Chapter 2
Condorcet’s Paradox and Group Coherence

2.1 Introduction

The possibility that various election paradoxes might exist has been seen to be a
potentially significant threat to the stability of election processes, and we have
developed a number of different mathematical models that can be used to assess
the likelihood that these paradoxes might actually be observed. These basic models
have been used to yield some support to the intuitively appealing hypothesis that the
likelihood that these voting paradoxes will be observed should tend to decrease
with increasing levels of social homogeneity among the preferences of voters in
the population, or as the degree of dependence among voters’ preferences in the
population tends to increase. There is a direct linkage between increases in the
measure of dependence among voters’ preferences and the degree of social homo-
geneity that is expected to exist in a voting situation.

An extensive survey of the work that has been performed to investigate the
association between the likelihood that voting paradoxes might occur and degrees
of social homogeneity is summarized in Gehrlein (2006a). The many different
measures of social homogeneity that have been developed in the literature can be
categorized as being either Population Specific Measures of Homogeneity or
Situation Specific Measures of Homogeneity. As in Chap. 1, we focus on the
association between the likelihood that a PMRW exists and degrees of social
homogeneity, since this area has received most of the attention in this type of
analysis. The extension of this analysis to other voting paradoxes will then be
considered later.

2.2 Population Specific Measures of Homogeneity

A Population Specific Measure of Social Homogeneity (PSM) is related to para-
meters of the population from which random voter preference profiles or voting
situations are generated. For three candidates, {A, B, C}, these measures are based
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on the p;’s from the p vectors that describe the likelihood that a randomly selected
voter will have the i possible linear preference ranking on the candidates. The
measure H(p) from (1.59) is one such a PSM, and it was pointed out in Chap. 1
that P}y (3,1, DC) generally increases as H(p) increases for p vectors in the DC
subset. However, it was also noted that this relationship deteriorates as n becomes
large. To the degree that the level of dependence between voters’ preferences
is related to social homogeneity, the Parameter o in P-E probability models is
also a PSM.

The general conclusion in Gehrlein (2006a) is that studies that have looked for a
general connection between P‘ISJMRW(m7 n,p) and various PSM’s have only found at
best a weak relationship. An explanation of this outcome can be based on the fact
that any p vector for a population will have only one value for the PSM that is being
considered, while it is possible that many voting situations could be generated from
that p. This leads to the consideration of measures of social homogeneity that are
based on characteristics of specific voting situations themselves, rather than on the
characteristics of the population from which a voting situation is obtained.

2.3 Situation Specific Measures of Homogeneity

A Situation Specific Measure of Homogeneity (SSM) does not measure social
homogeneity based on p vectors, as the PSM’s do. SSM’s are based on the #;’s of
the particular n vector for a given voting situation, or on the n vector that is obtained
by accumulating individual preferences in a voter preference profile. A SSM would
use the actual observed proportions, n;/n, as a substitute for the p; terms in any
PSM. For any particular voting situation, we know with certainty whether or not a
PMRW exists. It is therefore quite reasonable to expect to have a stronger correla-
tion between social homogeneity and the probability that a PMRW exists for studies
in which social homogeneity is measured by some SSM.

Most simple SSM’s still do not lead to a strong general relationship between
social homogeneity and the probability that a PMRW exists. However, it was found
in Gehrlein (2006a) that when the voters’ preferences are formed by a process that
imposes some internal structural consistency or some mutual coherence on voter
preference profiles or voting situations, much stronger relationships can be found
between SSM’s and the probability that a PMRW exists. The measures of mutual
coherence that have been found to exhibit this tendency are based on some simple
extensions of natural underlying conditions on voting situations that require that a
PMRW must exist.

Black (1958) found one such condition when voters’ preferences are restricted
to have the property of single-peaked preferences. To describe this property, we
define a measure of preference or utility, U (C j), that a given /" voter associates
with candidate C; in an m-candidate election on candidates {C;,C3,...,Cy}.
Increased measures of U’ (C j) indicate that a voter has an increased preference, or



2.3 Situation Specific Measures of Homogeneity 51

Fig. 2.1 An example Voter 1: Cg> C3>= Cs > C = Cy >~ C,y
preference proﬁle \yith three Voter 2: Cy = C3 > Cg> Cy = Cs> C,
voters and six candidates Voter 3: Cy= Cy= Cy = Cg = Cs = C).

utility, for the given candidate, so that the given voter’s individual preference
ranking on candidates will have C; > Cy if, and only if, U’ (Cj) > U(Cy).

Consider a simple example voter preference profile with three voters, where
each individual voter has a linear preference ranking on six candidates, as shown in
Fig. 2.1.

We can determine if the three voter’s preference rankings in the example in
Fig. 2.1 meet the definition of single-peaked preferences by trying to find U’ (C j)
values that are consistent with the preference rankings of the individual voters,
while simultaneously meeting an additional restriction. This additional restriction
can be established by drawing a graph like the one that is shown in Fig. 2.2.

Values of U'(C;) are displayed on the vertical axis of the graph in Fig. 2.2, and
the horizontal axis of the graph represents the sequence of C;’s that corresponds to
some linear overall reference ranking. Let C;OC; denote the fact that C; is ranked
before C; in this overall reference ranking. The specific overall reference ranking
that is used in Fig. 2.2 is C,OC40C30CcOCs0C,. Figure 2.2 shows a plot of
possible U’ (C j) values for each voter, as associated with specific candidates in the
sequence of C;’s in the overall reference ranking, such that the given U’ (C j) values
for a given i would reproduce the linear preference ranking of the associated i
voter in Fig. 2.1. The results that are displayed in Fig. 2.2 have U'(Cs) >
U'(C3) > U (Cs) > U'(Cy) > U'(Cyq) >U'(Cy), to correspond with the linear
preference ranking C¢ > C3 > Cs = Cy > C4 > C, for Voter 1. We do not claim
that the U’ (C,) values in the graph necessarily represent the true utility values that
voters have for candidates. The only claim is that they are possible utility values
that would result in the voters’ preference rankings on candidates.

Any of the possible 720 linear rankings on the six candidates could have been used
as an overall reference ranking. However, the specific overall reference ranking used
for Fig. 2.2 is of particular interest, since it results in plots of the possible U’ (C ,~)

—e— Voter 1
[0(eh) = \/oter 2
—a— Voter 3

G G G G GG

Fig. 2.2 A graph of single-peaked preference curves for three voters
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values that have single-peaked preference curves for each voter. Using the definition
in Black (1958, p. 7), a “single-peaked (preference) curve is one which changes
its direction at most once, from up to down.” The logical foundation of the definition
for single-peaked preferences is given in Black (1958, pp. 8-9):

While in practice a (committee) member’s preference curve may be of any shape whatso-
ever, there is reason to expect that, in some important practical problems the (preference)
valuations actually carried out will tend to take the form of isolated points on single-peaked
curves. This would be particularly likely to happen if the committee were considering
different possible sizes of a numerical quantity and choosing one size in preference to the
others. It might, for example, be reaching a decision with regard to the price of a product to
be marketed by a firm, or to the output for a future period, or the wage rate of labor, or the
height of a particular tax, or the legal age of leaving school, and so on.

Buchanan (1970) and Browning (1972) also consider various sets of natural
conditions that are likely to lead to the existence of single-peaked preferences for a
group of voters. Gaertner (2005) notes that arguments that ultimately lead to the
same definition of single-peaked preferences can be found as far back as the work of
Pufendorf in the seventeenth century. It can be concluded that the notion of single-
peaked preferences is not simply a mathematical artifact, and that it does have a
basis in reality for some voting scenarios.

The condition of single-peaked preference curves indicates the existence of a
situation in which all voters have preferences that are mutually coherent. That is,
the presence of such a situation suggests that there is mutual agreement among the
voters that some underlying characteristics of candidates exist that allow for the
sequencing of the candidates in some natural order from left to right, according to
their rankings in an overall reference order. Each voter would then have some
particular most preferred candidate in the sequence, with decreasing preferences on
candidates as they are ranked farther away, to the left or to the right, from their most
preferred candidate within the sequence of candidates in the overall reference order.

List (2002) discusses the notion of having different levels of group coherence of
preference, such that voters’ preferences might reflect a substantive level agree-
ment, to the extent that their preferences, or views, tend to have some degree of
consistency or homogeneity. However, voters might go beyond that and have
some degree of meta-level agreement, to the extent that they can agree on a
common dimension on which issues can be conceptualized. The voters might be
largely in agreement as to what this common dimension is, while being in great
disagreement as to what the optimal position on the dimension is. Positioning issues
along such a dimension is perfectly consistent with the notion of single-peaked
preferences. List (2002) argues that agreement at the meta-level is more likely to
reduce occurrences of paradoxical results like PMR cycles than is agreement on a
substantive level.

Dryzek and List (2003) extend this notion, by pointing out that two or more
individuals can agree on a substantive level to the extent that their preferences are
the same. However, these individuals might instead disagree on any common
ranking of alternatives that would reflect their own preferences, while they could
still agree on some ranking of alternatives along a common dimension. This second
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scenario is agreement on a meta-level. As described above, agreement on a meta-
level would imply a condition like single-peakedness. The introduction of issue
complexity might rule out any common agreement on any single dimension, but
multiple relevant issue dimensions coupled with individual voter’s preference
rankings of alternatives on the issue dimensions might lead to some “intra-
dimensional single-peakedness”.

Grofman and Uhlaner (1985) previously proposed a similar concept regarding
the existence of “meta-preferences” that would result when voters have preferences
for characteristics of broadly defined processes that might be involved in determin-
ing their individual preferences on candidates, rather than simply having prefer-
ences for candidates. They suggest that the additional structure that results from
processes that are based on such meta-preferences would lead to an increased level
of overall understanding of the entire decision process, and therefore to more
overall stability. This increased stability would therefore suggest that paradoxical
voting outcomes should be less likely to be observed.

All of this is supported by the work of Black (1958), where arguments are
developed to show that PMR must be transitive for odd # if any overall reference
order and possible U’ (Cj) values that are consistent with voters’ preference rank-
ings can be found to result in single-peaked preference curves for all voters. That is,
all voters’ preference curves must be single-peaked relative to the same overall
reference order. However, the assumption of perfectly single-peaked preferences
forces some very strict requirements on voters’ preferences, particularly when there
are many voters in the electorate.

Niemi (1969) proposed the notion of using some measure to the proximity of a
voting situation to having perfectly single-peaked preferences as a SSM, since it
might be overly restrictive to assume that all voters in a large electorate will have
preferences that are single-peaked. Given Black’s result, it seems very reasonable
to assume that the probability that PMR is transitive will remain high as long as the
preferences of most voters in a voting situation are consistent with the restriction of
single-peaked preferences. Niemi proposed that the proximity of a voting situation
to having perfectly single-peaked preferences could effectively be measured as the
minimum proportion of voters in the electorate who must have their preferences
ignored so that the preferences on the remaining candidates will be perfectly single-
peaked. As this necessary proportion of voters decreases, the closer the preferences
in the original voting situation are to being perfectly single-peaked. Niemi (1970)
performs an empirical study of seven three-candidate elections in which complete
preference rankings were reported by voters, to find that only one case resulted in
the existence of a PMR cycle, and that this case was the one that was farthest
removed from the condition of perfect single-peakedness with this measure. One
difficulty of using this measure as a SSM is that it can be difficult to calculate this
proportion, but results of Arrow (1963) can be applied to obtain a proxy for this
measure very easily in the case of three-candidate elections.

Arrow (1963) approaches the concept of single-peaked preferences in a very
different manner, by considering only the ordinal relationships between candidates
in rankings, without using Black’s U’(C;) values. Arrow’s findings lead to an
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alternative definition of single-peaked preferences, such that voters’ preferences are
perfectly single-peaked if for every triple of candidates, at least one candidate is
never ranked as least preferred among the three candidates by any voter. Arrow’s
definition lacks the conceptual appeal of Black’s utility based definition, but it is a
completely equivalent definition of single-peaked preferences.

2.3.1 Weak Measures of Group Coherence

The ideas that were proposed above by Black, Niemi and Arrow are all combined in
Gehrlein (2004b) to develop a SSM, Parameter b, that measures the minimum
number of times that some candidate is bottom ranked, or is least preferred, in the
preferences of the n voters in a voting situation, to serve as a simple measure of the
proximity of a voting situation to representing perfectly single-peaked preferences
in a three-candidate election, where

b = Min{n, + n3,ny + ng,ns + ng }. 2.1)

Here, the n; terms are defined for a voting situation from Fig. 1.1, which is
reproduced here for convenience in Fig. 2.3.

If b is equal to zero for a voting situation with three candidates, some candidate
is never ranked as least preferred, so the voting situation represents the condition in
which voters have perfectly single-peaked preferences. This would happen, for
example if n; +n3 = 0, where the definitions from Fig. 2.3 indicate that this
requires that Candidate C is never the least preferred candidate for any voter in
the associated voting situation. When b is maximized at n/3, a voting situation
reflects very disperse preferences of voters over candidates to reflect a situation that
is very far removed from perfect single-peakedness.

As Parameter b increases in voting situations, the preferences of voters in a
voting situation become more removed from the condition of perfect single-
peakedness. Another perspective on this issue is that a voting situation with a
small Parameter b reflects a situation in which there is some candidate that very
few voters think is the worst of the three candidates. The electorate would be
somewhat united by their weak support of, or lack of complete opposition to, the
election of such a candidate. In that sense, this candidate can be viewed as a Weak
Positively Unifying Candidate that voters would not generally think of as reflecting
the worst possible outcome if that candidate were to be elected.

A A B C B C
Fig. 2.3 The six possible B c A 4 c B
linear preference rankings on C B C B A A
three candidates ny ) n3 ny ns ng
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Vickery (1960) considers the well known condition of single-troughed prefer-
ences, and proves that the imposition of this assumption on voting situations will
also lead to the necessary existence of a PMRW. This condition is also known as
single-dipped preferences in the literature, but we use the term single-troughed
preferences since that term is the originally used by Vickery. The condition of
single-troughed preferences is equivalent to the condition of single-peaked
preferences, since every single-peaked voting situation corresponds to a single
troughed-voting situation in which all voters’ preference rankings are inverted.
For a three-candidate election, it follows from Arrow (1963) that a voting situation
with perfectly single-troughed preferences is one in which at least one candidate is
never ranked as most preferred by any voter.

Following the development of Parameter b above, Parameter t measures the
proximity of a voting situation to meeting the condition of perfectly single-troughed
preferences, with

t = Min{ny + ny,n3 + ns,ng + ne}. (2.2)

The definition of #;’s in Fig. 2.3 are used to define Parameter ¢ as the minimum
number of times that some candidate is top-ranked as the most preferred candidate
in the voters’ preference rankings, so that a voting situation is perfectly single-
troughed if t = 0, and the value of ¢ then reflects the relative proximity of a voting
situation to the condition of perfect single-troughedness. Any candidate that very
few voters rank as the most preferred candidate in a voting situation can be viewed
as a Weak Negatively Unifying Candidate since none of the voters would generally
think of the election of this candidate as reflecting the best possible outcome. The
electorate would be weakly unified by their opposition to, or lack in complete
support of, the election of such a candidate.

Ward (1965) develops another restriction on voting situations that leads to the
conclusion that a PMRW must exist in a three-candidate election. This condition
requires that some candidate must be perfectly polarizing, in the sense that this
candidate is never middle ranked, or ranked at the center, of any voter’s preference
ranking. That is, every voter will either consider this candidate to be either the most
preferred or the least preferred. The definition of #;’s in Fig. 2.3 are used to define
Parameter c to reflect the proximity of a voting situation to the condition of perfect
polarization, with

¢ = Min{n; + ng,ny + ng,nr + ns}. (2.3)

If ¢ = 0, some candidate is perfectly polarizing, since all voters will rank that
candidate as either least preferred or most preferred, and the value of ¢ measures the
proximity of a voting situation to the condition of perfect polarization. Any
candidate that very few voters rank in the middle of their preference ranking can
generally be viewed as a Weak Polarizing Candidate.

Parameters b and ¢ are combined in Gehrlein (2008) to obtain another measure of
group coherence. By ignoring the distinction between positively unifying and
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negatively unifying candidates, Parameter u measures the presence of an overall
unifying candidate in a voting situation with

u = Minimum{b, t}. (2.4)

A small value of Parameter u for a voting situation indicates that some candidate
is close to being either positively or negatively unifying, and Parameter u measures
the proximity of a voting situation to having a Weak Overall Unifying Candidate.

2.3.2 Strong Measures of Group Coherence

Stronger measures of group coherence are developed in Gehrlein (2009), and each
of these measures is a more restrictive variation of Parameters b, ¢, ¢ and u. A Weak
Positively Unifying Candidate was defined as some candidate that is ranked as least
preferred by a small proportion of voters in a voting situation, and the proximity of a
voting situation to having a perfect Weak Positively Unifying Candidate is measure
by Parameter b. A candidate would more strongly reflect the notion of being a
positively unifying candidate by being ranked as most preferred by a large propor-
tion of the voters in a voting situation. Parameter t* is defined accordingly from the
definition of the n;’s in Fig. 2.3, with

= Max{n| + ny,n3 + ns,ng + ng }. (2.5)

If ¥ = n, the same candidate is ranked as most preferred by all voters, making it
a perfect Strong Positively Unifying Candidate, and Parameter ¢* is used as a
measure of the proximity of a voting situation to this condition.

The same basic logic can be used to strengthen the definition the proximity of a
voting situation to having perfect Weak Negatively Unifying Candidate, as
measured by Parameter . Parameter b* is defined accordingly by

b* = Max{ns + ng,ny + na,ny + ns}. (2.6)

If b* = n, the same candidate is ranked as least preferred by all voters, making it
a perfect Strong Negatively Unifying Candidate, and Parameter b* is used as a
measure of the proximity of a voting situation to this condition.

Parameter ¢ measured the proximity of a voting situation to the condition of
perfect weak polarization. The strong measure that is associated with this parameter
is Parameter c¢*, with

" = Max{nz + na,n; + ne,na + ns}. 2.7

If ¢* = n, the same candidate is middle-ranked in the preferences of all voters, so
that this candidate is neither extremely liked nor extremely disliked by any voter,
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making it a perfect Strong Centrist Candidate, and Parameter c¢* is used as a
measure of the proximity of a voting situation to this condition.

Parameters b* and ¢* are combined as above, by ignoring the distinction between
positively unifying and negatively unifying candidates, and Parameter u* measures
the presence of a Strong Overall Unifying Candidate in a voting situation with

u* = Max{b",r"}. (2.8)

A large value of Parameter u* therefore indicates that a voting situation has some
candidate that is close to representing either a strong positively or a strong nega-
tively unifying candidate.

2.4 Obtaining Probability Representations

In order to determine the impact that these measures of group coherence have on the
probability that a PMRW exists, attention is focused to the development of repre-
sentations for the conditional probability that a PMRW exists, given that voting
situations have specified values of these SSM’s. These probability representations
are based on a direct extension of the assumption of IAC. For any particular
X € {b,t,c,u,b*t",c*,u*}, the Conditional Impartial Anonymous Culture Condi-
tion (IACx(k)) is used to develop probability representations for election out-
comes, conditional on the assumption that only voting situations for which
Parameter X has a specified value of k can be observed, and that each of these
possible voting situations is equally likely to be observed.

The conditional probability that a strict PMRW exists for n voters with three
candidates, given the assumption of [ACx(k) for X € {b,t,c,u,b", ¢ c* u*},
is denoted by P53y (3,1 | IACx(k)). The logic that led to (1.27) is easily genera-
lized to

3NEAE (3, m, IACK (K))
K(3,n,IACx(k))

Poyew (3,1 IACx (K)) = (2.9)

Here, it (3,n,IACx(k)) and K(3,n,IACx(k)) are defined in the obvious
fashion, following the development of (1.27).

Gehrlein (2004b) derived a representation for P,y (3,7 |IAC,(k)) with the
subspace partitioning process that was described in the development of a represen-
tation for N,{,?I}RW(?;,L,MC) in Chap. 1. An eight subspace partition is required to
remove all Max and Min arguments that are required in the summation limits to
have Candidate A as the PMRW with b = k, while obtaining a representation for

N;;AM}RW(& n,IAC(k)). The resulting representation for odd n > 7 is given by
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Py (3,1 | TAC)(K))
k(17 — 21k — 11k*) + (5 — 26k — 4k*)n + 3(2 — k)n® 4+ n’
B (n—=3k)[(n+ 1)(n+5) — 3k(2 + k)] ’

for0<k<(n—1)/4

3(3 — 2k — 6k%) + (11 + 18k*)n + 3(1 — 2k)n® + n®
2(k+ D[(n+ 1)(n+5) — 3k(2 + k)] ’

for(n+1)/4<k<(n—1)/3

3
7 for k = n/3. (2.10)

The subspace partitioning procedure is further complicated in this situation with
the addition of Parameter b to the required summation limits in such probability
representations. In order to facilitate the process of obtaining these representations,
Gehrlein (2005, 2006b) develops an extension of EUPIA that obtains representa-
tions for the conditional probability that voting outcomes are observed, given that
voting situations are constrained to have some specified value of a measurable
parameter.

24.1 EUPIA2

With the assumption of either IAC or MC, EUPIA was developed to obtain a
representation for the number of voting situations with n voters, EA (n), such that
the n;’s meet the necessary conditions for Candidate A to meet the requirements of
Event F. With the assumption of JACj,(k), EUPIA2 obtains a representation for the
number of voting situations, EA(n7 k), such that the n;’s meet the necessary condi-
tions for Candidate A to meet the requirements of Event F and simultaneously meet
the necessary conditions for some defined parameter of the voting situation, like b,
to match a specified integer value k.

The basic requirements of the conditions that are needed for EUPIA to work are
expressed in the discussion that followed Axiom 1.1, where the simple linear form
restriction is imposed on the Max and Min arguments in the summation bounds that
are required for Event F to be observed in a voting situation. The extension of this
logic to EUPIA2 relies on an extension of the simple linear form restriction. The
extended linear form restriction requires that each upper and lower summation
bound on the representation to obtain £4(n, k) is expressible as the Max or Min of
some set of simple linear functions of n, a specified k for some defined parameter
and n;’s that are previously defined in the series of summation indexes. As with the
definition of a simple linear form restriction, the coefficients in these simple linear
functions must be rational numbers. Given the nature of identities for sums of
powers of integers, it is very simple to show that:
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Axiom 2.1 If the restrictions on the #;’s in a three-candidate voting situation that are
necessary for Event F to be observed and to simultaneously meet the necessary
conditions for some defined Parameter X € {b, ¢, c,u, b* ', ¢*,u*} to have a speci-
fied integer value k meet the extended linear form restriction, then

s o
nk:Z 'k 2.11)

for some integer sequence n = iy + pv, witho =0, 1,2, ...

As in Axiom 1.1, the t;; coefficients in (2.11) must be rational numbers, and
these arguments can easily be extended to representations with MC by replacing n
with L in the definition of the extended linear form restriction.

It is then a trivial extension of a result proved in Gehrlein (2006a) that:

Axiom 2.2 If the necessary conditions that are required to obtain E4(n) for some
Event F in a three-candidate election meet the simple linear form restriction, then
E*(n, k) must result in a functional form as specified in (2.11), if Parameter
X € {b,t,c,u, b, t,c*,u*} is simultaneously required to have a specified integer
value k.

2.4.1.1 Obtaining a Representation for P53, (3,1 |IAC,(k)) with EUPIA2

We illustrate the procedure for obtaining representations with EUPTIA2 by develop-
ing a representation for P,y (3,7 | IAC,(k)). The first step is to obtain a represen-
tation for the number of voting situations, K (3, n,IAC,(k)), with n voters that have
a specified value, k, for Parameter b, as defined in (2.1). The representation for
K(3,n,IAC) in (1.25) is clearly consistent with the simple linear form restriction, so
Axiom 2.2 requires that the representation for K(3,n,IAC,(k)) must have the
general form of (2.11).

The process is initiated by fixing k at some specified numerical value and then
using computer enumeration procedures to obtain values of NVSA(y + pj| k) for
each value of j = 0(1)7. In this case, NVSA(\ + pj | k) is a count of the number of
voting situations with y + pj voters for which Parameter b is equal to the specified
value of k. Since k can be treated as a constant in (2.11), the &/ term can be absorbed
into the 7; term and the general form can be reduced to a linear function with a
single variable, n, as in (1.44), for that specified k.

EUPIA is then used directly to find the conditional representation for
K(3,n,IACy(k)), denoted as K(3, n,IAC, (k) | k), for the k value has been specified,
and

W

K(3,n,IAC, (k) [k) = Cin', (2.12)
i=0

for some integer sequence n =y + pj, with j =0, 1, 2,. ..
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The process is then repeated for each integer k value with 0 < k < n/3, and the
C* terms that are obtained for these K(3,n,IAC,(k) | k) representations will typi-
cally be different for each given k. For the process to work effectively, we need to
start the search process in EUPIA2 with a relatively large value of .

Table 2.1 summarizes the Cf.‘ values that were obtained for 0 < i < 3 for each
0 < k < 11 when EUPIA?2 was run while arbitrarily setting / = 35 in all cases. The
results give C¥ = 0, for all i > 4, and the periodicity for all cases is found to have
p = 1. Furthermore, additional EUPIA2 runs were performed to verify that the
relevant entries in Table 2.1 remain valid for all integer values of > 1.

A representation for K(3,n,IAC,(k) | k) can be obtained very easily for any
specified k in the range 0 < k < (n—2)/3 by using the known form of the
representation in (2.12) along with the C¥ entries in Table 2.1.

When the general form of the representations that are given in (1.44) and (2.11)
are considered along with the representation for K (3, n,IAC,(k) | k) that is given in
(2.12), we are led directly to the conclusion that each Cff coefficient must be
obtainable as a function of &, with

5—i
Cf-‘ = Z 8,»jkj for some rational 0;; coefficients for a specified i. (2.13)
=0

The earlier logic of the development of EUPIA and the known values of C¥ that
are given in Table 2.1 for a specified i can be used for k = 0, 1, 2,..., 6 — i to
establish a set of 6 — i simultaneous equations, following the format of (2.13), with
6 — i unknowns. The solution of the 6 — i simultaneous equations will then give the
6 — i values of the 9; coefficients in the general representation for C¥. When the
particular case with i = 0 is considered, six variables {0, o1, o2, 93, o4, Oos }
are defined. Using the associated entries for C’g that are listed in Table 2.1, the six
simultaneous equations are given in (2.14).

Table 2.1 Computed C¥

k k k k
values with the specified k for K o G G G
Y=35adp=1 0 0 32 3 12
1 12 -22 3 1
2 171 —165/2 0 3/2
3 720 —188 —6 2
4 2010 —695/2 —15 5/2
5 4500 —570 —27 3
6 8757 —1729/2 —42 712
7 15456 —1240 —60 4
8 25380 —3411/2 -81 9/2
9 39420 —2270 —105 5
10 58575 —5885/2 —132 11/2
11 83952 —3732 —162 6
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A0 + 9010 + 9020% + 9030° + 0p40* + 9ps0° = 0

900 + 9011 + 00217 + 9p3 1° + pa1* + Ops1° = 12

900 + 0012 + 8022% + 0032 + D0a2* + 852’ = 171

0 + 0013 + 0023”4 8033” + 03" + 853’ = 720

B0 + D014 + 004”4 D034’ + Oad* + 8054’ = 2010

900 + 0015 + 00257 + 9035° + 0pa5* + D0s5° = 4500. (2.14)

Algebraic techniques are then used to solve the six simultaneous equations in
(2.14) for the six unknown variables, with:

—15 3
0o =0 a01—7 a02—5
27 9
= — = — = O. 2.15
O3 5 Oos 2 Oos (2.15)
Given these results, it follows that
—15 3 27 9 3k(k + 1)(3k* + 6k — 5

C’(;:Tk+§k2+7k3+§k4: (k+ )(2 i ). (2.16)

Similar analysis is used to obtain the representations for the remaining Cf?' terms
fori=1,2,3,4 and:

1
Cl = =5 (k+1)(3k* + 24k - 5)
3

Ch = —§(k+ 1)(k—2)
k+1
Cf;:(zi). (2.17)

It is easily verified that these functional forms will generate the values that
appear in the associated columns of Table 2.1 for any specified k.

After substitution the Cf-‘ terms from (2.16) and (2.17) into (2.12) and performing
the necessary algebraic reduction, we obtain

K(3,n,IACy(k)) = (k+1)(n—3k)[(n+ ;)(n +5) — 3k(2 + k)] |

forn>1and k < (n—2)/3. (2.18)

The result that is given in (2.18) is exactly the same as the representation for
K(3,n,IACy(k)) in Gehrlein (2004b).
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For the special case that k = n/3 when 7 is a multiple of three, it is easily shown
that

K<3,n,]ACb(g)> - (” ;r 3>3. (2.19)

A representation for Ny (3, n,1AC,(k)) can be obtained in the same fashion

that was used to obtain the representation for K(3,n,IAC,(k)) in (2.19). The
conditions on #;’s that result in Candidate A being the strict PMRW for odd »n in
(1.5) clearly meet the simple linear form restriction. Axiom 2.2 then requires
that the representation for N, };?}RWB, n,IACy(k)) must have the form of (2.11).

Following the same logic that led to the development of Table 2.1 that ultimately
led to representations for K(3,n,IAC,(k) | k) with specified values of k, we use
EUPIA to find coefficients fo for specified k values for Parameter b that give
representations for N, ,{,ﬁjRW(B', n,IACp(k) | k), with

%)

Nt (3.1, IACH (k) | k) = > Dkn'. (2.20)
i=0

The EUPIA computations were performed with y =91, and attempts were
made to obtain Df-" coefficients for all k£ with 0 < k < 30, and the results are
summarized in Table 2.2 for all 0 < k < 22. The periodicity for the representation
was found to be p = 2 for all k entries.

Coefficients for the representations for N},AM}RW(Z%, n,IACy(k) | k) in (2.20) were
found for all 0 < k < 22 in Table 2.2, with p = 2 and y = 91. However, no such
representation was found with £ = 23. The reason for this is that representations to
obtain N,{,?,,}RWB, n,IACj,(k)) have one functional form for k <“73 and a second
functional form for k > %1.

EUPIA?2 began this process by using computer enumeration techniques to count
the number of voting situations, NVSp,ey (n|k) for which Candidate A is the
PMRW with a specified value of k for Parameter b, for a series of n values with
n =1 + jp for j = 0(1)7. The first term in the series has n =y + Op = 91. With
k=23andn =091,k > "j—l so the second functional form should be used to obtain
the observed value of NVS4, ey, (91 |23). The third enumerated value that is listed
in the serieshas n =y +2 p =95 With k=23 and n = 95, k < % so the first
functional form should be used to obtain the observed value of NVS3,,.w (95 23).
This conflict explains why a single functional form is not obtained as a representa-
tion for N},?}RW(S,n,IACb(23) |23) when Y =91 is used to start the series of
n values to get the values in Table 2.2. The exact break point of this type in such
series can be precisely determined as a function of n by running EUPIA2 with
a number of  values, to look for consistency in terms of the value of iy where
the first functional form stops working for each . As a result, we find that the first
functional form for N;AM},aW(3,n,IACb(k)) holds over the range of k values with
0<k<(n-1)/4.
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Table 2.2 Computed D}

; 3 k D} D} D} D4
values with the specified k
foryy =91 andp =2 0 0 5/6 1 1/6
1 5 —25/3 1 1/3
2 69 —63/2 0 12
3 290 —218/3 -2 2/3
4 810 —815/6 =5 5/6
5 1815 —225 -9 1
6 3535 —2065/6 —14 7/6
7 6244 —1492/3 —20 4/3
8 10260 —1377/2 -27 32
9 15945 —2765/3 -35 5/3
10 23705 —7205/6 —44 11/6
11 33990 —1530 —54 2
12 47294 —11479/6 —65 13/6
13 64155 —7063/3 =77 7/3
14 85155 —5715/2 -90 512
15 110920 —10280/3 —104 8/3
16 142120 —24395/6 —-119 17/6
17 179469 —4779 —135 3
18 223725 —33421/6 —152 19/6
19 275690 —19330/3 —-170 10/3
20 336210 —14805/2 —189 72
21 406175 —25355/3 —209 11/3
22 486519 —57569/6 —230 23/6

A representation for N,{,ﬁRW(&n,IACb(k)) for the range of k values with
0 <k < (n—1)/4 is obtained in the same fashion that was used to develop the
representation for K (3, n,IAC,(k)) in (2.18). Using the data from Table 2.2, with
the necessary functional form like that in (2.13), we obtain

1 1

DSZL‘; )(11k2+21k—17) D’fz—@(4k2+26k—5)
Dk—2) 1

pt— &+ )2(k ) Dé:@' 2.21)

By using the identity that is given in (2.9) along with the representation for

N (3,0, IAC, (k) | k) that follows from (2.20) and (2.21), substitution and
algebraic reduction lead to the identical representation for P3yey (3,1, IAC)(k))
with 0 < k < (n — 1)/4 that was obtained by algebraic methods in (2.10).

The determination of an appropriate representation for Py (3,1, IAC,(k))
with k > (n + 1)/4 requires some additional manipulation of EUPIA2. Computer
enumeration values for NVS4,., (1| k) were obtained in the last phase for each
n =y + pj with j = 0(1)7 for each k = 0(1)22 to obtain the entries in Table 2.2. To
obtain the associated representation for N,{)Z}RW(&n,IACb(k)) over the range of
k values with % <k< g, we start by obtaining computer enumeration values
for NVS@yw (] 52 4 k') for each n =y + pj with j = 0(1)7, for each value of
k' = 0(1)7, with = 91.
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Table 2.3 Computed Ff." values with the specified &’ for y =91 and p = 4

K F Fi F s F

0 —231/512 —59/128 17/768 5/128 11/1536
1 5385/512 —751/128 —343/768 —7/128 11/1536
2 60345/512 —2883/128 —415/768 —19/128 11/1536
3 261417/512 —7607/128 —199/768 —31/128 11/1536
4 760665/512 —16075/128 305/768 —43/128 11/1536
5 1765449/512 —29439/128 1097/768 —55/128 11/1536
6 3538425/512 —48851/128 2177/768 —67/128 11/1536
7 6397545/512 —75463/128 3545/768 —79/128 11/1536

Table 2.3 summarizes the resulting F{-" values such that

(4} n+1 )\ n+1 4 O
Npwtew | 3 TACy ( — =+ k 1 => Fin. (2.22)

i=0

The entries in Table 2.3 all have periodicity with p = 4.

A representation for N, ,{,AM}RW (3, n,IACy, (% + & )) is then obtained for this range
of k values with % < k<% in the same fashion that was used to developed the
representation for the range of k values 0 < k < (n — 1)/4 in (2.10). Using the data
from Table 2.3, with the necessary functional form like that in (2.13), we obtain

’ 3 3 2
F§ = aK' 192k" + 144k" + 100K —
4+ )( 92" + 144K” + 100k 77)
P = 1_28 (59+356k’+144k’ + 192k’>
.1 . 5— 12K
F = (17 504K/ 144k’) =2 223
768 + 3 128 (2.23)

A representation for N,{,?,,}}QW(& n,IACy(k)) can be obtained for the range of k
values with %1 < k<% by substituting k — ”“ for £’ in the representations for F; K
in (2.22) and (2.23), with

Nisiew (3,1, IAC, (K))
_ (n—=3k){3(3 =2k — 6k%) + (11 + 18k*)n + 3(1 — 2k)n* + n’}
a 12 ’

for (n+1)/4<k<n/3. (2.24)

Additional runs with p =4 verify that this representation is valid for all
n="7(4).... By repeating this procedure with y = 93, this representation is
found to be valid for all odd n > 7 with (n+1)/4 <k < (n—1)/3.

By using the identity in (2.9) along with the representations from (2.18) and
(2.24), substitution and algebraic reduction lead to the same representation
for P5ypw(3,n,IAC,(k)) with (n+1)/4 <k < (n—1)/3 that was obtained by
algebraic methods in (2.10). The case of k = n/3 when n is an odd multiple
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of three must be handled as a special case, and it is quite easy to show that
Py (3,1, 1ACh(n/3)) = 3 /4.

By conducting a similar analysis for even values of n, a representation for
Py (3,1, IAC,(k)) with even n > 8 is obtained as:

P}S’MRW(3’n |IAC(k))
 2k(6+ 31k + 11k%) — 4(2 + 13k + 2k*)n + 3(3 — 2k)n* + 2n°
B 2(n —3k)[(n+ 1)(n+5) — 3k(2 + k)] ’
for0<k<(n—4)/4
2(2 — 3k + 18k> — 9K3) +2(1 — 12k + 9%*)n + (5 — 6k)n®> + n®
2(k+ D[(n+ 1)(n+5) — 3k(2 + k)] ’
forn/4 <k <(n-—1)/3

n (2.25)

32
" 55 forkzg

4(n+3)

Table 2.4 gives a list of computed values for P}y (3,91 [IAC)(k)) and
Py (3,92 [ IACy(k)) from (2.10) and (2.25), for each value over the bounds of
possible b values from 0 < k < 30. These probabilities decrease as k increases,
yielding strong support to the general hypothesis that the likelihood that paradoxi-
cal voting outcomes will be observed is expected to decrease as voters’ preferences
reflect greater degrees of mutual coherence. Similar to observations that were made
in earlier analyses, the rate of convergence of P,y (3, 1| IACy(k)) to the limiting
value of 3/4 occurs much faster for odd » than it does for even n.

The most important observation that can be made from Table 2.4 is that voting
situations that are at all close to the condition of having a perfect weak positively
unifying candidate, with b = 0, have a significantly increased probability that a
PMRW will be present. This observation is clearly evident from the fact that
Py (3,91 [ IACy(k)) > 0.99 for all values of k < 7. Moreover, voting situations
that are farthest removed from this condition have a significantly reduced probabil-
ity that a PMRW will exist, with P5,ey, (3,91 | IACy(k)) < 0.80 for all k > 25.

2.4.1.2  Other P}, (3,n|IACx(k)) Representations for Weak Measures

The EUPIA2 procedure can be used in the same manner to obtain representations
for P3,ew (3, 1| IACx(k)) for each X € {t,c,u, b* t*,c*, u*}. However, this is sim-
plified for Parameter ¢, based on the following result from Gehrlein (2004b).

Lemma 2.1 P}y (3, 1| IACp(k)) = Py (3,1 | IAC,(k)) for odd n > 3.

Thus, the impact of having voters’ preferences reflect some degree of proximity
to a perfect weak negatively unifying candidate is identical to the impact of having
the same degree of proximity to perfect weak positively unifying candidate. At least
this is true with regard to the relationship of these two measures of group mutual
coherence to the probability that a PMRW exists.
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Table 2.4 Computed K pS ps I pS
PMRW PMRW PMRW PMRW
values for each of (3,91[IAC, (k) (3,92|IAC,(K)) (3,91[IAC.(k)) (3,91)IAC, (k)
Phurw (3, 91/IAC, (k) 0 1.0000 0.9837 1.0000 1.0000
P yrw (3, 92|IAC, (k)), 1 0.9997 0.9828 0.9920 0.9996
PS,pw (3,91)IAC, (k) and 2 0.9991 0.9817 0.9894 0.9990
s 3 0.9982 0.9803 0.9841 0.9980
Prairw (3, 91IAC,(£)) 4 09971 0.9786 0.9810 0.9967
5 0.9957 0.9766 0.9762 0.9951
6 09939 0.9743 0.9729 0.9929
709919 0.9715 0.9683 0.9902
8  0.9894 0.9684 0.9648 0.9870
9 0.9866 0.9649 0.9602 0.9830
10 0.9833 0.9608 0.9565 0.9782
11 09795 0.9562 0.9520 0.9724
12 09751 0.9509 0.9481 0.9654
13 0.9700 0.9450 0.9435 0.9569
14 0.9641 0.9382 0.9394 0.9466
15 0.9574 0.9304 0.9347 0.9339
16 0.9496 0.9215 0.9304 0.9183
17 0.9404 0.9112 0.9255 0.8987
18 0.9297 0.8993 0.9211 0.8737
19 09170 0.8853 0.9160 0.8414
20 0.9017 0.8686 0.9115 0.7985
21 0.8832 0.8485 0.9063 0.7399
22 0.8601 0.8239 0.9016 0.6568
23 0.8325 0.7947 0.8965 0.5427
24 0.8088 0.7693 0.8921 0.4368
25 0.7900 0.7490 0.8875 0.3446
26 0.7754 0.7331 0.8839 0.2637
27 0.7645 0.7211 0.8803 0.1921
28 0.7569 0.7125 0.8779 0.1285
29 0.7523 0.7069 0.8758 0.0722
30 0.7503 0.7040 0.8751 0.0217

A representation for P, (3,7 |IAC.(k)) is obtained in Gehrlein (2005), and
the details of how this representation was obtained with EUPIA2 are presented
there. The development of this representation was complicated by an additional
issue, since the representation has different forms for odd and even values of
Parameter c. That is, the representation has periodicity equal to two for the k
component. The resulting representation for odd n > 3 is given by

Phyrw (3,7 IAC (k)
(139> +-472k> + 146k — 244 )k —4(7k> +1024> +-84k —20)n
—6(9k* —6k—16)n* +16(k+1)n +30%, | { (6k* +24k— 1) +4(k—2)n—2n"}
16(k+1)(n—3k){(n+1)(n+5)—3k(2+k)} ’
for0<k<(n—1)/4
3(—39k* +72k +-38k* — 76k +1) +4(57k> — 54k* — 80k +19)n

—2(75K* +6k—4T)n* +4(8k+5)n —n* +357, | {(6k* +24k— 1) +4(k—2)n—2n*}
16(k+1)(n—3k){(n+1)(n+5)—3k(2+k)} ’
for(n+1)/4<k<(n—1)/3
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Tn? +42n + 27

8(n 1 3)2 , fork=n/3. (2.26)
Here, 6] = 1 if x is an integer multiple of y. Otherwise, 67 = 0. The representation in
(2.26) is used to compute the P}y (3,91 | IAC.(k)) entries that are shown in Table
2.4 over the possible Parameter ¢ values from 0 < k < 30.

The values that are presented in Table 2.4 show some very interesting results,
with Py (3,91 [ IAC(K)) > Py (3,91 | TAC (k) for 0 <k <19 and with
Pyrw (3,91 [ IAC (k) > Py (3,91 [ IAC)(k)) for 20 < k < 30. This suggests
that proximity to of a voting situation to the condition of having a perfect weak
positively unifying candidate has more of an impact on the probability that a
PMRW exists than does the proximity to a perfect weak polarizing candidate for
small values of k. However, as k increases the reverse situation exists. Moreover,
Pyew (3,91 [ IAC (k) and P}y (3,91 | IAC,(k)) do not seem to be approaching
the same limiting value as k — n/3. This observation is verified if we consider
the values of these representations in the limiting case as n — oo, where
P yrw (3,00 [ IAC.(k)) = 7/8 from (2.26) while P35, (3,00 |IAC,(k)) = 3/4
from (2.10).

A representation for Py (3,1 |IAC,(k)) was developed in conjunction with
other results that are reported in Gehrlein (2008), with

Py (3,1 [ IAC, (K))

19k 4 93k% + 14k + 6 + 2(6k* — 24k — 1)n — 6(2k — 1)n* + 2n°
13k3 + 81k2 + 14k + 6 +2(Tk2 — 22k — 1)n — 6(2k — 1)n2 + 2n3’

for0<k<(n—1)/4

3(n —3k)(9k* + 3 — 6kn + n?)
81k> + 54k> + 2Tk + 12 — (63k> 4 36k + 5)n + 3(5k + 2)n* — n3’

for (n+1)/4 <k <n/3. (2.27)

Some interesting results follow directly from these representations. Since a
PMRW must exist if » =0 or t = 0, it is obvious that a PMRW must exist if
u = 0. It is also easy to prove that P}y (3,7 |IAC,(n/3)) = 0 when n is an odd
multiple of three, and this is also evident from the representation in (2.27). Calcu-
lated values of Py (3,91 | IAC,(k)) are listed in Table 2.4 for each 0 < k < 30.
These results yield some dramatic, but potentially misleading results. The calcu-
lated results for Py, (3,91 | IAC, (k)) show a much stronger relationship between
the probability that a PMRW exists and the value of Parameter # than was observed
previously with any of the Parameters b, t or c.

The potentially misleading result comes from the very evident observation that
Py (3,91 [ IAC,(k)) > P5ypw (3,91 IAC, (k) for all k > 0, which might make it
appear that Parameter u is not as closely associated with the probability that a
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PMRW exists than Parameter b is. However, while a PMRW must exist if either
b =0 or u = 0, the subset of voting situations for which # = 0 includes all of the
voting situations for which b = 0, along with all of remaining voting situations for
which ¢ = 0. This difference in the basis of comparison of these probabilities does
not therefore allow for a direct evaluation of the relative degree of the connection
between these parameters and the probability that a PMRW exists. In order to make
a fair comparison of these parameters for weak measures of group mutual coher-
ence, it is necessary to consider some other factors.

2.5 Cumulative Probabilities that a PMRW Exists

Instead of considering representations for the probability P35, ey (3,1 |IACx(k))
that a PMRW exists when all voting situations are equally likely to be observed
for which Parameter X has a specific value equal to £, it is more useful to consider
cumulative probabilities for Parameter X. For each X € {b,t,¢,u} a PMRW must
exist when the value of X is equal to zero. The CIACx(k~) assumption is an
extension of JACx (k) that assumes that all voting situations for which Parameter
X has a value of g in the range 0 < g < k are equally likely to be observed. Thus,
as k decreases the set of voting situations that are being considered represents
the subset of all of the possible voting situations that are closest to having a
perfect weak positively unifying candidate, a perfect weak negatively unifying
candidate, a perfect weak polarizing candidate or perfect weak overall unifying
candidate.

The definitions of the cumulative probability P5,zy (3,7 | CIACx (k™)) follow
accordingly for each X € {b,t,c,u}. These representations are found from a direct
extension of the identity in (2.9) for each 0 < k < n/3, with:

SN
3 Z:ONPMRW(?’> n,IACx(q))
P

Phyww (3,1 CIACx (k7)) = —— L a28)

The algebraic manipulations that are required to obtain these representations
for each X € {b,t,c,u} were performed to obtain results in Gehrlein (2008) for
odd n:

Pyrw (3,1 | CIAC, (k™)) = Py (3,0 | CIAC, (k™))

2[(— 41 + 69k + 22k2)k + 5(5 — 18k — 2k2)n + 10(3 — k)n? + 5n°]
(= 73+ 117k + 36k2)k + 5(10 — 33k — 3k2)n + 20(3 — k)2 + 1023

for0<k<(n—1)/4
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195 — 1968k — 720k> + 3840k> +4320k* + 1728k°
+ (1661 — 1680k — 6000k> — 5760k — 2880k*)n+ 10(165 + 200k +216k> + 19243 )n?
+30(9— 8k —24k?)n® +5(15+32k)n* — 11n°
16(k+1) (k4+2)[( =73+ 117k+36k2)k+5(10—33k —3k2)n+20(3 —k)n2 +1023] ~
for(n+1)/4<k<(n—-1)/3.
(2.29)

Pyrw (3,n|CIAC (k™))
165 — 783k + 1743k% + 1597k> 4+ 278k* +10(71 — 233k — 143k — 7k )n
+30(31 43k — 6k*)n? +80(k +2)n’
— 1587 {11430k +6k> — 2(3 — 2k)n —2n°}
8(k+1)(k+2)[( =73+ 117k +36k*)k +5(10 — 33k — 3k2)n+20(3 — k)n2 +10n3] ’
for0<k<(n—1)/4
435 — 952k -+ 480k> +2200k> — 90k* — 468K°
+ (1349 — 2520k — 4160k> + 840k> + 1140k*)n + 10(177 + 120k — 162k> — 100k>)n?
+10(39+ 72k +32k%)n* — 5(3 +4k)n* +n° — 3007 {11+ 30k +6k> —2(3 — 2k)n —2n*}
16(k+ 1) (k+2)[( =73+ 117k +36k2)k +5(10 — 33k — 3k2)n+20(3 —k)n2 +10n%]  ’
for(n+1)/4<k<(n—1)/3.
(2.30)

(k+1)

PiMRW(37n‘C[ACM(k7))
30+ 121k +261k* +38k> — 10(1 + 15k — 3k?)n + 10(3 — 4k)n* 4 10n°
2(15+ 56k + 111k% + 13k3) — 5(2 + 27k — Tk)n+ 10(3 — 4k)n2 + 1013’
for0<k<(n—1)/4
27(25 + 64k + 480k + 1280k> + 1440k* + 576k°)
+ 9(101 — 960k — 3840k> — 5760k — 2880k*)n +90(29 + 128k + 288k> + 192&%)n?
—10(85 + 576k + 576k*)n® + 15(37 + 64k)n* — 59n°
18(k + 1)(13 + 42k + 63k% + 27k3) — 3(35 + 250k + 360k> + 144k>)n
+ (25 +24k) (5 + 6k)n®> — 3(5 + 6k)n® + n*
for(n+1)/4<k<(n—-1)/3.

16(n — 2u)

2.31)
Here, 6] = 1 if x is an integer multiple of y. Otherwise, ¢} = 0.
It follows directly from definitions for each X € {b, ¢, c,u} that
n- 15(n +3)°
PS (3, CIAC (— )) —PS, (3,1 IAC) = — ") (3
pyarw (3711 X3 pyarw (357 ) 16(n +2)(n + 4) (2.32)

These representations are far too unwieldy to serve as the basis of any useful
analysis, so attention will be focused on the potentially most interesting case of
large electorates with limiting probability as n — oc. To do this, k is replaced with
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aen in the Py (3,7 CIACx (k™)) representations, so that k is expressed as a
proportion, oy, of n, rather than as an integer value. It then follows from definitions
that 0 < oy < 1/3. The limiting representation as n — oo is then determined.
The resulting representations for the limiting distributions are denoted by
P yirw (3,00 | CIACx (o ) ), with:

Pyrw (3,00 |CIAC) (o)) = Py (3,00 CIAC, (o))
10— 200y — 2007 + 44o;
10 — 200y — 1507 + 3603

—11+ 1600 — 72007 + 19200; — 28800 + 172803
1662 (10 — 200y — 1502 + 3603 ’

for0 <oy <1/4

for 1/4 <oy <1/3.

(2.33)

Phyrw (3,00, | CIAC. (%))
40 — 900 — 3507 + 1393
40 — 800y — 6007 + 14403
1 — 200y + 32007 — 10000 + 11400 — 4680
B 1602 (10 — 200y — 1502 + 360:3) ’

for 0 <oy <1/4

for 1/4 <oy <1/3.

(2.34)

Py (3,00 | CIAC, (o))

10 — 400 + 300 + 380z}
10 — 400 + 3507 + 2603

—59 + 9600 — 576007 + 172800 — 259200} + 1555203
16(1 — 20) (1 — 180y + 1440 — 43203 + 4860)

for 1/4 <oy < 1/3. (2.35)

for0 <oy <1/4

These limiting representations as n — oo are much more tractable. Following
earlier discussion, these limiting representations result in specific values such
that P§,pw(3,00| CIACx(07)) =1 and P35y (3,00 | CIACx(1/37)) = 15/16
for each X € {b,t,c,u}. The cumulative probability representations ultimately
will be very helpful in showing the relationship that exists between the probability
that a PMRW exists and the degree of group mutual coherence that is present in
voters’ preferences. However, the original issue regarding the fact that there is a
greater proportion of voting situations with o = 0 for Parameter # than for Param-
eter b has not yet been resolved. In order to address this problem, attention is turned
to the consideration of the proportion of voting situations that have a specified
parameter value.
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2.6 Proportions of Profiles with Specified Parameters

We want to develop representations for the proportion of all possible voting situations
that have a specified value, ¢, of Parameter X in some given range 0 < ¢ < k. Define
this proportion as Pyg(3,n | CIACx(k™)) for each X € {b,t,c,u}. The representa-
tions for Pys(3,n|CIACx (k™)) are obtained from an identity that follows directly
from definitions for 0 < k < n/3, with

k
ZOK(&n,IACx(Q))
.\ 9=
Pys(3,n|CIACx (k™)) = KGaTAC (2.36)

Gehrlein (2008) performs the algebraic reduction of (2.36) to obtain

Pys(3,n| CIAC, (k™)) = Pys(3,n| CIAC,(k™)) = Pys(3,n| CIAC (k™))
(=73 + 117k + 36k*)k
3(k+1)(k+2)
+5(10 — 33k — 3k*)n +20(3 — k)n* + 101
(n+1)(n+2)(n+3)(n+4)(n+5) ’
for0<ik<(n—1)/3
1, fork=n/3. (2.37)

Attention will be focused on the limiting distribution, Pys(3, 0o | CIACx (7)), as
n — o0, and following the procedure that was used in earlier analyses,

Pys(3,00 | CIAC,(27)) = Pys(3,00 | CIAC, (o4, ™)) = Pys(3, 00 | CIAC (o))
= 304.2(10 — 200y, — 15042 + 360,%),  for 0 < o < 1/3. (2.38)

The representation in (2.38) can be used as a basis of a search procedure to find
specific values of f3; such that Py (n, oo | CIAC, (ﬁ,’; . )) = p for each proportion p =
0.00(0.05)1.00, and the results are listed in Table 2.5. Based on previous discussion,
By = P = B? for all p. The results in Table 2.5 indicate for example that 65% of
all possible voting situations are included in the range of oy parameter values
with 0 < o < 0.1924 for Parameter b, ¢, or ¢, and 15% of all possible voting
situations are included in the range of «; parameter values with 0 < o < 0.0564
for Parameter u.

The results of Table 2.5 can now be used in conjunction with the limiting
representations from (2.33) to compute the limiting conditional cumulative proba-
bility P3yey (1,00 | CIAC, (B )) that a PMRW exists for the p percent of all
voting situations that are closest to having a perfect weak positively unifying
candidate. For example, suppose that we wish to consider the 20% of voting situa-
tions that are closest to having a perfect weak positively unifying candidate.
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Table 2.5 Computed ) D

values of 8, BV, 7 and S, b b =P = P Py

for each proportion 0.00 0.0000 0.0000

p — 0.00(0.051.00 0.05 0.0428 0.0308
0.10 0.0619 0.0449
0.15 0.0772 0.0564
0.20 0.0908 0.0667
0.25 0.1033 0.0763
0.30 0.1150 0.0854
0.35 0.1264 0.0943
0.40 0.1374 0.1031
0.45 0.1483 0.1118
0.50 0.1591 0.1206
0.55 0.1700 0.1296
0.60 0.1811 0.1388
0.65 0.1924 0.1484
0.70 0.2042 0.1585
0.75 0.2166 0.1695
0.80 0.2298 0.1815
0.85 0.2445 0.1951
0.90 0.2614 0.2117
0.95 0.2829 0.2344
1.00 0.3333 0.3333

The results on Table 2.5 show that [3;’20 = (0.0908. This particular value is used with
(2.33) to find that Pys (3,00 | CIAC,,(B;° )) = 0.9956. So, the probability that a
PMRW exists for the 20% of voting situations that are closest to having a perfect
weak positively unifying candidate is 0.9956.

Computed values from all of the associated representations for
PISDMRW(n,oo|C1ACX(ﬁ’;{)) for each X € {b,t,c,u} are listed in Table 2.6 for
each proportion p = 0.00(0.05)1.00.

The values in Table 2.6 show some very interesting results. For example, the
50% of all possible voting situations that are closest to having a perfect weak
positively or negatively unifying candidate have a PMRW with probability of
0.9857 for large electorates. And, the 15% of all possible voting situations that
are closest to having a perfect weak polarizing candidate have a PMRW with
probability of 0.9814 for large electorates. Clearly, any significant degree of
group mutual coherence among voters’ preferences that approaches having a
perfect weak positively or negatively unifying candidate leads to a high probability
that a PMRW exists. The impact of having voters’ preferences that suggest
the presence of a candidate approaching a perfect weak polarizing candidate in
voting situations is also quite strong, but it is not as significant as the proximity to
having a perfect weakly unifying candidate, assuming that there is an equivalence
of these factors as they are measured by oy, since Py ey (n, oo | CIAC,, ([ff))>
Pyrw (1,00 | CIAC. (B2 ) for all 0 < p < 1. Moreover, the results from Table 2.6
show that the 50% of voting situations that are most closely related to having a
perfect weak overall unifying candidate have a probability 0.9910 of having a
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Tabge 2.6 Computed va})ues b1 c U
;’(fri?@%(’; f'lfflg‘rc)‘(ﬁx ) 000 1.0000 1.0000 1.0000
cach proportion 0.05 0.9991 0.9895 0.9995
b — 0.00(0.051.00 0.10 0.9980 0.9850 0.9989
0.15 0.9969 0.9814 0.9983
0.20 0.9956 0.9782 0.9975
0.25 0.9943 0.9753 0.9967
0.30 0.9929 0.9726 0.9958
0.35 0.9913 0.9701 0.9948
0.40 0.9896 0.9676 0.9936
0.45 0.9877 0.9652 0.9924
0.50 0.9857 0.9628 0.9910
0.55 0.9834 0.9605 0.9894
0.60 0.9809 0.9582 0.9876
0.65 0.9781 0.9558 0.9856
0.70 0.9749 0.9535 0.9832
0.75 0.9712 0.9510 0.9804
0.80 0.9669 0.9486 0.9770
0.85 0.9616 0.9460 0.9728
0.90 0.9548 0.9433 0.9671
0.95 0.9466 0.9405 0.9583
1.00 0.9375 0.9375 0.9375

PMRW. This suggests that any voting situation that is relatively close to represent-
ing perfect weak overall unifying candidate, as measure by Parameter u, will have a
very high probability of yielding a PMRW with large electorates.

2.7 Results with Strong Measures of Group Coherence

The same type of analysis that we have just used with weak measures of group
mutual coherence was applied to strong measures in Gehrlein (2009), but there are
some differences in how these methods must be applied in that case. Representa-
tions are obtained for P35,y (3,7 | IACx- (k)) for each X* € {b*, ", c*,u*} in exactly
the same fashion with EUPIA2. But, a major difference then occurs during the
process of obtaining the cumulative probability representations that a PMRW exists
with these strong measures of group coherence. The identity in (2.28) was based on
the fact that parameter values for the weak measures of group mutual coherence in
X € {b,t,c,u} were each closest to the condition of requiring that a PMRW must
exist with X = 0. However, the parameters for the strong measures of group mutual
coherence in X* € {b*,t*, ¢*,u*} are each closest to requiring that a PMRW must
exist when X* = n.

For the strong measures of group mutual coherence in X* € {b*, 1", c*,u*}, the
cumulative probability that a PMRW exists is therefore found for a specified range
of g values for Parameter X* in the range k < g < n. The resulting cumulative
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probability is denoted by P35,z (3, 1| CIACx+(k™)). The representations for these
cumulative probabilities follow directly from definitions for each possible value of
k with n/3 < k < n, with

= viA}
3 z:kNPMRW<33 n,IACx-(q))
a=

q=k

Pyrw (3,1 | CIACx+ (k1)) = (2.39)

The resulting representations are given by:

P (30| CIACy: (k) = Phyygyy (3,1 | CIAC (k™))
3(576k° — 1440k* + 1280k> — 1200k> + 784k + 65)
— (2880k* — 5760k> + 6000k> — 4560k —221)n
+10(192k> — 360k> + 344k — 11)n* — 30(24k* — 40k +7)n® +5(32k — 17)n* — 110°
16[k(k + 1){(k — 1)(36k? + 45k — 154) — 5(3k2 + 27k —40)n — 20(k — 4)n2 + 10n3}]
for (n+1)/3<k<(n—1)/2.
(2.40)

1,for(n+1)/2<k<n

P yew (3,1 CIAC (k)
14765 —2610k* +40k> + 824k +435 — (2100k* — 2760k> 4-2000k> — 2200k — 757 )n
+ 10(116k> — 186k2 4216k +25)n* — 10(40k* — 80k +9)n +5(20k — 11)n* — 7n’
—3002{3(10k> — 18k +5) —2(14k — 11)n+6n>}
16[k(k+1){(k—1)(36k2 4+ 45k — 154) — 5(3k2 +27k —40)n — 20(k —4)n> +10n3}] ~
for(n+1)/3<k<(n—1)/2
34k3 — 169k 442k 4365 }

—2(31k> — 49k —139)n+ (22k +71)n? +6n°
—15(1=03){2k> =10k +9—2(2k —5)n+2n}

8(n+1—k)(n+2—k)(n+3—k)(n+4—k)(n+5+4k) ’

for(n+1)/2<k<n.

(n+3—k)(n+l—k){

2.41)

PJSJMRW(37”|C[ACM* (k)
—9(576k> — 1440k* 4- 1280k — 480k 4 64k —25)
3 +3(2880k* — 5760k> + 3840k2 — 960k +229)n
—30(192/k> — 288k% + 128k —29)n> +30(64k* — 64k +19)n® — 5(64k — 37)n* +23n°
36k(k —1)(27k3 — 63k* +-42k — 13) — 6(315k* — 810k> 4 695k> — 240k + 13)n
+ 5(6k — 1)(48k> — 82k 4-37)n? — 5(108k* — 132k +31)n +5(20k — 11)n* —7n’
forn/3<k<(3n—1)/8.

)
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8608k> —31760k* +41600k> —23920k? + 5892k — 135
—3(5920k* — 16960k> + 16320k* — 6160k +501)n+90( 160k> — 336k> +212k — 33 )n?
—90(64k% — 88k +25)n3 + 15(76k —49)n* —87n°
36k (k— 1)(27k° — 63k2 + 42k — 13) — 6(315K" —810k° + 695k> — 240k + 13)n |
L 5(6k—1)(48k2 — 82k+37)n® — 5(108k% — 132k +31)n3 +5(20k — 11)n* — T
for(Bn+1)/8<k<(n—1)/2
=1, for(n+1)/2<k<n. (2.42)

It then follows directly from definitions for each X* € {b* ", ¢*, u*} that

n\ +
PS <3, n| CIACx- <(§) ) > = PS e (3,1, IAC)

15(n +3)
= L (2.43)
16(n+2)(n+4)

Just as we observed in the case of the representations that were obtained for
Pyrw (3,1 | IACx(k)) in (2.29), (2.30) and (2.31), the resulting representations for
Pyrw (3,1 | CIACx+(kT)) in (2.40), (2.41) and (2.42) are far too cumbersome
for any meaningful analysis. Following earlier analysis, attention therefore is
focused on the limiting case for voters as n — oo, and the resulting representations
are defined by Pf,MRW (37 oo | CIACx+ (oc,‘:)), for the range 1/3 < oy < 1, with

Pf’MRW(3’ 00 | CIACy- (o)) = P1S>MRW(37 00| CIAC, (o4 ™))
17280 — 2880czf + 192005 — 72002 + 1600y — 11

- 1602(3602 — 1502 — 200y + 10) ’

1, for 1/2 <oy <1. (2.44)

for 1/3 <oy <1/2

Py (3,00 | CIAC: (o))
14760 — 21000 4 11600 — 4000 + 1000 — 7
B 1602 (360 — 1502 — 200 + 10) ’
170 + 3

= TS g 1/2 <o < 1. 2.45
4o+ 1) 2= < (2:45)

for 1/3 <oy <1/2

Pyrw (3,00[CIAC, (o))
3(—51840a] + 86400} — 576003 + 192002 — 3200 +23
_3 %+ 86400 — 57 At 92003 — 320 + ) for1/3<a <3/8.
16(60 — 1)(1,620 — 28803 + 19202 — 58c1+7)
86080 — 177600 + 144000 — 576007 + 11400, — 87
8(60y — 1) (16201 — 2880z} + 19202 — 580 +7)

1, for1/2 <oy <I. (2.46)

, for3/8 <o <1/2
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A direct comparison of the cumulative probability values that are obtained from
these P (3,00 | CIACx- (o)) representations for different strong measure of
group mutual coherence, as measured by parameters in X* € {b* %, ¢*, u*}, does not
lead to any clear results. The reason for this follows from the fact that the subset of
all voting situations for which b* = n are included in the set of all voting situations
with ©#* = n, along with all other voting situations with r* = n. So the basis of
comparison is not the same in all cases. In order to facilitate further analysis, we
develop representations for the proportion, Pys(3,n|CIACx-(k")), of all voting
situations that have a specified value, ¢, for Parameter X* in the range k < g < n.
These representations are obtained from the identity.

=k
Pys(3,n| CIACx« (k")) =1 K03 nTAC)

(2.47)

The necessary algebraic reduction of (2.47) is performed in Gehrlein (2009), to
obtain representations for Pys(3,n | CIACx- (k1)) with each X* € {b* ¢, ¢* u*}:

Pys(3,n,CIACy+ (k™)) = Pys(3,n,CIAC (k")) = Pys(3,n,CIAC - (k™))
3k(k+1)[(k—1)(36k*4-45k — 154) — 5(3k +27k —40)n —20(k — 4)n* 4 101°]
(n+1)(n+2)(n+3)(n+4)(n+5) ’
forn/3<k<(n—1)/2

3(n+1=k)(n+2—k)(n+3—k)(n+4—k)(n+5+4k)
(n+1)(n+2)(n+3)(n+4)(n+5)

for[(n+1)/2<k<n.

(2.48)

va(3,l’l,C[ACu*(k+))
36k(k—1)(27k> —63k* +42k — 13) — 6(315k* — 810k’ +-695k* — 240k + 13)n
+5(6k—1)(48k> — 82k +37)n* — 5(108k> — 132k +31)n* +5(20k — 11)n* —7n°
(n+1)(n+2)(n+3)(n+4)(n+5) '
forn/3<k<(n—1)/2

6(n+1—k)(n+2—k)(n+3—k)(n+4—k)(6k—n)
(n+1)(n+2)(n+3)(n+4)(n+5)

, for(n+1)/2<k<n. (2.49)

The limiting representations as n — oo are obtained from (2.48) and (2.49)
following previous discussion, with:

Pys (3,00, CIACy (o)) = Pys(3,00,CIAC (o)) = Pys(3, 00, CIAC + ("))
= 302(360; — 150 — 200 + 10), for 1/3 <o < 1/2
3(1 — o) (4o + 1), for 1/2 <oy < 1. (2.50)
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Pys (3,00, CIAC (o))
=3(60y — 1)(16207 — 2880 + 19207 — 58a +7), for 1/3 <oy <1/2
6(1 — o) (6 — 1), for1/2 <o <1. (2.51)

These results show for example that Pys(3, 0o, CIAC,+(0.507)) = 0.75, so that
75% of all voting situations have a value of u*/n in the range 0.50-1.00 in the limit
as n — 00. A search procedure was then initiated with these representations to find
the specific values of BF. such that Pyg(3, 00, CIACx (ﬁgj)) =p for each
X* e {b* ¢ " u*} with p=0.00(0.05)1.00 and the results are summarized in
Table 2.7.

These S5 values from Table 2.7 are used in conjunction with the representations
from (2.44), (2.45) and (2.46) to obtain the cumulative probability values that a
PMRW exists from P}y (3,00 | CIACx+ (ﬁi,f)) for each strong measure of
group mutual coherence from X* € {b* ¢, c*,u*} with p = 0.00(0.05)1.00. The
results of these computations are summarized in Table 2.8, and some very interest-
ing and compelling observations directly follow from them.

Just as we observed in the case of the proximity of a voting situation to having a
perfect weak polarizing candidate for weak measures of group mutual coherence,
the proximity of a voting situation to having a perfect strong centrist candidate has
the least amount of impact on the probability that a PMRW will exist. A somewhat
surprising result is that the 55% of voting situations that are closest to having a
perfect strong positively unifying candidate or perfect strong negatively unifying

Table 2.7 Values of . for P _ o _ g p

each X* € {b* ¢, ¢*,u"} for b Py = b = be L

each p = 0.00(0.05)1.00 0.00 1.0000 1.0000
0.05 0.7456 0.7820
0.10 0.6934 0.7357
0.15 0.6574 0.7032
0.20 0.6289 0.6770
0.25 0.6049 0.6546
0.30 0.5839 0.6347
0.35 0.5651 0.6166
0.40 0.5479 0.5998
0.45 0.5320 0.5840
0.50 0.5173 0.5689
0.55 0.5033 0.5545
0.60 0.4902 0.5405
0.65 0.4773 0.5268
0.70 0.4645 0.5133
0.75 0.4514 0.5000
0.80 0.4376 0.4865
0.85 0.4226 0.4720
0.90 0.4054 0.4551
0.95 0.3838 0.4323

1.00 0.3333 0.3333
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Table 2.8 Values of b 1t o e
s p + P .

Piyrw (0|CIACx- (B%- 7)), 4100 1.0000 1.0000 1.0000

for each X* € {b", ", u"} o5 1.0000 0.9840 1.0000

for each p = 0.00(0.05)1.00 ¢ 10 1.0000 0.9797 1.0000
0.15 1.0000 0.9764 1.0000
0.20 1.0000 0.9736 1.0000
0.25 1.0000 0.9711 1.0000
0.30 1.0000 0.9688 1.0000
0.35 1.0000 0.9667 1.0000
0.40 1.0000 0.9646 1.0000
0.45 1.0000 0.9626 1.0000
0.50 1.0000 0.9607 1.0000
0.55 1.0000 0.9588 1.0000
0.60 0.9988 0.9569 1.0000
0.65 0.9946 0.9544 1.0000
0.70 0.9885 0.9530 1.0000
0.75 0.9812 0.9508 1.0000
0.80 0.9732 0.9485 0.9969
0.85 0.9647 0.9460 0.9891
0.90 0.9558 0.9433 0.9775
0.95 0.9468 0.9405 0.9617
1.00 0.9375 0.9375 0.9375

candidate have a PMRW with certainty. The most compelling observation is that
the 75% of voting situations that are closest to having a perfect strong overall
unifying candidate will have a PMRW with absolute certainty.

2.8 Conclusion

When voters’ preferences in a three-candidate voting situation reflect any signifi-
cant degree of proximity to having a perfect weak positively or negatively unifying
candidate, the probability that a PMRW exists is high. When voters’ preferences are
at all close to reflecting a situation in which a perfect weak overall unifying
candidate exists, the probability that a PMRW exists is very high. An even stronger
relationship is shown to exist when voting situations are at all close to having a
perfect strong positively or negatively unifying candidate. A PMRW must exist
when voting situations are even remotely close to having a perfect strong overall
unifying candidate.

It is very important to note that the associated underlying models that lead to any
of these measures of mutual group coherence do not actually have to be the basis of
the mechanism by which the voters’ preference rankings on candidates were
actually formed. It is only required that the preferences in a given voting situation
could have been obtained by one of these models. As a result, it is easily concluded
that Condorcet’s Paradox should very rarely be observed in any real elections on a
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small number of candidates with large electorates, as long as voters’ preferences
reflect any reasonable degree of group mutual coherence from a number of different
possible models, and the observations that have been made from numerous empiri-
cal studies should no longer seem surprising.

It can also be concluded from these observations that the use of the Condorcet
Criterion that voting rules should select the PMRW whenever one exists is a very
valid measure of the effectiveness of various voting rules at selecting the alternative
that is the overall most preferred candidate. Arguments against the use of the
Condorcet Criterion are typically based on the fact that a PMRW does not always
exist, so that there might be some confusion over which candidate should be
selected as the winner. However, our results indicate that the probability that this
confounding issue would ever result is expected to be very small for elections on a
small number of candidates with a large number of voters.
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