Chapter 2

Existing Codes on Earthquake Design
with and Without Seismic Devices and
Tabulated Data

2.1 Existing Codes on Earthquake Design

Some well-known codes are discussed in brief and they are classified under
items such as seismic actions, dynamic characteristics, seismic weights, forces,
moments, storey drift (P — A effect), seismic factors, site characteristics and
building categories. These are only briefs and for detailed codified design, a

reference is made to individual codes where detailed applications are available
from the references given at the end of this chapter.

2.1(a) Existing Codes—Comparative Study

They are briefly mentioned below as given by the different countries:

2.1.1 Algeria: RPA (1989)
Seismic actions/dynamic characteristics

Load combination

G+Q+E or 08G+E or G+QO+1.2F (2.1
G =dead load
QO =live load

E = seismic load

N =number of storeys

h = height of the building

T = 0.1 Ns (building frames with shear walls)

0.09 1 oy
T= (other buildings)
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52 2 Existing Codes on Earthquake Design

Table 2.1 Secismic factors A/BC Seismic coefficient

I 11 111
1 0.12 0.25 0.35
0.08 0.15 0.25
3 0.05 0.10 0.15
Seismic weights, forces and moments
. V — F)Wih
Fx = equivalent lateral force = (Nﬁ (2.2)
>y Wihi
V = ADBQW (2.3)
Where
A = seismic coefficient = 0.05—0.25
W = seismic weight
- 6
Quality factor Q =1 + Z Pq B=0.20-0.5 (2.4)
1
Ft == 0
T<07s=0.07TV<0.25V for T>0.7s (2.5)
F,=additional force at the building top
Storey drift/ P—A effect
Ai=X:i— X1 with Xy =0 (2.6)
X; = lateral displacement at b
A= 0.0075 x storey height
Pr = performance factor = 0.2—0.67 (2.7)

Building category (BC)
Category 1 (500 year return)
Category 2 (100 year return)
Category 3 (50 year return)

Table 2.2 Site characteristics/building Zone

Seismicity zone

categories

1I
1

Negligible
Low
Average
High
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2.1.2 Argentina : INPRES-CIRSOC 103 (1991)

Seismic actions/dynamic characteristics

Horizontal seismic spectra

Sa:aXJr(b—ax)TZ for T< T,

Sa:b fOI'T]STSTz
7,723
Sab[z] for T> 1T,
T
T
Sa:aﬁ—(fAb—as)?1 for T< T
Sa :fAb for T1§T§ T2

S, = [lJr(fAl)%]

7,123
b{ﬁ} ] for T> 1T,

¢ = damping 5%

T = fundamental period
fa = amplification factor due to ¢

= \/2 for 0.5% < &< 5%

¢ = relative damping = percentage of critical damping

W; = gravity load at level i
g =acceleration
u; =displacement at i

F; = normal horizontal force

For regular building level height equals

hy Wy,
T = —
100\ ¢F,

Alternative empirical formula is

roo e 302
=100V T1+300
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(2.8)

(2.9)

(2.10)

2.11)

(2.12)

(2.13)
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Ty, = fundamental period
h, = height of the building
L = length of the building

d = density of the wall

Torsional effects

M,; = torsional moment at level i = (1.5¢; + 0.10L)V;

or

Mt,- = (61 — OIOL)V,

(2.14)

(2.15)

e, = distance between CS at level i and the line of action of the shear force

measured perpendicular to the analysed direction

L =maximum dimension in plan measured perpendicular to the direction

of Vl'
Seismic weights, forces and moments

- Wl‘/’l,‘
E By TR ——
> oiny Wi

W; = seismic weight at level i = G; + nL;
n=0-1.0
h; = height of the storey level i above the base level
n = number of levels in the building
G, and nL; = dead and live loads respectively

Vertical seismic actions

SaV :fVSa
fv Seismic zone
0.6 4
0.6 3
0.5 2
0.4 1
0.4 0
Load states
1.3Ew &+ Eg Ew = actions due to gravitational loads

0.85Ew + Es Es = seismic actions

(2.16)

(2.17)
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Building separation due to hammering

Y; = separation between adjacent structures = d; + fsh; (2.18)
Y; >25cm (2.20)

fs = factor depending on foundation soil = 0.001—-0.0025
fo = different soils in seismic zones = 0.003—0.010

n
V; = storey shear force = Z Fy (2.21)
k=1
M; = overturning moment = « Z Fi(hy — hy) (2.22)
k=it+1

where

hi, by = heights at level k and i from the foundation level

2.23
i=0,1,2,3,...,n—1 2.23)
n
Vo = base shear force = CW = CZ 4 (2.24)
=1
Suyd
= 2.25
== (2.25)
WihiVyo
F; = lateral force = 57— 2.26
i1 Wihi (2.26)
Fy = vertical seismic forces = £Cypy, W (2.27)
Storey drift/ P—A effect
Lateral displacements ¢ and storey drift A
A,‘ = 5,‘ — 5,',] with 5() =0 (228)
Alternatively
g T°F,
0; = (2.29)

T4 W,

0 = horizontal displacements at levels i
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Limiting values for storey drift
Non-structural elements attached are damaged

Group Ay GroupA  Group B
0.01 0.011 0.014

Non-structural elements attached are not damaged

0.01 0.015 0.019
P — A effect
PiA;
=——2>10.08 2.30
Bi VH (2.30)
P; = total seismic weight at level i
V; = shear force at storey i
H; = storey height i
Y = amplification factor for forces and displacements
B 1
1 - ﬁmax
Prax 18 the B, value.
Reduction factor R
A factor for the dissipation of the energy by inelastic deformation:
T
R:1+(,u—1)7 for T< T, (2.31)
1
R=p forT<T (2.32)
u varies from 6 to 1.
Table 2.3 Seismic factors y4 defines the risk factor: Group Ta
Ao 1.4
A 1.3
B 1.0
Table 2.4 Site characteristics/building categories Zone Seismicity
Seismic zones —
0 Negligible
1 Low
11 Average

111 High
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Table 2.5 Seismic zone

Table 2.6 Building classifications

57
Zone Risk
0 Very low
1 Low
2 Moderate
3 High
4 Very high

Group Classification
Ay Important centres
A Hotels, stadia, etc.
B Private, commercial, industrial buildings
C Containers, silos, sheds, stables
Zone a b T, T,
4 0.35 1.05 0.2-0.4 0.35-1.0
3 0.25 0.75 0.2-0.4 0.35-0.1
2 0.16—0.18 0.48—0.54 0.2-0.4 0.5-1.0
1 0.08—0.10 0.24-0.30 0.2-0.4 0.6—1.2
0 0.04 0.12 0.10 1.2-1.6
Tgble‘2.7 Vc?r Fical Zone Balcony and cantilevers Roof and large spans
seismic coefficient (Cy)
4 1.20 0.65
3 0.86 0.47
2 0.52 0.28
1 0.24 0.13
Building category (BC)

Category 1 (500 year return)
Category 2 (100 year return)
Category 3 (50 year return)

2.1.3 Australia: AS11704 (1993)

Seismic actions/dynamic characteristics

Bearing walls and frames where k, = deflection amplification factor
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Bearing walls 1.25-4.0
Building frame 1.50—4.0
Moment-resisting frame 2.0-5.5
Dual system with a special moment-resisting frame 4.0—-6.5
Dual system with intermediate moment frame

(steel or concrete) 4.5-5.0

Torsional effects

eq1 = Ajes + 0.05b
edqy = Azes —0.05b
As = dynamic eccentricity factors
es = eccentricity
A =26-25>14=26
A, =0.5
b = maximum dimension at level i

Seismic weights, forces and moments

V' = total horizontal force (kN) = ZIKCSW (2.33)

I = occupancy importance factor
= 1.2 essential facilities
= 1.0 other buildings
W = total dead load + 0.25 live load

. ICS
V' = seismic base shear = TGg
£

n
V; = horizontal shear force = > F,

x=i

n
M, = overturning moment = oy, Fil;
i=1
i = levels number
o = 0.75 general
o = 1.0 at base
o= 0.5 at top

Base shear distribution

E‘c = CVx -V (234)

G gshf,

=& x 2.35
Z?:I Ggi ’ hf ( )

C Vx
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x =i levels
k=1T<0.5s

Gg = gravity load = G + yQ
G = dead load (kN)
QO = live load (kN)

Storey drift/ P—A effect

0, = interstorey drift = k4o
Oye = lateral displacement at levels i

(T _gE (T
T\ 2n _Ggi 2n
P—A effect

To allow for P—A effect, the storey drift is increased by

0.9
(1 —m)~

When m<0.1 there is no effect

P xAx
Vxhsxkd

m = stability coefficient =

P, = total vertical design load

Seismic factors

1
C = seismic response factor = ——= < 0.12
P ISVT ™~
a = acceleration coefficient = 0.05—-0.11
1.25a
C=7r
ho

T (main direction)

46

T= /51—; (orthogonal direction)

Y =0.4-0.6
Ry = response modification factor = 1.5—8.0

59

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)
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k = horizontal force factor
= 0.75 (ductile)
= 3.2 (brittle)

Z = zone factor
=0 for zone A ductile
=0.09 for zone A non-ductile
=0.18 for zone 1
=0.36 for zone 2

Site characteristics/building categories

S = soil structure resonance factor = 1.5 if not calculated
Building classification

Type 1 Domestic and not more than two storeys
Type II  Buildings with high occupancy (schools, theatres, etc.)

Type III  Buildings for essential functions (power stations, tall structures,
hospitals, etc.)

Table 2.8 Seismic design categories

as 111 11 1 Domestic
as > 0.20 E D C H;
0.10 < ag <0.20 D C B H,
as<0.10 C B A H,

C = static analysis

D =static and dynamic analysis

E =static and dynamic analysis

S =site factor varies from 0.67 to 2.0

2.1.4 China: TJ 11-78 and GBJ 11-89

Seismic actions/dynamic characteristics

S = total effect of horizontal seismic action

(2.44)

= fundamental period
; = modal effect caused by seismic forces of the jth mode
= number of modes

> S
|
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o, values

Tg T)>147¢ T, <1.4Tg

<0.25 0.0877 + 0.07 no need to consider
0.3—-0.4 0.087 +0.01

>0.55 0.087y —0.02

Horizontal seismic action
Fi =y, Wi Fyi = o, Y Wi

— oy 2
thi = ocj/,jri d)jiI/Vi

¢; = angular rotation at ith floor jth mode
x,j,t = directions in x, y and angular direction
r; = mass radius of gyration
o; = seismic coefficient
i=1,2,...,n
j=12,...m

Torsional effects

concrete building

61

(2.45)

(2.46)

(2.47)

Modelling with degrees of freedom including two orthogonal horizontal dis-
placements and one angular rotation for each level. The complete quadratic
combination (CQC) can be used to obtain the response “S” (force, moment and

displacement) given by

S;, Sk = effects caused by seismic forces

0.02(1 + A1) (A1)"’
(1 =222 40.01(1 4 A1)* it

Pjk =

where At = ratio of the periods of the kth and jth modes.

Seismic weights, forces and moments

Base shear force: p
FEK = OCWeq = OCZ W,‘
=1

=

F;=horizontal seismic forces at i level

W.H;
= =i Fex(1 —9,)
> i1 WiH; !

(2.48)

(2.49)

(2.50)

(2.51)
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Fig. 2.1 Seismic actions at

various levels W, 7 IFm

Wi&IFvi

H;
lFEVK
AF, = additional seismic force applied to the top level of the building.
= 0,FEx (2.52)
H = height from the base
n
M; = overturning moment = Z fi(H; — H;) (2.53)
j=it1
Fgyvk = vertical seismic action force = ay,, Weq (2.54)
At ith level (see Fig. 2.1)
WiH,;
Fi == Frvk (2.55)
21 WiH;
Storey drift/ P—A effect
The elastic relative displacement is
AU, < [0.]H (2.56)
where 0, = elastic drift limitation.
Elasto-plastic deformation
AU, = n,AU:; (2.57)
Table 2.9 Values of 0. Structure frame 0,
Brick infill walls 1/550
Others 1/450
Public buildings 1/800

Frame shear walls

1/650
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Table 2.10 The value of 0, 0, Structure
1/30 Single-storey RC frame
1/50 Frame with infill
1/70 Frame in the first storey of a brick building
or
n,AUy
AU, = pAUy = -2 (2.58)
>y
AUy = storey yield displacement
AU, = elastically calculated storey displacement
1, = amplification coefficient
Uy < [0,|H (2.59)
Seismic factors
o = seismic coefficient
o = Omax(5.571 +0.45)  for Ty <0.1s (2.60)
o= Omax for 0.1<7T) <0.1Tg
T\ 09
%= (Tg) dmax for Tg<T, <3s (2.61)
1
J, = additional seismic action coefficient
7, = the mode participation factor of the jth mode
py = coupling coefficient for jth and kth modes
1 = storey ductility coefficient
. . Fy
¢y = storey yield strength coefficient = Q_ (2.62)
€
Table _2?11 amax Values for various Intensity o
ntensities
VI VII VIII IX
0.04 0.08 0.16 0.32




64

Table 2.12 Values of Epicentre at

2 Existing Codes on Earthquake Design

Epi t it
different sites piecenre ISI ¢
Near 0.2 0.65
Remote 0.25 0.40 0.55 0.85
Table 2.13 The values of ¢
valu >y Structure &y
0.5 0.4 0.3 0.2
2—4 storeys 1.3 1.4 1.6 2.1
5—7 storeys 1.5 1.65 1.8 2.4
8—12 storeys 1.8 2.0 2.2 2.8
Single storey 1.3 1.6 2.0 2.6
Fy = 2Qy1 + (Wl — 2) X Qy2
m = total number of columns in a storey

0y10y» = average yield strength of exterior and interior columns,

respectively

Site characteristics/building categories

Building classifications

Type A
Type B
Type C
Type D

economic losses.

Tg = characteristic period of vibration

2.1.5 Europe: 1-1 (Oct 94); 1-2 (Oct 94); 1-3 (Feb 95); Part 2

(Dec 94); Part 5 (Oct 94); Eurocode 8

Structures not failing beyond repair. Important structures.
Buildings and structures in the main city.
Structures not included in A, B, D.
Structures of less importance not likely to cause deaths, injuries or

Note: From these parts minimum items are given. For details see the entire

codes and parts.

Seismic actions/dynamic characteristics

Horizontal seismic action: two orthogonal components with the same response

spectrum.

Vertical seismic action:

T<0.15s the vertical ordinates = 0.15 x horizontal
T>0.15s the vertical ordinates = 0.5 x horizontal

T between 0.15 and 0.5 s — linear interpolation.
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65
S.(T) = elastic response spectrum 0 <7 < Ty (2.63)
T
SC(T):ag-S[l—f—T(éBo—l)} T <T<E (2.64)
B
Se(T) = agSEBy Tc < T < Tp (2.65)
71X
SC(T) = agSfBo |:T:| TD =T (266)
X [T %
Se(T) = ClgSéB() [E:| |:7:| (267)
AtA=a,-S
AtB:ag~S~fB()
where
Se(T) ordinate of the elastic response spectrum,
T vibration period of a linear single-degree-of-freedom system,
ag design ground acceleration for the reference return period,
Tg, Tc limits of the constant spectral acceleration branch,
b value defining the beginning of the constant displacement range of
the spectrum,
S soil parameter
n damping correction factor with reference value n =1 for 5% viscous
damping,

By = spectral acceleration amplification factor for 5% viscous damping,
K, K, = exponents that influence the shape of the spectrum for vibration at

Tp and Tc (see Fig. 2.2).

For the three subsoil classes 4, B and C the values of the parameters B,
Tg, Tc,Tp, S are given in Table 2.14 reproduced from the code.

Fig. 2.2 Response spectrum
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Table 2.14 Values of the parameters describing the elastic response spectrum

Sub-soil class S Po ki ko Tls| Tcs] Tps]
A [1,O] [2,5] [1,00] [2,0] [0,10] [0.40]  [3.0]
B [1,o]  [2,5] [1,00 [2,00] [0,15] [0,60]  [3.0]
C [091 [2,5] [1,0] [2,0] [0,20] [0,80]  [3.0]

These values are selected so that the ordinates of the elastic response spectrum
have a uniform probability of exceedance over all periods (uniform risk spec-

trum) equal to 50%.

Design spectrum

Here, a, is replaced by o and S.(T) bySq(T)

E=- (2.68)
q
K; and K, are replaced by Ky, and Ky,, respectively
Tc=Tp > 0.2¢ (2.69)
Combinations of seismic actions
Z Gy + Z Y g OQki (2.70)
> W ;= combination coefficients for variable actions i = 0.5—1.0
G and Q are characteristic values of actions
Vg =¥y ¢ =0.5-1.0
Design seismic coefficient =0.2
Seismic weights, forces and moments
My = eyF; (2.71)
e1; = accidental torsional eccentricity
L; = floor dimensions perpendicular to seismic action
seismic base shear = F, = V = S.(T) W (2.72)

W = W, = total weight
T, <4T¢ (fundamental period)
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Fi=Fh=c—"7r (2.73)
2.8 W
when horizontal displacement is increasing linearly.
ZiWi
Fi=Fh=——— 2.74
i b Z Z_/ . VVI ( )

S;, S; = displacement of masses M; and M; in the fundamental mode shape

For sites with ground conditions not matching the three subsoil classes A, B,
C special studies for the definition of the seismic action may be required.

The value of the damping correction factor 7 can be determined by the
expression

n=+v1/(2+¢=0,7 (2.75)
where £ is the value of the viscous damping ratio of the structure, expressed in
percent. If for special studies a viscous damping ratio different from 5% is to be
used, this value will be given in the relevant parts of Eurocode 8.

Peak ground displacement

1. Unless special studies based on the available information indicate otherwise
the value U = d, of the peak ground displacement may be estimated by means
of the following expression:

U=d,=[0,05]-az-S-Tc-Tp (2.76)

with the values of a,, S, Tc, T defined as

Wi, W; = corresponding weights
Z;,Z; = heights of masses M; and M;, respectively

ds = displacement induced by design seismic action
= qade)y

qd = displacement behaviour factor

de = displacement from the linear analysis

F, = horizontal force on non-structural element

W, = weight of the element

Ga = B = behaviour factor
=1.0-20=¢

Storey drift/ P—A effect

P—A effect is not considered if the following is satisfied:

¢ ="2""T<0.10 (2.77)
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d. = A in other literature

h; = interstorey height

P = total gravity load at and above the storey
Vior = total seismic storey shear

For buildings with non-structural elements

& 00041 (2.78)
Ry

When structural deformation is restricted

b 0,006 (2.79)
Ry

where 0.1 <6 < 0.2 increases the seismic action effects by

1
W»m (2.80)

Seismic factors

I=y;=08-15
By = 5% viscous damping
¢ = damping acceleration factor > 0.7
S = soil parameter = 1.0 for 5% damping
g = B = behaviour factor

z
o X 3(1 +7)
S, = seismic coefficient = h 5 (2.81)
T,
1 1——
" ( T1>
a=% (2.82)
a

T, for non-structural elements

T  for structural elements

z = height of the non-structural element
RD =V

Site characteristics/building categories

Subsoil Class A

Vs=100m/s Sm
=400 m/s 10m
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Table 2.15 K-values

Class Ky Ky K, K>
A 2/3 5/3 1 2
B 2/3 5/3 1 2
C 2/3 5/3 1 2

Table 2.16 S|, By, Ts, Tc, Tp and Rp values
S, Bo Ts Te o
1.0 2.5 0.10 0.40 3.0
1.0 2.5 0.15 0.60 3.0
0.9 2.5 0.20 0.80 3.0

Subsoil Class B

Vs=200m/s 10m
=350 m/s 50m

Subsoil Class C
Vs =200 m/s 20m

Ground acceleration a, * 0.10 g
d, = peak ground displacement = 0.5a,S - TcTp (2.83)

Building categories versus Rp

Rp
I 2.5
II 2.5
11 2.0
v 2.0

2.1.5.1 Symbols

In addition to the symbols listed in Part 1-1, the following symbols are used in
Part 1-2 with the following meanings:

Eg effect of the seismic action;

Egq4,, design values of the action effects due to the horizontal components
of the seismic;

Egq, action;

Erq- design value of the action effects due to the vertical component of the
seismic action;

F horizontal seismic force;
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horizontal seismic force acting on a non-structural element (appendage);
building height;

design resistance;

fundamental vibration period of a building;

fundamental vibration period of a non-structural element
(appendage);

weight;

weight of a non-structural element (appendage);

displacement;

design interstorey drift;

accidental eccentricity of a storey mass from its nominal location;
interstorey height;

mass;

behaviour factor of a non-structural element;

displacement behaviour factor;

displacement of a mass m in the fundamental mode shape of a
building;

height of the mass m above the level of application of the seismic action;
important factor of a non-structural element;

interstorey drift sensitivity coefficient.

2.1.5.2 Characteristics of Earthquake-Resistant Buildings

Basic Principles of Conceptual Design

(1) P The aspect of seismic hazard shall be taken into consideration in the early
stages of the conceptual design of the building.
(2) The guiding principles governing this conceptual design against seismic
hazard are
— structural simplicity,
— uniformity and symmetry,
— redundancy,
— bidirectional resistance and stiffness,
— torsional resistance and stiffness,
— diaphragmatic action at storey level,
— adequate foundation.

(3) Commentaries to these principles are given in Annex B.

Structural Regularity

General

(1) P For the purpose of seismic design, building structures are distinguished as
regular and non-regular.
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(2) This distinction has implications on the following aspects of the seismic

design:

— method of analysis such as power spectrum, non-linear time history and
frequency domain

— the value of the behaviour factor ‘¢’

— geometric non-linearity exceeding the limit by the Eurocode 8

— Non-regular distribution of overstrength in elevation exceeding the limit
by Eurocode 8

— Criteria describing regularity in plan and in elevation

Safety Verifications
General

(1) P For the safety verifications the relevant limit states and specific mea-
sures (see Clause 2.2.4 of Part 1-1) shall be considered.

(2) For building of importance categories II-1V (see Table 3.3) the verifications
prescribed in Sects. 4.2 and 4.3 may be considered satisfied if the following
two conditions are met:

(a) The total base shear due to the seismic design combination (see Clause
4.4 of Part 1-1), calculated with a behaviour factor ¢ =[1,0], is less than
that due to the other relevant action combinations for which the build-
ing is designed on the basis of a linear elastic analysis.

(b) The specific measures described in Clause 2.2.4 of Part 1-1 of the code
are taken, with the exception that the provisions contained in Clause
2.2.4.1 (2)—(3) of Part 1-1 need not be demonstrated as having been met.

Ultimate Limit State
General

(1) P The safety against collapse (ultimate limit state) under the seismic design
situation is considered to be ensured if the following conditions regarding
resistance, ductility, equilibrium, foundation stability and seismic joints are met.

Resistance Condition

(1) P The following relation shall be satisfied for all structural elements —
including connections — and the relevant non-structural elements:

E; < Ry (2.84)

where

E;= E{Z Gyj, vy - Aep, Pk, Z 2% Qki}


http://dx.doi.org/10.1007/978-3-540-93818-7_4
http://dx.doi.org/10.1007/978-3-540-93818-7_4
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is the design value of the action effect due to the seismic design situation (see
Clause 4.4 of Part 1-1), including — if necessary — second-order effects, and

Rq= R{fx/vu} (2.85)

is the corresponding design resistance of the element, calculated according
to the rules specific to the pertinent material (characteristic value of prop-
erty fi and partial safety factor y;,) and according to the mechanical models
which relate to the specific type of structural system.

(2) Second-order effects (P — A effects) need not be considered when the fol-
lowing condition is fulfilled in all storeys:

g — Lo dr <0.10 (2.86)
Vtot . h

where

0 interstorey drift sensitivity coefficient,

P, total gravity load at and above the storey considered, in accordance
with the assumptions made for the computation of the seismic
action effects,

d.  design interstorey drift, evaluated as the difference of the average
lateral displacements at the top and bottom of the storey under
consideration,

Viot total seismic storey shear,

h interstorey height.

(3) In cases when 0.1 <0 < 0.2, the second-order effects can approximately be
taken into account by increasing the relevant seismic action effects by a
factor equal to 1/(1 — 6).

(4) P The value of the coefficient 6 shall not exceed 0.3.

Ductility Condition

(1) P It shall be verified that both the structural elements and the structure as
a whole possess adequate ductility taking into account the expected
exploration of ductility, which depends on the selected system and the
behaviour factor.

(2) P Specific material-related requirements as defined in Part 1-3 shall be
satisfied, including — when indicated — capacity design provisions in order to
obtain the hierarchy of resistance of the various structural components
necessary for ensuring the intended configuration of plastic hinges and for
avoiding brittle failure modes.

(3) P Capacity design rules are presented in detail in Part 1-3.
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Equilibrium Condition

(1) P The building structure shall be stable under the set of actions given by
the combination rules of Clause 4.4 of Part 1-1. Herein are included such
effects as overturning and sliding.

(2) P In special cases the equilibrium may be verified by means of energy
balance methods or by geometrically non-linear methods with the seismic
action defined as described in Clause 4.3.2 of Part 1-1 of the code.

Resistance of Horizontal Diaphragms

(1) P Diaphragms and bracings in horizontal planes shall be able to transmit
with sufficient overstrength the effects of the design seismic action to the
various lateral load resisting systems to which they are connected.

(2) Paragraph (1) is considered satisfied if for the relevant resistance verifications
the forces obtained from the analysis are multiplied by a factor equal to 1.3.

Resistance of Foundations

(1) P The foundation system shall be verified according to Clause 5.4 of Part 5
and to Eurocode 7.

(2) P The action effects for the foundations shall be derived on the basis of
capacity design considerations accounting for the development of possible
overstrength, but they need not exceed the action effects corresponding to
the response of the structure under the seismic design situation inherent to
the assumption of an elastic behaviour (¢ = 1.0).

(3) If the action effects for the foundation have been determined using a
behaviour factor q < [I, 5], no capacity design considerations according
to (2) P are required.

Seismic Joint Condition

(1) P Building shall be protected for collisions with adjacent structures
induced be earthquakes.

(2) Paragraph (1) is deemed to be satisfied if the distance from the boundary
line to the potential points of impact is not less than the maximum hor-
izontal displacement.

(3) If the floor elevations of a building under design are the same as those of
the adjacent building, the above referred distance may be reduced by a
factor of [0,7].

(4) Alternatively, this separation distance is not required if appropriate shear
walls are provided on the perimeter of the building to act as collision walls
(“bumpers”). At least two such walls must be placed at each side subject to
pounding and must extend over the total height of the building. They must
be perpendicular to the side subject to collisions and they can end on the
boundary line. Then the separation distance for the rest of the building can
be reduced to [4,0] cm.
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Serviceability Limit State
General

(1) P The requirement for limiting damage (serviceability limit state) is con-
sidered satisfied if — under a seismic action having a larger probability of
occurrence than the design seismic action — the interstorey drifts are limited
according to 4.3.2 of the code.

(2) Additional verifications for the serviceability limit state may be required in
the case of buildings important for civil protection or containing sensitive
equipment.

Limitation of Interstorey Drift

(1) P Unless otherwise specified in Part 1-3, the following limits shall be
observed:

(a) for buildings having non-structural elements of brittle materials
attached to the structure

d,/v < [0,004] - h (2.87)

(b) for buildings having non-structural elements fixed in a way so as not to
interfere with structural deformations

d,/v < [0,006] - h (2.88)

where
d, design interstorey drift as defined in 4.2.2.(2) of the code,
h storey height,
v reduction factor to take into account the lower return period of
the seismic event associated with the serviceability limit state.

(2) The reduction factor can also depend on the importance category of the
building. Values of v are given in Table 2.17.

(3) Different values of v may be required for the various seismic zones of a
country. The code provides methodologies in detail for buildings and their
elements made in concrete steel, timber and masonry. Design concepts,
material properties, building systems, dissipative zones and structural
types of behaviour factors are dealt with in greater depths in the code.

Table 2.17 Values of the reduction factor v
Importance category 1 11 I v
Reduction factor v [2,5] [2,5] [2,0] [2,0]
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2.1.6 India and Pakistan: 1S-1893 (1984) and PKS 395-Rev
(1986)

Seismic actions/dynamic characteristics

T (moment-resisting frame, shear walls) = 0.1n
T (other buildings) = 0.09H/Vd (2.89)

n = number of storeys
d = maximum base dimension
H = height of the building

Response spectrum
Sa/g versus T when & = 5%, & = 10%, & = 20% (2.90)

F;, = seismic design lateral force at the ith floor level corresponding to the rth mode

= Kﬁ%%a% W, (2.91)

¢; = mode shape coefficient

n W -
O L (2.92)

' J=i 27:1 VV] [¢ir]2

Seismic weights, forces and moments

V' = design base shear = KCflugW  (India) (2.93)
V' = design base shear = Csw,  (Pakistan) (2.94)
Cs = ZISMy,0 (2.95)
Z = ACF (2.96)
Table 2.18 S,/g versus 7(s) S./g () (s)
0 0.16 0.2
0.1 1.00 1.9
0.2 0.30 1.18
0.3 _ 0.80
0.4 B 0.60
0.5 B 0.50
0.6 B 0.40
0.7 0.15

From the above, the average acceleration coeffi-
cient S, /g is obtained.
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Wil
X ol

Fi=V

W = total load = dead + appropriate live loads
F; = lateral force at the ith floor = P;
W; = gravity load
h; = from the base to the ith floor
n = number of storeys = N
W; = individual floor load

India
F; = force in the ith frame to resist torsion
_ M, (Kir;)
K}
where

K; = stiffness of the ith frame

r; = distance of the ith frame from the centre of the stiffness

M, = torsional moment = 1.5¢V/

Pakistan
W;=D;+ nL;
n =0.25-0.50
M; = overturning moment
= S Filh— By + Fiha — )
i1
Torsional effects

e, =15 +0.1b or e,=e—0.1b

b = the largest distance or dimension
e = eccentricity

e, = eccentricity for torsional moment
L; = live load at ith level

Storey drift/ P—A effect

Amax between two floors * 0.004 x 7, for height >40 m (India)

(2.97)

(2.98)

(2.99)

(2.100)

(2.101)

(2.102)
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_ s Tk
"Anr W,
A=06;—9i1
P — A effect

W:iA;
0;=—-_2%03

L Vil

Seismic factors

Fy = seismic zone factor

oy = basic horizontal seismic coefficient

Cc=5%

A =0-0.08
M = material factor = 0.8—1.2
Q = construction factor = 1.0
S=0.67-3.2

op = 0.01-0.08

I = importance factor = 1.0—1.5

B = 0.01-0.08

For different soil foundations:

Site characteristics/building categories

Table 2.19 Height versus vy,

Table 2.20 Values of «y and F, for
various zones

2.1.7 Iran: ICRD (1988)

77
% =0\ pakistan) (2.103)
Va Height (m)
0.4 up to 20
0.6 40
0.8 60
1.0 90
Zone o Fy
\Y 0.08 0.40
v 0.05 0.25
111 0.04 0.20
11 0.02 0.10
1 0.01 0.05

Seismic actions/dynamic characteristics

Design methodologies: Analyses

(a) Equivalent static
(b) Pseudo-dynamic
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(c) Dynamic analysis using acceleration data

h
T=009— AST<0061*
N

T=0.08/4"* (steel frame)

T=0.074* (RC frame)

. .. . 241
Fy = vertical seismic action = R Wp
v

Ry = reaction coefficient
= 2.4 for steel
= 2.0 for concrete

W, = G; + L, + total
Seismic weights, forces and moments

V' = minimum base shear force = CW,

ARI
C = —
B
Lateral forces
Wihi
= (V-F,

F, = additional lateral force at top level
=0 ifT<0.7s
=0.07 if Ty <025V

N

M; = Fi(hy—h)+ Y F(hj—h) i=0toN—

J=it]

M= ejF;+ My
j=1

M., = accidental torsional moment

Storey drift/ P—A effect

(2.104)

(2.105)

(2.106)

(2.107)

(2.108)

(2.109)

(2.110)

(2.111)

(2.112)

(2.112a)

1 (2.113)

(2.114)

The lateral drift is 3 0.005/;. Both lateral forces and torsional moment effects

are coupled.
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Seismic factors
W, = G;+nL;

n = 20—40%

A = design base acceleration = 0.35—0.20
R=20 <ﬁ>m 0.6 < R<20
T
1=08-1.2
B=5-8
Site characteristics/building categories

1. High-priority buildings
2. Medium-priority buildings
3. Low-priority buildings

Classification

(a) Regularity in plan
(b) Regularity in elevation

Soil Classification
Ito IV where

Ty = characteristic period on site
=0.3-0.7

2.1.8 Israel: IC-413 (1994)

Seismic actions/dynamic characteristics

T =0.073h%* (concrete)
=0.0854°7* (steel)
=0.049 % (others)

Vertical seismic action

2 .
F, = j:gz W cantilevers

= Wmin — 1.52ISW for concrete beams

79

(2.115)
(2.116)

2.117)

(2.118)

(2.119)

(2.120)

2.121)
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Modal lateral force = Fj, at level i

Vin[Widim|

Fin =
, Z W ¢lm

Modal displacements

zm max) =+K Z A/m

or

g T%Fm

m

5im(max) = 4_7_52 W,

where T}, = mth natural period.

Seismic weights, forces and moments

N
V=_Ca) Wi
=1
Cqy = R’“‘R]Z 0.37 low
S1Z *+ 0.2/ medium

or 2 2= ] 0.7 high ductility

Lateral forces
F,=0.07TV <025V

(V=F)Wih
S Wiy

e = torsional accidental eccentricity
= 40.05L

at the top level Fy + F,

Ormax )2
30> Ar=275|———+—| > 1.0
=t <5max + 5min -
¢ = multiplying factor applied to lateral load at each stiffness
element to account for torsional effect
=1.0+0.67

(2.122)

(2.123)

(2.124)

(2.125)

(2.126)

(2.127)

(2.128)

(2.129)

(2.130)

(2.131)
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Modal overturning moment

Modal torsional moment

= Mim = (di £ ¢;)Vim

d; = eccentricity
e; = accidental eccentricity

Modal weight

o (Wi’

D SN A
¢:m = amplitude at ith level of mth mode

Storey drift/ P—A effect
P—A effect

0;>1.0

K
0 = Wi ——
¢ Vih;

N
V= ZF,- (storey shear force)

J=i

N

3 (8w >] :

m=1

Ael.i =

Aql, im = elastic modal drift at the level of i
V; = modal shear force at i

- | ] "

m=1

Drift limitations

e hi
for T<0.7s  Ajjjm = min (m, ﬁ)

81

(2.132)

(2.133)

(2.134)

(2.135)

(2.136)

(2.137)

(2.138)

(2.139)

(2.140)
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. (0.75h; hi
for T>0.7s Ajjim = mln( 10K ; 250) (2.141)
i
maximum displacement ¢, = +K Z A; (2.142)
i=0
A;= computed interstorey displacement
Storey drift
Aim = Oim — 5(i—j)m (2143)
Seismic factors
R = steel 4—8, concrete 3.5—7
Wi=Gi+ Kg(Qi + A4i - qi) (2.144)
Q; = concrete load
g; = UDL
A; = area
K, = live load factor
=0.2 (dwellings)
=0.5 (stores, etc.)
=1.0 (storage)
I=10-14
C4 = seismic coefficient
R, = spectral amplification factor
1.255
(N ="
! 753 (2.145)
25> R,(T)>02K
Table 2.21 Z values for various zones Seismic zones 7
1 0.075
11 0.075
111 0.10
v 0.15
\'% 0.25
VI 0.30

§=10-2.0



2.1 Existing Codes on Earthquake Design 83

Site characteristics/building categories

Regular structures
Category B<80m high
Category C <80 m high

with normalized seismic zones Z < 0.075.

2.1.9 Italy: CNR-GNDT (1986) and Eurocode EC8
is Implemented

Seismic actions/dynamic characteristics

Structure Maximum height (m)

Frame S=6 S=9 S=12
Frame No limitation

Masonry 16.0 11.0 7.5
Walls 32.0 25.0 15.0
Timber 10.0 7.0 7.0

Seismic index S = 6, 9 and 12
Fundamental period T

T,>08s R=0862/T;"° (2.146)
Ty <08s R=10 (2.147)
To=0 1]—1 for a framed structure (2.148)
0o="0. \/Z .
Lateral and vertical effects

o= [ +a2]"? (2.149)

_ 1/2
i=[n2+n?]" (2.150)

o = single force component
h, v = subscripts for horizontal and vertical
n = single displacement component

o= |y a2 (2.151)

Combination of modal effects
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n= > n (2.152)

ooy = combined total force = o & o,
op = action due to non-seismic loads such as permanent loads and live load
fraction
Oor = & £ otp;  (non-seismic loads)
=oa+ay (fraction of live load)
1, = actual displacement for design purpose in elastic situation
=1, £ ¢n
n, = elastic displacement due to non-seismic loads
¢ = 6 if displacements obtained from static analysis
=4 if displacements obtained from dynamic analysis

2.1.10 Japan: BLEO (1981)

Seismic actions/dynamic characteristics

R, = spectral coefficient = 0.4

2
=1 —0.2@— 1> (2.153)

x=0.4 (hard soil)
=0.6 (medium soil)
=0.8 (soft soil)
T =h(0.02+0.18) s
h = full height of the building

Opi = (1+0.78,)Q; (2.154)
O < 1.50; (2.154a)
Oy = lateral shear strength

_lateral shear in bracings

L= 2.1
! total storey shear 2.153)
0; = C:W; (2.156)
Qui = DsFQ; [ultimate shear strength (lateral)] (2.157)

Dg = structural coefficient
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Fes:FE'FS

Seismic intensity

Elastic response 0.15-0.25¢
Elasto-plastic response 0.30-0.5¢g

Seismic weights, forces and moments

Lateral seismic shear force

0:=CiW;

W; = portion of the total seismic weight at the level i

C; = ZRACy
I 2T
A=t (o)
+<\/oc—,» “)1+3T
Wi
=1 0-10
o 7

Wy = weight above ground floor
Cyo=0.2 (moderate earthquake motion)
= 1.0 (severe earthquake motion)

q=KW

M= F(h—h)

j=itl
or

=> Ol

j=it1
h; = interstorey height

Qg = horizontal seismic shear at the basement = Q, + KW

Wy = weight of the basement
g = horizontal seismic shear force
= KW (for appendages such as penthouse, chimneys)

85

(2.158)

(2.159)

(2.160)

(2.161)

(2.162)

(2.163)

(2.164)

(2.165)

(2.166)
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Torsional stiffness

S 1/2
Fox = | ——r—o 2.167
] o
Sy
Fey 5 (2.168)
>in1 Ky
Eccentricity ratio
Rey = X <015 (2.169)
Vex
ey
Ry =—<0.15 (2.170)
Vey
For the x and y directions
N.\' ‘N‘
Ty =Y Kayi +)_ Kux} (2.171)
i=1 i=1

where N, N, = number of resisting elements.

Connections
M, = oM, (2.172)
a=12-1.3

My, = full plastic moment of the column or beam
M, = maximum bending strength of the connection

Storey drift/ P—A effect

Seismic lateral forces = F; = Q; — Qi (2.173)

A 55 h; or equal to 35 h; for non-structural elements for buildings not exceed-
ing 60 m height, i.e. 43 60 m.
For steel buildings 31 m

1
A osh (2.174)

R. <015 R;>0.6

Q, is increased by Qy;
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Seismic factors

R, = spectral coefficient
A; = distribution factor
Z = seismic coefficient = 0.7-1.0

Seismic coefficient K of the basement

H
> 0. - — .
_01(1 40) x Z (2.175)

H = depth of the basement in metres (+20m).

Site characteristics/building categories

0.64

Type 1  Hard soil T (2.176)
. .. 0.96
Type 2 Medium soil - 2.177)
1.28
Type 3 Soft soil N (2.178)
T=0-2.0s
Tc for Type 1 soil = 0.4
Tc for Type 2 soil = 0.6
Tc for Type 3 soil = 0.8
Dg = structural coefficients
=0.25-0.5 (for steel)
=0.30—-0.55 (for RC)
F. = function of eccentricity
=10 for R.<0.15
=15 for R.>0.3
Fs = function of stiffness ratio R,
=10 Rs>0.6 (2.179)
=15 Rs<0.3
Buildings

Those of one to two-storeys: wooden 500 m?
Special building *100 m?
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RC buildings
253 Aw+7Y Ac > ZW;A4; for h+20m (2.180)

253 Aw+7Y Ac+10> A¢ >0.75Z4;W; for h*31m  (2.181)

Steel buildings

(1) Not exceeding three storeys
h<13m span<6m
total floor area < 500 m?
Co=03

(2) Not exceeding 60 m

Oui < Oy (2.182)

>~ Ac = summation of total column areas
>~ Aw = summation of total horizontal cross-sectional areas of walls

2.1.11 Mexico: UNAM (1983) M III (1988)

Seismic actions/dynamic characteristics

li
To=4)» — (2.183)
25,
Design spectra
Referring to Fig. 2.3:
3T\ C
a = (]+ﬁ>z for T< TaS (2184)
a=C for T,<T < Tys (2.185)
T\"
a= (7") ¢ for T>Tys (2.186)

12
N 2
W
x) (2.187)

T (reduced lateral forces) = 0.63
(;g Zi] Fix;

x = displacements
F; = force at ith level
a = spectral acceleration
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Dynamic analysis
Modal analysis accepted by the code:
0.8a Wo
Vo > ] (2.188)
R = total response = S
= VXS (2.189)
S; = modal responses
' Toy
N\
) _ i
Fig. 2.3 Design spectra: 0 : - »T
acceleration versus time To
Table 2.22
Seismic zone
Zone T Ty r A B C D
¢ values
| 0.2 0.6 % 0.08 0.16 0.24 0.48
11 0.3 1.5 % 0.12 0.20 0.30 0.56
I 0.6 3.9 1.0 0.16 0.24 0.36 0.64
Seismic weights, forces and moments
Seismic loads
Dead loads as prescribed (DL)
Live loads = 90—180kg/m?(LL)
Load combinations
UIF = ultimate internal forces
=1.1(DL + LL + ELL + 0.3ELT) (2.190)
or
=1.I(DL + LL + 0.3ELL + ELT) (2.191)
where

ELL = earthquake loads

(longitudinal)

ELT = earthquake loads (transverse)
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90

Static method
Lateral forces

Wh;
F = Vo (2.192)
Zj:l I/th]
c
Vo o Wy (2.193)

Wy = W, = total weight
If T<Ty <« delimiting period, the response spectrum F; (reduced) will be

obtained by changing

a
Vo o W (2.194)
If7>T,
Fi(reduced) = W;(Kih; + Koh?) o (2.195)
@l e
T T Zi:l thj
K, = 1.5;‘(5) {1 - (E) } X NL (2.197)
T T Z/’:l wjhf
Torsional effects
e=1.5¢e+0.1L (2.198)
e=¢,—0.1L (2.199)

es = static eccentricity
e = torsional eccentricity
L = plan dimensions of a storey
The factor of 1.5 is reduced to take into account dynamic modifications of

torsional motion.
Overturning moment
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N
Mi=Y Fhj—h) i=0toN-1

J=i+1

M; is multiplied by R, = 0.8 + 0.2z where

height above ground
o h

Storey drift/ P—A effect

A=*0.0064; (main structural elements)

A*0.012  (for partition)

P—A effect
When A>0.08V/W, this effect should be considered

V' = calculated shear force
W = total weight of the part of the structure above that storey

Seismic factors

Ri=0

0=0 T=>T,
Q’:1+<TT>><(Q—1) T<T,

O=4tol forQ>3

The point of application of the shear force
er>es—02L ifQ=3

e >es—0.16 if 0>3

Site characteristics/building categories

Building classification
Group A Important buildings
Group B Ordinary buildings

91

(2.200)

(2.201)

(2.202)

(2.203)

(2.204)

(2.205)
(2.206)

(2.207)

(2.208)

(2.209)

(2.210)
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Table 2.23 Seismic zones: soil types

Seismic zones Soil types
1 Hill zone, stiff rock, soft clays
11 Transition zone, sandy, silty sands < 20 m
11 Lake bed zone, clays, silty clay
sands > 50 m
Zi li
Bi=& (2.211)
2iE

t; = thickness of soil layers i
G, = shear modulus tons/m”
7; = unit weight tons/m?>

By = /%% for Class I
Vo 2212)
p1<700—550T) (2.213)
For outside Mexico
T
a:a0+(c—ao)T for T<T, (2.214)
a

2.1.12 New Zealand: NZS 4203 (1992) and NZNSEE (1988)

Seismic actions/dynamic characteristics
Methods

(a) Equivalent static method
(b) Modal response spectrum
(c) Numerical integration time — history analysis

1/2
N )
g PO (2.215)
>im1 Wiui
T =0.042 (2.216)

u; = 1.0 for one storey

=0.85 for six or more storeys

= for fewer than six storeys interpolate between 1.0 and 0.85
u; = lateral displacement at level i
0¢ = lateral displacement in millimetres at the top of the building
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Modal response spectrum
Ci(Tm) = SmCo(Tm, 1) RZfL
Sm = response spectrum scaling factor
T = modal period
Seismic weights, forces and moments
Basic shear force
V=CWwW
W = total weight
C = Co(T,u)RZfL>0.025 T>0.4s
C=Cy(04,0)RZf1,>0.025 T<04s

1 = 6 (structural steel)
= 5 [concrete (RC or prestressed)]
= 4 (masonry)
= 3—4 (timber)

Equivalent static force F; at level i
Wih;
j=1 "Vl
Seismic weight with additional top force

F, =0.08V

Storey drift/ P—A effect
A = storey drift
n 0,0.2,0.4,0.6 (%)
Amax = 600

P—A effects
Ultimately it should satisfy

(a) T<04s

(b) h=*15m for T<0.8s

(c) u<1.5

@) i — Uit _ Vi
hi—hioy = 7550, W;

V; = storey shear

N
:FtJrZF}
i=1
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(2.217)

(2.218)

(2.219)
(2.220)

(2.221)

(2.222)

(2.223)
(2.224)

(2.225)
(2.226)

(2.227)

(2.228)
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Seismic factors

Risk factor R is given by
1=123
H=1.2
Ir=1.1
IVv=1.0
V=0.6

C = lateral force coefficient
/L = limit state

= 1.0 (ultimate)

=1/6 (serviceability)
Z = zone factor

Cy(T, 1) = basic seismic acceleration factor

(2.229)
=0-1.0 forT=0—-4sand u= 1.0-0.6
Cb(Ta .u)
Sm, = -+ for T>0.4 2.230
moGmn T 2230
Cb(04,ﬂ)
Smy =—=+— -+ for T<04 2.231
™o (04,1) on =TS (2.231)
Sm, = 1.0 for the limit state of serviceability
Kn,CW
Sm, = mC (2.232)
2 V]

Kn=08 foru=1.0

Site characteristics/building categories
Building categories

I Important buildings

IT Holding crowds

III Building with highly valued contents
IV Buildings not included in any category
V  Secondary nature

Soil category

(1) Rock or stiff soils
(2) Normal soil sites
(3) Flexible deep soil sites
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Fig. 2.4 Shear force
distribution Fn

hx

95

<f——F,=0.07TV

o

2.1.13 USA: UBC-91 (1991) and SEAOC (1990)

Seismic actions/dynamic characteristics

Referring to Fig. 2.4

T = fundamental period = C, [th/ 4
hy = h = total height

C;=0.035 (steel moment-resisting frame)
=0.030 (RC moment-resisting frame)
=0.020 (for Rayleigh’s formula)

Alternatively

N e 1/2
T=2n 72{:}\/”?5;'
gEi:Ifiéi

fi; = lateral force distribution
V. = storey shear force at x

F. is evaluated under seismic weights.

Dynamic method
Using modal shapes

K] - o’ [M}{$} = {0}

work out o, f'and T and finally modal shape [¢].

Spectral accelerations

(2.233)

(2.234)

(2.235)

(2.236)
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Scaled down by peak one of 0.3g/R,, = 12:

Sa = 0.034g  S. = 0.063g

Sa3 = 0.061g Sa4 = 0.05g

Seismic weights, forces and moments

V' = basic shear force = ZIcw
Ry
C= 1722%9 <275
R,, = structural factor = 4-12
F, = w at level x from the base

SN Wih;
Fi=0.07TV <0.25V for T>0.7s

Fr=0 forT<0.7s
N
=1
Storey shear force

N
Ve=F+Y F

i=x

M = overturning moment, thus

N

M, = Fi(hy —h)+ Y Fi(hi—hy) where x=0,1,2,...,N—1

i=x+1

Torsional moment

(2.237)

(2.238)

(2.239)

(2.240)

(2.241)

(2.242)

(2.243)

(2.244)

(2.245)

Torsional (based on UBC-91) irregularities in buildings are considered by

increasing the accidental torsion by A, (amplification factor)

Omax at X :
A= —— ) <3.
. (1.205avg) <30

0ave = the average displacement at extreme points at level x.

(2.246)
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The floor and the roof diaphragms shall resist the forces determined by the
following formula:

Ft + leix Fi
Foy = ZN:7W px (2.247)
where
Wy = weight of the diaphragm and attached parts of the building.
Correspondingly Fp+0.75ZIW,, and < 0.35ZIW,,, (2.248)
Storey drift/ P—A effect
.04
Drift calculated »% X h; (2.249)
W
or +0.005h; for T<0.7s
or +0.004h; for T'>0.7s
P—A effect
Secondary moment formula drift
Primary moment due to lateral forces
M, .
M’ >%+0.10 not considered for greater values (2.250)
sp
M,  PiA
0, =—>=_—"— (2.251)
My  ViHy
Subscript x means to the level of storey x.
Elastic storey drift
Vi
A = X, (2.252)
A; = inelastic storey drift
Aie
= — (K<I1.0 2.253
£ (K<10) (225)
or
A; = RA; (2.254)

N
0; = lateral displacement = Z A (2.255)

i=1
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Total displacement

Sox = 01 — 0, (2.256)

Sy = Sy + 0, (2.257)

0;x, 0 = lateral displacement in x and y directions
0 = storey rotation
Opx, Opy = lateral displacement in x and y directions
0p = total displacement at a selected point P
2 2\1/2
= (Opx + )

Seismic factors

Z = seismic zone factor
Z =10.075 Zone 1
=0.15 Zone IIA
=0.20 Zone IIB
=0.30 Zone III
=0.40 Zone IV
I = occupancy or importance factor = 1.0—1.25

Site characteristics/building categories

S| type
Sa=14+10T 0<T<0.15s (2.258)
S, =2.5T 0.15<7<0.39s (2.259)
Sy = @ 7>0.39s (2.260)

S, type

S,=1+10T 0<T<0.155(2.261)

(2.261)
S, =2.5T 0.15<T < 0.5855(2.262)

Table 2.24 Soils in seismic zones

Seismic zones Soil S*
1 Rock like 1.0 (Sy)
1A Dense stiff 1.2 (S,)
1IB

11 Soft-medium clay 1.5 (S3)
v Soft clay 2.0 (Sy)

* = gite coefficient
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Fig. 2.5 F versus X

X
1.46
S, = T3 T>0.585s (2.262)
S3 type
S, =1+75T 0<T<0.2s (2.263)
S, =2.5T 02<7T<0915s (2.264)
2.28
Sa :TST 7>0.915s (2.265)

K = spring parameter of the damper
C = viscous constant of the damper
o = parameter of the damper, o usually varies between 0.1 and 0.4

Parameters should be experimentally calibrated by the supplier.
Additional deliberations on viscoelastic dampers

A convenient way to improve the dynamic performance of a structure sub-
jected to wind or earthquake loading vibration is to incorporate mechanical
dampers to augment the structural damping. This damping increase yields a
reduction in the expected structural damage through a significant reduction of
the interstory drifts of the structure during the dynamic event.

Although the developments in research and analysis techniques, paralleled
by significant improvements and refinements of device hardware, make the
mechanical dampers totally suitable for consideration in new or retrofit design,
there are still relatively few applications to buildings (Mahmoodi 1969; Aiken
and Kelly 1990; Tsai and Lee 1993; Inaudi et al. 1993; Inaudi and Kelly 1995;
Lai et al. 1995; Shen and Soong 1995; Makri et al. 1995).

Among a number of viable types of energy dissipation devices proposed, the
viscoelastic dampers have found several successful applications for wind-
induced vibration reduction of the tall buildings. Remarkable examples are
the 110-story twin towers of the World Trade Center, in New York City, the
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73-story Columbia SeaFirst Building and the 60-story Number Two Union
Square Building, both in Seattle.

The implementation of viscoelastic dampers (VEDs) for seismic protection
has been investigated only in the last few years (Zhang et al. 1989; Zhang and
Soong 1992; Bergman and Hanson 1993; Hanson 1993; Tsai 1993; Chang et al.
1993; Kasai et al. 1993; Abbas and Kelly 1993; Chang et al. 1995; Munshi and
Kasai 1995).

An accurate model for the mechanical behaviour of VEDs subjected to
seismic loading must incorporate the variability of the material’s physical
properties with the deformation amplitude, the excitation frequency and the
temperature conditions during dynamic service.

2.1.14 Codes Involving Seismic Devices and Isolation Techniques

2.1.14.1 General Introduction

Although the excessive vibrations can be based on active, semi-active or passive
control techniques, the use of them depends on a number of factors. The passive
control device is presently the most common, reliable and economic technical
solution. Among many passive control devices are tuned mass dampers
(TMDs), tuned liquid mass dampers (TLMDs) and fluid viscous dampers
(FVDs). The general principles for the design of a damping system are

a. It should be accessible

b. It should have a low maintenance

c¢. Its design must take into account corrosion

d. Where high amplitude oscillations exist, buffers should be associated
e. It should allow a later adjustment

f. Its design must be accompanied with experimental tests

Different types of possible damping systems are discussed in this section.

2.1.14.2 Different types of Damper Devices
a. Pendulum damper (horizontal tuned mass damper)

For movement in the horizontal plane, a pendulum is clearly a simple
system with one degree of freedom, the spring constant and a natural frequency,
which depends on the length of its hanger / (g — acceleration due to gravity)

mag 1 /g g
d — / ) f‘d o la' 3 d 47'52]3 ( )

where f; = pendulum frequency
l; = pendulum length
g = acceleration due to gravity
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Fig. 2.6 Damper y

idealization

lg /4

my

If the problem exists in construction and damping system, the pendulum
length can be calculated as
li=—2 (2.267)
2.0 )P =
Conf) -
For a given pendulum length, the spring constant ¢ of the damping system can
be derived as

c= [(2 e f) = } m (2.268)

The necessary damping &, can be provided by hydraulic dampers, friction-type
dampers and the maximum swing period of the damper.
Absorber T,ps should be (Anagnostopoulos 2002)

Tp =2(Tg: + 1) (2.269)

where Ty is the period of the vibration of the structure; 7 is the duration of the
impact, introduced as 0.01-0.1s.

b. Ball damper

The idea of the dynamic vibration absorber arranged as a rolling ball is not quite new
and in the Czech Republic was already designed for the first time at the beginning of
the 1990s. In the application transversal vibrations of a suspended pre-stressed
concrete footbridge spanning 252 m were shown, the natural frequency of which
was 0.15 Hz. Pimer M and Urus hadze (Eurodyn 2005) mill press Rotterdam (2005)
suggested, the relationship between damper mass and modal mass of structures

u="14 (2.270)

Mty
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ranging from 0 to 1 for logarithmic decrement & of 01004 where 71,,1s the mass of the
ball and my, is the mass of the structure. Initial amplitudes are 100, 200 and 300 mm.

TMD E-W
Conrol
East-Weet Actuator
Conorete Lineer Motion
Mass Block Fbctu
B20,000 Ib

Reaction Buttresses
for Service
Overtravel Snubbers Manifold
Fluid Reservoir
Hydrulic
Power Supply

Motor
Control Center
North-South
Linear Motion

Fbcture

Pressure Balanced
Bearings (12)

Anti Year
Linkage

Overtravel ~ Bearing
Snubben  Surfaces

(16 snubbers
2 Each Assembly) Control
Console

N-S

; Control
Nit h

! rogsegrﬁgarged Actustor
(2 Each Fbcture)

Boom connection
to mass Block

Fig. 2.7 TMD in Citicorp Center (Petersen, 1980, 1981)

The natural frequency of the rolling of the sphere is

=1 \/ g (2.271)

" 20\ (R =) (1 + (I /mgpn?))

where I, = moment of inertia of the rolling sphere and f;, = natural frequen-
cies of the rolling sphere.

The horizontal (H) and tangential forces (7)) have been computed by Peter-
sen et al as

. 1
H = —mgprgsin @ cos ¢ + T (2.272)
14—
Mgph I
T = mgsin g — 2851 ¢ (2.273)
Isph

mr?
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Table 2.25 Tuned mass dampers in John Hancock Tower, Boston, and Citicorp Center, New York

John Hancock Citicorp Center
Boston, MA New York, NY
Typical floor size (ft) 343 x 105 160 x 160
Floor area (sq ft) 36,015 25,600
Building height (f) 800 920
Building model weight (tons) 47,000 20,000
Building period 1st mode (s) 7.00 6.25
Design wind storm (years) 100 30
Mass block weight (tons) 2x300 373
Mass block size (ft) 18x18x3 30x30x8
Mass block material (type)  lead/steel concrete
TMD/AMD stroke (ft) +6.75% +4.50*
Max spring force (kips) 135 170
Max actuator force (kips) 50 50
Max hydraulic supply (gms) 145 190
Max operating pressure (psi) 900 900
Operating trigger — (8 0.002 0.003
acceleration
Max power (HP) 120 160
Equivalent damping (%) 4.0% 4.0%

* Including overtravel.
Note: Collected data and then tabulated. Data provided by Boston and New York Borough
councils. They have been checked from literature.

Mass (M1) Oil buffer (X-direction)

Frame (M2)

Rack and Pinion (X-direction)
Oil buffer (Y-direction)

Rail (Y-direction)
Roller bearing (Y-direction)
Tension Spring (Y-direction)

Damping device (X-direction)

Roller bearing (X-direction
Rail (X-direction)

Tension Spring (X-direction)
Rack and Pinion (Y-direction)
Damping device (Y-direction)

Base

Oil buffer (Y-direction)

Fig. 2.8 TMD in Chiba Port Tower (Ohtake et al. 1992)
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c. Tuned mass damper

Petersen [1995] provides a method design for tuned mass dampers using equation
(2.279)
Calculation of damper mass:

mg =my - (2.274)
Calculation of optimum turning K, and of optimum damping ratio &,p:
Kopi =1/14+p (2.275)
ot = V3 /8- (1+ 1)’ (2.276)
Calculation of the optimum damping frequency, f;:

Ja = Kopt /i (2.277)
Calculation of the spring constant of the damping element, k:
kq=(2-n-f2)* my (2.278)
Calculation of the damping coefficient of the damping element, %d.:
dde=2mg- (2 7 f2) - Eopt (2.279)

d. Viscous dampers

Viscous elastic dampers or dry friction dampers use the action of solids to
dissipate the oscillatory energy of a structure. It is also possible to use a fluid
for obtaining the same goal.

The immediate device is the one derived from the “dashpot”. In such a
device, the dissipation is obtained by the conversion of the mechanical energy
into heat with the help of a piston that deforms and displaces a very viscous
substance such as silicon. Another family of dampers is based on the flow of a
fluid in a closed container. The piston not only deforms the viscous substance
but also forces the passage of the fluid through calibrated orifices. As in the
preceding case, the dissipation of the energy results in development of the heat.

The main difference between these two techniques is the following. In the
“dashpot” damper, the dissipative force is a function of the viscosity of the fluid,
while in the other one that force is principally due to the volumic mass of the
fluid. This means that the dampers with orifices are more stable against tem-
perature variations in comparison with the “dashpot” ones.

Viscous dampers must be placed between two points of the structure with
differential displacement between them. They can be either on an element
linking a pier and the deck or on the horizontal wind bracing of the deck.
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Several recent studies have shown that supplement fluid viscous damping
effectively reduces the seismic responses of asymmetric plan systems. However,
these investigations examined the behaviour of asymmetric plan systems
with linear fluid viscous dampers. Non-linear fluid viscous dampers (velocity
exponent less than one) have the apparent advantage of limiting the peak damper
force at large velocities while still providing sufficient supplemental damping for
linear dampers, the damper force increasing linearly with damper velocity.

A recent investigation examined the seismic response of asymmetric systems
with non-linear viscous and viscoelastic dampers. It was found that structural
response is weakly affected by damper non-linearity, and non-linear dampers
achieve essentially the same reduction in response but with much smaller
damper force compared to linear dampers; reductions up to 20% were observed
for edge deformations and plan rotations of short-period systems. Further-
more, it was shown that the earthquake response of the asymmetric systems
with non-linear dampers can be estimated with sufficient degree of accuracy by
analysing the same asymmetric systems with equivalent linear dampers.
A simplified analysis procedure for asymmetric plan systems with non-linear
dampers has also been developed.

The investigation by Lin and Chopra examined the effects of damper
non-linearity on edge deformations and damper forces. For asymmetric plan
systems, however, other important response quantities of interest for design
purposes include base shear, base torque and base torque generated by asym-
metric distribution of dampers. Therefore, it is useful to investigate the effects of
damper non-linearity on these responses.

e. Viscous elastic dampers

The use of viscous elastic materials for the control of vibrations goes back to the
1950s. Their application in structural engineering dates back to the 1960s.
The viscous elastic materials are principally polymers dissipating the energy
by shear. The characteristics of viscous elastic dampers depend not only on
frequency but also on temperature. The damping coefficient is expressed by

Wa
C=——— 2.280
w-Q-x2 ( )
where W4 = energy dissipation in the structure per cycle
Q = circular frequency of excitation
x = (piston) displacement

To calculate the effect of dampers in the structure a time history dynamic
analysis could be carried out. Viscoelastic damper’s behaviour could be repre-
sented with the following simplified model:

F=Fy+ Kx + C* (2.281)



106 2 Existing Codes on Earthquake Design

where F = force transmitted by damper
Fy = preloading force
x = (piston) displacement
v = velocity

f. Tuned liquid dampers

Tuned liquid dampers are fluid-filled containers and provide an interesting
possibility for footbridge damping systems. Accelerations of the container
cause inertial and damping forces that can be used as system damping. The
damping forces are dependent on the viscosity of the fluid and the texture of the
container walls. Figure 2.9 a — d is referred to as tuned liquid column dampers
while Fig. 2.9¢ and f is referred to as tuned sloshing dampers.

The natural frequency of the liquid dampers as in Fig. 2.9a and b can be
expressed as

L 28 (2.282)

/= Ly

where Ly = total length of fluid column and g = acceleration due to gravity.
The natural frequency of the liquid damper as in Fig. 2.9¢ and f can be

expressed as
| g H
=— -Z . tanh( o -— 2.2
f zn\/oc i3 tan <oc L) (2.283)

where o = n/2 for a rectangular container and 1.84 for a cylindrical container.
H and L can be determined from Fig. 2.9. The radius of the cylinder can be
replaced by L in (2.288) for cylindrical containers.

__i_,

:

|
..__I}_.__

i

Fig. 2.9 Various types of
tuned liquid dampers
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The effectiveness of a fluid damper depends on the ratio between modal mass
of the damper and the structure and the detuning. The dimensions of the
container, height of fluid and the viscosity of the fluid also play an important
role. For larger accelerations, the behaviour of the fluid damper is non-linear.
Petersen recommends an experimental tuning of the fluid damper. Contrary to a
number of high-rise buildings, it seems that no footbridge has been equipped with
this type of damper yet.

Frictional damping systems

Frictional damping systems use friction between surfaces to achieve a damping
effect. Frictional damping systems have been used in the footbridges in
Germany. A total of eight dampers are generally installed near the bearings,
providing frictional damping in the vertical and longitudinal directions.

Isolators

(a) Natural rubber bearings

Figure 2.10 shows the devices known as bearings made in natural rubber. They
are either round or square in shape. The main construction is that such a
bearing is composed of laminated rubber bearings with inner steel plates and
flange plate. Sometimes it is encased by a layer of surface rubber.

Dynamic Characteristics

The vertical stiffness Kv of the natural rubber is given by

Kv=u

2
Ar_E(1+ 2kS7)Gy (2.284)
t E(1+2kS?)+ Gy
where A, : cross-sectional area of laminated rubber
t : total rubber thickness
Sy : primary shape factor
oe: correction modulus of longitudinal elasticity
E, : longitudinal elastic modulus of rubber

Flange plate L %
F A ,..
Ky ' \ ey =S
y R i
/ S

/ Connective <. /- = .
; Inner - steel plate : i Surface
Force-Deformations rubber = === gurface Inner . rubber
Inner steel plate  rubber rubber Inner Iatnge
steel plate plate
(a) Round Type (b) Square Type

Fig. 2.10 Natural rubber bearings — isolators
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Fig. 2.11 Stress versus
shearing strain for case 1

1 [ 1 7 ]
g =0¢r -
agS;

D
Q

Stress o (N/mm?)
®
o

4 (&% 82
Shearing strain

4
(a) Case1:0, | 1- <30
Qe 32

7 : Shear strain =€
Gy: bulk modulus of rubber
K : correction modulus of rubber hardness

The maximum compressive strength at critical level is 60 N/mm?. Maximum

shearing strain T} (pax) 15 400%.
ocr - compressive critical strength for shearing strain = 0

o = E-Gr- S-S (2.285)
0.85 (S, >30) dampi

where & = { (1 230)  damping (2.286)
0.90 (S;<30) factor

G;: shear modulus of rubber

QQ

o]
o

7 30
o =0g 1—; +:’V

Stress o (N/mm?)

w
o

4
Shearing strain

4
(b) Casez:ac,{1— ]>30

Fig. 2.12 Stress versus g5,

shearing strain — for case 2
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_ 1 (Sz<4) 7287
“°_{o.1(52—3)+1 (S, > 4) (2.287)

S, : secondary shape factor

(S (5:<6)
. _{ 5 (5>6) (2.288)

When y # 0, then the maximum stresses are determined.

o (1 = 3%;) <30 (Case 1):

y
e+ S2

o (1 — ﬁ) > 30 (Case 2):

0 =0 (1 — ) (The maximum value of ¢ is 60 N/mm?):
0 =0 (1 —%) +32y (The maximum value of ¢ is 60 N/mmz):

The lateral stiffness K, at 15° is given for the hysteresis loop model as
K. =G,-—* (2.289)

where G, = shear modulus of the rubber.
Selecting dimension, the F-8 relation can be achieved using the analysis and a
typical experiment.

(b) High damping rubber bearing
A procedure similar to (a) stated for natural rubber bearing on page 105 shall be
adopted and the hysteresis shear stress versus shear strain can be drawn.

(¢) Lead-rubber bearing
Fundamental dynamic characteristics

Kq = Cxa(K: + K;)  (at 15°) (2.290)

where K : lateral stiffness

Kd

; 6
Fig. 2.13 Hysteresis loop b)@

model of lead-rubber
bearing
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y
Ki=Ge = (2.291)

where A, : cross-section of laminated rubber
K, : additional stiffness by lead plug

K, =0 -— 2.292
p=u- 2 (2.292)

Fy4 = yield force

K, = initial stiffness

K4 = secondary stiffness

Crq = modification modulus k4

where o: shear modulus of lead
Ap: cross-section area of plug
Ckq : modification modulus on Ky by strain dependency

0.779y [7<0.25] (2.293)
Cka={ 7[0.25<7y<1.0] (2.294)
v [1.0 < y<2.5] (2.295)

The yield force Fyq is determined as

Fya = Cya0ppAp at 15° (2.296)

2.1.14.3 Seismic Isolation Codes and Techniques
General Introduction

After the 1994 Northridge earthquake in the USA, the 1995 Hyogo-Ken Nanbu
earthquake in Japan and the 1999 Chi-Chi earthquake in Taiwan, the number
of seismically isolated buildings has increased rapidly. Over the same period,
building codes have been revised and updated to include requirements for
design of seismically isolated buildings. In the USA, seismic isolation provisions
have been included in building codes since first appearing in the 1991 Uniform
Building Code. The current US provisions are contained in the International
Building Code, IBC 2003, which makes reference to the requirements of ASCE
7-02. In Japan, the most recent building code provisions took effect in 2000 and
in China and Taiwan in 2002.

In this section, a test study on a seismically isolated building is presented in
order to understand and illustrate the difference in the isolation provisions of
the building codes of Japan, China, the USA, Italy and Taiwan. The concept of
the design spectrum in each code is summarized first. To consider the seismic
region coefficients, the target construction sites are assumed to be in Tokyo,
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Beijing, Los Angeles, Potenza and Taipei, respectively. A fixed soil profile is
assumed in all cases where the average shear wave velocity within the top 30 m is
about 209 m/s.

If the control device needs external energy to modify the vibration properties
of a structure, a closed-loop control system can be used, which does not affect
many properties of external vibrations. In the case of an open loop control
system external vibrations are sensed as soon as they reach the foundation and
before they are incident on the building. The control is exercised in such a way
that the building does not vibrate in resonance with the severe changes in
seismic motion. The usefulness of the open-loop system depends on the proper
functioning of the brain unit which recognizes the information from various
sensors and generates signals to counter the earthquake.

Various devices are being considered for the control mechanism. The
main mechanisms being discussed are (a) variable stiffness mechanism where
stiffness of the structure is varied according to the seismic motion striking the
foundation of the building so that the building does not attain resonance
condition and (b) a mechanism requiring external energy or a mechanism
with additional control power which actively and effectively absorbs the energy
incident on the building according to the response and which can restore the
deformation caused in the building due to the action of the seismic force.

Design Spectrum

In general, seismic load is expressed by a 5% damped design spectrum as follows:
S(T) = 1S.(T) (2.297)

where

I: occupancy importance factor, which is taken as 1.0 in this study
T: fundamental period of the structure
Sa(T): the design spectrum on site.

The design spectrum generally consists of two parts, namely, a uniform accel-
eration portion in the short-period range and a uniform velocity portion in the
longer period range.

In the Chinese code, spectrum in the constant velocity portion is additionally
increased to ensure the safety of structures having long natural periods, such as
high-rise buildings or seismically isolated buildings.

A two-stage design philosophy is introduced in the Japanese, Chinese
and Italian codes. The two stages are usually defined as damage limitation
(level 1) and life safety (level 2). In this chapter, response analyses in the life
safety stage will be discussed. In addition, an extremely large earthquake with 2%
probability of exceedance in 50 years is defined to check the maximum design
displacement of the isolation system in the US and Italian codes.
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China Codified Method

Plate 2.1 gives an overall specification of the design spectrum. The response
spectrum for isolated buildings requires design spectrum.
Time history analysis is suggested to calculate the response.

— The first branch for periods less than 0.1 s.

— The constant design spectrum branch, with amplitude listed in Plate 2.1
between 0.1s and the characteristic period of ground motion 7.

— The third branch, which decreases over the period range T, to five times 7.

— The fourth decreasing branch for periods greater than 7, and defined up
to 6's.

Plate 2.1

Country Design spectrum Spectral acceleration versus period

China  There are four site classes which are classified by
characteristic period 7'g shown in Table

(045 + 208 Ty T<01 (2.298)

© o 0.1<T<T, 2tmax
xg) = o = X
. T,<T<5T, (= (oD iz tmas
1,027 — (T = 5T,) |otmax ST, <T < 6.0 ] .
L (7= 5Te)Jomas 5T, 0450ma |1 | N= 112027714 (T-5Tg)] omax
where 1

omax ¢ zone factor
n;,7 : shape coefficients;
1, : response reduction factor defined in i :
Equation 0.01 Tg 5Ty 6.0

Return period Level 1 50 years . .
Level 2 1600-2500 years Design response spectrum (China)

Storey drift, 1/550

o

erationis 0.15 g or 0.30 g.

e Biac: R

- 1.0 ‘ - . .

G T— ;

T:, Mntensity vin Zone factor o, (g) based or; Stels@ie Intensity (China)

S 08 . - ntensity

® j{==Site class | Level VI VII VIII IX

2 06 wese Site class |l Tovel I 004 008(0.12) 0.16(024) 032
eve .5 A A . R

8 | el S!Ie C:ass :{'/ Level 2 0.50(0.72)  0.90(1.20)  1.40

g 0.4 { I e. cass (): regions where the amplitude of design basic accel-

2

o

Q.

(7]

[0

o

02} =
: i | Characteristic period 7, related to site class (China)
0.0 L L L Site
0 1 2 8 4 Z I 11 111 v
. one
Period (s)

1 0.25 0.35 0.45 0.65
Site spectra for the four kind site classes (China) 2 0.30 0.40 0.55 0.75
3 0.35 0.45 0.65 0.90
Fortification intensity 6 7 8 9

T,: characteristic period related
to the site soil profile: {: effective  4,,,, Frequently occurred earthquake 0.04 0.08(0.12) 0.16(0.24) 0.32
dampmg‘g 05 Seldom occurred earthquake 0.28 0.50(0.72) 0.90(1.20) 1.40
}y:0‘9+0:5+5§ Design basis earthquake 0.05 0.10(0.15) 0.20(0.30) 0.40

m =002 jOL (0'95 =0/8m 20 Note: In the items of a,,,,, the values in brackets are used for the regions which
G

n=1+ #17; 1y > 0.55  (2.299) Design Basis Earthquake acceleration values are 0.15 g or 0.30 g.
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Table 2.26 The peak value of acceleration based on time history analysis

Seismic intensity/peak acc. (gal) 6 7 8 9
Frequently occurred earthquake 18 35(59) 70 (110) 140
Seldom occurred earthquake 220 (310) 400 (510) 620
Japan

Introduction

Japan is situated at the complex intersection of the Eurasian, North American,
Pacific and Philippine tectonic plate boundaries, a region that is considered as
having one of the highest risks of severe seismic activity of any area in the world.
Nearly 60% of Japan’s population is concentrated in the three largest cities of
the Kanto, Chubu and Kansai regions. The Kanto region includes Japan’s two
largest cities, Tokyo and Yokohama, the Chubu region includes Nagoya and
the Kansai area includes Kyoto, Osaka and Kobe. In an east — west area these
three regions are situated along the subduction zone of the Philippine and
Pacific plates and have experienced many large earthquakes such as the 1854
Ansei-Tokai earthquake (M8.4), the 1923 Kanto earthquake (M7.9). All of
these cities have suffered destructive damage in the past earthquakes. The
northwestern coast of Japan lies on the boundaries of the Eurasian and North
American plates. The 1964 Niigata Prefecture earthquake (M6.8) had occurred
almost all over Japan.

The severe seismic threat faced by the entire country has led to the extensive
development of the field of earthquake engineering and resulted in widespread
innovation and application of innovative seismic structural technologies in
Japan.

Recent applications of seismic isolation have extended beyond implementing
the plane of isolation at the base of a building to mid-story isolation and also to
applying isolation to high-rise buildings with heights greater than 60 m. More-
over, seismic isolation has been utilized as a means to realize architectural
design aesthetics, a realm that hitherto was much restricted in traditional
Japanese earthquake-resistant design.

The Japan Society of Seismic Isolation (JSSI) published “the Guideline for
Design of Seismically Isolated Buildings” in 2005 summarizing the basic con-
cepts and approach for performing time history analysis of seismically isolated
buildings.

In the 1995 Hyogo-Ken Nanbu earthquake, a large number of condominium
buildings suffered severe damage, but mostly they did not collapse. Subse-
quently, many complex issues arose between the engineer and residence owners
in deciding whether or not to demolish or to repair the damaged buildings.
These difficulties called developer’s attention to the importance of maintaining
a building’s function or limiting damage to a low and repairable level, even after
a severe earthquake.
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Japanese Codified Method

The basic parameters are indicated briefly in Plate 2.2 and give the response
factor at ground face for three features of devices. Plate 2.2 gives also the
relatives for ground characteristics together with the isolation devices.

The verification response values. The response acceleration, .S,, is deter-
mined as the value of the vertical axis at the corresponding natural period
calculated as shown. The response displacement (0 at gravity centre is deter-
mined as follows:

M.S,
0 =c O/Keq = X (2.300)
€q
Plate 2.2 Design spectrum adopted in Japan
Country Design spectrum Spectral acceleration versus period
Japan In general, the five percent-damped spectral —~ 12
acceleration, s,(7) is: é
Si(T) = ZG\(T)So(T) = 107
where Z: the seismic hazard zone factor. -.8 8t
Gst(T): a soil amplification factor dependent on the o
soil profile. % 6
So(T): the design spectral acceleration at g 5.12/T
engineering bedrock defined in Equation (3.3) c 4
which is shown in Figure for Level 2 ® 2
324307 T<0.16 E] 0
Q
Sa(m/s*) =< 8.0 0.16<T < 0.64 @? " 0.16 0.64 T(s)
5.12/T  0.64<T Period (s)

Storey drift, 1/200

Return year period 50 — 500 Design spectral acceleration at the engineering bedrock

(Vs>400m/s) (Japan)

23 SOUE 514 T r
% < - z 12 Site class 2 (5%)
: S Site class 2 (20%)
RRLS © 1.0 T
d o]
. g 08
g »; S 06
i (o}
H 204
15} i e, ~
202 R s o P T
& 0.0 1 I 1 I
0 1 2 3 4 5
Period T(s)

T12%max

a= (Tg/T) N2 max

0.45012¢ o = [120.27 -1 (T-5Tg)] amax
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Fig. 2.14 Response
spectrum at ground surface

Existing Codes on Earthquake Design

115
= ]
;
|
15 P 1
N | /SOGS
: 0 —i—
4 — |\ s
o Ts
5 :
Y T — .
0 A J
0 1 2 3 4 5
T (s)

Considering the layout of isolation devices, which cause eccentricities between
the gravity centre and stiffness centre, the overall response displacement of the
isolation interface .0, is obtained as follows:

o0 = 1.1e8; < (85)

O = 00

Table 2.27 Features of devices

NRB700 LRB800 LRB850
Diameter (mm) 700 800 850
Inner diameter (mm) 15 160 170
Rubber sheet (mm) *Layer 4.7x30 5.1x33 5.25%32
Area (cm?) 3,847 4,825 5,448
Steel plate (mm) 3.1x29 4.4x32 4.4x31
Height of rubber (mm) 141 168 168
1 st shape factor 36.4 39.2 40.5
2 nd shape factor 5 4.8 5.1
Diameter of lead core (mm) - 160 170
Diameter of flange (mm) 1,000 1,150 1,200
Flange thickness (mm) 28 -22 32-24 32-24
Height (mm) 286.9 373.1 368.4
Weight (kN) 6.4 11.5 12.7
Total number 2 4 6

Table 2.28 Eccentricities of isolation interface
Gravity Rigidity Eccentricity Eccentricity

StOI'y g.\' (m) g}(m) Ix (m) I\(m) €x (m) ey(m) Re.\' Ré’y
y =10 1148.3 708.2 1121.4 707.4 26.8 0.8 0.001 0.029
y =15 1148.3 708.2 1121.3 689.6 27.0 18.6 0.020 0.029




116 2 Existing Codes on Earthquake Design

Table 2.29 Relation for ground characteristics

Formulae Minimum values
T<0.8T, Gy = Gszﬁ 1.2
087, <T<0.8T Gb—og‘1 “’ T+G52 OSWT 1.2
08T1<T§ 12T| GS :Gsl 1.2
si—1 7 —1
127 <T Gy = 2T|1_0' T+ Gg1 — —' o1 1‘21]-] 1.0

Note: Data provided by the Japanese manufacturers for devices.

Table 2.30 Dimensions of dampers

Steel bar damper Lead damper
Rod Rod diameter (mm) $90 $180
Number of rods 4 1
Loop diameter $760 -
Material (Standard No.) SCM415 (JIS G 4105) Lead (JIS H 2105)
Number of dampers 16 6

Table 2.31 Characteristics of isolation devices

Rubber bearings  Steel rod Lead

Item ¢ 800 ¢ 800A  damper damper
Horizontal Initial stiffness K; 1,060 860 7,110 12,000
stiffness (kIN/
m)
Secondary stiffness K, - - 0 0
Yield load (kN) - - 290 90
Yield displacement (m)  — - 0.0408 0.0075

where o is the safety factor for temperature-dependent stiffness changes and
property dispersions in manufacturing of devices and superstructures, which
must be smaller than their strength and allowable stress, respectively.

The United States of America
Introduction

This section presents an overview of seismic isolation and passive energy dissipa-
tion technologies in the USA. A historical survey of seismic isolation and energy
dissipation applications is presented with descriptions of selected notable pro-
jects. The types of devices that are most commonly used in the USA are described
along with a brief overview of research on the technologies and the evolution of
code regulations governing their use. The section concludes with comments on
the future direction of the technologies.
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Overview of Seismic Isolation Applications in the USA

Construction of the first seismically isolated building in the USA was completed
in 1985 and by mid-2005 there were approximately 80 seismically isolated
buildings in the USA. Some of the most significant early projects are discussed
below, along with examples of several more recent projects.

Buildings

The first building in the USA to be seismically isolated, the Foothill Com-
munities Law and Justice Center in Rancho, California, was completed in
1985, a four-storey plus basement building. The realization of the project was
the culmination of the efforts of numerous parties. The use of high-damping
rubber bearings was the first application in the world of this type of isolation
system.

The US Court of Appeals building, in San Francisco, is another example of
a large historic building retrofit of numerous other monumental building
structures, including City Hall in Oakland and State Capitols in South Carolina
and Utah.

Seismic isolation has been used throughout the US buildings up and down
the country; many reports exist on the testing facilities of passive energy
dissipation systems. However, code provisions for seismic isolation and passive
energy systems are briefly dealt with below.

Current Status and Future Development

Seismic isolation. Given the 20-year application history of seismic isolation in
the USA, the approximately 80 projects completed is a modest total. While
many notable projects, particularly the retrofit of a number of landmark
historic buildings, have been undertaken, fewer projects of this type are
expected in the future. Seismic isolation has not moved into the mainstream
as a widely accepted and used seismic-resistant technology.

Somewhat unfairly, seismic isolation has suffered under the conventional
wisdom that it is an expensive technology. Many of the most prominent
early isolation projects were large and costly retrofits of historic buildings,
projects that would have been expensive regardless of whether or not isolation
was used. Nonetheless, the general belief has evolved that seismic isolation
is expensive and that it is not economically feasible to consider for typical
buildings.

Codified Method

According to IBC 2003, the general design response spectrum curve with
various equations are indicated in Plate 2.3.

Apart from these parameters, the values of the site coefficient F, as a
function of the site class and mapped spectra response acceleration at short
period (S) would be needed and they are given below:
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Plate 2.3 Design spectrum and Data (U.S.A)
Country  Design spectrum Spectral acceleration versus period
USA According to the IBC 2003, the general design
response spectrum curve is as shown in Figure -
and is defined by Equation = SDS
0655 +04Sps  T<Ty z
Si= Sps Iy <T<Ts 3 S, = Spy/T
S Ts<T 3 S
s °o
where: 2 ,
Sps, Spi: the design spectral response z
acceleration at short periods and one second 8_
period, respectively, as determined by Equation g
(3.9).
Ty = e
3 358 To T' 1.0 T

M|
Ss~1.55¢: 81 = 0.623¢g

Where:F,, F,: site coefficients defined in Tables
and, respectively. Sy, S|: the mapped spectral
accelerations for short periods and one second
period.

Table Values of the site coefficient F, as a functions of the class
and mapped spectral response acceleration at short period (S,)*

Mapped spectral accelerations at short periods
Site Class S, <0.25 S;=0.50 S, =075 S, =100 S,<1.25

TmoOow»>

0.8 0.8 0.8 0.8 0.8
1.0 1.0 1.0 1.0 1.0
1.2 12 1.1 1.0 1.0
1.6 1.4 1.2 1.1 1.0
2.5 1.7 1.2 0.9 0.9
Noteb  Noteb Note b Note b Note b

a Use straight line interpolation for intermediate values of
mapped spectral acceleration at short period

b. Site specific geotechnical investigation and dynamic site
response analyses shall be performed.

Period (s)

Design response spectrum, IBC 2003 (USA)

Site spectra at the four kinds of site classes (USA)

Table Values of site coefficient Fa as a function of site class and mapped
spectral response acceleration at short period (S,)*

Mapped spectral accelerations at one second period
<0. = =
<

Site Class S =04 S, <05
A 0.8 0.8 0.8 0.8 0.8
B 1.0 1.0 1.0 1.0 1.0
C 1.74 1.6 1.5 1.4 1.3
D 24 2.0 1.8 1.6 1.5
E 3.5 32 2.8 24 24
F Note b Note b Note b Note b Note b

Values of site coefficient F, as a function of site class and mapped spectral

response are given in tables provided by the code.

Acceleration at short period (Ss)*
Mapped spectral accelerations at short periods

Site Class
A reference is made to the code

Based on ISO, the following information is required if one goes on using the code:
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ISO 3010: 2001E. Plate 2.4 indicate the relationships for normalised response
spectra.

Sheet No. S 2.4 to 2.5.3 give brief information on this subject based on the ISO
requirements. These sheets are available.

Plate 2.4 Design spectrum based on ISO

Spectral acceleration

Country Design spectrum versus period
ISO 3010: T., T,
2001E c ¥ Kgo

[e)) -

2,8 :

© $ c KRo(Tc/T)]

T ST

-

ges Y N

5 ©

z 2

»n L I

T Natural period, T
Normalized design
response spectrum

Eurocode-8
Introduction

The seismic protection of conventional structures is based on the favourable
changes of their dynamic characteristics, induced by yielding and damage
occurring in structural and non-structural elements under intense seismic
action. Such changes can be essentially described as an increase of flexibility
and of damping. Due to the usual spectral characteristics of earthquakes and/or
to the energy dissipation occurring in the structure, these changes give rise to a
considerable reduction in the structural mass accelerations and, then, of the
inertia forces. This makes it possible for a ductile structure to survive a
“destructive” earthquake without collapsing.

In the last two to three decades, new strategies have been developed
which still rely upon deformation and energy dissipation capabilities. These
properties, however, are concentrated in special devices, in the form of rubber
or sliding bearings, of energy dissipating and/or re-centring viscous or hystere-
tic devices. Such devices are incorporated in the structure so as to store and
dissipate most of the input energy. The inertia forces acting on the structure
during a strong earthquake are considerably reduced, so that no damage to
structural and non-structural elements is in principle required to further reduce
them, and hence higher levels of seismic protection are obtained.

The two most frequently used “passive control” strategies for buildings are

— energy dissipation
— seismic isolation
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Force :
control |

Fig. 2.15 Classification of response-control systems

The energy dissipation strategy consists of the introduction within the structural
system of elements specifically designed to dissipate energy in the dynamic deforma-
tion of the structure. These elements may take the form of dissipative steel bracings
separate for the structure and working in parallel with it or they can be obtained by
the use of friction devices, viscous dampers or elasto-plastic steel components.

Seismic isolation essentially uncouples the structural movement from the
ground motion by introducing a strong discontinuity in the lateral stiffness
distribution along the height of the structure (usually at their base in buildings).
The structure is thus subdivided into two parts: the substructure, rigidly
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Fig. 2.17 Example of active control system
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Plate 2.5 Eurocode 8 elastic response spectra for 5% damping: (a, b) pseudo-acceleration
spectra; (c, d) displacement spectra; (a, ¢) recommended spectra of type 1; (b, d) recommended
spectra of type 2.

Note: these diagrams are taken from Eurocode 8 with indebtedness and compliment

connected to the ground, and the superstructure. They are separated by the
isolation interface, which includes the isolation system.

After a careful consideration of the Eurocode-8, four diagrams covering
elastic response spectra, pseudo-acceleration spectra and displacement spectra
are given in Plate 2.5

Classification and Characteristics of Response-Controlled Structures

In general there is a great non-uniformity in the classification of response-controlled
structure. Various methodologies have been delivered. Some are listed in Plate 2.5.

| - J r——-—-’-u' . |
-
ke, ]
|
m, Vg |
Fig. 2.18 Simplified two- ™ —7’
degrees-of-freedom model = B H LS B RGN \ !—u-

of a base-isolated structure 0
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A Comparative Study of Seismic Codes
Introduction

Plate 2.6 gives a brief comparison of response acceleration versus period
based on a fixed soil profile using isolation techniques adopted in Japan,
China, the USA, Italy and Eurocode 8. The Far East countries data were
compared with 5 and 20% damping. Where the effective damping rate is
greater than 15%, the reduction factor in the Japanese is comparatively
smaller. The dynamic characteristics of the soils such as the relationship
between G (shear stiffness), y (shear strain) and effective damping have been

Plate 2.6 Design spectra—a comparative study

amplification coefficient, rather than using the
amplification coefficients defined in the code. The
detailed procedure is shown in Section 5.3.2. The

Country Design spectrum Spectral acceleration versus period
Comparison In order to evaluate the differences in the spectral
Japan 12 accelerations, a comparison study is conducted. For
China ] this study, the building sites are assumed to be in
Taiwan 1.0 Tokyo, Beijing, Los Angeles, Potenza and Taipei. A
The USA k- fixed soil profile is assumed, where
Ttaly E 0. Vs, average = 209 m/s. Typically, seismically
Euro 8 = isolated buildings should be located on relatively stiff
§ 0. ground, such as that defined. In the Japanese code,
bt an iterative procedure is used to calculate the site
!

o 1 2 3 4 5 6
Period (s)

Five pereent-damped acceleration response spocira for Tokyo, Beijing. Los Angeles,
Potenza and Taipei

Five percentamped acceleration response spectra for Tokyo, Beijing.

Los Angles, Potenza and Taipei

dynamic characteristics of the soils such as the
relationship between shear stiffness G and shear
strain and the relationship between effective damping
and shear strain were obtained from the site
investigation. Ground surface 5% damped
acceleration response spectra given by the five
different codes. In the short-period range, less than
about 0.5 s, Sa, Ttaly, is the largest. For periods
longer than about 0.6 s, Sa, USA and Sa, Japan, have
approximately the same value. Beyond about 1.2 s,
Sa, Taiwan, has the largest value due to the Taipei
basin geology. Soong et al. () used a fixed soil profile
for comparison.

— 08 1 (01 It is seen that for structures having natural periods
o h=20% longer than 3 s, the spectral acceleration level is about
c Japan the same for all five codes, with the exception of the
.2 0.6 Chin Italian code, which gives slightly lower values
e Tai i Soil Profile used for study, where V; ayerage = 209 m/s
] =-+= Taiwan
o Layer Depth (m Vs (m/s 7 (t/m?
S04l N o eeees USA(IBC) y pth (m) (m/s) y (t/m”)
& 1 0.00 120 1.85
o 2 2.85 120 1.50
= 0.2 3 5.90 120 1.80
g % 4 895 310 1.90
i 5 14.35 220 1.85
o 6 18.55 380 2,00
0.0° - 7 23.50 320 175
G 1 2 3 4 5 6 3 28.50 400 1.95
Period (s)
5
[T 7
IR I [ I
€ 4 1t N — Lutrethol site —
S 35 [if X -=: EC8,soilclassB [
s I \
g 3 --- ECB,soilclassA ]
g 25 f—— === EC', reduced for rock F—]
8 2F S
£ s | RO
Y
05
0
0 05 1 15

Period (s)

Ref. seismic conceptual Design of Buildings. Prof Hugo Backman
DFA and DETEC, Switzerland BBL publications, BWG 2003.
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evaluated. The spectral acceleration level is about the same in all codes men-
tioned here. The velocity versus coverage (average) was taken by Soong et al.
to be 210 m/s.

Data on Constructed Facilities

Some constructed building and other structural facilities have been examined
with respect to the usage of seismic devices and are categorized on the basis of
the types of structures and seismic devices installed to control and minimize
various parameters inclusive of disastrous vibrations included by the earth-
quakes. Tables (2.34) to (2.36) give the details of the constructed facilities where
various devices have been installed.
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