-
ple, perturbations of the sesquilinear form b (-, -) by quadrature, surface and cluster
approximation of the operator or the functional & (-), used for the evaluation of the
representation formula at a point x € 2. Instead of (4.165) one implements a per-
turbed boundary element method:

Find &1y € Sy such that

b((ft[, V) = Fg(\/) Vv e S( (4.180)

and instead of & (1¢) one implements an approximation &/ (iiy). Here we will study
the error

& (u) — &y(itg) (4.181)

of a linear functional of the solution, for example of the representation formula
(see Example 4.2.13). According to Theorem 4.2.11, (4.180) has a unique solu-
tion for a sufficiently large £ if the exact form b(:, ) satisfies the discrete inf—sup
conditions

b(uy,
inf |b(ug, ve)l >y >0,
ue eSO} yyes,\f0y luella lIvella 4.182)
|b(ug, ve)l >0 ’

inf —_— >
veeSe\ 0}y es,\f0y lluella vella

on Sy xSy and if the perturbed form by (-, -) is uniformly continuous [see (4.151)] and
at the same time satisfies the stability and consistency conditions (4.152), (4.153).
Then for a sufficiently large £ we have the error estimate

Ju—diels = C | min (u—wella +Slhwello) + sup 0O =0l
we €Sy ve €S \{0} Ivell
(4.183)
The perturbations of the right-hand side F and of the functional & define the
quantities
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. | Fe (vg) — F (vg)] , |G (ve) — & (vy)]
fii= sup ——————— and gg:= sup )
v €SE\{0} vell g v €S\ {0} Ivell g

(4.184)
Note that in many practical applications the perturbations Fy and & are not defined
on H but only on S;. We assume that (f¢), and (g¢), are null sequences and, thus,
that there exist constants Cr and Cg such that

Gy =:Cc <oo and |Fllg + foe <Cr Ve e N.

Theorem 4.2.18. Let the form b(-,-) satisfy (4.182) and let the perturbed form
be(-,-) satisfy the conditions (4.151)—(4.153). Then, for a sufficiently large {, the
error (4.181) has the estimate

N . Ce . Cg
& (w) — Ge(ite)| = Cllu—uellp min ||we — Vellu + —ce llite —ully +— fe
Ve ESe 14 V4

C . C
+ % min (¢ lu— @l + 8 loelly) + —ge. (4185
Y wES Y

Proof. By the definition (4.170) of wg and the orthogonality of the Galerkin error
we have

|G () — G (itg)| = |b(u—itg, we)|
(4.186)
= |b(u—ug, we — V)| + |b(ug — itg, we)|

for an arbitrary vy € Sy. Furthermore, let wf” € Sy be the solution of the Galerkin
equations
b(we. wS) = b(we.wg) = G(w))  Vwg € Sy

Then, taking the Galerkin orthogonality into consideration, we have
1b(ug — iig. we)| = |bug — itg. W) = b(ug. w§) — b(itg, )|
< |Fw§) = be(itg, w)| + (be — b) (it wg)|
= [FW) — Few)| + |(b — be) (g w§)).

We consider the difference b — b, and with the stability and consistency conditions
we obtain for an arbitrary ¢y € Sy the estimate

(b = be) e w§) | = |(b = be) e = g wE )| + [b (e wE ) = be (0o 0 )|

< celie—gellg W] +8ledy W], . @18
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With this result and with (4.186) we obtain
16) — G Gie)| < |65 () — G o) + 16 ie) — Gae)|
< b — ug. we — Yol + |(F — F)w)]
H(b — bo) i W) | + (6 — &) (@) 4.188)

< Cllu— el Iwe — el + o |wE|

+ w8 (eellie = gl + b leell) + ge lel -

According to Theorem 4.2.11, for a sufficiently large £ the sequence (i), of the
perturbed Galerkin solutions is stable and with £y from Theorem 4.2.11 we have

. 1 Cr
lella < y (IF g+ fo) < o Ve > L. (4.189)
We use the discrete inf—sup conditions (4.182) to find a bound for the term H wf” H H:
< |b(we, w$)| |G (wy)]
yiwg lle < sup ————— = <ISGlg =Cqs
wees\oy  lIwella weeso\foy wella

for £ > £y. This yields

~ C
|6 () = G (o] < Cllu—ueller Iwe — Vel + TGfg

Ce . Cr
+ oV (ce litg — @ell g + S lloelly) + 786~

The triangle inequality ||ity — @¢ll g < llite — ull g + |lu — @¢ || finally yields the
assertion. |

The inequality (4.185) can be used to bound the size of the perturbations ¢y, 8y,
fe and gg in such a way that the functional & (i) converges with the same rate as
the functional & (uy) for the original Galerkin method.

To illustrate this we consider H = H*® (") and a discretization with piece-
wise polynomials of order p. Then the optimal convergence rate of the unperturbed
Galerkin method is given by |u — ug||; < ChYT'™°.

Inequality (4.183) shows that the two conditions §; < C hf 175 and fi <
C hf s imposed on the size of the perturbations guarantee that ||u —itg|| g <

C hf s converges with the same rate as the unperturbed Galerkin method. The

optimal convergence rate for the dual problem is also H We — wf H . <C hf tls
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and it is our aim to control the size of the perturbation in such a way that the
functional & (ii¢) converges at the rate Chy?7>7>°.

For this to hold, the perturbed sesquilinear forms, the right-hand sides and
functionals in (4.152), (4.153) and (4.184) all have to satisfy the estimates

cr S Ch;"l‘l—S’ 5[ S Ch§p+2—2s7 _f[ S Cth+2—2s7 g[ E Ch§p+2—2s.

In the following theorem we will determine a bound for the effect of perturbations
b — by and F — Fy on negative norms of the Galerkin error.

Theorem 4.2.19. Let the assumptions from Theorem 4.2.18 hold for H = H*(T'),
b: HS (I')x HS (I') — C. Furthermore, let the adjoint problem (4.176) satisfy the
regularity assumption (4.178) for a t > 0. Then for a sufficiently large { we have
the error estimate

llu = diell s (ry < C {de,s s 1w — wgll grsry + ce | — el grs oy

+ fo+ inf (cellu— el gsry + 8 ||<Pe||u)} (4.190)
YeESY

for0 <t <Twith

. w—Yellgs
di s s+t 1= sup inf w .
we Hs+ (T)\{0} \VeESe ||W||Hs+t(r)

Proof. Let v € H™*T!(T") be arbitrary and let w, be the solution of the adjoint
problem (4.176) with the right-hand side v. We then have

(V, u— ﬁZ)LZ(F) =b (u - ﬁe,wv)
=bu—ug,w) + b (ug— g, w). (4.191)
~——— ———
(*)

L

We consider (k). Let wé € S be the Galerkin approximation of w':

b (V@, Wf) = (WV, V()Lz(p) Vvg € S[.

With vy = ug—ity € Sg it follows from the Galerkin orthogonality b (vg, w, — w!) =
0 that we have the relation

(%) = b (ug —itg,w,) = b (ue - ﬁe,Wf)

= (b= bo) (e — e w’) + be (e — e, w!)
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= (b —by) (ug iy, w‘;’) + by (ug, wf) )
— (b—by) (ug — ae,wf) + (b —b) (ug,wf) +b (ug,wf> — Fwh
— (b—by) (—ae, wf) + Fwh) — Fy(wh).

With this we will estimate (4.191) by using (4.166) as follows. For every ¥, € Sy
we have

| (V’ u— i;tf)Lz(F) | = |b (l/l —Ug, Wy — WZ) |

+ ](b — be) (iie. wt) o

+ |Fov) = Futwl)

As in (4.187), we use the consistency condition to prove for an arbitrary ¢; € Sy
the estimate

| = bo) e, w!) W

< (ce llie = ol sy + 8¢ lgelly) | (4.193)

Hs()'

where |-||;; again denotes a stronger norm than H* (I").

The regularity assumption (4.178) and the stability of the Galerkin approxima-
tions (wf), of the adjoint problem yield forall 0 < 7 < 7 and all v € H~ (T) the
estimate

Wil sy < Clwllzs@y < C IVla-s@y < C IV g-s+1(r)- (4.194)

Therefore it follows from (4.192) and (4.193) with (4.184) that

| (vou— i) 21y |
sup

| — el grs— (ry
ve H—s+1(I")\{0} ||V||H—S+f(1“)

IA

ve H—s+1(T)\{0} IVl z7=s+¢ ()

Wy = Vel sy
C u—u s su 1nf _—
I tllm IT) p (weSe

+ C inf (cq llitg — @ell grsry + 8¢ lpelly) + Cfe
YeESY

The regularity assumption imposed upon the adjoint problem yields the estimate
IVl gr—s+¢ @y = € Iwy || s+ (ry- Hence we have

Hm—thv

sup inf
veH—s+1(T)\{o} \VeESe VIl gy —s+1 @ )

. w—=VYellgs
<C sup inf m =Cdy 55+t
we Hs+ (M)\{0} \VeESe Wl grs+e(ry
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Note that dy ;. represents an approximation property of the space S;. Combining
these results we have proved that

llu = @gll prs—r(ry < C {dsse 1= well grsry + ce llu = el grsry

+fo+ (ce llu—@ell grsry + 8e llgellp) ¢ -

inf
PeESe
O
With the help of inequality (4.190) we can determine sufficient conditions on the
admissible magnitude of the perturbations ¢y, &z, fy and gg so that the Galerkin error
llu — wig || grs—: (ry converges with the same rate as the unperturbed Galerkin solution.
In order to illustrate this, we consider a discretization with piecewise polyno-
mials of order p and assume that the continuous solution satisfies u € H?+! (T).
Then the optimal convergence rate of the unperturbed Galerkin method is given by
= sl prseqry < CREH TP g oy,

Inequality (4.183) shows that the two conditions §; < Ch} T and £, <

Chy 175 imposed on the size of the perturbations guarantee that ||u — i | HsT) =
C hf s converges with the same rate as the unperturbed Galerkin method (with
respect to the H*-norm). The optimal convergence rate of the term dy s, is
dpsst < Ch;‘i"{pH_s’t} and it is our goal to control the size of the per-
turbations in such a way that the term |u — ity || gs— (ry converges at the rate

Chy Fi=s+min(p+1-5).1) This leads to the following condition for the quantities
¢, 8¢, f

c (hzlin{p-i-l—s,t}-i-p-i-l—s ghPYYS & fy 4 cghPHS +5£)

< Chf-l—l—s—i—mm(p—i—l—s),t).

For this the perturbed sesquilinear form, right-hand sides and functionals in
(4.152), (4.153) and (4.184) have to satisfy the estimates

c[fch?m{p+l—s,t}7 86§Ch21m{p+l—s,t}+p+l—s’ ﬁfCh?ln{p+l_s’t}+p+l_s.

4.3 Proof of the Approximation Property

In Sects.4.1-4.2.5 we have seen that the Galerkin boundary element method pro-
duces approximative solutions of boundary integral equations which converge quasi-
optimally. Here we will present the proofs of the convergence rates (4.59) and (4.93)
of discontinuous and continuous boundary elements on surface meshes G with mesh
width 2 > 0.

In general we will assume that Assumption 4.1.6 holds, i.e., that the panel

parametrizations can be decomposed into a regular, affine mapping y" and
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a diffeomorphism yr, independent of 7, since y; = yr o e, For yiffi*e there
existb; € R3 and B, € R3*2 such that

xne (%) = B.X + by.

The Gram matrix of this mapping is denoted by G, := BIB, € R?*2 It is
symmetric and positive definite.

Note: The proof of the approximation property has the same structure as the
proofs for the finite element methods (see, for example, [27,33,68, 115]) and is also
based on concepts such as the pullback to the reference element, the shape-regularity
and the Bramble—Hilbert lemma.

4.3.1 Approximation Properties on Plane Panels

We use the same notation as in Sect. 4.1.2. Let I be a polyhedral surface with plane
sides and let G*"® be a surface mesh of I" which consists of plane triangles or
parallelograms. The panels 7 € Gi"® are images of the reference element 7 under
a regular, affine transformation )(ifﬁ"e T > T

As in (4.23), for the reference element T and p > 0 we denote the space of
all polynomials of total degree p by ]P’pA (1), while Lf, denotes the index set for the
associated unisolvent set of nodal points [see (4.70) and Theorem 4.1.39].

In preparation for Proposition 4.3.3 we will first prove a norm equivalence.

Lemma 4.3.1. Let k € Nxy. Then

e i)‘ (4.195)

i1 = [l +
+1 +1 Z P p

(E
defines a norm on H**1 (%) which is equivalent to 141

Proof. The continuity of the embedding H**! () — C (?) follows from the

Sobolev Embedding Theorem (see Theorem 2.5.4), and thus [-];, ; is well defined.
Therefore there exists a constant ¢c; € R~ such that

k+1 (~
(i1 = c1 llullgsq VYue H* ' (7).
Therefore it remains to show that there exists a constant ¢, € R~ such that
k+1 (2
lullger < c2 [ulgsq Vue H "' (1),

We prove this indirectly and for this purpose we assume that there exists a sequence
(tn), ey C H¥1 (%) such that
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¥n € N:llunllpy =1 and  Hm unlyy = 0. (4.196)

We deduce from Theorem 2.5.6 by induction over k that there exists a subsequence
(“"j)jeN that converges to some u € H¥ (7):

Jll)rr;o H“"/ - “Hk =0.

The second assumption in (4.196) yields

=0.

lim |u,,j.

oo 1Hni = Ui

Hence u € H**! (%) with |u;,; = 0 and we have

jgf;o Jttn; = ullry =0

Since |u|y; = 0, we have u € Py and the Sobolev Embedding Theorem implies
the convergence in the nodal points

W@ = lim u,, (z) Vz= (’—,i), i, )) e
Jj—>00 p p

Theorem 4.1.39 therefore yields a contradiction to the first assumption in (4.196).
|

Lemma 4.3.2 (Bramble-Hilbert Lemma). Let k € Ng. Then
pien]Pfk lu— plles1 = c2 [ulkyq

forallu € H*+' (%), with ¢, from the proof of Lemma 4.3.1.

Proof. For k = 0 the statement follows from the Poincaré inequality (see Corol-
lary 2.5.10).

In the following let k > 1 and u € H¥*! (%). Thanks to the Sobolev Embedding
Theorem the point evaluation of u is well defined. Let (b,) 5, be the vector that
contains the values of u at the nodal points: b, = u(z) forallz € X. Let p € ]P’;
be the, according to Theorem 4.1.39, unique polynomial with b, = p (z) for all
z € Y. Then, by Lemma4.3.1,

inf [lu—qllgsqr < llu—plliggr S c2lu— pliyr = c2 Juljy -
q<Py
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Proposition 4.3.3. Let [1 : HPT1(2) — H*(%) be linear and continuous for 0 <
s < p + 1 such that R
Vg eP)(#): Mg =q. (4.197)

Then there exists a constant ¢ = c(ﬁ) so that
Ve HPPU@) o v — Tl sy < € Vot - (4.198)
Proof. Letv € HP*1(%). Then by (4.197) forall g € IP’pA () we have

v—Tlv = v4+q—-T1+q)
lv—Tv|gsz < ¢lv +ACI||HP+‘(7?)
¢ = ||I — H||Hs(,j-)<_1-1p+1(i-)v

where I denotes the identity. Since ¢ € P ﬁ (7) was arbitrary, with Lemma 4.3.2 we
deduce

Yve HPTY D) : |lv— HV”HS(?) <c inAf v+ qllgrrig =¢ |V|Hp+1(;).
qePy (7) 0

The estimate of the approximation error is proven by a transformation to the
reference element.

First we will need some transformation formulas for Sobolev norms. Let 7 C R?
be a plane panel as before (triangle or parallelogram) with an affine parametrization
yaffine . — 7. Tangential vectors on t are defined by b; := 9y2"/9%; for
i = 1,2. The (constant) normal vector n is oriented in such a way that (bq, b2, n;)
forms a right system. For ¢ > 0 we set I, = (—¢,¢) and define a neighborhood
Us C R3 of z by

U={zeR’:A(xa) et x[;:z=x+oan}. (4.199)
A function u € H**1 () can be extended as a constant on U,:
u* (x +ong) = u(x) V(x,a) €1 x I,
The surface gradient Vgu is defined by

Vsu = Vu*|_, (4.200)

T
which gives us

|u|§11(r) =/(Vsu,vsu).
T

The pullback of the function u to the reference element is denoted by & := u o y2ffine

T .
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T N
)22, = L2 / af?
7] Jz

Izl
Wb = 5 (v G; Vi),

Lemma 4.3.4. We have

where V denotes the two-dimensional gradient in the coordinates of the reference
element.

Proof. The transformation formula for surface integrals yields the first equation

[ =5 [k

We define y : R3 — R3 forx € 7 and x3 € R by
X & £3) i= (™ (R) + f3n; = BeX + f3n; + b,
and we set 06 := x~ 1 (U). With this we can define the function it* : l/}e — K by
W =u*oy
and it satisfies &#*|; = # in the sense of traces. The chain rule then yields
(Vsu) o y2fme = (Vu*) o yifine = (JT—I)T Vit (4.201)

with the Jacobian J; = [B;, n;] of the transformation y. From this we have

(VSM) o X:ﬂme — (Jr_l)T Vl:\l*

Elementary properties of the vector product give us
_ _I\T G:lo
L [ 0 1]
and from this it follows that
[(Vswy o ™| = (Vi 67'Vi)  ont.

Combined with the transformation formula for surface integrals we obtain the
assertion. 0



4.3 Proof of the Approximation Property 251

Lemma 4.3.5. We have
2 -1 2 (he ¢ -2
IGell =202 NG = () et (4.202)
T

Proof. The Jacobian B, of the affine transformation " has the column vectors
b1, b,. The maximal eigenvalue of the symmetric, positive definite matrix G, can
be bounded by the row sum norm

IGell = max {IIbi[1” + (br.by)} =< 282,
since b; are edge vectors of t (see Definition 4.1.2). For the inverse matrix we have
G_lz;[ b2 _(bl,bz):|:(|_%|)2|: b2 —(bl,bz)]
T detGe [~ (bib)  [by)? o[/ L= (bi.b2) [by]f?

From this we have for the largest eigenvalue

(LY g2 < 2 (1)
1= () = 2 (1) o

|
Lemma 4.3.4 can be generalized for derivatives of higher order.
Lemma 4.3.6. Let t € G pe the affine image of the reference element
T =y (2)  with (%) = B.X + b,.
Then
ve H (1) <= ¥ :=vo i e Hk (%), (4.203)
which gives us for all0 < { <k
W ge < Cihi™ Plgec. (4.204a)
Plae < C2hE " Ve (4.204b)

with constants Cy, C, that depend only on k and the constant kg, which describes
the shape-regularity (see Definition 4.1.12).

Proof. The equivalence (4.203) follows from the chain rule, as the transformation
is affine and therefore all derivatives of y2™" are bounded. We will only prove the
first inequality, the second can be treated in the same way.

Since C* () N H* (7) is dense in H* (7) (see Proposition 2.3.10), it suffices to

prove the statement for smooth functions.
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Letv*, v, Ug, ﬁg, v*, x, J; be as in the proof of Lemma 4.3.4. In the following
a will always denote a three-dimensional multi-index « € Ng and d denotes the
derivative in the coordinates of the reference element. Then we have

V|H[(r) - Z /|8a * 2 |T| Z A |(3°‘v*)ox|2.

oe|=¢ |a|=e T

The chain rule then yields
((80‘\/*) o X) _ ((Jr_l)T §*)“ o

where V* denotes the three-dimensional gradient (while, in the following, the two-
dimensional gradient will be denoted by V, as before). For the (transposed) inverse
of the Jacobian of y we have (J7!)T = [A,, n] with
T T
A, :=[a;,a] e R¥? a,:= H(b2 n;), ap:= |—||(n, xby).
T T

Since d3v* = 0 we obtain

We use the convention
o o o3
Y= Y Y ()= ()()(®) and at = ]ak.
n=a n1=0 =0 u3=0 i=1
for the multi-indices u, @ € NS. With this we have
(A9) 5= 3" (@)aka " bds .
u=<a

In order to estimate the absolute value, we use

he th 1

[acj < llaill = 5 = 5

and obtain with || = ¢

‘(AV) v(x)’ < Ch? Z ‘a“a“ " (4.205)
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with a constant C, which depends only on £ and the constant k¢g. By integrating
over T we obtain

6" |72 = H V)’

If we sum over all « with |a| = £ we obtain the assertion. |

224
126 = Chy > [ilyee) -

The following corollary is a consequence of (4.205).

Corollary 4.3.7. Let T € G¥" be the affine image of the reference element T
T = x4 (2)  with  }¥"¢ (%) = B.& + b,.

Then
veCkr) <=1 :=vo ydfine & ck@),

which gives us for all0 < { <k

Vlce < Crhyt Pleeg. (4.206a)
Plee < Cahl Pleee (4.206b)

with constants Cy, C, that depend only on k and the constant kg, which describes
the shape-regularity (see Definition 4.1.12).

Theorem 4.3.8. Let t € G¥™ pe the affine image of the reference element v =
yne (2). Let the interpolation operator m: H* (%) — H'(%) be continuous for
0§t§s§k+1andlet

VgePi: Tig=gq (4.207)
hold. Then the operator 1 : H*(t) — H'(t), which is defined by:
Mv:= (9) o (™)™ with §i=vo g™, (4.208)
satisfies the error estimate
Vve H* D) v — vl < ChE v msco) (4.209)
for 0 <t < s < k + 1. The constant C depends only on k and the shape-

regularity of the surface mesh, more specifically, it depends on the constant kg in
Definition 4.1.12.

Proof. According to Proposition 4.3.3, on the reference element T we have

~
A A

—Iv
H!(7)

< cPlas@)-
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We transport this estimate from 7 to T = Xifﬁne (7). With Lemma 4.3.6 we obtain
the error estimate fors = k + 1

|V — HV|H’(‘E) S Cl’li_t {/ — ﬁf) < Ch.l_t|\,>|Hk+1(f) S Chl.;+1_t|V|Hk+l(r).

Hi(®) —

Fors < k + 1, (4.209) follows from the continuity of f: HS () - H'(7) by
means of interpolation (see proof of Theorem 4.1.33). O

Remark 4.3.9. The interpolation operator Tk from (4.73) satisfies the prerequisites
of Proposition 4.3.3 with p <— k > 1 by virtue of the Sobolev Embedding Theorem.
Fork =0, I can be defined as a mean value:

(ﬁv)(x):l%l/;v Vx € 1.

4.3.2 Approximation on Curved Panels*

In this section we will prove the approximation properties for curved panels that

satisfy the following geometric assumptions (see Assumption 4.1.6 and Fig. 4.6).
Forx € t € G, n; (x) € S, denotes unit normal vector to t at the point x. The

orientation is chosen as explained in Sect. 2.2.3 with respect to the chart y.

Assumption 4.3.10. For every © € G with the associated reference mapping y :
T -1

o There exists a regular, affine mapping )(f;fﬁ"e :R3 — R3 of the form

affine (& _ al X bl’
=[5 (2) (%)

witha € R?*2, (%, X3) € R? xR, b; € R? and deta > 0.

Fig. 4.6 Left: curved surface panel t and three-dimensional neighborhood U, . Middle: flat surface
panel 4" with neighborhood U2, Right: reference element 7 C R?

* This section should be read as a complement to the core material of this book.
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o There exists a C*®-diffeomorphism y : U — V that is independent of G, with
open sets U,V C R3 that satisfy

gaffine — gy, gaffine . — {)(ifﬁ“e (x,0):x € ?} x (—¢, €),

. CV, o ={x4an;(X) :xe1,c(—¢¢))}

foran ¢ > 0 such that
xe ®) =y oy (}.0).

e Forevery functionu € H k (1) with a constant extension
u* (x + ang (x)) = u(x) (4.210)

we have )
3 (u* o x o x¥) /0% = 0. 4.211)

A situation of this kind was introduced in Example 4.1.7 (also see [170, Chap. 2]).

First we will prove a transformation formula for composite functions.

Lemma 4.3.11. Let n : U — V be a C®-diffeomorphism and let U,V C R3 be
open sets. For a functionu € H¥ (V) we set it = uo 1. Then it € H* (U) and for
allo € Ng, 1 < |a| <k, we have

]
@mont =3 csfu (4.212)
IBl=1

with coefficients cg that are real linear combinations of products of the form

18I
[ 12" mn,- (4.213)
r=1
The relevant indices for 1 < r < |B| satisfy the relations 1 <n, <3, u, € Ng and
1Bl
AN REH)

Proof. For the equivalence u € H k(V) < & € H¥(U) it suffices to prove
(4.212) for smooth functions. We will prove Formula (4.212) by induction. Let ex
be the k-th canonical unit vector in R3.

Initial case: For |a| = 1 we obtain explicitly

@)ooyt = Z c,gaﬂu, where for B = e; we have cg = 0%n.
|Bl=1

Hypothesis: Let the statement hold for || <i — 1.
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Conclusion: Let || =i, choose k = 1,2,0r3,andlet&d = o —e; € Ng. Thus
we obtain

i—1

(%) on~" = 0k (3&5{) on ' = {0 Z cB (3ﬂu) on|o 77_1

IBl=1
- i-1 3
Z (9kcp) Pu+ D 3 (cpden;) (8,0%u).
=1 BI=1j=1

This proves the assertion if we show that dxcg and cg (Bk n j) are of the form
(4.213). With the Leibniz product rule we obtain

18] 1B 18]
O [ J0" t, = Z 00"7) 1 | ]9 1,
= =

and the expression on the right-hand side is a linear combination of terms of the

form
1B

l_[ aﬁr Nn,
r=1

with Zlfil |ii-| = i. The assertion follows analogously for the product cg (Bk n j).
O

Corollary 4.3.12. 1. Let the conditions of Lemma 4.3.11 be satisfied. Then

Crl Nl 2@y < lullp2gry < Ca il L2y
and
k k
~12 2 2 ~12
il @y < C1 Y _lulgiqry  and  |ulfpy < C2 Y |l gy -
i=1 i=1

The constants Cy, Co depend only on k and the derivatives of n, 1" up to the
order max {1, k}.

2. Let Assumption 4.3.10 and the conditions of Lemma 4.3.11 be satisfied with n <
x. Forv € G, e .= y~V(t) andu € H¥ (1), it (X) 1= u o y (%, 0) we have

—1 1712 2 ~112
C3 ”u”LZ(rafﬁnc) = ||u||L2(r) = C4 ||u||L2(rafﬁnc)
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and

k k
~12 2 2 ~12
|M|Hk(rzlfﬁne) <G; Z |M|H’(r) and |“|Hk(.,) <Cq4 Z |M|Hi(rzlfﬁne) .

i=1 i=1

The constants C3, C4 again depend only on k and the derivatives of y, y~' up to
the order k.

Proof. Statement 1 follows from the transformation formula (4.212).

For the second statement we define a constant extension of u in the direction of
the normal as a function u*, according to (4.210), and note that the normal derivative
of u* vanishes, i.e., we have |u*| gk (,,) = |u| gk (1)

From (4.211) we have |u* o )| gk (qamne) = |i| gric (gaine) and, thus, we have the
assertion in Part 1. O

At the next step we will apply Lemma 4.3.11 to the composite reference mapping
and study how far this depends on the panel diameter /.

Lemma 4.3.13. Let Assumption 4.3.10 and the conditions of Lemma 4.3.11 hold
withn < y. Fort € Gandu € Hk(r), T CV,u:=uo y; we have

ve Hf (1) <= v :=vo yr € H*(%) (4.214)
and
k
|u|§-1k(r) = Clhf_Zk Z |’}|§{i(f) ) (4.215a)
i=1
k
ik ey < C2H2* 72D " fulgiey - (4.215b)

i=1

The constants C1, C, depend only on k, the constant kg of the shape-regularity (see
Definition 4.1.12) and the derivatives y, ' up to the order k.

Proof. It follows from Corollary 4.3.12 that

k

2 ~12
il ey < € D |l ey -
i=1

We can therefore apply the transformation formulas from Lemma 4.3.6, which gives
us the estimates
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k k
2 2 —2i |72 2—2k ~12
|M|Hk(r) < Cih; Zh ' |M|Hi(rzlfﬁne) < Goh; Z |u|Hi(,j-) )
i=1 i=1
k
~12 2k—2 |~|2 2k—2 2
|M|Hk(-'f) S C3hr |u|Hk(rzlfﬁne) S C4h-[ Z |M|Ht(r) .
i=1

With this we obtain the analogy of Theorem 4.3.8 for curved panels.

Theorem 4.3.14. Let Assumption 4.3.10 and the conditions from Lemma 4.3.11
hold with 1 < y. Let T € G be the image of the reference element T as given
by T = y o yine (7). Let the interpolation operator : H3 (%) — H'(?) satisfy
the conditions from Theorem 4.3.8for0 <t <s <k + 1.

Then we have for the operator Tl : HS(t) — H'(t), which is defined by

Iy := (ﬁf/) o )(;1 with V:=vo xq,
the error estimate for0 <t <s <k + 1
Vve H* @)t v — TV geey < CRET IV s oy - (4.216)

The constant C depends only on k, the shape-regularity of the surface mesh via the
constant kg in Definition 4.1.12 and the derivatives of x, y~' up to the order k.

Theorem 4.3.8 and Theorem 4.3.14 contain the central, local approximation
properties that are combined in Sects.4.3.4 and 4.3.5 to form error estimates for
boundary elements. The easiest way of constructing a global approximation for
continuous boundary elements and sufficiently smooth functions is by means of
interpolation. For this the functions u € Hp, (I') need to be continuous. In the
following section we will show that this is the case for s > 1.

4.3.3 Continuity of Functions in H (I') for s > 1

In order to avoid technical difficulties, we will generally assume in this section that
we are dealing with the geometric situation from Example 4.1.7(1).

Assumption 4.3.15. T" is a piecewise smooth Lipschitz surface that can be para-
metrized bi-Lipschitz continuously over a polyhedral surface I': yr : I' — T.

Then the Sobolev spaces H*(I") on I" are defined invariantly for |s| < 1, which
means that they do not depend on the chosen parametrization of I" (see Proposi-
tion 2.4.2). For a higher differentiation index s > 1, Hlfw (T') is defined as in (4.86).
These spaces form a scale with
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L*(T) = H),(T") D Hy,(T) D Hy (T), 0 <5 <1. (4.217)

Lemma 4.3.16. For s > 1 every u € Hy (T') is continuous on T', i.e., Hj (I') C
coI).

Proof. T is the bi-Lipschitz continuous image of a polyhedral surface: I' = yr (f‘)

and therefore it suffices to prove the statement for polyhedral surfaces. Let ,1<
j < J,be the plane, relatively closed polygonal faces of the polyhedron.

Letu € HpsW (f‘) for s > 1. The Sobolev Embedding Theorem implies that

ue CO(1J) forall 1 < j < J and, thus, it suffices to prove the continuity across

the common edges of the surface pieces r ;. For this we consider two pieces I; and
r ; with a common edge E. Then there exists an (open) polygonal domain U C R?
and a bi-Lipschitz continuous mapping y : U — I'; U I'; with the properties

U, := )(_1 (f‘,-), U, := )(_1 (f‘j>, and )(|Uk is affine fork = 1, 2.
Ui, U, are disjoint and U = U, U Us.
=y ! (E) =U; NU,.

We only need to show that w := u o y is continuous over e. Clearly, we have
wr = wo yx € HS(Uy), k = 1,2,and w € H' (U). If we combine this result
with the statements from Theorem 2.6.8 and Remark 2.6.10 we obtain the assertion.

|

4.3.4 Approximation Properties of S, o

We will now prove the error estimate (4.59) for the following two geometric
situations.

Assumption 4.3.17 (Polyhedral Surface). I' is the surface of a polyhedron. The
mesh G on I consists of plane panels with straight edges with mesh width h > 0.

Assumption 4.3.18 (Curved Surface). Assumption 4.3.10 holds and the condi-
tions from Lemma 4.3.11 are satisfied with n < y.

Theorem 4.3.19. Let either Assumption 4.3.17 or Assumption 4.3.18 hold. Let
s > 0. Then there exists an operator Igp’_1 D Hj, (') — Sgp’_1 such that

Hu—lp’_lu‘

z <C hmin(p-i—l,s) ”u”Hé

L2(T) — @) -

(4.218)

For a polyhedral surface the constant C depends only on p and the shape-regularity
of the mesh G via the constant kg from Definition 4.1.12. In the case of a curved
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surface it also depends on the derivatives of the global transformations y, y~' up

to the order k.
Proof. Let ﬁf cHS (1) —> Pﬁ be the L2-projection:

ne4 _ A
(Hfu,q)Lz(%) =wa)p  YaER) (4.219)
We lift this projection to the panels 7 € G by means of
(Hfu,) (x) := (ﬁfﬁr) o X;I (x) Vx €1,

where u; := u|, and @i; := u; o x. The operator Igp’_1 then consists of the
panelwise composition of T1%:

Igp’_lu

= I1%u VYt eg.

T

Obviously, this defines a mapping from H, (') to S é’ ! The operator ﬁf satisfies
the prerequisites of Theorem 4.3.8, because we have for the orthogonal projection:

1. “ﬁga“o <ple, VieL’@®).

Since ﬁf V is a polynomial in a finite-dimensional space PP ﬁ, all norms are equiv-
alent and there exists a constant Cj, > O such thatforall0 <¢ <s < p 4+ 1 we
have

an’o
T

=Gy |TZ] =Cplfilo <Cplldl,  Vie H ().
N

2. It follows immediately from the characterization (4.219) that

~

g =g¢ quIP’pA.

Therefore we can apply (4.209) or (4.216) with # = 0 and obtain the error
estimate

‘v—lgp’_lv

2@ < Chi Vil s (o (4.220)
forallv e H’(I') with 0 < s < p + 1. If we then square and sum over all T € G
we obtain the assertion. |

Theorem 4.3.19 gives us error estimates in negative norms by means of the
same duality argument as in the proof of Theorem 4.1.33. This is the subject of
the following theorem.

Theorem 4.3.20. Let the assumption from Theorem 4.3.19 be satisfied. Then we
have for the interpolation 15’_1 and0 <t <s < p+landallu € Hj, () the

estimate
—1
e — 18 ull -1 vy < CHF|u] s .- (4.221)
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Proof. The continuous extension of the L? inner-product to HJ (D) x Hj (D) is

again denoted by (-, -),. Since [ gp ! consists locally of L2-orthogonal projections,
we have for an arbitrary ¢g € Sé’ !

—1
‘(u—lg u,(p)o‘

Hu—lé”_luu = sup
H™'(T)  yeqt(T)\{0} ol & ry
,—1
(e~ 18" wp—09) |
= sup 00 4.222)
pe H (T)\{0} lell 7

(see proof of Theorem 4.1.33). If we choose ¢g = Ié”_l(p € Sé”_l, (4.221) follows
by means of a twofold application of (4.218). |

Remark 4.3.21. Corollary 4.1.34 follows from (4.221) with t = %

4.3.5 Approximation Properties of Sgp 0

Here we will prove approximation properties of continuous boundary elements that
have already been introduced in Proposition 4.1.50.

Theorem 4.3.22. Let Assumption 4.3.17 or Assumption 4.3.18 hold:

(a) Then there exists an interpolation operator Igp’O : HSW(I‘) — Sg’o such that

p,0 —t
Hu Yy “Hm(r) < CI*™ ull gy ) (4.223)

fort =0,1,1 <s < p+1landallu € Hy, (T). For a polyhedral surface
the constant C depends only on p and on the shape-regularity of the mesh G
via the constant kg from Definition 4.1.12. In the case of a curved surface it

also depends on the derivatives of the global transformations x, x~' up to the
order k.

(b) Letu € HS (T') for some 1 <s < p + 1. Then, for any 0 <t < 1, we have

— 1% = T ey
18], = T sy

Proof. Part a: Lemma 4.3.16 implies that u € H;W(I‘) c CcoM) fors > 1. We
define Igp’ou ont € G by

(Ié”our) (x) 1= (?Par) oyl (x)  Vxer (4.224)
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with u; := u|,, itz := u; o y. and the interpolation operator 77 from (4.73) for
the set of nodal points ¥, from Theorem 4.1.39. By Theorem 4.1.39 this operator
is well defined and satisfies

By Lemma 4.3.1 we have on the reference element

-
HPH1(3) + Z ‘(1 MT) (Z)D
zeX P

A

Ur

HTP@,

|77

< | |77
HIG) — Hotl) — 2 (‘ te

=C2 Z i (2)]

ZEXP

<ec ||'3||Co(§) < Cca litll sz -

Therefore Theorem 4.3.8 or Theorem 4.3.14 is applicable and for 1 < s < p 4+ 1
and ¢ € {0, 1} we obtain the estimate

p,0

Yue H(t): |ug— 15 ur

—t

If we square (4.225) and sum over all 7 € G¥"® we obtain (4.223).
Part b: By using Lemma 4.1.49 we derive from Part a the estimate

e H < Ch |Ju s 4226
u= 18], o = €I sy (4.226)

fort € {0, 1}. We apply Proposition 2.1.62 with T = [ —I_é”o, Yo=Y, = H* (),
Xo = L>(T), X; = H'(I'),and # = t € (0,1) to interpolate the inequality
(4.226). The result is

1—t¢ t
1T e @yermsa@ < N T 2@y ms @) 1T a1 @yems @
< (ch) T (Cng) = cny

and this implies the assertion of Part b. O

Next we investigate the approximation property for functions in Hpy, (I") for
0 < s < 1. Recall that H;fw (I') = H?* (') in this case. In general, functions in
H?* (T") are not continuous and the application of the pointwise interpolation / gp s
not defined. We will introduce the Clément interpolation operator Qg : L' (T') —
Sé’o for the approximation of functions in H* (T") if 0 < s < 1 (cf. [69]). To avoid
technicalities, we consider only the case that all panels are (possibly curved) sur-
face triangles. Let Z denote the set of panel vertices with corresponding continuous,
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piecewise linear nodal basis (b;),c7. For z € 7 and 7 € G, we introduce local
meshes G, and G; by

Goi={te€G|tCsuppb,}, G:={t€G|INT+#0}.

The corresponding surface patches on I' are denoted by

W, = U?, Wy = Uf.

1€y, teGy
For functions f € L! (") and z € Z, the functional r, : L' (') — C is defined by

1

|wz| Wy

1, (f) = S (y)dsy.

Remark 4.3.23. For z € I, we set h, := maxceg, h. There exists a constant Cy
which depends only on the shape-regularity constant kg such that

hy < COhr V1 e g,.

Definition 4.3.24 (Clément interpolation). The Clément interpolation operator
Qg:L'(T) — Sé’o is given by

Qqf =) 1 (f) bs.

z€Z

The proof of the stability and the approximation property of the Clément inter-
polation employs local pullbacks to two-dimensional polygonal parameter domains
and then follows the classical convergence proof in the two-dimensional parameter
plane. The next assumption is illustrated in Fig. 4.7.

Assumption 4.3.25. (a) For any z € I, there is a two-dimensional convex and
polygonal parameter domain @, C R? along with a bi-Lipschitz continuous
mapping x, . 0, —> w, which satisfies: For any T € G,, the pullback T =

A\ 2

Fig. 4.7 Pullback of a surface patch to a two-dimensional parameter domain
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1, ' (v) is a plane panel with straight edges. The pullback T can be transformed

to the reference element T by a regular, affine mapping which is denoted by
ffine
/A

(b) The reference mapping (see Definition 4.1.2) is denoted by X+ : T — 1, where
the reference element is always the unit triangle T = S, because we only
consider triangular panels. For curved panels, Assumption 4.3.18 holds so that

Yo =0

where M is affine and y : U — V is independent of G.

T
(c) For any © € G, the image 2™ (%) is the pflane triangle with straight edges
affine

which has the same vertices as t, i.e., % is the componentwise affine
interpolation of x+.

Notation 4.3.26. If 7, T, T, xr, )(‘;fﬁne, etc., appear in the same context their
relationships are always as in Assumption 4.3.25.

Let g, € L (&,) denote the surface element

g (x) = /det(J] (x) ), (x)) Vxed, ae,
where J, denotes the Jacobian of y,. Let the constants 6, ® be defined by

-1 _. gl . oled

Lemma 4.3.27. Let Assumption 4.3.17 or Assumption 4.3.18 hold:

(a) Then, 0, respectively ©, in (4.227) can be bounded from below, respectively
from above, by constants which depend only on the shape-regularity of the mesh,
the ratios

D) 1)
€1 }= max max o] and C; ;= max max | fl , (4.228)
2T t€G, | |T| z€Z t€g, | |T|

and, for curved panels, on the global mapping y (cf. Assumption 4.3.10).
(b) There exists a constant Cy so that, fori € {1,2} and any X € T C @, we have

diam T
2|7

19: {(x= = x4") 0 ™™ )} < Co 2. (4.229)

Proof. Proof of part a. Let T € G, and 7 := x, ! (t). The restriction y, . := y,
can be written as

|z

affine
Xzt = Xt ©1] s

where y; : T — 7 is the reference mapping as in Definition 4.1.2 and 7 is the unit
triangle as in (4.13). Further, nafﬁ“e : T — T is some affine map. For x € t, let



4.3 Proof of the Approximation Property 265
A _ ~ -1 A
X:= 7' (x) and X := (n*™¢) " (X). Then

Jz,‘t (i) = J‘t (ﬁ) Jafﬁne (i) ) (4230)

affine

where J, ¢, J, Jasine are the Jacobi matrices of yz ¢, xz, 7 , and

2, (%) = \/det (Iine ®) G R) Jafine (X)) with G, ®) = JT ®)J; }).

We introduce Gufipe = Jafﬁm,/Jaﬂme and employ the multiplication theorem for
determinants to obtain

gz (X) = |det Jataine| v/ det Gy (X) = M. (4.231)

27|

If 7 is a plane triangle with straight edges then

VdetG; (X) = 2|7].

For curved panels, we have y; = x o 1" (cf. Assumption 4.3.10) and obtain by
arguing as in (4.231)

CXZ |Tafﬁne| < /detG, (f() < CXZ |Tafﬁne| with _L,afﬁne o— Xz;fﬁne( )’

where the constants 0 < ¢, < C, depend only on y, i.e., are independent of the
discretization parameters. From this we derive, by using the bi-Lipschitz continuity
of x and the shape-regularity of the surface mesh, the estimate

2¢cy |t] < 2¢yh? < /detG, (X) < 2Cyh% < 2CCy 7],
where ¢, C depend only on the shape-regularity constant «g. Thus

cox el U < e ®)| < ccxm <CCC 2

o 1@ - RS 7] ||

||

Proof of part b. The statement is trivial for plane triangles with straight edges
because the left-hand side in (4.229) is zero.

Let z € Z and assume that T € G, is a curved panel. For any X € T C @, we
have

” 9; {( Xz;fﬁne) affine (X) ” Z ”a afﬁne) (X) ” |a n

(4.232)
where & = 7" () € 7.
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Let i\, X+ denote the p-th order Taylor expansion of y, about the barycenter M
of 7 and let 2" = 7, y, be the affine interpolation at the vertices of 7. Then

O ()(r -~ flxr) + (TAl X — xifﬁ“e) = ()(r — flxr) +1; (fl Xe— xr) :

For k = 0, 1, this splitting leads to the estimate

Xr_ﬂ)(r

c'«G)«ckG)) k@)

Standard error estimates for two-dimensional Taylor expansions result in

|

Because Bﬂ/"\l)(, = ﬁ) (Bj )(r) we obtain

e Foe (R

1 o
Ja2—J
coiy = 3 om0, |15 xe

Xt _T\l)(r

coF)’

Haj)(r_ajfl)(r Co3) = Haj)(r TO jXt o) <0rilla§ Haila%_iaj)(ruco(a-
Thus
N afﬁne J92—J
e =2y = (14 Al ycongo) om0 5 oy
(4.233)

Next, we will estimate the first factor in (4.233). Forany w € C 0 (?)’ we have

A

|7

= max |wX W o
co(2) ﬁisavertexof%| ® = ”CO(;)

We denote the vertices of T by /PLZ (0,0), Py = (1,0), Py = (1,1) and the
values of a continuous function w at P ; by w;, 1 < j < 3.1Itis easy to see that

and, similarly, we obtain the stability of the derivative d,. Hence we have proved
that the first factor in (4.233) is bounded from above by 2.

To estimate the second derivative of x. in (4.233) we write the mapping 2" in
the form

[wa —wi| lw (X) —w (¥)]
7 = e = Wle@
HPZ_PI e [x =yl

= w2 —wy| <

>
< =
B

afﬁne (X) Brf{ 4 br

with the (constant) Jacobi matrix B; € R3*? and b, € R3. The columns of B; are
denoted by a;,a, € R3. As in the proof of Lemma 4.3.6, we use



4.3 Proof of the Approximation Property 267

M (X ° Xiﬂme) — Z Z %afa; (aﬁ+vx) ° X:ﬂme.

BeNG veNj
[Bl=p1 vI=p2

Next, we employ |(B,),-,j| < h, and obtain for any u € NZ with |u| = 2

sup [3 (x o x3™) R)| < C3hZ,

XET

where C3 depends only on the derivatives of y which, by Assumption 4.3.10, are
independent of G. Thus we have proved that

[ 1 = £ or ey =< 2Csh3 (4.234)

and it remains to estimate the last factor in (4.232). Because n*i" is affine, it is

straightforward to show that J_1 € R?*2 [cf. (4.230)] has column vectors B — A

affine
and C — B, where A, B, C denote the vertices of 7. Hence

P [(C—B)z —<C—B)1].
217 [-(B—-A), (B—A),
Consequently
diam 7
3| < 4.235
O

As a measure for the distortion of the local patches w, by the pullback, we
introduce the constant Cy by

Cy := max {|a7z|—‘/2 diam&Tz} . (4.236)
z€T

Theorem 4.3.28. Let Assumption 4.3.25 be satisfied.

There exist two constants c1, ¢ depending only on the shape-regularity constant
kg [cf (4.17)], the constants Cq and Cy [as in (4.228)], and, for curved panels, on
the global chart y so that

lv—=0¢vl12¢x) = c1he IVlg1(0,) and | QgVla1) = C1 Va1 (00)
(4237a)

forallv e H' (') and all triangles Tt € G. Also,

Iv—0gvllgomy < c2hg * IWlgsay and Q¢ gsrymsr) < 2
(4.237b)
forany0 <o <s <landv e H ().
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Proof. We present the proof in eight steps (a)—(h).

(a) Forz € Z, let y, : @, — w, be the mapping as in Assumption 4.3.25. For
¢ € H'(w,), the pullback to @, is denoted by ¢ := ¢ o x,. The Lipschitz
continuity of y, implies that § € H! (@).

We consider 77, (¢) € C as a constant function and obtain
o= @y = [ @156 —m @) dx (4238)
Wy

Case 1: First, we consider the case of flat panels with straight edges. Note that, for
anyt € G,and 7 := y; ! (r), we have gz|, = |t|/|T|
Lett € G,. Thenforanyx € T = y; ! ()

§®) — 10 = K) - |Z| [v=ic-, ! Agza

- o lt]
=R —— > [ GP=9® -3 = [¢ (4239
| zlteg | zlteg | |
L .
=Y — (@ ® —m9)
teg, |a)z|
with 779 1= |71| 7 @. Applying the L?-norm to both sides yields
- lt]
19 = mglliz = D 1 19— 7l 2 - (4.240)

teg, | Z|
Because T C @, are both convex we may apply Corollary 2.5.12 to obtain

|| dlama)z
7]

diam @, _
5(1+\/C1) — 10l (4.241)

where C is as in (4.228). Inserting this into (4.240) yields

- diam o,  _
16 = mpllz2 = (14 V) = 1@l -

We sum over all T C @, and apply a Cauchy—Schwarz inequality to derive the
estimate

1 = 7@l L2@) = 10 — 70l 25 = (1 + @11 @)

5 diam @, _
||(p — JTZ(p”LZ(a;Z) < vV Cardgz (1 + V Cl) T . |(/)|H1((51) ’
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where the number of panels (card G,) is bounded by a constant which depends only
on the shape-regularity of the surface mesh.
The combination with (4.238) leads to

o — 72 (@) L2(,) = /182l Loo () 1€ — T2l L2(5,)
4.227)

diam @,  _
< Cavlod—— 9lu1@)
V|C‘)Z|

< C4Cah; 19| g1(s,)
with C4 := /O card G, (1 + «/Cl) /7. From Lemma 4.3.6 resp. Lemma 4.3.13 we

obtain
19516y = Z Pl1@ = Cs D 1ol (4.242)

er, T€G,

and, finally, for any t C w,

lo=72 (@)l 22(0,) < C 62 |91 11 (@) < CoC6he 9] 1w,y With Ce = CaCay/Cs,
(4.243)
Case 2: Next, we consider the general case of curved panels. As in (4.239) we derive

= 7|
e Zw( 7 e i

teg,
- - 1 -
= Z @ = 779) + 7= | i@ (4.244)
teg, | zl | | !
with d; = ||f|| 8zl;- The first difference in (4.244) can be estimated as in the

case of flat panels while, for the second one, we will derive an estimate of d;. We
use the notation as in Assumption 4.3.25 and employ the splitting

tafﬁne 1 ~
dy = 1_u + — (2" = 2|T | (glp). (4.245)
|t] 2]
where 73ffine = yaffine () js the plane triangle with straight edges which interpolates

T at its vertices.
We start by estimating the second term in (4.245). We employ the representation
(4.231) for Gram’s determinant to obtain

2|T| (g.lp) = &

where g; is Gram’s determinant of the reference map y; : T — ¢, i.e.
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g = 191xe X D2 )e -

The area 2 |r*°| can be expressed by

| afﬁne| _ ||a Xaﬂme X 8 Xaﬂme || g;iﬂme (4246)

Hence
2| 2 [ ol = [ ] = 10026 x 026 120 % |
(4.247)

”a Xafﬁne % 0 Xafﬁne (31)(1 X 32)(t)”

affine

< 91 (xe = £5™) x 0214
4 Hal)(?fﬁne X 82 (Xt _ X?fﬁne) H .

We employ (4.234) to obtain

2| =2 |T| (galp)| < 2C3h7 (uazxt loo @) + 101" Hma) :

The estimate ”81 Xafﬁ“e ||Loo(%) < h; is obvious because r2ffine

vertices. For the other term, we use

interpolates ¢ in its

3
192 ¢ llg.00 2y = Z j 10 XY By (im0 <Ch,,

N Loo(2)

where C depends only on the global chart y but not on the discretization parameters.
In summary we have proved that

[l = [T] (gal0)| _ C3Che
1 R

where ¢ depends only on the shape-regularity of the mesh and the global chart y.
The first term of the sum in (4.245) can be estimated by using (4.247)

|t| / g — aﬂme
It |

_ GCh} _ CiChy.

|tafﬁne| |l| _ |tafﬁne

1-—

7]

|t] ¢

This finishes the estimate of d;
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CsC

|di| <

Inserting this into (4.244) and proceeding as in the case of flat panels yields

o, 7]
16 — mell L2 < Z| N0 =70l + D 72 | S 7] Welleacay
t€G, Wz t€G,
(4.241) diam @, C3C JC
= (14 V0) =10l ey + 27— e 62 -

We sum over all T C @, and apply a Cauchy—Schwarz inequality to derive the
estimate

) diam o,  _
16—l 12, = Veard G, (14 VCr) == 1l

C3C«/
R 191l 225, }

From Lemma 4.3.6 resp. Lemma 4.3.13 we obtain the scaling relations
916 = Cs 10Pp10y and 12 10120, < 1912205 = C i )2
Pl =5 191H1 (@) 5wy 1PN @) =19 L2@) = Jw,| "N L2 @)
and, finally, for any t C w,
lo = 720l 12(0,) < Cohall@llf1(w) = CoCohe @l gt (w,) - (4.2438)
where 66 depends on Cy, Cy, Cs, s, 55, and card G,. Let Cg := max {56, 66}
[cf. (4.243)].

(b) Let T € G. The set of vertices of 7 is denoted by Z,. Then

bezl onT.

x€Z,

By using Step a, we derive

lo = QaollL2@y = || Y ba (0 — 1 (9)) <Y llba (9 = 7 (@)l 22

2€71¢ L2(7) 2€7;

<Y e = @lrze = Y e — 12 (@) 120y

2€I; 2€1r
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< CoCsh. Z ||‘/)||H1(wz)

2€7r

< V3CoCohr [ 101310y (4.249)
2€1,

5«/§C0C6hr Z Z ||</’||%11(t)

tewr z€Zr:tCwy

< Crhe |9l mt (wr) (4.250)

with C7 := 3CyCe.

(c) By summing over all panels we obtain

lo = Qaeliay = Y lle = Qaeli2) < C7hE D N0l3 o,y

T€G T€G
=GPy > el = Chg el -
teg teG:tCwr
where Cg = C7Cﬁl/2 and
Cy:=maxcard{t € G :t C w}
1eG
depends only on the shape-regularity constant.

(d) For the L? (T')-stability we repeat the first steps of (4.249) to obtain

106¢lr2) = Y 1M (@)l 12wy -

z€Tr
The Cauchy-Schwarz inequality yields
72 ()] <l ™2 0ll 2,
and as in (4.250) we derive
106012 = D 101126 = V319l20r) - (4.251)

y A

A summation as in Step c results in the L2 (I')-stability of the Clément interpolation
operator

1Qg¢llL2ry = V3Cs llelliL2ry - (4.252)
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(e) From Step c and Step d we conclude that
lp = Qgelir2m = ColleliLaqy and o = Qgoll2my = Cshg ll¢ll g1y

hold with Cy := 1 + ,/3Cy. Hence the approximation result for the intermedi-
ate Sobolev spaces H® (I"), s € ]0, 1], follows by interpolation as in the proof of
Theorem 4.1.33.

(f) For the local H !-stability we proceed as in Step d, respectively as in (4.249).
Recall the definition of the surface gradient as in (4.200) and (4.201) to derive

106010y = | D 7 (#) Vsh, =D (2 () = 74 (9)) Vs
2€71¢ L2(7) 2€7; L2(7)
(4.253)

for any fixed zg € Z;. Let ¢, := ﬁ Jw, ¢- Then 1, (¢1) = 74y (¢1) = @ and
|7Tz (¢) — 114 (f/’)| < |72 (¢) — 0 (@0)| + |7Tzo (Pr) — 74 ((/))|

1 )
|— / (@ — )
w10| Wz

e =ellizw, | 19 =9z,
= 1/2 ’

(¢ —@o)| +

‘ 1
T sl Jo,

|a)l| |wZO|

In a similar fashion to (4.243) and (4.248) one derives for D € {a)z, a)zO}

lg = @ell2py < ¢ = Pellr20,) = C7 (diamwo) @]l g1 w,) -

Hence
|72 (9) = 2 ()] < Cro 101l 111 @) (4.254)
where C1¢ depends only on the shape-regularity constant and the global parametriza-
tion y.
In Theorem 4.4.2 (with £ = 1 and m = 0), we will prove the inverse inequality
and, thus, obtain the estimate

19sball 2 < Ch7 b2y < Ch 212 < Cuy, (4.255)
where Cj; depends only on the shape-regularity of the mesh and the global

parametrization y.
By inserting (4.254) and (4.255) into (4.253) we derive

196@|m1(r) < 3C10C11 10l 11 (w,) -
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The combination with (4.251) leads to the local stability with respect to the [|[| 1 ()~
norm and a summation over all panels as in Step c results in the global H !-stability

1Qg¢llarary = Cr2 ll@llgiry -

(2) Applying Proposition 2.1.62 with Xg = Yo = L?(I") and X; = Y; = H' (')
we obtain by interpolation of (4.252)

||Qg||HS(F)<—HS(F) = ”Qg”izé(‘r)(_LZ(r) ”Qg“;‘ril(l")(—Hl(F) <Ci3

1=s
with Cy3 := (3C#) 2 Ciz.
(h) Part e and g imply that

lg = Qoollrz2ary = Cshgllelgsry and llo— Qg@llgsry = (1 + Cia)llgllmsry -

We apply Proposition 2.1.62 with T = I — Qg, Yo = Y; = H* (T"), Xo = L (I),
Xy = H* ('), and 8 = o/s € [0, 1] to interpolate these two inequalities. The
result is

1-6 6 1-6 9
1T go@yersay = IT I p2ayemsa@y 1T 1 as @y<—ms@ = (Cshsg) (1+ C13)
= Crah®

with Cq4 1= Csl_o/s 1+ C13)°/s and this implies the first estimate in (4.237b). O

In Sect.9 we will need an estimate of the surface metric on w, compared with
the two-dimensional Euclidean metric on @;,. Since w, may consist of several panels,
the local Assumptions 4.3.17 and 4.3.18 have to be supplemented by the following,
more global Assumption 4.3.29 which states that I" has to satisfy a cone-type con-
dition and that the minimal angle of the surface mesh has to be bounded below by a
positive constant (see Fig. 4.8).

Assumption 4.3.29. [. Forallt € G, x € '\t andy € 1, there exist c > 0 and an
Xo € T such that

Ix—xoll = dist(x.7) and x—yI” = e (Ix = xol* + 0 — yII”).

Fig. 4.8 Illustration of the cone and the angle condition for the surface mesh
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2. For all t,t € G whose intersection consists of at most one point, there exists a
point p of t such that

Ix =yl zc(x—pl+lp-yl)  Vxez.Vyer

3. Forallt,t € G with exactly one common edge TNt = E and forallx € T,y € t
there exists a point p € E such that

ly =xIl = ¢ (ly —pll + llp —xID

Lemma 4.3.30. Let Assumption 4.3.29 be satisfied and let Assumption 4.3.17 or
Assumption 4.3.18 hold. Then

diam @,

cllx—y| <
=30 = =

Ixe ®) =X DI = CIX=§II VX.§ €,

where C depends only on the global chart y but is independent of the surface mesh.

Proof. (a) Let T € G, be a surface triangle with vertices A, B, C. First, we will prove
the statement for X,y € 7 = x, ! (7).
fﬁ R fﬁ A . . . . .
Let " := ¥ (7) be the plane triangle with straight edges which interpo-
lates 7 in its vertices. Note that y (rafﬁ“e) = 7. Hence

X (X) - X (Y) = J)( (W) (X — y) VX, y€ 7:afﬁne

where J, € R3*3 is the Jacobi matrix of the global chart y and w is some point in
Xy. Note that the largest and the smallest eigenvalues A, and Ay, of the positive
definite Gram matrix G, depend only on the global chart y and are, in particular,
independent of the discretization parameters. Thus

Vamin X =¥ < X 0 =2 DI < VAmax X =y ¥Vx.y € e

Let Gifﬁ“e € R?*2 denote the (constant) Gram matrix of )(ifﬁ“e. From Lemma 4.3.5
we conclude that

affine

[ 2 %) — e )| = (G2 & —§). & —§))"% < V2h, [R—

for all X,y € 7. Because the matrix G‘;fﬁne is symmetric and positive definite, its
minimal eigenvalue A% can be expressed by

min
min

Jaffine _ H (Gifﬁne)_l H_l

We employ Lemma 4.3.5 to obtain

affine affine

|22 G = 22" @) = che %=
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for all X,y € t, where C depends only on the shape-regularity of the mesh. Thus
we have proved that

Cv Aminh‘l: ”ﬁ _y” = ||X‘L' (ﬁ) —X (y)” = Vv ZAmaxh‘t ”5Z - S’”

for all X, § € 7. Finally, we replace % and § by 7" (X) and 5" (y). From (4.235)

we derive the estimate for the largest eigenvalue )U,;‘a" of the Gram matrix G; of

affine
n

(4.235) diam 7T .
)L‘,;m < V2 20| < C diam™!' %,
T

where C depends only on the shape-regularity constant and the global chart .
For the smallest eigenvalue we use

G = [(nélnz (51,52)]

€1.&) [&?
where K ﬁ C denote the vertices of 7 and € = B— K, e, = C —B. Thus
|G, || <2diam?
and the minimal eigenvalue /X‘,}“n satisfies

min — —1)—1/2 1
N 1 e

The combination of these estimates leads to

T

Chamz XY =l ® - @I =€
lamTtT

T

diam 7

Ix=yII  Vxyet.
(4.256)

(b) We assume that G, contains more than one panel and consider the case that x
and y belong to different panels t, ¢ € G,. Note that

h, he h,
< <C YVt eqG,,

C— ~ = = " =
diamw, ~— diam7 diam w,

where ¢ and C depend only on the global chart y and the shape-regularity
constant. Assumption 4.3.29 implies that one of the following two cases is
satisfied:

(i) The panels T and ¢ share exactly one common edge T N7 = E. Then there
exists a point p € E such that

ly =xII = ¢ (ly —pll + llp —xI) .
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The combination of (4.256) and a triangle inequality leads to

ly —xll = ¢ (Iy=pll+lp—xl)=¢ Iy —xI

z z
diam @, diam @,
with p := x; ! (p). For the upper estimate we use Xy C @, since @, is
convex. Let (p; ?:0 be the minimal number of points lying on Xy such that

Po =X, Ppg =y, and V1 <i <gq:p;—1p; is contained in some T C @,.
Letp; = x. (Pi), | <i < gq. Then the upper estimate follows from

hy

s
—x| < <C — — — |ly—x|.
Iy —xll < ;np, pi1| <C s an, Piotll = C s 1§ = %

(ii) 7 and ¢ share exactly one common point {z} = T N 7. Then
Ix =yl = ¢ (Ix —z[| + [lz -yl

and the rest of the proof is just a repetition of the arguments as in Case i. ]

Lemma 4.3.31. Let Assumption 4.3.17 or Assumption 4.3.18 be satisfied. For t €
Gy, let Y0 := Julz where T := x; ' (v). Then, for any u € Ng with k := ||,

h, \F
ot 4 s =C (W, ’
10" xaell oo z) = (diamwz)

where C depends only on k, Cy as in (4.228), Cq as in (4.236), and the global
chart y.

affine affine

Proof. Recall that y, ; = x o« where « = ydffine o paffine jg affine. As in the

proof of Lemma 4.3.6, we use

M (X ° Kafﬁne _ Z Z ﬂ' ' 135 (aﬂ+vx) ° Kafﬁne,
ﬁeNo veNo
[Bl=m1 Iv|=p2

where aj, a, are the column vectors of the Jacobi matrix of k"¢ that is,

(al)J — afﬁne _ Z 8 Xafﬁnea] 77z}fﬁne
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We have ‘8k )(if?“e‘ < h; and from (4.235) we conclude that |0; nj-fﬁne <
diam 7/ (2 |7]). This leads to |(a,-)j| < hydiam 7/ |7|. Thus
N k
9 (o)) < ¢ (MY C e (e te Y
|7| diam @,
where C depends only on k and the global chart y. |
4.4 Inverse Estimates
The spaces H®(I") form a scale:
HS(') € H'(T'), fort<s (4.257)
with a continuous embedding: there exists some C(s,?) > 0 such that

Note that the range of s and # may be bounded by the smoothness of the surface (see
Sect. 2.4). In general, the inverse of this inequality is false.

Exercise 4.4.1. Find a sequence of functions (i), ey € C* ([0, 1]) which contra-
dicts the inverse of (4.258) for s = 0 andt = 1, i.e., which satisfies

i lun 1o,y / Nlunll 20,17y = 00

However, for boundary element functions there is a valid inverse of (4.258), a
so-called inverse inequality, where the constant C depends on the dimension of the
boundary element space. In the following we will assume that the maximal mesh
width 4 is bounded above by a global constant /. For example, we can choose
ho = diam I" or otherwise iy = 1 for sufficiently fine surface meshes. Recall the
definition of P} as in (4.67).

Theorem 4.4.2. Let either Assumption 4.3.17 or Assumption 4.3.18 hold. We have
forO<m <t allteGandallv € ]P’,::
—L
IVl zey < ChE " vl gm e -

The constant C depends only on hg, £, k and, for a polyhedral surface, on the
shape-regularity of the mesh G via the constant kg from Definition4.1.12. In the case
of a curved surface it also depends on the derivatives of the global transformations
1 x~ ' up to the order k.
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Proof. Owing to the h-independent equivalence of the norms |[v||ge(,) and
IVl H(gafine) from Corollary 4.3.12, it suffices to consider the case of a plane
polyhedral surface.

Case 1: m = 0. Since IP’,: is finite-dimensional, all norms on IP’,: are equivalent:
There exists a positive constant Cy such that for 0 < j < ¢

e < CelVllzq Ve P
With Lemma 4.3.6 or Lemma 4.3.13 it follows for all v € P/ that
Wai@ < Crha ™ Plgiay < CeCrhy™ [Pllr2¢) < CeC1Ch77 [VlL2(r -
For the |-|| ge-norm, by summing the squares of the seminorm we obtain
Mlaew < Ch IVl - (4.259)
where C depends on £, k and the upper bound of the mesh width /.

Case2: 0 <m <{.For{ —m < n < { and |¢| = n we write 0% = 98 928 with
|B] = £ —m and B < o componentwise. Then with Case 1 we have

< Chm_e |V|Hn—li+m(r) .

e < ‘3“‘/3 ‘ <cnmt
| V||L2(r) = v He-m(z) — T L2(r) = T

ge—p v‘

Since |a| = n was arbitrary, this result and n — £ + m < m together yield
W gniy < CHP W gn—cimy < CRPE V]| gm o) (4.260)

for an arbitrary £ — m < n < {£. (Note that the constant C in (4.260) depends on
n,m, and £. However, n and m are from the finite set {0, 1, ..., ¢} and — by taking
the maximum over n and m — results in a constant C which does not depend on
n and m but on £ instead.) Inequality (4.259) for £ <— £ — m as well as Estimate
(4.260) finally yield the assertion

m
2 2 2
ey = Wl3eomey + Y. Wi
n={—m+1

m
—L 2 —L 2
<C iR O lTay+ Y RO il
n={—m+1

—L
< CR2O |v]3m e -
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The global version of Theorem 4.4.2 requires the quasi-uniformity of the surface
mesh G.

Theorem 4.4.3. Let either Assumption 4.3.17 or Assumption 4.3.18 hold. Then we
have forall t,s € {0, 1}, t <'s, the estimate

Vv e SEO: vlasey < Ch™*[v]l e - (4.261)

The constant C depends only on hy, p and, for a polyhedral surface, on the shape-
regularity and quasi-uniformity of the mesh G via the constants kg and qg from
Definitions 4.1.12 and 4.1.13. In the case of a curved surface it also depends on the
derivatives of the global transformations y, y~' up to the order k.

Proof. From Theorem 4.4.2 we have

2(t—s)
2 2 — 2 . 2
Wz @y = 20 Mz = € 2 m ™ M = € (mgh) IVl o)
1439 Teg
2(s—, _
= (Caz* ™) 2 ey
O

Theorem 4.4.3 can be generalized in various ways. In the following we will cite
results from [75].

Remark 4.4.4. (a) Theorem 4.4.3 holds for all t,s € Rwith0 <t <s < 1or
—1 <t <0As =0(see[75 Theorems 4.1, 4.6]).

(b) Theorem 4.4.3 is valid for the space Sé”_l forallt,s € Rwitht =0A0 <
s <1/20r—1 <t <0As=0/(see[75 Theorems 4.2, 4.6]).

We will also require estimates between different L”-norms and discrete £7-
norms for boundary element functions and, thus, we again start with a local result.
Here we will always consider the situation where a Lagrange basis is chosen for P}

ont. X, = {/l;, S LZ} denotes the set of nodal points on 7. The Lagrange basis

<ﬁ1> . of ]P’,ﬁ satisfies
i€

N,‘ (i;j)z(gi,j Vi,jetli.

A vector of coefficients w := (w;)._+ is put into relation with the associated

lELk

polynomial w € IP’k% on the reference element by means of

W= /PWZZ ZW,’Z\\],’.

ie T
i€ty
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We define the “lifted” function

wi=Pow:= Y wN; with N;=DN;oy"

i€l
analogously.

Theorem 4.4.5. Let either Assumption 4.3.17 or Assumption 4.3.18 hold. For all
Tt € Gandallw := (w;),_+ we have

lELk

Che Wz < [[PeWll 2y = Che [[Wlle2 -

The constants ¢ and C depend on the parameters qualitatively in the same way as
does C in Theorem 4.4.3.

Proof. From Lemma 4.3.6 or Lemma 4.3.13 we have

chell#l a0y = Wl = Che [Pl o) with = wo

Since all norms are equivalent on IP’%, we have
e Wl gr+1zy < IWll2e) < Cr IIVVIIHHI(;) -

The equivalence of the H*¥*! ()-norm and the [-]; 41-norm follows from Lemma
4.3.1. Since W € Pf,

[WMesr = Wlgrnig+ Y @I = Y W@ =) |wil =Wl . (4262)

ZE€EX ZE€EX I‘GL;

Since X is finite, there exist positive constants ¢, C depending only on the
cardinality of X, i.e., on k, such that

clwle < Iwllg = Clwlle2 .
Combining all these results, we have thus proved that

Che Wl < Wl 2@y < Che [[Wlle2 -

Corollary 4.4.6. Let the conditions from Theorem 4.4.5 be satisfied. Then

Che Wl poory = Wl 2y < Che Wil poo(ry
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for all w € P. The constants ¢, c qualitatively depend on the parameters in the
same way as do ¢, C in Theorem 4.4.3.

Proof. If we combine Theorem 4.4.5 with the norm equivalence on finite-
dimensional spaces for w = (w;) e, and w = P;w it follows that

Wliz2@y = Che[Wllez = Che [[Wllgeo < Che W]l poo(er) -

Conversely, with the notation from the proof of Theorem 4.4.5 we have

A . . (4.262)
Wllzoo @y = IWlLooy < C Wl a1y < C Mgy =" C' Wl

< C"wllgee = C" W2 -

Note that the constants in this estimate depend on the cardinality of X, i.e., on k.
From Theorem 4.4.5 we thus have the lower bound. O

The global version of Theorem 4.4.5 shows an equivalence between boundary
element functions and the associated coefficient vector. Let (b,-),]-V:1 be the Lagrange
basis of the boundary element space S. We define the operator P : RN — § for

_ N
w = (w;);= by

N
Pw = Zwib,‘.
i=1
Theorem 4.4.7. Let Assumption 4.3.17 or Assumption 4.3.18 hold. Then for all
we RN 5
chwlez = 1PW L2y < Ch[Wle2 -

The constants ¢, C qualitatively depend on the parameters in the same way as ¢, C
do in Theorem 4.4.5.

Proof. Let w € RY be the coefficient vector of the boundary element function
w = Pw. For T € G we can associate a global index ind (m,7) € {1,2,..., N}
on 7 with every local degree of freedom m € (. We set Wy 1= (Wm),, @i =
(Wind(m,7) ),z - With Theorem 4.4.5 we obtain

k

2 2 2
IPWIZ2y = D IPeWl 7oy < CH* Y IWellZa -
T€g €@

The constant

M = { €lf xG:i=ind }
l_e{l,rr;z}iN}ji (m,7) €1, xG i =ind(m,7)
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depends only on the polynomial degree k and on the shape-regularity of the surface
mesh. It thus follows that

| PW|2a 0y < CME? W] .
The lower bound can be found in a similar way. O

Corollary 4.4.8. Let either Assumption 4.3.17 or Assumption 4.3.18 hold and let
(bi); ez denote the nodal basis for the boundary element space S. Then

16i || Loo (ry < Ci. (4.263)

The constant C, depends only on the shape-regularity of the mesh and the polyno-
mial degree of S.
IfS = Sé’ofor some k > 1 then

il w1.00ry = [IVsbill poo(ry = éthI forany Tt C suppb;. (4.264)

The full W'-°° (T')-norm is given by |||y 1.00(ry = max{||-||Loo(F) , |'|W1400(I‘)}
and hence 5
1Di llw1.00(ry < C3h:1 forany t C suppb;. (4.265)

Proof Let e; € RZ denote the vector with (e;); = 1 and (e;); = 0 otherwise, i.e.,
b; = Pe;, Let T C supp b;. The combination of Corollary 4.4.6 and Theorem 4.4.5
leads to _

1bill ooy < @he) ™" 1bill g2y < C /2.

Because b;|, = 0 forall € G; with ¢ supp b; we have proved (4.263).

For the proof of the second estimate we observe that — as in the proof of Theo-
rem 4.4.3 — it suffices to consider plane panels with straight edges. Hence Vgb; is a
polynomial on every panel t so that

n Cor. 4.4.6 Theo. 4.4.2 _1
Che |Vsbillpoowy = WVshillpzey = Chy 1bill2

Theo.4.45 ~ ~
< CCleilp=CC

from which the assertion follows. O

We can also analyze how far the constants in the norm equivalences depend on
the mesh width % in the case of the £Z and L? (I")-norms with 1 < p < oo. Here
we will only require the cases p = 2 and p = oo and refer to [75] for the more
general case.
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4.5 Condition of the System Matrices

One of the first applications of the inverse inequalities is the estimation of the
condition of the system matrices of the integral operators.

Lemma 4.5.1. Let Assumption 4.3.17 or Assumption 4.3.18 hold. Let K be the sys-
tem matrix associated with the Galerkin discretization of the single layer operator
V for the Laplace problem. Then we have

cond>(K) < Ch™ L.

The constant C depends only on the polynomial degree p and the shape-regularity
and the quasi-uniformity of the surface mesh G, more specifically on the constants
kg and qg from Definitions 4.1.12 and 4.1.13. In the case of curved surfaces it also
depends on the derivatives of the global transformations x, y~' up to the order k.

Proof. Since K is symmetric and positive definite, we have

Amax (K)
Amin (K) ’

cond, (K) =

In the following we will thus estimate the eigenvalues of K. It follows from the
continuity and the H~'/2-ellipticity of the bilinear form (V-,-), : H~Y/?(T') x
H~'Y2(I') — K that there exist two positive constants y and C, such that

14 ||”||§{71/2(r) < (Vu,u)y < C ||”||§{71/2(r) Vue H'/? (T).

From this it follows with Theorem 4.4.7 that

Kw, w Vw,
Amax (K) = max % < Ch? max (WZ—W)O
w=(w;); ERV\{0} |w]| weS\{O} [lwll7 2
2
w5 —
< ch2C M < Cch2C..

. max 5
weS\0} w32y

By Theorem 4.4.7 and Remark 4.4.4 we have for the smallest eigenvalue

. Kw, w . (Vw,w)
A ()= e o <|I—2) = O ol
w=(w;); w|| weS\(O} [lwl| 72
2 . ||W||§1,1/2(F) 2
y mn ————— > C'h*yh.
weS\{0} ||W||L2(F)

Thus
/'\max (K) /Amin (K) S Ch_l

and the lemma follows. O
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Exercise 4.5.2. Show that the system matrix K associated with the hypersingular
operator also satisfies the estimate

cond, (K) < Ch™!
under the conditions of Lemma 4.5.1.

N
Remark 4.5.3. For the condition of the mass matrix M := ((bi’bj)L2(F))- -
ij=
we have
cond, (M) < C.

Proof. Since
(w,Mw) = (Pw, PW)LZ([‘)

we can apply Theorem 4.4.7:

Mw, w Mw, w v
3Ph? < in % < max % < C?h?,
weRN\{o} |w]| weRM\{0} | w]|

from which we have the estimate of the condition with C = C2/¢2. O

Estimating the condition of system matrices for equations of the second kind is
more problematic, as the stability of the Galerkin discretization for these equations
is in many cases still an open question. If we assume that the /-independent stability
of the discrete operators is given, the condition of the system matrices for equations
of the second kind can be determined in terms of an s-independent constant in the
same way as before.

4.6 Bibliographical Remarks and Further Results

In the present chapter, we introduced spaces of piecewise polynomial functions
on the boundary manifold I', and established approximation properties of these
spaces, as the meshwidth % tends to zero, in several function spaces of Sobolev
type on I'. These boundary element spaces are, in a sense, Finite Element spaces
on the boundary surface I'. We also presented a general framework for the conver-
gence analysis of Galerkin boundary element methods, in particular necessary and
sufficient conditions for the quasi-optimality of the Galerkin solutions to hold.

For reasons of space, our presentation does not cover the most general cases.
For example, the surface meshes upon which the boundary element spaces are built
did not allow for local mesh refinement or, more importantly, for anisotropic local
refinements for example in the vicinity of edges (see, e.g., [75,87,234]).

Most of our results do extend to so-called graded, anisotropic meshes (cf. [104,
107, 108]). In addition, besides mesh refinement, analogs of spectral methods or
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even a combination of mesh refinement and order increase, the so-called hp-Version
BEM , is conceivable (cf. [222] and the references therein).

Further, for particular classes of boundary integral equations, special choices of
subspaces may yield large gains in accuracy versus number of degrees of freedom.
Let us mention, for example, the case of high frequency acoustic scattering. Here,
the stability of the boundary integral operators depends, of course, on the problem’s
wave number but, in addition, also the solutions contain high-frequency compo-
nents which are smooth, but highly oscillatory at large wave numbers, and therefore
poorly captured by standard boundary element spaces, unless the fine scale of the
unknown functions on the boundary is resolved by sufficient mesh refinement. This
strategy may lead, however, to prohibitively large numbers of degrees of freedom.
A better approach may be to augment the standard boundary element spaces by
explicitly known, dominant asymptotic components of the unknown solution. In
high frequency acoustics and electromagnetics, in particular for BIEs obtained from
the direct method (where the unknowns are Cauchy data of the domain unknowns),
strong results on the asymptotic structure of the solution are available from geo-
metrical optics. These can be used to build boundary element spaces with no or
a reduced preasymptotic convergence regime at high wave numbers. We refer e.g.
to [5, 57, 153] for recent work on wave number independent Galerkin BEM for
acoustics problems.

In this chapter, and throughout this book, we focused on Galerkin BEM. We do
emphasize, however, that the alternative collocation BEM do constitute a powerful
competition; for collocation BEM on polyhedra, however, the theory of stability and
quasi-optimality is much less mature that in the Galerkin case. Still, since colloca-
tion methods do not require the numerical evaluation of double surface integrals,
they offer a substantial gain in accuracy versus CPU time.

For this reason, in recent years substantial work has been devoted to collocation
based BIEs for high frequency acoustic and electromagnetic scattering. We mention
in particular the work of O. Bruno et al. (e.g. [34,35,161]) which is a collocation type
boundary element method which combines incorporation of high frequency asymp-
totics with a degenerate coordinate transformation of the surface in the presence of
edges or vertices and a Nystrom type collocation procedure. The mathematical error
analysis of this method is in progress.

The a priori asymptotic error bounds for Galerkin BEM developed in Sect. 4.2
show that Galerkin BEM exhibit superconvergence in negative Sobolev norms on
I". This allows us, in particular, to deduce corresponding results for postprocessed
Galerkin approximations which can be obtained as smooth functionals of the solu-
tion. Importantly, the insertion of the Galerkin solution into the representation
formula is such a postprocessing operation. Therefore superconvergent pointwise
approximations of the solution to the underlying boundary value problem at interior
points of the domain result usually from Galerkin boundary element approxi-
mations. Note that our analysis in Sect.4.2 reveals the crucial role of Galerkin
orthogonality of the discretization in the derivation of superconvergence estimates
in negative order norms (indeed, for other discretization schemes such as colloca-
tion or Nystrom methods, such superconvergence results either do not hold or only
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with a much smaller gain in asymptotic convergence order). We finally note that
the superconvergence error bounds for the solution at points x in the interior of
both the domain €2 or its complement deteriorate as x approaches I". Nevertheless,
this deterioration can be remedied and postprocessing procedures can be designed
to recover superconvergent solution values and normal and tangential derivatives
(required, for example, in shape optimization or uncertainty quantification) of arbi-
trary order from the Galerkin solution such that the superconvergence bounds are
uniform in the distance of x to the boundary I'. For the details, we refer to [213].
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