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• These slides have been the basis for a class on the 
design and application of modern heuristics given at 
the university of Mainz in fall 2012

• The slides are based on the book "Design of Modern 
Heuristics" published at Springer
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Heuristics" published at Springer

• You are free to use the material contained in these 
slides for your own classes or presentations. A 
reference to the book would be nice. 

• Many thanks to Jörn Grahl who contributed to preparing 
the slides. For editing some of the latex displays, we 
used texpoint. 

• Enjoy modern heuristics!
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Intro

• Round of introductions

• Purpose of class

• Organisational Issues

4



Grading and Participation

• First two days: Lecture

• Third day: Problem presentations and discussion of 

particular problems (see workshop literature)

• Fourth day: Discussion and Development of 
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• Fourth day: Discussion and Development of 

enhanced methods
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Performing Experimental Studies
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Publishing: what and how?
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Publishing: what and how?
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Writing a Review: 
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Modern Heuristics

1. Heuristics

a. Construction Heuristics

b. Improvement  Heuristics

2. Approximation Algorithms
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2. Approximation Algorithms

3. Modern Heuristics (Metaheuristics)



History

• Until 1970s: mostly exact optimization

• Many practical problems are NP-complete

→ exact approaches have exponential running time

• Idea: relax optimality, increase efficiency

Modern Heuristics
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• Idea: relax optimality, increase efficiency

→ Heuristics



Construction heuristics

• A.k.a. single-pass heuristics

• Build solution from scratch

– Several steps

– Fix one part of solution per step

Modern Heuristics - Heuristics

12

– Fix one part of solution per step

– Often: fix one decision variable per step

• Terminate when solution is complete

• No improvement steps



Improvement heuristics

• Start from a complete solution

• Improve solution

– Several steps

– Possible changes define a „neighborhood“

Modern Heuristics - Heuristics
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– Possible changes define a „neighborhood“

– No diversification: objective value increases

– If no improvement is possible: terminate



Greedy search

• Construction & improvement heuristics 

are often greedy

• Choose alternative with highest objective value

• No looking ahead, myopic, fast, sub-optimal

Modern Heuristics - Heuristics
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• No looking ahead, myopic, fast, sub-optimal



Example: Travelling salesman problem

• Connect n cities with minimal total distance

Modern Heuristics - Heuristics
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Data Optimal solution

•node location

•distance weights

•path



Construction heuristics for TSP (1)

• Nearest neighbor (Rosenkrantz et al, 1977)

– Start with random city

– Connect nearest unconnected city

– Terminate when all cities are connected

Modern Heuristics - Heuristics
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– Terminate when all cities are connected

– Although an upper bound

exists on solution quality, it does not perform 

well in practice

l(T )/l(Topt) ≤ (log2 n)/2



Construction heuristics for TSP (3)

• Nearest insertion

– Start with a random two-city tour

– Select city with minimal distance to any connected city

– Add city in a way that minimizes increase of tour length

Modern Heuristics - Heuristics
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– Add city in a way that minimizes increase of tour length

– Worst case performance:

• Cheapest insertion

– Like nearest insertion, but chooses city that increases 
tour length the least

– Worst case performance:

l(T )/l(Topt) ≤ 2

l(T )/l(Topt) ≤ log2 n



Construction heuristics for TSP (3)

• Furthest insertion

– Start with longest two-city tour

– Iteratively add city that increases tour length the most 

when inserted it in the best position on the current tour

Modern Heuristics - Heuristics
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when inserted it in the best position on the current tour

– Idea: start with cities that are far apart

– Worst-case performance is 

(like cheapest insertion), but furthest insertion 

outperforms the other construction heuristics in 

practice.

l(T )/l(Topt) ≤ log2 n



Improvement heuristics for TSP (1)

• Two-opt
– Remove any two possible edges and obtain two subtours. Insert 

two new edges such that resulting tour length is minimal. 

– If distances are Euclidean, no edges in resulting tour do cross (on-
crossing tour)

– Worst case performance O(4
√

n)

Modern Heuristics - Heuristics
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– Worst case performance 

• k-opt (Lin, 1965)
– Generalization of 2-opt. Examine some or all          -subsets of 

edges in a tour

– If exchange of k edges does not improve tour, tour is k-optimal

– If triangle inequality holds, worst case performance of 

k-opt is                           (Chandra et al, 1994)O
�
1
4n

1

2k

�

O(4
√

n)

�
n
k

�
k



Approximation Algorithms

• Heuristics substitute optimality by tractability

• Approximation algorithms are heuristics with a 

quality bound

• Performance is measured by approximation ratio

Modern Heuristics - Approximations
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• Performance is measured by approximation ratio

n is problem size, xapprox is solution returned by 

algorithm, and x* is optimal solution

• Definition holds for minimization and maximization

ρ(n) ≥ max
�
f(xapprox)
f(x⋆) , f(x⋆)

f(xapprox)

�



Understanding approximation ratio

• An algorithm has an approximation ratio ρ(n)

if for any input size n the objective value of the 
returned solution is within a factor of ρ(n) of the 

optimal objective value.

Modern Heuristics - Approximations
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optimal objective value.

• If an algorithm always returns the optimum ρ(n)=1

• If algorithm returns solution that is never worse than 
2f*, then ρ(n)=2



Trade-off between effort and quality

• Some approximation algorithms can achieve 
increasingly smaller approximation ratios ρ(n)→ 1 

by using more and more computation time. 

• We call them approximation schemes

Modern Heuristics - Approximations
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• We call them approximation schemes

• Required input : ǫ

• Approximation schemes return for any fixed ǫ >0 a 

solution with approximation ratio 1+ǫ



Fully polynomial-time approx. scheme

• FPAS, FPTAS

• Returns a solution with approximation ratio (1+ǫ)

• Running time is polynomial in both input size n and 

1/ǫ

Modern Heuristics - Approximations
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1/ǫ

• Fast for small ǫ and large n

• Allows effective problem solving



Polynomial-time approx. scheme

• PAS, PTAS

• Returns a solution with approximation ratio of 
(1+ǫ)

• Running time polynomial in input size n

Modern Heuristics - Approximations
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• Running time polynomial in input size n

• However, running time can grow exponentially in 
1/ǫ

• Fast for large n but not for small ǫ



Constant-factor approximations

• APX

• Guarantee a constant-factor approximation ratio

• Approximation ratio is fixed, not a parameter

• Running time is polynomial in problem size 

Modern Heuristics - Approximations
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• Running time is polynomial in problem size n



Approximation and complexity

• FPTAS are most effective, followed by PTAS and APX

• Introduce new complexity classes

• Problems in P can be solved in polynomial time

• Problems in NP require exponential time

Modern Heuristics - Approximations
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• Problems in NP require exponential time

•
• Problem is PTAS-hard if no FPTAS exists

• Problem is APX hard if no PTAS exists

P ⊆ FPTAS ⊆ PTAS ⊆ APX ⊆ NP



Modern heuristics

• Extended variants of improvement heuristics, 
„metaheuristics“

• Modern heuristics

– Can be applied to a wide range of problems

Modern Heuristics – Modern Heuristics
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Can be applied to a wide range of problems

– Use intensification (exploitation) and diversification 
(exploration) steps

• Intensification steps shall improve quality

• Diversification explores new areas of search space, 
also accepting complete or partial solutions that are 
inferior to current solution



Principles (1)

• Start with one or more random solutions

• In iterative steps modify solution(s) to generate one or more 
new solution(s)

• New solutions are created by search operators (variation 
operators)

Modern Heuristics – Modern Heuristics
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operators)

• Regularly perform intensification and exploration phases

– During intensification, it uses objective function values and 
focuses variation on high-quality solutions

– During diversification, usually objective function values are not 
considered. Modify solutions such that new areas of search space 
are explored.



Principles (2)

• Modern heuristics perform a limited number of 

search steps

• To be applicable, two requirements must be met

– Representation: We must be able to represent complete 

Modern Heuristics – Modern Heuristics
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– Representation: We must be able to represent complete 

solutions so that variation operators can be used.

– Pair wise fitness comparisons must be possible, 

indicating which of two solutions is better.



Design elements of Modern Heuristics

1. Representation

2. Variation operators

3. Fitness function

4. Initial solution(s)

Modern Heuristics – Modern Heuristics
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4. Initial solution(s)

5. Search strategy

• Can be addressed to build a new heuristic and to 
categorize existing ones 

• Central to this course



Example: Simulated Annealing (SA)

• Local search that accepts inferior solutions to 

escape from local optima

• Probability of accepting inferior solution depends 

on solution quality; it decreases during run.

Modern Heuristics – Modern Heuristics
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on solution quality; it decreases during run.

• Analogy from cooling metals or liquids



Simulated Annealing

• Uses iterative steps

• In each step: apply variation operator(s) to current 
solution xo , obtain new solution xn

• Accept xn with probability 

Modern Heuristics – Modern Heuristics
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• Accept xn with probability 

• Temperature T is a strategy parameter

• δE  is the fitness difference

Pacc(T ) =

�
1 if f(xn) ≤ f(xo)

exp(−δET ) if f(xn) > f(xo)



Diversification and intensification

Modern Heuristics – Modern Heuristics
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• For T→ 0, SA becomes local search

• Probability of accepting inferior solution decreases with 
fitness difference



Getting the cooling schedule right

• If T is reduced very slowly, SA returns optimal 
solution; however resulting runtime is prohibitive

• If T is reduced too fast, SA converges to local 
optimum.

Modern Heuristics – Modern Heuristics
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optimum.

• Often a fixed schedule is used where Ti+1=cTi
(0<c<1) and c∈[0.9, 0.999]

• T0≈ σ(f(x)) … 2σ(f(x)), where σ(f(x)) is the standard 
deviation of objective function values of randomly 
generated solutions.



Example: SA for the TSP (1)

• Representation: sequence of cities

• a is starting city

• Two solutions x,y are neighbors if Hamming 

distance d(x,y)=2. 

Modern Heuristics – Modern Heuristics
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distance d(x,y)=2. 

• Three solutions: adbca (12), abdca (17), adcba (11)

• Linear cooling schedule Ti+1 = 0.9Ti

σ =
√

62/3 ≈ 2.62 → T0 = 3



Example: SA for the TSP (2)

• Start with initial solution x=abcda, f(x0)=11

• Variation operator randomly exchanges the position of two 
cities in tour

• New solution: x1 = abdca, f(x1) = 17

• Replace x0 with x1 with probability P=exp(-6/3)≈ 0.14

Modern Heuristics – Modern Heuristics
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• Replace x0 with x1 with probability P=exp(-6/3)≈ 0.14

• Generate uniform random number rnd=[0,1) and if 
rnd<0.14 replace old solution, otherwise continue with x0.

• Then, reduce the temperature: T1 = 2.7

• Continue until a time limit reached or no improvement for 
some number of steps.



2. Optimization Problems

1. Prerequisites

1. Search Spaces

2. Fitness Landscapes

2. Problem Complexity 
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2. Problem Complexity 

3. No-Free Lunch Theorem

4. Locality

1. Fitness distance correlation

2. Ruggedness

5. Decomposability



Search spaces

• For formulating optimization models, we need a set 

of (feasible) solutions

• This set defines a search space X

• The search spaces "contains" 

Optimization Problems - Prerequisites
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• The search spaces "contains" 

– possible solutions of a problem and 

– relations between the different solutions



(Topological space)

� Very general, a search space can be defined as a 
topological space

� A topological space is defined as a set X of decision 
alternatives together with a collection of subsets of X
called open sets such that
� the empty set ∅ and whole space X are open sets,

Optimization Problems - Prerequisites
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� the empty set ∅ and whole space X are open sets,
� the intersection of a finite number of open sets is also an 

open set, and
� the union of an arbitrary number of open sets is an open set.
� A set Y is a subset of a set X (denoted as Y⊂X) if every 

element ∈ Y is also in X (x∈ Y→ x∈X)

� To define a topological space, we need no definition of 
similarity between elements in a search space. 



Metric search spaces

• Common topological space where similarity between elements can 

be measured using some kind of metric

• We have a set X of solutions and a real-valued distance function 

(also called a metric)

d : X ×X → R

Optimization Problems - Prerequisites
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assigning a real-valued distance to any pair x,y∈X . It is required, 

that for any x,y,z∈X: 

d : X ×X → R



City-block metric (Manhattan metric)

• For x,y∈R, define distance d(x,y) = |x-y|

• Extending to two dimensions: city-block metric (also known as 

Manhattan distance)

d(x,y)  = |x1 -y| + |x -y|

Optimization Problems - Prerequisites
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where x =(x ,x), y=(y1, y). 

• In n dimensions, the metric becomes

d(x, y) =

n�

i=1

|xi − yi|



Euclidean metric

• Solutions are vectors of continuous variables

x=(x , x , …, xn ), xi∈R

• Euclidean distance between x and y is

Optimization Problems - Prerequisites
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• For n=1: city-block metric, n=2: standard straight line distance 

between two points on a 2d-plane



Hamming metric

• Often used for binary search spaces; counts number of items that are 
not identical

where d(x,y)∈{0,…,n}.  

Optimization Problems - Prerequisites
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where d(x,y)∈{0,…,n}.  

• Binary Hamming metric can be extended to continuous and discrete 
decision variables:

where



Neighborhoods

• On metric search spaces, we can define similarities between 
solutions based on the used distance d.

• Neighborhoods determine which solutions are similar to each other 

with respect to some metric.

• A neighborhood is a mapping N(x): X→ 2x

2. Search SpacesOptimization Problems - Prerequisites
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• A neighborhood is a mapping N(x): X→ 2x

where X is the search space, 2x is the set of all possible subsets of 

X and N is a mapping that assigns to each element x∈X a set of 

elements y∈X .

• Usually a neighborhood definition assigns to each solution x∈X a 

set of solutions y that are similar to x in some sense.



Euclidean Neighborhoods

• We define a neighborhood for a 2-

dimensional continuous search space 

and Euclidean distances. 

• All solutions y, where d(x,y) <ǫ are 

x

ε d(x,y)

2. Search SpacesOptimization Problems - Prerequisites
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• All solutions y, where d(x,y) <ǫ are 

neighboring solutions to x

• All neighboring solutions can be found 
inside a circle around x with radius ǫ. 

ε
y

d(x,y)



City-Block Neighborhoods

• We define a neighborhood for a 2-

dimensional continuous search space 

and city-block distances. 

• All solutions inside a  rhombus with 

(x  ,y  +  )ε1 1

xε (x  +  ,y  )1 1ε

2. Search SpacesOptimization Problems - Prerequisites
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• All solutions inside a  rhombus with 
the vertices (x-ǫ,y), (x,y1+ǫ), 

(x1+ǫ,y1), (x1,y1-ǫ) are neighboring 

solutions.

1

yd(x,y)

1 1(x  ,y -  )ε

(x -  ,y )1 ε



Neighborhoods

• Defining a proper neighborhoods is difficult

• Example:
– A user can choose from four fruits. These four decision alternatives can be 

modeled using a metric search space X={0,1}2. Each solution ((0,0), 
(0,1),(1,0), (1,1)) represents one type of fruit. 

– Although no similarities are defined for the different fruits, the use of a binary 

2. Search SpacesOptimization Problems - Prerequisites
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– Although no similarities are defined for the different fruits, the use of a binary 
search space induces that the solution (0,0) is more similar to (0,1) than to 
(1,1) (using Hamming distance). 

– Therefore, this problem space is inappropriate for the problem definition as it 
defines similarities where no similarities exist. 

– A more appropriate model would be  x∈{0,…3} and using Hamming distance. 
Then, all distances between the different solutions are equal and all solutions 
are neighboring solutions (for ǫ=1).



Neighborhoods

• Definition and use of decision variables naturally leads to a metric. 

• If metric induced by decision variables does not fit to the metric of the 

problem description, the model is inappropriate.

• If a metric used in problem definition does not fit to the metric used 

in the model, similarities between different decision alternatives do 

2. Search SpacesOptimization Problems - Prerequisites
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in the model, similarities between different decision alternatives do 

not match the similarities between different solutions described by 

the model.



Neighborhoods: Example

• Nine different decision alternatives {a, b, c, d, e, f, g, h, i}. An objective value is 
assigned to each decision alternative. We assume that the decision alternatives 
form a metric space using the city-block metric, where the distances between all 
elements are equal. Therefore, all decision alternatives are neighbors (for ǫ =1).

• Model 1Model 1Model 1Model 1: We use a metric space X={0,1,2}2 and the city-block metric. Therefore, 
each decision alternative is represented by x=(x,x), where xi∈{0,1,2}. Two 
solutions are similar to each other if the decision variables have the same values 
(e.g. solution (1,1) is more similar to (1,2) than to (2,2)). For ǫ =1, each solution has 

2. Search SpacesOptimization Problems - Prerequisites
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solutions are similar to each other if the decision variables have the same values 
(e.g. solution (1,1) is more similar to (1,2) than to (2,2)). For ǫ =1, each solution has 
either three or four neighbors. Consequently, our neighborhood differs from the 
original problem. 

• Model 2Model 2Model 2Model 2: We use binary variables xij and the search space is defined as X=xij, 
where xij∈{0,1}. We have an additionial restriction,  ∑j xij=1, where i∈{1,2} and 
j∈{1,2,3}. Again, Hamming distance can be used. For ǫ=1, no neighboring 
solutions exist. For  ǫ=2, each solution has only two neighbors. 

• We see that different models for the same problem result in different 
neighborhoods which do not coincide with the neighborhoods of the original 
problem. 



Neighborhoods: Example

Different search spaces result into different problems

2. Search SpacesOptimization Problems - Prerequisites
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Fitness Landscapes (1)

• For combinatorial search spaces where a metric is defined, we can 

introduce the concept of fitness landscape. 

• A fitness landscape (X,f,d) of a problem instance consists of 

– a set of solutions x∈X, 

– a distance measure d,

2. Search SpacesOptimization Problems - Prerequisites
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– a distance measure d,

– and an objective function f

that measures the quality 

of each solution.



Fitness Landscapes (2)

• dmin=minx,y∈X(d(x,y)) is the minimum distance between two 

elements x and y of a search space. 

• Two solutions x and y are denoted as neighbors if d(x,y)=dmin. 

• Often, dmin=1.

• The fitness landscape can be described as a graph G with a vertex 

Optimization Problems - Prerequisites

52

• The fitness landscape can be described as a graph GL with a vertex 

set V=X and an edge set E={(x,y)∈ S×S | d(x,y)=dmin}. 

• The distance between two solutions x,y∈X is proportional to the 

number of nodes that are on the path of minimal length between x
and y in the graph GL. 



Fitness Landscapes and Optimal Solutions

• We have a one-dimensional minimization  
problem. Independently of the used 
neighborhood, u is the global optimum. 

• If we  use the 1-dimensional Euclidean 
distance as metric, we can define a 
neighborhood around x as 
N(x)={y|y∈X ,d(x,y) ≤ ǫ}. The solution 

f(x)

2 w
v

d

2. Search SpacesOptimization Problems - Prerequisites
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N(x)={y|y∈X ,d(x,y) ≤ ǫ}. The solution 
v is a local optimum if ǫ<d1 .

• Analogously, w is a local optimum for all 
neighborhoods with ǫ<d2 . 

• For ǫ≥ d2 , the only locally optimal 
solution is the global optimal solution u.

d1

10

u

v

x



Intro: What are difficult problems?

• Two different questions:

– How difficult is a problem? 

• Equivalent to "What is the complexity of the best-performing 

algorithm that can solve this problem?

3. Problem DifficultyOptimization Problems – Problem Complexity
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algorithm that can solve this problem?

• Complexity classes

– How well can a problem be solved using optimization 

method xyz?

• Is optimization methods xyz the right one?

• No-free lunch theorem



Example: Random Search

• Functionality
– New solutions are chosen randomly and no prior 

information about the structure of the problem or 
previous search steps is used. 

– All possible optimization problems have the same 

3. Problem DifficultyOptimization Problems – Problem Complexity
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– All possible optimization problems have the same 
difficulty

• There are no easy or difficult problems for random 
search. 

• Number of fitness evaluations for finding the 
optimum is independent from optimization 
problem (if optimum is unique).



Difficult Problems (Problems closed under 

permutation)

• Problems, where no meaningful metric can be 
defined/exists
– Examples: 

• Finding largest value in unordered sequence
• Finding largest value in white noise

– We have a set of solutions x∈X with objective values f(x). 

3. Problem DifficultyOptimization Problems – Problem Complexity
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– We have a set of solutions x∈X with objective values f(x). 
– No metric is defined: search algorithms do not “know” how 

to guide the search through the search space 
– Can only be solved by to iteratively examining all elements 

of search space, returning the best found solution
– All optimization methods that can be applied to such 

problems behave like random search 
– The difficulty of such problems (O(|X|)) is independent of 

used optimization algorithm. 



Complexity of Problems and Algorithms

• The complexity of a problem is the effort that is necessary to 

solve the problem. 

• It is possible to define upper and lower bounds on problem 

difficulty. 

3. Problem Difficulty – Problem ComplexityOptimization Problems – Problem Complexity

57

difficulty. 

• Lower bounds tell us that a problem has at least this 

problem difficulty whereas upper bound limit problem 

difficulty from above.

• Complexity of problems is closely related to the complexity 

of algorithms. 



Complexity of Problems and Algorithms

Upper bounds on problem difficulty: 

• We can find upper bounds on problem difficulty 

• Based on the complexity of algorithms 

• If an algorithm can solve a problem, an upper bound on the difficulty 

of the problem is the complexity of the algorithm. 
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of the problem is the complexity of the algorithm. 

Example: 
• We study the problem of finding a friend's telephone number in the telephone book. The most 

straightforward approach is to search through the whole book starting from ‘A’. Effort O(n). Therefore, 

we have an upper bound on problem complexity (linear) as we know a linear algorithm that can solve the 

problem. A more effective way to solve this problem is bisection which iteratively splits the entries of the 
book in halves. With n entries, we only need log(n) search steps to find an address. So, we have a new, 

improved, upper bound on problem difficulty.



Complexity of Problems and Algorithms

Lower bounds on problem complexity

• Finding lower bounds on problem difficulty is more difficult 

• We have to show that no algorithm exists that needs less effort to 
solve the problem. 

• Optimization problems where no metric is defined can only be solved 
when examining all available solutions. 
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when examining all available solutions. 

• Therefore, we have a lower bound on problem difficulty as the effort 
of algorithms to solve such problems increases at least linearly with 
the size of the search space. 

• The lower bound must hold for all possible algorithms that can be 
used to solve the problem. 

• A problem is denoted to be closed if the upper and lower bound on its 
problem difficulty are identical. 



Formulating Complexity: Landau notation

• Landau notation can be used to compare 

asymptotic growth of functions 

• Helpful when measuring the complexity of problems 

or algorithms. 
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or algorithms. 

• Allows to formulate  asymptotic upper and lower 

bounds on function values. 



Landau notation
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Landau notation
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Examples

1. We want to find the smallest number in an unordered list of n numbers. 
The complexity of this problem is Θ(n) when using linear search and  
examining all possible elements in the list. As it is not possible to solve 
this problem faster than linear, there is no gap between the lower bound 
Ω(n) and upper bound O(n). 

2. We want to find an element in an ordered list with O(n) items (for example 

3. Problem Difficulty – Problem ComplexityOptimization Problems – Problem Complexity

63

2. We want to find an element in an ordered list with O(n) items (for example 
finding a telephone number in the telephone book). Binary search 
iteratively splits the list in two halves and can find any item in log(n) 
search steps. Therefore, the upper bound on the complexity of this 
problem is O(log(n)). As the lower bound is equal to the upper bound (see 
literature), the complexity of the problem is Θ(log(n)). 

3. We want to sort an array of n arbitrary elements. By using standard sorting 
algorithms like merge sort it can be solved in O(n log(n)). As the lower 
bound is Ω (n log(n)), the difficulty of this problem is Θ (n log(n)).



Complexity Classes

• Computational complexity theory categorizes decision problems in 

different groups based on their difficulty. 

• Difficulty is defined with respect to the amount of computational 

resources that are at least necessary.

• Effort (amount of computational resources) necessary to solve an 
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• Effort (amount of computational resources) necessary to solve an 

optimization problem depends on time and space complexity. 

– Time complexity: how many iterations/number of search steps 

are necessary to solve a problem.

– Space complexity: amount of space (memory) necessary to solve 

a problem. 

• Both depend on the size n of the problem. 



Complexity Classes

• A set of problems where the amount of computational 

resources necessary to solve the problem have the same 

asymptotic behavior. 

• For all problems in one complexity class, we can give 
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• For all problems in one complexity class, we can give 

bounds on the computational complexity (in general, time 

and space complexity). 

• Usually, bounds depend on the size n of the problem. 



Complexity Class P

• The complexity class P (polynomial) is the set of decision problems 

that can be solved by an algorithm with worst-case polynomial time 

complexity. 

• Time necessary to solve a problem in P is asymptotically bounded 
(for n>n) by a polynomial function O(nk).
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(for n>n) by a polynomial function O(n ).

• For all  problems in P, an algorithm exists that can solve any instance 
of the problem in O(nk). 

• All problems in P can be solved effectively. 



Complexity Class NP

1. Set of decision problems where a “yes” solution of a problem can be 
verified in polynomial time. 
– Formal representation of x and time to check its validity are polynomial or 

polynomially-bounded.

2. Set of all decision problems that can be solved by a non-
deterministic algorithm in worst-case polynomial time
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deterministic algorithm in worst-case polynomial time
– A non-deterministic algorithm always selects the value (possibility) that leads 

to a “yes” answer, if a “yes” answer exists. 

• Both definitions of NP are equivalent to each other (Consider that 
non-deterministic algorithms can not be carried out by conventional 
computers and there is no idea how to construct a non-deterministic 
algorithm).



Complexity Class NP: Informally

• The class NP consists of all “reasonable” problems of practical 

importance where a “yes” solution can be verified in polynomial time

• This means the objective value of the optimal solution can be 

calculated fast. 

• For problems not in NP, even verifying that a solution is valid (is a 
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• For problems not in NP, even verifying that a solution is valid (is a 

“yes” answer) can be extremely difficult (needs exponential time).

Optimization Problems: Difficulty



Tractable and Intractable Problems

• Problems that can be solved using a polynomial-time algorithm 
(upper bound O(nk) on the running time of the algorithm, k constant) 
are tractable. 

• Tractable problems are easy to solve 

• Running time increases relatively slowly with larger problem size n. 
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Running time increases relatively slowly with larger problem size n. 

• Example: Finding the lowest element in an unordered list of size n is 
tractable. There are algorithms with O(n) time complexity. Spending 
twice as much effort  allows us to solve problems twice as large.

Optimization Problems: Difficulty



Tractable and Intractable Problems

• Problems are intractable if they cannot be solved by a 
polynomial-time algorithm and there is a lower bound on 
the running time which is Ω (kn). 

• Example: 
– Finding the correct number for a decimal door lock with n digits is 

Optimization Problems – Problem Complexity

70

– Finding the correct number for a decimal door lock with n digits is 
intractable. The time necessary for finding the correct key is 
Ω(10n). Using a lock with one more digit increases number of 
search steps by a factor of 10.

– We have n binary decision variables and assign a random variable 
to each  solution. Resulting problem is closed under permutation. 
Finding optimal solution is Θ(log(n)). 

Optimization Problems: Difficulty



Polynomial and Exponential functions

constant O(1)

logarithmic O(log n)

linear O(n)

quasilinear O(n log n)

quadratic O(n)
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quadratic

polynomial (of order c) O(n
c
), c>1

exponential O(kn)

factorial O(n!)

super-exponential O(nn)



NP-hard

• All decision problems in P are tractable 

• If we assume that P≠NP, then some problems are in NP but not in P. 

• They are difficult: no polynomial-time algorithms exist.

• Among decision problems in NP, there are problems where no 
polynomial algorithm is available and which can be transformed to 
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polynomial algorithm is available and which can be transformed to 
each other in polynomial time. 

• Consequently, a problem is denoted to be NP-hard if an algorithm for 
solving this problem is polynomial-time reducible to an algorithm 
that is able to solve any problem in NP.



NP-hard

• A problem A is polynomial-time reducible to a different problem B if 
and only if there is a transformation that transforms any solution of A
into a solution of B in polynomial time such that if and only if a 
solution is a “yes” instance for A it is also a “yes” instance for B.

• Informally, a problem A is reducible to some other problem B if 
problem B has same difficulty or is easier than problem A.
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problem B has same difficulty or is easier than problem A.

• Therefore, NP-hard problems are at least as hard as any other 
problem in NP, although they might be harder. Therefore, NP-hard 
problems are not necessarily in NP.



NP-complete

• Cook introduced the set of NP-complete problems as a subset of NP. 

• A decision problem A is denoted to be NP-complete if

– A is in NP and

– A is NP-hard.

• No other problem in NP is more than a polynomial factor harder than 
any NP-complete problem. 
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any NP-complete problem. 

• NP-complete problems are the most difficult problems in NP. 



NP-complete

• All NP-complete problems form one set: NP-complete problems have 

the same complexity. 

• However, it is unclear if NP-complete problems are tractable, or not. 

• If we are able to find a polynomial-time algorithm for any one of the 

NP-complete problems, then every NP-complete problem can be 

Optimization Problems – Problem Complexity

75

NP-complete problems, then every NP-complete problem can be 

solved in polynomial time. 

• Then, also all other problems in NP can be solved in polynomial time 

(are tractable) and thus P=NP. 

• On the other hand, if it can be shown that one NP-complete problem 

is intractable, then all NP-complete problems are intractable and P≠
NP (one million Dollar question!).



Different classes of NP optimization problems

APX
MAX SAT
symmetric TSP

NP TSP
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P

KnapsackFPTAS

PTASEuclidean TSP

APX symmetric TSP
vertex cover



No-Free-Lunch Theorem and Black-box 

optimization 

• There is a trade-off between effectiveness and application 
range of optimization methods

• Black-box optimization methods are algorithms that need no 
additional information about the structure of a problem but 
are able to reliably and efficiently return high-quality 
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are able to reliably and efficiently return high-quality 
solutions for a large variety of different optimization problems

• NFL theorem says that Black-box optimization is not possible

• An algorithm's performance can only be high if (correct) 
problem-specific assumptions are made about the structure 
of the optimization problem and the algorithm is able to 
exploit these problem-specific properties.



No-Free-Lunch Theorem

… for both static and time dependent 
optimization problems, the average 
performance of any pair of algorithms across 
all possible problems is exactly identical. This 
means in particular that if some algorithm A 's
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means in particular that if some algorithm A1's

performance is superior to that of another 
algorithm A2 over some set of optimization 
problems, then the reverse must be true over 
the set of all other optimization problems 
(Wolpert and Macready, 1997)



• Optimization Problem f; X � Y
– X is finite

– Y is finite and ordered

• Heuristics search method H
• Sequence of solutions generated by H:

H( f, m ) = ((x1, f(x1)), (x2, f(x2)), …, (xm, f(xm)))

2. GrundlagenOptimization Problems - NFL
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H( f, m ) = ((x1, f(x1)), (x2, f(x2)), …, (xm, f(xm)))

• H generates xm+1 dependent on H( f, m )
– „Black-Box Algorithm“, solutions are only sampled once

• We observe a sequence of fitness values HY( f, m ) = (f(x1), f(x2), …, f(xm))

• We measure performance of search g:
– g( HY( f, m ) )
– Example: g(f(x1), f(x2), …, f(xm)) = mini=1,…,m {f(xi)}

• Average performance (over all possible problems f)
– ∑f∈F g( HY( f, m ) ) / |F|
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• Assumption: F is closed under permutation

– All possible permutations Π of the search space X

Π : X � X,
where f Π (x) = f ( Π-1(x) )

– ffff ∈∈∈∈ FFFF⇒⇒⇒⇒ ffff ΠΠΠΠ ∈∈∈∈ FFFF

2. GrundlagenOptimization Problems - NFL
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– ffff ∈∈∈∈ FFFF⇒⇒⇒⇒ ffff ΠΠΠΠ ∈∈∈∈ FFFF

Example:

80

f

X

f ΠΠΠΠ1 f ΠΠΠΠ2 f ΠΠΠΠ3 f ΠΠΠΠ4 f ΠΠΠΠ5

X X X X X

Y



The average performance of any pair of 
algorithms across all possible 
problems is exactly identical 
(independent on how we measure the performance 

No-Free-Lunch Theorem
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(independent on how we measure the performance 

of the algorithms)
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• Wolpert/Macready: „We cannot emphasize enough that 
no claims whatever are being made in this paper 
concerning how well various search algorithms work in 
practice.“

• However, statements like „In general, metaheuristic H

2. GrundlagenOptimization Problems - NFL
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• However, statements like „In general, metaheuristic H1

is better than H2 “ make no sense. 

• An algorithm's performance can be increased if 
(correct) problem-specific assumptions are made about 
the structure of the optimization problem and the 
algorithm is able to exploit these problem-specific 
properties.
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Comments on NFL (2)

NFL holds for 

• Needle-in-a-haystack problems

• Random problems with trivial topology, …

The NFL-Theorem does not hold for problems that are not 
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The NFL-Theorem does not hold for problems that are not 
closed under permutation

• Decomposable problems

• Problems with high locality

• Problems, where neighboring solutions have similar 
fitness (Christensen and Oppacher, 2001)



Difficult of Problems for Heuristics

• Exact optimization methods (like Branch&Bound, 
cutting plane, and others) have exponential effort 
for NP-complete problems. 

• Heuristics are not optimal (no guarantee that 
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• Heuristics are not optimal (no guarantee that 
optimal solution is found) but their effort can be 
adjusted by user. Solution quality is often good. 

• Question: 

– What makes problems difficult (easy) for heuristics?

– For which problems do metaheuristics perform better 
than random search?



Number of local optima

• One optimum: unimodal, can often be solved well 

by hillclimber

• Even functions with low number of local optima can 

be arbitrarily hard. Compare needle in haystack 
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be arbitrarily hard. Compare needle in haystack 

with sphere, or deceptive traps

• Number of optima no sufficient indicator for 

problem difficulty



Basins of attraction

• For several optima: basin of attraction of local 

optimum is the set of solutions from which the local 

optimum is reached by a hillclimber („part of the 

same peak“)
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same peak“)

• Performance of local search correlates inversely 

with size of basin of attraction

• Sphere function: one basin of attraction, usually 

simple to solve.



Measuring the locality of problems

• “Do similar solutions have similar fitness?”
• Locality describes how well the distances d(x,y) between x,y∈X

correspond to the differences of the objective values |f(x)-f(y)|. 

• The locality of a problem is high 

– if neighboring solutions have similar objective values 
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– if neighboring solutions have similar objective values 

– and difference of the objective values increases with larger distance

• The locality of a problem is low 

– if small distances do not correspond to small differences of the objective 

values. 



Measuring the locality of problems

• The important determinants for the locality of a problem are

– the metrics defined on the search space 

– and the objective function f

• For continuous decision variables, locality is known as causality. High 

and low locality correspond to strong and weak causality, 
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and low locality correspond to strong and weak causality, 

respectively. 



Locality and guided search

• Guided search methods: iteratively sample solutions and use the 
objective values of previously sampled  solutions to guide the future 
search process

• In contrast to random search: distinguish between promising and 
non-promising areas in the fitness landscape

• New solutions are usually generated in the neighborhood of 
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• New solutions are usually generated in the neighborhood of 
promising solutions with high-objective values. 

• Most local search algorithms fall in this category



Locality and guided search

• The locality of optimization problems has a strong impact on their 
difficulty for guided search methods. 

• High locality allows guided search to find high-quality solutions in the 
neighborhood of already found good solutions. 

• Moving from low-quality solutions to high-quality solutions works well 
if the problem has high locality. 
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• Moving from low-quality solutions to high-quality solutions works well 
if the problem has high locality. 

• If a problem has low locality, guided search can not make use of 
previous search steps 

• Can not extract information that can be used for guiding the search

• For problems with low locality, guided search methods behave like 
random search.



Measures of Locality of Search Spaces

• Fitness-Distance Correlation

• Ruggedness
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Fitness-Distance Correlation (FDC)

• FDC measures the difficulty of problems for guided search methods

• The difficulty of an optimization problem is determined by 

– how the objective values are assigned to the solutions x∈X and 

– what metric is defined on X. 
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Fitness-Distance Correlation
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Fitness-Distance Correlation

• The fitness-distance correlation coefficient  ρ FDC∈ [-1,1]  measures 

the linear correlation between the fitnesses of search points and their 
distances to the global optimum x*

• As ρ FDC represents a summary statistic of f and dopt , it works well if f
and dopt  follow a bivariate normal distribution. 

3. Problem Difficulty - LocalityOptimization Problems - Locality

94

and dopt  follow a bivariate normal distribution. 

• For problems, where f and dopt do not follow a normal distribution, 

using the correlation as a measurement of problem difficulty for 

guided search methods will not yield meaningful results.



Fitness-Distance Correlation

• Based on the FDC coefficient, we can classify fitness landscapes into 
three classes, 
– straightforward (ρ FDC ≤ -0.15)

– difficult  (-0.15≤ ρ FDC ≤ 0.15)

– misleading (ρ FDC ≥ 0.15)

• Straightforward: 
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• Straightforward: 
– Fitness of a solution is correlated  with the distance to the optimal solution.

– With lower distance, the fitness difference to the optimal solution decreases.

– The structure of the search space guides search methods towards the optimal 
solution

– Such problems are usually easy for guided search method. 



Fitness-Distance Correlation

• Difficult: 
– No correlation between the fitness difference and the distance to the optimal 

solution. 

– Fitness values of neighboring solutions are uncorrelated 

– The structure of the search space provides no information about which 
solutions should be sampled next by the search method. 

• Misleading:
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• Misleading:
– Fitness difference is negatively correlated with distance to optimal solution

– Structure of the search space misleads a local search method to sub-optimal 
solutions.



Fitness-Distance Correlation

• Different classes of problem difficulty
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Ruggedness

• For studying the FDC of problems, it is necessary to know the optimal 

solution. 

• However, in general the optimal solution is not known. 

• The difficulty of problems for guided search methods is influenced by 

properties of the fitness landscape like 
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properties of the fitness landscape like 

– the number of local optima or peaks in the landscape, 

– the distribution of the peaks in the search space, and 

– the height of the different peaks. 



Random walks and ruggedness

• Correlation functions have been proposed to measure the ruggedness 

of a fitness landscape. 

• Like in fitness-distance correlation, the idea is to consider the 

objective values as random variables and to obtain statistical 

properties on how the distribution of the objective values depends on 
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properties on how the distribution of the objective values depends on 

the distances between solutions. 



Ruggedness

• The autocorrelation function of a fitness landscape is defined as
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Ruggedness

• The autocorrelation function has the attractive property of being in 

the range [-1,1]. An autocorrelation value of 1 indicates perfect 

correlation (positive correlation) and -1 indicates prefect anti-

correlation (negative correlation). 

• For a fixed distance d, ρ is the correlation between the objective 
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• For a fixed distance d, ρ is the correlation between the objective 

values of all solutions that have a distance of d.



Decomposability

• The decomposability of a problem describes how well a problem can 

be decomposed into several, smaller sub-problems that are 

independently of each other. 

– The decomposability of a problem is high if the structure of the objective 

function is such that not all decision variable must be considered 

simultaneously to calculate the objective function but there are groups of 
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function is such that not all decision variable must be considered 

simultaneously to calculate the objective function but there are groups of 

decision variables that can be set independently of each other. 

– It is low if it is not possible to decompose a problem into sub-problems that 

have little interdependencies between.



Decomposability

• If a problem can only be solved by considering all n 

variables at the same time, it is not separable

• If decisions about the next solution to visit can 
reliably be made with just considering k<<n
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reliably be made with just considering k<<n

decision variables, the problem is separable

• Separable functions are often easier because less 

dimensions/variables depend on each other

• Reduces number of solutions, e.g. 2k << 2n



Decomposability

• Decomposability is relevant for recombination-based search 

methods

• Recombination-based methods try different decompositions of the 

problem, solve the sub-problems, put together the solutions for these 

sub-problems. 
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sub-problems. 

• For such types of optimization methods, decomposability is 

meaningful as high decomposability results in low problem difficulty 

• Solving smaller sub-problems is usually easier than solving the 

larger, original problem. 

• Different approaches for measuring decomposability of problems:

– Polynomial decomposition

– Walsh Analysis

– Schemata Analysis and Building Blocks



Polynomial Decomposition

• The linearity of an optimization problem can be measured by the 
polynomial decomposition of the problem. 

• It measures how well a problem can be decomposed into smaller sub-
problem 

• For binary decision variables, each objective function f defined on l
decision variables {0,1} can be decomposed in the form
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For binary decision variables, each objective function f defined on l
decision variables xi∈ {0,1} can be decomposed in the form

where en contains 1 in n-th column and 0 elsewhere, T denotes 
transpose, the αN are coefficients



Polynomial Decomposition

• The coefficients αi describe the non-linearity of the problem

• If there are high order coefficients in the decomposition of the 

problem, the function is (highly) nonlinear. 

• If the decomposition of a problem only has  order 1 coefficients, then 

the problem is linear decomposable.

Optimization Problems - Decomposability

106

the problem is linear decomposable.



Polynomial Decomposition

• It is possible to determine the maximum non-linearity 
of f(x) by its highest polynomial coefficients. 

• The higher the order of the αi, the more non-linear  the 
problem is. 

• There is some correlation between the non-linearity of a 
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• There is some correlation between the non-linearity of a 
problem and the difficulty of a problem for 
recombination-based search methods

• The order of non-linearity can only give an upper limit 
on the problem difficulty.

• There could be high order αi although the problem can 
still easily be solved by recombining search methods. 



Polynomial Decomposition: Example

f(x)=α +α x +α x +α x x =1+x +3x +5x x . 
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f(x)=α0+α1x0+α2x1+α3x0x1=1+x0+3x1+5x0x1. 

• Easy for recombining search methods: two decision variables can be 
solved independently of each other. 

• The problem is (wrongly) classified as difficult. 

• This misclassification of problem difficulty is due to the fact that the 
polynomial decomposition assumes a linear decomposition and could 
not appropriately describe non-linear (quadratic) dependencies. 



Schemata Analysis and Building Blocks

• Schemata analysis is mainly used in the genetic algorithm domain 

• Main search operator of genetic algorithms is recombination

• Schemata are usually defined for binary search spaces and thus 
schemata analysis is mainly applicable to problems with binary 
decision variables. However, the ideas of building blocks are also 
applicable to other search spaces.
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decision variables. However, the ideas of building blocks are also 
applicable to other search spaces.

• When using l binary decision variables xi∈{0,1}, a schema 
h=(h,h,…,hl) is defined as a ternary string of length l

• hi∈{0,1,*}. * denotes a“don't care” symbol and tells us that the lth 
decision variable is not fixed.



Schemata

• A position in a schema is fixed if there is a 0 or a 1

• The size or order o(h) of a schema h is defined as the number of fixed 
positions (0s or 1s) in the schema string.

• The defining length δ(h) of a schema h is defined as the distance 
between (number of bits that are between) the two outermost fixed 
bits.
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bits.

• The fitness f(h) of a schema is defined as the average fitness of all 
instances of this schema and can be calculated as

• For example, x=01101 and y=01100 are instances of h=0*1**. 

• The number of solutions that are an instance of a schema h can be 
calculated as 2l-o(h).



Building Blocks

• “highly fit, short-defining-length schemata”.

• A BB can be described as a solution to a subproblem that can be expressed as a 
schema. A thus-like schema has high fitness and its size is smaller than the length l
of the binary solution. 

• By combining BBs of lower order, recombining search methods like genetic 
algorithms can form high-quality over-all solutions.

• We can interpret BBs also from a biological perspective. 
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• We can interpret BBs also from a biological perspective. 
– Using the notion of genes we can interpret BBs as genes. A gene consists of one or more alleles 

and can be described as a schema with high fitness. The alleles in a chromosome can be 
separated (decomposed) into genes which do not interact with each other and which determine 
one specific  property of an individual like hair or eye color. 

• BBs can be used to describe the difficulty of optimization problems for 
recombining search algorithms. 

• If the sub-solutions to a problem (the BBs) are short (low δ(h)) and of low order (low 
o(h)), then the problem is assumed to be easy. 



BB-based Problem Difficulty

• There are three types of problem difficulty: 

• Difficulty within a building block (intra-BB difficulty)

• Difficulty between building blocks (inter-BB difficulty)

• Difficulty outside of building blocks (extra-BB difficulty)
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Intra-BB difficulty

• If we count the number of schemata of order o(h)=k that have the 
same fixed positions, there are 2k different schemata. 

• Viewing a BB of size k as a subproblem, there are 2k different 
solutions to this subproblem. 

• Such subproblems can not be decomposed any more and usually 
guided or random search methods are applied to find the correct 
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• Such subproblems can not be decomposed any more and usually 
guided or random search methods are applied to find the correct 
solution BB for the decomposed subproblems. 

• Deceptive Problems (see negative fitness distance correlation) are at 
the core of intra-BB difficulty

• The  intra-BB difficulty of a problem can be measured by the 
maximum length δ(h) and size k=o(h) of the BBs h.



Inter-BB and Extra-BB difficulty

• The contributions of different sub-problems to the objective function can be 
different. The  sub-problems can have a non-uniform contribution to the overall 
objective value of a solution. 

• Important for inter-BB difficulty. 

• A problem can often not be decomposed into completely separated and 
independent sub-problems, but there are still some interdependencies between 
the different subproblems which are an additional source of inter-BB difficulty.
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the different subproblems which are an additional source of inter-BB difficulty.

• Sources of extra-BB difficulty are factors like noise. 

• Additional, non-deterministic noise can randomly modify the objective values of 
solutions and make the problem more difficulty for recombining search methods as 
no accurate decisions can be made on the optimal solutions for the different sub-
problems. 

• A similar problem occurs if the evaluation of the solutions is non-stationary. Non-
stationary environments results into solutions that have different evaluation values  
at different moments in time.



Representations

1. A Short Introduction to Representations

1. Defining Representations

2. Representations, Operators, and Metrics

3. Direct and Indirect Representations
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3. Direct and Indirect Representations

2. Design Guidelines for Representations

3. Properties of Representations

1. High-Locality Representations

2. Redundant Representations and Neutral Networks



Review: Modern heuristics

• Modern heuristics

– Can be applied to a wide range of problems

– Use intensification (exploitation) and diversification 

(exploration) steps
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(exploration) steps

• Intensification steps shall improve quality

• Diversification explores new areas of search space, 

also accepting complete or partial solutions that 

are inferior to current solution



Review: Principles of Modern Heuristics

• Start with one or more random solutions

• In iterative steps modify solution(s) to generate one or more 
new solution(s)

• New solutions are created by search operators (variation 
operators)

117

operators)

• Regularly perform intensification and exploration phases

– During intensification, use objective function value and focus 
variation on high-quality solutions

– During diversification, usually objective function values are not 
considered. Modify solutions so that new areas of search space 
are explored



Genotypes and phenotypes

• Mendel recognized that nature stores information about an 
individual in pair-wise alleles

• Genetic information determines properties, appearance, 
shape of an individual

• Distinguish between genetic code and outward appearance
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• Distinguish between genetic code and outward appearance

• There is a transformation between the genetic information 
(genotypes) and the outward appearance (phenotypes)

• Transformation is called a „representation“

• Representations map genotypes on phenotypes



Defining representations (1)

• A representation assigns genotypes to corresponding 
phenotypes.

• Every search and optimization algorithms needs a 
representation.

• The representation allows us to represent a solution to a 
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• The representation allows us to represent a solution to a 
specific problem.

• Different representations can be used for the same problem.

• Performance of search algorithm depends on properties of 
the used representation and how suitable is the 
representation in the context of the used genetic operators.



Defining representations (2)

• An optimization problem f(x) can be separated into a genotype-

phenotype mapping fg and a phenotype-fitness mapping fp

where f=f ◦f = f (f (x ))

fg(xg) : Φg → Φp,

fp(xp) : Φp → R,
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where f=fp◦fg = fp(fg(xg))

• A change of fg also changes the properties of f

• The genetic operators mutation and crossover are applied to xg

whereas the selection process is based on the fitness of xp

• fp (xp) determines the fitness and complexity of the problem

• fg (xg) determines the used representations



Standard genotypes: Binary genotypes

• Commonly used in Genetic Algorithms

• Recombination is main operator, mutation is background noise

• Search space is Φg = {0,1}l where l is length of a binary vector 
xg =(xg


,…, xg

l
)

• Representation depends on problem to be solved
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• Representation depends on problem to be solved

• Often natural for combinatorial problems

• When using binary representations for integers, decide between 
unary, Gray, or binary.

• When using binary representations for floats, precision 
depends on number of bits in genotype.



Standard genotypes: Integer genotypes

• Use χ-ary alphabet instead of binary, where

{χ∈N|χ >2} can also be used in phenotypes

• Instead of coding 2l solutions, size of search space 

becomes χl
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becomes 

• Recommended when phenotype is integer



Standard Genotypes: Continuous genotypes

• The search space is Φg = Rl where l is the size of the real-

valued vector

• Often used in evolution strategies, nonlinear numerical 

optimization, rely on local search
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optimization, rely on local search

• Can also encode permutations, trees, schedules, or tours.a



Representations make the difference

• Representations change 

the character and 

difficulty of optimization 

problems

• E.g. fp = xp, x∈N
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• E.g. fp = xp, x∈N

• Different problem 

depending on the used 

representation 



Representations make the difference (2)

• Phenotypic problem easy to solve for hill-climber.

• When using bit-flipping GA the Gray-encoded problem 

is easier to solve than the binary-encoded problem.

• Gray encoding induces less local optima when used on 
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• Gray encoding induces less local optima when used on 

problems of practical relevance (compare Free Lunch 

theorem).

• Search performance depends on used search method. 

If other search methods (e.g. different operators) are 

used, then search performance is different



Representations, Operators, Metrics

• Representation, metric defined on Φg and Φp, and genetic 
operators depend on each other and are closely related.
– A representation is just a mapping from Φg to Φp . It assigns any 

possible xg∈Φg to an xp∈Φp

– In both search spaces, Φg and Φp, a metric is or has to be 
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– In both search spaces, Φg and Φp, a metric is or has to be 
defined. The metric determines the distances between the 
individuals and is the basis for measuring similarities between 
individuals. In general, the metric used for Φp is defined by the 
considered problem. The metric used for Φg is determined by the 
used search operators.

– Genotypic operators like mutation and crossover are defined 
based on the used metric



Representations, Operators, Metrics (2)

• Mutation:

– The application of mutation to an individual results in a 

new individual with similar properties. There is a small 

distance between offspring and parent.
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distance between offspring and parent.

• Crossover:

– Crossover combines the properties of two or more 

parents in an offspring. The distance between offspring 

and parent should be equal or smaller than the distance 

between both parents.



Representations, Operators, Metrics (3)

• Results:

– Metric on Φg and used operators depend on each other. 

The one determines the other.

– Representations “transform” the metric on Φg to the 
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– Representations “transform” the metric on Φg to the 

(problem dependent) metric on Φp. (Compare locality, 

causality, and distance distortion)



Direct representations

• If the genetic operators are applied directly to the phenotypes it is not 

necessary to specify a representation and the phenotypes are 

identical with the genotypes:

fg(xg) : Φg → Φg,

f (x ) : Φ → R.
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This means, fg is the identity function fg(xg)=xg. Using direct 

representations do not neccessarily make life easier:

– Design of proper operators is difficult

– How can we apply specific types or EAs (like EDAs)?

– Representation issues are not important any more (Φg = Φp and fg(xg)=xg).

→
fp(xp) : Φg → R.



Direct representations – Genetic Programming

• Representation issues are also relevant to Genetic 
Programming.

• Phenotypes: Programs, logical expressions.
Genotypes: Parse trees, bitstrings, linear structures, ...

• Neglecting proper genotype-phenotype mappings can result 

Representations - Intro

130

• Neglecting proper genotype-phenotype mappings can result 
in low performance of GP approaches.

• Example: Standard GP (expression tree representation and 
subtree swapping crossover) cannot solve problems where 
optimal solutions require very full or very narrow trees. This is 
due to problems of the representation (interplay between 
genotypes and used search operators).



Benefits of Indirect representations

• The use of an explicite genotype-phenotype mapping has some 

benefits:

– specific constraints can be considered.

– Standardized genetic operators with known behavior and properties can be 

used.
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used.

– An indirect representation is necessary if problem-specific operators are either 

not available or difficult to design.

– Representation can make problem easier by incorporating problem-specific 

knowledge.



Specific constraints

• Example: Tree optimization problems

• A tree is a fully connected graph with exactly n−1 links (for an n node 

network). There are no circles in a tree.

• A graph can be represented by its characteristic vector.
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Specific constraints (2)

• Prüfer numbers are a one-to-one mapping between trees and a 
sequence of integers (like other Cayley codes). A tree with n nodes is 

represented by a string of length n−2 over an alphabet of n symbols.

• Therefore, using Prüfer numbers allows us to consider the constraint 

that the graph is a tree (For other representations repair operators are 
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that the graph is a tree (For other representations repair operators are 

necessary).



Standardized operators

• When mapping many different types of phenotypes on only a 
few types of different genotypes (binary, integer, or 
continuous representations), it is possible to use 
standardized operators.

• Behavior of EAs for standard representations like binary 
(simple GAs) or continuous (evolution strategies) 
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(simple GAs) or continuous (evolution strategies) 
representations well understood.

• Mapping phenotypes on binary genotypes allows the use of 
schemata and effective linkage learning GAs (under the 
assumption that the problem still remains decomposable and 
that binary encodings allow a natural encoding of the 
problem).



Problem-specific operators

• Developing of problem-specific 

operators is difficult and often 

additional repair mechanisms 

must be used to ensure a valid 

solutiona
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solutiona



Problem-specific operators (2)

• For some types of problems no problem-specific operators exist that 

can be applied to direct representations
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Indirect Representations - Problem-specific 

Knowledge

• Incorporating problem-specific knowledge in the 

representations to increase GA performance:

– Increase the initial supply of solutions that are similar to the 

optimal solution.

– Use high-locality representations for easy problems.
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– Use high-locality representations for easy problems.

– Consider specific properties of the optimal solution (e.g. stars 

and trees).

– Use representations that make a problem easier for a 

specificoptimization method.



Goldberg’s Recommendations

• Principle of meaningful building blocks: The schemata should be 

short, of low order, and relatively unrelated to schemata over other 

fixed positions.

• Principle of minimal alphabets: The alphabet of the encoding should 

be as small as possible while still allowing a natural representation of 
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be as small as possible while still allowing a natural representation of 

solutions



Goldberg’s Recommendations (2)

• The recommendations caused a lot of critics

– What is a natural representation of a problem? (For example, is using binary 

representations for encoding real-valued phenotypes a natural 

representation?)

• Principles mainly aimed at binary representations and 
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Principles mainly aimed at binary representations and 

crossoverbased GAs that process schemata. No big help for other 

search methods like evolution strategies or evolutionary 

programming as these search methods do not process schema.



Radcliffe's recommendations

• Representation and operators belong together and can not be 
separated from each other.

• Design of representation-independent evolutionary 
algorithms is possible if the following properties are 
considered 
– Respect: Offspring produced by recombination are members of all 
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– Respect: Offspring produced by recombination are members of all 
formae to which both their parents belong.

– Transmission: Every gene is set to an allele which is taken from 
one of the parents.

– Assortment: Offspring can be formed with any compatible 
characteristics taken from the parents. 

– Ergodicity: Iterative use of operators allows the search method to 
reach any point in the search space.



Representation Invariant Genetic Operators

• Fact: Performance of genetic algorithms using one-point crossover 

depends on order of objects (e.g. knapsack problem). Thus, one-point 

crossover is not invariant under changes in the order of objects.

• Evolutionary operators are invariant with respect to a set of 

representations if EA performance is independent of used 
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representations if EA performance is independent of used 

representation (how objects are encoded).

• Rowe proposes an approach to generate invariant search operators.

• Examples for appropriate (representation-independent) search 

operators for some types of problems (subset problems, permutation 

problems, and balanced partition problems).



Palmer’s Recommendations

• An encoding should be able to represent all possible phenotypes.

• An encoding should be unbiased in the sense that all possible 

individuals are equally represented in the set of all possible 

genotypic individuals.

• An encoding should encode no infeasible solutions.
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• An encoding should encode no infeasible solutions.

• The decoding of the phenotype from the genotype should be easy.

• An encoding should possess locality. Small changes in th genotype 

should result in small changes in the phenotyp (compare statements 

about metric).



Ronald‘s recommendations

• Encodings should be adjusted to a set of genetic operators in a way 

that the building blocks are preserved from the parents to the 

offspring

• Encodings should minimize nonlinearities in fitness functions. This 

means, representations should make the problem easier (for local 
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means, representations should make the problem easier (for local 

search methods!).

• Feasible solutions should be preferred.



Ronald‘s recommendations (2)

• The problem should be represented at the correct level of 

Abstraction.

• Encodings should exploit an appropriate genotype-phenotype 

mapping process if a simple mapping to the phenotype is not 

possible.
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possible.

• Isomorphic forms, where the phenotype of an individual is encoded 

with more than one genotype, should not be used.



Design Guidelines - Summary

• Based on observations for specific test problems there are some 

common, fuzzy ideas about what is a good representation.

• Some recommendations are too general to be helpful for designing or 

evaluating representations.

• Analytical models describing the influence of representations on EAs 
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• Analytical models describing the influence of representations on EAs 

are on their way.

• To verify (or reject) observations analytical models are necessary.



Design Guidelines - Summary

• Based on observations for specific test problems there are some 

common, fuzzy ideas about what is a good representation.

• Some recommendations are too general to be helpful for designing or 

evaluating representations.

• Analytical models describing the influence of representations on EAs 
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• Analytical models describing the influence of representations on EAs 

are on their way.

• To verify (or reject) observations analytical models are necessary.



Locality

• Representations (genotype-phenotype mappings) can change the 

neighborhood and the structure of the fitness landscapes.

• A neighbor can be reached directly by a move (mutation, crossover, 

etc). Therefore, the neighborhood depends on the used 

operator/metric.
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operator/metric.

• The set of neighbors can be different for genotypes and phenotypes.

• The distance between two individuals is determined by the number of 

moves between both individuals.



Locality of a Representation

• The locality of a representation describes how well 
neighboring genotypes correspond to neighboring 
phenotypes.

• Locality of a representation is high, if neighboring genotypes 
correspond to neighboring phenotypes.

• Locality, causality, and distance distortion describe how well 
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• Locality, causality, and distance distortion describe how well 
the metric on Φp fits to the metric on Φg. If they fit well, 
locality is high.

• Representations fg that change the distances between 
corresponding genotypes and phenotypes modify the 
performance of particular optimization problems (method 
performance(f) ≠ method performance(fp )).



Different Phenotype-Fitness Mappings

• Class 1: Fitness difference to optimal solution is positively correlated 

with the distance to optimal solution. Structure of the search space 

guides local search methods to the optimal solution → easy for 

mutation-based search. 

• Class 2: No correlation between fitness difference and distance to 
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• Class 2: No correlation between fitness difference and distance to 

optimal solution. Structure of the search space provides no 

information for guided search methods → difficult for guided search 

methods.

• Class 3: Fitness difference is negatively correlated to distance to 

optimal solution. Structure of search space misleads local search 

methods to sub-optimal solutions → deceptive problems



Different Phenotype-Fitness Mappings (2)
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Low versus High-Locality Representations
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Influence of high versus low-locality 
representations on genotype-

phenotype mappings

Effect of mutation for high

versus low-locality

representations



Low versus High-Locality Representations (2)

• Class 1: 

– High-locality representations preserve difficulty of problem. Easy problems remain easy 

for guided search. 

– Low-locality representations make easy problems more difficult. Resulting problem 

becomes of class 2.

• Class 2:
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• Class 2:

– High-locality representations preserve difficulty of problem. Problems remain difficult 

for guided search. 

– Low-locality representations on average do not change class of problem. Problems 

remain difficult.

• Class 3:

– High-locality representations preserve deceptiveness of problem. Traps remain traps. 

– Low-locality representations transform problem to class 2 problem. Deceptive problems 

become more easy to solve for guided search.



Example

• Both, genotypes and 
phenotypes are binary.

• We use the bit-flipping 
operator as a move 
(Hamming distance).

• One-max problem (class 1).
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• One-max problem (class 1).

• All building blocks 
(regarding genotypes and 
phenotypes) are of size k=1.  
Therefore, problem is easy 
for selectorecombinative 
GAs



Example

• A representation with 

lower locality.

• The neighborhood 

structure changes.

• Not all genotypic building 
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• Not all genotypic building 

blocks are of size 1. 
Although, fp remains 

unchanged, f becomes 

more difficult for guided 

search.



Example

• High-locality representation. 

• Problem easy for 

Selectorecombinative GAs.

• Different fitness for 
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• Different fitness for 

genotypes 000 and 001.

• Problem more difficult for 

selectorecombinative GAs.

• Neighborhood not preserved 

by representation.



Example

• Neighborhood structure 

of the genotypes
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• Resulting neighborhood 

structure of phenotypes



Comparing representations

• We compare the performance of selectorecombinative Gas over all 

different representations for the one-max problem.

• When focusing on binary bitstrings and assigning l-bit genotypes to l-
bit phenotypes, there are 2l! different representations.

• For l=3 there are 8 different genotypes, resp. phenotypes, and 8! = 
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• For l=3 there are 8 different genotypes, resp. phenotypes, and 8! = 

40, 320 different representations.

• 36 different representations result in the same overall problem f (for 

the one-max problem).



Comparing representations

• To reduce problem complexity, xg = 111 is always assigned to 

xp=111. Therefore, there are 7! = 5040 different representations.

• We concatenate ten 3-bit problems and use a GA with tournament 
selection of size 2, uniform crossover, and N=16.
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Comparing representations
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Summary

• When using high locality representations, genotypic neighbors 

correspond to phenotypic neighbors.

• High locality representations do not change the structure and 

difficulty of the problem.

– Easy problems remain easy.
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– Easy problems remain easy.

– Difficult problems remain difficult.

– Locality depends on the used distance metrics which depend on the used 

operators.



Redundant representations

• Representations are redundant if the number of genotypes is larger 

than the number of phenotypes.

– Using redundant representations fg means changing f = fp (fg ). There are 

additional plateaus in the fitness landscape.

– Redundant representations are more “inefficient” encodings which use a 

higher number of alleles but do not increase the amount of encoded 
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Redundant representations are more “inefficient encodings which use a 

higher number of alleles but do not increase the amount of encoded 

information.

– Redundant representations are not an invention of AI researchers but are 

commonly used in nature.



Redundant representations (2)

• There are different opinions regarding the influence of redundant 

representation on the performance of EAs.

• Redundant representations reduce EA performance due to loss of 

diversity (Davis, 1989; Eshelman and Schaffer, 1991; Ronald et al., 

1995)
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1995)

• Redundant representations increase EA performance (Gerrits and 

Hogeweg, 1991; Cohoon et al., 1988; Julstrom, 1999)



Redundant representations (3)

• Large amount of work considers the neutral theory (Kimura, 1983). This theory 

assumes that not natural selection fixing advantageous mutations but the random 

fixation of neutral mutations is the driving force of molecular evolution. 

• Following these ideas redundant representations (neutral networks) have been 

used in EAs with great enthusiasm.

• There was hope that increasing the evolvability of a system also increases the 
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• There was hope that increasing the evolvability of a system also increases the 

performance of the system 

• This is not true!



Redundant representations (4)

• Neutral Network: Set of 

genotypes connected by 

single-point mutations 

that map to the same 
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that map to the same 

phenotype



Guide

• In the following slides we study

– how to distinguish between synonymously and non-

synonymously redundant encodings

– how synonymous redundancy changes performance of 
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– how synonymous redundancy changes performance of 

Eas (quantitative predictions), and

– the properties of non-synonymously redundant 

representations



Redundant representations (5)

• Benefits of Neutral Networks
– Population can drift along these neutral networks.

– Reducing the chance of being trapped in sub-optimal 
solutions.

– Population is quickly able to recover after a change has 
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– Population is quickly able to recover after a change has 
occurred.

– Evolvability and connectivity of the system increases.

• Problems
– Higher evolvability and connectivity → Randomization of 

search

– Genetic drift?



Synonymously versus non-synonymously 

redundant representations

• When using redundant 

representations it can be 

distinguished between:

– Synonymously redundant 

representations: All genotypes that 

encode the same phenotype are 
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representations: All genotypes that 

encode the same phenotype are 

similar to each other.

– Non-synonymously redundant 

representations: Genotypes that 

encode the same phenotype are not 

similar to each other.



Synonymously versus non-synonymously 

redundant representations

• Non-synonymously redundant 

representations do not allow 

guided search.

– EA search becomes random.

– Similar effect as low locality 
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– Similar effect as low locality 

representations.



Synonymously versus non-synonymously 

redundant representations

• (Choi and Moon, 2003) defined uniformly redundant encodings that 

are maximally non-synonymous and proved that such encodings 

induce uncorrelated search spaces (fitness distance correlation is 

equal to zero).

• For a maximally non-synonymous redundant encoding, the expected 
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• For a maximally non-synonymous redundant encoding, the expected 

distance between any two genotypes that correspond to the same 

phenotype is invariant and about equal to the problem size n.

• Normalization (transformation of one parent to be consistent with the 

other) can transform uncorrelated search spaces into correlated 

search spaces with higher locality.



Synonymously versus non-synonymously 

redundant representations

• Some selected examples for problems with maximally non-

synonymous redundant encodings :

– Partitioning problems in graphs: k subsets are represented by integers from 0 

to k−1 where nodes are contained in the same group if they are represented by 

the same number.

– Each phenotype is represented by ! different genotypes. HIFF problems 
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– Each phenotype is represented by k! different genotypes. HIFF problems 

(Watson et al., 1998): binary encoding where each phenotype is represented 

by a pair of bitwise complementary genotypes.

– TSP: Order-based crossover, in which vertices are indexed from 1 to n and 

each tour is represented by a permutation of the vertex indices. Each 
phenotype is represented by 2n genotypes



Modeling redundant representations

• Synonymously redundant representations can be described 

using

– order of redundancy

– over-, resp. underrepresentation r of the optimal solution due to 

the problem representation f .

kr =
log |Φp|
log |Φg |
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the problem representation fg.

• When using the notion of BBs and binary representations:

–
– r: Number of genotypic BBs of order kg that represent the optimal 

phenotypic BB of order kp.

kr =
kg
kp



Modeling redundant representations

• k=2 (order of phenotypic BBs)

• kr=2 (One allele of a phenotype is represented using 

two alleles of a genotype)

• Uniform redundancy: r=4 (the best BB (e.g.. xp = 11) 

is represented by four genotypic BBs)
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is represented by four genotypic BBs)



Modeling redundant representations

• k=1 (order of phenotypic BBs)

• kr=3 (One phenotypic allele is represented using three genotypic 

alleles)

• Non-uniform redundancy: r=1 (best BB (xp = 1) is represented by one 

genotypic BB (x = 111))
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genotypic BB (xg = 111))



Population sizing for GAs

• The Gambler’s ruin model (Feller, 1957) can be used for modeling the 

iterated decision making in GAs. 

• A gambler with initial stake x wishes to increase his funds to a total 

of N units by making a sequence of bets against a gaming house. 
Each bet has fixed probability p of winning (q =1−p of losing), and we 
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Each bet has fixed probability p of winning (q =1−p of losing), and we 

wish to know the probability of succeeding (getting N units) or failing 

(losing all units).

• Following (Harik et al., 1997) the probability that a GA with a 
population size N converges after tconv generations to the correct 

solution is

Pn = 1−(q/p)x0
1−(q/p)N



Population sizing for GAs (2)

• After some calculations we get:

• N is the necessary population size, α = 1 − Pn the probability Pn

that the optimal BB cannot be found (probability of failure) and k is 

N ≈ −2k−1 ln(α)σBB
√
πm′

d
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that the optimal BB cannot be found (probability of failure) and k is 

the order of the BBs.

• σBB (variance of BBs), d (fitness difference between best and second 

best BB), m′ = m−1 (number of BBs) and k are problem-dependent.



Population sizing for GAs (3)

• 150-bit one-max problem 
(k=1, σBB=0.25, d=1 and m=150)
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Population sizing for GAs (4)

• Ten concatenated 3-bit deceptive traps 
(k=3, σBB = 1, d=1 and m=10)
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Population sizing for GAs (5)

• Now we have to ask how the redundancy of a 

representation influences GA performance?

• Observation: Redundant representation change the 
initial supply x of BBs.
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initial supply x of BBs.

• For binary problem representation:

where N is the population size.

x0 = N r
2kkr



Population sizing for GAs (6)

• When using synonymously redundant representations the existing 

model can be extended:

• The population size N that is necessary to find the optimal solution 

N ≈ − 2krk−1

r ln(α)σBB
√
πm′

d
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• The population size N that is necessary to find the optimal solution 

with probability Pn=1−α

goes with O
�
2kr

r

�



Population sizing for GAs (7)

• Conclusions from this model:

– Redundant representations can change the performance of EAs.

– If representations are synonymously redundant:

• Uniformly redundant representations do not change the performance of EAs!

• If the optimal BB is overrepresented GA performance increases.
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• If the optimal BB is underrepresented GA performance decreases.

• Redundant representations can not be used systematically if there is 

no problem-specific knowledge!



Example: Trivial voting mapping

• The trivial voting mapping (TVM) assigns binary phenotypes to binary 

genotypes.

• One bit of the phenotype is represented by kr genotypic bits.

• In general, a phenotypic bit is 0 if less than u genotypic bits are zero. 

If more than u genotypic bits are 1 then the phenotypic bit is 1.
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If more than u genotypic bits are 1 then the phenotypic bit is 1.

• For u=kr/2 the value of the phenotypic bit is determined by the 

majority of the genotypic bits (majority vote)

• In general: 

where u∈ {1,…,kr}.

xpi =

�
0 if

�kr−1
j=0 xgkri+j < u

1 if
�kr−1

j=0 xgkri+j ≥ u,



Examples

• k=1

• kr=3

• u=2
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• k=1

• kr =3

• u=1



Trivial voting mapping (3)
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• Experimental and theoretical results of the proportion of correct BBs on a 
150-bit one-max problem using the trivial voting mapping for kr=2.



Trivial voting mapping (4)
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• Experimental and theoretical results of the proportion of correct BBs on a 
150-bit one-max problem using the trivial voting mapping for kr=3.



Trivial voting mapping (5)
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• Experimental and theoretical results of the proportion of correct BBs 
for ten concatenated 3-bit deceptive traps and kr = 2.



Trivial voting mapping (6)
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• Experimental and theoretical results of the proportion of correct BBs for ten 
concatenated 3-bit deceptive traps and kr = 3.



Population sizing for GAs (8)

• What must be considered when using redundant 

representations?

– How does the used representation change the size of 

the search space?
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the search space?

– Is the representation synonymously redundant?

– Are some solutions overrepresented?

• Examining these properties allows the user to 

increase the performance of EAs!



Summary

• There are theoretical models that allow us to predict the 
expected GA performance when using redundant 
representations (N = O(2kr /r)).

• There are guidelines for the design of redundant 
representations:
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representations:
– Do not use non-synonymously redundant representations!

– If you use redundant representations you have to investigate:
• How does the representation change the size of the search space?

• Are solutions similar to the optimal solution overrepresented?

• If there is no knowledge about the optimal solution use 
a uniformly redundant representation.



Search Operators

1. Design Principles 

1. Local Search Operators

2. Recombination Operators

2. Standard Search Operators
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2. Standard Search Operators



Recap: Design of Search Operators

• Mutation:

– The application of mutation to an individual results in a 

new individual with similar properties. There is a small 

distance between offspring and parent.

Search Operators – Design Principles Local Search Operator

190

distance between offspring and parent.

• Crossover:

– Crossover combines the properties of two or more 

parents in an offspring. The distance between offspring 

and parent should be smaller than the distance between 

both parents.



Local search operators

• Goal: find fitter individual by performing neighborhood search

• Local search creates offspring that are similar to parents

• Metric and operator thus depend on each other

• A metric defines possible local search operators and a local 
search operator determines the metric
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search operator determines the metric

• Assumptions:

– structure of metric/fitness landscape has to guide search towards 
optimal solution

– Good solutions can be found by a series of small steps

– Good solutions are typically clustered, so that they can be found 
in the neighborhoods of other good solutions



Local search for binary genotypes

• Distance between two solutions often measured by Hamming 
distance d(x,y)

• Local search usually generates solutions with d=1

• „Standard mutation“ or „bit flipping“

• l-bit string has l neighbors
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• l-bit string has l neighbors



Local search for integer genotypes

• For different metrics, different operators are necessary

• Binary Hamming metric

– Two solutions are neighbors if they differ in one decision variable. 

– Operator based on this metric can randomly change one decision variable.

– Solution x∈ {0,…,k}l has lk neighbors. 
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– Solution x∈ {0,…,k}l has lk neighbors. 

– Example: x=(0,0) with xi = {0,1,2} has four neighboring solutions 

((1,0),(2,0),(0,1),(0,2)).

• City-block metric: 

– Local search can slightly decrease or increase one of the decision variables 

(adding +/-1). 

– Each solution of length l has at most 2l neighbors. Example: x=(0,0), xi∈

{0,1,2} has 2 neighbors ((1,0),(0,1))



Local search for integer genotypes

• Different when operator exchanges values of two decision variables 
xi, xj

• Using Hamming distance, two neighbors have distance d=2, each 

solution has at most             different neighbors
�
l
2

�
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• x=(3,5,2) has 3 neighbors ((5,3,2),(2,5,3),(3,2,5))



Local search for continuous genotypes

• Analogue to integer genotypes

• Hamming distance: assign random variable 
xi∈ [xmin , xmax] to i-th decision variable

• We can also define exchange operator

• Using city-block metric is a bit more complex
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• Using city-block metric is a bit more complex
– Search step should not be too small (we want progress)

– … and not too large (offspring should be similar to parent)

– Add random variable with zero mean: usually Gaussian with µ=0, and standard 

deviation σ controlling „step-size“



Recombination operators

• Requires a population of solutions

• Goal is to combine meaningful properties from >1 parents

• Like local search, recombination-based search is based on a metric

• Given two parents xp , xp and one offspring xo, recombination should be 
designed such that 
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max(d(xp , xo), d(xp , xo)) ≤ d(xp, xp))

• Offspring should be „between the parents“

• Why use recombination? 
– Real-world problems are often decomposable

– Large problems can be solved by decomposing it into smaller sub-problems (that 
are usually easier to solve) and combined to form overall solution



Common recombination operators
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Intermediate recombination

• Uniform and n-point crossover can be applied independent of type of 

decision variable (binary, discrete, continuous…)

• In contrast, intermediate recombination operators try to 

blend/average over several parents. We explain arithmetic crossover.

• For two parents xp, xp, offspring is  
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• For two parents xp, xp, offspring is  

• For m parents,

• Takes weighted average of parents‘ decision variables

xoi = αxp1i + (1− α)xp2i , α ∈ [0, 1]

xoi =
�m

i=1 αix
pi
i ,
�m

i=1 αi = 1



Standard search operators

• We provide an overview of operators for standard search 

spaces

• Can be genotypes or phenotypes (direct representation)

• Ordered by increasing complexity
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• Ordered by increasing complexity



Strings and Vectors

• Ordered lists of decision variables of fixed or variable length

• Often used 

• Appropriate for sequences of characters or patterns. objects are 

modeled as 

– text,
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– text,

– characters,

– patterns.

• Can use standard local search and recombination-based operators 

based on (binary) Hamming metric

• If length is variable, Levenshtein distance can be used



Coordinates and Points

• Represent locations in geometric space

• Integer or continuous

• Often: locations of cities or other spots on a 2d-grid

• Appropriate for problems that work on 

– sites, 
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– sites, 

– Positions, or 

– locations.

• Standard local and recombination operators for continuous decision 

variables or integers

• Euclidean metric



Graphs

• Represent relationships between arbitrary objects

• Structure can be described as list of edges (with n nodes, there are 

n(n-1)/2 possible edges)

• Appropriate for problems that seek a 

– network, 
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– network, 

– graph,  or 

– relationship

• Common genotype is binary list of length n(n-1)/2

• Standard operators are based on Hamming metric: number of 

different edges

• If no additional constraints: standard search operators are 

applicable



Subsets

• Selections from a set of object; order of elements in set does not matter

• Given n objects, there are subsets of size k and 2n different 

subsets.

• Subset of fixed size k can be represented by an integer vector x of 

length k, where the x indicate the selected objects and x ≠ x for i≠ j

�
n
k

�
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length k, where the xi indicate the selected objects and xi≠ xj for i≠ j
and i,j∈ [1,k]

• Appropriate for problems  that seek a 

– cluster,  collection,  partition, group, packaging, or  selection. 

• Can use standard local search if each selected object is unique

• Recombination operators are difficult (Falkenauer , 1998; Choi and 

Moon,  2003)

– Each subset is represented by k! different genotypes 

– Redundancy



Permutations

• Orderings of items, 

• n! permutations of n objects

• Many permutation problems are relevant but NP-hard

• Used in problems that seek an 

– arrangement, tour, ordering, or sequence.
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– arrangement, tour, ordering, or sequence.

• Design of operators is demanding

• Often, an integer genotype of length n is used, where xi denotes an 

object and has a unique value

• Standard operators fail: offspring usually is no permutation



Permutations

• Permutation-specific operators are based on absolute or 
relative ordering.

– Absolute ordering: Two solutions are similar, if objects have same 
absolute position

– Relative ordering: Two solutions are similar, if relative order of 

Search Operators – Standard Operator

205

– Relative ordering: Two solutions are similar, if relative order of 
pairs is similar

• Order crossover, partially matched crossover,  … there are 
many operators specifically designed for permutation 
problems.

• See Whitley  (1997), Mattfeld (1996), or Choi and Moon 
(2008)



Fitness Function

1. Design Guidelines

2. Examples
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Fitness function and objective function

• Fitness function is quality of solution as „seen by the 

heuristic“

• Objective function (evaluation function) is based on 

problem model
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problem model

• In general, fitness function and objective function are the 

same, but we can modify fitness function to make search 

easier for a modern heuristic

• Then, we would not use original objective function from 

model, but a variant thereof



Ordinal and numerical ranking

• Fitness and objective functions can be ordinal or numerical 

• Ordinal functions order solutions in a sequence

– Allow us to compare quality (best, second-best, …, worst)

– No absolute value of quality available

– Often used when fitness is evaluated by human experts who rank 
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– Often used when fitness is evaluated by human experts who rank 
alternatives

• Numerical objective functions assign a real-valued objective 
value to all solutions

– Ordering possible

– Absolute value is available

– Standard for most mathematical models of cost, profit, lengths…



Design of objective function

• Make sure:

– Best solution should have highest quality

– Should make problem straightforward for local search

– Should make problem decomposable for recombining 

Fitness Function – Design Guidelines

209

– Should make problem decomposable for recombining 

methods

• In general, dissimilarity (measured by problem 

metric) should be positively correlated with 

difference in objective values



Example 1: Needle in haystack

• Search space X of size n

• Objective function assigns highest value to best solution 
(f(maxx x)=n)

• All other n-1 solutions get random objective function in 
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• All other n-1 solutions get random objective function in 

{1,…,n-1}

• No guidance for local search

• Guided search methods will perform like random search



Example 2: Maximum Satisfiability (SAT)

• Instance is Boolean formula with three elements
– Set  of n variables xi , i = {1,…,n}

– Set of literals. A literal is a variable or a negotiation of it

– Set of m distinct clauses {C, …, Cm}. Each clause 
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– Set of m distinct clauses {C, …, Cm}. Each clause 
consists only of literals combined by logical or
operators

• SAT is decision problem: It asks whether an 
assignment to the xi exists, so that CÆCÆ… 
Cm is true.



Fitness functions for SAT

• Obvious choice:

– Fitness function of 1 for all assignments that satisfies 

compound statement

– 0 otherwise
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– 0 otherwise

– Needle in a haystack!

• Better choice:

– Measure number of satisfied clauses, use as fitness

– Smoother landscape



Fitness smoothing

• Fitness functions with large plateaus can be made easier 

for guided search if we modify objective function and 

consider objective function value of neighbors

• Smoothing the fitness landscape is a possible way to 
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• Smoothing the fitness landscape is a possible way to 

achieve this



Constraint handling

• We have to assign fitness values to solutions that are 

infeasible

• Necessary if we cannot exclude all infeasible solutions from 

search space
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search space

• Simplest choice: penalize violation of constraints

• Penalty functions depend highly on parameters

• Proper design of fitness function for constrained problem is 

demanding



Accuracy-efficiency tradeoff

• Evaluation of fitness functions must be fast

• If calculation of fitness is time-consuming

– Rough approximation of fitness function could be used at 

beginning
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– Increase precision during run

– Invest more time at the end of run

– Local search: compute only fitness change (if faster and no need 

for complete fitness evaluation exists)



Initialization
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Impact of initialization

• Proper choice of initial solutions has large effect on 

efficiency of modern heuristics

• Initial solutions are starting points for search

• For guided search: single solution
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• For guided search: single solution

• For recombining methods: population of solutions



Random initialization

• Proper choice of initial solutions depends on 
amount of problem-specific knowledge

• If we know no properties of high- or low-quality 
solutions, we recommend random initialization
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solutions, we recommend random initialization

• All solutions are created with same probability, 
covering the entire search space

• Unbiased sampling 

– might be hard to ensure for direct representations

– easier for standard genotypes (integer, binary…)



Using problem specific knowledge

• If we know something about structure of high- or low-quality 
solutions like
– variable ranges,

– Dependencies, or 

– good solution parts

we can use such solutions as initial solutions
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we can use such solutions as initial solutions

• Advantage: guides the search into direction of optima

• Disadvantage: reduces search range

• Too much bias can lead to premature convergence because 
– Solutions are too similar (recombining methods)

– search focuses too much on certain parts of search space 
(recombining methods, and local search)



Search Strategies

1. Diversification and Intensification

2. Example: VNS

3. Example: Genetic Algorithm
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Intensification and Diversification

• Different strategies for controlling search differ in the 

design and control of the intensification and diversification 

phases 

• Search strategies must balance intensification and 

Search Strategy – Diversification and Intensification 

221

• Search strategies must balance intensification and 

diversification during search and to allow search methods 

to escape from local optima. 

• This is achieved by various diversification techniques based 

on the representationrepresentationrepresentationrepresentation, search operatorsearch operatorsearch operatorsearch operator, fitness functionfitness functionfitness functionfitness function, 

initializationinitializationinitializationinitialization, or explicit diversification steps explicit diversification steps explicit diversification steps explicit diversification steps controlled by 

the search strategy.



Local and Recombination-based Search

• Two fundamental concepts for heuristic search: 

– local search methods versus (high-locality problems)

– recombination-based search methods (decomposable problems)

• Many real-world problems have high locality and are 
decomposable
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decomposable

• Direct comparisons between local and recombination-based 
search is only meaningful for particular problem instances

• General statements on the superiority of one or other of these 
basic concepts are unjustified as method performance 
depends on the specific characteristics of the problem 
(locality versus decomposability).



Strategies for Intensification

• Intensification steps use the fitness of solutions to control search and 
usually ensure that the search moves in the direction of solutions with 
higher fitness.

• Keep the high-quality solutions or discard the low-quality ones

• No heuristic search possible without selection

• Intensification too strong (high selection pressure)
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• Intensification too strong (high selection pressure)
– Premature convergence

– Search gets stuck in local optimum

• Intensification too weak (low selection pressure)
– Drift

– High running times and low progress

• Optimal strength of intensification is problem-specific (example: evolution 
strategies)



Strategies for Diversification: Representation and 

Search Operators

• Choosing a combination of representation and search operators is 
equivalent to defining a metric on the search space 

• Representation/operator combination defines which solutions are 
neighbors. 

• By using different types of neighborhoods, it is possible to escape 
from local optima and explore larger areas of the search space. 
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from local optima and explore larger areas of the search space. 

• Different neighborhoods can be the result of different genotype-
phenotype mappings or search operators applied during search. 

• Standard examples for local search approaches that use 
modifications of representations or operators to diversify the 
search are variable neighborhood search, problem space search, 
the rollout algorithm, or the pilot method.



Strategies for Diversification: Fitness Function

• Fitness function measures the quality of solutions. 

• Modifying the fitness function has the same effect 
as changing the representation as it assigns 
different fitness values to the problem solutions. 
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different fitness values to the problem solutions. 

• Variations and modifications of the fitness function 
lead to increased diversification

• Common example is guided local search (it 
systematically changes the fitness function with 
respect to the progress of search)



Strategies for Diversification: Initialization

• Search trajectory depends on the choice of the initial 
solution (for example, greedy search always finds the 
nearest local optimum)

• Diversification can be the result of search heuristics 
using  different initial solutions. 
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using  different initial solutions. 

• Multi-start search approaches explore a larger area of 
the search space and lead to higher diversification. 

• Variants of multi-start approaches include iterated 
descent, large-step Markov chains, iterated Lin-
Kernighan, chained local optimization, or iterated local 
search.  



Strategies for Diversification: Search Strategy

• The search strategy can control the sequence of diversification and 
intensification steps. 

• Diversification steps that do not move towards solutions with 
higher quality can either be the results of random, larger, search 
steps or based on information gained in previous search steps. 

• Examples of search strategies that use a controlled number of 
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• Examples of search strategies that use a controlled number of 
search steps towards solutions of lower quality to increase 
diversity are simulated annealing, threshold accepting, or 
stochastic local search. 

• Representative examples of search strategies that consider 
previous search steps for diversification are tabu search or 
adaptive memory programming.



Variable neighborhood search (VNS)

• Combines local search with dynamic neighborhood 
structures that are changed depending on the progress 
of search

• Based on the following observations:
– Local minimum for neighborhood A is not necessarily one for 
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– Local minimum for neighborhood A is not necessarily one for 
neighborhood B. Different neighborhoods result in different 
metrics, result in different fitness landscapes.

– A global minimum is a global minimum with respect to all 
possible neighborhoods. Neighborhoods change definition 
of solution similarity, but not the fitness.

– Global optimum is not affected by search operators, but only 
local optima are affected by search operators!



Variable neighborhood search (VNS)

• Local optima for different neighborhoods are often close to each other

• Local optima have structure and properties that are also relevant for 

global optimum (similar to decomposability: parts of solution need to 

be recombined)

• Local optima are not randomly scattered through search space but are 
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• Local optima are not randomly scattered through search space but are 

clustered together

• Changing the neighborhood from N1 to N2 allows local search to find 

optimal solution



VNS pseudo-code
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VNS in a nutshell

• Define k different neighborhoods

• |N(x)|k is average number of neighbors

• Usually we order the neighborhoods in increasing |N(x)|k

• VNS iteratively performs a 
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• VNS iteratively performs a 

– Shaking phase: select a random solution w.r.t. current 
neighborhood. Avoids cycling and explores new region

– Local search phase: Perform local search until local optimum is 
found

– Switch to next neighborhood

– Track best found local optimum



Intensification and diversification in VNS

• Local search focuses search

• Shaking and switching neighborhoods are diversification 
steps

• Since average number of neighbors grows with k, 
diversification gets stronger 
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diversification gets stronger 

– Local search can select from more neighbors

– Covers larger areas of search space

– Sizes of basins of attraction increase

• Although VNS is recently quite popular, the underlying ideas are 
actually old (see Design of Modern Heuristics, p. 136)



Pilot Method

• “Preferred Iterative LOok ahead Technique”
• Combines greedy construction heuristics with a greedy 

measure to estimate the global impact of local choice

• Constructs solution step by step (Master solution)
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• Constructs solution step by step (Master solution)

• Decides about the steps by completing the solution 

using a fast construction heuristic, the so-called pilots

• Pilots look ahead.  Similar to A* search

• Master solution evolves, Pilots are iteratively computed



Pilot Method for TSP (1)

• Combinatorial optimization problem defined on 
fixed set of elements E

• Cost function c:E→R

• Find minimal cost subset S*⊂E satisfying some 

Search Strategy – Pilot Method

234

• Find minimal cost subset S*⊂E satisfying some 
constraints

• TSP: find set of edges with minimal cost that forms 
a cycle

• Assume that a heuristic for the problem is known 
that can complete any partial solution



Pilot Method for TSP (2)

• Master solution M contains elements e

• For each e∈M extend partial solution M to a complete 

solution such that e is part of it

• Let p(e) denote objective function value of this solution
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• Let p(e) denote objective function value of this solution

• e0 is most promising pilot: minimal value p() from all 

e∈M. 

• Include e into M. Start over. 

• Terminate when M is complete.



Properties

• Greedy construction heuristic that "looks ahead"; 

no search through a search space

• Completion heuristic is designed such that it 

exploits problem knowledge 
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exploits problem knowledge 

• No explicit diversification steps

• See chapter on design principles (ordinal 

representation)



Evolution strategies (ES)

• Local search for continuous search spaces

• Developed by Rechenberg and Schwefel, TU Berlin

• First applications: optimize shape of a bent pipe

• The main search operator in ES is mutation. To 
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• The main search operator in ES is mutation. To 

exchange information between solutions, 

recombination operators are used in population-

based ES as background search operators.



(1+1)-ES

• n-dimensional continuous vector x∈R is solution

• Creates offspring x‘ by adding n-dimensional 

random variable, mostly Gaussian:

x ‘ = x + σ N (0,1)
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xi‘ = xi + σ Ni(0,1)

• Offspring replaces parent if it is better

• Stochastic hillclimber



Two standard problem models

• Corridor model (x is far from optimum)

fcorr (x) = c0 +c1 x1 ∀ i∈{2,…, n}: -b/2≤ xi≤ b/2

• Sphere model (x is close to optimum)

f (x) = c + c ∑ (x –x *)2
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fsphe (x) = c0 + c1∑i (xi–xi*)2



1/5th success rule

• Define ξ(t) as ratio of successful steps over all t

search steps

• For corridor and sphere model, ξ(t)=0.2 maximizes 

convergence speed
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convergence speed

• If ξ(t)>0.2 reduce σ, increase otherwise



(µ+λ), (µ,λ)- evolution strategies

• µ parents generate λ new solutions.

• µ offspring are chosen either from µ+λ ((µ+λ)-ES) 

or from the λ new solutions ((µ,λ)-ES)

• Each individual has an own σ.

Search Strategy – Evolution Strategies

241

• Each individual has an own σ.

• SelfSelfSelfSelf----adaptation of strategy parameters adaptation of strategy parameters adaptation of strategy parameters adaptation of strategy parameters (σ is not 

externally controlled).

• Step size is adapted (learned) during the run



Properties

• ES incorporate the most important parameters of the strategy, e.g. standard 
deviations, into the search process. Thus,  optimization not only takes place on 
object variables, but also on strategy parameters (self-adaption).

• In population-based ES, intensification is a result of the selection mechanism 
which prefers high-quality solutions. 

• Recombination is a background operator which has both diversifying and 
intensifying character. 
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intensifying character. 
– By recombining two solutions, new solutions are created which lead to a more 

diversified population. 

– However, especially intermediate crossover leads to reduced diversity during an ES run 
since the population converges to the mean values. 

• Like for (1+1)-ES, the main source of diversification is mutation. With larger 
standard deviations, diversification gets stronger as the step size increases. The 
balance between diversification and intensification is maintained by the self-
adaptation of the strategy parameters. 



State of the art

• ES are state-of-the-art for many nonlinear continuous 
functions with medium dimensionality (n<100)

• CMA-ES (Covariance Matrix Adaptation Evolution Strategy) 

from Hansen and co-workers
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from Hansen and co-workers



Principles of Genetic Algorithms

• Population of solutions. 

– properties of a solution are evaluated based on the phenotype

– variation operators are applied to the genotype. 

– some of the solutions are removed from the population if the 
population size exceeds an upper limit. 
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population size exceeds an upper limit. 

• Variation operators 

– create new solutions with similar properties to existing solutions. 

– main search operator is recombination 

– mutation serves as background operator

• Selection 

– High-quality individuals are selected more often for reproduction.



Functionality

• Generate set of different initial solutions

• Repeat until termination :

– Repeat within a population

• Combine several solutions to form a new one s‘
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• Create a random neighboring solution s‘ in the neighborhood N(s) of s

– Select only a fraction of the newly created solutions s‘.

search space S

Different neighborhood in 
comparison to local 
search

Initial solution 2

Initial solution 1
Initial solution 3

new solution mutation



How does a GA work? 

Selection

pop = random_population();
while (not done)

parents = {};
while (|parents| < |pop|)

x = tournament_winner(pop);
parents = parents + x;

end;
offspring = {};
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Variation

Generation

while (|offspring| < |pop|)
x = get_random_with_deletion(parents);
y = get_random_with_deletion(parents);
(x’,y’) = crossover(x,y);
x” = mutation(x’);
insert(x”,offspring);
y” = mutation(y’);
insert(y”,offspring);

end;
pop = offspring;

end;



Genetic algorithms

• Two or more solutions create offspring using a recombination 

operator

• Assumption:

– Solutions have characteristic properties
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– Recombination has to identify relevant characteristics (building blocks) and 

combine those characteristics in an offspring. 

– Population necessary to ensure that  different characteristica are available.

• Motivation: local optima for local search are no local optima for 

recombination-based search. 

• However: Resulting neighborhood structure is non-intuitive



Design choices

• Choose a proper representation and corresponding search 
operators for the problem (ensure high locality for mutation 
and recombination)

• Design a mechanism that compares quality of different 
solutions. 

• Set GA-specific parameters:
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• Set GA-specific parameters:
– Population size (with increasing population size solution quality 

increases; running time (number of generations) is independent of 
pop size!).

– High recombination probability 

– Low mutation probability (on allele level) to create similarsimilarsimilarsimilar
solutions



Intensification

• Due to selection

• In each selection step, the average fitness of a 
population increases as only high-quality solutions 
are chosen for the mating pool
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are chosen for the mating pool

• Due to selection, the population converges after a 
number of generations 

• Continuing recombination-based search after the 
population has converged (hopefully to the global 
optimum) makes no sense as diversity is minimal.



Diversification

• Main source of diversification is the initial population

• Therefore, large population are used

• Recombination operators 

– Can create new solutions

– No active diversification. Recombination reduces diversity as the 
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– No active diversification. Recombination reduces diversity as the 
distances between offspring and parents are usually smaller than 
the distance between parents

– Iterative application of crossover alone reduces the diversity of a 
population as 

• some solution properties can become extinct in the population (drift)) or 

• the decision variables converge to an average value (especially for 
continuous decision variables). 



Diversification (2)

• Mutation has diversifying character
• Neighborhood structure does not remain constant during 

search,  as mutation does not generate only neighboring 
solutions with small distance but can reach all solutions in the 
search space in only one mutation step.

• Mutation is iteratively applied to all l decision variables with 
probability p . 
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probability pm. 
• On average, pml alleles are mutated 
• For large values of pm, the mutation operator can mutate all l 

decision variables and, thus, reach all possible points in the 
solution space. 

• The diversifying character of mutation increases with 
increasing pm, and for large pm, SGA behaves like random 
search.



Design Principles

1. High Locality

2. Bias
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Design Guidelines

Vast majority of real-world optimization problems are 

• neither  deceptive nor difficult  and 

• have high locality (used metric is meaningful)
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• Design of modern heuristics should not destroy the high 
locality of a problem. 

• Local search operators must generate neighboring 
solutions

• Recombination operators must re-combine solutions 



Biasing modern heuristics

• If we know something about good solutions, we can 

seed such information into the modern heuristic

– Representation: incorporate construction heuristics, or 

use redundant encodings
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use redundant encodings

– Search operators can distinguish between good and 

bad solution features (building blocks) 

– We can also bias the fitness function, the initial 

solutions, the search strategy



Incorporating Construction Heuristics in 

Representations

• Early example: ordinal representation (Grefenstette et al. 
1985) for the TSP.

• Encodes a tour (permutation of n integers) by a genotype xg of 
length n, where xg

i∈{1,…,n-i} and i∈{0,…,n-1}. For 
constructing a phenotype, a predefined permutation xs of n 
integers representing the n different cities is used. xs can be 
problem-specific and, for example, consider edge weights. A 
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problem-specific and, for example, consider edge weights. A 
phenotype (tour) is constructed from xg by subsequently 
adding (starting with i=0) the xg

ith element of xs to the 
phenotype (which initially contains no elements) and removing 
the xg

ith element of xs. Problem-specific knowledge can be 
considered by choosing an appropriate xs as genotypes define 
perturbations of xs and using small integers for the xg

i results 
in a bias of the resulting phenotypes towards xs. For example, 
for xg

i=1 (i∈{0,…,n-1}), the resulting phenotype is xs.



Biased representation

• Number of genotypes exceeds number of genotypes

• Redundant representations

• Redundant representations are biased if some 

phenotypes are represented by a larger number of 
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phenotypes are represented by a larger number of 

genotypes

• Biased representation: overrepresentation of good 

solutions, good solutions take larger share of 

search space



Biased search operators

• Search operators are biased if they generate or 

select certain solutions with higher probability

• Integration of structural features into new solutions

• Example: optimal TSP solutions do not cross
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• Example: optimal TSP solutions do not cross

– Operators should not generate crossing solutions 

because they have bad quality



Biased fitness function

• Fitness function is objective function as the heuristic sees it

• Improve fitness of solutions that share a desired feature

• Penalize solutions that do not share a certain feature

• Handle constraints: penalize solutions that violate certain 
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• Handle constraints: penalize solutions that violate certain 

constraints



Biased search strategy

• If problem is known to be unimodal, we can favor 

intensification and use less exploration

• If problem is known to be multimodal, local minima are 

more important and we must diversify
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more important and we must diversify

• Example: use different starting temperatures in Simulated 

Annealing approach, depending on multimodality of search 

space



DoneDone



http://www.springer.com/978-3-540-72961-7


