
Chapter XII.

The moduli space of stable curves

1. Introduction.
In this chapter we shall construct the moduli space Mg,n of stable

n-pointed curves of genus g and look at its structure from various points
of view. As a set, this space consists of all isomorphism classes of stable
n-pointed curves of genus g. First we will put on Mg,n a structure
of analytic space, and then we will see that this analytic space has a
natural structure of an algebraic space. Only in Chapter XIV we will
prove that Mg,n is, indeed, a projective variety. Finally we shall show
that Mg,n is just a coarse reflection of a more fundamental object, the
moduli stack Mg,n of stable n-pointed curves of genus g.

Throughout the chapter we will make constant use of the construction
of algebraic Kuranishi families, carried out in Chapter XI, which we now
recall. Let (C; p1, . . . , pn) be a stable, n-pointed curve of genus g. Then
there exists an algebraic deformation

(1.1)

C

�
π

(X, x0)

σi : X → C , i = 1, . . . , n , C = π−1(x0)

of (C; p1, . . . , pn) having the following properties. Denote by Cy

the fiber of π over y and let Gy be the automorphism group of
(Cy; σ1(y), . . . , σn(y)). Then

a) X is affine;
b) the family is Kuranishi at every point of X;
c) the action of the group Gx0 on the central fiber extends to

compatible actions on C and X;
d) for every y ∈ X, the automorphism group Gy is equal to the

stabilizer of y in Gx0 . In particular, Gy is a subgroup of Gx0 ;
e) for every y ∈ X, there is a Gy-invariant neighborhood U of y in X,

for the analytic topology, such that any isomorphism (of n-pointed
curves) between fibers over U is induced by an element of Gy.

A family with the above properties is called a standard algebraic Kuranishi
family, while its restriction to the analytic neighborhood U is simply called
a standard Kuranishi family.
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In Section 2 we begin by putting on Mg,n a natural structure of
normal analytic space of dimension 3g − 3 + n. This is done by patching
together quotients of bases of standard Kuranishi families modulo the
action of the automorphism groups of the central fibers. This patching
procedure is based on the universal property of Kuranishi families. The
local analytic neighborhoods in Mg,n are therefore of the type B/G,
where B is a bounded simply connected domain in C3g−3+n, and G is a
finite group acting linearly on it. Built in the definition of the analytic
structure of Mg,n is its versal property: for every analytic family Y → T
of n-pointed, stable curves of genus g, the moduli map t �→ [Xt] is an
analytic morphism from T to Mg,n. Using the fact that there exist
stable curves with nontrivial automorphism group, we then proceed to
show that there cannot exist a universal family of curves over Mg,n.
There is a surrogate which, in several practical applications, is almost as
good as the nonexistent universal family. It consists in a family of stable
n-pointed genus g curves

η : X → Z ,

parameterized by a normal scheme Z, whose moduli map

(1.2) m : Z → Mg,n

is finite and surjective. A first application of the existence of this family
is the following. Using the valuative criterion for properness together
with stable reduction, we prove that Z, and therefore Mg,n, is compact.
Another important application will come in Chapter XIV. There, in order
to prove that the analytic space Mg,n is a projective variety, we will
use the scheme Z as an intermediary. Indeed, using Seshadri’s criterion
and a small amount of geometric invariant theory, we will show that the
line bundle η∗(c1(ωη)2) is the first Chern class of an ample line bundle,
proving that Z, and therefore Mg,n, is projective.

In order to construct the family (1.2) and in particular to introduce
the scheme Z, we need to make a digression on algebraic spaces. We do
this in Section 3. Indeed, implicit in the algebraic nature of the Kuranishi
families is the fact that Mg,n has a natural structure of algebraic space.
To see this, recall that, as a set, Mg,n is the quotient of the Hilbert
scheme Hν,g,n modulo the action of a projective group G and that the
base of an algebraic Kuranishi family was constructed by taking slices in
Hν,g,n that are transversal to the orbits of G. By compactness one can
cover Hν,g,n with the images of finitely many sets of the type G × Xi,
i = 1, . . . , N , where Xi is the base of an algebraic Kuranishi family
πi : Ci → Xi. Let Gi be the automorphism group of the central fiber of
πi. The properties of algebraic Kuranishi families imply that the natural
map Xi/Gi → Mg,n is étale. Set

(1.3) Yi = Xi/Gi , i = 1, . . . , N, X =
N∐

i=1

Xi, Y =
N∐

i=1

Yi.
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Then the étale map

(1.4) ϕ : Y −→ Mg,n

is surjective. Now, by definition, a separated algebraic space is an étale
morphism ψ : S → M from an affine scheme to an analytic space such
that S ×M S is a closed subscheme of S × S. The scheme S should
be considered as a sort of algebraic atlas for M , while the subscheme
S ×M S should be regarded as the set of compatibility conditions for
this atlas. In order to prove that Mg,n is a separated algebraic space,
one then needs to show that R = Y ×Mg,n

Y is Zariski-closed in Y × Y .
This turns out to be an immediate consequence of the properness of the
natural projection q : I −→ X × X, where

I = {(x, x′, g) : x, x′ ∈ X, g ∈ G, x′ = gx} ,

which is a consequence of Theorem (5.1) of Chapter X.
The construction of moduli spaces of curves as algebraic spaces shows

implicitly that moduli spaces like Mg,n are also orbifolds. Orbifolds are
the differential-geometric counterparts of stacks. Essentially, an orbifold is
an analogue of a differentiable variety in which local charts are not open
immersions, but rather quotients of open subsets of R

n by the actions
of finite groups. In Section 4 we give the basic definitions and examples
of the theory of orbifolds. Furthermore, we show how de Rham theory
naturally extends to orbifolds. This is important in view of the fact that,
when developing the intersection theory of Mg,n, it will be useful to
express intersection numbers as integrals of top degree differential forms
over Mg,n.

Section 5 contains a utilitarian introduction to stacks, closely
motivated by the case of moduli of curves.2 In studying Kuranishi
families or moduli spaces of curves, we constantly have to deal with
the automorphism group of a curve. It is the presence of curves with
a nontrivial automorphism group that prevents the moduli space from
being smooth and a universal family from existing. Using stacks is a
way of effectively keeping track of these automorphism groups. When
thinking of moduli spaces as stacks, the automorphism groups become an
essential part of the definition.

A stack is, first of all, a groupoid. A groupoid is a pair M = (C, p),
where C is a category, and

p : C → Sch/S

2Warning: in Sections 5 through 8 we deviate from our general convention
that “scheme” stands for “scheme of finite type over C,” and allow general
schemes.
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is a functor. The “fibers” of p are supposed to be categories in which all
morphisms are isomorphisms. The fiber over a scheme T is denoted by
M(T ). To better understand the properties a stack is asked to satisfy,
one should keep in mind the example of the moduli stack Mg,n of stable,
n-pointed, genus g curves. In this case we take as C the category in
which the objects are the families

X
� ξ

T

of stable n-pointed curves of genus g and in which a morphism

ϕ : ξ′ → ξ

between a family ξ′ : X ′ → T ′ and a family ξ : X → T is a commutative
diagram

X ′ �

�
ξ′

X

�
ξ

T ′ �f
T

inducing an isomorphism X ′ ∼= T ′ ×T X . The functor p assigns to a family
ξ : X → T its parameter space T :

p(ξ) = T .

In the case of Mg,n, given a scheme T , the category Mg,n(T ) is simply
the category of families of stable n-pointed curves of genus g parameterized
by T , in which a morphism

ϕ : ξ′ → ξ

between a family ξ′ : X ′ → T and a family ξ : X → T is an isomorphism
of schemes over T from X to X ′. This is how automorphisms of curves
are encoded in the stack definition of moduli spaces. Any scheme M can
be considered as a groupoid M = (CM , pM ). Here, the objects of CM are
pairs (T, f) where f : T → M is a morphism of schemes. The morphisms
ϕ : (T, f) → (T ′, f ′) are the morphisms h : T → T ′ with f ′h = f . Finally,
pM ((T, f)) = T . A groupoid (C, p) is (represented by) a scheme if, for
some scheme M , there exists an isomorphism of groupoids

(CM , pM ) ∼= (C, p).

It follows from the definitions that, if a universal family X → Mg,n

existed, then the groupoid Mg,n would be represented by the scheme
Mg,n.



§1 Introduction 253

One of the advantages of the category of groupoids is that in this
category quotients always exist. For example, if a group scheme G acts
on a scheme X, then one can form a quotient stack [X/G]. As a first
result, we prove that

Mg,n = [Hν,g,n /PGL(N)] , N = (2ν − 1)(g − 1) + νn .

In Section 6 we come to the second ingredient in the definition of
a stack. This involves descent theory. Suppose that we are given a
groupoid M = (C, p), an étale surjective morphism of schemes U → T ,
and an object ξ in M(U). The question is: when does ξ descend to
T ? In other words, when does there exists η ∈ M(T ) with f ∗(η) � ξ ?
When M = Mg,n, what we are given is a family of curves ξ : X → U ,
and we look for conditions insuring the existence of a family η : Y → T
with f ∗(η) � ξ. To understand these conditions, we consider the analogy
between ordinary topology and étale topology. Instead of the étale map
U → T , we consider an open cover U = {Ui} of T . The collection of
pairwise intersections {Ui ∩ Uj } is the topological counterpart of the fiber
product U ×T U , while the collection of triple intersections {Ui ∩ Uj ∩ Uk }
is the counterpart of the triple fiber product U ×T U ×T U . The datum
of an object ξi on each Ui corresponds to the datum of an object ξ
on U . An isomorphism ϕij from ξi|Ui ∩ Uj to ξi|Ui ∩ Uj is translated
into an isomorphism ϕ : p∗

1ξ → p∗
2ξ, where p1 and p2 are the natural

projections from U ×T U to U . The compatibility condition ϕijϕjk = ϕik

on {Ui ∩ Uj ∩ Uk } is translated into an appropriate “cocycle” condition
for the isomorphism ϕ on U ×T U ×T U . If this cocycle condition is
satisfied, (ξ, ϕ) are said to be a descent datum. However, this datum
is not necessarily effective, meaning that the compatibility conditions are
not always sufficient to make the object ξ “descend” from U to T . The
first condition for a a groupoid to be a stack is that every étale descent
datum is effective. To check this condition for the groupoid Mg,n, one
has to use Grothendieck’s descent theory for quasi-coherent sheaves, which
we review in this same section.

In Section 7 we come to the third ingredient in the definition of a
stack. This condition is almost automatically satisfied by the groupoid
Mg,n, and it basically requires that a natural functor that can be
concocted in terms of the Isom functor should, in fact, be a sheaf.
Leaving the category of schemes to enter the category of stacks presents
several advantages. Here are a few. First, as we observed, in the category
of stacks one can take quotients. Secondly, looking at the case of curves,
it makes sense to talk about a universal family of curves C → Mg,n over
the stack Mg,n. Moreover, as a stack, Mg,n is smooth. In other words,
in the category of stacks, modding out by finite groups destroys neither
smoothness nor the property for a morphism to be étale. As another
example, let us go back to (1.3) and (1.4). Look at the smooth variety
X which is the disjoint union of bases X1, . . . , XN of Kuranishi families
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Ci → Xi and consider the surjective moduli map m : X → Mg,n. As a
map of schemes, m is not étale. To make it étale, one has to divide
each Xi by the automorphism group of the central fiber of πi. One
of the advantages of replacing Mg,n with the stack Mg,n is that, as a
morphism of stacks, m : X → Mg,n is étale.

There is a class of stacks which is particularly manageable and
which includes the moduli stacks Mg,n. This is the class of Deligne–
Mumford stacks. We discuss these in Section 8. The first property that
characterizes a Deligne–Mumford stack M is the existence of an étale
surjective morphism m : X → M, where X is a scheme. The other
requirement is that the diagonal morphism Δ : M → M × M should be
representable. This last condition, for the stack Mg,n, translates into the
following property which is the content of Proposition (3.10). Consider
the family ξ : C → X and the two projections p1, p2 : X × X → X. Then
the natural projection

(1.5) IsomX×X(p∗
1ξ, p

∗
2ξ) −→ X

is étale and surjective.
In Section 9, after digressing on Zariski’s main theorem in the context

of algebraic spaces, we state the basic result that, given a reduced,
separated algebraic space X, there exists a scheme Z which is a finite
Galois cover of X. A variant of the proof then yields the family (1.2).

The final section is devoted to the description of various natural
morphisms between moduli stacks of curves. Building on the work done
in Section 6 of Chapter X, we construct the universal curve

C g,n → Mg,n ,

the basic projection morphisms

Mg,n+1 −→ Mg,n ,

and the basic clutching maps

ξΓ : MΓ → Mg,n ,

where we adopt the notation introduced at the beginning of Section 7 of
Chapter X. We also show that Cg,n is naturally isomorphic to Mg,n+1.

We end this introduction by recalling some classical facts about
elliptic curves that may be helpful to keep in mind in what follows.

Let H denote the upper half-plane. For τ ∈ H, we denote by Eτ

the elliptic curve C/Λτ , where the lattice Λτ
∼= Z

2 generated by 1 and τ
acts by

(m1, m2) · τ = z + m1 + m2τ.
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It is well known that Eτ is embedded in P
2 as a smooth cubic with

affine equation
y2 = 4x3 + g2(τ)x + g3(τ)

by the map {
x = P (z, τ),
y = P ′(z, τ),

where P (z, τ) is the Weierstrass P -function. This construction yields a
family of smooth cubics

(1.6) α : C → H.

This family, which is highly transcendental, has two remarkable properties.
First of all, every elliptic curve appears in it, up to isomorphism, and,
secondly, the family is everywhere Kuranishi. From g2 and g3 one
constructs the j-function

j(τ) =
1728g2(τ)3

g2(τ)3 − 27g3(τ)2
.

Letting Γ = SL2(Z) denote the modular group acting as usual on H by
(

a b

c d

)
· τ =

aτ + b

cτ + d
,

it is well known that j(τ) is Γ-invariant. Moreover, setting

Ĥ = H ∪ Q ∪ { ∞} ,

one has a natural extension of the action of Γ to Ĥ. The points of
Q ∪ {∞} are called cusps and are permuted transitively by Γ. There are
bijections

(1.7)
j : Γ\Ĥ

∼=−→ P
1

∪ ∪

Γ\H
∼=−→ P

1
� {∞}

Anticipating notation to be used below, we set
{

Y (1) = Γ\H,

Y (1) = Γ\Ĥ.

One may take a slightly different approach to the family (1.6). The
semi-direct product Γ � Z

2 acts on H × C by
((

a b

c d

)
, (m1, m2)

)
· (τ, z) =

(
aτ + b

cτ + d
,

z + m1 + m2τ

cτ + d

)
.



256 12. The moduli space of stable curves

Taking quotients only modulo the second factor Z
2, we obtain a family

over H which is just (1.6). Taking instead the full quotient, we get a
variety E∗ fibered over Y (1):

π : E∗ → Y (1).

As is well known, for τ and τ ′ in H, Eτ is isomorphic to Eτ ′ if and only
if j(τ) = j(τ ′). It follows that we may identify M1,1 with Y (1). One’s
first guess might be that then E∗ → M1,1 is the universal elliptic curve.
However, this is spectacularly not correct. The point is that one is in
particular dividing by ( −1 0

0 − 1

)
∈ Γ .

This automorphism acts trivially on H but gives the −1 involution on
each Eτ , so that the fibers of π are in fact P

1’s. In addition, two
fibers of π are special in that they correspond to elliptic curves with
automorphisms other than ±1. These are precisely

Eτ0 , τ0 = eπ
√

−1 , j(τ0) = 1728 , | Aut(E0)| = 4;

Eτ1 , τ1 = e2π
√

−1/3 , j(τ1) = 0 , | Aut(E1)| = 6.

Although E∗ → M1,1 is not a universal family of elliptic curves, if we
consider the stack M1,1 which, roughly speaking, refines M1,1 by adding
the data Aut(Eτ ), then, as will be explained below, there is a universal
family E → M1,1 of elliptic curves. Thus, in this case enlarging our
concept of variety to include stacks, one resolves the issue of having a
universal elliptic curve. It is worth noticing that, as will be seen in the
following chapters, one may do enumerative geometry in a stack context.
Perhaps the first instance of this is due to Mumford [549], who showed
that Pic(M1,1) ∼= Z/12Z, where the left-hand side is the Picard group of
the stack M1,1.

A complementary approach to the issues raised above is the one
of trying to rigidify the family of elliptic curves by adding additional
data that kill the automorphisms groups of the Es. This will be the
central theme of Chapter XVI. Essentially, the additional data consists in
considering the finite group of points of order N in each Eτ . For this,
one sets

Γ(N) = ker(SL2(Z) → SL2(Z/NZ)).

Then the semi-direct product Γ(N) � Z
2 acts on H × C as above. When

N ≥ 3, this action is free, so that the quotient E∗(N) is smooth.
Moreover, the action of Γ(N) on H extends to a free action on Ĥ, giving
rise to an open inclusion of smooth varieties Y (N) = Γ(N)\H ⊂ Γ(N)\Ĥ =
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Y (N). The family of elliptic curves πN : E∗(N) → Y (N) can be completed
to a family of nodal curves over Y (N), so that one gets a diagram

E∗(N) ⊂

�πN

E(N)

�πN

Y (N) ⊂ Y (N)

Finally, setting GN = SL2(Z/NZ), we see that GN acts naturally on the
diagram

Y (N) ⊂

�

Y (N)

�
M1,1 ⊂ M1,1

and, consequently, M1,1 and M1,1 are each represented as quotients of
smooth varieties by finite groups.

2. Construction of moduli space as an analytic space.
Our goal in this section is to put a structure of analytic space on

the set of isomorphism classes of stable P -pointed curves of genus g,
where P is a finite set. The resulting space is called the moduli space
of stable P -pointed curves of genus g and is denoted by Mg,P . When
P = {1, . . . , n}, one writes Mg,n for Mg,P . The construction relies on
the existence of standard Kuranishi families, as defined in Chapter XI,
definition (6.8), proved in the same chapter. We shall need the following
well-known elementary result, due to Henri Cartan [106].

Lemma (2.1). Let G be a finite group acting on a complex manifold
U . Then there is a unique structure of normal analytic space on the
quotient U/G such that U → U/G is holomorphic.

Without loss of generality, we may assume that the action of G is
effective. Let u be a point of U , let p be its image in U/G, and denote
by H the stabilizer of u. All sufficiently small open neighborhoods of p
are of the form V/H, where V is a sufficiently small H-invariant open
neighborhood of u, and conversely. Suppose that there exists a complex
structure on U/G satisfying the requirements of the lemma. Then, if V
and H are as above, a holomorphic function on V/H gives, by pullback,
an H-invariant holomorphic function on V . Conversely, an H-invariant
holomorphic function on V descends to a holomorphic function on V ′/H,
where V ′ is the open subset of V where the action of H is free, and hence
to V/H, by Riemann’s extension theorem. This proves the uniqueness.

In view of the uniqueness, to prove the existence, it suffices to put
a structure of normal analytic space on all open sets of the form V/H,
where H is the stabilizer of a point u ∈ U , and V is a sufficiently small
H-invariant open neighborhood of u. So we may also assume that G
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fixes a point u ∈ U and that V = U . By Lemma (6.12) in Chapter XI,
we may choose a system of coordinates centered at u in which G acts
by linear transformations. We are thus reduced to the case where G acts
linearly on U = C

n. This is a special instance of the following more
general result, whose full strength, in any case, we will later need.

Lemma (2.2). Let Spec(A) be a normal affine variety acted on
algebraically by a finite group Γ. Then the ring AΓ of Γ-invariant elements
in A is an integrally closed finitely generated C-algebra. Moreover, if X
is the set of closed points of Spec(A), then the set of closed points of
Spec(AΓ) can be identified with X/Γ.

Proof. Set B = AΓ. Let a1, . . . , an be generators for A as a C-algebra,
so that A = C[a1, . . . , an]. Consider the polynomials

pi(X) =
∏

γ∈Γ

(X − γai) , i = 1, . . . , n .

The coefficients of these polynomials are invariant under Γ, i.e., they
belong to B. Let all these coefficients be c1, . . . , cN and set C =
C[c1, . . . , cN ]. Obviously, C is a subring of B, while A is integral over C
since pi(ai) = 0. Moreover, A is a finitely generated C-module. To see
this, given any polynomial α = p(a1, . . . , an) with complex coefficients, one
can use the integrality relations pi(ai) = 0 to recursively reduce α to a
polynomial in a1, . . . , an with coefficients in C and degree in each variable
bounded by the order of Γ minus one. Now, since C is noetherian and
B is a C-submodule of the finitely generated C-module A, the C-module
B is finitely generated as well; let b1, . . . , bk be a set of generators of B
over C. Then, clearly,

B = C[c1, . . . , cN , b1, . . . , bk] .

We now show that B is integrally closed. Let K and L be the quotient
fields of A and B. Suppose that f ∈ L is integral over B. Since A is
assumed to be integrally closed, f belongs to A. Since f is Γ-invariant,
it belongs to B. It remains to show that the set of closed points of
Spec B is X/Γ. We introduce the Reynolds operator

R : A → B

defined by

R(a) =
1

|Γ|
∑

γ∈Γ

γa .

The Reynolds operator has the following elementary properties:

1) R is the identity on B;
2) if a ∈ A and b ∈ B, then R(ba) = bR(a).
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An easy consequence of these properties is that, for any ideal I ⊂ B,

(2.3) AI ∩ B = I .

In fact, let
∑

aifi be invariant under Γ, where fi ∈ I, ai ∈ A. Then,
applying the Reynolds operator and property 2), we get

∑
aifi =

∑
R(ai)fi ∈ I .

It then follows that the map

X −→ max(B)
J �→ J ∩ B

is surjective. In fact, given any maximal ideal I in B, by (2.3) we have
that AI 
= A, so that, if J is any maximal ideal in A containing AI,
then J ∩ B = I. On the other hand, let J 
= J ′ be elements of X. If
J ′ = γJ for some γ ∈ Γ, then clearly J ∩ B = J ′ ∩ B. Conversely, if J
and J ′ belong to different orbits under Γ, we may pick an element f in
A such that

f /∈ J

f ∈

⎛

⎝
⋂

γJ �=J

γJ

⎞

⎠ ∩

⎛

⎝
⋂

γ∈Γ

γJ ′

⎞

⎠ .

But then
Rf ∈ J ′ ∩ B ,

Rf /∈ J ∩ B .

In fact, the first summand of the right-hand side of the identity

R(f) =
1

|Γ|
∑

γJ �=J

γf +
1

|Γ|
∑

γJ=J

γf

belongs to J by construction, while the second summand does not, as
follows from the remark that the isotropy group Γ′ of J acts trivially on
A/J = C, so that

1
|Γ|

∑

γJ=J

γf ≡ |Γ′ |
|Γ| f mod J .

Q.E.D.

Given any stable P -pointed genus g curve (C; {xp}p∈P ), we shall
write [(C; {xp}p∈P )] to indicate its isomorphism class. Consider a standard
Kuranishi family

Y → (U, u0) τp : U → Y , p ∈ P , ϕ : C
�−→ Yu0 ,
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where of course ϕ is an isomorphism of P -pointed curves. We may
suppose in addition that U is a bounded subset of C3g−3+n, n = |P |.
Set G = Aut(C; {xp}p∈P ). There is a natural map of sets

ψ : U/G ↪→ Mg,P ,

whose injectivity is a consequence of property iv) in the definition of
standard Kuranishi family (cf. (6.8) in Chapter XI). By Lemma (2.1),
U/G is normal. Since the point [(C; {xp}p∈P )] ∈ Mg,P is entirely arbitrary,
one can cover Mg,P by “charts” of this kind. This will put a structure of
analytic space on Mg,P if one can show that the “changes of coordinates”
are analytic. More precisely, suppose that

η : U ′/G′ ↪→ Mg,P

is another chart obtained with the above procedure and suppose that

A = ψ(U/G) ∩ η(U ′/G′) 
= ∅ .

First observe that the preimage of A under ψ or η is open. This
follows from the fact that the families of curves we are dealing with are
Kuranishi families at any point of their respective parameter spaces and
from the universal property characterizing Kuranishi families. Now we
have to prove that ψ−1η is analytic.

Clearly, it suffices to deal with the case where U ′ is “sufficiently
small,” in particular, where η(U ′/G′) is contained in ψ(U/G). Again,
since our families are Kuranishi at every point, we get by universality a
commutative diagram

U ′ �γ

�
α

U

�
β

U ′/G′ �ψ−1η
�
�
���η

U/G
�

�
���

ψ

Mg,P

Since α is finite and holomorphic and β, γ are holomorphic, the map
ψ−1η is holomorphic off the branch locus of α. Since U ′/G′ is normal
and U/G can be realized as a bounded analytic subset of some C

N , by
Riemann’s extension theorem ψ−1η is holomorphic everywhere.

This completes the construction of an analytic space structure on
Mg,P . What is already clear is that Mg,P is normal, since all the local
patches U/G are. The results of Chapter X easily imply that Mg,P is
separated and first countable, as we shall see in Section 3.



§2 Construction of moduli space as an analytic space 261

It follows from the construction that the analytic structure on Mg,P

is natural in the following sense. Let

ψ : X → Z

be a family of stable P -pointed curves of genus g; then there is a
morphism

mψ : Z → Mg,P

functorially attached to ψ such that, set-theoretically,

mψ(z) = isomorphism class of the P -pointed curve ψ−1(z) .

In addition, Mg,P dominates any variety having the above property. The
map mψ is called the moduli map of the family ψ.

One denotes by Mg,P the locus in Mg,P parameterizing smooth
curves. It is an open subset of Mg,P since small deformations of
smooth curves are smooth. Its complement, which parameterizes singular
stable curves, is called the boundary of moduli space and is denoted
by ∂Mg,P . Let x be a point of the boundary; it corresponds to a
stable P -pointed genus g curve C with δ > 0 nodes. Let U be the
base of a (small) Kuranishi family for C. We know that, in suitable
coordinates, the locus S in U parameterizing singular curves is the union
of δ coordinate hyperplanes. This locus is obviously invariant under the
action of G = Aut(C), so that, locally near x, the boundary ∂Mg,P is just

(2.4) S/G ⊂ U/G ⊂ Mg,P .

As such, ∂Mg,P is a closed codimension one analytic subvariety of Mg,P .
Of course, when P = {1, . . . , n}, we write Mg,n for Mg,P and ∂Mg,n for
∂Mg,P .

We know from the explicit description of Kuranishi families that
curves with two or more singular points occur in codimension two in
Mg,P . Thus, a general point of any component of ∂Mg,P corresponds to
a curve with a single node. On the other hand, we know (cf. Section 2 of
Chapter X) that nodes come in different flavors. There are nonseparating
nodes and separating ones; moreover, the latter are classified in different
types, indexed by the different stable bipartitions of (g, P ). It is obvious
that for a node being separating or nonseparating, and its type as a
separating node, are deformation invariants. Thus the locus Δirr in
Mg,P parameterizing curves with at least one nonseparating node is a
closed analytic subset of ∂Mg,P , and the same can be said of the locus
ΔP parameterizing curves with at least one separating node of type P ,
where P is a stable bipartition of (g, P ). In Chapter XV, and again
in Chapter XXI, we shall prove that Mg,P is always irreducible; an
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immediate consequence (see Section 10) is that Δirr and the ΔP are all
irreducible. Thus,

∂Mg,P = Δirr ∪
(⋃

ΔP

)
,

where P runs through all stable bipartitions, is the decomposition of the
boundary of Mg,P in irreducible components. In the sequel, following
the conventions introduced in Section 2 of Chapter X, given a stable
bipartition P = {(a, A), (b, B)} of (g, P ), we shall normally write Δa,A or,
equivalently, Δb,B to indicate ΔP .

Let (C; x1, . . . , xn) be a stable n-pointed curve of genus g, and let m
be the corresponding point of Mg,n. We know that a small neighborhood
of m looks like U/G, where U is the base of a standard Kuranishi family
for (C; x1, . . . , xn), and G is the automorphism group of (C; x1, . . . , xn).
The point m can therefore be singular only if G is nontrivial. More
precisely, m is a smooth point of Mg,n only in two cases. Either G acts
trivially on U , or its fixed locus in U is a (smooth) divisor, in which
case G is a cyclic group. The cases in which the first alternative occurs
are implicitly described by Proposition(4.11) in Chapter XI: either G is
trivial, or g = 2, n = 0 (resp., g = 1, n = 1), and the only nontrivial
element of G is the hyperelliptic involution (resp., the symmetry about
the marked point). To decide when the second alternative occurs, it is
necessary to describe the divisor components of the locus Σ in Mg,n

parameterizing curves with extra automorphisms; this locus is a closed
analytic subspace of Mg,n, as follows, for instance, from Lemma (6.11)
in Chapter XI. A first result in this direction is the following.

Proposition (2.5). Let Σ be the closed analytic subspace of Mg,n

parameterizing curves with nontrivial automorphism group. Then

i) Σ = ∅ if and only if g = 0.
ii) Σ = Mg,n if and only if g = 2, n = 0 or g = 1, n = 1.
iii) In the remaining cases the divisor components of Σ are:

a) the closure in M1,2 of the locus parameterizing triples
(C; x1, x2) such that C is smooth and 2(x1 − x2) is linearly
equivalent to zero;

b) the closure in M2,1 of the locus parameterizing pairs (C; x)
such that C is smooth and x is a Weierstrass point of C;

c) the closure in M3 of the locus parameterizing smooth
hyperelliptic curves;

d) for any g ≥ 1 and any n, the locus Δ1,∅ in Mg,n.

Proof. If (C; x1, . . . , xn) has a nontrivial automorphism group, it has an
automorphism γ of prime order p. We have to classify the cases where
γ propagates to all of Mg,n or along a codimension one subspace of
Mg,n. We first assume that C is smooth. Set C ′ = C/〈γ〉. The quotient
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morphism C → C ′ is totally ramified at h points x1, . . . , xh. As the
notation suggests, these include the marked points of C, since the latter
are fixed for γ; thus h ≥ n. Moreover, since C is stable, h ≥ 1 if g′ = 1
and h ≥ 3 if g′ = 0. We let y1, . . . , yh be the images of x1, . . . , xh in C ′.
Denoting by g′ the genus of C ′, the Riemann–Hurwitz formula gives

(2.6) 2g − 2 = p(2g′ − 2) + h(p − 1).

According to Lemma (6.11) in Chapter XI, the dimension of the subspace
of moduli along which γ propagates is dim H1(C, TC(x1 + · · · +xn))γ . The
key to calculating this dimension is the observation that there is a natural
isomorphism

H1(C, TC(−x1 − · · · − xn))γ ∼= H1(C ′, TC′ (−y1 − · · · − yh)).

To show this, it is convenient to prove the dual statement, namely that
the pullback of forms induces an isomorphism

(2.7) H0(C ′, ω2
C′ (y1 + · · · + yh)) �−→ H0(C, ω2

C(x1 + · · · + xn))γ .

We may choose local coordinates such that, near xi, the morphism
C → C ′ is of the form z �→ zp. The automorphism γ acts on z by
multiplication by a nontrivial pth root of unity ζ. The pullback of an
element of H0(C ′, ω2

C′ (y1 + · · · + yh)) is locally of the form

f(zp)d(zp)2 = p2z2p−2f(zp)dz2 ,

where f has at most a simple pole at the origin, and hence is actually a
holomorphic quadratic differential on C. Conversely, let η be a γ-invariant
element of H0(C, ω2

C(x1 + · · · +xn)) and write it locally as a(z)dz2, where
a(z) =

∑
aiz

i has at most a simple pole at the origin. By γ-invariance
we must have

a(z)dz2 = a(ζz)d(ζz)2 = ζ2a(ζz)dz2,

Thus ai can be nonzero only when i ≡ −2 modulo p, and hence
a(z) = zp−2b(zp) for some holomorphic function b. It follows that

η =
1
p2

z−pb(zp)d(zp)2

and therefore that η is the pullback of an element of H0(C ′, ω2
C′ (y1 +

· · · + yh)), proving (2.7). A consequence of (2.7) is that

(2.8) d = dimH1(C, TC(x1 + · · · + xn))γ = 3g′ − 3 + h.

We now assume that dim Mg,n − d does not exceed 1 and classify the
cases where this occurs. Using (2.6), we find that

dimMg,n − d = (p − 1)(3g′ − 3) + h
3p − 5

2
+ n.



264 12. The moduli space of stable curves

Thus, g′ can only be equal to 1 or 0. If g′ = 1, then h 
= 0 and n = 0,
and the only possibility is that p = h = 2, so that g = 2. What this
computation says, in effect, is that the locus of those genus 2 curves which
are double coverings of an elliptic curve has dimension 2. Now suppose
that g′ = 0. It is straightforward to check that the only possibilities are:

(1) p = 2, h = 4, n = 1;
(2) p = 2, h = 4, n = 2;
(3) p = 2, h = 6, n = 0;
(4) p = 2, h = 6, n = 1;
(5) p = 2, h = 8, n = 0;
(6) p = 3, h = 3, n = 1.

The difference dim Mg,n − d is zero only in the first and third cases,
which correspond, respectively, to g = n = 1 and to g = 2, n = 0. This
proves part ii) of the proposition. Cases (2), (4), and (5) correspond,
respectively, to cases a), b), and c) in part iii) of the proposition. As for
(6), it just says that there is a unique elliptic curve with an automorphism
of order three (the quotient of C modulo the lattice generated by 1 and
by a primitive third root ot unity).

We now turn to the divisor components of Σ which are entirely
contained in the boundary ∂Mg,n. These may only be components of
∂Mg,n itself. We know that a general member C of such a component
has a single node, which is thus fixed for any automorphism of C. The
automorphisms of C therefore induce automorphisms of its normalization
N . However, by the analysis we carried out in the smooth case, it is
immediate to check that, in general, N has no nontrivial automorphisms,
with one exception: when N is the disjoint union of a 1-pointed genus
1 curve C1 and an (n + 1)-pointed genus g − 1 curve C2, it always has
the nontrivial automorphism which restricts to the symmetry about the
marked point on C1 and to the identity on C2. This takes care of case
d) in part iii) of the proposition.

It remains to prove i). To do this, just observe that in genus g ≥ 1
there are always curves with extra automorphisms for any value of n.
We leave the construction of these curves, starting, for instance, from
hyperelliptic ones, as an exercise for the reader.

Q.E.D.

It is in general very difficult to give a concrete description of Mg,n,
and this has been done only in a few low genus cases. Here are some
of the simplest ones. Let us start with genus zero. In this case a stable
curve has no nontrivial automorphisms, since an automorphism of P

1

fixing three or more points is the identity. Thus, we expect a universal
family to exist, and indeed we can easily construct one. Clearly, M0,3

is just a point, since any triple of distinct points on P1 is projectively
equivalent, in a unique way, to the triple (0, 1, ∞). We now turn to
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M0,4. Consider the product P
1 × P

1, let π′ be the projection to the
second factor, and denote by D′

1, D′
2, D′

3 the horizontal sections of π′

corresponding to the points 0, 1, ∞ on the first factor and by Δ the
diagonal.

Figure 1.

Then blow up the three points where Δ meets D′
1, D′

2 or D′
3, denote

by X the resulting surface, and by π : X → P
1 the composition of the

contraction map X → P
1 × P

1 with π′. Clearly, π : X → P
1 has four

distinguished nonintersecting sections D1, D2, D3, and D4, which are the
proper transforms of D′

1, D′
2, D′

3, and Δ, respectively. This makes it into
a family of 4-pointed genus zero curves. The fiber π−1(0) consists of two
copies of P

1 joined at one point, with the marked points labelled by 2
and 3 on one component, and those labelled by 1 and 4 on the other; in
particular, it is a stable 4-pointed curve. The fibers π−1(1), π−1(∞) can
be similarly described. Then the moduli map P

1 → M0,4 attached to the
family consisting of π : X → P

1 together with the sections D1, D2, D3, D4

is an isomorphism, and the family is a universal family.
The construction we have just carried out is the prototype of a general

procedure which inductively constructs M0,n+1 out of the universal family
on M0,n, as well as a universal family on it. We exemplify this for M0,5.
Let p2 : X ×M0,4

X → X be the projection to the second factor. Then
Di ×M0,4

X, i = 1, . . . , 4, are sections of p2 and, together with it, constitute
a family of stable 4-pointed curves of genus zero. We may apply to this
family and to the diagonal Δ the general stabilization procedure described
in Section 8 of Chapter X. The result is a family Y → X of stable 5-
pointed curves of genus zero. Again, the moduli map X → M0,5 is an
isomorphism, and Y → X a universal family. This procedure shows that
M0,n is a smooth projective variety and that it carries a universal family
which can be identified with the map π : M0,n+1 → M0,n obtained by
“forgetting” the (n + 1)st point. If one takes this point of view, the ith
section of π takes each n-pointed genus zero curve to the (n + 1)-pointed
curve obtained from it by attaching to the ith marked point a P

1 with
two marked points labelled with i and n + 1, as illustrated in Fig. 2
below.
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Figure 2.

We may apply what we have learned about M0,n to construct other
moduli spaces. The first of these is M1,1. Let (E; x) be any smooth
1-pointed elliptic curve. Consider the group operation on E having x
as origin, and let ι be the symmetry about x. Then the fixed points
of the involution ι are precisely the four 2-torsion points of E, and the
quotient E/ι is a P

1. Conversely, given a stable 4-pointed curve of genus
zero (C; p1, . . . , p4), the double covering of C branched at p1, . . . , p4 is
a genus 1 nodal curve E, which comes with four distinguished points
q1, . . . , q4, the inverse images of the marked points of C. This gives us a
stable 4-pointed elliptic curve. We forget about the labeling of q1, q2, q3,
and keep q4 as a marked point on E. This directly gives us a 1-pointed
elliptic curve when E is smooth. When E is not smooth, to get a
stable 1-pointed elliptic curve, we also have to contract the component
not containing q4.

Figure 3.

By the previous discussion, we may get in this way all stable 1-
pointed elliptic curves. This procedure defines a finite surjective morphism
M0,4 → M1,1, and exhibits M1,1 as the quotient M0,4/S3, where the
symmetric group S3 acts by changing the labeling of q1, q2, and q3.
An entirely similar construction shows that M2 can be identified with
M0,6/S6. In particular, M1,1 and M2 are both projective varieties; this
is actually true for all moduli spaces Mg,n, and Chapter XIV will be
entirely devoted to proving it. As we explained above, neither M1,1 nor
M2 carry a universal family.

Ideally, one would like to have, over Mg,n, a universal family of
stable curves, that is, one with the property that any family

ψ : X → Z
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of stable curves is induced by the universal one via the map mψ. This,
however, is impossible. In fact, let (C; x1, . . . , xn) be a smooth n-pointed
curve of genus g, and p the corresponding point in Mg,n. If a universal
family existed, it would locally be a pullback of a standard Kuranishi
family

Y → (U, u0)

for (C; x1, . . . , xn), via a morphism

α : V → U ,

where V is a neighborhood of p. Conversely, the Kuranishi family would
be induced by the family on Mg,n via

β : U → Mg,n .

We claim that β has to be injective. In fact the composition α ◦ β
induces on (a neighborhood of u0 in) U a deformation of (C; x1, . . . , xn)
which differs from the Kuranishi family we started with at most because
the identification between the central fiber and (C; x1, . . . , xn) has been
changed by an automorphism of (C; x1, . . . , xn). A deformation of this
nature is induced via an automorphism of U . By uniqueness, α ◦ β
must coincide with this automorphism: thus β is injective. When
(C; x1, . . . , xn) has nontrivial automorphisms (or, in genus two, has
nontrivial automorphisms other than the hyperelliptic involution), we
reach a contradiction, since β maps any orbit of Aut(C; x1, . . . , xn) to one
point of Mg,n and, by Proposition (4.11) in Chapter XI, Aut(C; x1, . . . , xn)
acts nontrivially on U .

From the very construction of the analytic structure on Mg,n it
follows that a universal family does exist on the open subset M

0

g,n of
Mg,n whose points correspond to automorphism-free curves.

Something which is almost as good, in several practical applications,
as a universal family on moduli, is the existence of such a family on
a ramified covering of Mg,n. In addition, the parameter space for this
family may be taken to be a scheme rather than a mere analytic space.
Formally, in Section 9, when we will have at our disposal some essential
tools from the theory of stacks and algebraic spaces, we will prove the
following result.

Theorem (2.9). There exists a family of stable n-pointed genus g curves
η : X → Z, parameterized by a normal scheme Z, whose moduli map

m : Z → Mg,n

is finite and surjective.
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As we said, we will not prove this theorem in the current section. Here
we shall only give one of its simplest consequences.

Theorem (2.10). Mg,n is compact.

Proof. It suffices to show that the scheme Z in the statement of Theorem
(2.9) is complete. For this, we use the valuative criterion of properness.
Given an analytic map from Δ∗ = {z ∈ C : 0 < |z| < 1} to Z,

f : Δ∗ → Z,

which is meromorphic at the origin, we must show that f extends across
the puncture, possibly after a base change on Δ of the form z = ζk. Look
at the pullback, via f , of the family X → Z. As explained in Section
4 of Chapter X, stable reduction implies that, after a base change, the
induced family can be extended across the puncture to a family of stable
curves over Δ. Therefore, if not yet f , at least the composition m ◦ f
extends to a map from Δ to Mg,n. By the finiteness of m this can be
lifted, after another base change, to the required extension of f . Q.E.D.

As we mentioned, in Chapter XIV we shall prove that Mg,n is a
projective variety. In our proof of this result, Theorem (2.9) will be
essential. In fact, since Z → Mg,n is finite and surjective, the projectivity
of Mg,n follows from the one of Z. But on Z we have the great advantage
of being able to work with the family η : X → Z.

3. Moduli spaces as algebraic spaces.

Our main goal in this section is to show that a small variant of
the constructions carried out in the previous one puts a structure of
algebraic space on Mg,n. For this, we first need to digress on the theory
of algebraic spaces. In this book we will use only foundational facts of
this theory. Whenever, for a given property of algebraic spaces, a clear
reference exists and is easily attainable, we will point the reader to it.
When this is not the case, we will provide the necessary proofs.

Let Y be a set. We will say that a set R, together with a pair of
maps

R �α
�

β
Y

is an equivalence relation on Y if (α, β) : R → Y × Y is injective and
(α, β)(R) ⊂ Y × Y is an equivalence relation in the ordinary sense.

Now let B be a scheme, and Y a B-scheme. A schematic equivalence
relation, or simply an equivalence relation on Y , is a B-scheme R together
with a pair of morphisms

R �s
�

t
Y
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over B such that, for every B-scheme S,

HomB(S, R) �s∗
�

t∗
HomB(S, Y )

is a set-theoretic equivalence relation. In particular, this implies
that, for a schematic equivalence relation, (s∗, t∗) : HomB(S, R) →
HomB(S, Y ) × HomB(S, Y ) = HomB(S, Y ×B Y ) is injective for any S,
i.e., that

(s, t) : R → Y ×B Y

is a monomorphism.
We will denote by η : Y ×B Y → Y ×B Y the involution interchanging

the two factors, and by Δ : Y → Y ×B Y the diagonal morphism. Finally,
we denote by R s×tR the fiber product induced by s and t. The following
result follows from the definitions.

Proposition (3.1). Let R and Y be B-schemes, and let s, t : R → Y be
morphisms over B. Then R ⇒ Y is an equivalence relation if and only
if (s, t) : R → Y ×B Y is a monomorphism and there exist B-morphisms
u : Y → R, i : R → R, and m : R s ×t R → Y such that the following
diagrams commute:

Reflexivity:

Y �Δ������u

Y ×B Y

R

�
(s, t)

Symmetry:

R �(s, t)

�
i

Y ×B Y

�
η

R �
(s, t)

Y ×B Y

Transitivity:

R s ×t R �t × s
������m

Y ×B Y

R

�
(t, s)

In formulae:

(3.2) (s, t)u = Δ , (s, t)i = η(s, t) , (t, s)m = t × s .
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The points of R are sometimes called “arrows,” and, given an arrow
a, s(a) stands for its “source” and t(a) for its “target.” One often refers
to m as the “composition” of arrows and writes ab for m(a, b).

We will say that a morphism of schemes π : Y → X is a quotient of
an equivalence relation s, t : R ⇒ Y if it has the following properties:

1) πs = πt;
2) every morphism f : Y → Z such that fs = ft is of the form hπ

for a unique morphism h : X → Z.

We will say that π : Y → X is an effective quotient of R ⇒ Y if, in
addition,

3) the induced morphism R → Y ×X Y is an isomorphism.

Sometimes, we shall write X = Y/R to mean that X is an effective
quotient of the equivalence relation. In the category of schemes, effective
quotients seldom exist, so one has to enlarge the category to accommodate
them. One candidate for this enlargement is the category of algebraic
spaces.

The definition of algebraic space follows a simple philosophy: if you
cannot beat them, join them. A practical, though slightly incorrect,
way of defining an algebraic space is simply to say that it is an étale
equivalence relation, in other words, an equivalence relation

(3.3) R �s
�

t
Y

where s and t are both étale morphisms.
However, defining an algebraic space in this way is like defining

a manifold via an atlas. In this case, the atlas is Y , the scheme R
corresponds to the disjoint union of the pairwise intersections of charts,
and the two morphisms s and t dictate how the charts of the atlas are
patched together along their mutual intersections.

Exactly as in the case of manifolds, one can free the definition of
algebraic space from the specific choice of an atlas. We will do this
in Section 9, after introducing algebraic stacks, by interpreting algebraic
spaces as a particular class of stacks. At that point we will also explain
what one means by morphism between two algebraic spaces. In this
section we really do not need any of these notions.

A typical example of an algebraic space is provided by the case of
a finite group G acting on a scheme Y . In this case we set R = G × Y ,
and we let s : R → Y and t : R → Y be, respectively, the projection and
the action. This algebraic space is simply denoted by Y/G.

In practice, it does no harm to assume that the scheme Y in (3.3)
is affine. An algebraic space R ⇒ Y is said to be separated if the
map (s, t) : R → Y × Y is a closed immersion. Since, over the complex
numbers, an étale map is a local isomorphism for the underlying analytic
structures, it is evident that, given a separated algebraic space R ⇒ Y ,
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an effective quotient M always exists in the analytic category. We say
that M is the underlying analytic space of the algebraic space R ⇒ Y ,
and we denote by π : Y → M the étale quotient map. Sometimes, we
write M = (Y/R)an.

We digress a moment to remark that the analytic space underlying a
separated algebraic space is Hausdorff. For this, let {mn} be a sequence
in M converging to points α and β. Write α = π(a), β = π(b). Since
π is étale, one can lift {mn} to sequences {xn}, {yn} in Y such that
{xn} converges to a and {yn} to b. By construction (xn, yn) belongs
to Y ×M Y . Since this is closed in Y × Y , the point (a, b) belongs to
Y ×M Y , too. Thus α = β.

Having said that, an alternative way of giving a separated algebraic
space over C is to say that any one such space is defined by the datum
of an étale, surjective, analytic map π : Y → M , where M is an analytic
variety, Y is an affine scheme, and Y ×M Y a closed subscheme of Y × Y .
This is what we shall mean when we will say that π : Y → M is a
separated algebraic space. In particular, M will be a scheme exactly
when the equivalence relation Y ×M Y ⇒ Y is effective. Finally, we
will say that the algebraic space π : Y → M is reduced, respectively
irreducible, normal, complete if the underlying analytic space M is. In
the next section we will use this simple way of viewing an algebraic space
to see that the moduli space on n-pointed stable curves of given genus
is indeed an algebraic space.

An elementary result about algebraic spaces that we will often use
is the following.

Theorem (3.4). Let X = (R ⇒ Y ) be an algebraic space. Then there
exists an affine open dense subset V ⊂ Y such that the induced relation
RV ⇒ V has an effective quotient. Hence, if M is the underlying analytic
space of R ⇒ Y , the scheme V/RV is (isomorphic to) a dense open subset
in M .

A proof of this theorem can be found in [428], Prop. 5.19, p. 89, or [38],
Prop. 4.5, p. 107.

Let X be an irreducible algebraic space. With the notation of
Theorem (3.4), one defines the field K(X) of rational functions on X by
setting

K(X) = K(V/RV ) .

We will now prove the following result.

Proposition (3.5). Mg,n is a separated, normal, complete algebraic
space.

Proof. Consider a standard algebraic Kuranishi family

ξ : C −→ (X0, x0)
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as defined in Chapter XI, (6.7). Consider the natural map

ψ : X0/Gx0 −→ Mg,n,

where Gx0 is the automorphism group of the central fiber of the family.
By properties d) and e) in the definition of standard algebraic Kuranishi
family, the map ψ is an étale morphism from the affine scheme X0/Gx0

to the analytic space Mg,n. The idea is then to take as Y a finite
union of schemes of the form X0/Gx0 . The first thing to show is that a
finite number of these suffices to cover Mg,n. We may argue as follows.
Consider the natural map

m : Hν,g,n −→ Mg,n

and notice that it is obviously surjective. For each point x ∈ Hν,g,n, let
Xx be the parameter space for the (standard algebraic) Kuranishi family
at x constructed in Proposition (6.5) of Chapter XI, and let Gx be the
isotropy group of x. Recall that Hν,g,n is acted on algebraically by the
projective group G and that Xx is a locally closed algebraic subvariety
of Hν,g,n which is transverse to the orbits of G. It follows that G · Xx

contains a Zariski-open subset of Hν,g,n. By compactness we can cover
Hν,g,n with finitely many sets of the type G × Xi, i = 1, . . . , N . Set

(3.6) Yi = Xi/Gi , i = 1, . . . , N, Y = Y =
N∐

i=1

Yi.

Then the étale map

(3.7) ϕ : Y −→ Mg,n

is surjective. Denote by ϕi the restriction of ϕ to Yi. We now wish to
show that

R = Y ×Mg,n
Y

is Zariski-closed in Y × Y . Set

(3.8) X =
N∐

i=1

Xi

and consider on X the family of curves ξ : C → X induced by the
universal family on Hν,g,n. Denote by p1 and p2 the two projections from
X × X to X. Look at the scheme

(3.9) I = IsomX×X(p∗
1(ξ), p

∗
2(ξ)) .
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Set-theoretically, I is nothing but the incidence correspondence in
X × X × G defined by

I = {(x, x′, g) | x′ = gx} ,

where the Xi are viewed as embedded in the Hilbert scheme Hν,g,n on
which the projective group G acts. By Theorem (5.1) of Chapter X, the
natural projection

q : I −→ X × X

is finite. Thus, the composition η of this map with finite morphism

X × X −→ Y × Y

is also finite, so that η(I) is a closed subscheme of Y × Y . On the other
hand, η(I) is clearly equal to R.

This shows that Mg,n is a separated normal algebraic space. In
particular, as we already observed, this means that the analytic space
Mg,n is Hausdorff. The completeness of Mg,n is Theorem (2.10), which
however depends on Theorem (2.9), to be proved later. Q.E.D.

In the sections of this chapter dealing with algebraic stacks, the
scheme I in (3.9) will play a fundamental role. This is a good occasion
to prove the following result.

Proposition (3.10). The natural projection q1 : I → X is étale and
surjective.

Proof. Recall, from point e) of Definition (6.7) in Chapter XI, that
every point y in X possesses a Gy-invariant neighborhood U such that
{γ ∈ G | γU ∩ U 
= ∅ } ⊂ Gy = Aut(Cy). Let α : CU → U be the restriction
to U of the family ξ over X. The following simple lemma gives a local
description of the two maps q and q1.

Lemma (3.11). Consider the Kuranishi family α : CU → U . Let p1 and
p2 be the two projections from U × U to U . Consider the natural diagram

IsomU ×U (p∗
1α, p∗

2α) �q1

�
q

U

U × U

Let C = Cu0 be the central fiber of α. Let H = Aut(C). Then, there is
an isomorphism χ : H × U → IsomU ×U (p∗

1α, p∗
2α) such that q1χ(g, u) = u

and qχ(g, u) = (gu, u). In particular, q1 is étale and surjective.

Proof. Set I = IsomU ×U (p∗
1α, p∗

2α). Define χ : H × U → I by setting

χ(g, u) = {g−1 : Cgu → Cu}.
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Since every isomorphism between two fibers of α is uniquely induced by
an element of H, the morphism χ is, set-theoretically, a bijection. Set
k = |H|. We then have a decomposition of I into irreducible components

I = I1 ∪ · · · ∪ Ik .

We also have induced bijective morphisms χ : U → Ii having the property
that q1χ = idU . But then χ is unramified. Thus, Ii must be smooth,
and χ is an isomorphism.

Q.E.D.

Let us finish the proof of Proposition (3.10). Consider a point in
IsomX×X(p∗

1ξ, p
∗
2ξ) corresponding to an isomorphism ϕ : Cx → Cy,

where (x, y) ∈ X × X. As an analytic neighborhood for ϕ, we take
IsomU ×W (p∗

1(ξ|U ), p∗
2(ξ|W )), where U (resp. W ) is a neighborhood of x

(resp. y), as described in point e) of Definition (6.7). It is then sufficient
to show that

(3.12) IsomU ×W (p∗
1(ξ|U ), p∗

2(ξ|W )) −→ W

is étale and surjective. Since ξ|U : C|U → U and ξ|W : C|W → W are
Kuranishi families with isomorphic central fibers, we may assume that
there is an isomorphism γ : U → W such that γ∗(ξ|W ) = ξ|U . But then
we are reduced to proving that

(3.13) IsomU ×U (p∗
1(ξ|U ), p∗

2(ξ|U )) −→ U

is étale and surjective, which is the content of Lemma (3.11). Q.E.D.

In all of what we did so far, the presence of curves with nontrivial
automorphism groups always appears as an impediment obstructing the
existence of good quotients, of universal families, and so on. In the next
sections, we will enter the realms of orbifolds and algebraic stacks, where
the automorphism groups will no longer appear as a nuisance but rather
as a physiological aspect of the structure.

4. The moduli space of curves as an orbifold.
The path we followed in putting an analytic structure on Mg,n, by

patching together quotients modulo finite groups of bases of Kuranishi
families, suggests that Mg,n is just a shadow of a richer geometric
structure. One way of formalizing what this consists of is by using the
notion of orbifold, which we now introduce.

Let M be a Hausdorff topological space. A V -cover for M is a set
U of connected open subsets of M such that

1) M = ∪
U ∈U

U .
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2) Given U and U ′ in U and x ∈ U ∩ U ′, there exists W ∈ U with
x ∈ W ⊂ U ∩ U ′.

3) Each U comes equipped with an orbifold local chart for U , i.e., a
triple (B, G, m), where B is a ball in R

n, G is a finite group acting
smoothly on B, and m : B → U is a continuous map inducing a
homeomorphism between B/G and U .

In contrast with the usual definition of an orbifold local chart (see
[612,614] or [514]), we are not asking that the action of G on B be
effective. The example to keep in mind is the one of a Kuranishi family
for a genus 2 curve C. If ξ : C → B is a Kuranishi family for C, the
group Aut(C) acts equivariantly on B and C. But, while the hyperelliptic
involution ι ∈ Aut(C) acts nontrivially on C, it instead acts trivially on
B. In taking the quotient B/G ⊂ M2, we want to retain a memory of
this trivial action. This is the orbifold analogue of a feature which is an
essential part of the stack definition of moduli spaces, where the relevant
action of Aut(C) is the one on the family ξ and not on the base B.

We could continue in this vein to give a definition of an orbifold
atlas on a space M by giving compatibility conditions between the various
charts, but the notation quickly gets out of hand, and a more indirect
approach is advisable.

A Lie groupoid X consists of the datum of two smooth manifolds X0

and X1 and five smooth structure maps

(4.1)

s : X1 → X0 ,

t : X1 → X0 ,

m : X1 s×t X1 → X1 ,

u : X0 → X1 ,

i : X1 → X1 ,

satisfying formal properties that will be detailed below. Points of X1 are
called arrows, the map s is called the source, the map t the target, the
map m the composition, the map u the unit, and the map i the inverse.
Given arrows f and g with t(f) = s(g), the composition m(f, g) is also
written fg. One also writes i(g) = g−1. The following conditions must
be satisfied:

i) su(x) = x = tu(x), ∀x ∈ X0.
ii) ti(g) = s(g), s(gh) = s(h), t(gh) = t(g), whenever t(h) = s(g).
iii) If s(g) = x, t(g) = y, then gu(x) = g = u(y)g, g−1g = u(x),

gg−1 = u(y).
iv) The composition m is associative.

Of course, all these properties can be expressed as the commutativity of
a certain number of diagrams, including the ones in the statement of
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Proposition (3.1). With the notation of that proposition, the equalities
expressing these commutativity relations are the following:

(4.2)
(s, t)u = Δ , (s, t)i = η(s, t) , (t, s)m = (t × s) ,

m ◦ (ut, idX1) = idX1 , m ◦ (idX1 , us) = idX1 ,

m ◦ (idX1 , m) = m ◦ (m, idX1) ,

where in the first row we rewrote equalities (3.2). Also notice that, for
the last equality to make sense, we are using the identification

(4.3)
(X1 s×t X1) sm×t X1 = (X1 s×t X1) p2×p1 (X1 s×t X1)

= X1 s×tm (X1 s×t X1),

where p1 and p2 are the two projections from X1 s×t X1 to X1.
A proper étale Lie groupoid, or simply an orbifold groupoid, is a Lie

groupoid such that the two maps s and t are local diffeomorphisms while
the map

(s, t) : X1 → X0 × X0

is proper.

It is worth observing that the notion of Lie groupoid is a
generalization of the one of equivalence relation. In fact, if we add
to the axioms for an Lie groupoid the requirement that the map
(s, t) : X1 → X0 × X0 be a monomorphism, we obtain just the notion of
equivalence relation, as the last two rows of (4.2) are then consequences
of the first one.

In a sense, conditions i), ii), and iii) allow one to view X1 as a
generalization of a group acting on X0, where each arrow acts by sending
its source point to its target point.

If x is a point of X0, one can easily verify that the set

(4.4) Gx = {g ∈ X1 | s(g) = t(g) = x}

is a finite group, which is called the isotropy group at x. The set ts−1(x)
is called the orbit of x, and the orbit space |X| of X is the quotient

|X| = X0/ ∼

where x ∼ y if and only if x and y belong to the same orbit. For x ∈ X0,
we will denote by x its class in |X|.

A morphism ϕ : X → Y of orbifold groupoids consists of two smooth
maps ϕ0 : X0 → Y0 and ϕ1 : X1 → Y1 commuting with all the structure
maps defining the two orbifold groupoids.
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Of course, one could also give the notion of topological orbifold
groupoid by requiring that X0 and X1 are merely topological manifolds
and by relaxing the C∞ condition on the structure maps. At the other
extreme, one could introduce the notion of complex orbifold groupoid by
insisting that X0 and X1 be complex manifolds and that the structure
maps be analytic.

An orbifold structure on a paracompact Hausdorff space M consists of
an orbifold groupoid X and a homeomorphism f : |X| → M . An orbifold
structure should be thought of as the analogue of a specific atlas on a
manifold. As in the case of manifolds, it is seldom the case that different
atlases can be compared directly, so one passes to a common refinement,
and, in this way, one gets an atlas-free definition of a manifold. One
can imitate this refinement procedure in the world of orbifold structures
and thereby get to the notion of orbifold (freed from the choice of a
specific atlas). For this and related matters, we refer to Chapter 1 in
[3]. In the present book orbifolds will normally appear equipped with a
specific orbifold structure. In Exercises A-1 and A-2 the reader will find
the definition of the orbifold quotient [M/G] of a manifold M acted on
by a finite group G and will understand that, given an orbifold structure
on a space M , every point in M has a neighborhood with an orbifold
structure of the form [B/Gx], where x ∈ X0, and B is a chart around
x, reconciling the notion of V -cover with the one of Lie groupoid.

Let us now equip the moduli space Mg,n with an orbifold structure.

Let X be as in (3.8), so that X =
N∐
i

Xi, each Xi is the (smooth) basis

of a Kuranishi family, and the moduli map m : X → Mg,n is surjective.
Let C → X be the total family over X. We define an orbifold groupoid
Mg,n in the following way. Consider the two projections p1 and p2 from
X × X to X and set

I = IsomX×X(p∗
1C, p∗

2C) .

Since X × X is smooth, it follows from Theorem (5.1) in Chapter X that
I is smooth as well. We then let

(Mg,n)0 = X , (Mg,n)1 = I,

and we define s and t to be the natural projections from I onto the
first and second factors of X × X, respectively. The composition rule,
the unit, and the inverse are the obvious ones. It is then an exercise to
verify that there is a homeomorphism m : |Mg,n| → Mg,n, giving Mg,n

an orbifold structure.

As usual, enlarging a category (e.g., passing from manifolds to
orbifolds) has the advantage of accommodating, inside the new category,
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operations that were not allowed in the old one, such as taking quotients.
Let us then consider a finite group G acting on an orbifold X. By this
we mean that there are actions of G on X0 and X1 that are compatible
with all structure morphisms. We then define an orbifold groupoid
[X/G] = (Y0, Y1) in the following way:

(4.5) Y0 = X0 , Y1 = G × X1,

(4.6) sG : Y1 → Y0 tG : Y1 → Y0

(σ, ϕ) �→ s(ϕ) (σ, ϕ) �→ t(σϕ)

The composition in Y1 is given by

(4.7) mG((σ, ϕ), (τ, ψ)) = (στ, τ −1m(ϕ, ψ)).

The unit and the inverse are the obvious ones. It is then easy to verify
that, under these rules, [X/G] is an orbifold groupoid. In Section 10 we
will see an example of this situation when looking at the boundary of
Mg,n.

Next, let us say two words about the cohomology of orbifolds. We
start with the de Rham complex. Let X be an orbifold groupoid. Set

Ap(X) = {ϕ ∈ Ap(X0) | s∗ϕ = t∗ϕ}.

For obvious reasons, the elements in Ap(X) are called invariant forms.
Indeed, as we know, every point x ∈ |X| has a neighborhood of the form
B/Gx, where B is a local chart around x. Then the restrictions to
B of the forms in Ap(X) are just the Gx-invariant forms on B. The
differential d : Ap(X) → Ap+1(X) is defined in the usual way, and the
resulting cohomology groups are denoted with the symbol Hp

dR(X). Satake
proved that there is an isomorphism

(4.8) H∗
dR(X) ∼= H∗(|X|, R),

where the right-hand-side denotes singular cohomology. When X is a
complex orbifold groupoid, one can define in a similar fashion the vector
space Ap,q(X) of invariant (p, q)-forms and the vector space Ωp(X) of
holomorphic p-forms.

Integration of forms requires some care. First of all, given B and
Gx, as above, and a top-degree invariant form ϕ on X, one defines

∫

B/Gx

ϕ =
1

|Gx|

∫

B

ϕ.
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Now fix a locally finite cover of U = {Uα} of |X|, where Uα is of the
form Bα/Gα, and let {ρα} be a partition of unit for ∪

α
Bα Then define

∫

X

ϕ =
∑

α

∫

Uα

ραϕ.

One can then prove that, when |X| is compact, Poincaré duality holds
in the sense that the pairing

Hp(X) × Hn−p(X) −→ R

(ϕ, ψ) �→
∫

X

ϕ ∧ ψ

is nondegenerate.

We end this section by introducing the notion of divisor with normal
crossings in a complex orbifold X, presented as an orbifold groupoid
(X0, X1). By definition, a divisor with normal crossings in X is just a
divisor with normal crossings in X0 which is X1-invariant. The boundary
∂Mg,n is a normal crossings divisor in Mg,n, by the local description (2.4).

5. The moduli space of curves as a stack, I.

It is often useful to regard the moduli spaces Mg,n and Mg,n as
Deligne–Mumford stacks. The idea of stack is modeled on moduli spaces
and on quotient spaces. In this brief introduction to stacks, we will
continuously go back and forth between the abstract categorical concepts
and their geometrical origins. In our treatement we will closely follow
[167], [671], [190], and [94]. As already announced in the introduction to
this chapter, in this section and in the following three, we deviate from
our general convention that “scheme” stands for “scheme of finite type
over C” and allow general schemes.

As is generally done, we will introduce Deligne–Mumford stacks in
three stages. First, we will introduce categories fibered in groupoids, then
stacks, and, finally, algebraic stacks and Deligne–Mumford stacks.

Let S be a scheme and consider the category Sch/S of schemes over
S. In what follows we will mostly consider the case S = Spec C.

A category fibered in groupoids over Sch/S or, more simply, a groupoid
over S, is a pair M = (CM, pM), where CM is a category, and

pM : CM → Sch/S

is a functor satisfying the following two conditions:
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A) Let f : T ′ → T be a morphism in Sch/S, and let η be an object in
CM such that pM(η) = T . Then there exist an object ξ in CM and a
morphism ϕ : ξ → η in CM with pM(ϕ) = f .

B) Every morphism ϕ : ξ → η in CM is cartesian in the following sense.
Given any other arrow ϕ′ : ξ′ → η and a morphism h : pM(ξ) → pM(ξ′)
such that pM(ϕ′)h = pM(ϕ), there exists a unique morphism ψ : ξ → ξ′

such that pM(ψ) = h and ϕ′ψ = ϕ.

By abuse of language, we will refer to the objects of CM as to the
objects of the groupoid M, and given objects ξ and ξ′ in CM, we will
write HomM(ξ, ξ′), instead of HomCM (ξ, ξ′).

A morphism α : M −→ M ′ of groupoids over Sch/S is a
functor (also denoted by) α : CM → CM′ such that pM′ = αpM.
The morphisms between M and M ′ form themselves a category
Hom(M, M ′) = HomSch/S(CM, CM′ ), whose arrows are the natural
transformations between functors. Technically, one says that groupoids
over Sch/S constitute a 2-category. We will not elaborate further on this
notion, except to notice that some care must be exercised when dealing
with commutativity question having to do with morphisms of groupoids,
or, more generally, morphisms in a 2-category: one says that a diagram
of groupoids and morphisms of groupoids over Sch/S

F �a�
�
���c

G

�
b

E

is commutative if there is given an isomorphism of functors between c
and ba. This is in keeping with the fact that the good notion of “being
essentially the same” for categories is the one of equivalence. When a
morphism of groupoids is an equivalence of categories, we shall sometimes
improperly say that it is an isomorphism of groupoids.

As we already mentioned, in this book, we will mostly be concerned
with groupoids over Sch/C. We simply call these groupoids. The
definition of groupoid looks modeled after the following example. Take
as C the category in which the objects are the families

X

�
ξ

T

of smooth (resp. stable, n-pointed) curves of genus g and in which a
morphism

ϕ : ξ′ → ξ
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between a family ξ′ : X ′ → T ′ and a family ξ : X → T is a commutative
diagram

X ′ �

�
ξ′

X

�
ξ

T ′ �f
T

inducing an isomorphism X ′ ∼= T ′ ×T X . The functor p assigns to a family
ξ : X → T its parameter space T :

p(ξ) = T .

With regard to morphisms, using the above notation, we set

p(ϕ) = f.

It is an easy exercise for the reader to prove that properties A) and B)
are satisfied for the pair (C, p).

The groupoid of smooth, n-pointed, genus g curves is denoted with
the symbol Mg,n. The one of stable, n-pointed, genus g curves is denoted
with the symbol Mg,n.

As suggested by the preceding examples, whenever a groupoid
M = (C, p) is given, it could help to think of an object ξ ∈ C as a
“family over p(ξ).” The term groupoid has the following origin. Given
a groupoid M = (C, p), denote by M(T ) the category whose objects are
objects ξ ∈ C with p(ξ) = T (i.e., the “families” over T ) and whose
morphisms are morphisms ϕ in C with p(ϕ) = id. Axiom B) tells us that
a morphism ϕ in C is an isomorphism if, and only if, p(ϕ) is. It follows
that M(T ) is a groupoid in the (more usual) sense that all morphisms
in M(T ) are isomorphisms. So one can view the functor p : C → Sch/S
as a “fibration” having groupoids as fibers:

M(T ) = p−1(T ).

The category M(T ) is also called the category of sections of M over T .

Notice that, by axiom B), the object ξ in axiom A) is unique up
to a unique isomorphism. We shall refer to this object, or rather to
ξ → η, as a pullback of η to T ′. It is tempting to write f ∗(η) for ξ. The
trouble is that pullbacks are generally not unique, and there is no way of
singling out one which is “nicer” than the others. However, it is always
possible to choose, for each object η in C and each arrow T ′ → T = p(η),
a specific pullback ξ → η. Technically, such a choice is called a cleavage.
Once a cleavage has been chosen, it makes sense to write f ∗(η) for ξ,
but one has to remember that the arrow f ∗(η) → η is an essential part
of the notion of pullback.
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It is important to decide when two groupoids M and M ′ are
isomorphic. As we already mentioned, for this to happen, there must
exist an equivalence of categories F : CM → CM′ such that pM = pM′ F .
It is well known, and easy to prove, that for a functor F to be an
equivalence, it is necessary and sufficient that:

i) F is fully faithful, meaning that, for every pair of objects ξ and
ξ′ in M, the induced map

HomM(ξ′, ξ) −→ HomM′ (F (ξ′), F (ξ))

is bijective, and
ii) F is essentially surjective, meaning that every object η in M ′ is

isomorphic to F (ξ) for some object ξ in M.

For groupoids, the following lemma holds.

Lemma (5.1). A morphism F : M → M ′ of groupoids over Sch/S is an
isomorphism if, and only if, for every T in Sch/S, the induced functor
on fibers FT : M(T ) → M ′(T ) is an equivalence of categories.

Proof. The only two nontrivial assertions hidden in this lemma are the
following.

a) If FT is fully faithful for every T , then F is fully faithful.
b) If F is essentially surjective, so is FT for every T .

To prove a), it pays to use the following notation. Given a morphism
f : T ′ → T and objects ξ′ and ξ in M(T ′) and M(T ), respectively, we
set

Homf
M(ξ′, ξ) = {ϕ ∈ HomM(ξ′, ξ) | pM(ϕ) = f }.

Write p = pM and p′ = pM′ . Since p = p′F , to prove a), it suffices to
prove that F induces a bijection

(5.2) Homf
M(ξ′, ξ) −→ Homf

M′ (F (ξ′), F (ξ)).

Consider the morphism ϕ : f ∗(ξ) → ξ. We have a commutative diagram

HomM(T )(ξ′, f ∗(ξ)) �FT

�
ϕ◦

HomM′(T )(F (ξ′), F (f ∗(ξ)))

�
F (ϕ)◦

Homf
M(ξ′, ξ) �F Homf

M′ (F (ξ′), F (ξ))

By the definition of groupoid, the two vertical arrows are bijective, so
that the bijectivity of FT implies the bijectivity of (5.2). As far as b)
is concerned, let η be an object in M ′(T ). By hypothesis, there are an
object ξ′ in M and an isomorphism ϕ : η → F (ξ′). Set f = p′(ϕ) : T → T ′

and let ξ = f ∗(ξ′). We have an isomorphism ψ : ξ = f ∗(ξ′) → ξ′ for
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which p′(F (ψ)) = p′(ϕ) = f . By property B), there exists an isomorphism
σ : F (ξ) → η with p′(σ) = idT . But then ξ is an object of M(T ), and σ
is an isomorphism in M ′(T ) between η and FT (ξ). Q.E.D.

It is important to notice that any scheme X and any contravariant
functor F : Sch → Sets can be considered as groupoids.

Let us start with the case of schemes. We will consider a scheme X
as a groupoid X = (CX , pX), where the objects of CX are pairs (T, f) with
f : T → X a morphism of schemes. The morphisms ϕ : (T, f) → (T ′, f ′)
are the morphisms h : T → T ′ with f ′h = f . Finally, the projection
pX is defined by pX(T, f) = T . A groupoid M is (represented by) a
scheme X if there exists an isomorphism of groupoids α : X

∼−→ M.
This condition is equivalent to the existence of an object ξX in M(X)
having the following universal property: for every object ξ in M, there
exists a unique morphism f : ξ → ξX . Of course, given the equivalence
α, we have ξX = α(X, idX). If, in the examples above, we limit
ourselves to families of smooth (stable) automorphism-free curves, then
the corresponding groupoids are indeed (represented by) smooth schemes.
But, as we know, this is not the case for the groupoid of smooth (resp.
stable) n-pointed curves. The lack of a universal family over Mg,n can
be rephrased by saying that, although any family of n-pointed, genus g
stable curves ξ : C → S induces a moduli map mξ : S → Mg,n, not every
map S → Mg,n induces a family over S. Let us see how, inherent in the
concept of groupoid, is the cure for this asymmetry.

Let M be a groupoid over Sch. Given an object ξ in M(S), we think
of S as a groupoid, and we define an induced morphism of groupoids

mξ : S → M ,

by associating to every object in S(T ), i.e., to every arrow f : T → S,
a pullback f ∗(ξ) in M(T ), and proceeding similarly for morphisms. By
consonance, one might call mξ a moduli map of ξ; of course, mξ is not
unique but depends on the choice of pullbacks. But now, conversely, given
a morphism μ : S → M, one gets an object ξ in M(S) by setting ξ =
μ(idS). As we shall presently see, this sets up an equivalence of categories
between M(S) and Hom(S, M), and the symmetry is reestablished.

Actually, we shall prove something slightly more general. Let M be
a groupoid over Sch. Consider the category C̃ whose objects are the
morphisms of groupoids S → M, where S is a scheme, and whose arrows
are commutative triangles. More precisely, an arrow from β : T → M
to α : S → M is a pair consisting of a morphism f : T → S and an
isomorphism of functors between β and αf . As the reader will easily
check, the functor p̃ : C̃ → Sch which attaches S to α : S → M makes
M̃ = (C̃, p̃) into a category fibered in groupoids over Sch. By definition
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we have M̃(S) = Hom(S, M). Moreover, M̃ is endowed with a canonical
cleavage: given a morphism f : T → S, one can take as pullback of an
object α : S → M simply the composition αf : T → M mapping to α
via the pair consisting of f and the identity isomorphism of functors. In
fact, this cleavage is a splitting, meaning that it contains all the identities
and is closed under composition. There is an obvious functor F : C̃ → C.
As above, we associate to α : S → M the object F (α) = α(idS) in M(S).
Similarly, given an arrow ϕ in C̃, consisting of a morphism of schemes
f : T → S and of an isomorphism of functors β ∼= αf , we first get an
isomorphism β(idT ) ∼= αf(idT ) = α(f). On the other hand, since α is a
functor, it gives an arrow α(f) → α(idS). Composing the two, we get an
arrow F (ϕ) : F (β) = β(idT ) → α(idS) = F (α). We leave it to the reader
to check that what we have defined is indeed a functor. It is clear that
p̃ = pF , and hence that F can be viewed as a morphism M̃ → M. The
next result is a special instance of the 2-categorical Yoneda lemma.

Lemma (5.3). The morphism F : M̃ → M is an equivalence of categories
fibered in groupoids over Sch.

Here is a sketch of the proof. First, we define a functor G : C → C̃.
Suppose that ξ is an object in M(S) and f : T → S is a morphism of
schemes. As above, we set mξ(f) = f ∗ξ. If ϕ : U → T is a morphism
of schemes, and h = fϕ, then by cartesianness there is a unique arrow
mξ(ϕ) : mξ(h) → mξ(f) lying above ϕ and making the diagram

mξ(h)

�
mξ(ϕ)

�
�
���

mξ(f) � ξ
commute. Cartesianness also immediately shows that mξ is a functor
S → M. We set G(ξ) = mξ. Now let α : η → ξ be an arrow in C lying
above a morphism of schemes a : T → S. Let b : U → T be a morphism
of schemes and set c = ab. Then mη(b) and mξ(c) are both pullbacks of
ξ to U and hence are canonically isomorphic. As U → T varies, these
isomorphisms give an isomorphism of functors between mη and mξa, and
hence an arrow G(α) : G(η) → G(ξ). We leave to the reader the easy
task of checking that G is a functor.

We claim that FG is isomorphic to the identity functor on M, and
GF to the identity on M̃. First of all, when ξ is an object in M(S),
FG(ξ) is just id∗

S(ξ), which is canonically isomorphic to ξ; in fact, in
the definition of G, we can arrange things so that id∗

S(ξ) is just ξ, and
id∗

S(ξ) → ξ the identity. If we do this, FG turns out to be the identity
functor.

Now we turn to GF . Let α : S → M be a morphism where S is a
scheme. In other words, α is a base-preserving functor from the category
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of morphisms of schemes T → S to C. This simply means that, for each
morphism a : T → S, we are given an object α(a) in M(T ) and that,
for any morphism b : U → T , α(ab) is a pullback of α(a) via b. By
the essential uniqueness of pullbacks, the objects α(a) are determined,
up to a unique isomorphism, by α(idS) = F (α). By the definition of
G, this sets up a canonical isomorphism between α and GF (α). It is
not difficult, but tedious, to check that this defines an isomorphism of
functors between GF and the identity, ending the proof of (5.3).

As we have announced, a contravariant functor F : Sch → Sets
can also be considered as a groupoid. For this groupoid, also denoted
by F , the objects of CF are pairs (T, ξ), where T is a scheme and
ξ ∈ F (T ). A morphism (T, ξ) → (T ′, ξ′) is a morphism f : T → T ′ such
that F (f)(ξ′) = ξ. The symbol F (T ) unambiguosly denotes both the
set F (T ) and the fiber over T of F considered as a groupoid. When
we choose as F the functor of points hX = Hom(−, X) of a scheme X,
the groupoids associated to hX and X coincide. A contravariant functor
F : Sch → Sets is said to be representable if there exists a scheme X
and a groupoid isomorphism between F an hX .

We now make an important remark regarding Mg,n and Mg,n. In
Section 3 we constructed the spaces Mg,n and Mg,n as algebraic spaces.
We will see in Chapter XIV that they are actually schemes, and as
such we will treat them now. Let us concentrate our attention on stable
curves, the case of smooth curves being completely similar. Consider
the scheme Mg,n and the groupoid Mg,n. A third object is linked to
n-pointed, stable curves of genus g, namely the contravariant functor

F g,n : Sch/C −→ Sets

defined as follows. For every scheme T , we set

F g,n(T ) =
{

Families of n-pointed genus g

stable curves parameterized by T

}/
isomorphisms.

An element of F g,n(T ) is denoted by [ξ : X → T ], and for every morphism
f : T → T ′ and every element [ξ′ : X ′ → T ′] in F g,n(T ′), we set
F (f) = [X ′ ×T ′ T → T ] . We now have three groupoids and two obvious
morphisms:

(5.4) Mg,n
α−→ F g,n

β−→ Mg,n .

In the rightmost groupoid we are looking at moduli as a scheme (or as an
algebraic space). In the central one we look at moduli as a functor. In
the first one we consider moduli as a bona fide groupoid. In a sense, we
can regard α and β as forgetful functors. The functor α associates to the
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object ξ : X → T of Mg,n the object [ξ] of F g,n. The functor β associates
to the object [ξ] the object (T, f) of Mg,n, where f : T → Mg,n is the
morphism induced by the family ξ. Neither α nor β is an isomorphism
of groupoids. The fact that β is not is a restatement of the fact that
F g,n is not representable or, which is the same, that there is no universal
family of curves over Mg,n or, yet in other words, that there is no object
in CF g,n

mapping, via β, to (Mg,n, idMg,n
). Clearly, α also fails to be

an isomorphism of groupoids. Indeed, given an object ξ : X → T in
Mg,n(T ), we have

HomMg,n(T )(ξ, ξ) = {isomorphisms ϕ : X → X | ξ = ϕξ},

while
HomF g,n(T )([ξ], [ξ]) = {idX }.

In particular, when T = {pt} is a single point, and X = X a stable curve,

IsomMg,n(pt)(X, X) = Aut(X) , IsomF g,n({pt})([X], [X]) = {idX }.

The presence of stable curves with nontrivial automorphism group, which
is the cause for the nonrepresentability of the moduli functor F g,n, is
actually the distinctive feature of the geometric fibers of the moduli
groupoid Mg,n.

A very important example of groupoid is the following. Suppose that
a group scheme G acts on a scheme X. Then one can form the quotient
groupoid

(5.5) [X/G] = (PG,X , p) ,

where PG,X is the category whose objects are pairs (π, σπ), where
π : E → T is a principal G-bundle, and σπ : E → X is a G-equivariant
map. A morphism between (π, σπ) and (π′, σ′

π) is a pair of commutative
diagrams

E′ �ϕ

�
π′

E

�
π

T ′ �f
T

E′ �ϕ
�
�
���σπ′

E

�
σπ

X

the first one of which is cartesian. Finally, the projection

p : PG,X −→ Sch

is given by
(π , σπ) �→ T ,

so that the fiber PG,X(T ) is the category of principal G-bundles over T ,
equipped with a G-equivariant map from their total space to X. Notice
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that only when G acts freely on X and the quotient X/G exists as
a scheme, the groupoid [X/G] is represented by X/G. Indeed, in this
case, X is a principal G-bundle over X/G and every principal G-bundle
π : E → T , equipped with a G-equivariant morphism σπ : E → X,
is isomorphic to the pullback bundle X ×f T , via a unique map
f : T → X/G:

X ×f T ∼=

�
π

E �σπ X

�
T �f

X/G

On the other hand, if the action of G is not free, X/G may well exist as
a scheme without the groupoid [X/G] being representable. The case is the
one where X = {pt} is a single point. Then, for obvious reasons, one sets

[{pt}/G] = BG .

The geometric example we have in mind is of course the Hilbert scheme
Hν,g,n of ν-log-canonically embedded n-pointed stable curves of genus g
(where ν ≥ 3). As we saw in Section 5 of Chapter XI, Hν,g,n is acted
on by PGL(N), where N = (2ν − 1)(g − 1) + νn.

Theorem (5.6). The moduli groupoid Mg,n is isomorphic to the quotient
groupoid [Hν,g,n /PGL(N)].

Proof. Let us define a morphism

Φ : Mg,n −→ [Hν,g,n /PGL(N)] .

Given an object in C, that is, a family ξ : X → T of stable n-pointed
genus g curves, Φ(ξ) must consist of a G-bundle π : E → T and a
G-equivariant map σπ : E → Hν,g,n. As far as the bundle is concerned,
we let π : E → T be the principal G-bundle associated to the projective
bundle Pξ = P(ξ∗(ων

ξ (νD))) → T , where D is the divisor of the canonical
sections of ξ. Consider the canonically trivialized G-bundle

π∗
Pξ → E

and the pulled-back family

η : Z = X ×π E → E .

There is a canonical isomorphism

Pη
∼= π∗

Pξ.
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The canonical trivialization of Pη exhibits Z → E as a family of ν-log-
canonically embedded curves and therefore gives a G-equivariant morphism

σπ : E −→ Hν,g,n .

The definition of Φ on objects is now completed. The definition of Φ
on morphisms and the proof that Φ is indeed a morphism of groupoids
are straightforward and are left to the reader. Let us show that Φ is
an isomorphism. We use Lemma (5.1). We must show that, for every
scheme T , the functor ΦT is fully faithful and essentially surjective. For
the first point, we must prove that ΦT induces a bijection

HomC(T )(ξ, ξ)
∼−→ HomP(T )(Φ(ξ), Φ(ξ)).

Equivalently, we must show that if ξ : X → T is a family of stable,
n-pointed curves of genus g, then the automorphisms of this family and
the automorphisms of the projective bundle Pξ → T determine each other.
Looking at the fiberwise ν-canonical embedding

X �ϕ

�
π

P
∗
ξ

�
�

���
T

it is clear that the only thing to prove is that any automorphism γ of the
family ξ : X → T is induced by one of the bundles Pξ. This is certainly
true locally, where the projective bundle can be trivialized. But then it
is also true globally because, on each fiber Xt, the automorphism γt is
uniquely induced, via ϕt, by a projective automorphism of (Pξ)t. We now
address the essential surjectivity of ΦT . Let then (π, σπ) be an object
of P , so that π : E → T is a principal G-bundle, and σπ : E → Hν,g,n is
a G-equivariant map. Look at the universal family Y → Hν,g,n and form
the cartesian diagram

Z �

�
η

Y

�
E �σπ Hν,g,n

The group G acts equivariantly and freely on E and Z. We can then
form the quotient family ξ : Z/G = X → T = E/G. It is now an exercise
to prove that, indeed, ΦT (ξ) is isomorphic to (π, σπ). Q.E.D

6. The classical theory of descent for quasi-coherent sheaves.

In this section we recall the simplest instance of Grothendieck’s
descent theory, namely faithfully flat descent for quasicoherent sheaves. To
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explain what this means, consider a morphism of schemes X → Y , and a
quasicoherent OX -module F . Via the two projections p1 and p2 of X ×Y X
to the two factors, F pulls back to F1 = p∗

1F and F2 = p∗
2F . Write p12,

p13, and p23 to indicate the projections of X ×Y X ×Y X to X ×Y X
obtained by omitting the third, second, and first components, respectively,
and q1, q2, q3 to indicate the three projections of X ×Y X ×Y X to X.
We have the usual simplicial diagram

X ×Y X ×Y X ��� X ×Y X �� X � Y
Notice that p1p12 = q1 = p1p13, p2p12 = q2 = p1p23, and p2p13 = q3 =
p2p23. By descent data for F relative to X → Y we mean an isomorphism
ϕ : F1 → F2 such that the following “benzene” diagram commutes:

(6.1)

p∗
12F2 p∗

23F1			
p
∗
23ϕ

p∗
12F1

��
��p∗

12ϕ

						
p∗
23F2

p∗
13F1 �p∗

13ϕ p∗
13F2

������

We will refer to this condition as the cocycle condition. Very roughly
speaking, the existence of ϕ tells us that F “looks the same” at points
belonging to the same fiber of X → Y , and the cocycle condition
guarantees that the ensuing identifications are consistent.

When F is the pullback of a quasicoherent OY -module, there is
a canonical isomorphism between F1 and F2 which provides F with
canonical descent data. The problem of descent is to decide whether this
process can be inverted, that is, whether a quasicoherent OX -module with
descent data comes from an OY -module. One may ask a similar question
for morphisms. There is an obvious notion of morphism of quasicoherent
OX -modules with descent data, and one may wonder whether morphisms
between modules with descent data which arise by pullback from OY -
modules F and G do descend to morphisms between F and G. The
answer to both questions is yes if one assumes that X → Y be faithfully
flat, that is, flat and surjective. Actually, one also has to assume that
X → Y is quasi-compact. This is automatic when one deals only with
schemes of finite type over a field, as we do in the rest of the book.

Theorem (6.2). Let π : X → Y be a faithfully flat and quasi-compact
morphism of schemes. Then the pullback functor

{quasicoherent OY -modules} →
{

quasicoherent OX -modules with

descent data relative to π

}

is an equivalence of categories.
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We postpone the proof for a moment, except for the following simple
observation.

Remark (6.3). There is one case in which the conclusion of Theorem
(6.2) holds true, even without faithful flatness hypothesis, and this is
the one when π admits a section, that is, a right inverse. Call this σ
and consider the two morphisms τ1 = (id, σ) and τ2 = (σ, id) from X to
X ×Y X:

Y �σ X �τ1

�τ2
X ×Y X

Clearly,

πσ = idY , p1τ1 = p2τ2 = idX , p1τ2 = p2τ1 = σπ .

In particular, if a quasicoherent OX -module F is of the form π∗ H for some
H, then H = σ∗ F . Similarly, any morphism H → K of quasicoherent
OY -modules can be recovered from π∗ H → π∗ K as σ∗π∗ H → σ∗π∗ K.
Thus, Hom(H, K) → Hom(π∗ H, π∗ K) is injective.

Now suppose that F is a quasicoherent OX -module with descent data
p∗
1F → p∗

2F and pull back these via τ1. What we get is an isomorphism

(6.4) F = τ ∗
1 p∗

1F → τ ∗
1 p∗

2F = π∗σ∗ F .

Thus, F is the pullback via π of a quasicoherent sheaf on Y , namely
σ∗ F . The isomorphism between F and π∗σ∗ F holds also if we take
descent data into account. This is a direct consequence of the cocycle
relation. Define a morphism τ12 : X ×Y X → X ×Y X ×Y X by setting
τ12 = (p1, p2, σπp1) = (p1, p2, σπp2). Then one immediately checks that

p12τ12 = id , p13τ12 = τ1p1 , p23τ12 = τ1p2 .

Since (6.1) commutes, pulling it back by means of τ12, we get another
commutative diagram, which, taking into account the above identities and
recalling that p2τ1 = σπ, reduces to

p∗
1F �
�

p∗
2F
�

p∗
1τ

∗
1 p∗

2F p∗
1π

∗σ∗ F p∗
2π

∗σ∗ F p∗
2τ

∗
1 p∗

2F

This shows that the descent data for F and those for π∗σ∗ F correspond
to each other via the isomorphism F → π∗σ∗ F given by (6.4).

Finally, let F and G be quasicoherent OX -modules with descent
data and suppose that α is a morphism between them. In other words,
α : F → G is such that

p∗
1F �p∗

1α

�
p∗
1G
�

p∗
2F �p∗

2α p∗
2G
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commutes. Pulling back this diagram via τ1 yields another commutative
diagram

F �α

�
G
�

π∗σ∗ F �π∗σ∗α π∗σ∗ G
This means that α is the pullback of the morphism of OY -modules
σ∗α : σ∗ F → σ∗ G.

We now prove (6.2). Let us recapitulate what must be shown. Recall
that a diagram of mappings of sets

A �a B �b1

�
b2

C

is said to be exact if a is injective and its image is the equalizer of the
pair of mappings b1, b2, that is, the set of those element of B which
map to the same element of C via b1 and b2. First of all, we must prove
that, if F and G are quasicoherent OY -modules and we set F ′ = π∗ F ,
F ′ ′ = p∗

1F ′ = p∗
2F ′, then the diagram

(6.5) HomOY
(F , G) �π∗

HomOX
(F ′, G ′) �p∗

1

�
p∗
2

HomOX×Y X
(F ′ ′, G ′ ′)

is exact. Then we must show that any quasicoherent OX -module with
descent data comes by pullback from a quasicoherent OY -module; the
latter is then automatically unique, up to a unique isomorphism, by the
exactness of (6.5). By Remark (6.3), the conclusion of the theorem is
valid if π has a section. The idea is to reduce to this case via the base
change X → Y . Once this has been done, however, we must push down
from X to Y what we have obtained. Here is where the faithful flatness
assumption comes into play. Recall in fact that a module M over a
commutative ring A is said to be faithfully flat if the exactness of any
sequence of homomorphisms of A-modules is equivalent to the exactness of
the sequence obtained by tensoring it with M . It is an elementary result
(see, for instance, [503]) that a commutative A-algebra B is faithfully
flat if and only if it is flat and f : Spec B → Spec A is onto, that is, if
and only if f is a faithfully flat morphism of schemes. It is then at least
plausible that questions having to do with exactness of sequences on Y
could be decided by examining the corresponding questions on X. Before
we explain this in detail, however, it is best to perform a couple of
reductions. First of all, we claim that it suffices to prove (6.2) when Y is
affine. In fact, the injectivity of π∗ in (6.5), that is, uniqueness of descent
for homomorphisms, is a local property on Y . On the other hand, if a
homomorphism between F ′ and G ′ descends locally to a homomorphism
between F and G, the compatibility of the descended homomorphisms
can be checked locally and follows from uniqueness if the theorem is
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known to hold when Y is affine. Likewise, if a quasicoherent sheaf G
with descent data on X descends to a quasicoherent sheaf Fi on each
open set Yi of a cover of Y , then the Fi are isomorphic, via a unique
isomorphism, on any affine contained in any one of the overlaps of the
Yi and hence patch together to yield a quasicoherent sheaf F which lifts
to G.

The second reduction is that we may suppose that X is also affine.
In fact, if Y is affine, then X is the union of finitely many affines
Xi. We write X ′ for the disjoint union of the Xi, which is then affine.
Clearly, X ′ → Y is faithfully flat and factors through X → Y . Equally
clearly, if the theorem holds for X ′ → Y , it holds a fortiori for X → Y .
In conclusion, in proving (6.2) we may assume that both X and Y are
affine.

We therefore assume that Y = Spec A and X = Spec A′, that π
corresponds to a ring homomorphism α : A → A′, and that A′ is faithfully
flat over A. We set A′ ′ = A′ ⊗AA′; moreover, for any A-module M , we set
M ′ = M ⊗A A′, M ′ ′ = M ⊗A A′ ′. There are two natural homomorphisms
β1 and β2 from A′ to A′′, given by b �→ b ⊗ 1 and b �→ 1 ⊗ b, corresponding
to the two projections X ×Y X → X. For any A′-module H, these give
rise to two tensor products H ⊗A′ A′′, which we denote by H1 and H2.
In the language of rings and modules, descent data for the quasicoherent
OX -module H̃ correspond to a homomorphism H1 → H2 of A′′-modules,
satisfying an obvious cocycle condition. We shall refer to H, equipped
with such a homomorphism, as a module with descent data. An A′-module
of the form M ′ comes equipped with natural descent data. For any pair
M , N of A-modules, the homomorphisms β1 and β2 give two distinct
homomorphisms from HomA′ (M ′, N ′) to HomA′′ (M ′ ′, N ′ ′). Rephrased in
terms of modules over rings, what we have to prove is then:

i) for any pair M , N of A-modules, the diagram

HomA(M, N) � HomA′ (M ′, N ′) �� HomA′ ′ (M ′ ′, N ′ ′)

is exact;
ii) Any A′-module with descent data is isomorphic to one of the form

M ′, for some A-module M .

The key to proving i) is the following special case of i) itself.

Lemma (6.6). For any A-module N , the diagram

(6.7) N � N ′ �� N ′′

is exact.

The proof is based on the idea, mentioned earlier, of performing
a faithfully flat base change A → B such that, setting B′ = B ⊗A A′,
B′′ = B′ ⊗B B′, the ring homomorphism B′ → B′′ has a left inverse (i.e.,
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such that Spec B′′ → Spec B′ has a section). One then deduces exactness
from the existence of the left inverse, and finally exactness can be “pushed
down” to A by faithful flatness. The required base change is provided
to us for free; it suffices to take A′ as B, since βi : A′ → A′ ′ has a left
inverse, namely the multiplication homomorphism A′′ = A′ ⊗A A′ → A′.

We now show that this idea can be made into an actual proof. We
claim that the lemma is true if α : A → A′ has a left inverse. Actually,
we have already proved this in Remark (6.3), but let us do it again here.
Let ρ be a left inverse of α. We define homomorphisms σi : A′ ′ → A′,
i = 1, 2, by σ1(b ⊗ b′) = ρ(b′)b, σ2(b ⊗ b′) = ρ(b)b′. Then σiβi = id and
σiβj = αρ when i 
= j. Now tensor with N and call with the same
names the resulting homomorphisms. We see that N → N ′ has a left
inverse, and hence is injective. On the other hand, if β1(n′) = β2(n′),
then n′ = σ1β1(n′) = αρ(n′). This proves the claim.

Now observe that, if B is an A-algebra, the diagram obtained by
tensoring (6.7) with B is just

N ⊗A B � (N ⊗A B) ⊗B B′ �� (N ⊗A B) ⊗B B′ ′

as can be easily checked. Thus, when B → B′ has a left inverse, this
diagram is exact. If, in addition, B is a faithfully flat A-algebra, then
the original diagram (6.7) is also exact. This proves the lemma.

Our next task is to deduce i) from the lemma. The latter says in
particular that M is an A-submodule of M ′, which is an A′-submodule
of M ′ ′, and similarly for N , N ′, and N ′′. Since N injects into N ′,
the homomorphism HomA(M, N) → HomA′ (M ′, N ′) is injective. Now let
ξ : M ′ → N ′ be a homomorphism which belongs to the kernel of the pair
of homomorphisms from HomA′ (M ′, N ′) to HomA′ ′ (M ′ ′, N ′ ′). To show
that ξ comes from HomA(M, N), it suffices to show that ξ(m ⊗ 1) ∈ N ⊗ 1
for any m ∈ M . But ξ(m ⊗ 1) is an element of the kernel of the pair of
homomorphisms from N ′ to N ′ ′, so by the lemma it belongs to N ⊗ 1.
This proves i).

To prove ii), we may argue as follows. Let H be an A′-module
with descent data v : H1 → H2, and let γi : H → Hi, i = 1, 2, be the
natural homomorphisms. We must find an A-module M such that H is
isomorphic, as a module with descent data, to M ′. There is a natural
candidate for M . Suppose in fact that an M exists. Then both H1

and H2 can be identified with M ′ ′, and the composition of the two
identifications is just v. But then Lemma (6.6) says that M injects in
H and gets identified with

N = {h ∈ H : vγ1(h) = γ2(h)} .

Thus, all that needs to be done is to prove that the homomorphism
N ⊗A A′ → H is an isomorphism. We resort to the same trick used to



294 12. The moduli space of stable curves

prove i). Let B be a faithfully flat A-algebra such that B → B′ has a
left inverse (for instance, B = A′). Change ring by tensoring everything
with B. Write N for N ⊗A B, H for H ⊗A B, v for v ⊗ id : H1 → H2,
and so on. Since B is A-flat, N is the set of all h ∈ H such that
v γ1(h) = γ2(h). Since ii) is true for B → B′, by Remark (6.3), we
know that N ⊗B B′ → H is an isomorphism. On the other hand, this
isomorphism can be obtained by tensoring with B the homomorphism
N ⊗A A′ → H, which is then also an isomorphism, by faithful flatness.
This completes the proof of ii) and of (6.2).

The category QCoh of quasi-coherent sheaves over schemes of finite
type is an example of a fibered category (endowed with a cleavage). The
theory of descent is best formalized in the framework of these categories.
In this language, Grothendieck’s theorem of descent for quasi-coherent
sheaves can be stated by saying that the fibered category QCoh is a
stack for the faithfully flat, quasi-compact topology. We will not introduce
general fibered categories in this book. As far as moduli spaces are
concerned, it will suffice to restrict our attention to the particular case
of categories fibered in groupoids (QCoh is not one such), and for these
categories, we will formally treat descent only in the étale topology. This
is what we are doing in the next section.

7. The moduli space of curves as a stack, II.

Let M = (C, p), with p : C → Sch, be a category fibered in groupoids
or, briefly, a groupoid. Let T be a scheme, let ξ be an object of M(U),
and let f : U → T be an étale surjective morphism. We consider the two
projections p1 and p2 from U ×T U to the two factors. As before, we write
p12, p13, and p23 to indicate the projections of U ×T U ×T U to U ×T U
obtained by omitting the third, second, and first component, respectively,
and q1, q2, q3 to indicate the three projections of U ×T U ×T U to X,
so that p1p12 = q1 = p1p13, p2p12 = q2 = p1p23, and p2p13 = q3 = p2p23.
A descent datum for ξ, relative to f : U → T , is an isomorphism
ϕ : p∗

1ξ → p∗
2ξ such that the following diagram commutes:

(7.1)

p∗
12p

∗
2ξ p∗

23p
∗
1ξ			
p

∗
23ϕ

p∗
12p

∗
1ξ
��

��p∗
12ϕ

						
p∗
23p

∗
2ξ

p∗
13p

∗
1ξ �p∗

13ϕ p∗
13p

∗
2ξ
������

In other words, we must have

(7.2) p∗
23ϕ ◦ p∗

12ϕ = p∗
13ϕ : q∗

1ξ −→ q∗
3ξ .
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A descent datum for ξ, relative to f , is said to be effective if there exist
an object η ∈ M(T ) and an isomorphism ψ : f ∗(η) → ξ such that

(7.3) ϕ = (p∗
2ψ) ◦ (p∗

1ψ)−1 .

This last condition just says that ψ identifies the descent data for f ∗(η)
with those of ξ. The intuitive meaning of these definitions is clear
when we translate the language of the usual topology into the language
the étale topology. An open cover U = {Ui} of T is translated into
a surjective étale map U → T , the collection of pairwise intersections
{Ui ∩ Uj } is translated into the fiber product U ×T U , while the collection
of triple intersections {Ui ∩ Uj ∩ Uk } is translated into the triple fiber
product U ×T U ×T U . The datum of an object ξi on each Ui corresponds
to the datum of an object ξ on U . An isomorphism ϕij from ξi|Ui ∩ Uj

to ξi|Ui ∩ Uj is translated into the descent datum ϕ : p∗
1ξ → p∗

2ξ. The
compatibility condition ϕijϕjk = ϕik on {Ui ∩ Uj ∩ Uk } is translated into
the cocycle condition (7.2).

We are now ready to define what we mean by a stack in groupoids
for the étale topology or, as we will usually say for the sake of brevity, a
stack. Such an object is a groupoid M = (C, p) having the following two
properties.

1) Every (étale) descent datum is effective.
2) Given a scheme S and objects ξ and η in M(S), the functor

IsomS(ξ, η) : Sch/S −→ Sets

which associates to a morphism f : T → S the set of isomorphisms
in M(T ) between f ∗ξ and f ∗η is a sheaf in the étale topology.

We recall that a contravariant functor F : Sch/S → Sets is a sheaf in
the étale topology if, for every étale surjective morphism π : X → Y of
S-schemes, the diagram

F (Y ) �F (π)
F (X) �F (p1) �

F (p2)
F (X ×Y X)

is exact. Notice that, when condition 2) is satisfied, (7.3) implies that η
is unique up to a unique isomorphism.

The following fundamental theorem is due to Grothendieck.

Theorem (7.4). Let S be a scheme. Let F : Sch/S → Sets be a
contravariant, representable functor. Then F is a sheaf for the étale
topology.
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Proof. Assume that F is represented by a scheme Z, so that
F = Hom(−, Z). Given an étale surjective morphism π : X → Y of
S-schemes, we must prove the exactness of the diagram

Hom(Y, Z) �π∗
Hom(X, Z) �p∗

1

�
p∗
2

Hom(X ×Y X, Z) .

Following, almost word by word, the arguments we used to prove the
exactness of (6.5), we are reduced to the case in which Y = Spec A and
X = Spec A′. In an analogous way, we may furthermore assume that
Z = Spec B. The above sequence may then be identified with

(7.5) Hom(B, A) � Hom(B, A′) �� Hom(B, A′ ⊗A A′) .

Recall that étale surjective morphisms are faithfully flat, so that A′ is
a faithfully flat A-algebra. Therefore the exactness of (7.5) follows from
the exactness of the sequence of rings

A � A′ �� A′ ⊗A A′ .

Q.E.D.

A morphism between two stacks M and M ′ is just a morphism
between the underlying groupoids. As we already mentioned, we may
consider a scheme S as a groupoid, and it is easily seen that this groupoid
is indeed a stack.

Theorem (7.6). The groupoids Mg,n and Mg,n are stacks (in groupoids
in the étale topology).

In view of Theorem (5.6), this is a consequence of the following general
result.

Theorem (7.7). Given a group scheme G acting on a scheme X, the
quotient groupoid [X/G] is a stack.

To prove (7.7), one needs to know more about descent than we have
explained. Therefore we shall follow a different path. A sketch of proof
of (7.7) can be found in [190], Proposition 2.1.

Proof. We only deal with Mg,n, the case of Mg,n being completely
analogous. Property 2) in the definition of stack is easily checked. In
fact, given families of stable curves ξ : X → S and η : Y → S, that is,
objects in Mg,n(S), the functor IsomS(ξ, η) is represented by the scheme
IsomS(X, Y ), introduced in Section 7 of Chapter IX. Thus, property 2)
follows from Theorem (7.4). We turn to property 1). Let then

T −→ T ′
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be a surjective étale morphism, and let

ξ : X −→ T

be a family of stable curves endowed with descent data ϕ : p∗
1(ξ) → p∗

2(ξ),

(7.8)

p∗
1(X) = T ×T ′ X �ϕ

�
�
���p∗

1(ξ)

X ×T ′ T = p∗
2(X)

�
�

��� p∗
2(ξ)

T ×T ′ T

To check property 1), we must produce a family of stable curves
η : Y → T ′ such that ξ = π∗(η). The construction of the family η is a
typical descent construction and, as is often the case, will be reduced to
the theory of descent of quasi-coherent sheaves. Let us illustrate the two
basic steps of this reduction.

We need some notation. Consider the family ξ : X → T . Denote by
Lξ the line bundle (ωξ(D))3, where D is the divisor of marked points in
the fibers of ξ, and consider the dual direct image bundle Eξ = ξ∗(Lξ)∨.
The total space X of the family ξ can be viewed as embedded in P(Eξ):

X

�
ξ

⊂ P(Eξ)

T

Step 1. From the descent data for ξ we deduce descent data for the
vector bundle (or better, locally free sheaf) Eξ. From the theory of
descent on QCoh, we get a vector bundle E′ over T ′ with π∗(E′) = E.

Step 2. At this stage there is a diagram

(7.9)

P = P(Eξ) �q

�

P(E′) =

�

P
′

T �π T ′

Look at the étale morphism q : P → P
′. The descent data for ξ : X → T

relative to the étale cover π : T → T ′ determine descent data for the
ideal sheaf IX ⊂ OP with respect to the étale cover q : P → P

′. Using
again the theory of descent for QCoh, we get the subscheme Y ⊂ P

′ and
the family η : Y → T ′.

Before embarking on the actual proof of the two steps above, we
need some preparation. Given a morphism U → U ′ and a cartesian
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diagram of families of stable curves

Z �h

�
α

Z ′

�
β

U �f
U ′

we have canonical isomorphisms:

(7.10) σh,f : h∗(Lβ) ∼−→ Lα , τh,f : f ∗(Eβ) ∼−→ Eα .

Given two composable cartesian squares of families of stable curves

Z �h

�
α

Z ′ �k

�
β

Z ′′

�
γ

U �f
U ′ �g

U ′ ′

one can easily check the equalities

(7.11)
σkh,gf = σh,fh∗(σk,g) : (kh)∗(Lγ) ∼−→ Lα,

τkh,gf = τh,ff ∗(τk,g) : (gf)∗(Eγ) ∼−→ Eα.

We return to the étale cover π : T → T ′ and to the descent datum
ϕ : p∗

1(X) → p∗
2(X) for the family ξ : X → T . Look at the diagram

X

�
ξ

p∗
1(X)� p1

�
p∗
1(ξ)

�ϕ
p∗
2(X) �p2

�
p∗
2(ξ)

X

�
ξ

T T ×T ′ T� p1 T ×T ′ T �p2 T

Using (7.11) and some patience, the reader will see that the isomorphism

ϕξ = τ −1
p2,p2

τ −1
ϕ,idτp1,p1 : p∗

1Eξ −→ p∗
2Eξ

satisfies the cocycle condition for the étale cover π : T → T ′, thus defining
descent data for the coherent OT -module Eξ. From the theory of descent
on QCoh we get a quasi-coherent OT ′ -module E′ such that Eξ = π∗(E′).
Since π is étale, E′ also is locally free. In particular E = π∗(E′). This
concludes the first step of the proof.

Now we have the cartesian diagram (7.9). As we already mentioned,
the descent data for ξ : X → T , relative to the étale cover π : T → T ′,
determine descent data for the ideal sheaf IX ⊂ OP with respect to the
étale cover q : P → P′. Again by descent in QCoh, we get an OP′ -module

G such that q∗(G) = IX . As q is étale, and hence faithfully flat, it
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follows that G is a sheaf of ideals in OP′ . This sheaf of ideals defines a
subscheme Y ⊂ P′ such that X ∼= q∗(Y ) = Y ×P′ P. But then

X ∼= Y ×P′ P = Y ×P′ P
′ ×T ′ T ∼= Y ×T ′ T .

We then get a cartesian square

X �

�
ξ

Y

�
η

T �π T ′

Since π is étale, η : Y → T ′ is a family of stable curves, as desired.
Q.E.D.

We end this section by saying a few words about fiber products of
stacks. These are defined in the following way. Suppose that α : M → P
and β : N → P are morphisms of stacks. Then M ×P N is the groupoid
whose objects are defined by

(M ×P N )(T ) = {(ξ, η, ϕ) : (ξ, η) ∈ M(T ) × N (T ), ϕ ∈ IsomT (α(ξ), β(η))} ,

for every scheme T . A morphism in the category M ×P N between
two objects (ξ, η, ϕ) and (ξ′, η′, ϕ′) is a pair (ψ1, ψ2), where ψ1 : ξ → ξ′

is a morphism in M and ψ2 : η → η′ is a morphism in N , with
pM(ψ1) = pN (ψ2) and ϕ′α(ψ1) = β(ψ1)ϕ. It can be easily checked that
such a groupoid is indeed a stack. As an exercise in the language of
2-categories, and more specifically in the definition of a commutative
diagram in the category of stacks, the reader is encouraged to state
the universal property satisfied by the fiber product of a stacks as just
defined.

8. Deligne–Mumford stacks.
As we already mentioned, we may view a scheme S as a stack, by

considering the stack associated to the functor of points of S. It is
in this sense that we will talk about morphisms between schemes and
stacks. As we already observed, a morphism f from a scheme S to a
stack M is equivalent to the datum of an object ξ in M(S); indeed,
ξ = f(idS). When a stack is isomorphic to a scheme, we will say that it
is represented by this scheme. We also observed that, when talking about
representable groupoids, the word isomorphism is crucial. As an exercise
in subtleties, and using Lemma (5.1), the reader should give a detailed
proof of the fact that, given a groupoid M and a morphism S → M,
the groupoid M ×M S is represented by S.

A morphism of stacks f : M → N is said to be representable if, for
every scheme S and every morphism S → N , the fiber product M ×N S
is a scheme. Given a stack M, let us consider the diagonal morphism
Δ : M → M × M (which is defined in the obvious way). The following
lemma explains what the representability of Δ means.
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Lemma (8.1). Δ : M → M × M is representable if and only if every
morphism from a scheme S to M is.

Proof. Let f : S → M and g : T → M be morphisms from schemes
to M. Look at (f, g) : S × T → M × M. From the universal property of
the fiber product we get an isomorphism

(8.2) S ×M T ∼= M ×M × M (S × T ).

Now suppose that Δ is representable. The right-hand side of (8.2) is
then a scheme. Since this is true for every f and g, this means that
f (and g) is representable. Conversely, assume that every morphism
S → M is representable. Let h : S → M × M be a morphism. We
must show that M ×M × M S is a scheme. Write h = (f, g) ◦ ΔS , where
(f, g) : S × S → M × M. Then

M ×M × M S = (M ×M × M (S × S)) ×S×S S ∼= (S ×M S) ×S×S S ,

and the stack on the right-hand side is a scheme, since S → M is
representable. Q.E.D.

Let P be a property of morphisms of schemes which is stable
under base change as, for example, being surjective, flat, faithfully flat,
étale, unramified, quasi-compact, separated, or of finite type. Then, by
definition, a representable morphism f : M → N satisfies P if, for every
morphism S → M, where S is a scheme, the morphism of schemes
M ×N S → S satisfies P.

A Deligne–Mumford stack is a stack M having the following two
properties.

1) The diagonal Δ : M → M × M is representable, quasi-compact,
and separated.

2) There exist a scheme X and an étale surjective morphism
α : X → M.

The morphism α is also called an atlas for M. As far as terminology is
concerned, the reader should be aware of the fact that the original name
given by Deligne and Mumford to what we now call a Deligne–Mumford
stack is “algebraic stack.” On the other hand, an Artin stack is a stack
satifying 1) and 2) with the word “étale” substituted with “smooth.” We
now prove the following theorem.

Theorem (8.3). Mg,n and Mg,n are Deligne–Mumford stacks.

Proof. We prove the theorem for Mg,n, the proof for Mg,n being
completely analogous. Set M = Mg,n. The representabilty of Δ : M →
M × M is straightforward. Let h : S → M × M be a morphism. The
datum of h is equivalent to the datum of two families of stable pointed
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curves ξ : X → S and η : Y → S in M(S). From the representability
results of Section 7 of Chapter IX we get:
(8.4)

(M ×M × M S) (T ) = {(f, α) | f : T → S , α ∈ IsomT (f ∗ξ, f ∗η)}
= {(f, β) | f : T → S , β ∈ HomS(T, IsomS(ξ, η))}
= Hom(T, IsomS(ξ, η)).

Therefore, M ×M × M S is represented by IsomS(ξ, η), which is separated
and quasi-compact. This proves property 1). Before proving the second
property, let us observe that, given morphisms f : S → M and g : T → M,
where S and T are schemes, or equivalently given two families of stable
curves, ξ : X → S in M(S) and η : Y → T in M(T ), proceeding as in
(8.4), we get

(8.5) S ×M T = IsomS×T (p∗
1ξ, p

∗
2η),

where p1 : S × T → S and p2 : S × T → T are the two projections.
We now proceed to prove property 2). Let us go back to the smooth
variety X defined in (3.8). Recall that X is the disjoint union of a finite
number of “slices”, X1, . . . , XN , in the Hilbert scheme Hν,g,n. Each one
of these slices is a smooth affine (3g − 3 + n)-dimensional subvariety of
Hν,g,n which is transversal to the orbits of G = PGL(N) and satisfies
all the properties listed in definition (6.7) of Chapter XI. The restriction
to X of the universal family over Hν,g,n yields a family of stable curves
ξ : C → X and hence a morphism

(8.6) α : X → M .

We wish to prove that α is étale and surjective. For this, we must
prove that, for every morphism f from a scheme S to M, the induced
morphism

(8.7) X ×M S = IsomX×S(p∗
1ξ, p

∗
2η) −→ S

is étale and surjective. Let η : X → S be the family corresponding to the
morphism f : S → M. Since being étale is a local property and since,
locally on S, the family η is the pullback of the family ξ : C → X, we
are reduced to showing that the natural projections

(8.8) X ×M X = IsomX×X(p∗
1ξ, p

∗
2ξ) −→ X

are étale and surjective, but this is exactly the content of Proposition
(3.10).

Q.E.D.

Let us go back to the étale map

ϕ : Y → Mg,n
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defined in (3.7). The scheme Y is the disjoint union of schemes Y1, . . . , YN ,
and each of these is a quotient Yi = Xi/Gi, where Xi is a Kuranishi
family obtained as a slice of Hν,g,n. Certainly, the composite map

β : X =
∐

Xi → Mg,n

is not étale. The scheme Y has the advantage of mapping surjectively
and in an étale manner onto Mg,n. The scheme X has the advantage of
being the basis of family of stable curves, which in turn determines the
moduli map β. These two advantages cannot be reconciled in the world
of algebraic spaces or in the world of schemes. In proving that

α : X → Mg,n

is étale and surjective, we showed that this reconciliation is possible in
the world of algebraic stacks.

The coarse moduli space of a stack

From now on all the stacks and schemes we consider will be over
C. We start with a definition and a general remark. A geometric point
of a stack M is, by definition, a connected component of the groupoid
M(Spec(C)), that is, an isomorphism class of objects in M(Spec(C)). Let
S be a scheme, and f : M → S a morphism. Then, from the definition
of morphism it follows that if ξ and ξ′ belong to the same connected
component of M(Spec(C)), then f(ξ) = f(ξ′).

A coarse moduli space for a stack M is a scheme M together with
a morphism m : M → M inducing a bijection on geometric points and
such that every morphism from M to a scheme factors through M .

In the next chapter we will prove that the analytic space Mg,n is
a projective variety. We are going to use this property to show that
Mg,n is a coarse moduli space for Mg,n. The analogous statement
regarding Mg,n and Mg,n immediately follows from this. The morphism
m : Mg,n → Mg,n is readily described. If T is a scheme, the functor

mT : Mg,n(T ) → Mg,n(T )

is defined as follows. Given a family ξ : X → T , mT (ξ) is nothing but
the moduli map mT (ξ) : T → Mg,n. The statement about geometric
points is an immediate consequence of the general remark we made
at the beginning of this subsection. Finally, let S be a scheme, and
f : Mg,n → S a morphism. Consider the Kuranishi étale cover (8.6)

α : X → Mg,n.
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We get morphisms mα : X → Mg,n and fα : X → S with the property
that fα factors, set-theoretically, through mα via a map h : Mg,n → S.
Since mα is finite, h is necessarily analytic. We now use the fact that
Mg,n is projective, together with Proposition 15 of [626], to conclude
that h is algebraic.

An orbifold-like definition of Deligne–Mumford stacks

Let M be a Deligne–Mumford stack, and let X0 → M be an
étale surjective morphism, where X0 is a scheme. The fiber product
X1 = X0 ×M X0 is a scheme, and the projections to the two factors are
étale. There are natural morphisms s, t : X1 → X0 (the projections to
the two factors), u : X0 → X1 (the diagonal), i : X1 → X1 (interchanging
the factors), plus a composition morphism m : X1 s×t X1 → X1 defined
as the projection onto the first and third factors in

X1 ×X0 X1 = X0 ×M X0 ×M X0 → X0 ×M X0 = X1.

These morphisms satisfy the scheme-theoretic analogues of the equalities
(4.2) defining an orbifold structure, which, for convenience, we state
again:

(8.9)
(s, t)u = Δ , (s, t)i = η(s, t) , (t, s)m = (t × s) ,

m ◦ (ut, idX1) = idX1 , m ◦ (idX1 , us) = idX1 ,

m ◦ (idX1 , m) = m ◦ (m, idX1) .

In addition, the two projections s and t are étale, as we observed. It
can be shown that the datum of the schemes X0 and X1, together with
the morphisms s, t, u, i, m, completely determines the stack M.

Conversely, suppose that we are given schemes and étale morphisms

(8.10) X1

s
⇒
t

X0 ,

plus morphisms s, t, u, i, m subject to conditions (8.9), such that (s, t) :
X1 → X0 × X0 is quasicompact and separated. Then one can define
a “quotient Deligne–Mumford stack” M with an étale surjective map
X0 → M such that X1 = X0 ×M X0. Proving these facts would require
more descent theory than is at our disposal. For a proof, we therefore
refer to [298], or to [671], p. 668, and references therein. We may
notice, however, that a “baby” version of the argument is the proof of
Proposition (2.9) in Chapter XIII and that the latter proposition is in
fact sufficient to fully prove the existence of the stack M in special
instances (cf. specifically Remark (2.10) in Chapter XIII). Here we shall
limit ourselves to giving an idea of a possible construction of the stack
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M starting from (8.10). We will just describe the category M(T ) for a
given scheme T . Objects of this category should correspond to morphisms
from T to M. Thus, it is natural to look for “morphisms from T to
X1 ⇒ X0 .” To put T and X1 ⇒ X0 on the same footing, we consider a
groupoid presentation of T , that is, a surjective étale map T ′ → T . We
then define a category

M(T ′ → T ) = Hom (T ′ ×T T ′ ⇒ T ′, X1 ⇒ X0) ,

where of course an object of M(T ′ → T ) consists of a pair of morphisms
ϕ : T ′ → X0 and Φ : T ′ ×T T ′ → X1 satisfying obvious compatibility
conditions. Freeing T from the choice of a groupoid presentation, one
arrives at the following definition of M(T ):

M(T ) = lim
T ′ →T
ét, surj

M(T ′ → T ).

The datum of (8.10) and of the morphisms s, t, u, i, m is called a groupoid
presentation of the Deligne–Mumford stack M.

Among other things, the axioms (8.9) give, for each point x ∈ X0, a
group structure to the fiber

(8.11) Gx = (s, t)−1(x, x) ,

where (s, t) : X1 → X0 × X0. This is the isotropy group which we
encountered in (4.4), in the orbifold context.

Groupoid presentations come particularly handy in performing various
constructions on stacks and particularly in defining the notions of
normalization of a stack and of quotient of a stack modulo the action of
a finite group.

Example (8.12) (Substacks). Let M be a Deligne–Mumford stack. A
representable morphism N → M is a closed (resp., open) immersion if,
for any morphism S → M with S a scheme, S ×M N → S is a closed
(resp., open) immersion of schemes. It can be shown that under these
circumstances N is necessarily a Deligne–Mumford stack; the easy proof is
left to the reader. A closed (resp., open) substack of M is an equivalence
class of closed (resp., open) immersions in M modulo isomorphism over
M. In other words, two immersions N → M and A → M define the
same substack if and only if there is an isomorphism N → A such that
the diagram

N ��
���

A
���

M
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commutes. Let X → M be an atlas for the Deligne–Mumford stack M,
and let π1, π2 : X ×M X → X be the projections to the two factors. By
definition, a closed (resp., open) substack of M yields a closed (resp.,
open) subscheme Y of X with the property that π−1

1 (Y ) = π−1
2 (Y ). In

fact, it can be shown (cf. Remark (2.10) in Chapter XIII) that giving a
closed (resp., open) substack of M is equivalent to giving a closed (resp.,
open) subscheme of X with this property. More precisely, if we are given
such a subscheme Y , the substack corresponding to it is the one defined
by the groupoid presentation

π−1
1 (Y ) = π−1

2 (Y )
π1

⇒
π2

Y .

Example (8.13) (Normalization). Let M be a Deligne–Mumford stack
with groupoid presentation (8.10). The normalization of M is obtained
by normalizing both “space” (i.e., X0) and “relations” (i.e., X1). If
X̂1 and X̂0 denote the normalizations of X1 and X0, respectively, the
structure maps s, t, u, i, m lift to morphisms ŝ, t̂ : X̂1 → X̂0 û : X̂0 → X̂1,
î : X̂1 → X̂1, and m̂ : X̂1 s×t X̂1 → X̂1. These liftings satisfy the identities
(4.2) necessary to make

(8.14) X̂1

ŝ

⇒
t̂

X̂0

into a groupoid presentation of a Deligne–Mumford stack, since these
identities are satisfied on open dense subsets of the various domains of
definition. Moreover, the diagonal X̂1 → X̂0 × X̂0 is separated. Thus,
(8.14) indeed defines a Deligne–Mumford stack M̂ which, by definition,
is the normalization of M. Of course, a posteriori, we have that

X̂1 = X̂0 ×M̂ X̂0 .

Example (8.15) (Quotient modulo a finite group action). We consider
actions of a finite group G on a Deligne–Mumford stack M = (C, p) in
the following restrictive sense. We assume that to each element of G
there corresponds a morphism of M into itself and that the following
properties are satisfied. First of all, the identity element of G corresponds
to the identity on M. Secondly, the product in G corresponds to the
composition of morphisms of M, in the strict sense, and not just up
to isomorphism of functors. From now on we assume that the category
C has coproducts. To form the quotient Deligne–Mumford stack [M/G],
we proceed as follows. First assume that there is a groupoid presentaton
of the stack M such that the action of G lifts to G-actions μ0 on X0

and μ1 on X1 for which all structural morphisms are equivariant. In this
case we proceed exactly as in the orbifold case, that is, we define the
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stack [M/G] as the one given by the groupoid presentation

(8.16) Y1

s
G

⇒
t
G

Y0,

where

Y0 = X0 , Y1 = G × X1 ,

s
G

= s ◦ prX1 , t
G

= t ◦ μ1 ,

the unit u
G

and the inverse i
G

are the obvious ones, and the composition
map m

G
is defined, in the scheme-theoretic context, exactly as we did in

(4.7) in the orbifold context. The remaining problem is then to find a
groupoid presentation of M to which we can lift the given G-action on

M. For this, start with an arbitrary presentation Z1

s
⇒
t

Z0 of M. The

étale morphism f : Z0 → M corresponds to an object ξ in M(Z0). As G
acts on M, for every σ ∈ G, we may consider the object ξσ in M(Z0)
and its moduli morphism fσ : Z0 → M which is also étale (cf. Exercise
A-4). We then set

(8.17) X0 =
∐

σ∈G

Z0
∼= G × Z0

and define a new étale surjective morphism

(8.18) fG =
∐

σ∈G

fσ : X0 → M.

Then we set

(8.19) X1 = X0 ×M X0 .

As an exercise, the reader should verify that X1 ⇒ X0 is a groupoid
presentation of M to which the action of G lifts.

Remark (8.20). It is important to remark that, by the way in which
the quotient of a Deligne–Mumford stack M modulo a finite group G
is defined, and in sharp contrast with the case, say, of affine schemes,
the quotient morphism M → [M/G] is always étale. In a sense, since
isotropy groups of points are part of the structure, the action of a finite
group is always free.

As we have observed, the definition of Deligne–Mumford stack via
groupoid presentations is the translation, in the algebraic context, of the
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definition of orbifold via orbifold groupoids. In fact, given a groupoid
presentation X1 ⇒ X0 of a smooth Deligne–Mumford stack, the underlying
analytic object (X1)an ⇒ (X0)an is clearly an analytic orbifold groupoid.
This is the sense in which we shall sometimes treat smooth Deligne–
Mumford stacks, and in particular moduli stacks, as orbifolds.

9. Back to algebraic spaces.

The definition of Deligne–Mumford stack via groupoid presentations
is obviously very close to the one of algebraic space. In fact, for a
presentation X1 ⇒ X0 to define a separated algebraic space, it suffices
to add the requirement that X1 → X0 × X0 be a closed immersion.
Therefore, separated algebraic spaces can be regarded as a particular
kind of Deligne–Mumford stacks. It turns out that separated algebraic
spaces are precisely those Deligne–Mumford stacks A such that A(T )
is a set for every scheme T (meaning that the only morphisms in the
category A(T ) are the identities). In this case, T �→ A(T ) becomes a
functor Sch → Sets, and A is the stack associated to this functor. This is
just the translation in the language of stacks of Artin’s original definition
of (separated) algebraic space.

Regarding an algebraic space as a stack has the considerable
advantage of freeing us from relying on an accidental presentation and
in particular makes it possible to define a morphism of algebraic spaces
to be simply a morphism of stacks. In this sense we can make sense
out of the assertion that a morphism of algebraic spaces is an open
immersion, finite, proper, étale, and so on. On the other hand, as in the
case of stacks, the groupoid presentation of an algebraic space comes in
handy when defining the concept of normalization. It is clear that the
normalization of an algebraic space, as defined in the previous section, is
an algebraic space.

In this section we are going to give a proof of the following result.

Theorem (9.1). Let X be a reduced, separated algebraic space. Then
there exist a normal scheme Z and a finite group G acting on Z such
that X is isomorphic to the quotient Z/G.

As an application, we shall then prove Theorem (2.9), which we
restate here for the convenience of the reader.

Theorem (9.2). There exists a family of stable n-pointed genus g curves
η : X → Z, parameterized by a normal scheme Z, whose moduli map

m : Z → Mg,n

is finite and surjective. Moreover, we may choose Z so that Mg,n is the
quotient of Z modulo the action of a finite group.
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The proof of Theorem (9.1) relies on the concept of normalization of
an irreducible algebraic space X in a finite field extension L of its field
of rational function K(X). To explain how this is defined, we need a
basic fact about algebraic spaces, namely Zariski’s connectedness theorem,
whose proof can be found in [428], p. 233, Theorem 4.1.

Theorem (9.3) (Zariski’s Connectedness Theorem). Let f : Y → X
be a proper morphism of separated algebraic spaces. Then there exists a
factorization

(9.4)

Y �g
�
�
���
f

T

�
h

X

where h is a finite morphism, and g is a proper morphism with connected
fibers.

Now let X be an irreducible separated algebraic space, and let L
be a finite extension of K(X). We want to define the normalization XL

of X in L. We proceed as follows. As we know, there exists an open
subspace U in X which is an affine scheme (cf. (3.4)). Let UL be the
normalization of U in L, and let V be a completion of UL. Denote by
Y the closure in V × X of the graph of UL → X. There is a proper
morphism f : Y → X, to which we apply Zariski’s connectedness theorem
to get a diagram (9.4). The morphism UL → T is birational. We define
XL to be the normalization of T . Notice that the injective morphism
U → X lifts to an open immersion UL ↪→ XL, since both spaces are
normal analytic varieties. The same argument proves the following slightly
more general fact.

Lemma (9.5). Let X be an irreducible separated algebraic space. Let
U be an irreducible scheme, let f : U → X be a quasi-finite dominant
morphism, and let L be a finite extension of K = K(U). Then f lifts to
an open immersion UL ↪→ XL.

Now let us prove (9.1). We may as well assume that X is irreducible.
Let

∐
Ui → X be an étale cover, where the Ui are irreducible and affine.

Let L be a finite Galois extension of K = K(X) containing all the K(Ui).
Let G be the Galois group of L over K. By the preceding lemma, the
schemes UL

i are openly immersed in XL. We can use the action of G
on XL to move the UL

i around; the result is a covering of XL by open
affine schemes. Thus, Z = XL is a scheme, and X = Z/G. This proves
Theorem (9.1).

We now turn to Theorem (9.2). As we already mentioned, this result
will be crucial in our proof of the projectivity of Mg,n, and this is the
only place where it will be used. We already know that M1,1 and M2
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are projective, and hence, for our purposes, it is sufficient to give a
simplified proof of Theorem (2.9) which applies to all cases except those
of M1,1 and M2. The simplification is made possible by the fact that,
as shown by Proposition (2.5), a general stable n-pointed curve of genus
g has no nontrivial automorphisms except when g = n = 1, or g = 2,
n = 0.

We then assume that (g, n) 
= (2, 0), (1, 1). The argument is a slight
variant of the proof of (9.1). Notice that, in the latter, one does not
need the full strength of the fact that the Ui are étale over X, since
all we need is that thery are quasi-finite over it. We then consider a
finite number of standard algebraic Kuranishi families Yi → Xi such that∐

Xi → Mg,n is onto. We let L be a Galois extension of K = K(Mg,n)
containing all the K(Xi), and we set Z = XL. As in the proof of (9.1),
we can say that each one of the Xi embeds as an open subset in Z.
Moreover, the translates of the Xi under the action of Gal(L/K) cover
Z. Let U1, . . . , UN be this cover. Each one of these open sets carries a
family ηi : Wi → Ui of stable n-pointed curves whose moduli map is the
composition of Ui ↪→ Z and Z → Mg,n. We wish to patch together the
various families ηi : Wi → Ui to form the desired family η : X → Z. Since
we are assuming that (g, n) 
= (2, 0), (1, 1), this patching can be easily
performed. In fact, it follows from Proposition (2.5) that, in this case,
the curves equipped with nontrivial automorphisms are parameterized, in
any Kuranishi family, by a proper analytic subset. In fact, the locus in
question is just the projection of the Hilbert scheme of automorphisms
of fibers, which, as we know from Theorem (5.1) in Chapter X, is proper
over the base. Now suppose that Ui ∩ Uj 
= ∅. For u outside a proper
analytic subvariety Σ of Ui ∩ Uj , there is a unique isomorphism between
η−1

i (u) and η−1
j (u); this yields a canonical identification

Wi|Ui ∩Uj�Σ�
�
��

�∼ Wj |Ui ∩Uj�Σ

�
�

��
Ui ∩ Uj � Σ

Theorem (5.1) of Chapter X shows that this identification extends uniquely
to all of Ui ∩ Uj . The family η : X → Z is thus constructed.

Exercise (9.6). Modify the proof of Theorem (2.9) so that it also covers
the cases (g, n) = (1, 1) and (g, n) = (2, 0). (Hint: replace the original Z
with a suitable finite cover.)

10. The universal curve, projections and clutchings.
In this section we rephrase the geometrical constructions discussed

in Sections 6, 7, and 8 of Chapter X in the language of stacks and
orbifolds.
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The universal curve

We denote by C g,P the category whose objects are families of stable
P -pointed curves of genus g

ξ : X → S , σp : S → X , p ∈ P ,

which are equipped with an extra section

δ : S → X

(on which we make no extra requirements, as, for instance, not intersecting
the other sections or not hitting the nodes of the fibers). The morphisms
in C g,P are defined in the usual way as cartesian squares

X ′ �F

�
ξ′

X

�
ξ

S �f
S′

such that F ◦ σ′
y = σy ◦ f , y ∈ P , F ◦ δ′ = δ ◦ f , the notation being

self-explanatory. As usual, a functor q : C g,P → Sch/C is defined by
assigning to a family of curves its parameter space. In this way the pair
(C g,P , q) becomes a groupoid, which, for brevity, we simply denote with
the symbol C g,P . Theorem (8.21) in Chapter X shows that there is an
isomorphism of groupoids

λ : C g,P → Mg,P ∪{x} ,

so that, in particular, Cg,P is a Deligne–Mumford stack. Explicitly, the
definition of λ is as follows. Let (ξ : X → S, σp, p ∈ P, δ) be an object in
C g,P . The stabilization procedure described in the above-mentioned section
yields, in a functorial way, a family ξ′ : X ′ → S of stable (P ∪ {x})-pointed
genus g curves. The assignement ξ �→ ξ′ defines λ. Theorem (8.21) in
Chapter X says that assigning to a family (η : Y → S, {σq : q ∈ P ∪ {x}})
its xth contraction gives an inverse of λ up to isomorphism of functors.

The Deligne–Mumford stack C g,P has a scheme incarnation or, as
one says, a coarse moduli space Cg,P . As a set, Cg,P is the set of
isomorphism classes of triples (C, {xp}p∈P , x), where (C, {xp}p∈P ) is a
stable P -pointed curve of genus g, and x is a point on C. The analytic
structure of Cg,P is given as follows. Let [C, {xp}p∈P , x] ∈ Cg,P , and
denote by G the automorphism group of (C, {xp}p∈P ). Let ξ : X → B
be a Kuranishi family for C. The group G acts on X. If U is a
G-invariant neighborhood of x ∈ X, then a local patch for the analytic
structure of Cg,P near [C, {xp}p∈P , x] is given by U/G. By universality,
the isomorphism λ drops to an isomorphism between moduli spaces

λ : Cg,P → Mg,P ∪{x}.
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The projectivity of Mg,P ∪{x} implies, in particular, that Cg,P is a scheme
and that λ is an isomorphism of schemes.

Projections

In the language of stacks, the projection operation described in
Section 6 of Chapter X gives morphisms

Prx : Mg,P ∪{x} −→ Mg,P

for any finite set P and any x 
∈ P . This morphism is naturally called the
xth projection morphism. As we observed in Lemma (6.10) of Chapter
X, it makes good sense to ignore any number of sections so that, given
a finite set L disjoint from P , we may define a projection morphism

PrL : Mg,P ∪L −→ Mg,P .

An important property of the projection morphisms is the following.

Lemma (10.1). Prx : Mg,P ∪{x} −→ Mg,P is representable.

Proof. To see why the lemma is true, it is convenient to identify the
morphism Prx with

C g,P → Mg,P .

We must show that, given a scheme S and a morphism α : S → Mg,P ,
the stack Cg,P ×Mg,P

S is (isomorphic to) a scheme. The morphism α

corresponds to a family X → S of P -pointed stable curves. It is then
essentially obvious that C g,P ×Mg,P

S is just X. Q.E.D.

The projection morphisms PrL can also be defined at the level
of moduli spaces. In fact, since Mg,P ∪L is a coarse moduli space for
Mg,P ∪L, the composition of PrL with the moduli map mL : Mg,P → Mg,P

necessarily factors through the moduli map m : Mg,P ∪L → Mg,P ∪L. We
denote the factoring morphism again with the symbol PrL:

PrL : Mg,P ∪L −→ Mg,P

Clutchings

Our next objective is to describe the boundary ∂Mg,P = Mg,P �Mg,P

of Mg,P . Fix a stable P -marked, genus g dual graph Γ. We adopt the
notation introduced at the beginning of Section 7 of Chapter X and in
Definition (2.16) in the same chapter. We set

(10.2) MΓ =
∏

v∈V

Mgv,Lv ,
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and we define a morphism

(10.3) ξΓ : MΓ → Mg,P

as follows. An object η in MΓ(S) is the datum of a family

(10.4) ηv : Xv → S

of stable Lv-pointed curves of genus gv for each v ∈ V . The morphisms in
MΓ(S) are the isomorphisms between these families. The groupoid MΓ

is obviously a Deligne–Mumford stack. The clutching procedure described
in Section 7 of Chapter X yields a family

ξΓ(η) : X ′ → S

of stable P -pointed genus g curves. The functoriality of this construction
exactly says that ξΓ is a morphism of Deligne–Mumford stacks. It is in
fact a finite morphism. We may also introduce a closed substack

(10.5) DΓ ⊂ Mg,P

parameterizing the curves which are in the image of MΓ under ξΓ. An
object in DΓ(S) is the datum of a family

σ : X → S

of stable P -pointed curves of genus g whose fibers have dual graphs
which are specializations of Γ, in a sense to be made precise below. It
is implicit in (8.12) that a closed substack of a Deligne–Mumford stack
is itself a Deligne–Mumford stack. The codimension of DΓ in Mg,P is
equal to the number |E(Γ)| of edges of Γ. We denote by

(10.6) ΔΓ ⊂ Mg,P

the coarse moduli space of DΓ. If we assume for a moment what is
going to be proved in the next chapter, namely that Mg,P is a projective
scheme, then we see that ΔΓ is a closed subscheme of Mg,P . It will
follow from the irreducibility of Mg,n (cf. Corollary (4.2) in Chapter XV
or Corollary (11.9) in Chapter XXI) that ΔΓ is always irreducible.

We shall often refer to the DΓ (or the ΔΓ) as the boundary strata
of Mg,P (or of Mg,P ). The simplest boundary strata are those of
codimension 1, which correspond to the stable graphs with a single edge.
These are of two kinds and are illustrated in Figure 4. First of all, there
is the graph Γirr with only one vertex and one edge. In addition to this,
there are graphs ΓP attached to stable bipartitions P = {(a, A), (b, B)}
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of (g, P ). These have two vertices, one of genus a and A-marked, the
other of genus b = g − a and B-marked, where B = P � A.

Figure 4.

In accordance with the conventions established in Section 2 of
Chapter X, we usually write Γa,A for ΓP . We normally write Dirr

for DΓirr and Da,A for DΓa,A
. The coarse counterparts of these substacks

are the divisors Δirr and Δa,A introduced in Section 2. The clutching
morphisms ξΓirr and ξΓa,A

are usually written ξirr and ξa,A, respectively:
(10.7)
ξirr : Mg−1,P ∪{x,y} → Mg,P , ξa,A : Ma,A∪{x} × Mg−a,Ac ∪{y} → Mg,P .

We shall use the same symbols also to denote the corresponding
morphisms between coarse moduli spaces.

We need to introduce some notions regarding dual graphs of stable
curves and prove a number of auxiliary results about them. The reader
should go back to the terminology introduced in the definition (2.16) of
Chapter X.

Definition (10.8). Let Γ be a graph. A subgraph Γ′ ⊂ Γ is a
graph Γ′ such that L(Γ′) ⊂ L(Γ), V (Γ′) ⊂ V (Γ), ιΓ′ = ιΓ|L(Γ′), and
Lv(Γ′) = Lv(Γ) ∩ L(Γ′) for every v ∈ V (Γ′).

Suppose that we are given a P -marked dual graph Γ and a subgraph
I ⊂ Γ having no legs and containing all the vertices of Γ. Equivalently,
we may think of I as being obtained from Γ by removing a subset from
E(Γ), together with all the legs. We want to construct a new graph
ΓI which is obtained from Γ by contracting to a point each connected
component of I. Formally, we proceed as follows. Let W be the set
of connected components of I. When we want to view w ∈ W as a
subgraph of Γ, we denote it by Iw; thus Iw = w. We let ΓI be the
P -marked dual graph defined as follows:

L(ΓI) = L(Γ) � L(I) , V (ΓI) = W , Lw(ΓI) = ∪
v∈V (Iw)

(Lv(Γ) � Lv(Iw)) ,

ιΓI
= ιΓ|L(ΓI) , gw(ΓI) = g(Iw) for w ∈ W ,

while the indexing of the legs by P is the same as for Γ. Clearly, there
is a continuous map cI : |Γ| → |ΓI | which contracts |Iw | to the vertex |w|
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and which induces a homeomorphism between |Γ| � |I| and |ΓI | �W , and
we have

c−1
I (E(|ΓI |)) = E(|Γ|) � E(|I|).

A P -marked dual graph Γ′ is said to be a specialization of Γ if Γ is
isomorphic to Γ′

I , for some I ⊂ Γ′. We call an I-contraction or simply
a contraction any map c : |Γ′ | → |Γ| which is the composition of cI

with the map |Γ′
I | → |Γ| induced by an isomorphism of graphs. In the

following figure the graph I which is contracted is the one with bold
edges.

Figure 5.

Let Γ and Γ′ be P -marked dual graphs and suppose that Γ is isomorphic
to Γ′

I for some subgraph I of Γ′. Let σ′ be an automorphism of Γ′ which
induces an automorphism of I. Then σ′ descends to an automorphism σ
of Γ, and we say that σ′ is a specialization of σ.

We now come to stable curves. Let

(10.9) π : C → S , {τp : S → X}p∈P

be a family of stable P -pointed genus g curves parameterized by a scheme
S. In what follows, to keep the notation simple, we will usually not
mention the marked sections. Suppose that there exists a subvariety

(10.10) Σ ⊂ Sing(C)

which is proper and étale over S. This subvariety cuts on each fiber Cs

of π a finite set of nodes Σs, and we may form the graph GraphΣs(Cs)
associated to the P -pointed curve Cs and to the set Σs of nodes, as
explained in Chapter X below definition (2.16). Let Γ be a fixed P -
marked genus g graph. We shall say that Σ is a weak Γ-marking if each
graph GraphΣs(Cs) is isomorphic to Γ.

Families of stable P -pointed, genus g curves endowed with a weak
Γ-marking form a stack, which we denote by EΓ.

Now suppose that the family (10.9) has been obtained from an object
X → S of MΓ via clutching and that Σ is precisely the locus of nodes
produced by the clutching operation. Then, by construction, the family
(10.9) comes with a weak Γ-marking. However, in this case, there is
more structure. First of all, the locus Σ is clearly a union of sections,
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and the same is true for its preimage in X, that is, in the partial
normalization of C along Σ. At this point, one can attach to the family
a graph GraphΣ(C) repeating, word by word, the construction that led
to the graph associated to a single curve and a choice of nodes on it. In
effect, here we are treating C as a single curve and Σ as a set of nodes.
Notice that there is a canonical isomorphism between Γ and GraphΣ(C)
(and also between GraphΣ(C) and GraphΣs(Cs) for each s in S). One
expresses all of this by saying that the family (10.9) is endowed with a
Γ-marking. It is evident that giving an object in MΓ(S) is equivalent to
giving a family of stable P -pointed genus g curves over S together with
a Γ-marking.

By what we have said, the morphism ξΓ : MΓ → Mg,P can be
viewed as the composition of two forgetful morphisms

MΓ → EΓ → DΓ ⊂ Mg,P ,

where the first one forgets the Γ-marking while still keeping the
corresponding weak one, and the second forgets the extra Γ-structure
altogether.

It is also clear that the automorphism group Aut(Γ) acts on MΓ in
the sense of Example (8.15). In the next proposition we will see that the
morphism MΓ → EΓ comes from taking the quotient of MΓ by Aut(Γ),
while EΓ → DΓ is the normalization morphism.

Proposition (10.11).

i) EΓ is the normalization of the substack DΓ ⊂ Mg,P .
ii) The morphism MΓ → EΓ can be identified with the quotient

morphism MΓ → [MΓ/ Aut(Γ)].

Before proving this proposition, in order to form an intuition of what
is going on, let us consider the clutching morphism at the more concrete
level of moduli spaces. Since

MΓ =
∏

v∈V

Mgv,Lv

is a coarse moduli space for MΓ, the same reasoning we used in the
context of the projection morphisms tells us that the clutching morphisms
ξΓ descend to scheme morphisms

(10.12) ξΓ : MΓ → Mg,P

between the corresponding coarse moduli spaces and that the image of
MΓ under ξΓ is ΔΓ. In general, the morphisms ξΓ are not injective. Let
us look at Figure 6 below. In the first row we consider

ξΓ : Mg−1,{a,b} → Mg,
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and we see that ξΓ[C; xa, xb] = ξΓ[C; xb, xa]. Therefore, in this case, ξΓ

is generically two-to-one. But, as the second row shows, the cardinality
of the fiber may jump. In fact,

ξΓ[C; xa, xb] = ξΓ[C ′; xa, xb] = ξΓ[C; xb, xa] = ξΓ[C ′; xb, xa],

where (C; xa, xb) (resp. (C ′; x′
a, x′

b)) is obtained from a curve
(C0; xa, xb, x

′
a, x′

b) identifying x′
a with x′

b (resp xa with xb). We next
consider the map

ξΓ : Mh,{a} × Mh+1,{b} → M2h+1,

where Γ consists of two vertices joined by one edge. This morphism is
generically injective, but, as we see in the third row of Figure 6, it is
not injective. In fact, if E is elliptic and D is the curve obtained from
C and E by identifying xc with xd, and if D′ is the curve obtained from
C ′ and E by identifying xa with xb, we get

ξΓ([D, xa], [C ′, xb]) = ξΓ([D′, xd], [C, xc]) .

What these pictures suggest, and what the reader will easily verify, is
that the morphism ξΓ factors through a generically injective morphism

(10.13) ξΓ : MΓ

/
Aut(Γ) −→ Mg,P .

Figure 6.

In the above two examples we see that the subvariety ΔΓ folds into
itself forming a double point p.
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Figure 7.

The two branches of ΔΓ at p correspond to the smoothing of one
of the two nodes of Cp.

Proof of Proposition (10.11). Let us start by examining the substack
DΓ ⊂ Mg,P . To construct an étale surjective morphism XΓ → DΓ from
a scheme XΓ (i.e., an atlas for DΓ), we start from an atlas X → Mg,P

consisting of the union of smooth bases of algebraic Kuranishi families
(the “slices” of the Hilbert scheme Hν,g,n of ν-log-canonical stable P -
pointed curves of genus g), and we look at the corresponding family of
curves π : C → X. We then let XΓ be the subvariety of X defined by

XΓ = {s ∈ X : Graph(Cs) is a specialization of Γ} ,

and we denote by η : CΓ → XΓ the restriction of π to XΓ. We then
get a surjective morphism XΓ → DΓ. Let us look more closely at the
morphism

(10.14) XΓ ×DΓ XΓ = IsomXΓ×XΓ(p∗
1η, p∗

2η) −→ XΓ,

where p1 and p2 are the natural projections. The reason why this is an
étale cover stems from the analogue, in the present setting, of Proposition
(3.10) and therefore, in the final analysis, from the analogue of Lemma
(3.11). Using the notation of that lemma, where U ⊂ X denotes the basis
of a local Kuranishi family, we set UΓ = U ∩ XΓ and let α : CUΓ → UΓ

be the restriction of the family η to UΓ. If C is the central fiber of this
family and H = Aut(C), then, also in this case, H acts on UΓ, and we
have an isomorphism between H × UΓ and IsomUΓ×UΓ(p∗

1α, p∗
2α), under

which the natural projection

(10.15) UΓ ×DΓ UΓ = IsomUΓ×UΓ(p∗
1α, p∗

2α) −→ UΓ

is just the projection

(10.16) H × UΓ → UΓ .
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This is the reason why (10.14) and, therefore, XΓ → DΓ are étale. We
next describe the normalization D̂Γ of DΓ. Let us go back to Section 8
and in particular to the subsection on the orbifold-like definition of
Deligne–Mumford stacks, where we explained what is the normalization
of a stack. According to that definition, D̂Γ is given by the groupoid
presentation

̂XΓ ×DΓ XΓ ⇒ X̂Γ ,

where the hat stands for normalization. To analyze this normalization,
the relevant local picture is given by the normalization of (10.15), that
is, the normalization of (10.16). But the picture of UΓ is the one of
a certain number k of (3g − 3 + n − δ)-dimensional linear subspaces in
C3g−3+n meeting transversally at the origin. If | Sing(C)| = δ′, the number
k is the number of subsets I of E(Graph(C)) consisting of δ′ − δ edges,
contracting which, we obtain a graph isomorphic to Γ. Let then

(10.17) UΓ = U1 ∪ · · · ∪ Uk

be the decomposition of UΓ in linear branches. The normalization ÛΓ is
just the disjoint union of U1, . . . , Uk, so that the normalization of (10.15),
that is, the normalization of (10.16), is nothing but the projection

(10.18) H × ÛΓ → ÛΓ .

But now, by virtue of the local description of ÛΓ, the pullback η̂ to X̂Γ

of the family η over XΓ is a family of curves with weak Γ-marking, and
we have

(10.19) ̂UΓ ×DΓ UΓ = Ĥ × UΓ = H × ÛΓ = IsomEΓ

ÛΓ×ÛΓ
(p∗

1α̂, p∗
2α̂) −→ ÛΓ,

where α̂ is the pullback of α to ÛΓ, and IsomEΓ stands for isomorphisms
respecting the weak Γ-marking. This tells us that the two projections

(10.20)
̂XΓ ×DΓ XΓ −→ X̂Γ ,

X̂Γ ×EΓ X̂Γ = IsomEΓ

X̂Γ×X̂Γ
(p∗

1η̂, p∗
2η̂) −→ X̂Γ

may be identified. The fact that the second projection is étale tells us
that the morphism X̂Γ → EΓ is étale. On the other hand, the fact that
the two projections in (10.20) can be identified tells us that EΓ and the
normalization D̂Γ of DΓ have the same groupoid presentation and are
therefore isomorphic.

It now remains to show that [MΓ/ Aut(Γ)] ∼= EΓ. We set G = Aut(Γ).
We will prove that [MΓ/G] is isomorphic to EΓ by showing that [MΓ/G]
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and EΓ have a common groupoid presentation. By the definition of MΓ,
there is a Γ-marked family of curves

(10.21) η : C → Y0

for which the moduli morphism m : Y0 → MΓ is étale and surjective. As
we explained in Section 8, we may assume that it is G-equivariant, and
we get a groupoid presentation Y1 ⇒ Y0 of [MΓ/G] by setting

Y1 = G × Y0 ×MΓ
Y0.

On the other hand, we have

G × Y0 ×MΓ
Y0 = G × IsomΓ

Y0×Y0
(p∗

1η, p∗
2η) ,

where p1 and p2 are the natural projections, and IsomΓ stands
for isomorphisms respecting the Γ-marking. We now look at EΓ.
Remembering only the weak Γ-marking, the family (10.21) may be
considered as an object of EΓ(Y0), yielding a morphism Y0 → EΓ, which is
readily seen to be étale. In fact, locally, Y0 looks like a product

∏
v∈V Uv,

where Uv is the basis of a standard Kuranishi family for a curve Cv in
Mgv,Lv , and this product, in turn, is isomorphic to one of the branches
Ui of UΓ ⊂ U , where U is the basis for a Kuranishi family of the curve
C obtained via the clutching ξΓ, starting from the Cv. Finally, we have

Y0 ×EΓ Y0 = IsomEΓ
Y0×Y0

(p∗
1η, p∗

2η) = G × IsomΓ
Y0×Y0

(p∗
1η, p∗

2η) .

Q.E.D.

Corollary (10.22). Let Γ be a stable P -marked dual graph of genus
g. Assume that Aut(Γ) = {idΓ}. Furthermore, assume that, for every
graph Γ′ which is a specialization of Γ, all the elements in Aut(Γ′) are
specializations of idΓ. Then ξΓ : MΓ → Mg,P is a closed immersion.

Proof. The fact that Aut(Γ) = {idΓ} tells us that MΓ is the normalization
of the closed substack DΓ. Let us then prove that DΓ is a smooth Deligne–
Mumford stack. Going back to the local picture (10.17), we must prove
that k = 1. But now the various branches Ui of UΓ correspond to
the various contractions cI : | Graph(C)| → |Γ|, where [C] ∈ MΓ. As
one can easily check, any two contractions cI and cJ are linked by an
automorphism σ ∈ Graph(C). Since, by assumption, σ is a specialization
of idΓ, we must have I = J .

Q.E.D.

In studying the geometry of Mg,P it is important to describe how
the various boundary strata intersect, not only the divisorial ones. We
must therefore understand cartesian diagrams of the type
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MΓ ×Mg,P
MΓ′ �

�

MΓ

�
ξΓ

MΓ′ �ξΓ′ Mg,P

Set MΓΓ′ = MΓ ×Mg,P
MΓ′ . We let GΓΓ′ denote a set of representatives

for the isomorphism classes of triples (Λ, c, c′) where Λ is a P -marked,
genus g, dual graph, and c : |Λ| → |Γ| and c′ : |Λ| → |Γ′ | are contractions.
We also insist that

(10.23) E(|Λ|) = c−1(E(|Γ|) ∪ c′ −1(E(|Γ′ |) .

This simply means that, given a curve C with dual graph equal to Λ,
smoothing the nodes corresponding to the edges of c′ −1

E(|Γ′ |)�c−1(E(|Γ|)
produces a curve whose graph is Γ, and similarly when the roles of Γ and
Γ′ are reversed. An isomorphism between triples (Λ, c, c′) and (Λ1, c1, c

′
1)

is an isomorphism between Λ and Λ′ commuting with the contractions.
Figure 8 below describes GΓΓ′ in four examples, where Γ and Γ′ are two
unpointed graphs (we are assuming that a, b, g > 1 and that a 
= b).

Figure 8.
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We will now show how an intersection of two boundary strata decomposes
into a disjoint union of boundary strata.

Proposition (10.24). There is an isomorphism

MΓΓ′ ∼=
∐

Λ∈GΓΓ′

MΛ.

Proof. It suffices to give isomorphisms between MΓΓ′ (T ) and∐
Λ∈GΓΓ′

MΛ(T ), where T is a scheme. An object of MΓΓ′ (T ) is a triple

(ξ, ξ′, ϕ), where ξ (resp. ξ′) is a family of Γ-marked (resp. Γ′-marked)
stable P -pointed genus g curves, parameterized by T , and ϕ : ξ → ξ′ is
a T -isomorphism. Now suppose ξ : C → T is an object in MΛ(T ). This
means that we are given a subvariety Σ of Sing(C), proper and étale over
T , whose inverse image in the partial normalization along Σ itself is a
union of sections, plus an isomorphism γ : GraphΣ(C) ∼−→ Λ. Composing
γ with the given contractions c : Λ → Γ and c′ : Λ → Γ′ provides two
subsets

Σ1 = (cγ)−1(E(Γ)) and Σ2 = (c′γ)−1(E(Γ′))

such that Σ = Σ1 ∪ Σ2, and isomorphisms γ1 : GraphΣ1(C) ∼−→ Γ and
γ2 : GraphΣ2(C) ∼−→ Γ′. This exhibits ξ as an object in both MΓ

and MΓ′ and therefore as an object of MΓΓ′ . Conversely, given
an object (ξ, ξ′, ϕ) in MΓΓ′ (T ), the family ξ is endowed with a Γ-
marking and, via ϕ, with a Γ′-marking, that is, with isomorphisms
γ : GraphΣ1(C) ∼−→ Γ and γ′ : GraphΣ2(C) ∼−→ Γ′. From these one gets
contractions c : GraphΣ1∪Σ2(C) → Γ and c′ : GraphΣ1∪Σ2(C) → Γ′, and
therefore a unique element (Λ, c, c′) ∈ GΓΓ′ and a unique isomorphism
θ : GraphΣ1∪Σ2(C) → Λ such that cθ = c and c′θ = c′. The reader will
check that these associations carry over to morphisms, thus establishing
the desired isomorphism between MΓΓ′ (T ) and

∐
Λ∈GΓΓ′

MΛ(T ). Q.E.D.

Looking at Figure 8, in the first two lines we see the decomposition in
strata for the self-intersection of the boundary divisors (in the unpointed
case). There we see one “excess intersection” component, while the
remaining components are “transverse.” In the third example we see
a bona fide transverse intersection of two boundary divisors. In the
fourth example we are intersecting two codimension 2 boundary strata in
M8, and we get a transversal codimension 4 component and an “excess
intersection” component of codimension 3.

We end this section by proving the following result.

Proposition (10.25). The clutching morphisms ξΓ : MΓ → Mg,P are
representable.
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Proof. First of all, we are going to show that any clutching morphism can
be factored as the composition of a closed embedding with a projection
map. Let Γ be the dual graph of a stable P -pointed genus g curve. As
usual, we denote by E = E(Γ) the set of edges of Γ. We construct a
new graph Γ̂ in the following way. Fix an edge l = {l, l′ } ∈ E. Consider
two graphs Γl and Γl′ as in Figure 9. Split l in the two halves l and l′,
then join l with l∞, l′ with l′

∞ and l0 with l′
0.

Figure 9.

Repeat this operation for every edge of Γ to obtain Γ̂ (see Figure 10
for an example of how to pass from Γ to Γ̂).

Figure 10.

By definition, Γ̂ is marked by the set P ∪ H, where H = H(Γ) is
the set of half-edges of Γ which are not legs. From the construction it
follows that Aut(Γ̂) = {id

Γ̂
}. We have a decomposition

(10.26) ξΓ = πH ◦ ξ
Γ̂

◦ ιΓ,

where

ιΓ : MΓ =
∏

v∈V

Mgv,Lv −→

M
Γ̂

=
∏

v∈V

Mgv,Lv ×
∏

{l,l′ } ∈E

(
M0,{l0,l1,l∞ } × M0,{l′

0,l′
1,l′

∞ }

)

is the natural isomorphism,

ξ
Γ̂

: M
Γ̂

=
∏

v∈V

Mgv,Lv ×
∏

{l,l′ } ∈E

(
M0,{l0,l1,l∞ } × M0,{l′

0,l′
1,l′

∞ }

)
−→ Mg,P ∪H
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is the morphism defined by Γ̂, and πH is the natural projection from
Mg,P ∪H to Mg,P .

Since ιΓ is an isomorphism, and since we already proved that
projections are representable, it is enough to prove that ξ

Γ̂
is

representable. This follows from Corollary (10.22), which shows that
ξ
Γ̂

is a closed immersion and hence is representable.
Q.E.D.

11. Bibliographical notes and further reading.

Our basic references for algebraic spaces are Artin [37,38] and
Knutson [428]. A proof of Theorem (9.1) can be found in Laumon
and Moret-Bailly [462], Corollaire 16.6.2.

A good introduction to the theory of orbifold is Adem, Leida, and
Ruan [3]. Satake’s seminal papers on the subject are [612,614].

The theory of stacks was initiated by Deligne and Mumford [167],
based in part on ideas of Grothendieck. Good general references are
Gillet [298], Vistoli [671], Edidin [190], Laumon and Moret-Bailly [462],
Fantechi [242], Canonaco [94], Fantechi–Göttsche–Illusie–Kleiman–Nitsure–
Vistoli [243], and the online Stacks Project [397]

A good reference for the theory of descent can be found in [243].
Our treatment of descent for quasicoherent modules is taken directly from
Grothendieck’s (cf. [326], exposé VIII).

Theorem (2.9) is a special instance of a more general result found in
Kollár [439], whose treatment we follow in the proof. A vast generalization
of our method of construction of the moduli space of curves as an algebraic
space is given in Keel and Mori [410].

As already explained in the bibliographical notes to Chapter X, the
projection, clutching, and stabilization constructions were first studied in
Knudsen [426]. Our treatment of the intersections of boundary strata
is inspired by the one by Graber and Pandharipande in Appendix A of
[307].

12. Exercises.

A. Orbifolds and stacks

A-1. Let G be a finite group acting holomorphically on a complex manifold
M . Suppose that M/G is Hausdorff. Set X0 = M and X1 = G × M .
Let s : X1 = G×M → M be the projection, and t : X1 = G×M → M
be the action. The composition rule, the unit, and the inverse are
the obvious ones. Verify that this defines an orbifold structure on
M/G. We call the orbifold described in this way, the quotient
orbifold of M modulo G, and we shall denote it by [M/G].
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A-2. Let f : |X| → M be an orbifold structure on a complex manifold M .
Show that every point in M has a neighborhood with an orbifold
structure of the form [B/Gx] where x ∈ X0, and B is a chart around
x.

A-3. Using Lemma (5.1), give a detailed proof of the fact that, given a
groupoid (or a Deligne–Mumford stack) M and a morphism S → M,
the stack M ×M S is represented by S.

A-4. Let h : N → N ′ be an isomorphism of DM stacks. Show that if
a representable morphism of Deligne–Mumford stacks f : M → N
satisfies a property P of morphisms of schemes which is stable under
base change, then also fh satisfies P.

A-5. Verify that Gx given in (4.4) and in (8.11) is indeed a group.

A-6. Show that (8.17), (8.18), and (8.19), together with appropriate
structural maps s

G
, t

G
, u

G
, i

G
, and m

G
, define a groupoid

presentation of M to which the action of G lifts.

A-7. Show that a closed substack of a Deligne–Mumford stack is a
Deligne–Mumford stack.

B. Genus 0 and 1.

B-1. Show that M0,n can be described as follows. Let Xn be the n-fold
product of P

1, minus the big diagonal. The group PGL(2) acts
naturally on Xn and M0,n is just the quotient.

B-2. Show that M0,n is smooth.

B-3. Construct M0,n+1 by blowing up the diagonal in M0,n ×M0,n−1
M0,n.

B-4. Show that M1,1 can be naturally identified, via the period map,
with the quotient of the upper half-plane H modulo the action of
SL(2, Z). Deduce that M1,1 = C and M1,1 = P1.

B-5. Construct explicitly Kuranishi families for curves in M1,1, carefully
describing the automorphism groups acting on them.

B-6. Describe the stack M1,1.

C. Hyperelliptic curves

C-1. Let Hg ⊂ Mg be the locus of hyperelliptic curves of genus g.

a) Show that Hg ⊂ Mg is a (2g − 1)-dimensional subvariety of Mg.
b) Show that Hg can be identified with the quotient of M0,2g+2

modulo the action of the symmetric group S2g+2.
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C-2. Define the stack Hg of smooth hyperelliptic curves of genus g. Show
that the hyperelliptic involution defines a nontrivial Z2-action on Hg

and that Hg is a coarse moduli space for both Hg and Hg

/
Z2.

D. Strata of moduli spaces.

In this series, we will ask the reader simply to list the strata of
various moduli spaces Mg,n. In each case we ask to make a chart
listing the various possible topological types of stable n-pointed curves
of genus g, the dimensions of the corresponding loci in Mg,n, and the
inclusion relations among their closures. We would suggest putting the
open stratum (smooth curves with n distinct points) at the top; the
various codimension 1 strata on a line below that, the codimension 2
strata on the next line, and so on; indicate the specialization relationships
by vertical or diagonal lines.

D-1. Describe all the boundary strata of
M0,n for 3 ≤ n ≤ 6, M2, M3, M1,2, M2,1, M2,2, M3,1, M3,2, M3,3.

D-2. Consider the projection π : Mg,n+1 → Mg,n.

a) Describe π−1(∂Mg,n).
b) Describe π−1(Mg,n) ∩ ∂Mg,n+1.

D-3. Describe the intersection of the codimension one boundary
components Δa,A ∩ Δirr and Δa,A ∩ Δa′,A′ in Mg,P

D-4. How many boundary divisors are there in Mg? In Mg,n?

D-5. Do every pair of boundary divisors in Mg intersect? How about
in Mg,n?

D-6. Give an example of a pair of boundary divisors in Mg whose
intersection is reducible. Can you find an example where the
intersection is disconnected?

D-7. Let C be a stable curve of genus g with δ nodes. Show that
δ ≤ 3g − 3. Similarly, show that a stable n-pointed curve of genus
g has at most 3g − 3 + n nodes.

D-8. Show that the set Rg ⊂ Mg of stable curves with 3g − 3 nodes is
finite. What is its cardinality for g = 2, 3, and 4?

D-9. Similarly, count the stable n-pointed curves of genus g having
3g − 3 + n nodes for (g, n) = (2, 1), (2, 2), (3, 1), and (3, 2).

D-10. Consider now the locus in Mg of stable curves of genus g having
3g − 4 nodes. Show that every component of this locus is a rational
curve.
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E. Curves in moduli spaces Mg,n.

In what follows—in particular, when we discuss line bundles on
moduli spaces in the next chapter—it will be useful to have some explicitly
given curves in Mg,n. These will be given by one-parameter families of
stable curves of genus g. In these exercises, we ask you to verify that
all members of the specified family are in fact stable.

E-1. A general pencil of plane curves of degree d, that is, we let F and
G be general polynomials of degree d and consider curves Ct defined
by linear combinations t0F + t1G of the two.

E-2. Let S ⊂ P
3 be a general surface of degree d, and Ct = S ∩ Ht a

general pencil of plane sections of S.

E-3. Let S ⊂ P
3 be an arbitrary smooth surface of degree d, and

Ct = S ∩ Ht a general pencil of plane sections of S. (Note: This is
much harder than the preceding problem and in particular requires
a hypothesis of characteristic 0)

E-4. Let B be a smooth curve of genus g − 1 > 0, p ∈ B any point,
{Et ⊂ P

2} a general pencil of plane cubics, and q a base point of
the pencil. Let Ct be the curve obtained from B ∪ Et by identifying
p with q.

E-5. Let p1, . . . , p2g+1 ∈ P
1 be distinct points, and for p ∈ P

1, let Cp be
the hyperelliptic curve given as a double cover of P

1 with branch
divisor p + p1 + · · · + p2g+1.

F. Unirationality of moduli spaces Mg,n

We say that a variety X is unirational if there exists a dominant
rational map P

n → X from a projective (or affine) space to X. In
particular, if there is an open subset U ⊂ P

n and a family of stable
curves of genus g over U whose associated map U → Mg is dominant, we
may conclude that Mg is unirational. (Of course, the converse need not
be true—a priori, there might be a dominant rational map Pn → Mg, but
not one arising from a family of stable curves—but in practice the only
way we have ever shown a space Mg to be unirational is by exhibiting
such a family.) In these exercises, we ask you to prove the unirationality
of a particular moduli space Mg,n by showing that the specified rationally
parameterized family of curves is dominant, that is, the general member
of the family is indeed stable, and the general curve of genus g does
appear among the member of the family.

F-1. M2: consider the family of curves given by y2 = f(x), where f
ranges over all sextic polynomials.

F-2. M3: consider the family of all plane quartics.
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F-3. M3,n for n ≤ 14: consider the family of pointed curves (C, p1, . . . , pn)
with pi ∈ P2 and C a plane quartic passing through p1, . . . , pn. What
is the largest n for which you can say that M3,n is unirational?

F-4. M2,n: What is the largest n for which you can say that M2,n is
unirational?

F-5. M4: consider the family of curves of bidegree (3, 3) on P
1 × P

1.

F-6. M5: consider the family of complete intersections of three quadrics
in P

4.

F-7. M6: let S ⊂ P5 be a (fixed) del Pezzo surface and consider the
family of all intersections S ∩ Q of S with quadric hypersurfaces in
P

5.

F-8. Using Brill–Noether theory and plane sextics curves, show that M6

is unirational.

F-9. In the same spirit of the preceding exercise, try g = 7.

F-10. Prove that the moduli Hg space of hyperelliptic curves is unirational.

G. Miscellaneous exercises

G-1. Find n0 such that Mg,n is smooth for n ≥ n0. Is there a similar
lower bound for the moduli space of stable curves?

G-2. Let M
n

g be the set of isomorphism classes of triples (C,x,v), where
C is a smooth genus g curve, x = (x1, . . . , xn) is an n-tuple of
points of C, and v = (v1, . . . , vn) is an n-tuple of nonzero tangent
vectors with vi ∈ Txi(C), i = 1, . . . , n.

a) Show that M
n

g has a natural structure of smooth algebraic variety
and compute its dimension.

b) Express the tangent spaces at points of M
n

g in cohomological terms.

G-3. Let M
0

g,n be the locus of automorphism-free, stable n-pointed curves

of genus g. Show that M
0

g,n is an open smooth subset of Mg,n.

Set Vg = Mg,n � M
0

g,n

a) Describe the codimension-one components of Vg,n. Can any one of
these be contained in the singular locus of Mg,n?

b) Show that if Y is component of Vg,n, which is not of codimension
equal to one, then

(12.1) dim Y ≤ 2g − 1 .

c) Show that equality in (12.1) holds if and only if Y is the
hyperelliptic locus.

d) Show that the singular locus of Mg,n consists precisely of those
components of Vg,n which are not divisors in Mg,n.
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G-4. Describe the infinitesimal behavior of projections and clutching maps.

G-5. Show that, given a point {[Cv;xv]}v∈V of MΓ and denoting by
[C;x] its image via ξΓ, there is an exact sequence

(12.2) 1 →
∏

v∈V

Aut(Cv;xv) → Aut(C;x) α→ Aut(Γ) .

G-6. Look at the exact sequence (12.2). Give examples of stable curves
for which

a) α is surjective,
a) α is injective,
a) α is neither injective nor surjective.

G-7. Give examples of dual graphs Γ′ and Γ such that Γ′ is a
specialization of Γ, but not every element in Aut(Γ′) is the
specialization of an element in Aut(Γ).
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