JG|U

Design and Application of Modern Heuristics

Mainz, September 2012

Franz Rothlauf




JG|U

These slides have been the basis for a class on the
design and application of modern heuristics given at
the university of Mainz in fall 2012

The slides are based on the book "Design of Modern
Heuristics" published at Springer

You are free to use the material contained in these
slides for your own classes or presentations. A
reference to the book would be nice.

Many thanks to JOrn Grahl who contributed to preparing
the slides. For editing some of the latex displays, we
used texpoint.

Enjoy modern heuristics!
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Intro

* Round of introductions
e Purpose of class
e Organisational Issues
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Grading and Participation

* Firsttwo days: Lecture

* Third day: Problem presentations and discussion of
particular problems (see workshop literature)

* Fourth day: Discussion and Development of
enhanced methods
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Background

Performing Experimental Studies

e Bartz-Beielstein, T. (2006): Experimental Research in
Evolutionary Computation - The New Experimentalism.
Springer-Verlag, Berlin, Heidelberg, New York.

Publishing: what and how?

e Schrader, U.; Hennig-Thurau, T. (2009): VHB-JOURQUAL2:
Method, Results, and Implications of the German Academic
Association for Business Research's Journal Ranking. BuR -

Business Research 2(2): 180-204.
Writing a Review:

e Lee, A.S. (1995): Reviewing a manuscript for publication.
Journal of Operations Management 13 (1995) 87-92.
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Modern Heuristics

1. Heuristics
a. Construction Heuristics
b. Improvement Heuristics

2. Approximation Algorithms
3. Modern Heuristics (Metaheuristics)
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Modern Heuristics

History

o Until 1970s: mostly exact optimization

* Many practical problems are NP-complete

— exact approaches have exponential running time
 |dea: relax optimality, increase efficiency

— Heuristics
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Modern Heuristics - Heuristics

Construction heuristics

* A.k.a.single-pass heuristics

 Build solution from scratch
— Several steps
— Fix one part of solution per step
— Often: fix one decision variable per step

e Terminate when solution is complete
 No improvement steps
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Modern Heuristics - Heuristics

Improvement heuristics

o Start from a complete solution

e Improve solution
— Several steps
— Possible changes define a ,,neighborhood”
— No diversification: objective value increases
— If no improvement is possible: terminate

13



Modern Heuristics - Heuristics

Greedy search

e Construction & improvement heuristics
are often greedy

* Choose alternative with highest objective value
* No looking ahead, myopic, fast, sub-optimal
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Modern Heuristics - Heuristics

JG|U

Example: Travelling salesman problem

e Connect n cities with minimal total distance

o ®
g ]
. °
» ‘e
o ¢ o ®
Data Optimal solution
*node location *path

edistance weights
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Modern Heuristics - Heuristics

Construction heuristics for TSP (1)

* Nearest neighbor (Rosenkrantz etal, 1977)
— Start with random city
— Connect nearest unconnected city
— Terminate when all cities are connected

— Although an upper bound (T)/i(T,,:) < (logyn)/2
exists on solution quality, it does not perform
well in practice

16



Modern Heuristics - Heuristics
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Construction heuristics for TSP (3)

* Nearestinsertion
— Start with a random two-city tour
— Select city with minimal distance to any connected city
— Add city in a way that minimizes increase of tour length
— Worst case performance: (T)/I(T,,:) < 2

e Cheapestinsertion

— Like nearest insertion, but chooses city that increases
tour length the least

— Worst case performance: (T)/(T,,:) < log, n

17



Modern Heuristics - Heuristics

Construction heuristics for TSP (3)

* Furthestinsertion
— Start with longest two-city tour

— lteratively add city that increases tour length the most
when inserted it in the best position on the current tour

— |dea: start with cities that are far apart

— Worst-case performance is (T)/i(T,,:) < logy n
(like cheapest insertion), but furthest insertion
outperforms the other construction heuristics in
practice.
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Modern Heuristics - Heuristics
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Improvement heuristics for TSP (1)

e Two-opt

— Remove any two possible edges and obtain two subtours. Insert
two new edges such that resulting tour length is minimal.

— If distances are Euclidean, no edges in resulting tour do cross (on-
crossing tour)

— Worst case performance O(4/n)
e k-opt(Lin, 1965)

— Generalization of 2-opt. Examine some or all (}.)%-subsets of
edges in a tour

— If exchange of k& edges does not improve tour, tour is £-optimal
— If triangle inequality holds, worst case performance of

k-optis O (%ni) (Chandra et al, 1994)

19



Modern Heuristics - Approximations

Approximation Algorithms

* Heuristics substitute optimality by tractability

* Approximation algorithms are heuristics with a
quality bound

* Performance is measured by approximation ratio

p(n) Z IMax (f(%f(x*) )7 f(a.jfa(g:pr)o:c))

nis problem size, x@°P% s solution returned by
algorithm, and x" is optimal solution

e Definition holds for minimization and maximization

20



Modern Heuristics - Approximations
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Understanding approximation ratio

* An algorithm has an approximation ratio p(n)

if for any input size nthe objective value of the
returned solution is within a factor of p(s) of the

optimal objective value.
e If an algorithm always returns the optimum p(7)=1

e |[falgorithm returns solution that is never worse than
2 f*, then p(n)=2

21



Modern Heuristics - Approximations
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Trade-off between effort and quality

e Some approximation algorithms can achieve
increasingly smaller approximation ratios p(n)— 1

by using more and more computation time.
* We call them approximation schemes
e Required input: €

e Approximation schemes return for any fixed e >0 a
solution with approximation ratio 1-+¢

22



Modern Heuristics - Approximations

JG|U

Fully polynomial-time approx. scheme

* FPAS, FPTAS
e Returns a solution with approximation ratio (1+¢)

* Running time is polynomial in both input size » and
1/€

* Fastforsmall e and large n
* Allows effective problem solving

23



Modern Heuristics - Approximations

Polynomial-time approx. scheme

* PAS, PTAS

e Returns a solution with approximation ratio of
(1+¢)
* Running time polynomial in input size n

* However, running time can grow exponentially in
1/€

e Fast forlarge n but not for small €

24



Modern Heuristics - Approximations
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Constant-factor approximations

e APX
e (Guarantee a constant-factor approximation ratio

e Approximation ratio is fixed, not a parameter
e Running time is polynomial in problem size n

25



Modern Heuristics - Approximations
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Approximation and complexity

* FPTAS are most effective, followed by PTAS and APX
* Introduce new complexity classes

* Problems in P can be solved in polynomial time

* Problems in NP require exponential time

e PC FPTASC PTASC APX CNP

* Problem is PTAS-hard if no FPTAS exists

* Problem is APX hard if no PTAS exists

26



Modern Heuristics — Modern Heuristics

Modern heuristics

e Extended variants of improvement heuristics,
,metaheuristics”

e Modern heuristics

— Can be applied to a wide range of problems
— Use intensification (exploitation) and diversification
(exploration) steps
* |ntensification steps shall improve quality

* Diversification explores new areas of search space,
also accepting complete or partial solutions that are
inferior to current solution

27



Modern Heuristics — Modern Heuristics
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Principles (1)

o Start with one or more random solutions

 |niterative steps modify solution(s) to generate one or more
new solution(s)

* New solutions are created by search operators (variation
operators)

e Regularly perform intensification and exploration phases

— During intensification, it uses objective function values and
focuses variation on high-quality solutions

— During diversification, usually objective function values are not
considered. Modify solutions such that new areas of search space
are explored.

28



Modern Heuristics — Modern Heuristics
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Principles (2)

 Modern heuristics perform a limited number of
search steps

* To be applicable, two requirements must be met

— Representation: We must be able to represent complete
solutions so that variation operators can be used.

— Pair wise fitness comparisons must be possible,
indicating which of two solutions is better.

29



Modern Heuristics — Modern Heuristics
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Design elements of Modern Heuristics

Representation
Variation operators
Fitness function
Initial solution(s)
Search strategy

ok bhe

e (Can be addressed to build a new heuristic and to
categorize existing ones

e (Central to this course

30



Modern Heuristics — Modern Heuristics
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Example: Simulated Annealing (SA)

e Local search that accepts inferior solutions to
escape from local optima

* Probability of accepting inferior solution depends
on solution quality; it decreases during run.

* Analogy from cooling metals or liquids

31



Modern Heuristics — Modern Heuristics

Simulated Annealing

Uses iterative steps

In each step: apply variation operator(s) to current
solution 2° , obtain new solution "

Accept =™ with probability

1 if f(2") < f(z°)

Pace(T) = {exp(%) if f(z") > f(z°)

Temperature 7 is a strategy parameter
0 E is the fitness difference

JG|U
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Modern Heuristics — Modern Heuristics

Diversification and intensification
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 For1— 0, SA becomes local search

* Probability of accepting inferior solution decreases with
fitness difference

33



Modern Heuristics — Modern Heuristics
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Getting the cooling schedule right

o If 7is reduced very slowly, SA returns optimal
solution; however resulting runtime is prohibitive

e |f 7is reduced too fast, SA converges to local
optimum.

* Often a fixed schedule is used where T, ,=cT;
(0<c<1) and c€[0.9, 0.999]

* Ty~ o(f(x)) ... 20(f(x)), where o(f(x)) is the standard
deviation of objective function values of randomly
generated solutions.
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Modern Heuristics — Modern Heuristics

Example: SA for the TSP (1) ;

6 1
b d

* Representation: sequence of cities . |z 4

e als starting city c
e Two solutions x,y are neighbors if Hamming
distance d(x,y)=2.

e Three solutions: adbca (12), abdca (17), adcba (11)
c=+62/3~262—Ty=3

* Linearcooling schedule T,,, = 0.9T.
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Modern Heuristics — Modern Heuristics

Example: SA for the TSP (2)

JG|U

o Start with initial solution z°=abcda, f(x%)=11

 Variation operator randomly exchanges the position of two
cities in tour

 New solution: x! = abdca, f(x!) = 17
* Replace x" with x! with probability P=exp(-6/3)~ 0.14

* Generate uniform random number rnd=|0,1) and if
md<0.14 replace old solution, otherwise continue with x°.

* Then, reduce the temperature: T, = 2.7

e Continue until a time limit reached or no improvement for
some number of steps.

36



2. Optimization Problems

1. Prerequisites
1. Search Spaces
2. Fitness Landscapes

2. Problem Complexity
3. No-Free Lunch Theorem

4. Locality
1. Fitness distance correlation
2. Ruggedness

9. Decomposability
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Optimization Problems - Prerequisites
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Search spaces

* Forformulating optimization models, we need a set
of (feasible) solutions

* This set defines a search space X

* The search spaces "contains"
— possible solutions of a problem and
— relations between the different solutions

38



Optimization Problems - Prerequisites
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(Topological space)

= Very general, a search space can be defined as a
topological space

= Atopological space is defined as a set X of decision
alternatives together with a collection of subsets of X
called open sets such that

= the empty set () and whole space X are open sets,

= the intersection of a finite number of open sets is also an
open set, and

= the union of an arbitrary number of open sets is an open set.

= AsetYis a subset of a set X (denoted as Y C X) if every
element € Yisalsoin X (rc Y — x€ X)

= To define a topological space, we need no definition of
similarity between elements in a search space.

39



Optimization Problems - Prerequisites
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Metric search spaces

 Common topological space where similarity between elements can
be measured using some kind of metric

e We have a set X of solutions and a real-valued distance function
(also called a metric)

d: X xX—=R

assigning a real-valued distance to any pair x,y € X . Itis required,
that forany z,y,z € X:

40



Optimization Problems - Prerequisites
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City-block metric (Manhattan metric)

* Forz,yc R, define distance d(z,y) = | z-y|

* Extending to two dimensions: city-block metric (also known as
Manhattan distance)

d(fL‘, ) = |$1'y1| + I'CBQ _yzl

where x =(z, ,x.), y=(y,, ¥.)-
e Inndimensions, the metric becomes

n

d(z,y) = Z i — il

1=1

41



Optimization Problems - Prerequisites

Euclidean metric

e Solutions are vectors of continuous variables
r=(x,, T,y T, ), T, € R
* Euclidean distance between x and y is

mn

d(z,y) = \ Z(ivz' —yi)*.

1=1

* Forn=1: city-block metric, n=2: standard straight line distance
between two points on a 2d-plane
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Optimization Problems - Prerequisites
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Hamming metric

e Often used for binary search spaces; counts number of items that are
not identical

d(z,y) =) |e: = yil,
1=1

where d(x,y)<{0,...,n}.

* Binary Hamming metric can be extended to continuous and discrete

decision variables: n
d(ZE, y) — Z iy
1=1

where

1, forx; =y,
2y =
0, forx; # y;.
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Optimization Problems - Prerequisites
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Neighborhoods

e On metric search spaces, we can define similarities between
solutions based on the used distance d.

* Neighborhoods determine which solutions are similar to each other
with respect to some metric.

* Aneighborhood is a mapping N(x): X — 2%
where X is the search space, 27 is the set of all possible subsets of

X and NV is a mapping that assigns to each element z€ X a set of
elements yc X .

e Usually a neighborhood definition assigns to each solution xrc X a
set of solutions y that are similar to = in some sense.
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Optimization Problems - Prerequisites

Euclidean Neighborhoods

» We define a neighborhood for a 2- A
dimensional continuous search space
and Euclidean distances.

d(z,y) =/ (21 — y1)2 + (22 — 92)°

e All solutions v, where d(x,y) <e are
neighboring solutions to =

e All neighboring solutions can be found
inside a circle around x with radius ¢.
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Optimization Problems - Prerequisites

City-Block Neighborhoods

* We define a neighborhood for a 2-
dimensional continuous search space
and city-block distances.

>

d(z,y) = |r1 —y1| + |2 — Y2

e Allsolutions inside a rhombus with
the vertices (x,-¢€,y,), (x,y,+e),
(x;+€,y,), (X4,y,-€) are neighboring
solutions.
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Optimization Problems - Prerequisites
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Neighborhoods

» Defining a proper neighborhoods is difficult
 Example:

— A user can choose from four fruits. These four decision alternatives can be

modeled using a metric search space X={0,1}2. Each solution ((0,0),
(0,1),(1,0), (1,1)) represents one type of fruit.
— Although no similarities are defined for the different fruits, the use of a binary

search space induces that the solution (0,0) is more similar to (0,1) than to
(1,1) (using Hamming distance).

— Therefore, this problem space is inappropriate for the problem definition as it
defines similarities where no similarities exist.

— A more appropriate model would be x<{0,...3} and using Hamming distance.

Then, all distances between the different solutions are equal and all solutions
are neighboring solutions (for e=1).

a7



Optimization Problems - Prerequisites

Neighborhoods

JG|U

Definition and use of decision variables naturally leads to a metric.

If metric induced by decision variables does not fit to the metric of the
problem description, the model is inappropriate.

If a metric used in problem definition does not fit to the metric used
in the model, similarities between different decision alternatives do
not match the similarities between different solutions described by
the model.

48



Optimization Problems - Prerequisites
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Neighborhoods: Example

* Nine different decision alternatives {a, b, c, d, e, f, g, h, i}. An objective value is
assigned to each decision alternative. We assume that the decision alternatives
form a metric space using the city-block metric, where the distances between all
elements are equal. Therefore, all decision alternatives are neighbors (for ¢ =1).

e Model 1: We use a metric space X={0,1,2}? and the city-block metric. Therefore,
each decision alternative is represented by x=(z,x_), where x,c{0,1,2}. Two
solutions are similar to each other if the decision variables have the same values
(e.g. solution (1,1) is more similarto (1,2) than to (2,2)). For ¢ =1, each solution has
either three or four neighbors. Consequently, our neighborhood differs from the
original problem.

* Model 2: We use binary variables z,; and the search space is defined as X=x
where x..<{0,1}. We have an additionial restriction, Z x, =1, where 1&{1,2} and
7€{1,2 37} Again, Hamming distance can be used. Fore—f no neighboring
solutions exist. For ¢=2, each solution has only two neighbors.

* We see that different models for the same problem result in different
neighborhoods which do not coincide with the neighborhoods of the original
problem.

49



Optimization Problems - Prerequisites

Neighborhoods: Example

Different search spaces result into different problems

decision model 1 model 2
. r11 T2 T
alternatives (z1,22) (:1:; x;z 33;2)
{a,b,c,d,e, f,g,h,i} | {(0,0),(0,1),(0,2), {(1 8 8),(3 (1] 8),(3 8 (1)),
0.2 | (15 o) (o 1 0) (o o0 1)
2023 | (1 5)(0 1 o) (oo 1)
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Optimization Problems - Prerequisites
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Fitness Landscapes (1)

e For combinatorial search spaces where a metric is defined, we can
introduce the concept of fitness landscape.

 Afitness landscape (X, f,d) of a problem instance consists of
— aset of solutions xc X,
— adistance measure d,

— and an objective function f f{xq,%)
that measures the quality oo

of each solution. e

:

0.1

OO0



Optimization Problems - Prerequisites

Fitness Landscapes (2)

* dpp=min, . (d(x,y)) is the minimum distance between two
elements x and y of a search space.

e Two solutions = and y are denoted as neighbors if d(z,y)=d ;.-
e Often =1,

» Umin™

 The fitness landscape can be described as a graph GG ; with a vertex
set =X and an edge set F={(x,y)c Sx.S | d(z,y)=d,;}-

* The distance between two solutions x,y< X is proportional to the
number of nodes that are on the path of minimal length between x
and y in the graph G;.

52



Optimization Problems - Prerequisites

Fitness Landscapes and Optimal Solutions

 We have a one-dimensional minimization A f(X)
problem. Independently of the used
neighborhood, u is the global optimum.

e Ifwe usethe 1-dimensional Euclidean
distance as metric, we can define a
neighborhood around x as
N(x)={y|yc X ,d(x,y) < €}. The solution
vis alocal optimum if e<d, .

e Analogously, wis a local optimum for all
neighborhoods with e<d, .

 Fore> d,,the onlylocally optimal
solution is the global optimal solution w.




Optimization Problems — Problem Complexity

Intro: What are difficult problems?

e Two different questions:

— How difficult is a problem?

e Equivalentto "What is the complexity of the best-performing
algorithm that can solve this problem?

e Complexity classes

— How well can a problem be solved using optimization
method xyz?
e s optimization methods xyz the right one?
* No-free lunch theorem

54



Optimization Problems — Problem Complexity

Example: Random Search

* Functionality

— New solutions are chosen randomly and no prior
information about the structure of the problem or
previous search steps is used.

— All possible optimization problems have the same
difficulty

e There are no easy or difficult problems for random
search.

* Number of fitness evaluations for finding the
optimum is independent from optimization
problem (if optimum is unique).
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Optimization Problems — Problem Complexity

Difficult Problems (Problems closed under JG|U
permutation)

* Problems, where no meaningful metric can be
defined/exists

— Examples:
* Finding largest value in unordered sequence
* Finding largest value in white noise

— We have a set of solutions x< X with objective values f(x).

— No metric is defined: search algorithms do not “know” how
to guide the search through the search space

— Can only be solved by to iteratively examining all elements
of search space, returning the best found solution

— All optimization methods that can be applied to such
problems behave like random search

— The difficulty of such problems (O(|X])) is independent of
used optimization algorithm.
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Optimization Problems — Problem Complexity
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Complexity of Problems and Algorithms

* The complexity of a problem is the effort that is necessary to
solve the problem.

e |tis possible to define upper and lower bounds on problem
difficulty.

 Lower bounds tell us that a problem has at least this
problem difficulty whereas upper bound limit problem
difficulty from above.

o Complexity of problems is closely related to the complexity
of algorithms.

57



Optimization Problems — Problem Complexity
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Complexity of Problems and Algorithms

Upper bounds on problem difficulty:
e We can find upper bounds on problem difficulty
e Based on the complexity of algorithms

 Ifan algorithm can solve a problem, an upper bound on the difficulty
of the problem is the complexity of the algorithm.

Example:

e  We study the problem of finding a friend's telephone number in the telephone book. The most
straightforward approach is to search through the whole book starting from ‘A’. Effort O(n). Therefore,
we have an upper bound on problem complexity (linear) as we know a linear algorithm that can solve the
problem. A more effective way to solve this problem is bisection which iteratively splits the entries of the
book in halves. With n entries, we only need log(n) search steps to find an address. So, we have a new,

improved, upper bound on problem difficulty.
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Optimization Problems — Problem Complexity

Complexity of Problems and Algorithms

JG|U

Lower bounds on problem complexity

Finding lower bounds on problem difficulty is more difficult

We have to show that no algorithm exists that needs less effort to
solve the problem.

Optimization problems where no metric is defined can only be solved
when examining all available solutions.

Therefore, we have a lower bound on problem difficulty as the effort
of algorithms to solve such problems increases at least linearly with
the size of the search space.

The lower bound must hold for all possible algorithms that can be
used to solve the problem.

A problem is denoted to be closed if the upper and lower bound on its
problem difficulty are identical.
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Optimization Problems — Problem Complexity

JG|U

Formulating Complexity: Landau notation

e Landau notation can be used to compare
asymptotic growth of functions

e Helpful when measuring the complexity of problems
or algorithms.

* Allows to formulate asymptotic upper and lower
bounds on function values.

60



Optimization Problems — Problem Complexity

Landau notation

With f, g : N — IR, we can define:

e asymptotic upper bound (“big O notation”):
feO(g)edec>0,9n9g >0V n>ng:
|f(n)] < c|lg(n)|: fis dominated by g.

e asymptotically negligible (“little o notation”):
feolg) Ve >0dny >0Vn > ng:
|f(n)| < c|lg(n)|: fis growing slower than g.

ol



Optimization Problems — Problem Complexity
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Landau notation

e asymptotic lower bound.:
feQ(g) e ge Of): fgrows at least as fast as

g.

e asymptotically dominant:
fewlg) e g€ olf): fgrows faster than g.

e asymptotically tight bound:
f€0(g) = geO(f)NfeO(g): gand f grow

the same.
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Optimization Problems — Problem Complexity
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Examples

1. We want to find the smallest number in an unordered list of n numbers.
The complexity of this problem is @(n) when using linear search and
examining all possible elements in the list. As it is not possible to solve

this problem faster than linear, there is no gap between the lower bound
Q(n) and upper bound O(n).

2. We want to find an element in an ordered list with O(n) items (for example
finding a telephone number in the telephone book). Binary search
iteratively splits the list in two halves and can find any item in log(n)
search steps. Therefore, the upper bound on the complexity of this
problem is O(log(n)). As the lower bound is equal to the upper bound (see
literature), the complexity of the problem is @(log(n)).

3. We want to sort an array of narbitrary elements. By using standard sorting
algorithms like merge sort it can be solved in O(n log(n)). As the lower
bound is Q (n log(n)), the difficulty of this problem is @ (n log(n)).
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Complexity Classes

e Computational complexity theory categorizes decision problems in
different groups based on their difficulty.

o Difficulty is defined with respect to the amount of computational
resources that are at least necessary.

o Effort (amount of computational resources) necessary to solve an
optimization problem depends on time and space complexity.

— Time complexity: how many iterations/number of search steps
are necessary to solve a problem.

— Space complexity: amount of space (memory) necessary to solve
a problem.

e Both depend on the size n of the problem.
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Complexity Classes

* Aset of problems where the amount of computational

resources necessary to solve the problem have the same
asymptotic behavior.

* Forall problems in one complexity class, we can give
bounds on the computational complexity (in general, time
and space complexity).

e Usually, bounds depend on the size n of the problem.
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Complexity Class P

* The complexity class P (polynomial) is the set of decision problems
that can be solved by an algorithm with worst-case polynomial time
complexity.

* Time necessary to solve a problem in P is asymptotically bounded
(for n>n_) by a polynomial function O(n").

* Forall problems in P, an algorithm exists that can solve any instance
of the problem in O(n").

e All problems in P can be solved effectively.
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Complexity Class NP
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1. Set of decision problems where a “yes” solution of a problem can be

verified in polynomial time.

— Formal representation of x and time to check its validity are polynomial or
polynomially-bounded.

2. Set of all decision problems that can be solved by a non-

deterministic algorithm in worst-case polynomial time

— A non-deterministic algorithm always selects the value (possibility) that leads
to a “yes” answer, if a “yes” answer exists.

Both definitions of NP are equivalent to each other (Consider that
non-deterministic algorithms can not be carried out by conventional
computers and there is no idea how to construct a non-deterministic
algorithm).
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Complexity Class NP: Informally

e The class NP consists of all “reasonable” problems of practical
importance where a “yes” solution can be verified in polynomial time

 This means the objective value of the optimal solution can be
calculated fast.

e Forproblems notin NP, even verifying that a solution is valid (is a
“yes” answer) can be extremely difficult (needs exponential time).

Optimization Problems: Difficulty 68
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Tractable and Intractable Problems

* Problems that can be solved using a polynomial-time algorithm
(upper bound O(n*) on the running time of the algorithm, & constant)

are tractable.
e Tractable problems are easy to solve
* Running time increases relatively slowly with larger problem size n.

e Example: Finding the lowest element in an unordered list of size n is
tractable. There are algorithms with O(n) time complexity. Spending
twice as much effort allows us to solve problems twice as large.
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Tractable and Intractable Problems

* Problems are intractable if they cannot be solved by a
polynomial-time algorithm and there is a lower bound on
the running time which is Q (k).

 Example:

— Finding the correct number for a decimal door lock with » digits is
intractable. The time necessary for finding the correct key is
QQ(107). Using a lock with one more digit increases number of
search steps by a factor of 10.

— We have n binary decision variables and assign a random variable
to each solution. Resulting problem is closed under permutation.
Finding optimal solution is ©(log(n)).
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Polynomial and Exponential functions

constant
logarithmic

linear

quasilinear

quadratic

polynomial (of order c)
exponential

factorial

super-exponential

0O(1)
O(log n)

O(n)

O(n log n)
O(n?)
O(n°), c>1
O(k")
O(n!)
O(n™)

JG|U
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NP-hard

JG|U

e All decision problems in P are tractable
e |f we assume that PZNP, then some problems are in NP but notin P.
e They are difficult: no polynomial-time algorithms exist.

 Among decision problems in NP, there are problems where no
polynomial algorithm is available and which can be transformed to
each other in polynomial time.

e Consequently, a problem is denoted to be NP-hard if an algorithm for
solving this problem is polynomial-time reducible to an algorithm
that is able to solve any problem in NP.
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e Aproblem A is polynomial-time reducible to a different problem B if
and only if there is a transformation that transforms any solution of A
into a solution of B in polynomial time such that if and only if a
solution is a “yes” instance for A it is also a “yes” instance for B.

* [nformally, a problem A is reducible to some other problem B if
problem B has same difficulty or is easier than problem A.

e Therefore, NP-hard problems are at least as hard as any other
problem in NP, although they might be harder. Therefore, NP-hard
problems are not necessarily in NP.
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NP-complete

e Cookintroduced the set of NP-complete problems as a subset of NP.
e Adecision problem A is denoted to be NP-complete if

— Aisin NP and

— A is NP-hard.

* No other problem in NP is more than a polynomial factor harder than
any NP-complete problem.

e NP-complete problems are the most difficult problems in NP.
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NP-complete

e All NP-complete problems form one set: NP-complete problems have
the same complexity.

e However, it is unclear if NP-complete problems are tractable, or not.

» Ifwe are able to find a polynomial-time algorithm for any one of the
NP-complete problems, then every NP-complete problem can be
solved in polynomial time.

e Then, also all other problems in NP can be solved in polynomial time
(are tractable) and thus P=NP.

e On the other hand, if it can be shown that one NP-complete problem
is intractable, then all NP-complete problems are intractable and P#
NP (one million Dollar question!).
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Different classes of NP optimization problems

s N
NP TSP
( MAX SAT A
APX  symmetric TSP
vertex cover

- A
Euclidean TSP PTAS

{FPTAS Knapsack}
)

\
> )
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No-Free-Lunch Theorem and Black-box JG|U

optimization

There is a trade-off between effectiveness and application
range of optimization methods

Black-box optimization methods are algorithms that need no
additional information about the structure of a problem but
are able to reliably and efficiently return high-quality
solutions for a large variety of different optimization problems

NFL t
An a

neorem says that Black-box optimization is not possible
gorithm's performance can only be high if (correct)

prob

em-specific assumptions are made about the structure

of the optimization problem and the algorithm is able to
exploit these problem-specific properties.
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No-Free-Lunch Theorem

... for both static and time dependent
optimization problems, the average
performance of any pair of algorithms across
all possible problems is exactly identical. This
means in particular that if some algorithm A,'s
performance is superior to that of another
algorithm A, over some set of optimization
problems, then the reverse must be true over
the set of all other optimization problems
(Wolpert and Macready, 1997)
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No-Free-Lunch Theorem

e Optimization Problem £ X—> ¥
— Xis finite
— Yisfinite and ordered

e Heuristics search method A

e Sequence of solutions generated by H:
/7( f; m) = ((X17 /(Xl))! (’\/27 A’\a))! Ty (Xm7 /(Xm)))
* H generates x ., dependent on A £ m)
— ,Black-Box Algorithm®, solutions are only sampled once
» We observe a sequence of fitness values A1 £ m) = (Ax,), Ax,), ..., 1x,))
 We measure performance of search g
— A H(f m))

-----

e Average performance (over all possible problems f)
— Yo fm))/ | A
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No-Free-Lunch Theorem

e Assumption: £ is closed under permutation
— All possible permutations I'1 of the search space X

M: X2 X
where 11 () = A(TT-1(x))
— M F=M0OF
Example:
f f M f My f M3 f My f Ms
" 1a ° - ° ° °

/[ * ° :> /[ \‘o"'. /[‘ \\b /[‘\o /[0. /[o *
-4-4 4-4-4-  La-4-4- Ly-4-4 -4-1 -4-14
X X X X X X
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No-Free-Lunch Theorem

he average performance of any pair of
algorithms across all possible
problems is exactly identical
(independent on how we measure the performance
of the algorithms)
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Comments on NFL (1)

* Wolpert/Macready: , We cannot emphasize enough that
no claims whatever are being made in this paper
concerming how well various search algorithms work in
practice. “

* However, statements like ,In general, metaheuristic #,
is better than A, “ make no sense.

* An algorithm's performance can be increased if
(correct) problem-specific assumptions are made about
the structure of the optimization problem and the
algorithm is able to exploit these problem-specific
properties.
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Comments on NFL (2)

NFL holds for
* Needle-in-a-haystack problems
* Random problems with trivial topology, ...

The NFL-Theorem does not hold for problems that are not
closed under permutation

 Decomposable problems
* Problems with high locality

* Problems, where neighboring solutions have similar
fitness (Christensen and Oppacher, 2001)
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Difficult of Problems for Heuristics

e Exact optimization methods (like Branch&Bound,
cutting plane, and others) have exponential effort
for NP-complete problems.

e Heuristics are not optimal (no guarantee that
optimal solution is found) but their effort can be
adjusted by user. Solution quality is often good.

e Question:
— What makes problems difficult (easy) for heuristics?

— For which problems do metaheuristics perform better
than random search?
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Number of local optima

e One optimum: unimodal, can often be solved well
by hillclimber

e Even functions with low number of local optima can
be arbitrarily hard. Compare needle in haystack
with sphere, or deceptive traps

 Number of optima no sufficient indicator for
problem difficulty
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Basins of attraction

e Forseveral optima: basin of attraction of local
optimum is the set of solutions from which the local
optimum is reached by a hillclimber (,part of the
same peak”)

* Performance of local search correlates inversely
with size of basin of attraction

e Sphere function: one basin of attraction, usually
simple to solve.
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Measuring the locality of problems

e “Do similar solutions have similar fitness?”
 Locality describes how well the distances d(x,y) between x,y € X
correspond to the differences of the objective values | f(x)- f(v)].

e The locality of a problem is high
— ifneighboring solutions have similar objective values
— and difference of the objective values increases with larger distance

e The locality of a problem is low

— if small distances do not correspond to small differences of the objective
values.
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Measuring the locality of problems

 The important determinants for the locality of a problem are
— the metrics defined on the search space
— and the objective function f

* For continuous decision variables, locality is known as causality. High
and low locality correspond to strong and weak causality,
respectively.
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Locality and guided search

e Guided search methods: iteratively sample solutions and use the
objective values of previously sampled solutions to guide the future
search process

* |n contrastto random search: distinguish between promising and
non-promising areas in the fitness landscape

* New solutions are usually generated in the neighborhood of
promising solutions with high-objective values.

* Mostlocal search algorithms fall in this category
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Locality and guided search

* The locality of optimization problems has a strong impact on their
difficulty for guided search methods.

* High locality allows guided search to find high-quality solutions in the
neighborhood of already found good solutions.

* Moving from low-quality solutions to high-quality solutions works well
if the problem has high locality.

 Ifa problem has low locality, guided search can not make use of
previous search steps

e (Can not extract information that can be used for guiding the search

* Forproblems with low locality, guided search methods behave like
random search.
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Measures of Locality of Search Spaces

e Fitness-Distance Correlation
* Ruggedness
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Fitness-Distance Correlation (FDC)

* FDC measures the difficulty of problems for guided search methods

e The difficulty of an optimization problem is determined by
— how the objective values are assigned to the solutions xr< X and
— what metric is defined on X.
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Fitness-Distance Correlation

The fitness-distance correlation coefficient is defined as

pEDC = — L
TP o (o (dopt)

where
1 ™m
Cfd = — D (fi = () (diopt — (dopt))
i=1
is the covariance of f and dopi. (f), (dopt), o(f), and o(dopt)
are the means and standard deviations of f and dopt, respectively.

di,opt is the distance of solution 2 towards the optimal solution x*.
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Fitness-Distance Correlation

 The fitness-distance correlation coefficient p . € [-1,1] measures

the linear correlation between the fitnesses of search points and their
distances to the global optimum ¢ *

* As p ¢ represents a summary statistic of fand d,; , it works well if f
and d,,, follow a bivariate normal distribution.

* For problems, where fand d,; do not follow a normal distribution,
using the correlation as a measurement of problem difficulty for
guided search methods will not yield meaningful results.
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Fitness-Distance Correlation

e Based on the FDC coefficient, we can classify fitness landscapes into
three classes,
— straightforward (P ppc < -0.15)
— difficult (-0.15< p e < 0.15)
— misleading (0 ppc = 0.15)

e Straightforward:
— Fitness of a solution is correlated with the distance to the optimal solution.
— With lower distance, the fitness difference to the optimal solution decreases.

— The structure of the search space guides search methods towards the optimal
solution

— Such problems are usually easy for guided search method.
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Fitness-Distance Correlation ISl
e Difficult:
— No correlation between the fitness difference and the distance to the optimal
solution.

— Fitness values of neighboring solutions are uncorrelated

— The structure of the search space provides no information about which
solutions should be sampled next by the search method.

e Misleading:
— Fitness difference is negatively correlated with distance to optimal solution

— Structure of the search space misleads a local search method to sub-optimal
solutions.
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Fitness-Distance Correlation

 Different classes of problem difficulty

Q. A o Q. A Q. A
@) [ ) o ] ©C |e
| ¥ - o | ¥ - o | ¥ - o
- [ - [ - [
o o L [
o o o
o o [ [
[ [
[ ] [ ] [ ]
o [ [
® = ® = ® =
d d d
pos. correlation uncorrelated neg. correlation
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Ruggedness

* Forstudying the FDC of problems, it is necessary to know the optimal
solution.

* However, in general the optimal solution is not known.

* The difficulty of problems for guided search methods is influenced by
properties of the fitness landscape like

— the number of local optima or peaks in the landscape,
— the distribution of the peaks in the search space, and
— the height of the different peaks.
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Random walks and ruggedness

e Correlation functions have been proposed to measure the ruggedness
of a fitness landscape.

e Like in fitness-distance correlation, the idea is to consider the
objective values as random variables and to obtain statistical
properties on how the distribution of the objective values depends on
the distances between solutions.
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Ruggedness

e The autocorrelation function of a fitness landscape is defined as

- (f@)f W) a@y)=a — (f)°
D= e e
where ( f) denotes the average value of f overall x € X and

(f(x) f(Y))d(z.y)=a is the average value of f(x) f(y) for all
pairs (xz,y) € S X S, where d(z,y) = d.
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Ruggedness ISl

* The autocorrelation function has the attractive property of being in
the range [-1,1]. An autocorrelation value of 1 indicates perfect
correlation (positive correlation) and -1 indicates prefect anti-
correlation (negative correlation).

 Forafixed distance d, p is the correlation between the objective
values of all solutions that have a distance of d.
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Decomposability

 The decomposability of a problem describes how well a problem can
be decomposed into several, smaller sub-problems that are
independently of each other.
— The decomposability of a problem is high if the structure of the objective
function is such that not all decision variable must be considered

simultaneously to calculate the objective function but there are groups of
decision variables that can be set independently of each other.

— Itis low if itis not possible to decompose a problem into sub-problems that
have little interdependencies between.
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Decomposability

* |fa problem can only be solved by considering all n
variables at the same time, it is not separable

e |f decisions about the next solution to visit can
reliably be made with just considering k<<n

decision variables, the problem is separable

e Separable functions are often easier because less
dimensions/variables depend on each other

* Reduces number of solutions, e.g. 2~ << 27
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Decomposability

e Decomposability is relevant for recombination-based search
methods

 Recombination-based methods try different decompositions of the
problem, solve the sub-problems, put together the solutions for these
sub-problems.

e Forsuch types of optimization methods, decomposability is
meaningful as high decomposability results in low problem difficulty

e Solving smaller sub-problems is usually easier than solving the
larger, original problem.

» Different approaches for measuring decomposability of problems:
— Polynomial decomposition

— Walsh Analysis
— Schemata Analysis and Building Blocks 104
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Polynomial Decomposition JG|U

e The linearity of an optimization problem can be measured by the
polynomial decomposition of the problem.

e [t measures how well a problem can be decomposed into smaller sub-
problem

 For binary decision variables, each objective function f defined on/
decision variables =, € {0,1} can be decomposed in the form

where e, contains 1 in n-th column and 0 elsewhere, 7'denotes
transpose, the a5, are coefficients
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Polynomial Decomposition

* The coefficients «, describe the non-linearity of the problem

 Ifthere are high order coefficients in the decomposition of the
problem, the function is (highly) nonlinear.

 |fthe decomposition of a problem only has order 1 coefficients, then
the problem is linear decomposable.
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Polynomial Decomposition

* |tis possible to determine the maximum non-linearity
of f(x) by its highest polynomial coefficients.

* The higher the order of the o, the more non-linear the
problem is.

* There is some correlation between the non-linearity of a
problem and the difficulty of a problem for
recombination-based search methods

* The order of non-linearity can only give an upper limit
on the problem difficulty.

* There could be high order o, although the problem can
still easily be solved by recombining search methods.
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. “ys GU
Polynomial Decomposition: Example jsi
(1 ifz =00,
2 ifx =01,
f(x)_<4 if z = 10,
10 ifx =11,

f(x)=0y+a,24+0,2,+03x 4z ,=1+2,+32,+52,2,.

» Easy for recombining search methods: two decision variables can be
solved independently of each other.

* The problem is (wrongly) classified as difficult.

 This misclassification of problem difficulty is due to the fact that the
polynomial decomposition assumes a linear decomposition and could
not appropriately describe non-linear (quadratic) dependencies.
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Schemata Analysis and Building Blocks

e Schemata analysis is mainly used in the genetic algorithm domain
e Main search operator of genetic algorithms is recombination

e Schemata are usually defined for binary search spaces and thus
schemata analysis is mainly applicable to problems with binary
decision variables. However, the ideas of building blocks are also
applicable to other search spaces.

e When using [ binary decision variables z,<{0,1}, a schema
h=(h,h.,...,h;) is defined as a ternary string of length

* h,€{0,1,*}. * denotes a“don't care” symbol and tells us that the /th
decision variable is not fixed.
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Schemata

e Aposition in a schema is fixed if thereisaOora 1

e The size or order o(h) of a schema A is defined as the number of fixed
positions (Os or 1s) in the schema string.

» The defining length d(h) of a schema £ is defined as the distance
between (number of bits that are between) the two outermost fixed
bits.

* The fitness f(h) of a schema is defined as the average fitness of all
instances of this schema and can be calculated as

f(h) = o S f @

xch

* Forexample, z=01101 and y=01100 are instances of h=0*1**,

 The number of solutions that are an instance of a schema A/ can be
calculated as 2!,
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Building Blocks

* “highlyfit, short-defining-length schemata”.
 ABB can be described as a solution to a subproblem that can be expressed as a

schema. A thus-like schema has high fitness and its size is smaller than the length [
of the binary solution.

e By combining BBs of lower order, recombining search methods like genetic
algorithms can form high-quality over-all solutions.

e We can interpret BBs also from a biological perspective.

— Using the notion of genes we can interpret BBs as genes. A gene consists of one or more alleles
and can be described as a schema with high fitness. The alleles in a chromosome can be
separated (decomposed) into genes which do not interact with each other and which determine
one specific property of an individual like hair or eye color.

e BBscan be used to describe the difficulty of optimization problems for

recombining search algorithms.

e |fthe sub-solutions to a problem (the BBs) are short (low d(h)) and of low order (low
o(h)), then the problem is assumed to be easy.
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BB-based Problem Difficulty

There are three types of problem difficulty:

Difficulty within a building block (intra-BB difficulty)
Difficulty between building blocks (inter-BB difficulty)
Difficulty outside of building blocks (extra-BB difficulty)
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Intra-BB difficulty

JG|U

e |f we count the number of schemata of order o(h)=k that have the
same fixed positions, there are 2 different schemata.

 Viewing a BB of size k as a subproblem, there are 2* different
solutions to this subproblem.

e Such subproblems can not be decomposed any more and usually
guided or random search methods are applied to find the correct
solution BB for the decomposed subproblems.

* Deceptive Problems (see negative fitness distance correlation) are at
the core of intra-BB difficulty

* The intra-BB difficulty of a problem can be measured by the
maximum length o(h) and size k=o(h) of the BBs h.
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Inter-BB and Extra-BB difficulty

JG|U

e The contributions of different sub-problems to the objective function can be
different. The sub-problems can have a non-uniform contribution to the overall
objective value of a solution.

e Important for inter-BB difficulty.

e A problem can often not be decomposed into completely separated and
independent sub-problems, but there are still some interdependencies between
the different subproblems which are an additional source of inter-BB difficulty.

e Sources of extra-BB difficulty are factors like noise.

e Additional, non-deterministic noise can randomly modify the objective values of
solutions and make the problem more difficulty for recombining search methods as
no accurate decisions can be made on the optimal solutions for the different sub-
problems.

e Asimilar problem occurs if the evaluation of the solutions is non-stationary. Non-
stationary environments results into solutions that have different evaluation values
at different moments in time.
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1. A ShortIntroduction to Representations

1. Defining Representations
2. Representations, Operators, and Metrics

3. Direct and Indirect Representations
2. Design Guidelines for Representations

3. Properties of Representations

1. High-Locality Representations
2. Redundant Representations and Neutral Networks
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Review: Modern heuristics

 Modern heuristics
— Can be applied to a wide range of problems

— Use intensification (exploitation) and diversification
(exploration) steps

* [ntensification steps shall improve quality

e Diversification explores new areas of search space,
also accepting complete or partial solutions that
are inferior to current solution
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Review: Principles of Modern Heuristics

o Start with one or more random solutions

 |niterative steps modify solution(s) to generate one or more
new solution(s)

* New solutions are created by search operators (variation
operators)
e Regularly perform intensification and exploration phases

— During intensification, use objective function value and focus
variation on high-quality solutions

— During diversification, usually objective function values are not
considered. Modify solutions so that new areas of search space
are explored
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Genotypes and phenotypes

* Mendel recognized that nature stores information about an
individual in pair-wise alleles

e Genetic information determines properties, appearance,
shape of an individual

* Distinguish between genetic code and outward appearance

e There is a transformation between the genetic information
(genotypes) and the outward appearance (phenotypes)

e Transformation is called a ,,representation®
* Representations map genotypes on phenotypes
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Defining representations (1)

e Arepresentation assigns genotypes to corresponding
phenotypes.

e Everysearch and optimization algorithms needs a
representation.

* The representation allows us to represent a solution to a
specific problem.

 Different representations can be used for the same problem.

e Performance of search algorithm depends on properties of
the used representation and how suitable is the
representation in the context of the used genetic operators.
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Defining representations (2)

 An optimization problem f(x) can be separated into a genotype-
phenotype mapping f, and a phenotype-fitness mapping f,

fo(@g) : @9 — p,
fo(xp) : @ = R,
where f=f,0f,= £,(f,(x,)
* Achange of f also changes the properties of f

* The genetic operators mutation and crossover are applied to =,
whereas the selection process is based on the fitness of T,

. fp (x,) determines the fitness and complexity of the problem
* f,(z,)determines the used representations
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Standard genotypes: Binary genotypes

e Commonly used in Genetic Algorithms

 Recombination is main operator, mutation is background noise

* Searchspaceis @ = {0,1} where | is length of a binary vector
9 =(:1:91 yenny xgl)

* Representation depends on problem to be solved

e (Often natural for combinatorial problems

* When using binary representations for integers, decide between
unary, Gray, or binary.

 When using binary representations for floats, precision
depends on number of bits in genotype.
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Standard genotypes: Integer genotypes

e Use y-ary alphabet instead of binary, where
{xeN|x >2} can also be used in phenotypes

* Instead of coding 2’ solutions, size of search space
becomes !

 Recommended when phenotype is integer
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Standard Genotypes: Continuous genotypes

* The search spaceis @ = R!where | is the size of the real-
valued vector

o Often used in evolution strategies, nonlinear numerical
optimization, rely on local search

e Can also encode permutations, trees, schedules, or tours.a

123



Representations - Intro

Representations make the difference

Representations change
the character and
difficulty of optimization
problems

Eg. f,=x,zEN

Different problem
depending on the used

fitness

o = -2 (5] =
| | I [
T T T —

binary

\

representation

3
2
1
0
0

fi

4+
3
7+
1
0

' | | =
000 001 010 OI1 100 Xg

4__

JG|U

tness

fitness ®

® I I I I —
00 001 010 011 100 *g
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Representations make the difference (2)

* Phenotypic problem easy to solve for hill-climber.

e When using bit-flipping GA the Gray-encoded problem
Is easier to solve than the binary-encoded problem.

* Gray encoding induces less local optima when used on
problems of practical relevance (compare Free Lunch
theorem).

e Search performance depends on used search method.
If other search methods (e.g. different operators) are
used, then search performance is different
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Representations, Operators, Metrics

* Representation, metric defined on ¢ and ¢, and genetic
operators depend on each other and are closely related.

— Arepresentation is just a mapping from & to &, . It assigns any
possible z € dﬁg toanx,c P,

— In both search spaces, QSQ and @p, a metric is or has to be
defined. The metric determines the distances between the
individuals and is the basis for measuring similarities between
individuals. In general, the metric used for @, is defined by the
considered problem. The metric used for 459 Is determined by the
used search operators.

— Genotypic operators like mutation and crossover are defined
based on the used metric
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Representations, Operators, Metrics (2)

 Mutation:

— The application of mutation to an individual results in a
new individual with similar properties. There is a small
distance between offspring and parent.

e Crossover:

— Crossover combines the properties of two or more
parents in an offspring. The distance between offspring
and parent should be equal or smaller than the distance
between both parents.
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Representations, Operators, Metrics (3)

e Results:

— Metric on 459 and used operators depend on each other.
The one determines the other.

— Representations “transform” the metric on ¢ to the
(problem dependent) metric on d5p. (Compare locality,
causality, and distance distortion)
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Direct representations

 Ifthe genetic operators are applied directly to the phenotypes it is not
necessary to specify a representation and the phenotypes are
identical with the genotypes:

fo(@g) : @5 — Py,
fo(xy) : &5 — R.

This means, f is the identity function f (x )=z . Using direct
representations do not neccessarily make life easier:
— Design of proper operators is difficult

— How can we apply specific types or EAs (like EDAs)?
— Representation issues are not important any more @g = gﬁp and fg(:z: g)=:13 g).
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Direct representations - Genetic Programming

e Representation issues are also relevant to Genetic
Programming.

* Phenotypes: Programs, logical expressions.
Genotypes: Parse trees, bitstrings, linear structures, ...

* Neglecting proper genotype-phenotype mappings can result
in low performance of GP approaches.

e Example: Standard GP (expression tree representation and
subtree swapping crossover) cannot solve problems where
optimal solutions require very full or very narrow trees. This is
due to problems of the representation (interplay between
genotypes and used search operators).
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Benefits of Indirect representations

e The use of an explicite genotype-phenotype mapping has some
benefits:

— specific constraints can be considered.

— Standardized genetic operators with known behavior and properties can be
used.

— Anindirect representation is necessary if problem-specific operators are either
not available or difficult to design.

— Representation can make problem easier by incorporating problem-specific
knowledge.
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Specific constraints

e Example: Tree optimization problems
o Atreeis afully connected graph with exactly n—1 links (for an n node
network). There are no circles in a tree.

e Agraph can be represented by its characteristic vector.

N N

\iﬂ,‘/‘ "\C/

TN O N
'\._B/" ‘\._I_)/ '\_]f:/'
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Specific constraints (2)

JG|U

Prifer numbers are a one-to-one mapping between trees and a
sequence of integers (like other Cayley codes). A tree with n nodes is

represented by a string of length n—2 over an alphabet of n symbols.

Therefore, using Priifer numbers allows us to consider the constraint
that the graph is a tree (For other representations repair operators are

necessary).

3
Priifer number o 6{@ %
22373 C @
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Standardized operators

e When mapping many different types of phenotypes on only a
few types of different genotypes (binary, integer, or
continuous representations), it is possible to use
standardized operators.

e Behavior of EAs for standard representations like binary
(simple GAs) or continuous (evolution strategies)
representations well understood.

e Mapping phenotypes on binary genotypes allows the use of
schemata and effective linkage learning GAs (under the
assumption that the problem still remains decomposable and
that binary encodings allow a natural encoding of the
problem).
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Problem-specific operators

Developing of problem-specific
operators is difficult and often
additional repair mechanisms
must be used to ensure a valid
solutiona

3.3 Complote with cdges
from £y (Bl L B 1

Figure 20 An cxaniple foredge crossover (d = 3.
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Problem-specific operators (2)

* Forsome types of problems no problem-specific operators exist that
can be applied to direct representations

Generation: 1340

Ouality: 9.816E+D2
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Indirect Representations - Problem-specific JG\U
Knowledge

* Incorporating problem-specific knowledge in the
representations to increase GA performance:

— Increase the initial supply of solutions that are similar to the
optimal solution.

— Use high-locality representations for easy problems.

— Consider specific properties of the optimal solution (e.g. stars
and trees).

— Use representations that make a problem easier for a
specificoptimization method.
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Goldberg's Recommendations

JG|U

Principle of meaningful building blocks: The schemata should be
short, of low order, and relatively unrelated to schemata over other

fixed positions.

Principle of minimal alphabets: The alphabet of the encoding should
be as small as possible while still allowing a natural representation of
solutions
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Goldberg's Recommendations (2)

* The recommendations caused a lot of critics
— What is a natural representation of a problem? (For example, is using binary
representations for encoding real-valued phenotypes a natural
representation?)

* Principles mainly aimed at binary representations and
crossoverbased GAs that process schemata. No big help for other
search methods like evolution strategies or evolutionary
programming as these search methods do not process schema.
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Radcliffe's recommendations

* Representation and operators belong together and can not be
separated from each other.

e Design of representation-independent evolutionary
algorithms is possible if the following properties are
considered

— Respect: Offspring produced by recombination are members of all
formae to which both their parents belong.

— Transmission: Every gene is set to an allele which is taken from
one of the parents.

— Assortment: Offspring can be formed with any compatible
characteristics taken from the parents.

— Ergodicity: Iterative use of operators allows the search method to
reach any point in the search space.
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Representation Invariant Genetic Operators

* Fact: Performance of genetic algorithms using one-point crossover
depends on order of objects (e.g. knapsack problem). Thus, one-point
crossover is not invariant under changes in the order of objects.

e Evolutionary operators are invariant with respect to a set of
representations if EA performance is independent of used
representation (how objects are encoded).

* Rowe proposes an approach to generate invariant search operators.

e Examples for appropriate (representation-independent) search
operators for some types of problems (subset problems, permutation
problems, and balanced partition problems).
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Palmer's Recommendations

* Anencoding should be able to represent all possible phenotypes.

* Anencoding should be unbiased in the sense that all possible
individuals are equally represented in the set of all possible
genotypic individuals.

e Anencoding should encode no infeasible solutions.
* The decoding of the phenotype from the genotype should be easy.

e Anencoding should possess locality. Small changes in th genotype
should result in small changes in the phenotyp (compare statements
about metric).
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Ronald's recommendations

JG|U

Encodings should be adjusted to a set of genetic operators in a way
that the building blocks are preserved from the parents to the
offspring

Encodings should minimize nonlinearities in fitness functions. This
means, representations should make the problem easier (for local
search methods!).

Feasible solutions should be preferred.
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Ronald's recommendations (2)

e The problem should be represented at the correct level of
Abstraction.

* Encodings should exploit an appropriate genotype-phenotype

mapping process if a simple mapping to the phenotype is not
possible.

e |somorphic forms, where the phenotype of an individual is encoded
with more than one genotype, should not be used.

144



Representations — Design Guidelines

JG|U

Design Guidelines - Summary

e Based on observations for specific test problems there are some
common, fuzzy ideas about what is a good representation.

* Some recommendations are too general to be helpful for designing or
evaluating representations.

* Analytical models describing the influence of representations on EAs
are on their way.

 To verify (or reject) observations analytical models are necessary.
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Design Guidelines - Summary

e Based on observations for specific test problems there are some
common, fuzzy ideas about what is a good representation.

* Some recommendations are too general to be helpful for designing or
evaluating representations.

* Analytical models describing the influence of representations on EAs
are on their way.

 To verify (or reject) observations analytical models are necessary.
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Locality

e Representations (genotype-phenotype mappings) can change the
neighborhood and the structure of the fitness landscapes.

e Aneighbor can be reached directly by a move (mutation, crossover,
etc). Therefore, the neighborhood depends on the used
operator/metric.

* The set of neighbors can be different for genotypes and phenotypes.

e The distance between two individuals is determined by the number of
moves between both individuals.
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Locality of a Representation

e The locality of a representation describes how well
neighboring genotypes correspond to neighboring
phenotypes.

 Locality of a representation is high, if neighboring genotypes
correspond to neighboring phenotypes.

e Locality, causality, and distance distortion describe how well
the metric on & fits to the metric on @ . If they fit well,
locality is high.

* Representations f that change the distances between
corresponding genotypes and phenotypes modify the
performance of particular optimization problems (method
performance(f) # method performance( 1, )).
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Different Phenotype-Fitness Mappings

e C(Class 1: Fitness difference to optimal solution is positively correlated
with the distance to optimal solution. Structure of the search space
guides local search methods to the optimal solution — easy for
mutation-based search.

e (Class 2: No correlation between fitness difference and distance to
optimal solution. Structure of the search space provides no
information for guided search methods — difficult for guided search
methods.

» C(Class 3: Fitness difference is negatively correlated to distance to
optimal solution. Structure of search space misleads local search
methods to sub-optimal solutions — deceptive problems
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Different Phenotype-Fitness Mappings (2)

—f
f
—f]

opt
L]
opt

¢
¢
r

pos. correlation uncorrelated neg. corelation

P erformance

____mutation— based search

P random search

problem

no correlation
(class 2)

pos. correlation
(class 1)

neg. correlation
(class 3)

difficulty
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Low versus High-Locality Representations

(" A high locality low locality
e 1B a b ¢ d - S
S & 2 2 |la b ¢ d o k ¢ d
& = e f g h z = _
L B IR Ot
/\ aadaf{l jJ k 1) (e j g 1)
tg
w1 ™ o
, 8A B CD L. A& C 1 s g "
SZ/EF GH| |[DF KH e« g (& 1D
g wn kI J K L_/ ,\_E J B G; § E
high locality low locality ol ku J K L Y,
Influence of high versus low-locality Effect of mutation for high
representations on genotype- versus low-locality
phenotype mappings representations
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Low versus High-Locality Representations (2)

e (lass 1:

— High-locality representations preserve difficulty of problem. Easy problems remain easy
for guided search.

— Low-locality representations make easy problems more difficult. Resulting problem
becomes of class 2.

e (lass 2:

— High-locality representations preserve difficulty of problem. Problems remain difficult
for guided search.

— Low-locality representations on average do not change class of problem. Problems
remain difficult.

e C(lass 3:
— High-locality representations preserve deceptiveness of problem. Traps remain traps.

— Low-locality representations transform problem to class 2 problem. Deceptive problems
become more easy to solve for guided search.
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Example
* Both, genotypes and genotypes  phenotypes fitness
phenotypes are binary. (000 £000— ()
e 0
e We use the bit-flipping 001 + =001 ~
operator as a move 010 - 010-§\§ |
(Hamming distance). 011 F—=011 \>< |
e (One-max problem (class 1). 100 = =100 s,
n . - - - 4 - ) ._____'/—/
* Al building blocks 101 =101~
i 110 +110"
(regarding genotype§ and_ HoT el I
phenotypes) are of size k=1. 111 T111
. ~— £ ./ £ —/
Therefore, problem is easy g P

for selectorecombinative
GAs
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Example
e Arepresentation with genotypes phenotypes fitness
. N R '
lower locality. 000 w:><:vooo — L,
* The neighborhood 001" 7001 “ﬂ\
structure changes. 07007 — =
L 011 < =011~
* Not all genotypic building 100k 100/><
blocks are of size 1. 014101 ﬁ7f’? 2
Although, f remains 1104+ 10—
unchanged, f becomes M+ iy —713
more difficult for guided I P P —
search.
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Example

fitness

31
21
11

O. 1 1 1 1 1 1 1
000 001 010 O11 100 101 110 111 X,

fitness

3

2
|

O ® I I I I I I
000 001 010 OI1 100 101 110 111 X,

JG|U

High-locality representation.

Problem easy for
Selectorecombinative GAs.

Different fitness for
genotypes 000 and 001.

Problem more difficult for
selectorecombinative GAs.

Neighborhood not preserved
by representation.
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Example
000
 Neighborhood structure ool olo 100
of the genotypes O‘ﬁ?ﬂo
T
111
* Resulting neighborhood o%//om 10|0
structure of phenotypes 011 101 110

111
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Comparing representations

 We compare the performance of selectorecombinative Gas over all
different representations for the one-max problem.

* When focusing on binary bitstrings and assigning [-bit genotypes to (-
bit phenotypes, there are 2!! different representations.

e For[=3 there are 8 different genotypes, resp. phenotypes, and 8! =
40, 320 different representations.

36 different representations result in the same overall problem f (for
the one-max problem).
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Comparing representations

* Toreduce problem complexity, =, = 111 is always assigned to
xp=111. Therefore, there are 7! = 5040 different representations.

e We concatenate ten 3-bit problems and use a GA with tournament
selection of size 2, uniform crossover, and /N=16.
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Comparing representations
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Summary

* When using high locality representations, genotypic neighbors
correspond to phenotypic neighbors.

* High locality representations do not change the structure and
difficulty of the problem.
— Easy problems remain easy.
— Difficult problems remain difficult.

— Locality depends on the used distance metrics which depend on the used
operators.
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Redundant representations

* Representations are redundant if the number of genotypes is larger
than the number of phenotypes.

— Using redundant representations f means changing /= 1, (f,)- There are
additional plateaus in the fitness landscape.

— Redundant representations are more “inefficient” encodings which use a
higher number of alleles but do not increase the amount of encoded
information.

— Redundant representations are not an invention of Al researchers but are
commonly used in nature.
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Redundant representations (2)

* There are different opinions regarding the influence of redundant
representation on the performance of EAs.

 Redundant representations reduce EA performance due to loss of
diversity (Davis, 1989; Eshelman and Schaffer, 1991; Ronald et al.,
1995)

e Redundant representations increase EA performance (Gerrits and
Hogeweg, 1991; Cohoon et al., 1988; Julstrom, 1999)
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Redundant representations (3)

e Large amount of work considers the neutral theory (Kimura, 1983). This theory
assumes that not natural selection fixing advantageous mutations but the random
fixation of neutral mutations is the driving force of molecular evolution.

* Following these ideas redundant representations (neutral networks) have been
used in EAs with great enthusiasm.

e There was hope that increasing the evolvability of a system also increases the
performance of the system

e Thisis not true!
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Redundant representations (4)

Genotype Space

* Neutral Network: Set of
genotypes connected by
single-point mutations
that map to the same
phenotype

Different phenotypes encountered along random

neutral walk:

P, B B
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Guide

* |nthe following slides we study

— how to distinguish between synonymously and non-
synonymously redundant encodings

— how synonymous redundancy changes performance of
Eas (quantitative predictions), and

— the properties of non-synonymously redundant
representations
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Redundant representations (5)

* Benefits of Neutral Networks
— Population can drift along these neutral networks.

— Reducing the chance of being trapped in sub-optimal
solutions.

— Population is quickly able to recover after a change has
occurred.

— Evolvability and connectivity of the system increases.

 Problems

— Higher evolvability and connectivity — Randomization of
search

— Genetic drift?
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Synonymously versus non-synonymously
redundant representations

e When using redundant
representations it can be

distinguished between: * =

— Synonymously redundant IH*DP 0 = __
representations: All genotypes that ) ”
enr::ode the same phinoty)rl)z are ‘/’ f;\*
similar to each other. o0 x : "e eomE

— Non-synonymously redundant .D-:gxg.'_._ *‘-D::c.lx“: .
representations: Genotypes that k D, °c, L I D, ° oo *m |
encode the same phenotype are not R "ﬂnﬂ_ﬁ}mﬂ}mﬂm

similar to each other.
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Synonymously versus non-synonymously
redundant representations

e Non-synonymously redundant N P
. C ) C o
representations do not allow | X m X
i || ||
guided search. o, co o, cF
— EA search becomes random. J N
— Similar effect as low locality fy fo
representations. (B o ® |[%Ta w® o
¢ € iy ® : \ X . .- 1 i' .c e X :
'y o = n B X 4= n
- I o ._.I.»- N : 1 o HIHC C
(I)g 0 00’,0\‘. n (I)g & UX,('D'&] n
o AN J
SYNonymous Non—synonynous

Effects of small
mutation steps
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Synonymously versus non-synonymously JG|U
redundant representations

e (Choiand Moon, 2003) defined uniformly redundant encodings that
are maximally non-synonymous and proved that such encodings
induce uncorrelated search spaces (fitness distance correlation is
equal to zero).

* Fora maximally non-synonymous redundant encoding, the expected
distance between any two genotypes that correspond to the same
phenotype is invariant and about equal to the problem size n.

 Normalization (transformation of one parent to be consistent with the
other) can transform uncorrelated search spaces into correlated
search spaces with higher locality.
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Synonymously versus non-synonymously JG|U
redundant representations

* Some selected examples for problems with maximally non-
synonymous redundant encodings :

— Partitioning problems in graphs: k subsets are represented by integers from 0
to £—1 where nodes are contained in the same group if they are represented by
the same number.

— Each phenotype is represented by k! different genotypes. HIFF problems

(Watson et al., 1998): binary encoding where each phenotype is represented
by a pair of bitwise complementary genotypes.

— TSP: Order-based crossover, in which vertices are indexed from 1 to » and

each tour is represented by a permutation of the vertex indices. Each
phenotype is represented by 2n genotypes
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Modeling redundant representations

* Synonymously redundant representations can be described
using
_ __ log |®,]
order of redundancy k, = Tos 5]

— over-, resp. underrepresentation r of the optimal solution due to
the problem representation f .

* When using the notion of BBs and binary representations:

_ kg

T kp
— r: Number of genotypic BBs of order &, that represent the optimal
phenotypic BB of order k.
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Modeling redundant representations

e k=2 (order of phenotypic BBs)

e k=2 (0ne allele of a phenotype is represented using
two alleles of a genotype)

* Uniform redundancy: r=4 (the best BB (e.g.. =, = 11)
is represented by four genotypic BBs)

genotypes x4 Tp
00 00, 00 01, 01 00, 01 01|00
10 00, 1001, 1100, 1101|110
00 10, 01 11,00 11,01 11|01
10 10, 10 11, 1110, 11 11|11
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Modeling redundant representations

e k=1 (order of phenotypic BBs)
* k=3 (One phenotypic allele is represented using three genotypic
alleles)

e Non-uniform redundancy: =1 (best BB (x, = 1) is represented by one
genotypic BB (x, = 111))

genotypes x4 Tp
000, 001, 010, 100, 101, 110, O11| O
111 1
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Population sizing for GAs

 The Gambler's ruin model (Feller, 1957) can be used for modeling the
iterated decision making in GAs.

* Agambler with initial stake =, wishes to increase his funds to a total
of N units by making a sequence of bets against a gaming house.
Each bet has fixed probability p of winning (¢ =1—p of losing), and we
wish to know the probability of succeeding (getting /V units) or failing
(losing all units).

e Following (Harik et al., 1997) the probability that a GA with a
population size [V converges after tconv generations to the correct
solution is (a/p)"0

_ 1-(q/p)"
P = 1-(q/p)N
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Population sizing for GAs (2)

e After some calculations we get:

~ k—1 cppVTm/
N ~ =2 In(a) #BEY

* Nisthe necessary population size, « =1 — P the probability P,
that the optimal BB cannot be found (probability of failure) and k£ is
the order of the BBs.

e opgg (variance of BBs), d (fitness difference between best and second
best BB), m'=m—1 (number of BBs) and & are problem-dependent.
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Population sizing for GAs (3)

e 150-bit one-max problem
(k-l O'BB_O 25 d=1and m= 150)

I ==
: -+ ——-‘_:_ :
.--i'" |,-
—_ gl
L] S L 1
N i i
o : :
W] ' '
! i
o
o i
@ :
B fod .
: |
o] E
L] H
5 L -
E :
o
=
D - B e hat B it et T R |
8‘ i i i i i i i
S / prediction gamblers ruin model
experimental results ---+
D? 1 1 1 1 1 1 ] ] ]

10 15 20 25 30 35 40 45 50 55 60

population size N
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Population sizing for GAs (4)

e Ten concatenated 3-bit deceptive traps
(k=3, ogg = 1, d=1 and m=10)

1 L I £
N : : : : ’r’;_;,i_,-—‘ : :
@© o
= i
=
@ : . . : . . .
! i i i i i i i i
= 0.8 ot S S .
fQ : 7 : ; ; ; ; ;
a ! B ! - - : : :
o P
3 ¥
= S/
8 78720
B 0.6 [t o I .
c e a e e e e e
=
o A e oo e K e
=4 T/ prediction gamblers ruin model
experimental results ---+---
D4 UL | ] | ] ] ] ] |

10 20 30 40 50 60 70 80 S0 100

population size N
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Population sizing for GAs (9)

 Now we have to ask how the redundancy of a
representation influences GA performance?

* Observation: Redundant representation change the
initial supply x  of BBs.

* Forbinary problem representation:
Lo — N =

Ak k

where /V is the population size.
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Population sizing for GAs (6)

* When using synonymously redundant representations the existing
model can be extended:

N~ — okrk—1

oppvVrm/
In (o) F2EY

* The population size [V that is necessary to find the optimal solution
with probability P =1-«

)

P
T

goes with O (2
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Population sizing for GAs (7)

e Conclusions from this model:
— Redundant representations can change the performance of EAs.
— If representations are synonymously redundant:
 Uniformly redundant representations do not change the performance of EAs!
 |fthe optimal BB is overrepresented GA performance increases.
 |fthe optimal BB is underrepresented GA performance decreases.
* Redundant representations can not be used systematically if there is

no problem-specific knowledge!
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Example: Trivial voting mapping

* The trivial voting mapping (TVM) assigns binary phenotypes to binary
genotypes.

 One bit of the phenotype is represented by £ . genotypic bits.

* Ingeneral, a phenotypic bit is O if less than u genotypic bits are zero.
If more than u genotypic bits are 1 then the phenotypic bitiis 1.

* Foru=£k /2 the value of the phenotypic bit is determined by the
majority of the genotypic bits (majority vote)
* Ingeneral:
P 0 if Z?;Bl xiriﬂ. < u
’ 1 if 25;61 Th iy 2 Us

where uc {1,...,k }.
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Representations — Redundant Representations

Examples
e k=1
o L =3 genotypes g4 Tp
r 000, 001, 010, 100 [ O
* Uu=2 110, 101, 011, 111 | 1
° k:]_ genotypes x4 T
000 0
e k£.=3 001, 010, 100,110, 101, 011, 111 1
e u=1
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Representations — Redundant Representations

Trivial voting mapping (3)

1
th-
0.9
W
m
m
O 0.8 4
8 ¥
E :
-
o 07 . . .
8 predicfion k=1 (nd redundanc&) —
g_ k=1 (no redundancy) +--o---
06 A TVM (r=2, uniform redundancy) -----!
) P prediction TVM with u=2 (r=1) 7]
VA TVM with u=2 (r=1) %
1/ é prediction TVM with u=1 (r=3) -------
v 5 TVM with u=1 (r=3) +-&-!
0.5 - . ' ! ' L
10 20 30 40 50 60 70

population size N

e Experimental and theoretical results of the proportion of correct BBs on a
150-bit one-max problem using the trivial voting mapping for £, =2.
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Representations — Redundant Representations

Trivial voting mapping (4)

1 H;-_--_--_---_~$+_:_—_—%_—.Ek—_—:—:g—_ﬂi'—_———g-—r——% ————— e e —— 8 &
0.9 i3 e """""""""""" """" A - _'_'_';c
X : ; : T
e : ; ; - T 1
» 1 i et
m 08 ‘?a’f:""" .____._.__._!__.__.___.__._.__._._.._,i ______________________ ,' ____________ 1:___:._.:-'-:"'5 j__"__, __________ . ___
@ . , LA i
i T : a - s e
Q07 b T T s
g i ; i ;
U ' . H . o . .
©
E 0.6 [ e B e iiinn -
S E I : :
8 P predu:ﬁon k =1 (no redundancy)
e 0.5 k=1 (no redundancy) +--o--— 7

'- TVM (u=2, r=4, uniform redundancy) *
predlctlon TVM with u=3 (r=1)

04 TVM with u=3 (r=1) +—%-—1 7
] _ prediction TVM with u=1 (r=7) -----
R T TVM with u=1 (r=7) - i
03 - I | 1 i |

10 20 30 40 50 60 70

population size N

e Experimental and theoretical results of the proportion of correct BBs on a
150-bit one-max problem using the trivial voting mapping for k£, =3.

184



Representations — Redundant Representations

Trivial voting mapping (5)

o = ! rm sl = & s
L i L - H— ___gi__%ﬁ:_%;:g..%“ Aé
e - I_.--—‘ I i Lo T
" T é q“ Lo
' T PR Tl ptjedlctlon K=1 (no redundancy)’
0.8 Fm B ﬂ? J_ k =1 (no redundancy) r--o—
» + K i 4 TVM (r=8, uniform redundancy) t-->---!
@ | AR prediction TVM with u=2 (r=1)
- T ] TVM with u=2 (r=1) +—%—
@ 06 F/l il i prediction TVM with u=1 (r=27) ----- i
5 . TVM with u=1 (r=27) & -\
- | 1T
c . T e
i e -
g 04 oy - i i : ;ké'b ] ! T # .
3 ' T L "'""!e__*__ IR
a - b i ** i Pl i
02 b Todid b e L S S S S S S -
| /;ie-_-_‘.‘i'-* *'Tf : JI- &
L
i i
0 b [ IS WSS SO (S S [E—  E— .

10 20 30 40 50 60 70 80 90 100

population size n

e Experimental and theoretical results of the proportion of correct BBs
for ten concatenated 3-bit deceptive traps and &, = 2.

185



Representations — Redundant Representations

Trivial voting mapping (6)

: predi:ction kr=:1 (no re:dundant::yr S

w
m
m
0 )
o] k=1 (no redundancy) r--o---
2 TVM (u=2, r=64, uniform redundancy) -->---
o prediction TVM with u=3 (r=1)
IS TVM with u=3 (r=1) F—%—1 ____
5 prediction TVM with u=1 (r=343) ------
= . TVM with u=1 (r=343) +--&--!
S
0.2 o S B S
T S R T
+ [ i [ i i I |
- — i : = =TT —:—H—‘— '*‘_ 3
B O A S f B !
--------- Lo Bl code I

population size n

e Experimental and theoretical results of the proportion of correct BBs for ten
concatenated 3-bit deceptive traps and £, = 3.
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Representations — Redundant Representations

JG|U

Population sizing for GAs (8)

 What must be considered when using redundant
representations?

— How does the used representation change the size of
the search space?

— Is the representation synonymously redundant?
— Are some solutions overrepresented?

e Examining these properties allows the user to
increase the performance of EAS!
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Representations — Redundant Representations

JG|U

Summary

* There are theoretical models that allow us to predict the
expected GA performance when using redundant
representations (V= O(2*" /r)).

* There are guidelines for the design of redundant
representations:

— Do not use non-synonymously redundant representations!

— If you use redundant representations you have to investigate:
* How does the representation change the size of the search space?
 Are solutions similar to the optimal solution overrepresented?
 Ifthere is no knowledge about the optimal solution use
a uniformly redundant representation.
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Search Operators

1. Design Principles
1. Local Search Operators
2. Recombination Operators

2. Standard Search Operators
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Search Operators — Design Principles Local Search Operator

JG|U

Recap: Design of Search Operators

 Mutation:

— The application of mutation to an individual results in a
new individual with similar properties. There is a small
distance between offspring and parent.

e Crossover:

— Crossover combines the properties of two or more
parents in an offspring. The distance between offspring
and parent should be smaller than the distance between
both parents.
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Search Operators — Design Principles Local Search Operator

JG|U

Local search operators

e Goal: find fitter individual by performing neighborhood search
e Local search creates offspring that are similar to parents
e Metric and operator thus depend on each other

e A metric defines possible local search operators and a local
search operator determines the metric

e Assumptions:

— structure of metric/fitness landscape has to guide search towards
optimal solution

— Good solutions can be found by a series of small steps

— Good solutions are typically clustered, so that they can be found
in the neighborhoods of other good solutions
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Search Operators — Design Principles Local Search Operator

JG|U

Local search for binary genotypes

e Distance between two solutions often measured by Hamming
distance d(x,y)

e Local search usually generates solutions with d=1

o ,Standard mutation or ,bit flipping"“
e [-bit string has [ neighbors
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Search Operators — Design Principles Local Search Operator

Local search for integer genotypes

* Fordifferent metrics, different operators are necessary

e Binary Hamming metric
— Two solutions are neighbors if they differ in one decision variable.

— Operator based on this metric can randomly change one decision variable.
— Solution z< {0,...,k} has [k neighbors.

— Example: z=(0,0) with =, = {0,1,2} has four neighboring solutions
((1,0),(2,0),(0,1),(0,2)).
e (City-block metric:

— Local search can slightly decrease or increase one of the decision variables
(adding +/-1).

— Each solution of length [ has at most 2/ neighbors. Example: x=(0,0), z.€
{0,1,2} has 2 neighbors ((1,0),(0,1))
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Search Operators — Design Principles Local Search Operator

JG|U

Local search for integer genotypes

 Different when operator exchanges values of two decision variables
L X

e Using Hamming distam‘ie- two neighbors have distance d=2, each
solution has at most (2) different neighbors

e 2=(3,5,2) has 3 neighbors ((5,3,2),(2,5,3),(3,2,5))
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Search Operators — Design Principles Local Search Operator

Local search for continuous genotypes

e Analogue to integer genotypes

 Hamming distance: assign random variable
x,C [z ] to 2-th decision variable

man ! xmax

e We can also define exchange operator

» Using city-block metric is a bit more complex
— Search step should not be too small (we want progress)

— ...and not too large (offspring should be similar to parent)

— Add random variable with zero mean: usually Gaussian with 4=0, and standard
deviation o controlling ,,step-size“
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Search Operators — Design Principles Recombination Operator

JG|U

Recombination operators

* Requires a population of solutions
e (Goalisto combine meaningful properties from >1 parents
* Like local search, recombination-based search is based on a metric

e Given two parents xP*, 2 and one offspring x°, recombination should be
designed such that

max(d(xP*, x°), d(xP?, 29) < d(xzP*, 2P?))

o Offspring should be ,between the parents”

e Why use recombination?
— Real-world problems are often decomposable

— Large problems can be solved by decomposing it into smaller sub-problems (that
are usually easier to solve) and combined to form overall solution
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Search Operators — Design Principles Recombination Operator

Common recombination operators

Crossover point Crossover points
271060 7 | 9123 2 27106 7 | 9 |23 | 2 271061 719 123 2
43107110 5 17| 1 4310710 5 |17 1 430710 5 |17 1
Parent solutions Parent solutions Parent solutions
| | N
_= <= <_=
271060 7|9 |17 1 2710710 5 23| 2 43106 7 | 5|17 2
4310710} 5 |23 ] 2 43106 7 |9 |17 1 2710711019 (23| 1
Offspring solutions Offspring solutions Offspring solutions
(a) one-point crossover (b) 2-point crossover (c) uniform crossover
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Search Operators — Design Principles Recombination Operator

JG|U

Intermediate recombination

e Uniform and n-point crossover can be applied independent of type of
decision variable (binary, discrete, continuous...)

e |n contrast, intermediate recombination operators try to
blend/average over several parents. We explain arithmetic crossover.
e Fortwo parents x*, x2, offspring is

20 = az? + (1 — a)zP*, a € [0,1]

7 9
« Formparents, z0=" a;z? 3" ;=1

7 )

» Takes weighted average of parents’ decision variables
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Search Operators — Standard Operator

JG|U

Standard search operators

* We provide an overview of operators for standard search
spaces

* (Can be genotypes or phenotypes (direct representation)
* Ordered by increasing complexity
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Search Operators — Standard Operator

Strings and Vectors

e Ordered lists of decision variables of fixed or variable length
e Often used

e Appropriate for sequences of characters or patterns. objects are
modeled as
— text,
— characters,
— patterns.

e (Can use standard local search and recombination-based operators
based on (binary) Hamming metric

 Iflength is variable, Levenshtein distance can be used
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Search Operators — Standard Operator

Coordinates and Points

* Representlocations in geometric space
* Integer or continuous
e Often: locations of cities or other spots on a 2d-grid

e Appropriate for problems that work on
— sites,
— Positions, or
— locations.
e Standard local and recombination operators for continuous decision
variables or integers

 Euclidean metric
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Search Operators — Standard Operator

JG|U

Graphs

e Represent relationships between arbitrary objects

e Structure can be described as list of edges (with n nodes, there are
n(n-1)/2 possible edges)

e Appropriate for problems that seek a
— network,
— graph, or
— relationship
e Common genotype is binary list of length n(n-1)/2

« Standard operators are based on Hamming metric: number of
different edges

* |f no additional constraints: standard search operators are
applicable
202



Search Operators — Standard Operator

JG|U

Subsets

* Selections from a set of object; order of elements in set does not matter
e Givenn objects, there are  subsets of size £ and 2" different
subsets. (Z)

* Subset of fixed size k£ can be represented by an integer vector x of
length &, where the x; indicate the selected objects and x # x, for i# j
and,7¢ [1,k]

e Appropriate for problems that seek a

— cluster, collection, partition, group, packaging, or selection.

e (Can use standard local search if each selected object is unique

e Recombination operators are difficult (Falkenauer, 1998; Choi and
Moon, 2003)
— Each subset is represented by £! different genotypes
— Redundancy 203



Search Operators — Standard Operator

Permutations

e Orderings of items,
e n!permutations of n objects
e Many permutation problems are relevant but NP-hard

e Used in problems that seek an
— arrangement, tour, ordering, or sequence.

* Design of operators is demanding

 Often, an integer genotype of length . is used, where =, denotes an
object and has a unique value

e Standard operators fail: offspring usually is no permutation
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Search Operators — Standard Operator

JG|U

Permutations

e Permutation-specific operators are based on absolute or
relative ordering.

— Absolute ordering: Two solutions are similar, if objects have same
absolute position

— Relative ordering: Two solutions are similar, if relative order of
pairs is similar
* Order crossover, partially matched crossover, ... there are
many operators specifically designed for permutation
problems.

o See Whitley (1997), Mattfeld (1996), or Choi and Moon
(2008)
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Fitness Function

1. Design Guidelines
2. Examples
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Fitness Function — Design Guidelines

JG|U

Fitness function and objective function

* Fitness function is quality of solution as ,,seen by the
heuristic*

* Objective function (evaluation function) is based on
problem model

* Ingeneral, fitness function and objective function are the
same, but we can modify fitness function to make search
easier for a modern heuristic

* Then, we would not use original objective function from
model, but a variant thereof
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Fitness Function — Design Guidelines

JG|U

Ordinal and numerical ranking

 Fitness and objective functions can be ordinal or numerical

e Ordinal functions order solutions in a sequence
— Allow us to compare quality (best, second-best, ..., worst)

— No absolute value of quality available

— Often used when fitness is evaluated by human experts who rank
alternatives

* Numerical objective functions assign a real-valued objective
value to all solutions
— Ordering possible

— Absolute value is available
— Standard for most mathematical models of cost, profit, lengths...
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Fitness Function — Design Guidelines

Design of objective function

* Make sure:
— Best solution should have highest quality
— Should make problem straightforward for local search
— Should make problem decomposable for recombining

methods

* In general, dissimilarity (measured by problem
metric) should be positively correlated with
difference in objective values
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Fitness Function - Examples

JG|U

Example 1: Needle in haystack

e Search space X of size n

* Objective function assigns highest value to best solution
(flmaz, z)=n)

» All other n-1 solutions get random objective function in
{1,...,n-1}

* No guidance for local search
e Guided search methods will perform like random search
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Fitness Function - Examples

Example 2: Maximum Satisfiability (SAT)

JG|U

 |nstance is Boolean formula with three elements
— Set of nvariables z, , ¢ = {1,...,n}
— Set of literals. A literal is a variable or a negotiation of it

— Set of m distinct clauses {C, ..., C }. Each clause
consists only of literals combined by logical or
operators

e SAT is decision problem: It asks whether an
assignment to the x; exists, sothat C A C, A ...

C  istrue.
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JG|U

Fitness functions for SAT

e QObvious choice:

— Fitness function of 1 for all assignments that satisfies
compound statement

— 0 otherwise
— Needle in a haystack!

e Better choice:
— Measure number of satisfied clauses, use as fitness
— Smoother landscape
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Fitness Function - Examples

JG|U

Fitness smoothing

* Fitness functions with large plateaus can be made easier
for guided search if we modify objective function and
consider objective function value of neighbors

* Smoothing the fitness landscape is a possible way to
achieve this

f(x) . (%)
® smoothing
_— .
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Fitness Function - Examples

Constraint handling

JG|U

* We have to assign fitness values to solutions that are
infeasible

* Necessary if we cannot exclude all infeasible solutions from

searc
e Simp

1 space
est choice: penalize violation of constraints

e Pena

ty functions depend highly on parameters

* Proper design of fitness function for constrained problem is
demanding
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Fitness Function - Examples

Accuracy-efficiency tradeoff

e Evaluation of fithess functions must be fast

 If calculation of fitness is time-consuming

— Rough approximation of fitness function could be used at
beginning

— Increase precision during run
— Invest more time at the end of run

— Local search: compute only fitness change (if faster and no need
for complete fitness evaluation exists)
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Initialization
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Initialization

JG|U

Impact of initialization

* Proper choice of initial solutions has large effect on
efficiency of modern heuristics

* |nitial solutions are starting points for search
* Forguided search: single solution
* Forrecombining methods: population of solutions
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Initialization

Random initialization

* Proper choice of initial solutions depends on
amount of problem-specific knowledge

 |fwe know no properties of high- or low-quality
solutions, we recommend random initialization

* All solutions are created with same probability,
covering the entire search space
e Unbiased sampling
— might be hard to ensure for direct representations
— easier for standard genotypes (integer, binary...)
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Initialization

JG|U

Using problem specific knowledge

 |fwe know something about structure of high- or low-quality
solutions like

— variable ranges,
— Dependencies, or
— good solution parts

we can use such solutions as initial solutions
e Advantage: guides the search into direction of optima
* Disadvantage: reduces search range

e Too much bias can lead to premature convergence because
— Solutions are too similar (recombining methods)

— search focuses too much on certain parts of search space
(recombining methods, and local search)

219



Search Strategies

1. Diversification and Intensification
2. Example: VNS
3. Example: Genetic Algorithm
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Search Strategy — Diversification and Intensification

JG|U

Intensification and Diversification

 Different strategies for controlling search differ in the
design and control of the intensification and diversification
phases

* Search strategies must balance intensification and
diversification during search and to allow search methods
to escape from local optima.

* This is achieved by various diversification techniques based
on the representation, search operator, fitness function,
initialization, or explicit diversification steps controlled by
the search strategy.
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Search Strategy — Diversification and Intensification

JG|U

Local and Recombination-based Search

Two fundamental concepts for heuristic search:
— local search methods versus (high-locality problems)
— recombination-based search methods (decomposable problems)

e Many real-world problems have high locality and are
decomposable

e Direct comparisons between local and recombination-based
search is only meaningful for particular problem instances

e General statements on the superiority of one or other of these
basic concepts are unjustified as method performance
depends on the specific characteristics of the problem
(locality versus decomposability).
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Search Strategy — Diversification and Intensification

Strategies for Intensification

* Intensification steps use the fitness of solutions to control search and
usually ensure that the search moves in the direction of solutions with
higher fitness.

e Keep the high-quality solutions or discard the low-quality ones
* No heuristic search possible without selection
* Intensification too strong (high selection pressure)

— Premature convergence
— Search gets stuck in local optimum
e |ntensification too weak (low selection pressure)
— Drift
— High running times and low progress

e Optimal strength of intensification is problem-specific (example: evolution
strategies)
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Search Strategy — Diversification and Intensification

Strategies for Diversification: Representation and JG\U
Search Operators

Choosing a combination of representation and search operators is
equivalent to defining a metric on the search space

Representation/operator combination defines which solutions are
neighbors.

By using different types of neighborhoods, it is possible to escape
from local optima and explore larger areas of the search space.

Different neighborhoods can be the result of different genotype-
phenotype mappings or search operators applied during search.

Standard examples for local search approaches that use
modifications of representations or operators to diversify the
search are variable neighborhood search, problem space search,
the rollout algorithm, or the pilot method.
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JG|U

Strategies for Diversification: Fitness Function

 Fitness function measures the quality of solutions.

* Modifying the fitness function has the same effect
as changing the representation as it assigns
different fitness values to the problem solutions.

e Variations and modifications of the fithess function
lead to increased diversification

 Common example is guided local search (it
systematically changes the fitness function with
respect to the progress of search)
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Search Strategy — Diversification and Intensification

Strategies for Diversification: Initialization

o Search trajectory depends on the choice of the initial
solution (for example, greedy search always finds the
nearest local optimum)

e Diversification can be the result of search heuristics
using different initial solutions.

o Multi-start search approaches explore a larger area of
the search space and lead to higher diversification.

 Variants of multi-start approaches include iterated
descent, large-step Markov chains, iterated Lin-
Kernighan, chained local optimization, or iterated local
search.
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Search Strategy — Diversification and Intensification
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Strategies for Diversification: Search Strategy

* The search strategy can control the sequence of diversification and
intensification steps.

 Diversification steps that do not move towards solutions with
higher quality can either be the results of random, larger, search
steps or based on information gained in previous search steps.

e Examples of search strategies that use a controlled number of
search steps towards solutions of lower quality to increase
diversity are simulated annealing, threshold accepting, or
stochastic local search.

* Representative examples of search strategies that consider
previous search steps for diversification are tabu search or
adaptive memory programming.
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Search Strategy — VNS

Variable neighborhood search (VNS) G

* Combines local search with dynamic neighborhood
structures that are changed depending on the progress
of search

e Based on the following observations:

— Local minimum for neighborhood A is not necessarily one for
neighborhood B. Different neighborhoods result in different
metrics, result in different fitness landscapes.

— A global minimum is a global minimum with respect to all
possible neighborhoods. Neighborhoods change definition
of solution similarity, but not the fitness.

— Global optimum is not affected by search operators, but only
local optima are affected by search operators!
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Search Strategy — VNS

Variable neighborhood search (VNS)

JG|U

* Local optima for different neighborhoods are often close to each other

e Local optima have structure and properties that are also relevant for
global optimum (similar to decomposability: parts of solution need to
be recombined)

* Local optima are not randomly scattered through search space but are
clustered together

e Changing the neighborhood from N1 to N2 allows local search to find
optimal solution

f(x) N f(x) N,

X X X X 229



Search Strategy — VNS

VNS pseudo-code

Algorithm 2 Variable Neighborhood Search

Select a set of neighborhood structures N, k€ {1...., i }
Create initial solution x
while termination criterion is not met do
k=1
while & < k4 do
Shaking: choose a random neighbor x" € N, (x)
Local search: perform a local search starting with x" and return x” as the local optimum
with respect to Ny
if /(x") < f(x) (minimization problem) then

=%

k=1
else

k=k+1
end if

end while
end while

230



Search Strategy — VNS

VNS in a nutshell

JG|U

Define k different neighborhoods
| N(z)| . is average number of neighbors
Usually we order the neighborhoods in increasing | V(x)| ;.

VNS iteratively performs a

— Shaking phase: select a random solution w.r.t. current
neighborhood. Avoids cycling and explores new region

— Local search phase: Perform local search until local optimum is
found

— Switch to next neighborhood
— Track best found local optimum
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Search Strategy — VNS
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Intensification and diversification in VNS

e Local search focuses search

e Shaking and switching neighborhoods are diversification
steps
* Since average number of neighbors grows with £,
diversification gets stronger
— Local search can select from more neighbors
— Covers larger areas of search space
— Sizes of basins of attraction increase

e Although VNS is recently quite popular, the underlying ideas are
actually old (see Design of Modern Heuristics, p. 136)
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Search Strategy — Pilot Method

Pilot Method JG|U

o “Preferred Iterative LOok ahead Technique”

e Combines greedy construction heuristics with a greedy
measure to estimate the global impact of local choice

e Constructs solution step by step (Master solution)

* Decides about the steps by completing the solution
using a fast construction heuristic, the so-called pilots

* Pilots look ahead. Similarto A* search
e Master solution evolves, Pilots are iteratively computed
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Search Strategy — Pilot Method

Pilot Method for TSP (1)

JG|U

e Combinatorial optimization problem defined on
fixed set of elements F

e Costfunctionc:E— R

* Find minimal cost subset S* C F satisfying some
constraints

o TSP: find set of edges with minimal cost that forms
a cycle

e Assume that a heuristic for the problem is known
that can complete any partial solution
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Search Strategy — Pilot Method

Pilot Method for TSP (2)

JG|U

e Master solution M contains elements e

* Foreach ec M extend partial solution )/ to a complete
solution such that eis part of it

* Let p(e) denote objective function value of this solution

* e, is most promising pilot: minimal value p() from all
ec M.

* Include e into M. Start over.
* Terminate when M is complete.
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Search Strategy — Pilot Method

JG|U

Properties

* Greedy construction heuristic that "looks ahead";
no search through a search space

e Completion heuristic is designed such that it
exploits problem knowledge

* No explicit diversification steps

* See chapter on design principles (ordinal
representation)
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Evolution strategies (ES)

e Local search for continuous search spaces
* Developed by Rechenberg and Schwefel, TU Berlin
e First applications: optimize shape of a bent pipe

 The main search operator in ES is mutation. To
exchange information between solutions,
recombination operators are used in population-
based ES as background search operators.
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Search Strategy — Evolution Strategies

(1+1)-ES

JG|U

e n-dimensional continuous vector z€ R is solution

* Creates offspring ' by adding n-dimensional
random variable, mostly Gaussian:
x,' =z, +0N,0,1)
o Offspring replaces parent if it is better
 Stochastic hillclimber
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Search Strategy — Evolution Strategies

Two standard problem models

e Corridor model (x is far from optimum)
Jeorr (X) = Co +cy x4 ViE{2,...,n}):-0/2< 2,< b/2
e Sphere model (x is close to optimum)

fsphe (CC) = Cp + Clzi (xz'_xz'*)z
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1/5th success rule

» Define &(t) as ratio of successful steps over all ¢
search steps

 For corridor and sphere model, £(£)=0.2 maximizes
convergence speed

o If £(t)>0.2 reduce o, increase otherwise
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(Lt ), (1,\)- evolution strategies

e 1 parents generate A\ new solutions.

o 1 offspring are chosen either from pi+) ((11+)\)-ES)
or from the A\ new solutions ((1:,\)-ES)

e Each individual has an own o.

» Self-adaptation of strategy parameters (o is not
externally controlled).

o Step size is adapted (learned) during the run
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Properties

e ESincorporate the most important parameters of the strategy, e.g. standard
deviations, into the search process. Thus, optimization not only takes place on
objectvariables, but also on strategy parameters (self-adaption).

* In population-based ES, intensification is a result of the selection mechanism
which prefers high-quality solutions.

e Recombination is a background operator which has both diversifying and
intensifying character.

— By recombining two solutions, new solutions are created which lead to a more
diversified population.

— However, especially intermediate crossover leads to reduced diversity during an ES run
since the population converges to the mean values.

e Like for (1+1)-ES, the main source of diversification is mutation. With larger
standard deviations, diversification gets stronger as the step size increases. The
balance between diversification and intensification is maintained by the self-
adaptation of the strategy parameters.
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State of the art

o ES are state-of-the-art for many nonlinear continuous
functions with medium dimensionality (n<100)

 CMA-ES (Covariance Matrix Adaptation Evolution Strategy)
from Hansen and co-workers
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Search Strategy — Genetic Algorithm
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Principles of Genetic Algorithms

e Population of solutions.
— properties of a solution are evaluated based on the phenotype
— variation operators are applied to the genotype.

— some of the solutions are removed from the population if the
population size exceeds an upper limit.

e Variation operators
— create new solutions with similar properties to existing solutions.
— main search operator is recombination
— mutation serves as background operator
e Selection
— High-quality individuals are selected more often for reproduction.
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Search Strategy — Genetic Algorithm

Functionality

* (Generate set of different initial solutions

e Repeat until termination :

— Repeat within a population
e Combine several solutions to form a new one s’
* Create a random neighboring solution s in the neighborhood Ms) of s

— Select only a fraction of the newly created solutions s'.

search space S _-~ Initial solution 2

Different neighborhood in
. comparison to local
' search

______________________________________________

Initial solution 1
Initial solution 3

i . 245
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Search Strategy — Genetic Algorithm

How does a GA work?

pop = random_population();
while (not done)

parents = {};
while (Jparents| < |pop])
X = tournament_winner(pop);

parents = parents + X;
end;
offspring = {};

Selection

while (|offspring| < |pop|)
x = get_random_with_deletion(parents);
y = get_random_with_deletion(parents);
(x',y’) = crossover(x,y);
X" = mutation(Xx’);
insert(x”,offspring);
y” = mutation(y’);
insert(y”,offspring);

end;

Variation

pop = offspring;

end;

Generation
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Search Strategy — Genetic Algorithm
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Genetic algorithms

* Two or more solutions create offspring using a recombination
operator
e Assumption:

— Solutions have characteristic properties

— Recombination has to identify relevant characteristics (building blocks) and
combine those characteristics in an offspring.

— Population necessary to ensure that different characteristica are available.

* Motivation: local optima for local search are no local optima for
recombination-based search.

* However: Resulting neighborhood structure is non-intuitive
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Search Strategy — Genetic Algorithm

JG|U

Design choices

e Choose a proper representation and corresponding search
operators for the problem (ensure high locality for mutation
and recombination)

e Design a mechanism that compares quality of different
solutions.
e Set GA-specific parameters:

— Population size (with increasing population size solution quality
increases; running time (number of generations) is independent of
pop size!).

— High recombination probability

— Low mutation probability (on allele level) to create similar
solutions
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Search Strategy — Genetic Algorithm

JG|U

Intensification

e Due to selection

* |n each selection step, the average fitness of a
population increases as only high-quality solutions
are chosen for the mating pool

e Due to selection, the population converges after a
number of generations

e Continuing recombination-based search after the
population has converged (hopefully to the global
optimum) makes no sense as diversity is minimal.

249



Search Strategy — Genetic Algorithm

Diversification

e Main source of diversification is the initial population
e Therefore, large population are used

 Recombination operators
— Can create new solutions

— No active diversification. Recombination reduces diversity as the
distances between offspring and parents are usually smaller than
the distance between parents

— lterative application of crossover alone reduces the diversity of a
population as

e some solution properties can become extinct in the population (drift)) or

 the decision variables converge to an average value (especially for
continuous decision variables).
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Diversification (2)

e Mutation has diversifying character

* Neighborhood structure does not remain constant during
search, as mutation does not generate only neighboring
solutions with small distance but can reach all solutions in the
search space in only one mutation step.

« Mutation is iteratively applied to all | decision variables with
probability p,,.

 On average, p,,| alleles are mutated

» For large values of p,,, the mutation operator can mutate all |

decision variables and, thus, reach all possible points in the
solution space.

« The diversifying character of mutation increases with
Increasing p,,, and for large p,,, SGA behaves like random

search.
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Design Principles

1. High Locality
2. Bias
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Design Principles — High Locality

Design Guidelines

JG|U

Vast majority of real-world optimization problems are

neither deceptive nor difficult and
have high locality (used metric is meaningful)

Design of modern heuristics should not destroy the high
locality of a problem.

Local search operators must generate neighboring
solutions

Recombination operators must re-combine solutions
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Biasing modern heuristics

* |f we know something about good solutions, we can
seed such information into the modern heuristic

— Representation: incorporate construction heuristics, or
use redundant encodings

— Search operators can distinguish between good and
bad solution features (building blocks)

— We can also bias the fitness function, the initial
solutions, the search strategy
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Design Principles - Biasing

Incorporating Construction Heuristics in JG\U
Representations

Early example: ordinal representation (Grefenstette et al.
1985) for the TSP.

Encodes a tour (permutation of n integers) by a genotype x9 of
length n, where x8,€{1,...,n-i} and i€{0,...,n-1}. For
constructlng a phenotype a predeflned permutatlon xS of n
Integers representing the n different cities is used. x5 can be
problem-specific and, for example, consider edge weights. A
phenotype (tour) is constructed from x9 by subsequently
adding (starting with i1=0) the x&th element of x* to the
phenotype (which initially contains no elements) and removing
the x&th element of x5. Problem-specific knowledge can be
considered by choosing an appropriate x* as genotypes define
perturbations of x* and using small integers for the x9; results
In a bias of the resulting phenotypes towards xS. For example
for x9.=1 (1€{0,...,n-1}), the resulting phenotype is xS.
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Design Principles - Biasing
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Biased representation

* Number of genotypes exceeds number of genotypes
 Redundant representations

* Redundant representations are biased if some
phenotypes are represented by a larger number of
genotypes

e Biased representation: overrepresentation of good
solutions, good solutions take larger share of
search space

256



Design Principles - Biasing
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Biased search operators

o Search operators are biased if they generate or
select certain solutions with higher probability

 |ntegration of structural features into new solutions

e Example: optimal TSP solutions do not cross

— Operators should not generate crossing solutions
because they have bad quality
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Biased fithess function

* Fitness function is objective function as the heuristic sees it
* Improve fitness of solutions that share a desired feature
e Penalize solutions that do not share a certain feature

 Handle constraints: penalize solutions that violate certain
constraints
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Design Principles - Biasing

Biased search strategy

e |f problem is known to be unimodal, we can favor
intensification and use less exploration

e |f problem is known to be multimodal, local minima are
more important and we must diversify

* Example: use different starting temperatures in Simulated
Annealing approach, depending on multimodality of search
space
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