Chapter 5
Search Strategies

In the previous chapter, we discussed important elements of modern heuristics. We
gave an overview of representations and search operators and discussed various as-
pects of the design of fitness functions and initialization methods. This section de-
livers the final design element and describes concepts for controlling the search. Dif-
ferent strategies for controlling search differ in the design and control of the inten-
sification and diversification phases (see Sect. 3.4.3 and Blum and Roli (2003)). It
is important for search strategies to balance intensification and diversification during
search and to allow search methods to escape from local optima. This is achieved by
various diversification techniques based on the representation, search operator, fit-
ness function, initialization, or explicit diversification steps controlled by the search
strategy.

In analogy to search operators, we distinguish between two fundamental con-
cepts for heuristic search: local search methods versus recombination-based search
methods. The choice between these two different concepts is problem-specific. If the
problem at hand has high locality and the distances between solutions correspond
to their fitness difference (Sect. 2.4.2), local search methods are the methods of
choice. Then, the structure of the search space guides local search methods towards
optimal solutions and local search outperforms random search (see the discussion
in Sect. 3.4.4). The situation is slightly different for recombination-based search ap-
proaches, as these methods show good performance if the problem at hand is decom-
posable (Sect. 2.4.3). Then, the problem can be solved by decomposing the problem
into smaller subproblems, solving these subproblems independently of each other,
and determining the overall optimal solution by combining optimal solutions for the
subproblems. As many real-world problems have high locality and are decompos-
able, both types of search methods often show good performance and are able to
return high-quality solutions. However, direct comparisons between these two con-
cepts are only meaningful for particular problem instances, and general statements
on the superiority of one or other of these basic concepts are unjustified. Which
of the two concepts is more appropriate for solving a particular problem instance
depends on the specific characteristics of the problem (locality versus decompos-
ability).

F. Rothlauf, Design of Modern Heuristics, Natural Computing Series, 131
DOI 10.1007/978-3-540-72962-4_5, © Springer-Verlag Berlin Heidelberg 2011

http://dx.doi.org/10.1007/978-3-540-72962-4_5

132 5 Search Strategies

Therefore, comparing the performance of different search strategies by studying
their performance for a set of predefined test functions and generalizing the results
can be problematic (Thierens, 1999), as test functions are usually biased to favor one
particular concept. For example, common test functions for recombination-based
search strategies are usually decomposable. Representative examples for decom-
posable problems are the one-max problem (also known as the bit-counting prob-
lem), concatenated deceptive traps (Ackley, 1987; Deb and Goldberg, 1993a), or
royal road functions (Mitchell et al, 1992; Jansen and Wegener, 2005). For such
types of test problems, recombination-based search approaches often show better
performance than local search approaches. In contrast, problems that are commonly
used as test problems for local search methods often show a high degree of locality
(e.g. the corridor model (5.1), sphere model (5.2), or the Rosenbrock function (3.1))
resulting in high performance of local search methods.

This chapter starts with a discussion on how different search strategies ensure di-
versification in the search. Diversification can be introduced into search by a proper
design of a representation or operator, a fitness function, initial solutions, or an ex-
plicit control of the search strategy. Section 5.1 gives an overview of representative
local search approaches that follow these principles. We describe variable neighbor-
hood search, guided local search, iterated local search, simulated annealing, Tabu
search, and evolution strategies. We especially discuss how the different approaches
balance diversification and intensification. Section 5.2 focuses on recombination-
based search methods and discusses representative approaches like genetic algo-
rithms, estimation of distribution algorithms, and genetic programming. Again, we
study intensifying and diversifying elements of the search strategies.

5.1 Local Search Methods

The idea of local search is to iteratively create neighboring solutions. Since such
strategies usually consider only one solution, recombination operators are not mean-
ingful. For the design of efficient local search methods it is important to incorporate
intensification as well as diversification phases into the search.

Local search methods are also called trajectory methods since the search pro-
cess can be described as a trajectory in the search space. The search space is a
result of the interplay between representation and operator. A trajectory depends
on the initial solution, the fitness function, the representation/operator combination,
and the search strategy used. The behavior and the dynamics of local as well as
recombination-based search methods can be described using Markov processes and
concepts of statistical mechanics (Rudolph, 1996; Vose, 1999; Reeves and Rowe,
2003). In Markov processes, states are used which represent the subsequently gen-
erated solutions (or populations of solutions). A search step transforms one state
into a following state. The behavior of search algorithms can be analyzed by study-
ing possible sequences of states and their corresponding probabilities. The transition

5.1 Local Search Methods 133

matrix describes how states depend on each other and depends on the initial solu-
tion, fitness function, representation/operator combination, and search strategy.

Existing local as well as recombination-based search strategies mainly differ
in how they control diversification and intensification. Diversification is usually
achieved by applying variation operators or making larger modifications of solu-
tions. Intensification steps use the fitness of solutions to control search and usually
ensure that the search moves in the direction of solutions with higher fitness. The
goal is to find a trajectory that overcomes local optima by using diversification and
ends in a global optimal solution.

In greedy search approaches (like the best-first search strategy discussed in
Sect. 3.3.2), intensification is maximal as in each search step the neighboring solu-
tion with highest fitness is chosen. No diversification is possible and the search stops
at the nearest local optimum. Therefore, greedy search finds the global optimum if
we have an unimodal problem where only one local optimum exists. However, as
problems usually have a larger number of local optima, the probability of finding
the global optimum using greedy search is low.

Based on the design elements of modern heuristics, there are different strategies
to introduce diversification into the search and to escape from local optima:

* Representation and search operator: Choosing a combination of representation
and search operators is equivalent to defining a metric on the search space and de-
fines which solutions are neighbors. By using different types of neighborhoods,
it is possible to escape from local optima and explore larger areas of the search
space. Different neighborhoods can be the result of different genotype-phenotype
mappings or search operators applied during search. Standard examples for lo-
cal search approaches that use modifications of representations or operators to
diversify the search are variable neighborhood search (Hansen and Mladenovi¢,
2001), problem space search (Storer et al, 1992) (see also Sect. 6.2.1), the rollout
algorithm (Bertsekas et al, 1997), and the pilot method (Duin and Vof, 1999).

* Fitness function: The fitness function measures the quality of solutions. Modi-
fying the fitness function has the same effect as changing the representation as
it assigns different fitness values to the problem solutions. Therefore, variations
and modifications of the fitness function lead to increased diversification in lo-
cal search approaches. A common example is guided local search (Voudouris,
1997; Balas and Vazacopoulos, 1998) which systematically changes the fitness
function with respect to the progress of search.

* Initial solution: As the search trajectory depends on the choice of the initial so-
lution (for example, greedy search always finds the nearest local optimum), we
can introduce diversification by performing repeated runs of search heuristics us-
ing different initial solutions. Such multi-start search approaches allow us to ex-
plore a larger area of the search space and lead to higher diversification. Variants
of multi-start approaches include iterated descent (Baum, 1986a,b), large-step
Markov chains (Martin et al, 1991), iterated Lin-Kernighan (Johnson, 1990),
chained local optimization (Martin and Otto, 1996), and iterated local search
(Lourenco et al, 2001).

134 5 Search Strategies

e Search strategy: An important element of modern heuristics are intensification
steps like those performed in local search that push the search towards high-
quality solutions. To avoid “pure” local search ending in the nearest local op-
timum, diversification steps are necessary. The search strategy can control the
sequence of diversification and intensification steps. Diversification steps that
do not move towards solutions with higher quality can either be the results of
random, larger, search steps or based on information gained in previous search
steps. Examples of search strategies that use a controlled number of search
steps towards solutions of lower quality to increase diversity are simulated an-
nealing (Aarts and van Laarhoven, 1985; van Laarhoven and Aarts, 1988) (see
Sect. 3.4.3), threshold accepting (Dueck and Scheuer, 1990), or stochastic local
search (Gu, 1992; Selman et al, 1992; Hoos and Stiitzle, 2004). Representative
examples of search strategies that consider previous search steps for diversifica-
tion are tabu search (Glover, 1986; Glover and Laguna, 1997) or adaptive mem-
ory programming (Taillard et al, 2001).

The following paragraphs discuss the functionality and properties of selected lo-
cal search strategies. The different examples illustrate the four different approaches
(representation/operator, fitness function, initial solution, search strategy) to intro-
duce diversity into search. The section ends with a discussion of evolution strategies
which are representative examples of local search approaches that use a population
of solutions. In principle, all local search concepts that have been developed for a
single solution can be extended to use a population of solutions.

5.1.1 Variable Neighborhood Search

Variable Neighborhood Search (VNS) (Mladenovic and Hansen, 1997; Hansen and
Mladenovi¢, 2001) combines local search strategies with dynamic neighborhood
structures that are changed subject to the progress made during search. VNS is based
on the following observations (Hansen and Mladenovié, 2003):

* A local minimum with respect to a neighborhood structure is not necessarily a
local optimum with respect to a different neighborhood (see also Sects. 2.3.2
and 4.2.2). The neighborhood structure of the search space depends on the met-
ric used and is different for different search operators and representations. This
observation goes back to earlier work (Liepins and Vose, 1990; Jones, 1995b,a)
which found that different types of operators result in different fitness landscapes.

* A global minimum is a global minimum with respect to all possible neighbor-
hood structures. Different neighborhood structures only result in different sim-
ilarity definitions but do not change the fitness of the solutions. Therefore, the
global optimum is independent of the search operators used and remains the
global optimum for all possible metrics.

* Hansen and Mladenovi¢ (2003) conjecture that in many real-world problems, lo-
cal optima with respect to different neighborhood structures have low distance to

5.1 Local Search Methods 135

each other and local optima have some properties that are also relevant for the
global optimum. This observation is related to the decomposability of problems
which is relevant for recombination-based search. Local optima are not randomly
distributed in the search space but local optima already contain some optimal so-
lutions to subproblems. Therefore, as they share common properties, the average
distance between local optima is low.

Figure 5.1 illustrates the basic idea of VNS. The goal is to repeatedly perform a
local search using different neighborhoods N. The global optimum x* remains the
global optimum with respect to all possible neighborhoods. However, as different
neighborhoods result in different neighbors, x can be a local optimum with respect
to neighborhood N; but it is not necessarily a local optimum with respect to N,.
Thus, performing a local search starting from x and using N, can find the global
optimum.

f(x) N | f(x) N2

Fig. 5.1 Changing the neighborhood from N; to N, allows local search to find the global optimum

The functionality of VNS is described in Algorithm 2. During initialization, a set
of k different neighborhoods is defined. A neighborhood function N(x) : X — 2%
(2.9) describes which solutions are neighbors of x € X. It is based on a metric and
its cardinality |N(x)| is the (average) number of neighbors of x € X. For VNS, it is
important to choose neighborhoods with an appropriate cardinality. At the extreme,
if the search space is fully connected and the cardinality of a neighborhood is simi-
lar to the problem size (for example |[N(x)| = |X| — 1), all solutions are neighboring
solutions and can be reached in one search step. Then, guided search is not possible
any more as we have no meaningful metric to measure similarities between solutions
(we have a trivial topology, see Sect.2.3.1). In principle, the set of k different neigh-
borhoods can be arbitrarily chosen, but often a sequence [Ni| < |N2| < --- < [Nk, |
of neighborhoods with increasing cardinality is used. VNS iteratively performs a
“shaking phase” and a local search phase. During shaking, a solution x’ in the kth
neighborhood of the current solution x is randomly selected. x’ is generated at ran-
dom to avoid cycling and to lead local search towards a new local optimum different
from x. During local search, we start with x" and perform a local search until a local
optimum x” is found. If x” is better than x, it replaces x and the algorithm starts
anew from this solution using the first neighborhood N;. Otherwise, we continue
with shaking.

136 5 Search Strategies

Algorithm 2 Variable Neighborhood Search

Select a set of neighborhood structures Ny, k € {1,...,knax }
Create initial solution x
while termination criterion is not met do
k=1
while k < k4 do
Shaking: choose a random neighbor x” € Ni(x)
Local search: perform a local search starting with x’ and return x” as the local optimum
with respect to Ny,
if f(x”) < f(x) (minimization problem) then
x= x//
k=1
else
k=k+1
end if
end while
end while

VNS contains intensification and diversification elements. The local search fo-
cuses search as it searches in the direction of high-quality solutions. Diversification
is a result of changing neighborhoods as a solution x is not necessarily locally op-
timal with respect to a different neighborhood. Therefore, by changing neighbor-
hoods, VNS can easily escape from local optima. Furthermore, due to the increas-
ing cardinality of the neighborhoods (the neighborhoods are ordered with respect to
their cardinality), diversification gets stronger as the shaking steps can choose from
a larger set of solutions and local search covers a larger area of the search space (the
basin of attraction increases).

Although in the last few years VNS has become quite popular and many publica-
tions have shown successful applications (for an overview see Hansen and Mladen-
ovi¢ (2003)), the underlying ideas are older and more general. The goal is to intro-
duce diversification into modern heuristics by changing the metric of the problem
with respect to the progress that is made during search. A change in the metric
can be achieved either by using different search operators or a different genotype-
phenotype mapping. Both lead to different metrics and neighborhoods. Early ideas
on varying the representation (adaptive representations) with respect to the search
progress go back to Holland (1975). First implementations have been presented by
Grefenstette et al (1985), Shaefer (1987), Schraudolph and Belew (1992), and Storer
et al (1992) (see also the discussion in Sect. 6.2.1). Other examples are approaches
that use additional transformations (Sebald and Chellapilla, 1998b), a set of pre-
selected representations (Sebald and Chellapilla, 1998a), or multiple and evolvable
representations (Liepins and Vose, 1990; Schnier, 1998; Schnier and Yao, 2000).

5.1 Local Search Methods 137

5.1.2 Guided Local Search

A fitness landscape is the result of the interplay between a metric that defines simi-
larities between solutions and a fitness function that assigns a fitness value to each
solution. VNS uses modifications of the metric to create different fitness landscapes
and to introduce diversification into the search process. Guided local search (GLS)
(Voudouris and Tsang, 1995; Voudouris, 1997) uses a similar principle and dynam-
ically changes the fitness landscape subject to the progress that is made during the
search. In GLS, the neighborhood structure remains constant. Instead, it dynam-
ically modifies the fitness of solutions near local optima so that local search can
escape from local optima.

GLS considers problem-specific knowledge by using the concept of solution fea-
tures. A solution feature can be any property or characteristics that can be used to
distinguish high-quality from low-quality solutions. Examples of solution features
are edges used in a tree or graph, city pairs (for the TSP), or the number of unsatis-
fied clauses (for the SAT problem; see p. 126). The indicator function /;(x) indicates
whether a solution feature i € {1,...,M} is present in solution x. For I;(x) = 1, solu-
tion feature i is present in x, for I;(x) = 0 it is not present. GLS modifies the fitness
function f such that the fitness of solutions with solution features that exist in many
local optimal solutions is reduced. For a minimization problem, f(x) is modified to
yield a new fitness function

M

f(x) = fx)+ 1Y, pili(x),

i=1

with the regularization parameter A and the penalty parameters p;. The p; are ini-
tialized as p; = 0. M denotes the number of solution features. A weights the impact
of the solution features on the original fitness function f and p; balances the impact
of solution features of different importance.

Algorithm 3 describes the functionality of GLS. It starts from a random solution
xo and performs a local search returning the local optimum x;. To escape the local
optimum, a penalty is added to the fitness function f such that the resulting fitness
function 4 allows local search to escape. The strength of the penalty depends on the
utility u; which is calculated for all solution features i € {1,...,M} as

ui(x1) =1Li(x1) x ¢;/(1+ pi),

where c¢; is the cost of solution feature i. The ¢; are problem-specific and usually
remain unchanged during search. They are determined by the user and describe
the relative importance of the solution features. Examples of c¢; are the weights of
edges (graph or tree problems) or the city-pair distances (TSP). The function u;(x)
is unequal to zero for all solution features that are present in x. After calculating
the utilities, the penalty parameters p; are increased for those solution features i that
yield the highest utility value. After modifying the fitness function, we start a new

138 5 Search Strategies

local search from x; using the modified fitness function 4. Search continues until a
termination criterion is met.

Algorithm 3 Guided Local Search
k=0
Create initial solution xy
fori=1toM do
pi=0
end for
while termination criterion is not met do
h=f+A3E, pil;
perform a local search using fitness function % starting with x; and return the local optimum
Xk+1
fori=1toM do
ui(xey1) = Li(xverr) X ¢i/ (1+ pi)
end for
for all i where u; is maximum do
pi=pi+1
end for
k=k+1
end while
return x* (best solution found so far according to f)

The utility function u penalizes solution features i with high cost ¢; and allows
us to consider problem-specific knowledge by choosing appropriate values for c;.
The presence of a solution feature with high cost leads to a high fitness value of
the corresponding solution allowing local search to escape from this local optimum.
Figure 5.2 illustrates the idea of changing the fitness of local optima. By modifying
the fitness function f(x) and adding a penalty to f(x), h(x) assigns a lower fitness
to x. Thus, local search can leave x and is able to find the global optimal solution x*.

f(x) 7 h(x)

Fig. 5.2 Changing the fitness function from f to & allows local search to find the global optimum

In GLS, diversification is a result of the systematic modification of the fitness
function f. The intensity of diversification is controlled by the parameter A. Large
values of A lead to local search steps that find solution features that were not present
in previous solutions. However, if A is too large, GLS behaves like random search
and randomly moves through the search space. Problems can also occur if A is too
low as no information about previous search steps can be considered for the fitness

5.1 Local Search Methods 139

function A(x) and local search repeatedly finds the same local optimum (Mills and
Tsang, 2000). In general, the setting of A4 is problem-specific and must be done with
care.

Examples of the successful application of GLS are TSPs (Voudouris and Tsang,
1999), bin-packing problems (Faroe et al, 2003b), VLSI design problems (Faroe
et al, 2003a), and SAT problems (Mills and Tsang, 2000; Zhang, 2004).

5.1.3 Iterated Local Search

Heuristics that use only intensification steps (like local search) are often able to
quickly find a local optimal solution but unfortunately cannot leave a local optimum
again. A straightforward way to introduce diversification is to perform sequential
local search runs using different initial solutions. Such approaches are commonly
known as multi-start approaches. The simplest variants of multi-start approaches
iteratively generate random solutions and perform local search runs starting from
those randomly generated solutions. Thus, we have distinct diversification phases
and can explore larger areas of the search space. Search strategies that randomly
generate initial solutions and perform a local search are also called multi-start de-
scent search methods.

However, to randomly create an initial solution and perform a local search often
results in low solution quality as the complete search space is uniformly searched
and search cannot focus on promising areas of the search space. Iterated local search
(ILS) (Martin et al, 1991; Stiitzle, 1999; Lourenco et al, 2001) is an approach to
connect the unrelated local search phases as it creates initial solutions not randomly
but based on solutions found in previous local search runs. Therefore, it is based on
the same observations as VNS which assumes that local optima are not uniformly
distributed in the search space but similar to each other (Sect. 5.1.1, p. 134).

Algorithm 4 outlines the basic functionality of ILS. Relevant design criteria for
ILS are the modification of x and the acceptance criterion. If the perturbation steps
are too small, the following local search cannot escape from a local optimum and
again finds the same local optimum. If perturbation is too strong, ILS shows the
same behavior as multi-start descent search methods. The modification step as well
as the acceptance criterion can depend on the search history.

Algorithm 4 Iterated Local Search

Create initial solution xg
Perform a local search starting with xy and return the local optimum x
while termination criterion is not met do
Modification: perturb x and return x’
Perform a local search starting with x’ and return the local optimum x”
Acceptance Criterion: decide whether to continue with x or with x”
end while

140 5 Search Strategies

In ILS, diversification is controlled by the perturbation of the solution (which is
problem-specific) and the acceptance criterion. Larger perturbations and continuing
search with x”" lead to stronger diversification. Continuing search with x intensifies
search as a previously used initial solution is re-used.

A similar concept is used by greedy randomized adaptive search (GRASP))Feo
et al, 1994; Feo and Resende, 1995). Like in ILS, each GRASP iteration consists of
two phases: construction and local search. The construction phase builds a feasible
solution, whose neighborhood is investigated until a local minimum is found during
the local search phase.

5.1.4 Simulated Annealing and Tabu Search

The previous examples illustrated how modern heuristics can make diversification
steps by modifying the representation/search operator, fitness function, or initial so-
lutions. Simulated annealing (SA) is a representative example of a modern heuris-
tic where the search strategy used explicitly defines intensification and diversifica-
tion phases/steps. The functionality and properties of SA are discussed in detail in
Sect. 3.4.3 (pp. 94-97). Its functionality is outlined in Algorithm 1, p. 96.

SA is a combination between a random walk through the search space and local
search. Diversification of search is a result of the random walk process and intensi-
fication is due to the local search steps. The amount of intensification and diversifi-
cation is controlled by the parameter T (see Fig. 3.21). With lower temperature 7,
intensification becomes stronger as solutions with lower fitness are accepted with
lower probability. The cooling schedule which determines how T is changed during
an SA run is designed such that at the beginning of the search diversification is high
whereas at the end of a run pure local search steps are used to find a local optimum.

Tabu search (TS) (Glover, 1977, 1986; Glover and Laguna, 1997) is a popular
modern heuristic. To diversify search and to escape from local optima, TS uses a list
of previously visited solutions. A simple TS strategy combines such a short term
memory (implemented as a fabu list) with local search mechanisms. New solutions
that are created by local search are added to this list and older solutions are removed
after some search steps. Furthermore, local search can only create new solutions that
do not exist in the tabu list 7. To avoid memory problems, usually the length of the
tabu list is limited and older solutions are removed. Algorithm 5 outlines the basic
functionality of a simple TS. It uses a greedy search, which evaluates all neighboring
solutions N(x) of x and continues with a solution x’ that is not contained in 7 and
has maximum fitness. Instead of removing the oldest element x4, from T, also
other strategies for updating the tabu list are possible.

The purpose of the tabu list is to allow local search to escape from local optima.
By prohibiting previously found solutions, new solutions must be explored. Figure
5.3 illustrates how the tabu list 7' contains all solutions of high fitness that are in the
neighborhood of x. Therefore, new solutions with lower fitness are created and local
search is able to find the global optimum.

5.1 Local Search Methods 141

Algorithm 5 Simple Tabu Search

Create initial solution x
Create empty tabu list 7'
while termination criterion is not met do
X = Nr(n?xT f(x) (Choose x" as neighboring solution of x with highest fitness that is not con-
X)—

tained in T')

T=T+{x}
if |T| > [then
Remove oldest element x,;4.5; from T
end if
x:=x
end while
f(x) f(x)

Tabu list T

Fig. 5.3 Removing solutions x € T from the search space allows TS to escape from a local opti-
mum

Diversification can be controlled by the length of the tabu list. Low values lead
to stronger intensification as the memory of the search process is smaller. In many
applications, the length of the tabu list is dynamically changed and depends on the
progress made during search (Glover, 1990; Taillard, 1991; Battiti and Tecchiolli,
1994; Battiti and Protasi, 2001). Such approaches are also known as reactive Tabu
search.

More advanced TS approaches do not store complete solutions in the tabu list
but solution attributes. Similarly to the solution features used in GLS, solution at-
tributes can be not only components of solutions but also search steps or differences
between solutions. When using different solution attributes, we obtain a set of tabu
criteria (called fabu conditions) which are used to filter the neighborhood of a so-
lution. To overcome the problem that single tabu conditions prohibit the creation of
appropriate solutions (each attribute prohibits the creation of a set of solutions), as-
piration criteria are used which overwrite tabu conditions and allow search steps to
create solutions where some tabu conditions are present. A commonly used aspira-
tion criterion selects solutions with higher fitness than the current best one. For more
information on TS and on application examples, we refer to the literature (Glover
and Laguna, 1997; Gendreau, 2003; VoB et al, 1999; Osman and Kelly, 1996).

142 5 Search Strategies

5.1.5 Evolution Strategy

Evolution strategies (ES) are local search methods for continuous search spaces.
They were developed by Rechenberg and Schwefel in the 1960s at the Technical
University of Berlin (Rechenberg, 1973a,b) and first applications were experimental
and dealt with hydrodynamical problems like shape optimization of a bent pipe, drag
minimization of a joint plate (Rechenberg, 1965), or structure optimization of a two-
phase flashing nozzle (Schwefel, 1968). There are two different types of ES: Simple
strategies that use only one individual (like the local search strategies discussed in
the previous paragraphs) and advanced strategies that use a set of solutions which
is called a population. The use of a population allows ES to exchange information
between solutions in the population.

The simple (14 1)-ES uses n-dimensional continuous vectors and iteratively cre-
ates one offspring x' € R” from one parent x € R” by adding randomly created val-
ues with zero mean and identical standard deviations ¢ to each parental decision
variable x;.

x; = x;+0.47(0,1),

where i € {1,...,n}. In ES and other biology-inspired search methods, a search step
is usually denoted as a mutation. .4 (0, 1) is a normally distributed one-dimensional
random variable with expectation zero and standard deviation one. .4/(0,1) indi-
cates that the random variable is sampled anew for each possible value of the counter
i. In the (14 1)-ES, the resulting individual is evaluated and compared to the origi-
nal solution. The better one survives to be used for the creation of the next solution.
Algorithm 6 summarizes the basic functionality (maximization problem).

Algorithm 6 (1 + 1)-Evolution Strategy

Create initial solution x
while termination criterion is not met do
fori=1tondo
x’,» =X+ OZ/%(O, 1)
end for
if f(x') > f(x) then
x:=x
end if
Update o (e.g. according to 1/5-rule)
end while

For the (1+ 1)-ES, theoretical convergence models for two simple problems, the
sphere model and the corridor model, exist (Rechenberg, 1973a). Both problems are
standard test problems for continuous local search methods. The corridor model is
representative of the situation where the current solution x has a large distance to
the optimum x*:

fcorridor(x):CO+C]xl Vie {27-“’”} : _b/ZSXiSb/Z (5.1

5.1 Local Search Methods 143

and the sphere model describes the situation near the optimal solution x*:
c 2
fs‘phere (X) =co+tcy Z(Xi —X?) P (52)
i=1

where cg, c1, and b are problem parameters.

£(¢), where ¢ indicates the number of search steps, is defined as the ratio of
successful search steps that find a better solution to all search steps (for example,
averaged over the last 10n search steps). For the corridor and sphere models, a ratio

() = % leads to maximal convergence speed (Rechenberg, 1973a). Therefore, if

£(¢) is greater than % the standard deviation should be increased, if it is smaller,
it should be decreased (Rechenberg, 1973a, p. 123). For sphere and corridor mod-
els this 1/5-rule results in fastest convergence. However, sometimes the probability
of success cannot exceed 1/5. For problems where the fitness function has dis-
continuous first partial derivatives, or at the edge of the allowed search space, the
1/5-success rule does not work properly. Especially in the latter case, the success
rule progressively forces the sequence of new solutions nearer to the boundary and
continuously reduces the step length without approaching the optimum with com-
parable accuracy (Schwefel, 1995).

In (1 + 1)-ES, the strength of diversification is controlled by the standard devi-
ation . With increasing o, step size increases and new solutions are less similar
to the original solutions. If o is too large, subsequently generated solutions are not
related to each other and we obtain a random search behavior. The 1/5-rule adjusts
o and ensures that it becomes small enough to generate similar solutions. However,
in contrast to a fixed o, the 1/5-rule does not allow (1+ 1)-ES to escape from local
optima. Therefore, the 1/5-rule is not appropriate for multi-modal problems with
more than one local optimum as it focuses the search on promising areas of the
search space by reducing the step size. The second intensifying element in (1 + 1)-
ES is the selection process which continues with the better solution. This process is
equivalent to local search.

Schwefel (1975) introduced the principle of a population into ES and proposed
the (1 + 4)-ES and the (u,2)-ES to overcome problems of the (1 + 1)-ES in es-
caping from local optima. In population-based ES approaches, a set of y solutions
(usually called individuals) forms a parent population. In each ES iteration (called
a generation) a set of A new solutions (offspring population) is created. For the
(1 + A)-ES, the next parent population is created by choosing the p best individ-
uals from the union of the parent and offspring population (“+”-selection). In the
case of the (i, 4)-ES, where A > 1, only the best u solutions from the offspring
population are chosen (“,’-selection). Both population-based ES start with a parent
population of i randomly generated individuals. Usually, each individual consists
of an n-dimensional vector x € R" and an m-dimensional vector of standard devia-
tions o € R} (Bick, 1996).

To exchange information between solutions, recombination operators are used
in population-based ES as background search operators. Mostly, discrete crossover
is used for creating the decision variables x’; and intermediate crossover is used

144 5 Search Strategies

for the standard deviations ¢’;. For discrete crossover, x'; is randomly taken from
one parent, whereas intermediate crossover creates Gi/ as the arithmetic mean of the
parents’ standard deviations (see Sect. 4.3).

The main search operator in ES is mutation. It is applied to every individual after
recombination:

op = orexp(TiN(0,1) + Nk (0,1)) Vk=1,2,...,m, (5.3)
X =x;+0]A4(0,1) Vi=1,2,...,n, (5.4)

where 7; and 7, are method-specific parameters and usually m = n. If m # n, some
standard deviations o; are used for more than one decision variable. The standard
deviations o0} are mutated using a multiplicative, logarithmic normally distributed
process with the factors 7; and 7,. Then, the decision variables x; are mutated by
using the modified o. This mutation mechanism enables the ES to evolve its own
strategy parameters during the search. The logarithmic normal distribution is moti-
vated as follows. A multiplicative modification process for the standard deviations
guarantees positive values for o and smaller modifications must occur more often
than larger ones (Schwefel, 1977). Because the factors 7; and 7, are robust pa-
rameters, Schwefel (1977) suggests setting them as follows: 7j o< (1/2y/n)~! and
7, o< (v/2n)~!. Newer investigations indicate that optimal adjustments are in the
interval [0.1,0.2] (Kursawe, 1999; Nissen, 1997). 1) and 7, can be interpreted as
“learning rates” as in artificial neural networks, and experimental results indicate
that the search process can be tuned for particular objective functions by modifying
7 and 1.

One of the major advantages of ES is its ability to incorporate the most impor-
tant parameters of the strategy, e.g. standard deviations, into the search process.
Therefore, optimization not only takes place on object variables, but also on strat-
egy parameters according to the actual local topology of the fitness function. This
capability is called self-adaption.

In population-based ES, intensification is a result of the selection mechanism
which prefers high-quality solutions. Recombination is a background operator
which has both diversifying and intensifying character. By recombining two solu-
tions, new solutions are created which lead to a more diversified population. How-
ever, especially intermediate crossover leads to reduced diversity during an ES run
since the population converges to the mean values. Like for (14 1)-ES, the main
source of diversification is mutation. With larger standard deviations o;, diversifi-
cation gets stronger as the step size increases. The balance between diversification
and intensification is maintained by the self-adaptation of the strategy parameters.
Solutions with standard deviations that result in high-quality solutions stay in the
population, whereas solutions with inappropriate o; are removed by the selection
process.

(L+A)-ES and (u,A)-ES are examples of local search strategies that use a pop-
ulation of solutions. Although local search is the main search strategy, the existence
of a population allows ES to use recombination operators which exchange infor-
mation between different solutions. For further information and applications of ES

5.2 Recombination-Based Search Methods 145

we refer to the literature (Schwefel, 1981; Rechenberg, 1994; Schwefel, 1995; Biack
and Schwefel, 1995; Bick, 1996, 1998; Beyer and Deb, 2001; Beyer and Schwefel,
2002).

5.2 Recombination-Based Search Methods

In contrast to local search approaches which exploit the locality of problems and
show good performance for problems with high locality, recombination-based ap-
proaches make use of the decomposability of problems and perform well for de-
composable problems. Recombination-based search solves decomposable problems
by decomposing them into smaller subproblems, solving those smaller subproblems
separately, and combining the resulting solutions for the subproblems to form over-
all solutions (Sect. 2.4.3). Hence, the main search operator used in recombination-
based search methods is, of course, recombination.

Recombination operators should be designed such that they properly decompose
the problem and combine high-quality sub-solutions in different ways (Goldberg,
1991a; Goldberg et al, 1992). A proper decomposition of problems is the key fac-
tor for the design of successful recombination operators. Recombination operators
must be able to identify the relevant properties of a solution and transfer these as
a whole to offspring solutions. In particular, they must detect between which parts
of a solution a meaningful linkage exists and not destroy this linkage when creat-
ing an offspring solution. This property of recombination operators is often called
linkage learning (Harik and Goldberg, 1996; Harik, 1997). If a problem is decom-
posable, the proper problem decomposition is the most demanding part as usually
the smaller subproblems can be solved much more easily than the full problem.
However, in reality, most often a problem is not completely separable but there
exists still some linkage between different sub-problems. Therefore, usually it is
not enough for recombination-based methods to be able to decompose the problem
and solve the smaller sub-problems, but usually they must also try different com-
binations of high-quality sub-solutions to form an overall solution. This process of
juxtaposing various high-quality sub-solutions to form different overall solutions is
often called mixing (Goldberg et al, 1993b; Thierens, 1995; Sastry and Goldberg,
2002).

Recombination operators construct new solutions by recombining the proper-
ties of parent solutions. Therefore, recombination-based modern heuristics usually
use a population of solutions since when using only single individuals, like in
most local search approaches, no properties of different solutions can be recom-
bined to form new solutions. Consequently, the main differences between local and
recombination-based search are the use of a recombination operator and a popula-
tion of solutions.

For local search approaches, we have been able to classify methods with respect
to their main source of diversification. In principle, we can use the same mechanisms
for recombination-based search methods, too. However, in most implementations of

146 5 Search Strategies

recombination-based search methods, an initial population of diverse solutions is the
only source of diversification. Usually, no additional explicit diversification mecha-
nisms based on a systematic modification of representations/search operators or fit-
ness functions are used. Search starts with a diversified population of solutions and
intensification mechanisms iteratively intensify the search. Recombination-based
search usually stops after the population has almost converged. This means that,
at the end of the search, only little diversity in the population exists and all indi-
viduals are about the same. During a run, recombination (and most often also local
search) operators are applied to parent solutions to create new solutions with simi-
lar properties. Usually, these variation operators do not increase the diversity in the
population but create new solutions with similar properties.

When the population is almost homogeneous, the only source of diversification
are small mutations which usually serve as background noise. Problems occur for
recombination-based search if the population is almost converged (either to the cor-
rect optimal solution or a sub-optimal solution) but search continues. Then, recom-
bination cannot work properly any more (since it needs a diversified population)
and search relies solely on local search steps. However, local search steps are usu-
ally small and have only little effect. The situation that a population of solutions
converges to a non-optimal solution and cannot escape from this local optimum is
often called premature convergence (Goldberg, 1989c; Collins and Jefferson, 1991;
Eshelman and Schaffer, 1991; Leung et al, 1997). In this situation and if no explicit
diversification mechanisms are used, only local search and no recombination-based
search is possible any more.

Possible strategies to overcome premature convergence and to keep or re-intro-
duce diversification into a population could be based on the representation/operator,
fitness function, initial solution, or search strategy and work in a similar way as de-
scribed in the previous section on local search methods. A straightforward approach
to increase diversity in the initial population is to increase the number of solutions in
the population. Other approaches address operator aspects and prevent for example
recombination between similar solutions in the population (Eshelman and Schaffer,
1991) or design operators which explicitly increase diversity (Bédck, 1996). Low-
locality search operators and representations (Sect.6.1) are other examples since
such operators and representations randomize the search process and thus increase
population diversity.

Many of the existing approaches limit the intensification strength of the selection
process. Selection decides which solutions remain in the population and are used
for future search steps. The selection process is equivalent to local search when
using only one single solution. In the literature, approaches have been presented that
decrease intensification by continuously reducing selection intensity during a run
and not focusing only on better solutions but also accepting to some extent worse
solutions (Béck, 1996; Goldberg and Deb, 1991). Other approaches to reduce the
intensifying character of the selection process limit the number of similar solutions
in the population by either letting a new solution replace only a worse solution
similar to itself (De Jong, 1975) or only adding a new solution to a population if it
is entirely different (Whitley, 1989).

5.2 Recombination-Based Search Methods 147

Finally, a substantial amount of work focuses on niching methods ((Deb and
Goldberg, 1993b; Hocaoglu and Sanderson, 1995; Mahfoud, 1995; Horn and Gold-
berg, 1998). Niching methods deal with the simultaneous formation and evolution
of different sub-populations in a population. The use of niching methods leads to
higher diversification in a population as substantially different sub-populations exist.
Niching methods are especially important for multi-objective optimization methods
(Deb, 2001; Coello Coello et al, 2007) as such methods should return not only one
solution but a set of different Pareto-optimal solutions.

The term evolutionary algorithm (EA) denotes optimization methods that are in-
spired by the principles of evolution and apply recombination, mutation, and selec-
tion operators to a population of solutions (for details on the operators, we refer to
Sect. 5.2.1). Prominent examples of evolutionary algorithms are genetic algorithms
(Sect.5.2.1), evolution strategies (Sect.5.1.5), genetic programming (Sect.5.2.3),
and evolutionary programming (Fogel et al, 1966; Fogel, 1999). Although the term
evolutionary algorithm is commonly used in scientific literature, we do not follow
this categorization since it classifies search methods based on their main source
of inspiration (algorithms inspired by natural evolution) and not according to the
underlying working principles. For example, genetic algorithms and genetic pro-
gramming use recombination as main search operator, whereas evolution strategies
and evolutionary programming use local search. Furthermore, genetic algorithms
and scatter search (Glover, 1997; Laguna and Marti, 2003) share the same working
principles (Glover, 1994), however, since scatter search is not inspired by evolution,
it would not be ranked among evolutionary algorithms.

The following paragraphs present the simple genetic algorithm and two variants
of it as representative examples of recombina tion-based search. The first variant,
estimation of distribution algorithms, uses different types of search operators and
the second one, genetic programming, uses solutions of variable length.

5.2.1 Genetic Algorithms

Genetic algorithms (GAs) were introduced by Holland (1975) and imitate basic
principles of nature formulated by Darwin (1859) and Mendel (1866). They are
(like population-based ES discussed on p. 142) based on three basic principles:

» There is a population of solutions. The properties of a solution are evaluated
based on the phenotype, and variation operators are applied to the genotype.
Some of the solutions are removed from the population if the population size
exceeds an upper limit.

* Variation operators create new solutions with similar properties to existing solu-
tions. In GAs, the main search operator is recombination and mutation serves as
background operator. In ES, the situation is reversed.

¢ High-quality individuals are selected more often for reproduction by a selection
process.

148 5 Search Strategies

To illustrate the basic functionality of GAs, we want to use the standard simple ge-
netic algorithm (SGA) popularized by Goldberg (1989c). This basic GA variant is
commonly used and well understood and uses crossover as main operator (mutation
serves only as background noise). SGAs use a constant population of size N, usually
the N individuals x' € {0,1}/ (i € {1,...,N}) are binary strings of length /, and re-
combination operators like uniform or n-point crossover are directly applied to the
genotypes. The basic functionality of a SGA is shown in Algorithm 7. After ran-
domly creating and evaluating an initial population, the algorithm iteratively creates
new generations by recombining (with probability p.) the selected highly fit indi-
viduals and applying mutation (with probability p,,) to the offspring. The function
random(0, 1) returns a uniformly distributed value in [0, 1).

Algorithm 7 Simple Genetic Algorithm

Create initial population P with N solutions x’ (i € {1,...,N})
fori=1toN do
Calculate f(x)
end for
while termination criterion is not met and population has not yet converged do
Empty the mating pool: M = {}
Insert N individuals into M from P using a selection scheme
Shuffle the position of all individuals in M
ind =1
repeat
if random(0,1) < p. then
Recombine x¢ € M and x™*1 € M and place the resulting two offspring in P’
else
Copy x € M and x"*! € M to P/
end if
ind =ind +2
until ind > N
fori=1toNdo
for j=1to/do
if random(0,1) < p,, then
mutate(x"), where x' € P/
end if
end for
Calculate f(x), where x € P/
end for
P:=P
end while

The following paragraphs briefly explain the basic elements of a GA. The se-
lection process performed in population-based search approaches is equivalent to
local search for single individuals as it distinguishes high-quality from low-quality
solutions and selects promising solutions. Popular selection schemes are propor-
tionate selection (Holland, 1975) and tournament selection (Goldberg et al, 1989).
For proportionate selection, the expected number of copies a solution has in the next
population is proportional to its fitness. The chance of a solution x’ being selected

5.2 Recombination-Based Search Methods 149

for recombination is calculated as

_ S
S f(x)
With increasing fitness, an individual is chosen more often for reproduction.

When using tournament selection, a tournament between s randomly chosen dif-
ferent individuals is held and the one with the highest fitness is added to the mating
pool M. After N tournaments of size s the mating pool is filled. We have to dis-
tinguish between tournament selection with and without replacement. Tournament
selection with replacement chooses for every tournament s individuals from the pop-
ulation P. Then, M is filled after N tournaments. Tournament without replacement
performs s rounds. In each round we have N /s tournaments and we choose the solu-
tions for a tournament from those who have not already taken part in a tournament
in this round. After all solutions have performed a tournament in one round (after
N/s tournaments), the round is over and all x € P are considered again for the next
round. Therefore, to completely fill the mating pool, s rounds are necessary. For
more information concerning different selection schemes, see Bick et al (1997, C2)
and Sastry and Goldberg (2001).

The mating pool M consists of all solutions which are chosen for recombina-
tion. When using tournament selection, there are no copies of the worst solution,
and either an average of s copies (with replacement), or exactly s copies (without
replacement) of the best solution.

Crossover operators imitate the principle of sexual reproduction and are applied
to all x € M. Usually, crossover produces two new offspring from two parents by
exchanging substrings. Common crossover operators are one-point crossover and
uniform crossover (Sect. 4.3, p. 117-120). The mutation operator is a local search
operator and slightly changes the genotype of a solution x € P’. It is important for
local search, or if some alleles are lost during a GA run. Mutation can reanimate
solution properties that have previously been lost. The probability of mutation p,,
must be selected to be at a low level because otherwise mutation would randomly
change too many alleles and new solutions would have nothing in common with
their parents. Offspring would be generated almost randomly and genetic search
would degrade to random search. For details on mutation operators, see Sect. 4.3.2,
p. 115-117.

In GAs, intensification is mainly a result of the selection scheme. In a selection
step, the average fitness of a population increases as only high-quality solutions are
chosen for the mating pool M. Due to selection, the population converges after a
number of generations (for details on the convergence speed see Thierens (1995),
Goldberg (2002), or Suzuki (1995)). Continuing recombination-based search after
the population has converged (hopefully to the global optimum) makes no sense as
diversity is minimal.

The main source of diversification is the initial population. Therefore, in GAs,
often large population sizes of a few hundreds or even thousands of solutions are
used (Goldberg, 2002). The effect of recombination operators is twofold: On the

150 5 Search Strategies

one hand, recombination operators are able to create new solutions. On the other
hand, usually recombination does not actively diversify the population but has an in-
tensifying character. Crossover operators reduce diversity as the distances between
offspring and parents are usually smaller than the distance between parents (see
(4.1), p. 118). Therefore, the iterative application of crossover alone reduces the di-
versity of a population as either some solution properties can become extinct in the
population (this effect is known as genetic drift (see p. 171) and especially relevant
for binary solutions) or the decision variables converge to an average value (espe-
cially for continuous decision variables). The statistical properties of a population to
which only recombination operators are applied, do not change (we have to consider
that the aim of crossover is to re-combine different optimal solutions for subprob-
lems) and, for example, the average fitness of a population remains constant (if we
use a meaningful recombination operator and N — o). However, diversity decreases
as the solutions in the population become more similar to each other.

1F T ! .

0.1 BT TR ke 4

0.01 o b g

0.001 j % 4

o 00001 F g

1€-05 Fon ; N g

1e-06 |l 3 4

Fig. 5.4 Probability P(k) of 16-07 F pgfﬁ-?ﬁ’ T e ;,\ E

performing exactly k muta- 1e-08 L il I i g
tions versus k for n = 20 and 0 2 4 6 8 10

various mutation rates p,, k

In SGA, mutation has diversifying character. In contrast to many local search
approaches where the neighborhood structure remains constant during search, the
mutation operator used in SGA results in a varying neighborhood structure. Mu-
tation does not generate only neighboring solutions with small distance but can
reach all solutions in the search space in only one mutation step. When mu-
tating one individual, mutation is iteratively applied to all / decision variables
with probability p,,. Therefore, mutation can be modeled as a Bernoulli process
and the probability of mutating exactly k decision variables can be calculated as
P(k) = (}) (pm)*(1 — py)"*. Figure 5.4 plots P(k) over k for [= 20 and p,, = 0.05
and p,, = 0.1. On average, p,,! alleles are mutated and, for large values of p,,, the
mutation operator can mutate all / decision variables and, thus, reach all possible
points in the solution space. However, the probability of changing a large number
of decision variables is low if p,, is low. The diversifying character of mutation
increases with increasing p,, and for large p,,, SGA behaves like random search.

Further and more detailed information on functionality and application aspects
of genetic algorithms can be found in standard textbooks like Goldberg (1989c),
Mitchell (1996), Michalewicz (1996), Goldberg (2002), Michalewicz and Fogel
(2004), Reeves and Rowe (2003), De Jong (2006), or Eiben and Smith (2010).

5.2 Recombination-Based Search Methods 151

5.2.2 Estimation of Distribution Algorithms

Recombination operators should consider the linkage between different decision
variables in a solution and transfer high-quality sub-solutions, which consist of sev-
eral decision variables, as a whole from parents to offspring. However, the standard
crossover operators like uniform or n-point crossover are position-dependent and
thus sometimes of only limited use. n-point crossover can only work properly if the
related decision variables are grouped together in the string. For example, for two-
point crossover, sub-solutions for subproblems where the two decision variables xq
and x; are linked cannot be transferred as a whole from a parent to an offspring.
In contrast, uniform crossover results in problems for large sub-problems as it dis-
rupts such sub-solutions with high probability. For example, when using binary de-
cision variables and assuming sub-problems of size k, uniform crossover disrupts
sub-solutions with probability 1 — (1/2)¥~! (k > 2).

To overcome the shortcomings of traditional crossover methods, two different ap-
proaches have been proposed in the literature: the first line of research modifies the
genotypes and the corresponding representation so that linked decision variables are
grouped together in the genotype. Then, traditional recombination operators like n-
point crossover show good performance as they do not not disrupt sub-solutions. Ex-
amples are the fast messy GA (Goldberg et al, 1993a) or the gene expression messy
GA (Bandyopadhyay et al, 1998).

The second line of research designs recombination operators that are able to de-
tect the linkage between decision variables and construct new offspring position-
independently considering the linkage. To avoid disruptions of sub-solutions, re-
combination is replaced by generating new solutions according to the probability
distribution of promising solutions of the previous generation. Algorithms that fol-
low this concept are called estimation of distribution algorithms (EDA) and have
been introduced by Miihlenbein and Paa3 (1996). EDAs are based on the same
concepts as GAs but replace variation operators like crossover and mutation by
sampling new solutions from a probabilistic model which takes into account the
problem-specific interactions among the decision variables. Linkage between de-
cision variables can be expressed explicitly through joint probability distributions
associated with the variables of the individuals. For intensification and generation
of high-quality solutions, EDAs use the same selection methods as GAs. Algorithm
8 outlines the basic functionality of EDAs.

Critical for the performance of EDAs is the proper estimation of the probability
distribution because this process decomposes the problem into sub-problems by de-
tecting a possible linkage between decision variables. This process can only work
properly if the problem at hand is decomposable. Therefore, EDAs show good per-
formance for problems that are decomposable and where the sub-problems are of
small size. As for GAs, non-decomposable problems cannot be solved effectively
by EDAs.

Different EDA variants can be classified with respect to the type of decision vari-
ables (binary versus continuous) and the probability distribution which is used to
describe the statistical properties of a population. Simple variants for discrete prob-

152 5 Search Strategies

Algorithm 8 Estimation of Distribution Algorithm

Create initial population P with N solutions x’ (i € {1,...,N})
fori=1toN do
Calculate f(x)
end for
while termination criterion is not met do
Select M solutions, where M < N, from P using a selection scheme
Estimate the (joint) probability distribution of all selected solutions
Sample N solutions of the new population P’ from the probability distribution
Calculate f(x'), where x' € P/
P="P
end while

lem domains are population-based incremental learning (PBIL) (Baluja, 1994), uni-
variate marginal distribution algorithm (UMDA) (Miihlenbein and Paal3, 1996), and
competent GA (cGA) (Harik et al, 1998). These algorithms assume that all variables
are independent (which is an unrealistic assumption for most real-world problems)
and calculate the probability of an individual as the product of the probabilities
of every decision variable. More advanced approaches assume bivariate dependen-
cies between decision variables. Examples are mutual information maximization
for input clustering (MIMIC) (de Bonet et al, 1997), combining optimizers with
mutual information trees (COMIT) (Baluja and Davies, 1997), probabilistic incre-
mental program evolution (PIPE) (Salustowicz and Schmidhuber, 1997), and bi-
variate marginal distribution algorithm (BMDA) (Pelikan and Miihlenbein, 1999).
The most complex EDAs that assume multivariate dependencies between decision
variables are the factorized distribution algorithm (FDA) (Miihlenbein and Mah-
nig, 1999), the extended compact GA (Harik, 1999), the polytree approximation of
distribution algorithm (PADA) (Soto et al, 1999), estimation of Bayesian networks
algorithm (Etxeberria and Larrafiaga, 1999), and the Bayesian optimization algo-
rithm (BOA) (Pelikan et al, 1999a). Although EDAs are still a young research field,
EDAs using multivariate dependencies show promising results on binary problem
domains and often outperform standard GAs (Larrafiaga and Lozano, 2001; Pelikan,
2006). Their main advantage in comparison to standard crossover operators is the
ability to learn the linkage between solution variables and the position-independent
creation of new solutions.

The situation is different for continuous domains (Larrafiaga et al, 1999; Bosman
and Thierens, 2000; Gallagher and Frean, 2005). Here, the probability distributions
used (for example Gaussian) are often not able to model the structure of the land-
scape in an appropriate way (Bosman, 2003) leading to a low performance of EDAs
for continuous search spaces (Grahl et al, 2005).

For more detailed information on the functionality and application of EDAs we
refer to Larrafiaga and Lozano (2001) and Pelikan (2006).

5.2 Recombination-Based Search Methods 153

5.2.3 Genetic Programming

Genetic programming (GP) (Smith, 1980; Cramer, 1985; Koza, 1992) is a variant
of GAs that evolves programs. Although most GP approaches use trees to represent
programs (Koza, 1992, 1994; Koza et al, 1999, 2005; Banzhaf et al, 1997; Langdon
and Poli, 2002), there are also a few approaches that encode programs using lin-
ear bitstrings (for example, grammatical evolution (Ryan, 1999; O’Neill and Ryan,
2003) or Cartesian genetic programming (Miller and Thomson, 2000)). The com-
mon feature of GP approaches is that the phenotypes are programs or variable-length
structures like electronic circuits or controllers.

In analogy to GAs, GP starts with a population of random candidate programs.
Each program is evaluated on a given task and its fitness value is assigned. Often,
the fitness of an individual is determined by measuring how well the found solution
(e.g. a computer program) performs a specific task. The basic functionality of GP
follows GA functionality. The main differences are the search space which consists
of tree structures of variable size and the corresponding search operators which have
to be tree-specific. Solutions (programs) are usually represented as parse trees. Parse
trees represent the syntactic structure of a string according to some formal grammar.
In a parse tree, each node is either a root node, a branch node, or a leaf node. Interior
nodes represent functions and leaf nodes represent variables, constants, or functions
with no arguments. Therefore, the nodes in a parse tree are either members of

* the terminal set T (leaf nodes) representing independent variables of the problem,
zero-argument functions, random constants, or terminals with side-effects (for
example move operations like “turn-left” or “move forward”) or

* the function set F (interior nodes) representing functions (for example arithmetic
or logical operations like “+”, A, or =), control structures (for example “if” or
“while” clauses), or functions with side-effects (for example “write to file” or
“read”).

The definition of F and T is problem-specific and they should be designed such that

 cach function is defined for each possible parameter. Parameters are either termi-
nals or function returns.

* T and M must be chosen such that a parse tree can represent a solution for the
problem. Solutions that cannot be constructed using the sets 7 and F are not
elements of the search space and cannot be found by the search process.

In GP, the depth k and structure of a parse tree are variable. Figure 5.5 gives two
examples of parse trees.

The functionality of GP is analogous to GAs (see Algorithm 7, p. 148). Different
are the use of a direct representation (parse trees) and tree-specific initialization
and variation operators. During initialization, we generate random parse trees of
maximal depth k.. There are three basic methods (Koza, 1992): grow, full and
ramped-half-and-half. The grow method starts with an empty tree and iteratively
assigns a node either to be a function or a terminal. If a node is a terminal, a random
terminal from the terminal set 7" is chosen. If the node is a function, we choose a

154 5 Search Strategies

o
i
3] bl[a

(@) a+2b (b) (~FAA-B)V (AAB)

i
a] [e]

=]2

Fig. 5.5 Two examples of
parse trees

random function from F'. Furthermore, a number of child nodes are added such that
their number equals the number of arguments necessary for the chosen function. The
procedure stops either at depth k = ko, or when all leaf nodes are terminals. The
full method also starts with an empty tree but all nodes at depth k € {1,... Ky — 1}
are functions. All nodes at depth k = k,,,,, become terminals. Therefore, all resulting
trees have depth k. For the ramped-half-and-half method, the population is evenly
divided into (kyqx — 1) parts. Half of each part is created by the grow method and
half by the full method. For both halves, the depth of the nodes in the ith part is
equal to i, where i € {2,... kyqay - Thus, the diversity is high in the resulting initial
population.

As no standard search operators can be applied to parse trees, tree-specific
crossover and mutation operators are necessary. Like in SGAs, crossover is the
main search operator and mutation acts as background noise. Crossover exchanges
randomly selected sub-trees between two parse trees, whereas mutation usually re-
places a randomly selected sub-tree by a randomly generated one. Like in GAs,
standard GP crossover (Koza, 1992) chooses two parent solutions and generates
two offspring by swapping sub-trees (see Fig. 5.6). Analogously, mutation chooses
arandom sub-tree and replaces it with a randomly generated new one (see Fig. 5.7).
Other operators used in GP (Koza et al, 2005) are permutation, which changes the
order of function parameters, editing, which replaces sub-trees by semantically sim-
pler expressions, and encapsulation, which encodes a sub-tree as a more complex
single node.

In recent years, GP has shown encouraging results finding programs or strategies
for problem-solving (Koza et al, 2005; Kleinau and Thonemann, 2004). However,
often the computational effort for finding high-quality solutions even for problems
of small sizes is extremely high. Currently, open problems in GP are the low locality
of the representation/operator combination (compare Chap. 7), the bias of the search
operators (compare the discussion in Sect. 6.2.3, p. 171) and bloat. Bloat describes
the problem that during a GP run, the average size of programs has been seen to
grow large, sometimes exponentially. Although there is a substantial amount of work
trying to fix problems with bloat (Nordin and Banzhaf, 1995; Langdon and Poli,
1997; Soule, 2002; Luke and Panait, 2006), there is no solution for this problem yet

5.2 Recombination-Based Search Methods 155

Fig. 5.6 Standard crossover
operator for GP

Fig. 5.7 Standard mutation
operator for GP

(Banzhaf and Langdon, 2002; Gelly et al, 2005; Luke and Panait, 2006; Whigham
and Dick, 2010).

2 Springer
http://www.springer.com/978-3-540-72961-7

Design of Modern Heuristics
Principles and Application
Rothlauf, F.

2011, X, 267 p., Hardcover
ISBN: @78-3-540-728961-7

	Chapter 5 Search Strategies
	5.1 Local Search Methods
	5.1.1 Variable Neighborhood Search
	5.1.2 Guided Local Search
	5.1.3 Iterated Local Search
	5.1.4 Simulated Annealing and Tabu Search
	5.1.5 Evolution Strategy

	5.2 Recombination-Based Search Methods
	5.2.1 Genetic Algorithms
	5.2.2 Estimation of Distribution Algorithms
	5.2.3 Genetic Programming

