Chapter 2
Architecture Management

Summary Architecture management plays a key role in the sustainable success of
managed evolution. Architecture management defines the target architecture, a
number of models, a set of technical standards and guiding principles for the
evolution of the system. It defines and operates processes to evolve architecture
standards, to communicate them to the organization and to ensure their implemen-
tation. Strong review activities on projects enforce adherence to the standards.
Architecture metrics finally allow the progress of key indicators to be measured.
A federated architecture organization is essential for powerful architecture manage-
ment in a very large organization.

2.1 Whatis IT Architecture and Why Is It Important
to Managed Evolution

The Oxford Advanced Learner’s Dictionary ([Oxford_05]) defines architecture as
follows:

1. The art and study of designing buildings: to study architecture

2. The design or style of a building or buildings: the architecture of the eighteenth
century, modern architecture

3. (Computing) The design and structure of a computer system

Similarly, IEEE (Institute of Electrical and Electronics Engineers in [[EEE_00])
defines IT architecture as:

“The fundamental organization of a system embodied in its components, their
relationships to each other, and to the environment, and the principles
guiding its design and evolution”

The definitions above show two facets of architecture. On the one hand we have
“architecture” as an activity, art, or profession (Point 1 in the definition), on the

S. Murer et al., Managed Evolution, 35
DOI 10.1007/978-3-642-01633-2_2, © Springer-Verlag Berlin Heidelberg 2011

36 2 Architecture Management

other hand we call the results of the architect’s work “architecture” (Points 2 and 3
in the definition).

Understanding IT architecture as an activity: In the architecture process, archi-
tecture is developed, design questions are answered and architectural standards are
implemented in the system. In a very large information system, the architect’s work
at the highest level is very similar to the work of a city planner. The architect defines
guidelines and IT standards comparable to city zoning plans, setting constraints for
building in certain areas. Reviews and approvals of designs are comparable to
implementation permits, just as city planners issue building permits for construc-
tion projects. The architect plans and builds the necessary infrastructure to allow for
a managed evolution of the city — via IT strategy and architecture driven invest-
ment programs.

Understanding architecture as design and structure: Architecture consists of its
systems, representing the current state of the architecture and of documents defining
structure, standards, concepts, principles and roadmaps that govern the future
evolution of the system.

It is important to understand that every system has an architecture, be it an
implicit or an explicit one. If the architecture is implicit we have no way to control,
analyze, reason about, evolve and communicate it. It is the role of the architect to
establish explicit architecture of the system and to communicate it well to all
involved parties.

As described in Chap. 1, there are two ways to improve agility in the managed
evolution strategy: One way is to invest into explicit architecture programs, the
other is to steer every single project into a direction that improves the overall agility
(Fig. 1.7). Both approaches only work if there is a clear and explicitly commu-
nicated target architecture. This is particularly important in a very large information
system where thousands of developers make thousands of small design decisions
every day. The sum of these micro-decisions determines the overall direction of the
system’s evolution. So, if more people understand and support the target architec-
ture it will be implemented at lower cost. It is a waste of energy if, due to bad
communication or bad
understanding, design

"Architecture is something of a black art in the IT world. A o
Architects learn on the job, bringing years of experience decisions point in oppo-
in desigh and technology to the business problems they site directions and anni-
tackle. It's not an easy task to impart architecture know- hilate each other. In
ledge” addition to that, a control
Ian Gorton, 2006 . .

element is required to

detect and react on de-
viations from the target architecture. Furthermore, investment programs to build
the necessary infrastructures or to remove duplicate functionality and data are
needed.

Fully aware of the fact that architecture and design takes place on a number of
different abstraction layers, such as from the detailed design of a data center
network all the way up to an abstract enterprise-wide business object model, we
avoid a general discussion on IT architecture, which can be found in a number

2.2 Architecture Principles 37

of excellent books, such as [Masak_05], [Masak_07], [Mens_08], [Gorton_06],
[Lankhorst_05], [Abramowicz_07], [Erl_04], [Woods_03], [Garland_03],
[Britton_01], [Cummins_09], [Bernstein_09]. We rather focus on elements of IT
architecture as far as they are necessary to support managed evolution of very large
information systems. In our experience, the key elements to manage the architec-
ture of very large information systems are the following:

¢ A set of fundamental principles guiding the architecture,

e A structure that helps divide the very large information system into more
tractable pieces,

¢ A management process to develop, communicate, implement and control archi-
tecture,

e A federated organization that implements the architecture process aligned to the
target structure of the system.

In the following we will describe these elements in more detail and add exam-
ples from our own experience to illustrate the concepts in a non-trivial case.

2.2 Architecture Principles

Fundamental to the architecture of a very large information system is a set of
architecture principles to be applied across the whole system. This set of principles
should be small and address a couple of key questions, such as the position on
technology diversity. It is important that the principles can be described briefly and
communicated well across the IT organization. As every developer is making his or
her own micro-architecture decisions, it is fundamental that these principles are
broadly understood, accepted and consistently followed.

Managed evolution as the central architectural principle at the heart of this book
is one of the prime architecture principles for very large information systems.

Almost a meta-principle to be clarified is that IT architecture is not an exact
science. There are many

conflicting ~ goals and “Architecture’, in a broad sense, is the synergy of art and
interests in designing a science in designing complex structures, such that func-
system. Short time-to- tionality and complexity are controlled”

market or low-cost Marc Lankhorst, 2005

development may lead

to high operational cost. Design for highest performance may reduce flexibility in
parameterization and vice versa. Inserting additional layers of abstraction may
increase runtime overhead, but reduce development, maintenance and future
enhancement cost. Higher security requirements must be carefully implemented
in order not to lead to reduced user comfort and potentially to lower availability and
higher operating cost. It is important to be aware of and accept those trade-offs.
One-dimensional optimization typically leads to sub-optimum solutions.

38 2 Architecture Management

Compliance oriented governance does not necessarily lead to the desired results in
architecture. In order to properly handle the trade-offs, both experience and good
quantitative models are needed.

If the system supports a dynamic business, then flexibility and agility with regard
to business organization and expansion is a must. Applications tend to live longer
than the structure of the organization, the legal environment, or the global footprint.
Therefore, flexibility principles with respect to certain dimensions are needed. Here
are a few requirements that the authors have encountered across a number of
different industries:

* Multiple entities: Several legally independent organizations should be able to co-
exist in the same system in order to leverage scale effects. Each entity needs a
certain degree of independence in order to be able to position itself in the market.
It is crucial to set the right degree of independence and to implement flexibility
accordingly. Typical topics in this include independent pricing of products and
services, appropriate separation of data among legal entities and flexible support
for different business organizations and processes.

e Multiple countries: The system should be able to support international growth by
flexibly accommodating new countries, new markets and new business. Key
topics in this area include the support of different languages, different curren-
cies, different legal and regulatory environments and operation across multiple
time zones, particularly if your system is based on a daily online/batch cycle.

e Multiple channels: Sales channels have become more heterogeneous, especially
if the organization sells a purely virtual product that lends itself well for
electronic distribution. So, flexibility with respect to different sales channels,
direct or indirect, physical or electronic is fundamental to a successful long-term
architecture.

Depending on your business, other principles regarding flexibility of the value
chain, scalability and the like are needed.

Some principles should address and clarify the technology risk appetite. They
define the structure of the technology portfolio. The principles should answer
questions such as: How must the technology portfolio be aligned to technology
market mainstream in order to profit from the technology ecosystem? How aggres-
sively shall new and risky technologies be brought in? What is the position on
desirable, or not so desirable, diversity in the technology portfolio? Where should
exceptions to the principles be allowed? Chap. 4. (Infrastructure) explains the
underlying rationale and processes for technology management in more detail.

One fundamental architectural choice to be made is the question of whether
components of the system should be bought and integrated or whether the system
will be based mainly on proprietary development. This choice is dependent on the
size of the organization, on the market of relevant software, on the capabilities of
the organization building the system and many other criteria. In the experience of
the authors, any very large information system has both types: Proprietary deve-
lopment and buy and integrate components.

2.3 Architecture Layers and Models

39

The following Side-Story 2.1 explains how a generic requirement is reflected in

architectural principles to be applied across the application landscape.

Side-Story 2.1: Multi-Country Capability Architecture

Credit Suisse has IT operations in many locations, some of them large and
some of them rather small. However, the customers expect the same high
quality service, independently from the location of their bank branch. It is,
however, not feasible to install and operate the rich functionality of a large
location in all the small locations worldwide.

Therefore, in order to provide richer functionality to the smaller locations
and to increase processing volume, Credit Suisse intends to use its Swiss
system for global business. This brings a number of challenges, such as
handling multiple legal entities, dealing with the specifics of different
countries, adapting to different laws and regulations, providing products for
local markets and supporting local languages. Traditionally the existing
applications do not support international business.

Instead of operating a large number of individual IT installations in many
countries, IT services will be offered out of a small number of hubs. A team
of specialists defined the required multi-country capability of the IT system,
including applications, presentation, reporting, etc. These requirements impact
existing applications. Before transforming thousands of applications, the archi-
tecture team derived clear and comprehensive principles from the generic
requirement. A representative choice of the application landscape architecture
principles covering the multi-country capability is listed in Table 2.1.

The principles in Table 2.1 were approved by the architecture steering
committee and communicated to the development community. In addition,
specific implementation guidelines were published for each of the multi-
country application landscape architecture principles, such as the BOUID
format specification <BOUID = numeric4>. The complete set of multi-
country application landscape architecture principles allows application
developers to work on many applications in parallel and to implement the
multi-country capability in a short time and with full interoperability.

2.3 Architecture Layers and Models

Models are essential elements of very large information system architecture. They
allow the architect to manage complexity and to document the system consistently

"Models must not be regarded as rather inconsequen-
tial artifacts of software development but instead as
the core products”

Anneke Kleppe, 2009

and precisely. Models help
simplify reality by abstrac-
tion. The first purpose is
the structuring of the large
number of parts in the

2 Architecture Management

40

SQ0BJIAUI Jsow 0) Joe] ur sorddy

sjun ssouIsng Mau SuIppe I0j AJN[IQIXA[) SAINSSY

jJuarpd a3 Sursodxa InoyIIm eIep) Jo Sursseoord
AU} SMOJ[YoIym 9pod & Sunerouasd ‘pasn are sanbruyo
oryder303dA1o 9[qISIaAal ‘QIndas ‘ejep SUTAJNUIPI-JUI[D

A1) JO PeIJSU] "UONBZIWAUOUE IOPIOQ-SSOID J0J AIBSS0U SI SIY [,

e1ep oy} Sunosjoxd suonenSar pue sme[oy} 03 SJUIOJ

snon3Iquie SW093q P[NOM BIEP JAIYDIE PUR [BOLI0ISIY
) 9SIMIAYIO ASNEBIAQ PAMO[[e 10U ST SINOF JO oSNy
‘(Anuno)) uonorpsun(suo
ur pue AInus (TeSe) Teuoneziuedio auo Apoexe ur Junerado
jIun e 0) AJIfeUorIoUN) pue BIEp ‘ejepeioul Jo Juryulf
snonSiqureun Smo[Je 31 asnedaq 1deouod [enuad oyl ST N0 YL

PIeY AINOY Y} apnjour 3snuwr passed
st ejep oyroads Jun uonerado ssauIsng Yorym J9A0 SIOBFIAUI [V
s9[qes uonein3yuos Junepdn Aq Aqrespr ‘partoddns
AJISea 9q UBd SJIUN SSAUISNG MU JeY) AeM B yons ur
paKordap pue pajuswejdur ‘pauisop aq 03 aaey syusuodwod [y
SNOY USIAHJIP Y3 Jo suonesIqo [enjoenuod
Q) 0) JUIPIOJJE puUE SUONB[NTAI PUB SME[[eUOIIEU
dy} 03 SUIPIOOJE PAdIOJUD 9q SN UoNdoId sSA90E BB
‘eyep
SurAynuapr-juar]d noyim Aredord yrom isnw suonesrdde [y
*0) JojaI A9y} JULIUOD Ay} WOIJ
pajeredas 2q Isnuwr ejep SUIAJNUIPI-2240[d WS pue -IQWOISND A,
IX9JU0d
Y} SOYNUAPI YoIym <JINOFG> AINGLIIe Ue dALRY ISnu
BIep yons SULI0)S SAINONIS aseqeIep [y "Ioumo [e39] SII Jo
NOYF Y} 03 JoJaI Jsnu ejep paje[oI-99ko[dwe pue -1owolsnod [y
S9IIUNOd pue SNOY [eIoAds ueds ued Aus 839 V e
PasSnal I9AU A1k SQINOF 9T “9ouo A[uo pausisse St [NOI V
Anunod
QUO A[30BXQ YIIM PIJeIoosse ST jiun) uoneradQ ssouisng yoed e
Amua
[e39[auo Ap3oex? 03 s3uofeq yun) uoneradQ ssoulsng Yoeq e
(ArNO9) reynuapy yup uoneradQ ssoursng
i Aq paynuept Afenbrun st N0 Yyoed (N09) #u/]
uonp.12d(ssauisng ouy ST (QHN I A, 9) DHIN Ur K10us oY,

SQORJIUY

[onuod HIN

uonezLIOYINyY el

uoneredss eleQ

uonRIYIY wIeq

(Ogm) Aipiqede)
Amug-nmp

SYTRWOY

1x9) odrourg

Qureu o[drourg

Anpqedes Anunoo-nnu 10y sopdrourid ainjodyore adeosspue] uoneorddy (1-g A101S-9p1S) [°7 dIqBL

2.3 Architecture Layers and Models 41

system (see Sect. 1.2) and the second purpose is shaping the connections. The focus
in this book is on models that are important on the enterprise architecture level
([Lankhorst_05]). For the implementation of functionality and data structures,
additional models (notably the logical and the physical models) are required,
which will not be discussed in this book. Refer to [Schmidt_99], [Simsion_05],
[Nicola_02] and many other texts for more information on logical and physical
modeling.

When working with different models, like domain models, business object
models and others, the models must be kept consistent at all times. Models evolve
gradually along the managed evolution path, thus becoming complex over time.
Keeping models consistent among each other require special methods. Very helpful
instruments are rich metamodels ([Marco_04], [Frankel 03], [Kn&pfel _05],
[Inmon_08], [Wegener_07]) underlying each model and automatic model checkers
([Baier_07]) being made available to all model developers.

The most important models for structuring are the layer models (Fig. 2.1), the
domain models (Side-Story 2.3 and Fig. 2.9) and the business functional map (Side-
Story 2.2). The set of models required for architecture management will be
described in this chapter, starting with the layer model.

It is very common to manage enterprise architecture as three separate layers.
A business architecture layer describes the entities, processes and functions on

Architecture Layers

Business
Components)
(Business Business
. N Architecture
Functionality
Map)
Application
Domains -
(Application — pbhicaton
pp R Architecture
Domain
Model)
Technical)
Domains ;?gr:?;:lljre
(TeChn'C_al [(Infrastructure
Domain Architecture)
Model)

Fig. 2.1 Architecture layers

42 2 Architecture Management

a business level. An application architecture layer describes how business require-
ments are implemented in applications. And a third layer, the technical architecture
layer deals with the underlying infrastructure (see Fig. 2.1).

Business architecture is structured according to a business functional map.
Technical and application architecture are both structured by their domain models
which are presented later in this book.

2.4 Business Architecture

Systems implement products, processes and services of real businesses. Therefore

it is not surprising that
“An enterprise system is an extraordinary complex appli- | the system architecture
cation of information technology designed to support should be derived from
organizational processes in a highly integrated fashion” overarching business
Kent Sandoe, 2001 ey .

architecture. In the liter-

ature a number of differ-
ent definitions for business architecture can be found. As for all architectures,
business architecture is at the same time an activity and a well-structured docu-
mentation of a current or future state. The OMG’s' business architecture working
group defines this aspect of business architecture as “A blueprint of the enterprise
that provides a common understanding of the organization and is used to
align strategic objectives and tactical demands”. Depending on the framework,
business architecture covers aspects like strategy, products, processes, information,
capabilities, knowledge and organization. Good background information on busi-
ness architecture can be found in ([Zachmann_08], [OMG_08], [Sandoe_01],
[Gharajedaghi_06], [Moser_07], [Knittel_06], [Ross_06]).
For the purpose of system architecture the important aspects of business archi-
tecture are the following:

e Information/Semantics: Systems serve to store and process business information.
To implement such systems, precise structure and semantics for the business
information must be defined ([McComb_04]). Typical tools for this are
information models,
glossaries and ontol- | “The world is changing fast and, for better or worse,
ogies ([Sowa_00]). semantics is at the heart of it"

Although it would Dave McComb, 2002

be useful to capture

semantics formally for system implementation, current practices are informal
text-based definitions. The direct counterpart to this in application architecture is

1Object Management Group.

2.4 Business Architecture 43

the business object model ([Nicola_02]), formalizing the information model in a
more implementable way.

e Functionality: The business functionality is provided by the applications. A
structured business functionality map can be used to analyze the application
landscape for functional overlaps, gaps and misalignments. Often the business
functionality is linked to the information architecture, describing what informa-
tion is used by which business functionality. Side-Story 2.2 gives an example for
such a map. This is similar to the domain model and the application portfolio,
although experience shows that the structure of the application domain model
might look quite different from a business functionality map, as the structuring
criteria are different. You may want to keep functionality grouped around the
same data or being offered in one package together in the same application
domain, for example.

® Processes: Business uses well-defined processes to provide their services to the
clients and to manage the internal processing. With the focus on business
process engineering and flexible orchestration of services into workflows,
understanding the business processes is important. From the business processes
we can identify the process steps common to multiple processes. These can then
be provided as services for flexible orchestration. Generally, good business
process definitions can be found nowadays for well structured operational
areas of the business, where they are being used successfully to systematically
improve efficiency by continuously capturing process data, analyzing it and
improving the process based on the data.

e Organization and roles: Organizations are structured and have clearly defined
roles which execute their assigned tasks. For many decisions in IT architecture
it is important to understand the organization and the roles of people in the
organizations. Examples for this include access control systems or the design
of portals, where all functionality for a particular role is presented in an
integrated way.

Most business architecture frameworks capture the information described
above in one or the other form. In the experience of the authors there typically
is a precision gap between business architecture and IT architecture. While
business architecture definition tends to be loose at times, IT architecture must
be more precise, so that it can be implemented in systems. Often large enterprises
don’t have a central owner for all aspects of business architecture across all areas.
Therefore the coverage may be patchy and the business architecture is defined
implicitly by the behaviour of the people and systems behind a business process.
Increased regulatory scrutiny, such as the Sarbanes-Oxley act ([Marchetti_05]) and
improved formal optimization methods, such as Lean Six Sigma ([George_04],
[George_05]), have lead to more formal documentation of business architecture in
recent years.

Most large organizations do not have an explicit function that is responsible for
the overall evolution of business architecture. So, in practice, business architecture

44 2 Architecture Management

to the extent necessary for the underlying IT architecture is often maintained by the
IT architecture organization.

The main structural model in business architecture is the business functional
map. As an example, the business functional map — in the form of a business
component map — of Credit Suisse is described in Side-Story 2.2.

Side-Story 2.2: Credit Suisse Business Component Map (BCM)

Recently the strong growth of trading activities revealed functional and
performance deficits in the Credit Suisse trading and operations application
landscape in the Swiss hub. Some of the applications were quite old (more
then 20 years) and the extensions required by the very active business could
only be implemented with difficulty.

In 2006 Credit Suisse IT management decided to define a new, modern
Trading and Operations Target Application Landscape (TOTAL). This align-
ment was to be based on a business component map ([IBM_05a]). Business
component map development follows a modeling methodology introduced in
2006 by IBM: Business Component Modeling (BCM). In this context, busi-
ness components are the modular building blocks that make up the
specialized enterprise. Each component has a business purpose which is the
reason for its existence within the organization and conducts a mutually
exclusive set of activities (IT-supported, manual, or mixed) to achieve its
business purpose. Each business component is based on its own governance
model and provides/receives business services.

A team consisting of Credit Suisse experts and IBM consultants was
formed and worked for 4 months in close cooperation. IBM brought three
generic business component maps (for generic retail, private and investment
banking) to the table as a starting point. At the end of the definition phase, the
Credit Suisse Business Component Map (BCM) as shown in Fig. 2.2 was
delivered.

Business component modeling — resulting in the business component map
as its main deliverable — has proven its value as a methodology to define a
functional alignment between business and IT, including a view into the
future. After this activity, the planned target architecture for the trading and
operations landscape was defined from a functional point of view.

The BCM (Fig. 2.2) has successfully been used to identify functional
redundancy, such as overlaps, multiple implementations and to plan a road-
map for the implementation of the target architecture. Several major devel-
opment programs have subsequently been launched at Credit Suisse to
transform the current trading and operations application landscape into the
desired target architecture.

The BCM methodology has proven to be so powerful that it is now used
globally in Credit Suisse in various areas and for several uses.

2.5 Application Architecture 45

Direct Access Relationship N
5 Strategy&Governance 1 Sales, Markets & Relationships 4 Risk, Compliance &

5.2 Strategy & Planning 1.3 Trading 1.2 Sales & Relationship Management 1.1 Capital Mkt. HipapciiManasement

121 n
Bus. Res. & y L3 A 52 Sales/AdvIOf- onship! a5/
Class Trading | Hedging P o
Risk Anaiysis
- o = e = oo —
i e Pricing/Quot/C | Structured 3 Fin. nsttut :
Deal Structurin Order Capture
ontr.Valuat. Products 9 (Insourcing) apt 433 Op.Risk a.
Analysis & Ri
= Reporti
2 Product, Client & Trade Support \eporting
51 25 23Ps 2.2 PB Specific Services 2.1 Marketing 436
Li ik | Econ:Capita
512 252 2510 — 232 o221 22 1. gt
i Ordr Execition ; A ortolio
Architecture [ll Comp./Routing | negotiation i | I, Management P B
514 255 4 223 224 212 4.2 Finance
Excc. Stke- M Liecyoioana | adcienrohm. gaspoduct | prog. Famiy oftco | Financia i Com-
e | | e || A velop e miyortce || e P e
225 226 2.4 Research s (Sppss
TrustaEstae [Asset
Planning Allocation 423
Company Tax

3 Processing 4.1 Compliance and Control
3.3 Data 3.4 Prodct Specific 3.1 Client Facing Common Proc. 3.2 Common Processing

412
331 332 341 07C/ 3.4.2 Com- 312 322 Regulatory
Counterparty | Fin nst. Ret. Deriv/sp | mod./Bank. Gredit Coliateral nd Compliance
& Acct. Maint. Data Mgt Processing roc. Approval Mgt Handling
4
334 343 344 315 o Depo. Bank
Document SLB & Repo Funds FoesiComm./ ot Contralling
Wanagement Procossing | _Processing Biling Mgt
347 329

Szacten
Gen. it Data Subserproc | FXM ot Bank pos. 4.4 Management Information
M (incl. IPO) Processing Reporting gt
aas
. Operational MI
n
6.3 Other 6.

.1 HR 621T
miestons | 632 Logal () Facilion, O poms | saseusess | e1s sustigiern | oosgnappt & | suidipmarm | Nanmname | o828
munications. 3.2 Legal acilities, Ops. gm ratogic ign Appl. ui 3 aintain Apy
(excl. Client) eI & Maint Change Mgmt | Continulty | HR Operations | *yanagement T infra. infra. ITinfra WL

Fig. 2.2 The Credit Suisse business component map — original slide

348
Sec. Specific
Processing

6 Support Infrastructure

2.5 Application Architecture

All business applications in the system form the application landscape. For the
purpose of this book, an application comprises a set of functionality, the
corresponding data and includes interfaces to other applications in order to achieve
a specific business purpose. Applications consist of one or several software com-
ponents designed to support business processes and to fulfill specific needs of users.
A component consists of programs, data structures, configuration information and
associated documentation.

The application landscape is partitioned into application domains. Each applica-
tion belongs to one or more domains. Application domains are subsets of the
application landscape characterized by a high cohesion from the business point of
view. Central to an application domain are its business entities and business
functions. Depending on the size of the application landscape one may introduce

multiple levels of struc-

ture with domains and | “From the perspective of the underlying science and engi-
subdomains. In the expe- neering knowledge base, software is the least well under-
rience of the authors, up stood and the most problematic element of large scale
to two dozen domains i?:;jn[:lsor throp, 2006

can be handled on the ’

top level. Within a

domain up to twenty subdomains and 50-100 applications per subdomain can be
handled. Experience shows that in a typical application landscape the domain model
is not evenly populated, but the two level structure is sufficient to manage

46 2 Architecture Management

landscapes of many thousands of applications, as is typical for very large informa-
tion systems.

The choice of application domains is an important strategic choice. It goes with
the assumption that applications in the same domain can be more tightly coupled
than applications in different domains. Typical architectural rules that go with
domain borders include that databases may be shared inside a domain, but not
across. Sharing data across domains requires that additional quality criteria be
imposed on interfaces that are offered for use outside the providing domain. In
very large information systems these rules may again be defined on multiple levels.

The choice of the domain model also expresses certain assumptions about the
structure of a business. Should the domains be defined regionally, along the process,
or aligned to products? Domain model decisions are long-term decisions and have
to be taken carefully. The model must be kept stable as a fundamental guiding
principle for the managed evolution of the application landscape and the infrastruc-
ture. The domain model will over time influence the reality in the application
landscape by more closely coupling applications in the same domain.

The domain model decomposes the functionality and persistent data of the
application landscape into smaller, manageable containers. The subdomains con-
tain non-redundant functions and data and together they cover the complete func-
tionality and data universe of the application landscape. This is an ideal view,
without taking into consideration the actual functionality of the existing applica-
tions. The modeling approach can be seen as first preparing a list of all functions (on
a suitable level of granularity, such as “maintain customer address and customer
contract information”) and data (again on a suitable level of granularity, such as
“customer master data”). Second, all entries in this complete, consistent list of
functions and data are then uniquely assigned to the best-suited subdomain.

Assigning all entries in the list to the most appropriate subdomain requires some
rules:

1. Strong cohesion of the functions and data within a subdomain: Cohesion is a
measure of how related functionality and data are gathered together and how
well the parts inside a subdomain work as a whole. Cohesion is the glue holding
a subdomain together. Weakly cohesive subdomains are a sign of bad decom-
position. Each subdomain must have a clearly defined scope and not be a grab
bag of unrelated functionality and data ([Spinellis_09]).

2. Low coupling: Coupling is a measure of the dependency between subdomains —
the amount of “wiring” to and from them. Good partitioning results in little
coupling and so the subdomains become less dependent on each other. Obviously,
coupling required by the cooperation among applications in one subdomain and
applications in other subdomains or the environment are necessary — but unneces-
sary wiring should be avoided by good subdomain decomposition ([Spinellis_09]).

3. Comprehensive business-IT alignment: Because cohesion is mainly rooted in the
way business conducts its processes, the business cohesion strongly supports
good decomposition. This synergy must be exploited, which automatically leads
to a comprehensive business-IT alignment, especially if “business terminology”’
is used as much as possible in the domain model. A good domain model also

2.5 Application Architecture 47

separates dedicated business functionality, such as payments or trading from
general functionality, such as enterprise resource planning, electronic archive,
communication channels.

One trap to avoid while constructing a domain model is thinking in products: If a
domain model is structured around products, synergies in their production or
processing will not be identified. The domain model must become — and remain —
the functional and high-level data model of the ideal organization. As such it
survives business strategy changes, company reorganizations, mergers and acquisi-
tions and forms a stable, reliable base for the evolution of the application landscape.

Developing a domain model is a highly cooperative, consensus-based effort of
business and IT resources under the strong leadership of application architecture.
As such, it involves a broad range of experts.

The domain model benefits four areas:

1. IT architecture, supporting complexity management, providing the structural
foundation for the enterprise service oriented architecture (integration architec-
ture), defining the rules for various disentangling programs for legacy applica-
tions and providing the “ideal”, redundancy-free functional and data model of
the organization. Once all applications have been assigned to the “best fit”
subdomain, redundancy and misfits can easily be identified. A big complexity
reduction potential is made accessible!

2. System evolution: Enabling independent development, deployment and opera-
tion of components improves the agility of the system. Better locality and
isolation of applications in domains reduces effort for coordination of changes
touching many applications. Higher software quality due to reduced cross-
component impacts will result. Generation of new, unwanted or unknown
redundancy is avoided.

3. IT management: Leads to improved transparency by using domain-based man-
agement and reporting and creation of a powerful domain architect organization
with defined responsibilities assigned to architectural roles.

4. Business reasons: Better understanding of the IT landscape is achieved with
domain-model based investment planning, resulting in better coordination and
less effort duplication. Complexity reduction leads, as a direct consequence, to
shorter time to market and lower development cost for new functionality.
Finally, there is an improvement in business-IT alignment.

The domain approach enables the possibility to define domain-specific architec-
tures ([Duffy_04]) and domain specific languages (DSL, [Kleppe_09]) based on the
domain’s business concepts, such as business objects. Together, this leads to domain

specific modeling (DSM,
[Kelly_08]). Domain- “Throughout the history of software development, rais-
n ing the level of abstraction has been the cause of the

specific modeling raises largest leaps in developer productivity”
the level of abstraction Steven Kelly, 2008

beyond current modeling
approaches and increases application productivity.

48 2 Architecture Management

A successful domain model requires the full and consistent implementation of
five elements:

1. The structure (Fig. 2.4): The main topic of this Side-Story 2.3,

2. A representation: Mapping of all domains/subdomains and applications, includ-
ing their information flows, attributes and properties in an on-line repository,

3. A “federated architecture organization”, including the domain architects and
other cross-business unit, cross-domain architecture roles (see Sect. 1.9),

4. A set of processes for the evolution, maintenance and optimization of the
application landscape based on domains, including change request management
for the domains, management of the domain architects, processes for the peri-
odic domain assessment,

5. Strong and dedicated governance supporting and leading the domain architec-
ture and the domain activities.

Side-Story 2.3: Credit Suisse Domain Model with the Main
Design Considerations

Between 1995 and 2005 the amount of information and know-how related
to the application landscape of Credit Suisse became far too large to be
understood and controlled by any single person or even a team. Over the
years, solutions were developed without always being correctly aligned
with the existing application landscape. This led to unnecessary complex-
ity, like unknown and unwanted redundancy, to silo’ed applications, to a
loss of conceptual integrity, strong architecture erosion and various other
issues.

In addition, starting in 2006 the strategy of Credit Suisse was oriented
towards “OneBank”, i.e. the global integration and cooperation of all business
units (Private banking, retail banking, corporate banking, asset management,
investment banking) into one business model under one common brand. This
again increased the challenge of managing the combined application land-
scapes.

This situation called for the development of a model of the “target system
for the integrated bank (One Bank)”. Such a model could then be used to
partition, organize, understand and control the consolidation and the evolu-
tion of the very large application landscape. A central architecture team was
mandated to develop the model — this was the start of the Credit Suisse
Combined Domain Model (CDM). The combined domain model relied on
an earlier application domain model developed and used in Credit Suisse
private banking. Part of the organization therefore was familiar with domain
models and had experienced their value for the management of the applica-
tion landscape.

2.5 Application Architecture

Due to the large size and the many different stakeholders, the development
of the domain model
“The key to controlling complexity is a good domain was started with an
model” enterprise model. This
Eric Evans, 2004 . .

enterprise model is
shown in Fig. 2.3: It consists of seven categories. Category 1 “Partners and
Persons” covers all the parties with which the bank is exchanging services or
information. This is done via category 5 “Communication and Collabora-
tion”. The categories 2 “Finance, Investment & Sales”, 3 “Trading and
Markets” and 4 “Cash and Asset Operations” are the “production lines” of
the bank — here the products and services are “manufactured”. Categories 6
“Accounting, Controlling and Reporting” and 7 “Enterprise Common Ser-
vices” cover enterprise support functions, such as human resource manage-
ment, compliance to all legal and regulatory requirements, enterprise content
management etc. Note that the business context of this domain model is
banking — other industries will have different domain models.

Once the enterprise model (Fig. 2.3) was agreed, a high-level decomposi-
tion of the functionality and data was laid down. The next step was to define
and assign domains.

Again, the collaborative effort of business and IT resources — this time on a
detailed level — was required. The current domain model of Credit Suisse is
shown in Fig. 2.4: It contains 22 domains (and covers the full business

@ Partners & Persons

e Accounting, Controlling and Reporting

@ Finance, Investments & Sales

(3]

@ Cash and Asset Operations

@
Enterprise Common Services

UOIIBIOQR|0D B UOHBIIUNWWOD (o)

Fig. 2.3 Categories of the Credit Suisse 2009 domain model

49

2 Architecture Management

50

[opOUW UIBWOP (00T ISSING 1IPAI) YL 7T “S1d

(ngo)
weswsabeueyy diysuonejey Jawoisny

(sno)
Jauped % J8Wolsn)

Sjuno2ay 9|buls

® Juawabeue|y yies

(sva) (©07)
suolnjos aseg asudisjug sosibo
(V09)
Buioinies 1essy
=
o ®
(A@2) & 4 (sHo)
Apoisno > 3 uoledIpuAs pue sypai)
D Q
=] —
e a
(710s) > o
Buies|) pue Juswames % S
o o
~—
=
o] D (VINM)
(ovs) .W = Kiosinpy
S e
2 ®
o
=]
(7]

(Avd)

sjuawAied

Bununodoy [eloueuly

>
Q
Q
]
c
=1
E
Q
o
o]
=t
5

(4y)
Aupinbr pue
ysiy ‘Aioyeinbay

Buipoday pue Buijjosuo) ‘Bununosdy :9

(N14) uonew.ou| 193EN [elouBUlS

(1SS) seoepaiy epis 19848

(WD3) 1uswsbeue|y usiuog ssudisiug

uoljeloge||0) @ SUOIIEIIUNWWOY) G

(v dg) suoneoyddy Jeuped sseuisng

(YHD) sseooy pue uopedUNWWo)

'

¢

¢

¢

¢

v

¢

$S900Y
19e N

s18pinold
eleq 1axeN

SIBpIACId
ERIINEL
[eloueuly

sloje|nbay

suoneolddy
Jauned

saafoldw3
SO

21|gnd % s1oedsoid
‘sjusl|) SO

2.5 Application Architecture 51

offering of Credit Suisse worldwide). The domain model has proven to be
an invaluable tool for a number of processes.

The domain model became the key structural ordering element: Most
applications were assigned to subdomains. An inventory and planning tool
was introduced which listed all applications, together with a large number of
properties and attributes of the individual applications and the information
flows between the applications.

The domain model (see Side-Story 2.3) is linked to the business component map as
presented in Side-Story 2.2. They are, however, not the same. Side-Story 2.4
explains their relationship.

Side-Story 2.4. Relationship Between CDM and BCM

In the middle of Fig. 2.5 a list of functions and data is shown: This list
contains the complete functionality and all the data required to operate the
business. The list is unstructured. There is only one such list: The list is
complete, free of redundancy and consistent — it represents the “atomic”
breakdown of the business to be supported by the system. An atomic business
function is the lowest level of functionality in a system that is still recogniz-
able to the business (see [Sessions_09], [Sessions_08]). Note that all the
functions and data are included, not only the IT-supported functions and
data, but also the functions executed manually and the data used in manual
processes.

On the left side of Fig. 2.5 the BCM (Business Component Map) is
presented. The BCM relates to the list of functions via a mapping of individ-
ual functions into the business components. The mapping rules are according
to the business view. The aggregation into business components is optimized
for reuse in business processes. It is therefore possible that some basic
functionality or data required to operate the system (such as reference data,
access protection functions, etc.) is not mapped to the BCM, but only to the
domain model.

On the right side of Fig. 2.5 the CDM (Combined Domain Model) is
drawn. The CDM relates to the list of functions and data via a mapping of
individual functions and data elements into the domains. The mapping rules
are according to optimal IT implementation. All functions and data are
uniquely assigned. Following the principle of functional and data business
cohesion this partitioning provides the foundation for the optimized, effective
and efficient IT implementation of the business functionality and data.

2 Architecture Management

52

diysuonerar [opow urewop uonedrjdde pue dew juouodwos ssouisng §°7 "SI

H
H

9T e3edq A O uot3oung

GT ®e3 d uoT3oung
\«\ﬂNmqu olﬁoﬂuuﬁs.ﬁ
| @ €T e3ed N uoTt3odoung

¢l _eaed [—eW uoTioung

LI =3=d

—8 T UOT3DUND|

0T ®e3ea M uoTioung
[~~e 6 ®3RQ I uoTtaioung
/ﬁumm H uoT3ound]|
/el D UOTIDUND|
_ — _ _ — __ - _eleq /o_mlcoﬂpons.m
5 — T uoTaouna
¥ eaeq g uoTjioung
(W@Q) 1spo urewoq cerea | Ne o woTiouna
Z eaed g uotr3oundg
T e3eq Y uoT3iodoung
eled uoinoun4

i

Bl

(WD4g) depy weuodwo) ssauisng

2.5 Application Architecture 53

Business component maps and domain models are structural models. Structural
models are necessary, but not sufficient to model an information system. In a very
large information system with many stakeholders and a distributed system devel-
opment activity the semantics — the exact meaning ([Vygotsky_02], [Portner_05])
of all concepts, terms and expressions used in the system — must be defined
([McComb_04]) so that all architects, programmers and users of the system rely
on a common semantic definition of the shared objects. Semantic ambiguity is one
of the prime reasons for redundancy in systems. The same concept is implemented
slightly differently in different domains. Unclear semantics lead to integration
problems because two sides of an interface do not share the understanding of data
fields. They may, for example, assume different units of measurement. This creates
the need for semantic models.

Semantics can be modeled on different levels of consistency. The simplest form
is a glossary of terms, including allowable values, units etc. Often used semantic
definition instrument are taxonomies, which specify the hierarchy and the meaning
of terms used in an enter-
prise ([Stewart_08]). A | “As people start forming communities and attacking a
business object model problem, their approaches to the solution will vary. As
defines semantics on an these groups separate, they must develop more detailed
even higher level of con- c?mmunica‘rion within eac,h subgroqp, and the language

diverges. New words aren't usually invented, rather new

s1st?pcy. Al business meanings are imposed on the words and phrases already
entities are modeled as being used"

objects, including their Dave McComb, 2004
definitions, attributes,
operations and relationships ([Daum_03a], [Lhotka_08]). The richest level of
specification is ontologies ([Fensel_07], [Allemang_08], [McComb_04]). An ontol-
ogy is a logical model, defining all the objects, attributes and relationships in a
formal, machine-readable way. Ontologies — especially based on the standardized
Web Ontology Language OWL — form the base of the semantic web and thus of
future, semantically interoperable business systems ([Dietz_06], [Lacy_05],
[Stuckenschmidt_05], [Haase_06], Financial Ontology: [Montes_05]). The advan-
tage of ontologies is that they can be fully checked for internal consistency.

As an example, a small extract of the Credit Suisse business object model
(BOM) is presented in Side-Story 2.5. The business object model is an important
instrument of application architecture.

Side-Story 2.5: Credit Suisse Business Object Model

Business object models (BOMs), [Daum_03a], [Lhotka_08]) are highly
industry-specific models of the business concepts, their properties and their
relationships. Developing a sound, useful business object model for a very
large information system is a major endeavor which requires the massive
collaboration of both business knowledge and IT knowledge resources.

54 2 Architecture Management

A business object model captures the essence of a business in a formal way
and forms the basis for consistent IT implementation.

In order to keep the
“A sound conceptual model documents that the parti- BOM manageablez,
cipating analysts and engineers have understood the | Cre-dit Suisse used
problem” three levels of aggrega-
Berthold Daum, 2003 tion and three levels of
abstraction (Fig. 2.6).
The aggregation levels (from top to bottom) are “enterprise level”, “domain
level” and “component level”. Enterprise level business objects — labeled eBOs
— are at the top level. eBOs are valid for the complete enterprise. The eBOs are
refined by top-down transformation rules to the domain level (see Side-Story
2.3), where the domain business objects dBOs are maintained. The domain
business object model dBOM is the core knowledge base of banking concepts
and their relationships. The lowest level of aggregation is the “component
business objects”, i.e. the cBOs. ¢cBOs are modeled when individual compo-
nents are defined. cBOs are then used as the basis for implementation.

The abstraction levels are “conceptual”, “logical” and “physical”. The
BOM only handles the conceptual levels. The lower abstraction levels are
deduced and refined from the conceptual models.

Figure 2.7 shows the enterprise level BOM of Credit Suisse: All the key
concepts are captured and represented. All the dBOs — on the domain level —
are refined from the eBOs by adhering to clearly specified refinement rules
that are automatically checked by a model checker.

Aggregation Level

«— Enterprise Level —<——Domain Level——>+—Component Level—
.) \ \
' H 1

Enterprise Domain Component
5 Conceptual Business Object | Business Object | Business Object
sl Model Model Model
ol oy
S Iogical Logical Domain Logical Data
S| ‘el Model Model
o (optional, recommended)
g ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Physical Physical Data
Level Model

Fig. 2.6 BOM abstraction and aggregation levels in Credit Suisse

>The Credit Suisse BOM contains 21 Enterprise Business Objects (eBOs), in the order of 500
Domain Business Objects (dBOs) and several thousand Component Business Objects (cBOs).

55

2.5 Application Architecture

needs/receives

[opou 102[qo ssaursng [9A9] 9SLIAINUL ISSING PI) £°T "SI

oge
uodeyauswnooq =
oge
Juswinisu| [eloueuly =3
@
SRR seonpo.d ,w
swiojsuel) % W
ose /slejsuel] oge 3 2
[$}
80IN0saY olWouooq =J uonesedo = g
5
m Joj sajni W
= sapioid a
S
¢
B
o 2 oge oge
o S (p1epue)s)
3 g| |uompuon wia] E=| suewoo | 10npoId =
&
w sayloeds
= sl sI8jjo
g
oge
1senbay = 3
m M oge m
] S3
gl g < m 5 s W oljojuod uswesiby =) m
= m 2 o 3
HE 8 8 2
S < @ g sejeboaibbe sebeuew 3
S s @ @ i
Qo 3 =3 =
@ 2
oge oge sajius/sajebiiqo oge
Aued = swoaIby = Anuz uoneziuebio =

2 Architecture Management

A condensed specification of the eBOs is given in Table 2.2. The full
specification of eBOs contains the properties (attributes), the associations and
the BO management and versioning information.

Table 2.2 Description of Credit Suisse enterprise level business objects

Enterprise level business Description
object eBO

Organization Entity An OrganizationEntity is any unit within Credit Suisse. These units
may be ordered in a legal hierarchy, according to a line
management hierarchy (or matrix) or in an organization chart

Party Any internal or external entity with which an OrganizationEntity
exchanges information, documents, goods or services based on
an Agreement or a relationship. The entity can be a physical or
legal person, a corporation, a government unit, a group of persons
and any combination of these

Agreement An explicit or implicit contract between two or many Parties,
specifying rights, obligations and responsibilities of all Parties
involved. Agreements have either a predefined validity in time
(e.g. a credit duration) or have an indefinite temporal validity
(e.g. a cash account)

AgreementPortfolio The set of Agreements for which the bank has a responsibility based
on this AgreementPortfolio to supervise and/or manage risk,
investments, performance or other metrics and to report them to
the stakeholders and authorities

Financiallnstrument A Financiallnstrument is a standardized trading or exchange vehicle
that defines rights and obligations of a Party using the
Financiallnstrument. The value and price of a
Financiallnstrument can be obtained from market makers (Party)

Product A banking service or banking product offered and delivered by an
OrganizationEntity to one or several Parties

TermCondition Standard terms (e.g. prices or rates) and conditions (e.g. credit usage)
for Products and specific details of individual Agreements

Request A Request is any trigger (demand) to execute an action (Operation),

exchange information (DocumentReport) or generate, modify or
terminate an Agreement

Operation Transaction performed generally in the context of an Agreement
triggered by the arrival of a Request (e.g. order) and resulting in
the transfer or exchange of EconomicResources, exchange or
modification of information, or change of Agreement

EconomicResource An EconomicResource is a value under the control of a Party.
EconomicResources have measurable properties that can be used
by valuation methods to determine their value, e.g. their
monetary value

Document/Report A DocumentReport is a container for information of any form
(electronic, paper, message etc.) and of any content (text, figures,
pictures, sound, film etc.). A DocumentReport can either be raw
information or can be an assembly or aggregation of information
from various sources and/or DocumentReports compiled and
presented according to a defined set of rules

2.6 Technical Architecture 57

The “working level” of the BOM is the conceptual domain level. Each
domain refines and specifies its key business concepts, attributes, associations
and operations in their domain business object model dBOM.

As an example, the dBOM of the domain Customer and Partners (“CUS”,
see Side-Story 2.3) is shown in Fig. 2.8 (without associations). Any project
building a solution in the domain CUS — or using domain business objects
from the domain CUS - has to start with the CUS domain objects and refine
(enrich) them while constructing the component business objects cBOs.

One of the most demanding tasks related to the business object model of a
very large information system is the model consistency. If the model is not
consistent, it may cause more harm than benefit! The hierarchical consistency
is assured by a clearly specified set of rules for how a dBO is enriched from an
eBO and how a cBO is enriched from a dBO, including the refinement of
associations, attributes and operations. Overall consistency as an example
assures uniqueness in the namespace for all elements of the model. In a very
large information system, business object model consistency can only be
assured by a common repository and an automated model checker.

2.6 Technical Architecture

Technical architecture is the underlying layer of infrastructure comprising all
elements of IT infrastructure such as hardware, system software, databases, net-
working components, system management software, database management systems
and middleware components. Typically, this layer is not fundamentally dependent
on the purpose the system is used for. We call the set of technology components
used in this architecture layer the technology portfolio. Most of the elements in the
technology portfolio can be found underneath any kind of very large information
system. There is a gray zone between applications and infrastructure, which is
commonly, but not very precisely, called middleware. These are technology com-
ponents that can be considered part of the application or infrastructure in its
own right. Depending on the maturity of the organization and the kind of applica-
tions on top of the infrastructure, this boundary may be chosen at different levels
([Masak_07], [Woods_03], [Britton_01]). Efficient organizations generally try to
move this boundary upwards by standardizing more and more of the middleware
and providing it as a set of common services to the applications. It is also a historic
development in computing that ever more powerful abstractions have been devel-
oped and used over time. Examples include operating systems, virtual machines,
databases and transaction monitors. More about the concepts and principles on how
to manage the technology portfolio can be found in Chap. 4 (Infrastructure).

The infrastructure layer introduced in Fig. 2.1 is organized as technical domains:
The technical domains form the basis for managing the technology portfolio. In the
federated architecture organization each technical domain is managed by a techni-
cal domain architect. It is the role of the domain architect to define standards and

2 Architecture Management

58

Joured pue 1owoIsnd,, urewiop Ay} Jo [opow 309[qo ssaursng (Gg-AI101S-9pIS) §°C "SI

ogap

JOBJU0D =
osap
Buroinies =
ogp osgp ogr
BlegsnoleA B | eouendwog uononusujbuisseipy =3

=
ogp
SsaIppy =
oap
uononJsu| m
oap

ogr

o8P ogp dnoinisuped =
Juswealbyiauped = Ja1ssoq = Jauped =

\ / osp

o uonejuswbag =
1xajuoJaissoqioured =Jj
oap
1xejuoQIeuNEdloued =) [eneq
juswauyel juswaulel urewoqg
|enae’]
oge osg®

Juawealby = feq = asldisjug

2.6 Technical Architecture 59

roadmaps for all the technical components and platforms in his or her domain.
Careful, continuous and predictable management of the technology portfolio is
fundamental for managed evolution. Replacement of a substantial part of the tech-
nology portfolio within a short timeframe is typically impossible due to the appli-
cation adoption effort. Porting and retesting the large number of applications
relying on a particular technical component in very large information systems is
just too expensive. If the change in the technology portfolio is gradual and predict-
able, the applications can adapt within their natural lifecycles paced by the chang-
ing business needs.

The choice of technical domains is an important architectural decision reflecting
the market segmentation for infrastructure products. A proven technical domain
model is shown in Fig. 2.9. This technical domain model contains 11 fechnical
domains:

1. Platforms: The platforms are specifically defined, engineered and implemented
to present the infrastructure services to the applications. Platforms integrate
software and hardware components and processes;

2. Application Development Environments: Tools and processes needed for the
modelling, development, test, integration and documentation of applications;

3. Integration Software: Technical components for the communication between
applications. Often this is known under the term middleware in the market;

Infrastructure Layer

2 .
o
S
B
& Platforms
g (Application Platforms and Runtime Platforms)
s
o —
=
,,,,,,,,,,, g g [0} - -
£
=) Application Development >
° PP . p Integration Software <
] Environments S
@ < = =
(5} [53 =
=} (o} [} 3
3 = . i € 2
§ 5 Enterprise Messaging Data Management < 3
o @ and Directory and Data Bases 2 =
3 2 & =
H k]
s v
Operating Systems and Transaction Managers
—_— @
g
PR b Networks }~ ------ - -1 | &
° o
3 0
IS 8
& L S
g Server and Data Center Infrastructure %
‘E 2
©
I

Provide services to others

Fig. 2.9 Technical domain model

60 2 Architecture Management

4. Enterprise Messaging and Directory: Enterprise infrastructure for employee
and customer communication, including e-Mail, directory services, instant
messaging;

5. Data Management and Data Bases: Databases and their management systems
(e.g. database server software, database client drivers), database development
tools (e.g. Schema modelling tools);

6. Operating Systems and Transaction Managers: Server operating systems,
server virtualization, web and application servers (e.g. JEE container), transac-
tion managers;

7. Systems Management: Systems and software required for monitoring, manage-
ment, performance analysis and operating of the very large information system,
such as capacity and performance management, configuration and inventory
management, incident management;

8. IT Security: All the systems and software for the protection of the assets, such
as security administration, data encryption, Internet boundary protection;

9. End User Technology: Tools provided to the end user to improve personal
productivity, such as personal computers, office applications, collaboration
technologies, mobile access and printing;

10. Networks: All the products to connect systems on the data transmission level,
both within the information system and also across the boundaries, such as to
the Internet;

11. Server and Data Center Infrastructure: Data center hardware and physical
infrastructure, including emergency back up power, cabling, cooling, server
hardware and storage facilities.

The technical domains (Fig. 2.9) are organized in three layers: “Hardware
products”, “software products” and “platform products”. Products in higher layers
build on top of products in the lower layers. Platforms form the highest layer,
providing integrated infrastructure services to the applications. Some technical
domains cover more than one layer because software and hardware are closely
linked to each other. The technical domain end-user technology is such an example,
because it contains all the necessary hardware and software products to deliver the

end-user services and is in itself a platform.

2.7 Vertical Architectures

Some architecture aspects relate at the same time to business, application and
technical architecture and have to be managed across all layers on the level of the
entire global system. Such architectures are termed vertical architectures (see
Fig. 2.10).

Integration architecture is an important prerequisite for the managed evolution.
The integration architecture (see Chap. 3) consists of principles, processes and
technical solutions for managing the distribution and heterogeneity of the application

61

2.7 Vertical Architectures

SBATE QINJOANIYDIR [BONIDA (T°T "SI

1US1SISUOD PUEB UOIEdIUNWWOD aienbape ‘Buiyew-uoisiosp jusiedsuel) ainsse sasse00.id paulep-||op

uolenyis Jualind ay} 0} 10adsal Yim 81nj0s)ydle JO JUSWSdIoM S

$9SS900.d pue 92UBUIDA0Y) 8IN}08UYIIY 1|

X 24n1081IY2.1Y [EOILIBA

wielsAs 8y} Ul S}OSSE UOIBLIOUI 8U} O UOIO8I0Id

2in3o81yoay Ajunodas

Jeanoniselul | Yyoiym <-
sjuauodwod [ed1uyda)] pazipiepue)s
uo paseq swuoje|d uoneoldde pazipiepuels

salnjonJs [euoneziuebio pue sassadold
[ewndo jo uoneziin a8y} uo paseq [ppow ssauisng

ainjo8yoly ssauisng

(7))
%
a2l
[} -
g83 ||5 o2 94N103}1Yy2Jy aJnjonJiselpul/jesaiuydal
| M' = ||zgs3 &
Heg® Aezx83
S5p (28352
239 (|ISEKS ¢Suauodwoo pue suopeoldde yoiym <-
zz3 ||& 2 W > sa|diound uowwod o} Buipiodoe
® < D m ©53 paysijqeise adeospue| uoneoldde painyoniis-|lop
225 |38 21n308}1yauy uonesiddy
< @ OS50 O
H > a8 H=
H2306 A5®2%20
m fox = N3 M m. ¢suonezjuebio pue sassao0.d “suonouny Yoiym<-
@ m (1]
=
o

62 2 Architecture Management

landscape and the underlying technologies. Most importantly it defines the concept
of interfaces, a process to manage interfaces and technologies to implement inter-
faces across heterogeneous technology platforms and application domains. This is
particularly important for the managed evolution, since under this concept only
parts of functionality or technology of the entire system can be replaced. So
managing the interfaces among these parts, allowing for an independent lifecycle
for each part is fundamental for the success of managed evolution of very large
information systems. This is recognized by most architects of large systems under
the term “Service-Oriented Architecture” (SOA), see ([Erl_04], [Masak_07],
[Woods_03], [McGovern_06], [Chappell_04], [Woods_06]), although the contem-
porary SOA-discussion is still too much focused on the technology rather than
interface management. It is really crucial to see integration architecture as a vertical
architecture that overlaps all three architecture layers in the following ways:

e It overlaps with business architecture where services should be integrated in a
flexible way to easily create new views on business objects or be orchestrated
into new implementations of business processes,

e It overlaps with application architecture where the syntax and semantics of the
interfaces and general principles of where and how to interface are defined,

e It overlaps with technical architecture where it defines the underlying integra-
tion technologies, such as middleware, and methods.

Other vertical architectures depend strongly on the context of the system. In the
context of banking, where confidentiality of data and flawless operation without
interruptions or data losses are mandatory for success, security architecture and
systems management architecture have proven to be essential vertical architectures
(Fig. 2.10). One can imagine, however, application areas like numeric simulation
systems to define performance architecture or military systems to define resilience
architecture. More generally, vertical architectures represent important non-
functional aspects of very large information systems which are of universal impact
across the whole system.

As a more detailed example, the Credit Suisse security architecture is described
in Side-Story 2.6.

Side-Story 2.6. Credit Suisse Security Architecture

Security is an important property of a system of a financial institution.
Customer data and client transactions must be well protected against unau-
thorized access. Because a large percentage of transactions are executed
electronically in today’s modern banking and at the same time attacks from
the outside become more and more frequent and dangerous dependable
security architecture is mandatory.

2.7 Vertical Architectures

Today the security of systems is a well studied and fast progressing field. A
great number of

security —concepts, | “Being able to detect, contain and eradicate security
mechanisms, tools | incidentsisinmany respects equivalent to defusing explo-
and methods exist. | Sives - the sooner and better you do it, the less impact a
security-related incident is likely to have”

Linda McCarthy, 2003

To assure sufficient
security in a very
large information
system, a suitable, consistent and complete set of security measures must be
defined, implemented, enforced and controlled: An important means to do so
is the security architecture.

Security architecture ([Killmeyer_06]) is not described as objects and
relationships: Security architecture consists of objectives, concepts, standards
and security services that must be implemented throughout the complete
system — hence the name “vertical architecture”. Vertical architectures —
especially security architecture — are not static architectures: The range and
scope of threats is ever-increasing, including more sophisticated cyber-crime
(see e.g. [Deloitte_10], [CERT_04]). Therefore, the Credit Suisse security
architecture and the protection measures are continuously improved and
adapted. This is in the responsibility of a global group of security architects,
directly reporting to the Chief Architect.

The structure of the Credit Suisse security architecture is shown in
Fig. 2.11: It consists of three horizontal functional layers — the transportation
layer, the transformation layer and the manipulation layer. A typical transac-
tion starts in the manipulation layer in one part of the system, is propagated
down through the transformation layer, transported via the transportation
layer and arrives in another part of the system where it runs up through the

Manipu-
lation
Layer
- - - -
= S 5 Z =y S
> = = 5 3 2T
8 3 IS 8 [=S Trans-
3 5 £ 5 I%5) S 8 2 formation
[0 [0) =
n = < £ % g n g Layer
= 2> Q T
L < < e < - < -
Trans-
portation
Layer

Fig. 2.11 Credit Suisse security architecture

63

64

2 Architecture Management

transformation layer and is consumed and processed in the manipulation
layer. Each layer is subject to various possible attacks.

The security architecture defines six security technology towers
(Fig. 2.11): Four of them are security mechanisms, i.e. authentication, autho-
rization, data security and accountability. The last two are security controls,
i.e. security administration and security monitoring (see [Proctor_02],
[Umar_04], [McCarthy_03] for details). The individual security technology
towers provide the concepts, standards, processes, technologies and services
for:

Authentication: Reliable identification and verification of the identity of
system users, system components (servers and applications) and external
partner systems,

Authorization: Granting (or denying) access of users and system compo-
nents to resources based on the verified identity of a requestor and relying on
explicit access control policies;

Data Security: Protection of data stored in the system or transmitted
between systems against any unauthorized access or eavesdropping;

Accountability: Generation of a complete audit trail for all security-rele-
vant transactions, including attacks and incidents;

Security Monitoring: Continuous supervision of the system activities
related to security, including detection of real or attempted security breaches,
such as intrusions and unauthorized accesses;

Security Administration: Management of identity credentials for authenti-
cation and access rights for authorization for all users, systems and resources.

For each functional layer the respective security technology towers specify
security components. The security components must strictly be implemented
in all parts of the Credit Suisse very large information system. Security is the
subject of regular assessments by internal IT risk and audit, and is periodi-
cally scrutinized by independent external experts.

The impact of vertical security architecture on managed evolution is
twofold: First, the weakest point in the very large information system deter-
mines to a large extent the overall security level of the system. It is therefore
mandatory, to assure and maintain a consistent level of security throughout
the complete very large information system, thus preventing security loop-
holes. Strong vertical security architecture allows the definition, implemen-
tation, checking and auditing of the security mechanisms implemented in the
system. Second, individual applications and projects take advantage of the
deployed security infrastructure and do not have to spend repeated effort and
time on “reinventing security solutions”.

2.8 Architecture as an Activity: The Architecture Process 65

2.8 Architecture as an Activity: The Architecture Process

One view of IT architecture is to see it as one of the management processes
governing a very large information system. The purpose of that process is defining
a target architecture and to steer the evolution of the system towards this target
architecture. As shown in Fig. 2.12 the architecture process can be separated into
four subprocesses:

. Architecture development

. Architecture communication
. Architecture implementation
. Architecture controlling.

AW N =

The architecture definition process results in ratified architecture standards,
models, target architectures and guidelines, which are mandatory for all develop-
ment work within scope. The process starts with studies, prototypes and pilot
projects. Pilot projects apply non-standard technology in production applications
in order to understand general applicability. The evaluation result is subsequently
used for decision making. In the ideal IT organization described in Chap. 6, there
are two areas where architecture decisions are made: In the architecture function
within the application development units and in the infrastructure architecture

IT Architecture Standards Definition IT Architecture Standards Implementation

(strategic) (operational)
1. 2. 3. 4.
Architecture Architecture Architecture Architecture
Development Communication Implementation Controlling

Architecture
scorecard, KPIs

| IT development IT project

L community review board
\—‘9‘ IT development project P;
Strategies, H I T T
principles, —H IT development project P,
standards ! P S— —
| Y
IT development project P,
Py
|

| IT development project P,

Strategies,
principles,
standards and

guidelines
repository

and guidelines 4E—>‘ IT development project P,
Ly
|
i
T
1
1
I
I
1
i
I
I
1
:
1
I
i

Fig. 2.12 Architecture process

66 2 Architecture Management

function. These groups should have in place standing steering committees with
representation across the architecture communities within their units. These steer-
ing committees are responsible for reviewing and approving all major architect
decisions regarding strategies, programs, etc.

In addition, an IT-wide architecture steering committee led by the Chief Architect
should be established to ratify the major decisions of the underlying committees. This
IT-wide committee is also responsible for establishing overall strategy and many of
the overarching elements of architecture management described in this book.

It is important to reinforce the binding nature of the decisions of these bodies by
having well-defined membership and charters, regular scheduled meetings and
published documentation and minutes. Where appropriate, the decisions should
be documented as official standards for the IT organization.

The most important architecture strategies and decisions should be taken to the
IT management committee for discussion and decision. For this to be effective, the
Chief Architect should establish as part of the architecture planning cycle an agenda
of key decisions required to support the managed evolution and guide these deci-
sions through the governance process so they can be properly positioned for success
with his or her peers.

The efficient operation of these steering bodies requires investment in syndica-
tion of the proposed decisions with the relevant committee members and other
influential stakeholders prior to the meeting. In our experience, without such
syndication and the integration of the resulting feedback into the proposal, many
decisions will be sent back for further work or be rejected altogether.

As architecture work starts with every single developer, architecture communi-
cation 1is a very important first step to steer the system towards the target architec-
ture. Architecture
communication starts
“Critical structural decisions are often made on the side, with a well structured
without executing proper control - for example, an engi-

neer might quickly write a small batch program to syn-
chronize data between two systems, and 10 years later, a

architecture documen-
tation that documents

small army of developers is needed to deal with the con- all the standards, guide-
sequences of this ad-hoc decision” lines, target architec-
Dirk Krafzig, 2005 tures and the like. It is

crucial that multiple tar-
geted views of the same set of standards exist for different roles in the development
process. The Java software developer will generally not be interested in testing
standards for mainframe software developers and vice versa. Architecture needs to
be communicated over multiple channels including documentation on the web,
formal developer education, question and answer sessions with the architects and
management leadership by the senior architects. It is important that communication
is not a one-way channel, as widespread acceptance in the community is paramount
to success. The general experience shows that resources invested into good com-
munication pay back several times in the architecture implementation process.
As an example the Credit Suisse architecture communication concept is pre-
sented in Side-Story 2.7.

2.8 Architecture as an Activity: The Architecture Process 67

Side-Story 2.7. Credit Suisse Architecture Communication
Process

Architecture knowledge has become quite extensive in Credit Suisse. Much
of it is documented in the form of binding IT standards. One key requirement
is to make this knowledge available to the community in a suitable form. This
is the objective of the architecture communication process. At Credit Suisse
architecture communication happens through a number of different channels,
such as classroom learning, consulting in projects, regular brush-ups, written
communication and up-to-date webpages.

Classroom learning starts with the architecture boot camp: Each new hire
entering a Credit Suisse Private Banking development department goes
through a 2-day boot camp where the basics of Credit Suisse IT architecture
are presented. Another instrument is Fit-for-Architecture, a full-day course
mandatory to all solution architects at periodic intervals. In fit-for-architec-
ture, new developments in architecture and IT standards are communicated.
More than 20 architecture events in the form of auditorium and video
broadcast lectures to a larger audience presenting new developments or
emerging concepts are carried out each year.

Written communication includes the IT standards. In addition, some periodic
publications, such as InsidelT, Transfer and an architecture newsletter are
available. These publications are comprehensive and address a large audience.

Last butnot least, architects from central architecture and domain architects are
involved as consultants in every important project, bringing their expertise into the
project at an early stage and accompanying the projects until their completion.

Formal project reviews by central architecture (see Table 2.3) are also used
as a communication channel: Any architecture deficiency found during a
review is discussed with the project architects, thus educating them on the job.

The architecture implementation process ensures that the standards and guidelines
are adhered to and that exceptions to standards are managed at the appropriate level.
If we presume that the system is changed by the portfolio of projects, this is best
ensured by reviewing all projects at well-defined points in the project lifecycle with
regard to their adherence to architecture standards, the quality of their design and the
fit into the remainder of the application landscape. Project reviews are executed
according to a fixed procedure and are based on formal review sheets. Side-Story 2.8
shows part of the architecture review check list used in the project reviews by Credit
Suisse. In addition to that, senior architects are appointed as solution architects for
critical projects, where substantial architecture impact is to be expected.

The other element of the architecture implementation process is the design and
the sponsoring of architecture programs. Architecture programs are collections of
IT architecture-driven projects that implement infrastructure in support of the target
architecture, restructure applications that are no longer structurally fit for exten-
sions and help retire outdated technology solutions and applications.

68

2 Architecture Management

Side-Story 2.8. Credit Suisse Check List for Architecture
Reviews

Every project of a certain size (measured by its development cost) or of
architectural importance is reviewed four times according to the Credit Suisse
project methodology by a team of IT architecture reviewers. Credit Suisse
Private Banking uses two project methodologies: The classical waterfall
model and the Rational Unified Process (RUP). For each project, the adequate
methodology is chosen.

As an example, the waterfall model reviews correspond to the four project
phases:

e PC: Project concept. The initial project concept is described in a
document. It contains the basic project justification, the main project
objectives and the project setup.

e PO: Project offer. The planned implementation — possibly including
some options — is described in a document. Risk analysis and project
planning is presented.

e RO: Realization offer. The project documents its activities, the
solution architecture, the interaction with other applications and
projects and the impact on the application landscape. The project
planning and risk analysis is refined.

® RC: Request for conclusion. The project reports on the achieve-
ments, the open issues and the recommendations for the future.

The review is conducted by 2-5 reviewers based on an IT architecture
project review checklist. Table 2.3 shows a short check list extract covering
general questions, setup and banking applications. The full checklist covers
all systems management, infrastructure, etc. Reviewers agree on common
findings, resulting in a consolidated review report being communicated to the
project. The conclusion of the review report is either “OK” which means that
the project can continue as proposed, or “OKA” (“Auflagen” in German,
hence “OKA”), which means that the project has to accept obligations, or
“NOK” (Not OK) meaning that the project cannot enter the next phase before
the raised issues are resolved and reviewed again.

The most important part of the review report is the obligations: Here the
reviewers express requirements for architectural integrity of the modifica-
tions done by the project to the application landscape. Any obligation entered
by the reviewers is recorded in a centralized obligation management system
and is tracked. The mechanism of associating obligations by architecture
reviewers to projects is important for managed evolution: It assures that
each project is contributing to — or at least not damaging — the architectural
integrity of the application landscape and thus improves the agility of the
system (as shown in Fig. 1.7.).

2.8 Architecture as an Activity: The Architecture Process 69
Table 2.3 (Side-Story 2.8) Credit Suisse IT architecture review checklist (Extract)
IT Architecture Project Review Board of the 27.05.2009
X
o
x £ 6
3 & 2 Reasons for NOK
Evaluation Architecture | | X | |
Architecture Reviewers Date Findings Condition Deadline
Hans Muster 19.05.2009 | The proposed data Propose a new data PO
Peter Beispiel migration concept leads | migration concept which
Jirg Modell to unmanaged data completely eliminates data
redundancy redundancy

Exceptions, accepted deviation from standards

none

Conditions of Previous Reviews

<
=z

Comment / Statement

If conditions have not been met, discuss further actions with KSCD

Have the conditions of the previous review(s) been met? X | No open conditions

Review Details

Part 1: Sufficient/adequate documentation of architecture relevant requirements/descriptions

Nr. | PC|PO|RO

RC

Legend: Y = Yes /N = No /| = Irrelevant Y|N

Comment /
Statement

Vo1 X | X

Has the relevance for the strategy been described

Overall strategy/IT strategy
Strategy of domain/area

Vo2 |[(X)| X | X

Have the functional requirements been described
in a way that allows to derive and assess the
implications on the IT-architecture and design?

Vo3 |[(X)| X | X

Are the non-functional requirements described in a
way that allows to derive and evaluate implications
for the IT architecture and design .

vod | (X)| X | X

Is the architecture relevant information available
and are the relevant architecture decisions
documented, e.g. concerning

Available options (PO)

Integration into overall system
Interfaces to other
projects/domains/applications
Application and technical solution
Security concept, risks

Systems management, production
Phase out of 'obsolete' architecture (e.g.
technical or application components)

V05 ™[x

Entries in Information System and Dictionaries:

Application parameters entered in the
applications inventory?

Portfolio of technical standards (TIA)
updated?

(continued)

70 2 Architecture Management

Table 2.3 (Side-Story 2.8) (continued)

Part 2: General setup, integration/delineation

Nr. | PC| PO | RO |Legend: Y = Yes/N = No/ | = Irrelevant Y|N

Comment / Statement

Go02 X | X | (X) [Integration into the overall system/ avoidance of
redundancies

® Are the boundaries/interactions with other
projects, processes, domains, applications
and infrastructures clear and appropriate?

= Are potential redundancies, overlaps e.g.
concerning infrastructures, services
reasonable? Justified? Accepted?

" |s there a mix of old and new architecture?
Reasonable? Justified?

Go3 X | X [Migration to standard architecture / phase out of
obsolete architecture/standards:

= Are the necessary actions for a migration to
standard architecture planned, described
and appropriate?

= |s it documented how/when old architecture
will be phased out?

G04 | (X)| X | (X) [Options:

= Are the proposed options appropriate and
complete?
® s the proposed option reasonable?

G0O5 | (X)| X | X [Risks:

= Have all risks relevant for architecture been
identified?
= Have they been mitigated accordingly?

etc.

The fourth architecture process — architecture controlling — measures progress
towards the target architecture. Typically this process is implemented as a balanced
scorecard ([Kaplan_96], [Niven_06], [Kaplan_06]) of key performance indicators
measuring various indicators (see Side-Story 7.3), including the following:

1.

Standard deviation indicators measure on the one hand, whether the exception
management process is sound and, on the other hand, whether the standards are
appropriate to fulfil a majority of the needs.

. Strategy adoption indicators measure how new architecture elements are being

accepted in the projects. This is particularly important if the strategy requires the
retirement of a widely used technology or interface. There, careful observation
of the progress and immediate reaction to deviation from the plan are crucial for
success.

. Architecture process quality indicators measure stakeholder feedbacks, review

efficiency, decision making efficiency, documentation quality and the like.

All performance indicators need to be reviewed regularly by the architecture

process owner and the appropriate changes must be made to the other parts of the
architecture.

2.9 Architecture Organization: Federated Architecture Process 71

2.9 Architecture Organization: Federated
Architecture Process

Very large information systems are typically managed by large organizations. In
order for the architecture process to be effective it needs to be embedded properly
within the organization. The roles and responsibilities described below need to be
defined and implemented.

At the top of the architecture organization there is the chief architect responsible
for the architecture across the whole, global system. Alternatively, the chief archi-
tect is replaced by a committee of senior architects that make decisions. Given the
strategic importance of architecture for managed evolution, the chief architect
should, ideally, directly report to the CIO (Chief Information Officer) or other
manager in charge of the overall IT organization in the company. Key tasks of the
chief architect include the following:

e Lead the global architecture organization in its functional and regional dimen-
sions

e Chair the chief architect’s council that decides on architectural standards and
concepts

e As a direct report to the Chief Information Officer (CIO) the chief architect
represent architecture in the IT management team

e Lead the global architecture process, with a particular focus on reviewing
projects for architectural alignment

¢ Drive improvement of architecture, propose IT architecture changes

e Provide IT architecture frameworks and standards

e Lead definition of strategy and roadmap for IT architecture

e Sponsor a project portfolio to help implement architectural standards and con-
cepts, such as the execution of architecture programs

e Approve exceptions to standards where necessary.

Typically the chief architect is supported by a team that facilitates the architecture
process by preparing the meetings, recording the decisions, facilitating communications
like web conferencing
or preparing events and

) "The idea of Federated Enterprise Architecture is a
measuring key perfor- practical way to employ architectural concepts in com-
mance indicators. In addi- plex, multiunit enterprises; however, there is nothing
tion to that, a group for magic happening. Someone has to figure out and actually
create and manage what is to be federal, that is, centra-
lized, optimized relative to the overall enterprise (or
cluster), integrated, reused, etc. and conversely, some-

each of the architecture
layers or vertical areas

(application architecture, one has to figure out what is not to be federated, that is,
technical architecture, what is to remain local, sub-optimized relative to the
Security architecture, etc.) enterprise, unique to the business units"

John Zachman, 2006

directly reports to the
chief architect. The heads
of these groups take responsibility for the respective architecture area in the sense

72 2 Architecture Management

that they are experts in the field, define relevant architectural concepts and standards
for approval by the Chief Architecture Steering Committee and sponsor projects in
their area. Typically the architecture area heads also chair teams of experts through-
out the organization that help prepare architecture decisions.

Depending on the organization and on the importance of using the latest tech-
nology, the chief architect may also lead a research group that helps facilitate
innovation in the system. This team would usually be aligned to the external
research and industrial community in order to understand relevant technical devel-
opments and be able to transfer those into the organization. They generally work
with advanced technology studies, prototypes and pilots in order to evaluate new
technologies for general use in the system. The leader of the group is responsible for
the innovation portfolio.

In order to avoid the “ivory tower syndrome”, it is important that all architects in
these groups also perform real project work. Very often these architects act as
solution architects in projects of high architectural importance. It has proven to be a
good split of work, if these people dedicate one third of their time to projects and
two thirds of their time to enterprise architecture work. In the experience of the
authors, the chief architect’s direct organization should roughly represent 1% of the
staff in the overall IT organization.

According to the size of the organization, the chief architect’s organization can
be federated and have divisional (= business unit) or regional chief architects with
the same responsibility for a business unit or a region of the IT organization as
the chief architect has for the entire company. This organization is well suited
for large IT organizations with a business unit or regional structure that share
substantial parts of their systems. This is typically the case if all business units are
in the same business and share a single domain model, or if the business units
are heavily dependent on each other, by sharing a single infrastructure. To sum it
up, the architecture organization needs to have the same scope as the system that
is managed as a whole, which is tightly coupled and governed by the same
principles.

In a two-level chief architect’s organization the architecture area groups can be
distributed to the business units or the regions according to the main user principle
or be kept centrally. Typically each business unit’s chief architect has his own
architecture process group supporting the process in his business unit or region.

As architecture should be governed along the domain model, domain architects
are needed that are responsible for all aspects in their domain with the following
key tasks:

e Maintain, develop, communicate and enforce the target architecture for the
assigned domain. Define roadmaps and strategies to move towards the target
domain architecture,

e Together with the other domain architects continue to develop the overarching
domain model, decide on assigning technical products or applications to the
appropriate domains,

2.9 Architecture Organization: Federated Architecture Process 73

e Maintain the necessary data and object models for the assigned domain, align to
overarching models, drive prototypes, pilots and reengineering projects in the
domain,

¢ Regularly assess domain fitness, define necessary remediation steps.

e Maintain architectural information about the domain in order to facilitate sys-
tem-wide analyses,

e Review all projects that affect the domain,

e Lead all solution architects in the domain.

Domain architects need to be senior architects with a broad background, a deep
understanding of their domain and outstanding leadership skills. Domain architects
should report to the head of the developer group responsible for developments in
the domain. As the enterprise-wide architects, domain architects should be deeply
involved in projects. In the experience of the authors, a good split between project
and architecture governance work for the domain architects is 50% each. All
domain architects together typically represent another 1% of the overall IT staff
as a good benchmark, including one domain architect and one deputy for each
domain.

There are two kinds of domain architects: Technical domain architects have
responsibility for the architecture in a technical domain. Their second reporting line
is into the head of technical architecture. Application domain architects have
responsibility for application architecture in the domain and have a second report-
ing line into the head of application architecture. The responsibilities of application
and technical domain architects are slightly different because technical domains are
mainly buy-and-integrate, whereas application domains are often in-house devel-
opment-based. One major role of technical domain architects is to understand and
act on market trends. In contrast, application domain architects are more focused on
the dialog with their business partners to understand requirements.

In the two-level chief architect model, each business unit has their own domain
architects for all the domains relevant to the business unit. All business units work
with the same domain model. If there are multiple domain architects for the same
domain, but in different business units, one of them is the lead domain architect, in
charge of system-wide issues in a domain.

The third and largest group of architects is the solution architects. Depending on
the setup of the development organization, they are grouped in pools or assigned as
secondary roles to experienced developers. Each project should have a solution
architect assigned, in charge of the technical solution behind the project. Solution
architects need to be well trained and guided in order to understand the relevant
guidelines and standards applicable to their project. They need good leadership and
communication skills to guide the work inside their project team and to communi-
cate with the larger architecture organization to ensure a proper fit of their project
work. As explained in Chap. 1 steering every project vector a little bit into the
direction of better agility is the most effective way to evolve the system in the right
direction. Solution architects are key enablers of this process, as they make most of
the micro-architecture design decisions, which if added together constitute the

74 2 Architecture Management

architectural progress. Solution architects are also responsible to fix issues that
come up during the project reviews. But, one needs to be realistic here: Project
reviews can identify bad design or certain design flaws. But they cannot turn bad
design into good design by means of architecture obligations. The ultimate factor
for good design quality is the quality of the work of the solution architects. If they
don’t master their jobs, the whole organization doesn’t work. The architecture
process can only help by providing templates and standards that reduce the design
space and by reviewing the project results in order to ensure quality. Therefore, a
focus is needed on the selection and the development of solution architects. Chap. 6
(People and Culture) will elaborate more on this aspect. Typically, solution archi-
tects constitute a few percent of the total IT staff.

Side-Story 2.9: Credit Suisse IT Architecture Organization

Information technology within Credit Suisse is organized as a global unit,
serving all business units, with the CIO reporting to the CEO of the company.
As information technology is crucial to the bank’s success, roughly 20% of
the bank’s staff belongs to the information technology unit. The bulk of the IT
staff, on the one hand, belongs to four business-aligned departments building
and maintaining applications for the three core businesses: investment bank-
ing; private banking; and for the shared services area. On the other hand, all
infrastructure activities and the operation of data centers and applications sit
with the technology infrastructure department. Credit Suisse is managed in
the four regions Americas, Europe Middle East Africa, Asia Pacific and
Switzerland. Each region is managed by a regional CIO in charge of local
IT matters, such as human resources, regulatory reporting and day-to-day
operation (Fig. 2.13).

The architecture organization is federated and includes a small central
team in charge of global tools and processes to maintain the necessary data to
manage architecture. These systems include an application and technology
portfolio, which holds the current architecture of the global system as well
as the formal target architecture, organized along the application and the
technical domain model (see Side-Story 2.3). Other central teams manage
security architecture and integration architecture. This reflects the view that
security in a globally integrated system is only as good as its weakest link.
Integration architecture maintains the necessary standards and interface con-
tracts to enable interoperability across the enterprise. The central organiza-
tion is lead by the bank’s chief architect. The chief architect directly reports
to the bank’s CIO in charge of the information technology unit. The chief
architect runs a global architecture steering committee to set standards and
guidelines across the bank. In addition to that he/she also runs a global
architecture program bundling bank wide IT architecture investments, as

75

2.9 Architecture Organization: Federated Architecture Process

SUOT}OUN] SINJOYDIE PIJRISPIJ 3SSING IPAI) €1°T "SI

Seduswy seduswy Ame_‘_mE v
== penyory o1 f— mmo_h.wE%
9140 [~ ." [euolboy uoifey
|
|
ovdy ovdv (Ovdv)
Ayunwwo) F--4 wewoy —H oo — oyloed eisy
JET(1Te) 11 |euoifay uoifey
weawdojenag waisAs 4_
|
|
van3 1 [vana (vawa)
S}091Y2JY UuonN|oS F--q wewpiy —o o010 f— 1883 @IppI B edoin3
pud |- | reuoBey Lotk
|
|
|
HO | HO (HO)
F=-- 1001y01 T (e]le] 1 puepszimg
pyO |- | reuoBey Uoitsy
T T T |
1 | | |
1osiyary S10811YdIY S0891Y2IY spanyaly] |
urewoq urewoq ¥ urewoq urewoq |
|ealuyos | wawuedsqg yuswpedaqg yuswpedaqg |
= o L o |
| | | | |
| I | | |
ainjoniisesju| S0D al ad |
Josyaly 103)YdaIy 1o8yaIy 1osyaly |
OIy0 $9IUD $9IyD $9IyD |
"u “I .nu L “ pEaT [EUONOUNS = = = =
IIIIIIIIIIIIIIIIIIIIIIIIII |_. B wewabeuepy sur
ainjonisesju) [Slele) 4al ad 1091ydIyY
0 peaHy [o]}e] (e]le} (e]}e} Iy

,JL

swosAg ajelodion Bujueg juswiseau|
uun sseuisng

(S1L) (s00)
nn
ainjonusesu| uun ssauisng

(arn

(ad)

Buiyjueg ayeaud
Jun sseuisng

(reqoyb)
(o]fe]

76

2 Architecture Management

well as coordinating the departmental architecture programs. The chief archi-
tect is one of the CIO’s two staff functions, the other being the chief operating
officer (COO) mainly in charge of resource planning, risk management,
financials, project portfolio, reporting and planning of the IT unit.

Furthermore, each of the business units mentioned above have their own
architecture organizations, with a chief architect who reports directly into the
business units’ CIO with a functional management line into the bank’s chief
architect. The departmental chief architect runs a departmental architecture
steering committee, in charge of setting departmental standards and guide-
lines according to the overarching guidelines. These groups run the day-to-
day architecture implementation process by managing a departmental archi-
tecture program. Furthermore, they participate in a departmental project
review board, reviewing all projects, thus ensuring adherence to all relevant
standards. For the application oriented departments this mainly means data
and application architecture. One particular case is the infrastructure chief
architect, who is at the same time departmental chief architect of the technol-
ogy infrastructure services department. In contrast to his application collea-
gues who cover the application domain model (see Side-Story 2.3) within
their department, he covers the whole technical domain model (see Sect. 4.2).
He has groups in charge of the technology portfolio and platform architecture
managing the interface between applications and infrastructure, as well as
system management architecture ensuring efficient operation of platforms
and applications. As with his colleagues, infrastructure architecture maintains
its own architecture program and enforces standards in infrastructure projects
via the departmental project review board.

The most senior architect in a region — who is usually one of the
departmental chief architects — acts as regional chief architect with a dotted
line to the regional CIO. The regional responsibility is mainly for communi-
cation, culture and building up an architecture community in the region.
Furthermore, he is responsible for finding synergy opportunities across busi-
ness units from a regional perspective. Often it makes sense to use applica-
tions across business units in a local market, even if that isn’t the case
globally. Regional chief architects bring their unique regional perspective
into the global architecture steering committee. Typical regional peculiarities
in the banking business include local regulatory requirements or input on a
function the region is particularly strong in, as for example the Asia Pacific
region as a global software development center.

People in these functions are generally well-trained, experienced enterprise
architects with strong technical, strategic and communication skills. As Credit
Suisse believes that architects should be able to work hands-on, all architects
on the first two levels have an obligation to spend 25% of their time on project
work, often in the role of a solution architect in an important project.

2.9 Architecture Organization: Federated Architecture Process

The departmental chief architects have functional lines to the domain
architects, which organizationally sit with the corresponding development
and engineering departments. If the same domain is being worked on in
multiple departments, each has its own domain architect. Domain architects
of the same domain coordinate with each other. Appointing a lead domain
architect has been considered in cases where there are particularly strong
synergy opportunities among business units. Domain architects spend
roughly 50% of their time in strategic planning, coordination and alignment
of their domain, while they spend the other 50% on projects, typically as
solution architect.

The domain architects in turn lead the solution architects responsible for
architecture of the individual projects touching a domain. Each project has
the role of an architect in charge of the solution design in the project. In large
projects, solution architect is usually a distinct role, while a senior developer
might take it on in smaller projects.

The organization described in Side-Story 2.9 is appropriate to Credit
Suisse’s IT unit with more than 10’000 headcount. For a smaller organization
one layer less would be sufficient.

77

2 Springer
http://www.springer.com/978-3-642-01632-5

Managed Evolution

& Strategy for WVery Large Information Systems
Murer, 5.; Bonati, B

2011, XXV, 264 p., Hardcowver

ISBMN: 978-3-642-01632-5

	Chapter 2: Architecture Management
	2.1 What is IT Architecture and Why Is It Important to Managed Evolution
	2.2 Architecture Principles
	2.3 Architecture Layers and Models
	2.4 Business Architecture
	2.5 Application Architecture
	2.6 Technical Architecture
	2.7 Vertical Architectures
	2.8 Architecture as an Activity: The Architecture Process
	2.9 Architecture Organization: Federated Architecture Process

