
Chapter 2
Optimization Problems

Optimization problems are common in many disciplines and various domains. In
optimization problems, we have to find solutions which are optimal or near-optimal
with respect to some goals. Usually, we are not able to solve problems in one step,
but we follow some process which guides us through problem solving. Often, the
solution process is separated into different steps which are executed one after the
other. Commonly used steps are recognizing and defining problems, constructing
and solving models, and evaluating and implementing solutions.

Combinatorial optimization problems are concerned with the efficient allocation
of limited resources to meet desired objectives. The decision variables can take val-
ues from bounded, discrete sets and additional constraints on basic resources, such
as labor, supplies, or capital, restrict the possible alternatives that are considered
feasible. Usually, there are many possible alternatives to consider and a goal deter-
mines which of these alternatives is best. The situation is different for continuous
optimization problems which are concerned with the optimal setting of parameters
or continuous decision variables. Here, no limited number of alternatives exist but
optimal values for continuous variables have to be determined.

The purpose of this chapter is to set the stage and give an overview of proper-
ties of optimization problems that are relevant for modern heuristics. We describe
the process of how to create a problem model that can be solved by optimization
methods, and what can go wrong during this process. Furthermore, we look at im-
portant properties of optimization models. The most important one is how difficult it
is to find optimal solutions. For some well-studied problems, we can give upper and
lower bounds on problem difficulty. Other relevant properties of optimization prob-
lems are their locality and decomposability. The locality of a problem is exploited by
local search methods, whereas the decomposability is exploited by recombination-
based search methods. Consequently, we discuss the locality and decomposability
of a problem and how it affects the performance of modern heuristics.

The chapter is structured as follows: Sect. 2.1 describes the process of solving op-
timization problems. In Sect. 2.2, we discuss problems and problem instances. Rel-
evant definitions and properties of optimization models are discussed in Sect. 2.3.
We describe common metrics that can be defined on a search space, resulting neigh-

F. Rothlauf, Design of Modern Heuristics, Natural Computing Series,
DOI 10.1007/978-3-540-72962-4 2, © Springer-Verlag Berlin Heidelberg 2011

7

http://dx.doi.org/10.1007/978-3-540-72962-4_2

8 2 Optimization Problems

borhoods, and the concept of a fitness landscape. Finally, Sect. 2.4 deals with prop-
erties of problems. We review complexity theory as a tool for formulating upper
and lower bounds on problem difficulty. Furthermore, we study the locality and de-
composability of a problem and their importance for local and recombination-based
search, respectively.

2.1 Solution Process

Researchers, users, and organizations like companies or public institutions are con-
fronted in their daily life with a large number of planning and optimization prob-
lems. In such problems, different decision alternatives exist and a user or an organi-
zation has to select one of these. Selecting one of the available alternatives has some
impact on the user or the organization which can be measured by some kind of eval-
uation criteria. Evaluation criteria are selected such that they describe the (expected)
impact of choosing one of the different decision alternatives. In optimization prob-
lems, users and organizations are interested in choosing the alternative that either
maximizes or minimizes an evaluation function which is defined on the selected
evaluation criteria.

Usually, users and organizations cannot freely choose from all available decision
alternatives but there are constraints that restrict the number of available alterna-
tives. Common restrictions come from law, technical limitations, or interpersonal
relations between humans. In summary, optimization problems have the following
characteristics:

• Different decision alternatives are available.
• Additional constraints limit the number of available decision alternatives.
• Each decision alternative can have a different effect on the evaluation criteria.
• An evaluation function defined on the decision alternatives describes the effect

of the different decision alternatives.

For optimization problems, a decision alternative should be chosen that considers
all available constraints and maximizes/minimizes the evaluation function. For plan-
ning problems, a rational, goal-oriented planning process should be used that sys-
tematically selects one of the available decision alternatives. Therefore, planning
describes the process of generating and comparing different courses of action and
then choosing one prior to action.

Planning processes to solve planning or optimization problems have been of ma-
jor interest in operations research (OR) (Taha, 2002; Hillier and Lieberman, 2002;
Domschke and Drexl, 2005). Planning is viewed as a systematic, rational, and
theory-guided process to analyze and solve planning and optimization problems.
The planning process consists of several steps:

1. Recognizing the problem,
2. defining the problem,
3. constructing a model for the problem,

2.1 Solution Process 9

4. solving the model,
5. validating the obtained solutions, and
6. implementing one solution.

The following sections discuss the different process steps in detail.

2.1.1 Recognizing Problems

In the very first step, it must be recognized that there is a planning or optimization
problem. This is probably the most difficult step as users or institutions often quickly
get used to a currently used approach of doing business. They appreciate the current
situation and are not aware that there are many different ways to do their business
or to organize a task. Users or institutions are often not aware that there might be
more than one alternative they can choose from.

The first step in problem recognition is that users or institutions become aware
that there are different alternatives (for example using a new technology or organiz-
ing the current business in a different way). Such an analysis of the existing situation
often occurs as a result of external pressure or changes in the environment. If every-
thing goes well, users and companies do not question the currently chosen decision
alternatives. However, when running into economic problems (for example accumu-
lating losses or losing market share), companies have to think about re-structuring
their processes or re-shaping their businesses. Usually, a re-design of business pro-
cesses is done with respect to some goals. Designing the proper (optimal) structure
of the business processes is an optimization problem.

A problem has been recognized if users or institutions have realized that there are
other alternatives and that selecting from these alternatives affects their business.
Often, problem recognizing is the most difficult step as users or institutions have
to abandon the current way of doing business and accept that there are other (and
perhaps better) ways.

2.1.2 Defining Problems

After we have identified a problem, we can describe and define it. For this purpose,
we must formulate the different decision alternatives, study whether there are any
additional constraints that must be considered, select evaluation criteria which are
affected by choosing different alternatives, and determine what are the goals of the
planning process. Usually, there is not only one possible goal but we have to choose
from a variety of different goals. Possible goals of a planning or optimization pro-
cess are either to find an optimal solution for the problem or to find a solution that
is better than some predefined threshold (for example the current solution).

An important aspect of problem definition is the selection of relevant decision
alternatives. There is a trade-off between the number of decision alternatives and

10 2 Optimization Problems

the difficulty of the resulting problem. The more decision alternatives we have to
consider, the more difficult it is to choose a proper alternative. In principle, we
can consider all possible decision alternatives (independently of whether they are
relevant for the problem, or not) and try to solve the resulting optimization problem.
However, since such problems can not be solved in a reasonable way, usually only
decision alternatives are considered that are relevant and which affect the evaluation
criteria. All aspects that have no direct impact on the goal of the planning process
are neglected. Therefore, we have to focus on carefully selected parts of the overall
problem and find the right level of abstraction.

It is important to define the problem large enough to ensure that solving the
problem yields some benefits and small enough to be able to solve the problem. The
resulting problem definition is often a simplified problem description.

2.1.3 Constructing Models

In this step, we construct a model of the problem which represents its essence.
Therefore, a model is a (usually simplified) representative of the real world. Math-
ematical models describe reality by extracting the most relevant relationships and
properties of a problem and formulating them using mathematical symbols and ex-
pressions. Therefore, when constructing a model, there are always aspects of reality
that are idealized or neglected. We want to give an example. In classical mechanics,
the energy E of a moving object can be calculated as E = 1

2 mv2, where m is the
object’s mass and v its velocity. This model describes the energy of an object well
if v is much lower than the speed of light c (v � c) but it becomes inaccurate for
v → c. Then, other models based on the special theory of relativity are necessary.
This example illustrates that the model used is always a representation of the real
world.

When formulating a model for optimization problems, the different decision al-
ternatives are usually described by using a set of decision variables {x1, . . . ,xn}.
The use of decision variables allows modeling of the different alternatives that can
be chosen. For example, if somebody can choose between two decision alterna-
tives, a possible decision variable would be x ∈ {0,1}, where x = 0 represents the
first alternative and x = 1 represents the second one. Usually, more than one deci-
sion variable is used to model different decision alternatives (for choosing proper
decision variables see Sect. 2.3.2). Restrictions that hold for the different decision
variables can be expressed by constraints. Representative examples are relation-
ships between different decision variables (e.g. x1 + x2 ≤ 2). The objective function
assigns an objective value to each possible decision alternative and measures the
quality of the different alternatives (e.g. f (x) = 2x1 + 4x2

2). One possible decision
alternative, which is represented by different values for the decision variables, is
called a solution of a problem.

To construct a model with an appropriate level of abstraction is a difficult task
(Schneeweiß, 2003). Often, we start with a realistic but unsolvable problem model

2.1 Solution Process 11

and then iteratively simplify the model until it can be solved by existing optimization
methods. There is a basic trade-off between the ability of optimization methods to
solve a model (tractability) and the similarity between the model and the underlying
real-world problem (validity). A step-wise simplification of a model by iteratively
neglecting some properties of the real-world problem makes the model easier to
solve and more tractable but reduces the relevance of the model.

Often, a model is chosen such that it can be solved by using existing optimiza-
tion approaches. This especially holds for classical optimization methods like the
Simplex method or branch-and-bound-techniques which guarantee finding the op-
timal solution. In contrast, the use of modern heuristics allow us to reduce the gap
between reality and model and to solve more relevant problem models. However,
we have to pay a price since such methods often find good solutions but we have no
guarantee that the solutions found are optimal.

Two other relevant aspects of model construction are the availability of relevant
data and the testing of the resulting model. For most problems, is it not sufficient
to describe the decision variables, the relationships between the decision variables,
and the structure of the evaluation function, but additional parameters are necessary.
These parameters are often not easily accessible and have to be determined by using
simulation and other predictive techniques. An example problem is assigning jobs
to different agents. Relevant for the objective value of an assignment is the order
of jobs. To be able to compare the duration of different assignments (each specific
assignment is a possible decision alternative), parameters like the duration of one
work step, the time that is necessary to transfer a job to a different agent, or the
setup times of the different agents are relevant. These additional parameters can be
determined by analyzing or simulating real-world processes.

Finally, a model is available which should be a representative of the real problem
but is usually idealized and simplified in comparison to the real problem. Before
continuing with this model, we must ensure that the model is a valid representa-
tive of the real world and really represents what we originally wanted to model. A
proper criterion for judging the correctness of a model is whether different decision
alternatives are modeled with sufficient accuracy and lead to the expected results.
Often, the relevance of a model is evaluated by examining the relative differences
of the objective values resulting from different decision alternatives.

2.1.4 Solving Models

After we have defined a model of the original problem, the model can be solved
by some kind of algorithm (usually an optimization algorithm). An algorithm is a
procedure (a finite set of well-defined instructions) for accomplishing some task. An
algorithm starts in an initial state and terminates in a defined end-state. The concept
of an algorithm was formalized by Turing (1936) and Church (1936) and is at the
core of computers and computer science. In optimization, the goal of an algorithm

12 2 Optimization Problems

is to find a solution (either specific values for the decision variables or one specific
decision alternative) with minimal or maximal evaluation value.

Practitioners sometimes view solving a model as simple, as the outcome of the
model construction step is already a model that can be solved by some kind of
optimization method. Often, they are not aware that the effort to solve a model can
be high and only small problem instances can be solved with reasonable effort. They
believe that solving a model is just applying a black-box optimization method to the
problem at hand. An algorithm is called a black-box algorithm if it can be used
without any further problem-specific adjustments.

However, we have a trade-off between tractability and specificity of optimization
methods. If optimization methods are to perform well for the problem at hand, they
usually need to be adapted to the problem. This is typical for modern heuristics but
also holds for classical optimization methods like branch-and-bound approaches.
Modern heuristics can easily be applied to problems that are very realistic and near
to real-world problems but usually do not guarantee finding an optimal solution.
Modern heuristics should not be applied out of the box as black-box optimization
algorithms but adapted to the problem at hand. To design high-quality heuristics is
an art as they are problem-specific and exploit properties of the model.

Comparing classical OR methods like the Simplex method with modern heuris-
tics reveals that for classical methods constructing a valid model of the real problem
is demanding and needs the designer’s intuition. Model solution is simple as ex-
isting algorithms can be used which yield optimal solutions (Ackoff, 1973). The
situation is different for modern heuristics, where formulating a model is often a
relatively simple step as modern heuristics can also be applied to models that are
close to the real world. However, model solution is difficult as standard variants of
modern heuristics usually show limited performance and only problem-specific and
model-specific variants yield high-quality solutions (Droste and Wiesmann, 2002;
Puchta and Gottlieb, 2002; Bonissone et al, 2006).

2.1.5 Validating Solutions

After finding optimal or near-optimal solutions, we have to evaluate them. Often,
a sensitivity analysis is performed which studies how the optimal solution depends
on variations of the model (for example using different parameters). The use of a
sensitivity analysis is necessary to ensure that slight changes of the problem, model,
or model parameters do not result in large changes in the resulting optimal solution.

Another possibility is to perform retrospective tests. Such tests use historical data
and measure how well the model and the resulting solution would have performed
if they had been used in the past. Retrospective tests can be used to validate the so-
lutions, to evaluate the expected gains from new solutions, and to identify problems
of the underlying model. For the validation of solutions, we must also consider that
the variables that are used as input for the model are often based on historical data.
In general, we have no guarantee that past behavior will correctly forecast future

2.2 Problem Instances 13

behavior. A representative example is the prediction of stock indexes. Usually, pre-
diction methods are designed such that they well predict historical developments of
stock indexes. However, as the variables that influence stock indexes are continu-
ously changing, accurate predictions of future developments with unforeseen events
are very difficult, if not impossible.

2.1.6 Implementing Solutions

Validated solutions have to be implemented. There are two possibilities: First, a
validated solution is implemented only once. The outcome of the planning or op-
timization process is a solution that usually replaces an existing, inferior, solution.
The solution is implemented by establishing the new solution. After establishing
the new solution, the planning process is finished. An example is the redesign of a
company’s distribution center. The solution is a new design of the processes in the
distribution center. After establishing the new design, the process terminates.

Second, the model is used and solved repeatedly. Then, we have to install a well-
documented system that allows the users to continuously apply the planning process.
The system includes the model, the solution algorithm, and procedures for imple-
mentation. An example is a system for finding optimal routes for deliveries and
pick-ups of trucks. Since the problem continuously changes (there are different cus-
tomers, loads, trucks), we must continuously determine high-quality solutions and
are not satisfied with a one-time solution.

We can distinguish between two types of systems. Automatic systems run in
the background and no user-interaction is necessary for the planning process. In
contrast, decision support systems determine proper solutions for a problem and
present the solution to the user. Then, the user is free to modify the proposed solution
and to decide.

This book focuses on the design of modern heuristics. Therefore, defining and
solving a model are of special interest. Although the steps before and afterwards in
the process are of equal (or even higher) importance, we refrain from studying them
in detail but refer the interested reader to other literature (Turban et al, 2004; Power,
2002; Evans, 2006).

2.2 Problem Instances

We have seen in the previous section how the construction of a model is embedded
in the solution process. When building a model, we can represent different decision
alternatives using a vector x = (x1, . . . ,xn) of n decision variables. We denote an
assignment of specific values to x as a solution. All solutions together form a set X
of solutions, where x ∈ X .

14 2 Optimization Problems

Decision variables can be either continuous (x ∈R
n) or discrete (x ∈Z

n). Conse-
quently, optimization models are either continuous where all decision variables are
real numbers, combinatorial where the decision variables are from a finite, discrete
set, or mixed where some decision variables are real and some are discrete. The fo-
cus of this book is on models for combinatorial optimization problems. Typical sets
of solutions used for combinatorial optimization models are integers, permutations,
sets, or graphs.

We have seen in Sect. 2.1 that it is important to carefully distinguish between
an optimization problem and possible optimization models which are more or less
accurate representations of the underlying optimization problem. However, in op-
timization literature, this distinction is not consistently made and often models are
denoted as problems. A representative example is the traveling salesman problem
which in most cases denotes a problem model and not the underlying problem. We
follow this convention throughout this book and usually talk about problems mean-
ing the underlying model of the problem and, if no confusion can occur, we do not
explicitly distinguish between problem and model.

We want to distinguish between problems and problem instances. An instance of
a problem is a pair (X , f), where X is a set of feasible solutions x ∈ X and f : X →R

is an evaluation function that assigns a real value to every element x of the search
space. A solution is feasible if it satisfies all constraints. The problem is to find an
x∗ ∈ X for which

f (x∗) ≥ f (x) for all x ∈ X (maximization problem) (2.1)

f (x∗) ≤ f (x) for all x ∈ X (minimization problem), (2.2)

x∗ is called a globally optimal solution (or optimal solution if no confusion can
occur) to the given problem instance.

An optimization problem is defined as a set I of instances of a problem. A prob-
lem instance is a concrete realization of an optimization problem and an optimiza-
tion problem can be viewed as a collection of problem instances with the same
properties and which are generated in a similar way. Most users of optimization
methods are usually dealing with problem instances as they want to have a better
solution for a particular problem instance. Users can obtain a solution for a problem
instance since all parameters are usually available. Therefore, it is also possible to
compare the quality of different solutions for problem instances by evaluating them
using the evaluation function f .

(2.1) and (2.2) are examples of definitions of optimization problems. However,
it is expensive to list all possible x ∈ X and to define the evaluation function f
separately for each x. A more elegant way is to use standardized model formulations.
A representative formulation for optimization models that is understood by people
working with optimization problems as well as computer software is:

2.3 Search Spaces 15

minimize z = f (x), (2.3)

subject to

gi(x) ≥ 0, i ∈ {1, . . . ,m},
hi(x) = 0, i ∈ {1, . . . , p},

x ∈W1 ×W2 × . . .×Wn, Wi ∈ {R,Z,B}, i ∈ {1, . . . ,n},

where x is a vector of n decision variables x1, . . . ,xn, f (x) is the objective function
that is used to evaluate different solutions, and g(x) and h(x) are inequality and
equality constraints on the variables xi. B indicates the set of binary values {0,1}.

By using such a formulation, we can model optimization problems with inequal-
ity and equality constraints. We cannot describe models with other types of con-
straints or where the evaluation function f or the constraints gi and h j cannot be
formulated in an algorithmic way. Also not possible are multi-criteria optimization
problems where more than one evaluation criterion exists (Deb, 2001; Coello Coello
et al, 2007; Collette and Siarry, 2004). To formulate models in a standard way allow
us to easily recognize relevant structures of the model, to easily add details of the
model (e.g. additional constraints), and to feed it directly into computer programs
(problem solvers) that can compute optimal or good solutions.

We see that in standard optimization problems, there are decision alternatives,
restrictions on the decision alternatives, and an evaluation function. Generally, the
decision alternatives are modeled as a vector of variables. These variables are used
to construct the restrictions and the objective criteria as a mathematical function. By
formulating them, we get a mathematical model relating the variables, constraints,
and objective function. Solving this model yields the values of the decision vari-
ables that optimize (maximize or minimize) values of the objective function while
satisfying all constraints. The resulting solution is referred to as an optimal feasible
solution.

2.3 Search Spaces

In optimization models, a search space X is implicitly defined by the definition of
the decision variables x∈X . This section defines important aspects of search spaces.
Section 2.3.1 introduces metrics that can be used for measuring similarities between
solutions in metric search spaces. In Sect. 2.3.2, neighborhoods in a search space are
defined based on the metric used. Finally, Sects. 2.3.3 and 2.3.4 introduce fitness
landscapes and discuss differences between locally and globally optimal solutions.

16 2 Optimization Problems

2.3.1 Metrics

To formulate an optimization model, we need to define a search space. Intuitively, a
search space contains the set of feasible solutions of an optimization problem. Fur-
thermore, a search space can define relationships (for example distances) between
solutions.

Very generally, a search space can be defined as a topological space. A topologi-
cal space is a generalization of metric search spaces (as well as other types of search
spaces) and describes similarities between solutions not by defining distances be-
tween solutions but by relationships between sets of solutions. A topological space
is an ordered pair (X ,T), where X is a set of solutions (points) and T is a collection
of subsets of X called open sets. A set Y is in X (denoted Y ⊆ X) if every element
x ∈ Y is also in X (x ∈ Y ⇒ x ∈ X). A topological space (X ,T) has the following
properties

1. the empty set /0 and whole space X are in T ,
2. the intersection of two elements of T is again in T , and
3. the union of an arbitrary number of elements of T is again in T .

We can define different topologies (search spaces) by combining X with different T .
For a given X , the most simple search space is T = { /0,X}, which is called the trivial
topology or indiscrete topology. The trivial topology can be used for describing
search spaces where no useful metrics between the different decision alternatives
are known or can be defined. For the definition of a topological space, we need no
definition of similarity between the different elements in the search space but the
definition of relationships between different subsets is sufficient. We give exam-
ples. Given X = {a,b,c}, we can define the trivial topology with only two subsets
T = {{},{a,b,c}}. More complex topologies can be defined by different T . For
example, defining four subsets T = {{},{a},{a,b},{a,b,c}} results in a different
topology. For more information on topological spaces, we refer to Buskes and van
Rooij (1997) and Bredon (1993).

Metric search spaces are a specialized form of topological spaces where the sim-
ilarities between solutions are measured by a distance. Therefore, in metric search
spaces, we have a set X of solutions and a real-valued distance function (also called
a metric)

d : X ×X → R

that assigns a real-valued distance to any combination of two elements x,y ∈ X . In
metric search spaces, the following properties must hold:

d(x,y) ≥ 0,

d(x,x) = 0,

d(x,y) = d(y,x),
d(x,z) ≤ d(x,y)+d(y,z),

where x,y,z ∈ X .

2.3 Search Spaces 17

An example of a metric space is the set of real numbers R. Here, a metric
can be defined by d(x,y) := |x− y|. Therefore, the distance between any solutions
x,y ∈ R is just the absolute value of their differences. Extending this definition to
2-dimensional spaces R

2, we get the city-block metric (also known as taxicab metric
or Manhattan distance). It is defined for 2-dimensional spaces as

d(x,y) := |x1 − y1|+ |x2 − y2|, (2.4)

where x = (x1,x2) and y = (y1,y2). This metric is named the city-block metric as
it describes the distance between two points on a 2-dimensional plane in a city like
Manhattan or Mannheim with a rectangular ground plan. On n-dimensional search
spaces R

n, the city-block metric becomes

d(x,y) :=
n

∑
i=1

|xi − yi|, (2.5)

where x,y ∈ R
n.

Another example of a metric that can be defined on R
n is the Euclidean metric.

In Euclidean spaces, a solution x = (x1, . . . ,xn) is a vector of continuous values
(xi ∈ R). The Euclidean distance between two solutions x and y is defined as

d(x,y) :=

√
n

∑
i=1

(xi − yi)2. (2.6)

For n = 1, the Euclidean metric coincides with the city-block metric. For n = 2, we
have a standard 2-dimensional search space and the distance between two elements
x,y ∈ R

2 is just a direct line between two points on a 2-dimensional plane.
If we assume that we have a binary space (x ∈ {0,1}n), a commonly used metric

is the binary Hamming metric (Hamming, 1980)

d(x,y) =
n

∑
i=1

|xi − yi|, (2.7)

where d(x,y) ∈ {0, . . . ,n}. The binary Hamming distance between two binary vec-
tors x and y of length n is just the number of binary decision variables on which x
and y differ. It can be extended to continuous and discrete decision variables:

d(x,y) =
n

∑
i=1

zi, (2.8)

where

zi =

{
0, for xi = yi,

1, for xi
= yi.

In general, the Hamming distance measures the number of decision variables on
which x and y differ.

18 2 Optimization Problems

2.3.2 Neighborhoods

The definition of a neighborhood is important for optimization problems as it de-
termines which solutions are similar to each other. A neighborhood is a mapping

N(x) : X → 2X , (2.9)

where X is the search space containing all possible solutions to the problem. 2X

stands for the set of all possible subsets of X and N is a mapping that assigns to each
element x ∈ X a set of elements y ∈ X . A neighborhood definition can be viewed as
a mapping that assigns to each solution x ∈ X a set of solutions y that are neighbors
of x. Usually, the neighborhood N(x) defines a set of solutions y which are in some
sense similar to x.

The definition of a topological space (X ,T) already defines a neighborhood as
it introduces an abstract structure of space in the set X . Given a topological space
(X ,T), a subset N of X is a neighborhood of a point x ∈ X if N contains an open
set U ⊂ T containing the point x. We want to give examples. For the trivial topol-
ogy ({a,b,c},{{},{a,b,c}}), the points in the search space cannot be distinguished
by topological means and either all or no points are neighbors to each other. For
({a,b,c},{{},{a},{a,b},{a,b,c}}), the points a and b are neighbors.

Many optimization models use metric search spaces. A metric search space is
a topological space where a metric between the elements of the set X is defined.
Therefore, we can define similarities between solutions based on the distance d.
Given a metric search space, we can use balls to define a neighborhood. For x ∈ X ,
an (open) ball around x of radius ε is defined as the set

Bε := {y ∈ X |d(x,y) < ε}.

The ε-neighborhood of a point x ∈ X is the open set consisting of all points whose
distance from x is less than ε . This means that all solutions y ∈ X whose distance d
from x is lower than ε are neighbors of x. By using balls we can define a neighbor-
hood function N(x). Such a function defines for each x a set of solutions similar to
x.

Figure 2.1 illustrates the definition of a neighborhood in a 2-dimensional contin-
uous search space R

2 for Euclidean distances (Fig. 2.1(a)) and Manhattan distances
(Fig. 2.1(b)). Using an open ball, all solutions y where d(x,y) < ε are neighboring
solutions to x. For Euclidean distances, we use d(x,y) :=

√
(x1 − y1)2 +(x2 − y2)2

and neighboring solutions are all solutions that can be found inside of a circle around
x with radius ε . For city-block distances, we use d(x,y) := |x1 − y1|+ |x2 − y2|
and all solutions inside a rhombus with the vertices (x1 − ε,y1),(x1,y1 + ε),(x1 +
ε,y1),(x1,y1 − ε) are neighboring solutions.

It is problematic to apply metric search spaces to problems where no meaningful
similarities between different decision alternatives can be defined or do not exist.
For such problems, the only option is to define a trivial topology (see p. 16) which
assumes that all solutions are neighbors and no meaningful structure on the search

2.3 Search Spaces 19

Fig. 2.1 Neighborhoods on a 2-dimensional Euclidean space using different metrics

space exists. However, practitioners (as well as users) are used to metric search
spaces and often seek to apply them also to problems where no meaningful similar-
ities between different decision alternatives can be defined. This is a mistake as a
metric search space does not model such a problem in an appropriate way.

We want to give an example. We assume a search space containing four differ-
ent fruits (apple (a), banana (b), pear (p), and orange (o)). This search space forms
a trivial topology ({a,b, p,o},{ /0,{a,b, p,o}} as no meaningful distances between
the four fruits exist and all solutions are neighbors of each other. Nevertheless,
we can define a metric search space X = {0,1}2 for the problem. Each solution
((0,0),(0,1),(1,0), and (1,1)) represents one fruit. Although the original problem
defines no similarities, the use of a metric space induces that the solution (0,0)
is more similar to (0,1) than to (1,1) (using Hamming distance (2.7)). Therefore,
a metric space is inappropriate for the problem definition as it defines similarities
where no similarities exist. A more appropriate model would be x ∈ {0, . . . ,3} and
using Hamming distance (2.8). Then, all distances between the different solutions
are equal and all solutions are neighbors.

A different problem can occur if the metric used is not appropriate for the prob-
lem and existing “similarities” between different decision alternatives do not fit the
similarities between different solutions described by the model. The metric defined
for the problem model is a result of the choice of the decision variables. Any choice
of decision variables {x1, . . . ,xn} allows the definition of a metric space and, thus,
defines similarities between different solutions. However, if the metric induced by
the use of the decision variables does not fit the metric of the problem description,
the problem model is inappropriate.

Table 2.1 illustrates this situation. We assume that there are s = 9 different de-
cision alternatives {a,b,c,d,e, f ,g,h, i}. We assume that the decision alternatives
form a metric space (using the Hamming metric (2.8)), where the distances be-
tween all elements are equal. Therefore, all decision alternatives are neighbors (for
ε > 1). In the first problem model (model 1), we use a metric space X = {0,1,2}2

and Hamming metric (2.8). Therefore, each decision alternative is represented by

20 2 Optimization Problems

(x1,x2) with xi ∈ {0,1,2}. For the Hamming metric, each solution has four neigh-
bors. For example, decision alternative (1,1) is a neighbor of (1,2) but not of (2,2).
Model 1 results in a different neighborhood in comparison to the original decision
alternatives. Model 2 is an example of a different metric space. In this model, we use
binary variables xi j and the search space is defined as X = xi j, where xi j ∈ {0,1}. We
have an additional restriction, ∑ j xi j = 1, where i ∈ {1,2} and j ∈ {1,2,3}. Again,
Hamming distance (2.8) can be used. For ε = 1.1, no neighboring solutions exist.
For ε = 2.1, each solution has four neighbors. We see that different models for the
same problem result in different neighborhoods which do not necessarily coincide
with the neighborhoods of the original problem.

Table 2.1 Two different search spaces for a problem

decision model 1 model 2

alternatives (x1,x2)
(

x11 x12 x13
x21 x22 x23

)

{a,b,c,d,e, f ,g,h, i} {(0,0),(0,1),(0,2), {
(

1 0 0
1 0 0

)
,

(
1 0 0
0 1 0

)
,

(
1 0 0
0 0 1

)
,

(1,0),(1,1),(1,2),
(

0 1 0
1 0 0

)
,

(
0 1 0
0 1 0

)
,

(
0 1 0
0 0 1

)
,

(2,0),(2,1),(2,2)}
(

0 0 1
1 0 0

)
,

(
0 0 1
0 1 0

)
,

(
0 0 1
0 0 1

)
}

The examples illustrate that selecting an appropriate model is important. For the
same problem, different models are possible which can result in different neighbor-
hoods. We must select the model such that the metric induced by the model fits well
the metric that exists for the decision alternatives. Although, in the problem descrip-
tion no neighborhood needs to be defined, usually a notion of neighborhoods exist.
Users that formulate a model description often know which decision alternatives
are similar to each other as they have a feeling about which decision alternatives
result in the same outcome. When constructing the model, we must ensure that the
neighborhood induced by the model fits well the (often intuitive) neighborhood for-
mulated by the user.

Relevant aspects which determine the resulting neighborhood of a model are the
type and number of decision variables. The types of decision variables should be
determined by the properties of the decision alternatives. If decision alternatives
are continuous (for example, choosing the right amount of crushed ice for a drink),
the use of continuous decision variables in the model is useful and discrete deci-
sion variables should not be used. Analogously, for discrete decision alternatives,
discrete decision variables and combinatorial models should be preferred. For ex-
ample, the number of ice cubes in a drink should be modelled using integers and not
continuous variables.

The number of decision variables used in the model also affects the resulting
neighborhood. For discrete models, there are two extremes: first, we can model s
different decision alternatives by using only one decision variable that can take s

2.3 Search Spaces 21

different values. Second, we can use l = log2(s) binary decision variables xi ∈ {0,1}
(i ∈ {1, . . . , l}). If we use Hamming distance (2.8) and define neighboring solutions
as d(x,y) ≤ 1, then all possible solutions are neighbors if we use only one decision
variable. In contrast, each solution x∈{0,1}l has only l neighbors y∈{0,1}l , where
d(x,y) ≤ 1. We see that using different numbers of decision variables for modeling
the decision alternatives results in completely different neighborhoods. In general,
a high-quality model is a model where the neighborhoods defined in the model fit
well the neighborhoods that exist in the problem.

2.3.3 Fitness Landscapes

For combinatorial search spaces where a metric is defined, we can introduce the con-
cept of fitness landscape (Wright, 1932). A fitness landscape (X , f ,d) of a problem
instance consists of a set of solutions x ∈ X , an objective function f that measures
the quality of each solution, and a distance measure d. Figure 2.2 is an example of
a one-dimensional fitness landscape.

We denote dmin = minx,y∈X (d(x,y)), where x
= y, as the minimum distance be-
tween any two elements x and y of a search space. Two solutions x and y are de-
noted as neighbors if d(x,y) = dmin. Often, d can be normalized to dmin = 1. A
fitness landscape can be described using a graph GL with a vertex set V = X and an
edge set E = {(x,y)∈ X ×X | d(x,y) = dmin} (Reeves, 1999a; Merz and Freisleben,
2000b). The objective function assigns an objective value to each vertex. We as-
sume that each solution has at least one neighbor and the resulting graph is con-
nected. Therefore, an edge exists between neighboring solutions. The distance be-
tween two solutions x,y ∈ X is proportional to the number of nodes that are on the
path of minimal length between x and y in the graph GL. The maximum distance
dmax = maxx,y∈X (d(x,y)) between any two solutions x,y ∈ X is called the diameter
diam GL of the landscape.

We want to give an example: We use the search space defined by model 1 in
Table 2.1 and Hamming distance (2.8). Then, all solutions where only one decision
variable is different are neighboring solutions (d(x,y) = dmin). The maximum dis-
tance dmax = 2. More details on fitness landscapes can be found in Reeves and Rowe
(2003, Chap. 9) or Deb et al (1997).

2.3.4 Optimal Solutions

A globally optimal solution for an optimization problem is defined as the solution
x∗ ∈ X , where f (x∗)≤ f (x) for all x ∈ X (minimization problem). For the definition
of a globally optimal solution, it is not necessary to define the structure of the search
space, a metric, or a neighborhood.

22 2 Optimization Problems

Given a problem instance (X , f) and a neighborhood function N, a feasible so-
lution x′ ∈ X is called locally optimal (minimization problem) with respect to N
if

f (x′) ≤ f (x) for all x ∈ N(x′). (2.10)

Therefore, locally optimal solutions do not exist if no neighborhood is defined. Fur-
thermore, the existence of local optima is determined by the neighborhood definition
used as different neighborhoods can result in different locally optimal solutions.

Fig. 2.2 Locally and globally
optimal solutions

Figure 2.2 illustrates the differences between locally and globally optimal so-
lutions and shows how local optima depend on the definition of N. We have a
one-dimensional minimization problem with x ∈ [0,1] ∈ R. We assume an objec-
tive function f that assigns objective values to all x ∈ X . Independently of the
neighborhood used, u is always the globally optimal solution. If we use the 1-
dimensional Euclidean distance (2.6) as metric and define a neighborhood around
x as N(x) = {y|y ∈ X and d(x,y) ≤ ε} the solution v is a locally optimal solution if
ε < d1. Analogously, w is locally optimal for all neighborhoods with ε < d2. For
ε ≥ d2, the only locally optimal solution is the globally optimal solution u.

The modality of a problem describes the number of local optima in the prob-
lem. Unimodal problems have only one local optimum (which is also the global
optimum) whereas multi-modal problems have multiple local optima. In general,
multi-modal problems are more difficult for guided search methods to solve than
unimodal problems.

2.4 Properties of Optimization Problems

The purpose of optimization algorithms is to find high-quality solutions for a prob-
lem. If possible, they should identify either optimal solutions x∗, near-optimal solu-
tions x ∈ X , where f (x)− f (x∗) is small, or at least locally optimal solutions.

Problem difficulty describes how difficult it is to find an optimal solution for a
specific problem or problem instance. Problem difficulty is defined independently

2.4 Properties of Optimization Problems 23

of the optimization method used. Determining the difficulty of a problem is often a
difficult task as we have to prove that that there are no optimization methods that can
better solve the problem. Statements about the difficulty of a problem are method-
independent as they must hold for all possible optimization methods.

We know that different types of optimization methods lead to different search
performance. Often, optimization methods perform better if they exploit some char-
acteristics of an optimization problem. In contrast, methods that do not exploit any
problem characteristics, like black-box optimization techniques, usually show low
performance. For an example, we have a look at random search. In random search,
solutions x ∈ X are iteratively chosen in a random order. We want to assume that
each solution is considered only once by random search. When random search is
stopped, it returns the best solution found. During random search, new solutions
are chosen randomly and no problem-specific information about the structure of the
problem or previous search steps is used. The number of evaluations needed by ran-
dom search is the number of elements drawn from X , which is independent of the
problem itself (if we assume a unique optimal solution). Consequently, a distinction
between “easy” and “difficult” problems is meaningless when random search is the
only available optimization method.

The following sections study properties of optimization problems. Section 2.4.1
starts with complexity classes which allow us to formulate bounds on the perfor-
mance of algorithmic methods. This allows us to make statements about the dif-
ficulty of a problem. Then, we continue with properties of optimization problems
that can be exploited by modern heuristics. Section 2.4.2 introduces the locality
of a problem and presents corresponding measurements. The locality of a problem
is exploited by guided search methods which perform well if problem locality is
high. Important for high locality is a proper definition of a metric on the search
space. Finally, Sect. 2.4.3 discusses the decomposability of a problem and how
recombination-based optimization methods exploit a problem’s decomposability.

2.4.1 Problem Difficulty

The complexity of an algorithm is the effort (usually time or memory) that is nec-
essary to solve a particular problem. The effort depends on the input size, which is
equal to the size n of the problem to be solved. The difficulty or complexity of a
problem is the lowest possible effort that is necessary to solve the problem.

Therefore, problem difficulty is closely related to the complexity of algorithms.
Based on the complexity of algorithms, we are able to find upper and lower bounds
on the problem difficulty. If we know that an algorithm can solve a problem, we
automatically have an upper bound on the difficulty of the problem, which is just the
complexity of the algorithm. For example, we study the problem of finding a friend’s
telephone number in the telephone book. The most straightforward approach is to
search through the whole book starting from “A”. The effort for doing this increases
linearly with the number of names in the book. Therefore, we have an upper bound

24 2 Optimization Problems

on the difficulty of the problem (problem has at most linear complexity) as we know
a linear algorithm that can solve the problem. A more effective way to solve this
problem is bisection or binary search which iteratively splits the entries of the book
into halves. With n entries, we only need log(n) search steps to find the number. So,
we have a new, improved, upper bound on problem difficulty.

Finding lower bounds on the problem difficulty is more difficult as we have to
show that no algorithm exists that needs less effort to solve the problem. Our prob-
lem of finding a friend’s name in a telephone book is equivalent to the problem of
searching an ordered list. Binary search which searches by iteratively splitting the
list into halves is optimal and there is no method with lower effort (Knuth, 1998).
Therefore, we have a lower bound and there is no algorithm that needs less than
log(n) steps to find an address in a phone book with n entries. A problem is called
closed if the upper and lower bounds on its problem difficulty are identical. Conse-
quently, the problem of searching an ordered list is closed.

This section illustrates how bounds on the difficulty of problems can be derived
by studying the effort of optimization algorithms that are used to solve the problems.
As a result, we are able to classify problems as easy or difficult with respect to the
performance of the best-performing algorithm that can solve the problem.

The following paragraphs give an overview of the Landau notation which is an
instrument for formulating upper and lower bounds on the effort of optimization
algorithms. Thus, we can also use it for describing problem difficulty. Then, we
illustrate that each optimization problem can also be modeled as a decision problem
of the same difficulty. Finally, we illustrate different complexity classes (P, NP, NP-
hard, and NP-complete) and discuss the tractability of decision and optimization
problems.

2.4.1.1 Landau Notation

The Landau notation (which was introduced by Bachmann (1894) and made popular
by the work of Landau (1974)) can be used to compare the asymptotic growth of
functions and is helpful when measuring the complexity of problems or algorithms.
It allows us to formulate asymptotic upper and lower bounds on function values.
For example, Landau notation can be used to determine the minimal amount of
memory or time that is necessary to solve a specific problem. With n ∈ N, c ∈ R,
and f ,g : N → R the following bounds can be described using the Landau symbols:

• asymptotic upper bound (“big O notation”):
f ∈ O(g) ⇔∃c > 0 ∃n0 > 0 ∀n ≥ n0 : | f (n)| ≤ c|g(n)|: f is dominated by g.

• asymptotically negligible (“little o notation”):
f ∈ o(g) ⇔∀c > 0 ∃n0 > 0 ∀n ≥ n0 : | f (n)| < c|g(n)|: f grows slower than g.

• asymptotic lower bound:
f ∈ Ω(g) ⇔ g ∈ O(f): f grows at least as fast as g.

• asymptotically dominant:
f ∈ ω(g) ⇔ g ∈ o(f): f grows faster than g.

2.4 Properties of Optimization Problems 25

• asymptotically tight bound:
f ∈Θ(g) ⇔ g ∈ O(f)∧ f ∈ O(g): g and f grow at the same rate.

Using this notation, it is easy to compare the difficulty of different problems: using
O(g) and Ω(g), it is possible to give an upper, respectively lower bound for the
asymptotic running time f of algorithms that are used to solve a problem. It is im-
portant to have in mind that lower bounds on problem difficulty hold for all possible
optimization problems for a specific problem. In contrast, upper bounds only indi-
cate that there is at least one algorithm that can solve the problem with this effort but
there are also other algorithms where a higher effort is necessary. The Landau nota-
tion does not consider constant factors since these mainly depend on the computer
or implementation used to solve the problem. Therefore, constants do not directly
influence the difficulty of a problem.

We give three small examples. In problem 1, we want to find the smallest num-
ber in an unordered list of n numbers. The complexity of this problem is O(n) (it
increases linearly with n) when using linear search and examining all possible ele-
ments in the list. As it is not possible to solve this problem faster than linear, there
is no gap between the lower bound Ω(n) and upper bound O(n). In problem 2, we
want to find an element in an ordered list with n items (for example finding a tele-
phone number in the telephone book). Binary search (bisection) iteratively splits the
list into two halves and can find any item in log(n) search steps. Therefore, the upper
bound on the complexity of this problem is O(log(n)). Again, the lower bound
is equal to the upper bound (Harel and Rosner, 1992; Cormen et al, 2001) and the
complexity of the problem is Θ(log(n)). Finally, in problem 3 we want to sort an ar-
ray of n arbitrary elements. Using standard sorting algorithms like merge sort (Cor-
men et al, 2001) it can be solved in O(n log(n)). As the lower bound is Ω(n log(n)),
the difficulty of this problem is Θ(n log(n)).

2.4.1.2 Optimization Problems, Evaluation Problems, and Decision Problems

To derive upper and lower bounds on problem difficulty, we need a formal descrip-
tion of the problem. Thus, at least the solutions x ∈ X and the objective function
f : X → R must be defined. The search space can be very trivial (e.g. have a trivial
topology) as the definition of a neighborhood structure is not necessary. Developing
bounds is difficult for problems where the objective function does not systematically
assign objective values to each solution. Although describing X and f is sufficient
for formulating a problem model, in most problems of practical relevance the size
|X | of the search space is large and, thus, the direct assignment of objective val-
ues to each possible solution is often very time-consuming and not appropriate for
building an optimization model that should be solved by a computer.

To overcome this problem, we can define each optimization problem implicitly
using two algorithms AX and A f , and two sets of parameters SX and S f . Given a
set of parameters SX , the algorithm AX (x,SX) decides whether the solution x is an
element of X , i.e. whether x is a feasible solution. Given a set of parameters S f ,
the algorithm A f (x,S f) calculates the objective value of a solution x. Therefore,

26 2 Optimization Problems

A f (x,S f) is equivalent to the objective function f (x). For given AX and A f , we
can define different instances of a combinatorial optimization problem by assigning
different values to the parameters in SX and S f .

We want to give an example. We have a set of s different items and want to find
a subset of n items with minimal weight. Then, the algorithm AX checks whether a
solution x is feasible. The set SX contains only one parameter which is the number n
of items that should be found. If x contains exactly n items, AX (x,SX) indicates that
x is a feasible solution. The parameters S f are the weights wi of the different items.
Algorithm A f calculates the objective value of a feasible solution x by summing up
the weights of the n items (f (x,w) = ∑wi) using the solution x and the weights wi.
Using these definitions, we can formulate an optimization problem as:

Given are the two algorithms AX and A f and representations of the parameters SX and S f .
The goal is to find the optimal feasible solution.

This formulation of an optimization problem is equivalent to (2.3) (p. 15). The al-
gorithm AX checks whether all constraints are met and A f calculates the objective
value of x. Analogously, the evaluation version of an optimization problem can be
defined as:

Given are the two algorithms AX and A f and representations of the parameters SX and S f .
The goal is to find the objective value of the optimal solution.

Finally, the decision version (also known as recognition version) of an optimization
problem can be defined as:

Given are the algorithms AX and A f , representations of the parameters SX and S f , and an
integer L. The goal is to decide whether there is a feasible solution x ∈ X such that f (x)≤ L.

The first two versions are problems where an optimal solution has to be found,
whereas in the decision version of an optimization problem a question has to be
answered either by yes or no. We denote feasible solutions x whose objective value
f (x) ≤ L as yes-solutions. We can solve the decision version of the optimization
problem by solving the original optimization problem, calculating the objective
value f (x∗) of the optimal solution x∗, and deciding whether f (x∗) is greater than
L. Therefore, the difficulty of the three versions is roughly the same if we assume
that f (x∗), respectively A f (x∗,Xf), is easy to compute (Papadimitriou and Steiglitz,
1982, Chap. 15.2). If this is the case, all three versions are equivalent.

We may ask why we want to formulate an optimization as a decision problem
which is much less intuitive? The reason is that in computational complexity the-
ory, many statements on problem difficulty are formulated for decision (and not
optimization) problems. By formulating optimization problems as decision prob-
lems, we can apply all these results to optimization problems. Therefore, complexity
classes which can be used to categorize decision problems in classes with different
difficulty (compare the following paragraphs) can also be used for categorizing opti-
mization problems. For more information on the differences between optimization,
evaluation, and decision versions of an optimization problem, we refer the interested
reader to Papadimitriou and Steiglitz (1982, Chap. 15) or Harel and Rosner (1992).

2.4 Properties of Optimization Problems 27

2.4.1.3 Complexity Classes

Computational complexity theory ((Hartmanis and Stearns, 1965; Cook, 1971; Garey
and Johnson, 1979; Papadimitriou and Yannakakis, 1991; Papadimitriou, 1994;
Arora and Barak, 2009) allows us to categorize decision problems in different
groups based on their difficulty. The difficulty of a problem is defined with respect
to the amount of computational resources that are at least necessary to solve the
problem.

In general, the effort (amount of computational resources) that is necessary to
solve an optimization problem of size n is determined by its time and space com-
plexity. Time complexity describes how many iterations or number of search steps
are necessary to solve a problem. Problems are more difficult if more time is nec-
essary. Space complexity describes the amount of space (usually memory on a com-
puter) that is necessary to solve a problem. As for time, problem difficulty increases
with higher space complexity. Usually, time and space complexity depend on the
input size n and we can use the Landau notation to describe upper and lower bounds
on them. A complexity class is a set of computational problems where the amount
of computational resources that are necessary to solve the problem shows the same
asymptotic behavior. For all problems that are contained in one complexity class,
we can give bounds on the computational complexity (in general, time and space
complexity). Usually, the bounds depend on the size n of the problem, which is also
called its input size. Usually, n is much smaller than the size |X | of the search space.
Typical bounds are asymptotic lower or upper bounds on the time that is necessary
to solve a particular problem.

Complexity Class P

The complexity class P (P stands for polynomial) is defined as the set of decision
problems that can be solved by an algorithm with worst-case polynomial time com-
plexity. The time that is necessary to solve a decision problem in P is asymptotically
bounded (for n > n0) by a polynomial function O(nk). For all problems in P, an
algorithm exists that can solve any instance of the problem in time that is O(nk), for
some k. Therefore, all problems in P can be solved effectively in the worst case. As
we showed in the previous section that all optimization problems can be formulated
as decision problems, the class P can be used to categorize optimization problems.

Complexity Class NP

The class NP (which stands for non-deterministic polynomial time) describes the set
of decision problems where a yes solution of a problem can be verified in polynomial
time. Therefore, both the formal representation of a solution x and the time it takes
to check its validity (to check whether it is a yes solution) must be polynomial or
polynomially-bounded.

28 2 Optimization Problems

Therefore, all problems in NP have the property that their yes solutions can be
checked effectively. The definition of NP says nothing about the time necessary
for verifying no solutions and a problem in NP can not necessarily be solved in
polynomial time. Informally, the class NP consists of all “reasonable” problems
of practical importance where a yes solution can be verified in polynomial time:
this means the objective value of the optimal solution can be calculated fast. For
problems not in NP, even verifying that a solution is valid (is a yes answer) can be
extremely difficult (needs exponential time).

An alternative definition of NP is based on the notion of non-deterministic al-
gorithms. Non-deterministic algorithms are algorithms which have the additional
ability to guess any verifiable intermediate result in a single step. If we assume that
we find a yes solution for a decision problem by iteratively assigning values to the
decision variables, a non-deterministic algorithm always selects the value (possibil-
ity) that leads to a yes answer, if a yes answer exists for the problem. Therefore,
we can view a non-deterministic algorithm as an algorithm that always guesses the
right possibility whenever the correctness can be checked in polynomial time. The
class NP is the set of all decision problems that can be solved by a non-deterministic
algorithm in worst-case polynomial time. The two definitions of NP are equivalent
to each other. Although non-deterministic algorithms cannot be executed directly by
conventional computers, this concept is important and helpful for the analysis of the
computational complexity of problems.

All problems that are in P also belong to the class NP. Therefore, P ⊆ NP. An
important question in computational complexity is whether P is a proper subset of
NP (P⊂NP) or whether NP is equal to P (P = NP). So far, this question is not finally
answered (Fortnow, 2009) but most researchers assume that P
= NP and there are
problems that are in NP, but not in P.

In addition to the classes P and NP, there are also problems where yes solutions
cannot be verified in polynomial time. Such problems are very difficult to solve and
are, so far, of only little practical relevance.

Tractable and Intractable Problems

When solving an optimization problem, we are interested in the running time of the
algorithm that is able to solve the problem. In general, we can distinguish between
polynomial running time and exponential running time. Problems that can be solved
using a polynomial-time algorithm (there is an upper bound O(nk) on the running
time of the algorithm, where k is constant) are tractable. Usually, tractable problems
are easy to solve as running time increases relatively slowly with larger input size
n. For example, finding the lowest element in an unordered list of size n is tractable
as there are algorithms with time complexity that is O(n). Spending twice as much
effort solving the problem allows us to solve problems twice as large.

In contrast, problems are intractable if they cannot be solved by a polynomial-
time algorithm and there is a lower bound on the running time which is Ω(kn), where
k > 1 is a constant and n is the problem size (input size). For example, guessing the

2.4 Properties of Optimization Problems 29

correct number for a digital door lock with n digits is an intractable problem, as
the time necessary for finding the correct key is Ω(10n). Using a lock with one
more digit increases the number of required search steps by a factor of 10. For
this problem, the size of the problem is n, whereas the size of the search space is
|X | = 10n. The effort to find the correct key depends on n and increases at the same
rate as the size of the search space. Table 2.2 lists the growth rate of some common
functions ordered by how fast they grow.

Table 2.2 Polynomial (top)
and exponential (bottom)
functions

constant O(1)
logarithmic O(logn)
linear O(n)
quasilinear O(n logn)
quadratic O(n2)
polynomial (of order c) O(nc), c > 1
exponential O(kn)
factorial O(n!)
super-exponential O(nn)

We can identify three different types of problems with different difficulty.

• Tractable problems with known polynomial-time algorithms. These are easy
problems. All tractable problems are in P.

• Provably intractable problems, where we know that there is no polynomial-time
algorithm. These are difficult problems.

• Problems where no polynomial-time algorithm is known but intractability has
not yet been shown. These problems are also difficult.

NP-Hard and NP-Complete

All decision problems that are in P are tractable and thus can be easily solved using
the “right” algorithm. If we assume that P
= NP, then there are also problems that are
in NP but not in P. These problems are difficult as no polynomial-time algorithms
exist for them.

Among the decision problems in NP, there are problems where no polynomial
algorithm is available and which can be transformed into each other with polyno-
mial effort. Consequently, a problem is denoted NP-hard if an algorithm for solving
this problem is polynomial-time reducible to an algorithm that is able to solve any
problem in NP. A problem A is polynomial-time reducible to a different problem B
if and only if there is a transformation that transforms any arbitrary solution x of A
into a solution x′ of B in polynomial time such that x is a yes instance for A if and
only if x′ is a yes instance for B. Informally, a problem A is reducible to some other
problem B if problem B either has the same difficulty or is harder than problem A.
Therefore, NP-hard problems are at least as hard as any other problem in NP, al-
though they might be harder. Therefore, NP-hard problems are not necessarily in
NP.

30 2 Optimization Problems

Cook (1971) introduced the set of NP-complete problems as a subset of NP. A
decision problem A is denoted NP-complete if

• A is in NP and
• A is NP-hard.

Therefore, no other problem in NP is more than a polynomial factor harder than
any NP-complete problem. Informally, NP-complete problems are the most difficult
problems that are in NP.

All NP-complete problems form one set as all NP-complete problems have the
same complexity. However, it is as yet unclear whether NP-complete problems are
tractable. If we are able to find a polynomial-time algorithm for any one of the NP-
complete problems, then every NP-complete problem can be solved in polynomial
time. Then, all other problems in NP can also be solved in polynomial time (are
tractable) and thus P = NP. On the other hand, if it can be shown that one NP-
complete problem is intractable, then all NP-complete problems are intractable and
P
= NP.

Summarizing our discussion, we can categorize optimization problems with re-
spect to the computational effort that is necessary for solving them. Problems that
are in P are usually easy as algorithms are known that solve such problems in pol-
ynomial time. Problems that are NP-complete are difficult as no polynomial-time
algorithms are known. Decision problems that are not in NP are even more difficult
as we could not evaluate in polynomial time whether a particular solution for such
a problem is feasible. To be able to calculate upper and lower bounds on problem
complexity, usually well-defined problems are necessary that can be formulated in
functional form.

2.4.2 Locality

In general, the locality of a problem describes how well the distances d(x,y) be-
tween any two solutions x,y ∈ X correspond to the difference of the objective values
| f (x)− f (y)| (Lohmann, 1993; Rechenberg, 1994; Rothlauf, 2006). The locality of
a problem is high if neighboring solutions have similar objective values. In contrast,
the locality of a problem is low if low distances do not correspond to low differences
of the objective values. Relevant determinants for the locality of a problem are the
metric defined on the search space and the objective function f .

In the heuristic literature, there are a number of studies on locality for discrete de-
cision variables (Weicker and Weicker, 1998; Rothlauf and Goldberg, 1999, 2000;
Gottlieb and Raidl, 2000; Gottlieb et al, 2001; Whitley and Rowe, 2005; Caminiti
and Petreschi, 2005; Raidl and Gottlieb, 2005; Paulden and Smith, 2006) as well
as for continuous decision variables (Rechenberg, 1994; Igel, 1998; Sendhoff et al,
1997b,a). For continuous decision variables, locality is also known as causality.
High and low locality correspond to strong and weak causality, respectively. Al-
though causality and locality describe the same concept and causality is the older

2.4 Properties of Optimization Problems 31

one, we refer to the concept as locality as it is currently more often used in the
literature.

Guided search methods are optimization approaches that iteratively sample solu-
tions and use the objective values of previously sampled solutions to guide the future
search process. In contrast to random search which samples solutions randomly and
uses no information about previously sampled solutions, guided search methods dif-
ferentiate between promising (for maximization problems these are solutions with
high objective values) and non-promising (solutions with low objective values) areas
in the fitness landscape. New solutions are usually generated in the neighborhood
of promising solutions with high objective values. A prominent example of guided
search is greedy search (see Sect. 3.4.1).

The locality of optimization problems has a strong impact on the performance of
guided search methods. Problems with high locality allow guided search methods
to find high-quality solutions in the neighborhood of already found good solutions.
Furthermore, the underlying idea of guided search methods to move in the search
space from low-quality solutions to high-quality solutions works well if the problem
has high locality. In contrast, if a problem has low locality, guided search methods
cannot make use of previous search steps to extract information that can be used
for guiding the search. Then, for problems with low locality, guided search methods
behave like random search.

One of the first approaches to the question of what makes problems difficult for
guided search methods, was the study of deceptive problems by Goldberg (1987)
which was based on the work of Bethke (1981). In deceptive problems, the objec-
tive values are assigned in such a way to the solutions that guided search methods
are led away from the global optimal solution. Therefore, based on the structure of
the fitness landscape (Weinberger, 1990; Manderick et al, 1991; Deb et al, 1997),
the correlation between the fitness of solutions can be used to describe how difficult
a specific problem is to solve for guided search methods. For an overview of correla-
tion measurements and problem difficulty we refer to Bäck et al (1997, Chap. B2.7)
or Reeves and Rowe (2003).

The following paragraphs present approaches that try to determine what makes
a problem difficult for guided search. Their general idea is to measure how well the
metric defined on the search space fits the structure of the objective function. A high
fit between metric and structure of the fitness function makes a problem easy for
guided search methods.

2.4.2.1 Fitness-Distance Correlation

A straightforward approach for measuring the difficulty of problems for guided
search methods has been presented in Jones and Forrest (1995). They assumed that
the difficulty of an optimization problem is determined by how the objective values
are assigned to the solutions x ∈ X and what metric is defined on X . Combining
both aspects, problem difficulty can be measured by the fitness-distance correlation
coefficient

32 2 Optimization Problems

ρFDC =
c f d

σ(f)σ(dopt)
, (2.11)

where

c f d =
1
m

m

∑
i=1

(fi −〈 f 〉)(di,opt −〈dopt〉)

is the covariance of f and dopt . 〈 f 〉, 〈dopt〉, σ(f), and σ(dopt) are the means and
standard deviations of the fitness f and the distance dopt to the optimal solution
x∗, respectively (Jones, 1995a; Jones and Forrest, 1995; Altenberg, 1997). di,opt is
the distance of solution i to the optimal solution x∗. The fitness-distance correlation
coefficient ρFDC ∈ [−1,1] measures the linear correlation between the fitness of
search points and their distances to the global optimum x∗.

As ρFDC represents a summary statistic of f and dopt , it works well if f and dopt

follow a bivariate normal distribution. For problems where f and dopt do not follow
a normal distribution, using the correlation as a measure of problem difficulty for
guided search methods will not yield meaningful results (Jones and Forrest, 1995).

Using the fitness-distance correlation coefficient, Jones and Forrest (1995) clas-
sified fitness landscapes (for maximization problems) into three classes, straightfor-
ward (ρFDC ≤ −0.15), difficult (−0.15 < ρFDC < 0.15), and misleading (ρFDC ≥
0.15):

1. Straightforward: For such problems, the fitness of a solution is correlated with
the distance to the optimal solution. With lower distance, the fitness difference to
the optimal solution decreases. As the structure of the search space guides search
methods towards the optimal solution such problems are usually easy for guided
search methods.

2. Difficult: There is no correlation between the fitness difference and the distance
to the optimal solution. The fitness values of neighboring solutions are uncorre-
lated and the structure of the search space provides no information about which
solutions should be sampled next by the search method.

3. Misleading: The fitness difference is negatively correlated to the distance to the
optimal solution. Therefore, the structure of the search space misleads a guided
search method to sub-optimal solutions.

For minimization problems, the situation is reversed as problems are straightforward
for ρFDC ≥ 0.15, difficult for −0.15 < ρFDC < 0.15, and misleading for ρFDC ≤
−0.15. The three different classes of problem difficulty are illustrated in Fig. 2.3.
We show how the fitness difference | f (x∗)− f | depends on the distance dopt to the
optimal solution x∗. In the following paragraphs, we want to discuss these three
classes in some more detail.

Problems are easy for guided search methods if there is a positive correlation
between a solution’s distance to the optimal solution and the difference between
its fitness and the fitness of the optimal solution. An example is a one-dimensional
problem where the fitness of a solution is equal to the distance to the optimal solu-
tion (f (x)= d(x,x∗)). Then, ρFDC = 1 (for a minimization problem) and the problem
can easily be solved using guided search methods.

2.4 Properties of Optimization Problems 33

Fig. 2.3 Different classes of
problem difficulty

Problems become more difficult if there is no correlation between the fitness dif-
ference and the distance to the optimal solution. The locality of such problems is
low, as no meaningful relationship exists between the distances d between differ-
ent solutions and their objective values. Thus, the fitness landscape cannot guide
guided search methods to optimal solutions. Optimization methods cannot use in-
formation about a problem which was collected in prior search steps to determine
the next search step. Therefore, all search algorithms show the same performance as
no useful information (information that indicates where the optimal solution can be
found) is available for the problem. Because all search strategies are equivalent, also
random search is an appropriate search method for such problems. Random search
uses no information and performs as well as other search methods on these types of
problems.

We want to give two examples. In the first example, we have a discrete search
space X with n elements x ∈ X . A deterministic random number generator assigns
a random number to each x. Again, the optimization problem is to find x∗, where
f (x∗) ≤ f (x) for all x ∈ X . Although we can define neighborhoods and similari-
ties between different solutions, all possible optimization algorithms show the same
behavior. All elements of the search space must be evaluated to find the globally
optimal solution.

The second example is the needle-in-a-haystack (NIH) problem. Following its
name, the goal is to find a needle in a haystack. In this problem, a metric exists
defining distances between solutions, but there is no meaningful relationship be-
tween the metric and the objective value (needle found or not) of different solutions.
When physically searching in a haystack for a needle, there is no good strategy for
choosing promising areas of the haystack that should be searched in the next search
step. The NIH problem can be formalized by assuming a discrete search space X
and the objective function

f (x) =

{
0 for x
= xopt

1 for x = xopt .
(2.12)

Figure 2.4(a) illustrates the problem. The NIH problem is equivalent to the problem
of finding the largest number in an unordered list of numbers. The effort to solve
such problems is high and increases linearly with the size |X | of the search space.
Therefore, the difficulty of the NIH problem is Θ(n).

34 2 Optimization Problems

Fig. 2.4 Different types of
problems

Guided search methods perform worst for problems where the fitness landscape
leads the search method away from the optimal solution. Then, the distance to the
optimal solution is negatively correlated to the fitness difference between a solution
and the optimal solution. The locality of such problems is relatively high as most
neighboring solutions have similar fitness. However, since guided search finds the
optimal solution by performing iterated small steps in the direction of better solu-
tions, all guided search approaches must fail as they are misled. All other search
methods that use information about the fitness landscape also fail. More effective
search methods for such problems are those that do not use information about the
structure of the search space but search randomly, like random search. The most
prominent example of such types of problems are deceptive traps (see Figure 2.4(b)).
For this problem, the optimal solution is x∗ = xmin. The solution xmax is a deceptive
attractor and guided search methods that search in the direction of solutions with
higher objective function always find xmax, which is not the optimal solution.

A common tool for studying the fitness-distance correlation of problems is fit-
ness distance plots. Usually, such plots are more meaningful than just calculating
c f d . Fitness distance problems show how the fitness of randomly sampled solutions
depends on their distance to the optimal solution. Examples can be found in Kauff-
man (1989) (NK-landscapes), Boese (1995) (traveling salesman problem), Reeves
(1999b) (flow-shop scheduling problems), Inayoshi and Manderick (1994) and Merz
and Freisleben (2000b) (graph bipartitioning problem), Merz and Freisleben (2000a)
(quadratic assignment problem), or Mendes et al (2002) (single machine scheduling
problem).

2.4.2.2 Ruggedness

For studying the fitness-distance correlation of problems, it is necessary to know
the optimal solution. However, for real-world problems the optimal solution is not a
priori known and other approaches are necessary that describe how well the metric
fits the structure of the objective function.

The performance of guided search methods depends on the properties of the fit-
ness landscape like the number of local optima or peaks in the landscape, the distri-
bution of the peaks in the search space, and the height of the different peaks. Con-
sequently, correlation functions have been proposed to measure the ruggedness of a
fitness landscape (Kauffman and Levin, 1987; Kauffman, 1989; Weinberger, 1990;
Kauffman, 1993). Like in fitness-distance correlation, the idea is to consider the ob-

2.4 Properties of Optimization Problems 35

jective values as random variables and to obtain statistical properties on how the
distribution of the objective values depends on the distances between solutions. The
autocorrelation function (which is interchangeable with the autocovariance function
if the normalization factor 〈 f 2〉− 〈 f 〉2 is dropped) of a fitness landscape is defined
as (Merz and Freisleben, 2000b)

ρ(d) =
〈 f (x) f (y)〉d(x,y)=d −〈 f 〉2

〈 f 2〉−〈 f 〉2 , (2.13)

where 〈 f 〉 denotes the average value of f over all x ∈ X and 〈 f (x) f (y)〉d(x,y)=d is
the average value of f (x) f (y) for all pairs (x,y) ∈ S× S, where d(x,y) = d. The
autocorrelation function has the attractive property of being in the range [−1,1]. An
autocorrelation value of 1 indicates perfect correlation (positive correlation) and −1
indicates prefect anti-correlation (negative correlation). For a fixed distance d, ρ is
the correlation between the objective values of all solutions that have a distance of d.
Weinberger recognized that landscapes with exponentially decaying autocovariance
functions are often easy to solve for guided search methods (Weinberger, 1990).

To calculate the autocorrelation function is demanding for optimization problems
as it requires evaluating all solutions of the search space. Therefore, Weinberger
used random walks through the fitness landscape to approximate the autocorrela-
tion function. A random walk is an iterative procedure where in each search step
a random neighboring solution is created. The random walk correlation function
(Weinberger, 1990; Stadler, 1995, 1996; Reidys and Stadler, 2002) is defined as

r(s) =
〈 f (xi) f (xi+s)〉−〈 f 〉2

〈 f 2〉−〈 f 〉2 , (2.14)

where xi is the solution examined in the ith step of the random walk. s is the number
of steps between two solutions in the search space. For a fixed s, r defines the corre-
lation of two solutions that are reached by a random walk in s steps, where s ≥ dmin.
For a random walk with a large number of steps, r(s) is a good estimate for ρ(d).

Correlation functions have some nice properties and can be used to measure the
difficulty of a problem for guided search methods. If we assume that we have a
completely random problem, where random objective values are assigned to all x ∈
X , then the autocorrelation function will have a peak at d = s = 0 and will be close
to zero for all other d and s. In general, for all possible problems the autocorrelation
function reaches its peak at the origin d = s = 0. Thus it holds |r(s)| ≤ r(0) for all
0 < s ≤ dmax.

When assuming that the distance between two neighboring solutions x and y is
equal to one (d(x,y)= 1), r(1) measures the correlation between the objective values
of all neighboring solutions. The correlation length lcorr of a landscape (Stadler,
1992, 1996) is defined as

lcorr = − 1
ln(|r(1)|) = − 1

ln(|ρ(1)|)

36 2 Optimization Problems

for r(1),ρ(1)
= 0.
The ruggedness of a fitness landscape depends on the correlation between neigh-

boring solutions. If the correlation (the correlation length) is high, neighboring so-
lutions have similar objective values and the fitness landscape is smooth and not
rugged. For optimization problems where the autocorrelation function indicates
strong correlation (ρ(d)≈ 1), guided search methods are a good choice as the struc-
ture of the search space defined by the metric fits well the structure of the objective
function. High-quality solutions are grouped together in the search space and the
probability of finding a good solution is higher in the neighborhood of a high-quality
solution than in the neighborhood of a low-quality solution.

Correlation functions give us meaningful estimates on how difficult a problem
is for guided search only if the search space possesses regularity. Regularity means
that all elements of the landscape are visited by a random walk with equal proba-
bility (Weinberger, 1990). Many optimization problems like the traveling salesman
problem (Kirkpatrick and Toulouse, 1985; Stadler and Schnabl, 1992), the quadratic
assignment problem (Taillard, 1995; Merz and Freisleben, 2000a), and the flow-
shop scheduling problem (Reeves, 1999b) possess regular search spaces. However,
other problems like job-shop scheduling problems do not possess this regularity as
random walks through the search space are biased (Bierwirth et al, 2004). Such a
bias affects random walks and directed stochastic local search algorithms.

In the literature, there are various examples of how the correlation length can
be used to study the difficulty of optimization problems for guided search methods
(Kauffman and Levin, 1987; Kauffman, 1989; Huynen et al, 1996; Kolarov, 1997;
Barnett, 1998; Angel and Zissimopoulos, 1998a, 2000, 1998b, 2001, 2002; Grahl
et al, 2007).

2.4.3 Decomposability

The decomposability of a problem describes how well the problem can be decom-
posed into several, smaller subproblems that are independent of each other (Polya,
1945; Holland, 1975; Goldberg, 1989c). The decomposability of a problem is high
if the structure of the objective function is such that not all decision variables must
be simultaneously considered for calculating the objective function but there are
groups of decision variables that can be set independently of each other. It is low
if it is not possible to decompose a problem into subproblems with few interdepen-
dencies between the groups of variables.

When dealing with decomposable problems, it is important to choose the type
and number of decision variables such that they fit the properties of the problem.
The fit is high if the variables used result in a problem model where groups of
decision variables can be solved independently or, at least, where the interactions
between groups of decision variables are low. Given the set of decision variables
D = {x1, . . . ,xl}, a problem can be decomposed into several subproblems if the
objective value of a solution x is calculated as f (x) = ∑Ds f ({xi|xi ∈ Ds}), where Ds

2.4 Properties of Optimization Problems 37

are non-intersecting and proper subsets of D (Ds � D,∪Ds = D) and i ∈ {1, . . . , l}.
Instead of summing the objective values for the subproblems also other functions
(e.g. multiplication resulting in f = ∏Ds f ({xi|xi ∈ Ds})) can be used.

In the previous Sect. 2.4.2, we have studied various measures of locality and dis-
cussed how the locality of a problem affects the performance of guided search meth-
ods. This section focuses on the decomposability of problems and how it affects the
performance of recombination-based search methods. Recombination-based search
methods solve problems by trying different decompositions of the problem, solv-
ing the resulting subproblems, and putting together the obtained solutions for these
subproblems to get a solution for the overall problem. High decomposability of a
problem usually leads to high performance of recombination-based search meth-
ods because solving a larger number of smaller subproblems is usually easier than
solving the larger, original problem. Consequently, it is important for effective
recombination-based search methods to identify proper subsets of variables such
that there are no strong interactions between the variables of the different subsets.

We discussed in Sect. 2.3.2 that the type and number of decision variables in-
fluences the resulting neighborhood structure. In the case of recombination-based
search methods, we must choose the decision variables such that the problem can
be easily decomposed by the search method. We want to give an example of how
the decomposition of a problem can make a problem easier for recombination-based
search methods. Imagine you have to design the color and material of a chair. For
each of the two design variables, there are three different options. The quality of a
design is evaluated by marketing experts that assign an objective value to each com-
bination of color and material. Overall, there are 3× 3 = 9 possible chair designs.
If the problem cannot be decomposed, the experts have to evaluate all nine different
solutions to find the optimal design. If we assume that the color and material are
independent of each other, we (or a recombination-based search method) can try to
decompose the problem and separately solve the decomposed subproblems. If the
experts separately decide about color and material, the problem becomes easier as
only 3+3 = 6 designs have to be evaluated.

Therefore, the use of recombination-based optimization methods suggests that
we should define the decision variables of a problem model such that they allow
a decomposition of the problem. The variables should be chosen such that there
are no (or at least few) interdependencies between different sets of variables. We
can study the importance of choosing proper decision variables for the chair ex-
ample. The first variant assumes no decomposition of the problem. We define one
decision variable x ∈ X , where |X | = 9. There are nine different solutions and
non-recombining optimization methods have to evaluate all possible solutions to
find the optimal one. In the second variant, we know that the objective function
of the problem can be decomposed. Therefore, we choose two decision variables
x1 ∈X1 = {y,b,g} (yellow, blue, and green) and x2 ∈X2 = {w,m, p} (wooden, metal,
or plastics), where |X1|= |X2|= 3. A possible decomposition for the example prob-
lem is f = f1(x1)+ f2(x2) (see Table 2.3). Decomposing the problem in such a way
results in two subproblems f1 and f2 of size |X1| = |X2| = 3. Comparing the two
problem formulations shows that the resulting objective values f of different solu-

38 2 Optimization Problems

tions are the same for both formulations. However, the size of the resulting search
space is lower for the second variant. Therefore, the problem becomes easier to
solve for recombination-based search methods as the assumed problem decomposi-
tion (f = f1 + f2) fits well the properties of the problem.

without problem decomposition additive problem decomposition
f = f (x1,x2) f = f1(x1)+ f2(x2)

f (y,w) = 3, f (y,m) = 2, f (y, p) = 1, f1(y) = 0, f2(w) = 3,
f (b,w) = 4, f (b,m) = 3, f (b, p) = 2, f1(b) = 1, f2(m) = 2,
f (g,w) = 5, f (g,m) = 4, f (g, p) = 3. f1(g) = 2, f2(p) = 1.

Table 2.3 Two different problem formulations

We want to give another example and study two different problems with l binary
decision variables xi ∈ {0,1} (|X | = 2l). In the first problem, a random objective
value is assigned to each x ∈ X . This problem cannot be decomposed. In the sec-
ond problem, the objective value of a solution is calculated as f = ∑l

i=1 xi. This
example problem can be decomposed. Using recombination-based search methods
for the first example is not helpful as no decomposition of the problem is possi-
ble. Therefore, all efforts of recombination-based search methods to find proper
decompositions of the problem are useless. The situation is different for the second
example. Recombination-based methods should be able to correctly decompose the
problem and to solve the l subproblems. If the decomposition is done properly by
the recombination-based search method, only 2l different solutions need to be evalu-
ated and the problem becomes much easier to solve once the correct decomposition
of the problem is found. However, usually there is additional effort necessary for
finding the correct decomposition.

We see that the choice of proper decision variables is important for the decom-
posability of an optimization problem. In principle, there are two extremes for com-
binatorial optimization problems. The one extreme is to encode all possible solu-
tions x ∈ X using only one decision variable x1, where x1 ∈ {1, . . . , |X |}. Using such
a problem model, no decomposition is possible as only one decision variable ex-
ists. At the other extreme, we could use log2 |X | binary decision variables encoding
the |X | different solutions. Then, the number of possible decompositions becomes
maximal (there are 2log |X | possible decompositions of the problem). Proper decision
variables for an optimization model should be chosen such that they allow a high
decomposition of the problem. Problem decomposition is problem-specific and de-
pends on the properties of f . We should have in mind that using a different number
of decision variables not only influences problem decomposition but also results in
a different neighborhood (see also Sect. 2.3.2).

In the following paragraphs, we discuss different approaches developed in the
literature to estimate how well a problem can be solved using recombination-based
search methods. All approaches assume that search performance is higher if a prob-
lem can be decomposed into smaller subproblems. Section 2.4.3.1 presents polyno-
mial problem decomposition and Sect. 2.4.3.2 illustrates the Walsh decomposition

2.4 Properties of Optimization Problems 39

of a problem. Finally, Sect. 2.4.3.3 discusses schemata and building blocks and how
they affect the performance of recombination-based search methods.

2.4.3.1 Polynomial Decomposition

The linearity of an optimization problem (which is also known as epistasis) can be
measured by its polynomial decomposition. Epistasis is low if the linear separability
of a problem is high. Epistasis measures the interference between decision variables
and describes how well a problem can be decomposed into smaller sub-problems
(Holland, 1975; Davidor, 1989, 1991; Naudts et al, 1997). For binary decision vari-
ables, any objective function f defined on l decision variables xi ∈ {0,1} can be
decomposed into

f (x) = ∑
N⊂{1,...,l}

αN ∏
n∈N

eT
n x,

where the vector en contains 1 in the nth column and 0 elsewhere, T denotes
transpose, and the αN are the coefficients (Liepins and Vose, 1991). Regarding
x = (x1, . . . ,xl), we may view f as a polynomial in the variables x1, . . . ,xl . The
coefficients αN describe the non-linearity of the problem. If there are high order
coefficients, the problem function is non-linear. If a decomposed problem has only
order 1 coefficients, then the problem is linear decomposable. It is possible to de-
termine the maximum non-linearity of f (x) by its highest polynomial coefficients.
The higher the order of the αN , the more non-linear the problem is.

There is some correlation between the non-linearity of a problem and its difficulty
for recombination-based search methods (Mason, 1995). However, as illustrated in
the following example, there could be high order αN although the problem can still
easily be solved by recombination-based search methods. The function

f (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 for x1 = x2 = 0,

2 for x1 = 0,x2 = 1,

4 for x1 = 1,x2 = 0,

10 for x1 = x2 = 1,

(2.15)

can be decomposed into f (x) = α1 +α2x1 +α3x2 +α4x1x2 = 1+3x1 + x2 +5x1x2.
The problem is decomposable and, thus, easy for recombination-based search meth-
ods as each of the two decision variables can be solved independently of each other.
However, as the problem is non-linear and high order coefficients exist, the polyno-
mial decomposition wrongly classifies the problem as difficult. This misclassifica-
tion is due to the fact that the polynomial decomposition assumes a linear decom-
position and cannot appropriately describe non-linear dependencies.

40 2 Optimization Problems

2.4.3.2 Walsh Decomposition

Instead of decomposing an objective function into its polynomial coefficients, bi-
nary optimization problems can also be decomposed into the corresponding Walsh
coefficients. The Walsh transformation is analogous to the discrete Fourier transfor-
mation but for functions with binary decision variables. Every real-valued function
f : {0,1}l → R over l binary decision variables xi can be expressed as:

f (x) =
2l−1

∑
j=0

w j ψ j(x).

The Walsh functions ψ j : {0,1}l → {−1,1} form a set of 2l orthogonal functions.
The weights w j ∈R are called Walsh coefficients. The indices j are binary strings of
length l representing the integers ranging from 0 to 2l −1. The jth Walsh function
is defined as:

ψ j(x) = (−1)bc(j∧x),

with x, j are binary strings and elements of {0,1}l , ∧ denotes the bitwise logical
AND, and bc(x) is the number of 1 bits in x (Goldberg, 1989a,b; Vose and Wright,
1998a,b). The Walsh coefficients can be computed by the Walsh transformation:

w j =
1
2l

2l−1

∑
k=0

f (k)ψ j(k),

where k is a binary string of length l. The coefficients wj measure the contribution
to the objective function by the interaction of the binary decision variables xi indi-
cated by the positions of the 1’s in j. With increasing number of 1’s in the binary
string j, we have more interactions between the binary decision variables xi. For
example, w100 and w010 measure the linear contribution to f associated with the de-
cision variable x0 and x1, respectively. Analogously, w001 is the linear contribution
of decision variable x2. w111 measures the nonlinear interaction between all three
decision variables x0, x1, and x2. Any function f over a discrete {0,1}l search space
can be represented as a weighted sum of all possible 2l Walsh functions ψ j.

Walsh coefficients are sometimes used to estimate the expected performance
of recombination-based search algorithms (Goldberg, 1989a; Oei, 1992; Goldberg,
1992; Reeves and Wright, 1994; Heckendorn et al, 1996). It is known that prob-
lems are easy for recombination-based search algorithms like genetic algorithms
(see Sect. 5.2.1, p. 147) if a problem has only Walsh coefficients of order 1. Fur-
thermore, difficult problems tend to have higher order Walsh coefficients. However,
analogously to the linear polynomial decomposition, the highest order of a coeffi-
cient wi does not allow us an accurate prediction of problem difficulty. This behav-
ior is expected as Walsh functions are polynomials (Goldberg, 1989a,b; Liepins and
Vose, 1991).

The insufficient measurement of problem difficulty for recombination-based
search methods can be illustrated by the example (2.15). The Walsh coefficients

2.4 Properties of Optimization Problems 41

are w = (4.25,−1.75,−2.75,1.25). Although the problem is easy to solve for
recombination-based search methods (x1 and x2 can be set independently of each
other), there are high-order Walsh coefficients (w11 = 1.25) which indicate high
problem difficulty.

Walsh analysis not only overestimates problem difficulty but also underestimates
it. For example, MAX-SAT problems (see Sect. 4.4, p. 126) are difficult (APX-hard,
see Sect. 3.4.2), but have only low-order Walsh coefficients (Rana et al, 1998). For
example, the MAX-3SAT problem has no coefficients of higher order than 3 and
the number of non-zero coefficients of order 3 is low (Rana et al, 1998). Although,
Walsh coefficients indicate that the problem is easy, recombination-based search
methods cannot perform well for this difficult optimization problem (Rana et al,
1998; Rana and Whitley, 1998; Heckendorn et al, 1996, 1999).

2.4.3.3 Schemata Analysis and Building Blocks

Schemata analysis is an approach developed and commonly used for measuring the
difficulty of problems with respect to genetic algorithms (GA, Sect. 5.2.1). As the
main search operator of GAs is recombination, GAs are a representative example
of recombination-based search methods. Schemata are usually defined for binary
search spaces and thus schemata analysis is mainly useful for problems with binary
decision variables. However, the idea of building blocks is also applicable to other
search spaces (Goldberg, 2002). In the following paragraphs, we introduce schemata
and building blocks and describe how these concepts can be used for estimating the
difficulty of problems for recombination-based search methods.

Schemata

Schemata were first proposed by Holland (1975) to model the ability of GAs to
process similarities between binary decision variables. When using l binary deci-
sion variables xi ∈ {0,1}, a schema H = [h1,h2, . . . ,hl] is a sequence of symbols of
length l, where hi ∈ {0,1,∗}. ∗ denotes the “don’t care” symbol and tells us that a
decision variable is not fixed. A schema stands for the set of solutions which match
the schema at all the defined positions, i.e., those positions having either a 0 or a 1.
Schemata of this form allow for coarse graining (Stephens and Waelbroeck, 1999;
Contreras et al, 2003), where whole sets of strings can be treated as a single entity.

A position in a schema is fixed if there is either a 0 or a 1 at this position. The
size or order o(H) of a schema H is defined as the number of fixed positions (0’s or
1’s) in the schema string. The defining length δ (H) of a schema H is defined as the
distance between (meaning the number of bits that are between) the two outermost
fixed bits. The fitness fs(H) of a schema is defined as the average fitness of all
instances of this schema and can be calculated as

42 2 Optimization Problems

fs(H) =
1

||H|| ∑
x∈H

f (x),

where ||H|| is the number of solutions x∈ {0,1}l that are instances of the schema H.
The instances of a schema H are all solutions x ∈ H. For example, x = (0,1,1,0,1)
and y = (0,1,1,0,0) are instances of H = [0∗1∗∗]. The number of solutions that are
instances of a schema H can be calculated as 2l−o(H). For a more detailed discussion
of schemata in the context of GA, we refer to Holland (1975), Goldberg (1989c),
Altenberg (1994) or Radcliffe (1997).

Building Blocks

Based on schemata, Goldberg (1989c, p. 20 and p. 41) defined building blocks (BB)
as “highly fit, short-defining-length schemata”. Although BBs are commonly used
(especially in the GA literature) they are rarely defined. We can describe a BB as a
solution to a subproblem that can be expressed as a schema. Such a schema has high
fitness and its size is smaller than the length l of the binary solution. By combining
BBs of lower order, recombination-based search methods like GAs can form high-
quality over-all solutions.

We can interpret BBs also from a biological perspective and view them as genes.
A gene consists of one or more alleles and can be described as a schema with high
fitness. Often, genes do not strongly interact with each other and determine specific
properties of individuals like hair or eye color.

BBs can be helpful for estimating the performance of recombination-based
search algorithms. If the sub-solutions to a problem (the BBs) are short (low
δ (H)) and of low order (low o(H)), then the problem is assumed to be easy for
recombination-based search.

BB-Based Problem Difficulty

Goldberg (2002) presented an approach for problem difficulty based on schemata
and BBs. He decomposed problem difficulty for recombination-based search meth-
ods like genetic algorithms into

• difficulty within a building block (intra-BB difficulty),
• difficulty between building blocks (inter-BB difficulty), and
• difficulty outside of building blocks (extra-BB difficulty).

This decomposition of problem difficulty assumes that difficult problems are
challenging for methods based on building blocks. In the following paragraphs, we
briefly discuss these three aspects of BB-difficulty.

If we count the number of schemata of order o(H) = k that have the same fixed
positions, there are 2k different schemata. Viewing a BB of size k as a subproblem,
there are 2k different solutions to this subproblem. Such subproblems cannot be

2.4 Properties of Optimization Problems 43

decomposed any more and usually guided or random search methods are applied to
find the correct solution for the decomposed subproblems.

Therefore, intra-BB difficulty depends on the locality of the subproblem. As dis-
cussed in Sect. 2.4.2, (sub)problems are most difficult to solve if the structure of the
fitness landscape leads guided search methods away from the optimal solution. Con-
sequently, the deceptiveness (Goldberg, 1987) of a subproblem (for an example of a
deceptive problem, see Fig. 2.4(b), p. 34) is at the core of intra-BB difficulty. We can
define the deceptiveness of a problem not only by the correlation between objective
function and distance (as we have done in Sect. 2.4.2) but also by using the notion of
BBs. A problem is said to be deceptive of order kmax if for k < kmax all schemata that
contain parts of the best solution have lower fitness than their competitors (Deb and
Goldberg, 1994). Schemata are competitors if they have the same fixed positions.
An example of four competing schemata of size k = 2 for a binary problem of length
l = 4 are H1 = [0∗0∗], H2 = [0∗1∗], H3 = [1∗0∗], and H4 = [1∗1∗]. Therefore, the
highest order kmax of the schemata that are not misleading determines the intra-BB
difficulty of a problem. The higher the maximum order kmax of the schemata, the
higher is the intra-BB difficulty.

Table 2.4 Average schema
fitness for example described
by (2.15)

order 2 1 0
schema 11 1* *1 **
fitness 10 7 6 4.25
schema 01 10 00 0* *0
fitness 2 4 1 1.5 2.5

Table 2.4 shows the average fitness of the schemata for the example from (2.15).
All schemata that contain a part of the optimal solution are above average (printed
bold) and better than their competitors. Calculating the deceptiveness of the problem
based on the fitness of the schemata correctly classifies this problem as very easy.

When using this concept of BB-difficulty for estimating the difficulty of a prob-
lem for recombination-based search methods, the most natural and direct way to
measure problem difficulty is to analyze the size and length of the BB in the prob-
lem. The intra-BB difficulty of a problem can be measured by the maximum length
δ (H) and size k = o(H) of its BBs H (Goldberg, 1989c). Representative examples
of use of these concepts to estimate problem difficulty can be found in Goldberg
(1992), Radcliffe (1993), or Horn (1995).

Recombination-based search methods solve problems by trying different prob-
lem decompositions and solving the resulting subproblems. If a problem is correctly
decomposed, optimal solutions (BBs) of the subproblems can be determined inde-
pendently of each other. Often, the contributions of different subproblems to the
overall objective value of a solution is non-uniform. Non-uniform contributions of
subproblems to the objective value of a solution determine inter-BB difficulty. Prob-
lems become more difficult if some BBs have a lower contribution to the objective
value of a solution. Furthermore, problems often cannot be decomposed into com-
pletely separated and independent sub-problems, but have some interdependencies
between subproblems which are an additional source of inter-BB difficulty.

44 2 Optimization Problems

Sources of extra-BB difficulty for recombination-based search methods are fac-
tors like noise. Non-deterministic noise can randomly modify the objective values
of solutions and make the problem more difficult for recombination-based search
methods as no accurate decisions can be made on the optimal solutions for the dif-
ferent subproblems. A similar problem occurs if the evaluation of the solutions is
non-stationary. Non-stationary environments result in solutions that have different
evaluation values at different moments in time.

http://www.springer.com/978-3-540-72961-7

	Chapter 2 Optimization Problems
	2.1 Solution Process
	2.1.1 Recognizing Problems
	2.1.2 Defining Problems
	2.1.3 Constructing Models
	2.1.4 Solving Models
	2.1.5 Validating Solutions
	2.1.6 Implementing Solutions

	2.2 Problem Instances
	2.3 Search Spaces
	2.3.1 Metrics
	2.3.2 Neighborhoods
	2.3.3 Fitness Landscapes
	2.3.4 Optimal Solutions

	2.4 Properties of Optimization Problems
	2.4.1 Problem Difficulty
	2.4.2 Locality
	2.4.3 Decomposability

