
Chapter 2

Condorcet’s Paradox and Group Coherence

2.1 Introduction

The possibility that various election paradoxes might exist has been seen to be a

potentially significant threat to the stability of election processes, and we have

developed a number of different mathematical models that can be used to assess

the likelihood that these paradoxes might actually be observed. These basic models

have been used to yield some support to the intuitively appealing hypothesis that the

likelihood that these voting paradoxes will be observed should tend to decrease

with increasing levels of social homogeneity among the preferences of voters in

the population, or as the degree of dependence among voters’ preferences in the

population tends to increase. There is a direct linkage between increases in the

measure of dependence among voters’ preferences and the degree of social homo-

geneity that is expected to exist in a voting situation.

An extensive survey of the work that has been performed to investigate the

association between the likelihood that voting paradoxes might occur and degrees

of social homogeneity is summarized in Gehrlein (2006a). The many different

measures of social homogeneity that have been developed in the literature can be

categorized as being either Population Specific Measures of Homogeneity or

Situation Specific Measures of Homogeneity. As in Chap. 1, we focus on the

association between the likelihood that a PMRW exists and degrees of social

homogeneity, since this area has received most of the attention in this type of

analysis. The extension of this analysis to other voting paradoxes will then be

considered later.

2.2 Population Specific Measures of Homogeneity

A Population Specific Measure of Social Homogeneity (PSM) is related to para-

meters of the population from which random voter preference profiles or voting

situations are generated. For three candidates, {A, B, C}, these measures are based
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on the pi’s from the p vectors that describe the likelihood that a randomly selected

voter will have the ith possible linear preference ranking on the candidates. The

measure H pð Þ from (1.59) is one such a PSM, and it was pointed out in Chap. 1

that PS
PMRW 3; n;DCð Þ generally increases as H pð Þ increases for p vectors in the DC

subset. However, it was also noted that this relationship deteriorates as n becomes

large. To the degree that the level of dependence between voters’ preferences

is related to social homogeneity, the Parameter a in P–E probability models is

also a PSM.

The general conclusion in Gehrlein (2006a) is that studies that have looked for a

general connection between PS
PMRW m; n; pð Þ and various PSM’s have only found at

best a weak relationship. An explanation of this outcome can be based on the fact

that any p vector for a population will have only one value for the PSM that is being

considered, while it is possible that many voting situations could be generated from

that p. This leads to the consideration of measures of social homogeneity that are

based on characteristics of specific voting situations themselves, rather than on the

characteristics of the population from which a voting situation is obtained.

2.3 Situation Specific Measures of Homogeneity

A Situation Specific Measure of Homogeneity (SSM) does not measure social

homogeneity based on p vectors, as the PSM’s do. SSM’s are based on the ni’s of
the particular n vector for a given voting situation, or on the n vector that is obtained

by accumulating individual preferences in a voter preference profile. A SSM would

use the actual observed proportions, ni=n, as a substitute for the pi terms in any

PSM. For any particular voting situation, we know with certainty whether or not a

PMRW exists. It is therefore quite reasonable to expect to have a stronger correla-

tion between social homogeneity and the probability that a PMRW exists for studies

in which social homogeneity is measured by some SSM.

Most simple SSM’s still do not lead to a strong general relationship between

social homogeneity and the probability that a PMRW exists. However, it was found

in Gehrlein (2006a) that when the voters’ preferences are formed by a process that

imposes some internal structural consistency or some mutual coherence on voter

preference profiles or voting situations, much stronger relationships can be found

between SSM’s and the probability that a PMRW exists. The measures of mutual

coherence that have been found to exhibit this tendency are based on some simple

extensions of natural underlying conditions on voting situations that require that a

PMRW must exist.

Black (1958) found one such condition when voters’ preferences are restricted

to have the property of single-peaked preferences. To describe this property, we

define a measure of preference or utility, Ui Cj

� �
, that a given ith voter associates

with candidate Cj in an m-candidate election on candidates C1;C2; :::;Cmf g.
Increased measures of Ui Cj

� �
indicate that a voter has an increased preference, or
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utility, for the given candidate, so that the given voter’s individual preference

ranking on candidates will have Cj � Ck if, and only if, Ui Cj

� �
>Ui Ckð Þ.

Consider a simple example voter preference profile with three voters, where

each individual voter has a linear preference ranking on six candidates, as shown in

Fig. 2.1.

We can determine if the three voter’s preference rankings in the example in

Fig. 2.1 meet the definition of single-peaked preferences by trying to find Ui Cj

� �
values that are consistent with the preference rankings of the individual voters,

while simultaneously meeting an additional restriction. This additional restriction

can be established by drawing a graph like the one that is shown in Fig. 2.2.

Values of Ui Cj

� �
are displayed on the vertical axis of the graph in Fig. 2.2, and

the horizontal axis of the graph represents the sequence of Cj’s that corresponds to

some linear overall reference ranking. Let CiOCj denote the fact that Ci is ranked

before Cj in this overall reference ranking. The specific overall reference ranking

that is used in Fig. 2.2 is C2OC4OC3OC6OC5OC1. Figure 2.2 shows a plot of

possible Ui Cj

� �
values for each voter, as associated with specific candidates in the

sequence of Cj’s in the overall reference ranking, such that the given U
i Cj

� �
values

for a given i would reproduce the linear preference ranking of the associated ith

voter in Fig. 2.1. The results that are displayed in Fig. 2.2 have U1ðC6Þ >

U1ðC3Þ>U1ðC5Þ>U1ðC1Þ>U1ðC4Þ>U1ðC2Þ, to correspond with the linear

preference ranking C6 � C3 � C5 � C1 � C4 � C2 for Voter 1. We do not claim

that the Ui Cj

� �
values in the graph necessarily represent the true utility values that

voters have for candidates. The only claim is that they are possible utility values

that would result in the voters’ preference rankings on candidates.

Any of the possible 720 linear rankings on the six candidates could have been used

as an overall reference ranking. However, the specific overall reference ranking used

for Fig. 2.2 is of particular interest, since it results in plots of the possible Ui Cj

� �
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Fig. 2.1 An example

preference profile with three

voters and six candidates
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Voter 1
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Fig. 2.2 A graph of single-peaked preference curves for three voters
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values that have single-peaked preference curves for each voter. Using the definition

in Black (1958, p. 7), a “single-peaked (preference) curve is one which changes

its direction at most once, from up to down.” The logical foundation of the definition

for single-peaked preferences is given in Black (1958, pp. 8–9):

While in practice a (committee) member’s preference curve may be of any shape whatso-

ever, there is reason to expect that, in some important practical problems the (preference)

valuations actually carried out will tend to take the form of isolated points on single-peaked

curves. This would be particularly likely to happen if the committee were considering

different possible sizes of a numerical quantity and choosing one size in preference to the

others. It might, for example, be reaching a decision with regard to the price of a product to

be marketed by a firm, or to the output for a future period, or the wage rate of labor, or the

height of a particular tax, or the legal age of leaving school, and so on.

Buchanan (1970) and Browning (1972) also consider various sets of natural

conditions that are likely to lead to the existence of single-peaked preferences for a

group of voters. Gaertner (2005) notes that arguments that ultimately lead to the

same definition of single-peaked preferences can be found as far back as the work of

Pufendorf in the seventeenth century. It can be concluded that the notion of single-

peaked preferences is not simply a mathematical artifact, and that it does have a

basis in reality for some voting scenarios.

The condition of single-peaked preference curves indicates the existence of a

situation in which all voters have preferences that are mutually coherent. That is,
the presence of such a situation suggests that there is mutual agreement among the

voters that some underlying characteristics of candidates exist that allow for the

sequencing of the candidates in some natural order from left to right, according to

their rankings in an overall reference order. Each voter would then have some

particular most preferred candidate in the sequence, with decreasing preferences on

candidates as they are ranked farther away, to the left or to the right, from their most

preferred candidate within the sequence of candidates in the overall reference order.

List (2002) discusses the notion of having different levels of group coherence of

preference, such that voters’ preferences might reflect a substantive level agree-
ment, to the extent that their preferences, or views, tend to have some degree of

consistency or homogeneity. However, voters might go beyond that and have

some degree of meta-level agreement, to the extent that they can agree on a

common dimension on which issues can be conceptualized. The voters might be

largely in agreement as to what this common dimension is, while being in great

disagreement as to what the optimal position on the dimension is. Positioning issues

along such a dimension is perfectly consistent with the notion of single-peaked

preferences. List (2002) argues that agreement at the meta-level is more likely to

reduce occurrences of paradoxical results like PMR cycles than is agreement on a

substantive level.

Dryzek and List (2003) extend this notion, by pointing out that two or more

individuals can agree on a substantive level to the extent that their preferences are

the same. However, these individuals might instead disagree on any common

ranking of alternatives that would reflect their own preferences, while they could

still agree on some ranking of alternatives along a common dimension. This second
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scenario is agreement on a meta-level. As described above, agreement on a meta-

level would imply a condition like single-peakedness. The introduction of issue

complexity might rule out any common agreement on any single dimension, but

multiple relevant issue dimensions coupled with individual voter’s preference

rankings of alternatives on the issue dimensions might lead to some “intra-

dimensional single-peakedness”.

Grofman and Uhlaner (1985) previously proposed a similar concept regarding

the existence of “meta-preferences” that would result when voters have preferences

for characteristics of broadly defined processes that might be involved in determin-

ing their individual preferences on candidates, rather than simply having prefer-

ences for candidates. They suggest that the additional structure that results from

processes that are based on such meta-preferences would lead to an increased level

of overall understanding of the entire decision process, and therefore to more

overall stability. This increased stability would therefore suggest that paradoxical

voting outcomes should be less likely to be observed.

All of this is supported by the work of Black (1958), where arguments are

developed to show that PMR must be transitive for odd n if any overall reference

order and possible Ui Cj

� �
values that are consistent with voters’ preference rank-

ings can be found to result in single-peaked preference curves for all voters. That is,

all voters’ preference curves must be single-peaked relative to the same overall

reference order. However, the assumption of perfectly single-peaked preferences

forces some very strict requirements on voters’ preferences, particularly when there

are many voters in the electorate.

Niemi (1969) proposed the notion of using some measure to the proximity of a

voting situation to having perfectly single-peaked preferences as a SSM, since it

might be overly restrictive to assume that all voters in a large electorate will have

preferences that are single-peaked. Given Black’s result, it seems very reasonable

to assume that the probability that PMR is transitive will remain high as long as the

preferences of most voters in a voting situation are consistent with the restriction of

single-peaked preferences. Niemi proposed that the proximity of a voting situation

to having perfectly single-peaked preferences could effectively be measured as the

minimum proportion of voters in the electorate who must have their preferences

ignored so that the preferences on the remaining candidates will be perfectly single-

peaked. As this necessary proportion of voters decreases, the closer the preferences

in the original voting situation are to being perfectly single-peaked. Niemi (1970)

performs an empirical study of seven three-candidate elections in which complete

preference rankings were reported by voters, to find that only one case resulted in

the existence of a PMR cycle, and that this case was the one that was farthest

removed from the condition of perfect single-peakedness with this measure. One

difficulty of using this measure as a SSM is that it can be difficult to calculate this

proportion, but results of Arrow (1963) can be applied to obtain a proxy for this

measure very easily in the case of three-candidate elections.

Arrow (1963) approaches the concept of single-peaked preferences in a very

different manner, by considering only the ordinal relationships between candidates

in rankings, without using Black’s Ui Cj

� �
values. Arrow’s findings lead to an
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alternative definition of single-peaked preferences, such that voters’ preferences are

perfectly single-peaked if for every triple of candidates, at least one candidate is

never ranked as least preferred among the three candidates by any voter. Arrow’s

definition lacks the conceptual appeal of Black’s utility based definition, but it is a

completely equivalent definition of single-peaked preferences.

2.3.1 Weak Measures of Group Coherence

The ideas that were proposed above by Black, Niemi and Arrow are all combined in

Gehrlein (2004b) to develop a SSM, Parameter b, that measures the minimum

number of times that some candidate is bottom ranked, or is least preferred, in the

preferences of the n voters in a voting situation, to serve as a simple measure of the

proximity of a voting situation to representing perfectly single-peaked preferences

in a three-candidate election, where

b ¼ Min n1 þ n3; n2 þ n4; n5 þ n6f g: (2.1)

Here, the ni terms are defined for a voting situation from Fig. 1.1, which is

reproduced here for convenience in Fig. 2.3.

If b is equal to zero for a voting situation with three candidates, some candidate

is never ranked as least preferred, so the voting situation represents the condition in

which voters have perfectly single-peaked preferences. This would happen, for

example if n1 þ n3 ¼ 0, where the definitions from Fig. 2.3 indicate that this

requires that Candidate C is never the least preferred candidate for any voter in

the associated voting situation. When b is maximized at n=3, a voting situation

reflects very disperse preferences of voters over candidates to reflect a situation that

is very far removed from perfect single-peakedness.

As Parameter b increases in voting situations, the preferences of voters in a

voting situation become more removed from the condition of perfect single-

peakedness. Another perspective on this issue is that a voting situation with a

small Parameter b reflects a situation in which there is some candidate that very

few voters think is the worst of the three candidates. The electorate would be

somewhat united by their weak support of, or lack of complete opposition to, the

election of such a candidate. In that sense, this candidate can be viewed as a Weak
Positively Unifying Candidate that voters would not generally think of as reflecting
the worst possible outcome if that candidate were to be elected.

A A B C B C
B C A A C B
C B C B A A
n1 n2 n3 n4 n5 n6

Fig. 2.3 The six possible

linear preference rankings on

three candidates
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Vickery (1960) considers the well known condition of single-troughed prefer-
ences, and proves that the imposition of this assumption on voting situations will

also lead to the necessary existence of a PMRW. This condition is also known as

single-dipped preferences in the literature, but we use the term single-troughed

preferences since that term is the originally used by Vickery. The condition of

single-troughed preferences is equivalent to the condition of single-peaked

preferences, since every single-peaked voting situation corresponds to a single

troughed-voting situation in which all voters’ preference rankings are inverted.

For a three-candidate election, it follows from Arrow (1963) that a voting situation

with perfectly single-troughed preferences is one in which at least one candidate is

never ranked as most preferred by any voter.

Following the development of Parameter b above, Parameter t measures the

proximity of a voting situation to meeting the condition of perfectly single-troughed

preferences, with

t ¼ Min n1 þ n2; n3 þ n5; n4 þ n6f g: (2.2)

The definition of ni’s in Fig. 2.3 are used to define Parameter t as the minimum

number of times that some candidate is top-ranked as the most preferred candidate

in the voters’ preference rankings, so that a voting situation is perfectly single-

troughed if t ¼ 0, and the value of t then reflects the relative proximity of a voting

situation to the condition of perfect single-troughedness. Any candidate that very

few voters rank as the most preferred candidate in a voting situation can be viewed

as a Weak Negatively Unifying Candidate since none of the voters would generally

think of the election of this candidate as reflecting the best possible outcome. The

electorate would be weakly unified by their opposition to, or lack in complete

support of, the election of such a candidate.

Ward (1965) develops another restriction on voting situations that leads to the

conclusion that a PMRW must exist in a three-candidate election. This condition

requires that some candidate must be perfectly polarizing, in the sense that this

candidate is never middle ranked, or ranked at the center, of any voter’s preference

ranking. That is, every voter will either consider this candidate to be either the most

preferred or the least preferred. The definition of ni’s in Fig. 2.3 are used to define

Parameter c to reflect the proximity of a voting situation to the condition of perfect

polarization, with

c ¼ Min n3 þ n4; n1 þ n6; n2 þ n5f g: (2.3)

If c ¼ 0, some candidate is perfectly polarizing, since all voters will rank that

candidate as either least preferred or most preferred, and the value of cmeasures the

proximity of a voting situation to the condition of perfect polarization. Any

candidate that very few voters rank in the middle of their preference ranking can

generally be viewed as a Weak Polarizing Candidate.
Parameters b and t are combined in Gehrlein (2008) to obtain another measure of

group coherence. By ignoring the distinction between positively unifying and
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negatively unifying candidates, Parameter u measures the presence of an overall

unifying candidate in a voting situation with

u ¼ Minimum b; tf g: (2.4)

A small value of Parameter u for a voting situation indicates that some candidate

is close to being either positively or negatively unifying, and Parameter umeasures

the proximity of a voting situation to having a Weak Overall Unifying Candidate.

2.3.2 Strong Measures of Group Coherence

Stronger measures of group coherence are developed in Gehrlein (2009), and each

of these measures is a more restrictive variation of Parameters b, t, c and u. A Weak

Positively Unifying Candidate was defined as some candidate that is ranked as least

preferred by a small proportion of voters in a voting situation, and the proximity of a

voting situation to having a perfect Weak Positively Unifying Candidate is measure

by Parameter b. A candidate would more strongly reflect the notion of being a

positively unifying candidate by being ranked as most preferred by a large propor-

tion of the voters in a voting situation. Parameter t� is defined accordingly from the

definition of the ni’s in Fig. 2.3, with

t� ¼ Max n1 þ n2; n3 þ n5; n4 þ n6f g: (2.5)

If t� ¼ n, the same candidate is ranked as most preferred by all voters, making it

a perfect Strong Positively Unifying Candidate, and Parameter t� is used as a

measure of the proximity of a voting situation to this condition.

The same basic logic can be used to strengthen the definition the proximity of a

voting situation to having perfect Weak Negatively Unifying Candidate, as

measured by Parameter t. Parameter b� is defined accordingly by

b� ¼ Max n5 þ n6; n2 þ n4; n1 þ n3f g: (2.6)

If b� ¼ n, the same candidate is ranked as least preferred by all voters, making it

a perfect Strong Negatively Unifying Candidate, and Parameter b� is used as a

measure of the proximity of a voting situation to this condition.

Parameter c measured the proximity of a voting situation to the condition of

perfect weak polarization. The strong measure that is associated with this parameter

is Parameter c�, with

c� ¼ Max n3 þ n4; n1 þ n6; n2 þ n5f g: (2.7)

If c� ¼ n, the same candidate is middle-ranked in the preferences of all voters, so

that this candidate is neither extremely liked nor extremely disliked by any voter,
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making it a perfect Strong Centrist Candidate, and Parameter c� is used as a

measure of the proximity of a voting situation to this condition.

Parameters b� and t� are combined as above, by ignoring the distinction between

positively unifying and negatively unifying candidates, and Parameter u� measures

the presence of a Strong Overall Unifying Candidate in a voting situation with

u� ¼ Max b�; t�f g: (2.8)

A large value of Parameter u� therefore indicates that a voting situation has some

candidate that is close to representing either a strong positively or a strong nega-

tively unifying candidate.

2.4 Obtaining Probability Representations

In order to determine the impact that these measures of group coherence have on the

probability that a PMRW exists, attention is focused to the development of repre-

sentations for the conditional probability that a PMRW exists, given that voting

situations have specified values of these SSM’s. These probability representations

are based on a direct extension of the assumption of IAC. For any particular

X 2 b; t; c; u; b�; t�; c�; u�f g, the Conditional Impartial Anonymous Culture Condi-
tion IACX kð Þð Þ is used to develop probability representations for election out-

comes, conditional on the assumption that only voting situations for which

Parameter X has a specified value of k can be observed, and that each of these

possible voting situations is equally likely to be observed.

The conditional probability that a strict PMRW exists for n voters with three

candidates, given the assumption of IACX kð Þ for X 2 b; t; c; u; b�; t�; c�; u�f g,
is denoted by PS

PMRW 3; n j IACX kð Þð Þ. The logic that led to (1.27) is easily genera-

lized to

PS
PMRW 3; n j IACX kð Þð Þ ¼ 3N

Af g
PMRW 3; n; IACX kð Þð Þ
K 3; n; IACX kð Þð Þ : (2.9)

Here, N
Af g

PMRW 3; n; IACX kð Þð Þ and K 3; n; IACX kð Þð Þ are defined in the obvious

fashion, following the development of (1.27).

Gehrlein (2004b) derived a representation for PS
PMRW 3; n j IACb kð Þð Þ with the

subspace partitioning process that was described in the development of a represen-

tation for N
Af g

PMRW 3; L;MCð Þ in Chap. 1. An eight subspace partition is required to

remove all Max and Min arguments that are required in the summation limits to

have Candidate A as the PMRW with b ¼ k, while obtaining a representation for

N
Af g

PMRW 3; n; IACb kð Þð Þ. The resulting representation for odd n � 7 is given by
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PS
PMRW 3; n j IACb kð Þð Þ

¼ �kð17� 21k � 11k2Þ þ ð5� 26k � 4k2Þnþ 3ð2� kÞn2 þ n3

ðn� 3kÞ ðnþ 1Þðnþ 5Þ � 3kð2þ kÞ½ � ;

for 0 � k � n� 1ð Þ=4
3ð3� 2k � 6k3Þ þ ð11þ 18k2Þnþ 3ð1� 2kÞn2 þ n3

2ðk þ 1Þ ðnþ 1Þðnþ 5Þ � 3kð2þ kÞ½ � ;

for nþ 1ð Þ=4 � k � n� 1ð Þ=3
3

4
; for k ¼ n=3: (2.10)

The subspace partitioning procedure is further complicated in this situation with

the addition of Parameter b to the required summation limits in such probability

representations. In order to facilitate the process of obtaining these representations,

Gehrlein (2005, 2006b) develops an extension of EUPIA that obtains representa-

tions for the conditional probability that voting outcomes are observed, given that

voting situations are constrained to have some specified value of a measurable

parameter.

2.4.1 EUPIA2

With the assumption of either IAC or MC, EUPIA was developed to obtain a

representation for the number of voting situations with n voters, EAðnÞ, such that

the ni’s meet the necessary conditions for Candidate A to meet the requirements of

Event F. With the assumption of IACb kð Þ, EUPIA2 obtains a representation for the

number of voting situations, EA n; kð Þ, such that the ni’s meet the necessary condi-

tions for Candidate A to meet the requirements of Event F and simultaneously meet

the necessary conditions for some defined parameter of the voting situation, like b,
to match a specified integer value k.

The basic requirements of the conditions that are needed for EUPIA to work are

expressed in the discussion that followed Axiom 1.1, where the simple linear form

restriction is imposed on theMax andMin arguments in the summation bounds that

are required for Event F to be observed in a voting situation. The extension of this

logic to EUPIA2 relies on an extension of the simple linear form restriction. The

extended linear form restriction requires that each upper and lower summation

bound on the representation to obtain EA n; kð Þ is expressible as the Max or Min of

some set of simple linear functions of n, a specified k for some defined parameter

and ni’s that are previously defined in the series of summation indexes. As with the

definition of a simple linear form restriction, the coefficients in these simple linear

functions must be rational numbers. Given the nature of identities for sums of

powers of integers, it is very simple to show that:
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Axiom 2.1 If the restrictions on the ni’s in a three-candidate voting situation that are
necessary for Event F to be observed and to simultaneously meet the necessary

conditions for some defined Parameter X 2 b; t; c; u; b�; t�; c�; u�f g to have a speci-

fied integer value k meet the extended linear form restriction, then

EA n; kð Þ ¼
X5
i¼0

X5�i

j¼0

tijnikj; (2.11)

for some integer sequence n ¼ cþ pu, with u ¼ 0, 1, 2, . . . .
As in Axiom 1.1, the tij coefficients in (2.11) must be rational numbers, and

these arguments can easily be extended to representations with MC by replacing n
with L in the definition of the extended linear form restriction.

It is then a trivial extension of a result proved in Gehrlein (2006a) that:

Axiom 2.2 If the necessary conditions that are required to obtain EAðnÞ for some

Event F in a three-candidate election meet the simple linear form restriction, then

EA n; kð Þ must result in a functional form as specified in (2.11), if Parameter

X 2 b; t; c; u; b�; t�; c�; u�f g is simultaneously required to have a specified integer

value k.

2.4.1.1 Obtaining a Representation for PS
PMRW 3; n j IACb kð ÞÞð with EUPIA2

We illustrate the procedure for obtaining representations with EUPIA2 by develop-

ing a representation for PS
PMRW 3; n j IACb kð Þð Þ. The first step is to obtain a represen-

tation for the number of voting situations, K 3; n; IACb kð Þð Þ, with n voters that have

a specified value, k, for Parameter b, as defined in (2.1). The representation for

K 3; n; IACð Þ in (1.25) is clearly consistent with the simple linear form restriction, so

Axiom 2.2 requires that the representation for K 3; n; IACb kð Þð Þ must have the

general form of (2.11).

The process is initiated by fixing k at some specified numerical value and then

using computer enumeration procedures to obtain values of NVSA cþ pj j kð Þ for
each value of j ¼ 0(1)7. In this case, NVSA cþ pj j kð Þ is a count of the number of

voting situations with cþ pj voters for which Parameter b is equal to the specified

value of k. Since k can be treated as a constant in (2.11), the kj term can be absorbed

into the tij term and the general form can be reduced to a linear function with a

single variable, n, as in (1.44), for that specified k.
EUPIA is then used directly to find the conditional representation for

K 3; n; IACb kð Þð Þ, denoted as K 3; n; IACb kð Þ j kð Þ; for the k value has been specified,
and

K 3; n; IACb kð Þ j kð Þ ¼
X5
i¼0

Ck
i n

i; (2.12)

for some integer sequence n ¼ cþ pj, with j ¼ 0, 1, 2,. . .
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The process is then repeated for each integer k value with 0 � k< n=3, and the

Ck
i terms that are obtained for these K 3; n; IACb kð Þ j kð Þ representations will typi-

cally be different for each given k. For the process to work effectively, we need to

start the search process in EUPIA2 with a relatively large value of c.
Table 2.1 summarizes the Ck

i values that were obtained for 0 � i � 3 for each

0 � k � 11 when EUPIA2 was run while arbitrarily setting c ¼ 35 in all cases. The

results give Ck
i ¼ 0; for all i � 4, and the periodicity for all cases is found to have

p ¼ 1. Furthermore, additional EUPIA2 runs were performed to verify that the

relevant entries in Table 2.1 remain valid for all integer values of c � 1.

A representation for K 3; n; IACb kð Þ j kð Þ can be obtained very easily for any

specified k in the range 0 � k � n� 2ð Þ=3 by using the known form of the

representation in (2.12) along with the Ck
i entries in Table 2.1.

When the general form of the representations that are given in (1.44) and (2.11)

are considered along with the representation for K 3; n; IACb kð Þ j kð Þ that is given in
(2.12), we are led directly to the conclusion that each Ck

i coefficient must be

obtainable as a function of k, with

Ck
i ¼

X5�i

j¼0

@ijk
j for some rational @ij coefficients for a specified i: (2.13)

The earlier logic of the development of EUPIA and the known values of Ck
i that

are given in Table 2.1 for a specified i can be used for k ¼ 0, 1, 2,. . ., 6� i to
establish a set of 6� i simultaneous equations, following the format of (2.13), with

6� i unknowns. The solution of the 6� i simultaneous equations will then give the

6� i values of the @ij coefficients in the general representation for Ck
i . When the

particular case with i ¼ 0 is considered, six variables @00; @01; @02; @03; @04; @05f g
are defined. Using the associated entries for Ck

0 that are listed in Table 2.1, the six

simultaneous equations are given in (2.14).

Table 2.1 Computed Ck
i

values with the specified k for
c ¼ 35 and p ¼ 1

k Ck
0 Ck

1 Ck
2 Ck

3

0 0 5/2 3 1/2

1 12 �22 3 1

2 171 �165/2 0 3/2

3 720 �188 �6 2

4 2010 �695/2 �15 5/2

5 4500 �570 �27 3

6 8757 �1729/2 �42 7/2

7 15456 �1240 �60 4

8 25380 �3411/2 �81 9/2

9 39420 �2270 �105 5

10 58575 �5885/2 �132 11/2

11 83952 �3732 �162 6
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@00 þ @010þ @020
2 þ @030

3 þ @040
4 þ @050

5 ¼ 0

@00 þ @011þ @021
2 þ @031

3 þ @041
4 þ @051

5 ¼ 12

@00 þ @012þ @022
2 þ @032

3 þ @042
4 þ @052

5 ¼ 171

@00 þ @013þ @023
2 þ @033

3 þ @043
4 þ @053

5 ¼ 720

@00 þ @014þ @024
2 þ @034

3 þ @044
4 þ @054

5 ¼ 2010

@00 þ @015þ @025
2 þ @035

3 þ @045
4 þ @055

5 ¼ 4500: (2.14)

Algebraic techniques are then used to solve the six simultaneous equations in

(2.14) for the six unknown variables, with:

@00 ¼ 0 @01 ¼ �15

2
@02 ¼ 3

2

@03 ¼ 27

2
@04 ¼ 9

2
@05 ¼ 0: (2.15)

Given these results, it follows that

Ck
0 ¼

�15

2
k þ 3

2
k2 þ 27

2
k3 þ 9

2
k4 ¼ 3kðk þ 1Þð3k2 þ 6k � 5Þ

2
: (2.16)

Similar analysis is used to obtain the representations for the remaining Ck
i terms

for i ¼ 1; 2; 3; 4 and:

Ck
1 ¼ � 1

2
k þ 1ð Þ 3k2 þ 24k � 5

� �
Ck
2 ¼ � 3

2
k þ 1ð Þ k � 2ð Þ

Ck
3 ¼

k þ 1ð Þ
2

: (2.17)

It is easily verified that these functional forms will generate the values that

appear in the associated columns of Table 2.1 for any specified k.
After substitution the Ck

i terms from (2.16) and (2.17) into (2.12) and performing

the necessary algebraic reduction, we obtain

K 3; n; IACb kð Þð Þ ¼ ðk þ 1Þðn� 3kÞ ðnþ 1Þðnþ 5Þ � 3kð2þ kÞ½ �
2

;

ð2:18Þfor n � 1 and k � n� 2ð Þ=3:

The result that is given in (2.18) is exactly the same as the representation for

K 3; n; IACb kð Þð Þ in Gehrlein (2004b).
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For the special case that k ¼ n=3 when n is a multiple of three, it is easily shown

that

K 3; n; IACb
n

3

� �� �
¼ nþ 3

3

� �3

: (2.19)

A representation for N
Af g

PMRW 3; n; IACb kð Þð Þ can be obtained in the same fashion

that was used to obtain the representation for K 3; n; IACb kð Þð Þ in (2.19). The

conditions on ni’s that result in Candidate A being the strict PMRW for odd n in

(1.5) clearly meet the simple linear form restriction. Axiom 2.2 then requires

that the representation for N
Af g

PMRW 3; n; IACb kð Þð Þ must have the form of (2.11).

Following the same logic that led to the development of Table 2.1 that ultimately

led to representations for K 3; n; IACb kð Þ j kð Þ with specified values of k, we use

EUPIA to find coefficients Dk
i for specified k values for Parameter b that give

representations for N
Af g

PMRW 3; n; IACb kð Þ j kð Þ, with

N
Af g

PMRW 3; n; IACb kð Þ j kð Þ ¼
X3
i¼0

Dk
i n

i: (2.20)

The EUPIA computations were performed with c ¼ 91, and attempts were

made to obtain Dk
i coefficients for all k with 0 � k � 30, and the results are

summarized in Table 2.2 for all 0 � k � 22. The periodicity for the representation

was found to be p ¼ 2 for all k entries.
Coefficients for the representations for N

Af g
PMRW 3; n; IACb kð Þ j kð Þ in (2.20) were

found for all 0 � k � 22 in Table 2.2, with p ¼ 2 and c ¼ 91. However, no such

representation was found with k ¼ 23. The reason for this is that representations to

obtain N
Af g

PMRW 3; n; IACb kð Þð Þ have one functional form for k � n�3
4

and a second

functional form for k � nþ1
4
.

EUPIA2 began this process by using computer enumeration techniques to count

the number of voting situations, NVSAPMRW n j kð Þ for which Candidate A is the

PMRW with a specified value of k for Parameter b, for a series of n values with

n ¼ cþ jp for j ¼ 0(1)7. The first term in the series has n ¼ cþ 0p ¼ 91. With

k ¼ 23 and n ¼ 91, k � nþ1
4

so the second functional form should be used to obtain

the observed value of NVSAPMRW 91 j 23ð Þ. The third enumerated value that is listed

in the series has n ¼ cþ 2 p ¼ 95. With k ¼ 23 and n ¼ 95, k � n�3
4

so the first

functional form should be used to obtain the observed value of NVSAPMRW 95 j 23ð Þ.
This conflict explains why a single functional form is not obtained as a representa-

tion for N
Af g

PMRW 3; n; IACb 23ð Þ j 23ð Þ when c ¼ 91 is used to start the series of

n values to get the values in Table 2.2. The exact break point of this type in such

series can be precisely determined as a function of n by running EUPIA2 with

a number of c values, to look for consistency in terms of the value of c where

the first functional form stops working for each c. As a result, we find that the first

functional form for N
Af g

PMRW 3; n; IACb kð Þð Þ holds over the range of k values with

0 � k � n� 1ð Þ=4.
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A representation for N
Af g

PMRW 3; n; IACb kð Þð Þ for the range of k values with

0 � k � n� 1ð Þ=4 is obtained in the same fashion that was used to develop the

representation for K 3; n; IACb kð Þð Þ in (2.18). Using the data from Table 2.2, with

the necessary functional form like that in (2.13), we obtain

Dk
0 ¼

k k þ 1ð Þ
6

11k2 þ 21k � 17
� �

Dk
1 ¼ � k þ 1ð Þ

6
4k2 þ 26k � 5
� �

Dk
2 ¼� k þ 1ð Þ k � 2ð Þ

2
Dk

3 ¼
k þ 1ð Þ
6

: (2.21)

By using the identity that is given in (2.9) along with the representation for

N
Af g

PMRW 3; n; IACb kð Þ j kð Þ that follows from (2.20) and (2.21), substitution and

algebraic reduction lead to the identical representation for PS
PMRW 3; n; IACb kð Þð Þ

with 0 � k � n� 1ð Þ=4 that was obtained by algebraic methods in (2.10).

The determination of an appropriate representation for PS
PMRW 3; n; IACb kð Þð Þ

with k � nþ 1ð Þ=4 requires some additional manipulation of EUPIA2. Computer

enumeration values for NVSAPMRW n j kð Þ were obtained in the last phase for each

n ¼ cþ pj with j ¼ 0(1)7 for each k ¼ 0(1)22 to obtain the entries in Table 2.2. To

obtain the associated representation for N
Af g

PMRW 3; n; IACb kð Þð Þ over the range of

k values with nþ1
4

� k � n
3
, we start by obtaining computer enumeration values

for NVSAPMRW n j nþ1
4

þ k0
� �

for each n ¼ cþ pj with j ¼ 0(1)7, for each value of

k0 ¼ 0(1)7, with c ¼ 91.

Table 2.2 Computed Dk
i

values with the specified k
for c ¼ 91 and p ¼ 2

k Dk
0 Dk

1 Dk
2 Dk

3

0 0 5/6 1 1/6

1 5 �25/3 1 1/3

2 69 �63/2 0 1/2

3 290 �218/3 �2 2/3

4 810 �815/6 �5 5/6

5 1815 �225 �9 1

6 3535 �2065/6 �14 7/6

7 6244 �1492/3 �20 4/3

8 10260 �1377/2 �27 3/2

9 15945 �2765/3 �35 5/3

10 23705 �7205/6 �44 11/6

11 33990 �1530 �54 2

12 47294 �11479/6 �65 13/6

13 64155 �7063/3 �77 7/3

14 85155 �5715/2 �90 5/2

15 110920 �10280/3 �104 8/3

16 142120 �24395/6 �119 17/6

17 179469 �4779 �135 3

18 223725 �33421/6 �152 19/6

19 275690 �19330/3 �170 10/3

20 336210 �14805/2 �189 7/2

21 406175 �25355/3 �209 11/3

22 486519 �57569/6 �230 23/6
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Table 2.3 summarizes the resulting Fk0
i values such that

N
Af g

PMRW 3; n; IACb
nþ 1

4
þ k0

� �
j nþ 1

4
þ k0

� �
¼

X4
i¼0

Fk0
i n

i: (2.22)

The entries in Table 2.3 all have periodicity with p ¼ 4.

A representation for N
Af g

PMRW 3; n; IACb
nþ1
4

þ k0
� �� �

is then obtained for this range

of k values with nþ1
4

� k< n
3
in the same fashion that was used to developed the

representation for the range of k values 0 � k � n� 1ð Þ=4 in (2.10). Using the data
from Table 2.3, with the necessary functional form like that in (2.13), we obtain

Fk0
0 ¼ 3

512
4k0 þ 1ð Þ 192k0

3 þ 144k0
2 þ 100k0 � 77

� �
Fk0
1 ¼ �1

128
59þ 356k0 þ 144k0

2 þ 192k0
3

� �
Fk0
2 ¼ 1

768
17� 504k0 þ 144k0

2
� �

Fk0
3 ¼ 5� 12k0

128
: (2.23)

A representation for N
Af g

PMRW 3; n; IACb kð Þð Þ can be obtained for the range of k
values with nþ1

4
� k< n

3
by substituting k � nþ1

4
for k0 in the representations for Fk0

i

in (2.22) and (2.23), with

N
Af g

PMRW 3; n; IACb kð Þð Þ

¼ ðn� 3kÞf3ð3� 2k � 6k3Þ þ ð11þ 18k2Þnþ 3ð1� 2kÞn2 þ n3g
12

;

for nþ 1ð Þ=4 � k< n=3: (2.24)

Additional runs with p ¼ 4 verify that this representation is valid for all

n ¼ 7 4ð Þ . . . . By repeating this procedure with c ¼ 93, this representation is

found to be valid for all odd n � 7 with nþ 1ð Þ=4 � k � n� 1ð Þ=3.
By using the identity in (2.9) along with the representations from (2.18) and

(2.24), substitution and algebraic reduction lead to the same representation

for PS
PMRW 3; n; IACb kð Þð Þ with nþ 1ð Þ=4 � k � n� 1ð Þ=3 that was obtained by

algebraic methods in (2.10). The case of k ¼ n=3 when n is an odd multiple

Table 2.3 Computed Fk0
i values with the specified k0 for c ¼ 91 and p ¼ 4

k0 Fk0
0 Fk0

1 Fk0
2 Fk0

3 Fk0
4

0 �231/512 �59/128 17/768 5/128 11/1536

1 5385/512 �751/128 �343/768 �7/128 11/1536

2 60345/512 �2883/128 �415/768 �19/128 11/1536

3 261417/512 �7607/128 �199/768 �31/128 11/1536

4 760665/512 �16075/128 305/768 �43/128 11/1536

5 1765449/512 �29439/128 1097/768 �55/128 11/1536

6 3538425/512 �48851/128 2177/768 �67/128 11/1536

7 6397545/512 �75463/128 3545/768 �79/128 11/1536
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of three must be handled as a special case, and it is quite easy to show that

PS
PMRW 3; n; IACb n=3ð Þð Þ ¼ 3=4.
By conducting a similar analysis for even values of n, a representation for

PS
PMRW 3; n; IACb kð Þð Þ with even n � 8 is obtained as:

PS
PMRW 3; n j IACb kð Þð Þ

¼ 2kð6þ 31k þ 11k2Þ � 4ð2þ 13k þ 2k2Þnþ 3ð3� 2kÞn2 þ 2n3

2ðn� 3kÞ ðnþ 1Þðnþ 5Þ � 3kð2þ kÞ½ � ;

for 0 � k � n� 4ð Þ=4
2ð2� 3k þ 18k2 � 9k3Þ þ 2ð1� 12k þ 9k2Þnþ ð5� 6kÞn2 þ n3

2ðk þ 1Þ ðnþ 1Þðnþ 5Þ � 3kð2þ kÞ½ � ;

for n=4 � k � n� 1ð Þ=3
3n2

4 nþ 3ð Þ2 ; for k ¼ n

3
: (2.25)

Table 2.4 gives a list of computed values for PS
PMRW 3; 91 j IACb kð Þð Þ and

PS
PMRW 3; 92 j IACb kð Þð Þ from (2.10) and (2.25), for each value over the bounds of

possible b values from 0 � k � 30: These probabilities decrease as k increases,

yielding strong support to the general hypothesis that the likelihood that paradoxi-

cal voting outcomes will be observed is expected to decrease as voters’ preferences

reflect greater degrees of mutual coherence. Similar to observations that were made

in earlier analyses, the rate of convergence of PS
PMRW 3; n j IACb kð Þð Þ to the limiting

value of 3/4 occurs much faster for odd n than it does for even n.
The most important observation that can be made from Table 2.4 is that voting

situations that are at all close to the condition of having a perfect weak positively

unifying candidate, with b ¼ 0, have a significantly increased probability that a

PMRW will be present. This observation is clearly evident from the fact that

PS
PMRW 3; 91 j IACb kð Þð Þ> 0:99 for all values of k � 7. Moreover, voting situations

that are farthest removed from this condition have a significantly reduced probabil-

ity that a PMRW will exist, with PS
PMRW 3; 91 j IACb kð Þð Þ< 0:80 for all k � 25.

2.4.1.2 Other PS
PMRW 3; n j IACX kð Þð Þ Representations for Weak Measures

The EUPIA2 procedure can be used in the same manner to obtain representations

for PS
PMRW 3; n j IACX kð Þð Þ for each X 2 t; c; u; b�; t�; c�; u�f g. However, this is sim-

plified for Parameter t, based on the following result from Gehrlein (2004b).

Lemma 2.1 PS
PMRW 3; n j IACb kð Þð Þ ¼ PS

PMRW 3; n j IACt kð Þð Þ for odd n � 3.

Thus, the impact of having voters’ preferences reflect some degree of proximity

to a perfect weak negatively unifying candidate is identical to the impact of having

the same degree of proximity to perfect weak positively unifying candidate. At least

this is true with regard to the relationship of these two measures of group mutual

coherence to the probability that a PMRW exists.
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A representation for PS
PMRW 3; n j IACc kð Þð Þ is obtained in Gehrlein (2005), and

the details of how this representation was obtained with EUPIA2 are presented

there. The development of this representation was complicated by an additional

issue, since the representation has different forms for odd and even values of

Parameter c. That is, the representation has periodicity equal to two for the k
component. The resulting representation for odd n � 3 is given by

PS
PMRW 3;njIACc kð Þð Þ

¼

ð139k3þ472k2þ146k�244Þk�4ð7k3þ102k2þ84k�20Þn
�6ð9k2�6k�16Þn2þ16ðkþ1Þn3þ3d2kþ1fð6k2þ24k�1Þþ4ðk�2Þn�2n2g

2
4

3
5

16ðkþ1Þðn�3kÞfðnþ1Þðnþ5Þ�3kð2þkÞg ;

for 0�k� n�1ð Þ=4
3ð�39k4þ72k3þ38k2�76kþ1Þþ4ð57k3�54k2�80kþ19Þn

�2ð75k2þ6k�47Þn2þ4ð8kþ5Þn3�n4þ3d2kþ1fð6k2þ24k�1Þþ4ðk�2Þn�2n2g

2
4

3
5

16ðkþ1Þðn�3kÞfðnþ1Þðnþ5Þ�3kð2þkÞg ;

for nþ1ð Þ=4� k� n�1ð Þ=3

Table 2.4 Computed

values for each of

PS
PMRW 3; 91jIACb kð Þð Þ,

PS
PMRW 3; 92jIACb kð Þð Þ,

PS
PMRW 3; 91jIACc kð Þð Þ and

PS
PMRW 3; 91jIACu kð Þð Þ

k PS
PMRW

3; 91jIACb kð Þð Þ
PS
PMRW

3; 92jIACb kð Þð Þ
PS
PMRW

3; 91jIACc kð Þð Þ
PS
PMRW

3; 91jIACu kð Þð Þ
0 1.0000 0.9837 1.0000 1.0000

1 0.9997 0.9828 0.9920 0.9996

2 0.9991 0.9817 0.9894 0.9990

3 0.9982 0.9803 0.9841 0.9980

4 0.9971 0.9786 0.9810 0.9967

5 0.9957 0.9766 0.9762 0.9951

6 0.9939 0.9743 0.9729 0.9929

7 0.9919 0.9715 0.9683 0.9902

8 0.9894 0.9684 0.9648 0.9870

9 0.9866 0.9649 0.9602 0.9830

10 0.9833 0.9608 0.9565 0.9782

11 0.9795 0.9562 0.9520 0.9724

12 0.9751 0.9509 0.9481 0.9654

13 0.9700 0.9450 0.9435 0.9569

14 0.9641 0.9382 0.9394 0.9466

15 0.9574 0.9304 0.9347 0.9339

16 0.9496 0.9215 0.9304 0.9183

17 0.9404 0.9112 0.9255 0.8987

18 0.9297 0.8993 0.9211 0.8737

19 0.9170 0.8853 0.9160 0.8414

20 0.9017 0.8686 0.9115 0.7985

21 0.8832 0.8485 0.9063 0.7399

22 0.8601 0.8239 0.9016 0.6568

23 0.8325 0.7947 0.8965 0.5427

24 0.8088 0.7693 0.8921 0.4368

25 0.7900 0.7490 0.8875 0.3446

26 0.7754 0.7331 0.8839 0.2637

27 0.7645 0.7211 0.8803 0.1921

28 0.7569 0.7125 0.8779 0.1285

29 0.7523 0.7069 0.8758 0.0722

30 0.7503 0.7040 0.8751 0.0217
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7n2 þ 42nþ 27

8 nþ 3ð Þ2 ; for k ¼ n=3: (2.26)

Here, dyx ¼ 1 if x is an integer multiple of y. Otherwise, dyx ¼ 0. The representation in

(2.26) is used to compute the PS
PMRW 3; 91 j IACc kð Þð Þ entries that are shown in Table

2.4 over the possible Parameter c values from 0 � k � 30.

The values that are presented in Table 2.4 show some very interesting results,

with PS
PMRW 3; 91 j IACb kð Þð Þ>PS

PMRW 3; 91 j IACc kð Þð Þ for 0 � k � 19 and with

PS
PMRW 3; 91 j IACc kð Þð Þ>PS

PMRW 3; 91 j IACb kð Þð Þ for 20 � k � 30. This suggests

that proximity to of a voting situation to the condition of having a perfect weak

positively unifying candidate has more of an impact on the probability that a

PMRW exists than does the proximity to a perfect weak polarizing candidate for

small values of k. However, as k increases the reverse situation exists. Moreover,

PS
PMRW 3; 91 j IACc kð Þð Þ and PS

PMRW 3; 91 j IACb kð Þð Þ do not seem to be approaching

the same limiting value as k ! n=3. This observation is verified if we consider

the values of these representations in the limiting case as n ! 1, where

PS
PMRW 3;1j IACc kð Þð Þ ¼ 7=8 from (2.26) while PS

PMRW 3;1j IACb kð Þð Þ ¼ 3=4
from (2.10).

A representation for PS
PMRW 3; n j IACu kð Þð Þ was developed in conjunction with

other results that are reported in Gehrlein (2008), with

PS
PMRW 3; n j IACu kð Þð Þ

¼ 19k3 þ 93k2 þ 14kþ 6þ 2ð6k2 � 24k� 1Þn� 6ð2k� 1Þn2 þ 2n3

13k3 þ 81k2 þ 14kþ 6þ 2ð7k2 � 22k� 1Þn� 6ð2k� 1Þn2 þ 2n3
;

for 0 � k � n� 1ð Þ=4
3ðn� 3kÞð9k2 þ 3� 6knþ n2Þ

81k3 þ 54k2 þ 27kþ 12� ð63k2 þ 36kþ 5Þnþ 3ð5kþ 2Þn2 � n3
;

for nþ 1ð Þ=4 � k � n=3: (2.27)

Some interesting results follow directly from these representations. Since a

PMRW must exist if b ¼ 0 or t ¼ 0, it is obvious that a PMRW must exist if

u ¼ 0. It is also easy to prove that PS
PMRW 3; n j IACu n=3ð Þð Þ ¼ 0 when n is an odd

multiple of three, and this is also evident from the representation in (2.27). Calcu-

lated values of PS
PMRW 3; 91 j IACu kð Þð Þ are listed in Table 2.4 for each 0 � k � 30.

These results yield some dramatic, but potentially misleading results. The calcu-

lated results for PS
PMRW 3; 91 j IACu kð Þð Þ show a much stronger relationship between

the probability that a PMRW exists and the value of Parameter u than was observed
previously with any of the Parameters b, t or c.

The potentially misleading result comes from the very evident observation that

PS
PMRW 3; 91 j IACb kð Þð Þ>PS

PMRW 3; 91 j IACu kð Þð Þ for all k> 0, which might make it

appear that Parameter u is not as closely associated with the probability that a
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PMRW exists than Parameter b is. However, while a PMRW must exist if either

b ¼ 0 or u ¼ 0, the subset of voting situations for which u ¼ 0 includes all of the

voting situations for which b ¼ 0, along with all of remaining voting situations for

which t ¼ 0. This difference in the basis of comparison of these probabilities does

not therefore allow for a direct evaluation of the relative degree of the connection

between these parameters and the probability that a PMRW exists. In order to make

a fair comparison of these parameters for weak measures of group mutual coher-

ence, it is necessary to consider some other factors.

2.5 Cumulative Probabilities that a PMRW Exists

Instead of considering representations for the probability PS
PMRW 3; n j IACX kð Þð Þ

that a PMRW exists when all voting situations are equally likely to be observed

for which Parameter X has a specific value equal to k, it is more useful to consider

cumulative probabilities for Parameter X. For each X 2 b; t; c; uf g a PMRW must

exist when the value of X is equal to zero. The CIACX k�ð Þ assumption is an

extension of IACX kð Þ that assumes that all voting situations for which Parameter

X has a value of q in the range 0 � q � k are equally likely to be observed. Thus,

as k decreases the set of voting situations that are being considered represents

the subset of all of the possible voting situations that are closest to having a

perfect weak positively unifying candidate, a perfect weak negatively unifying

candidate, a perfect weak polarizing candidate or perfect weak overall unifying

candidate.

The definitions of the cumulative probability PS
PMRW 3; n jCIACX k�ð Þð Þ follow

accordingly for each X 2 b; t; c; uf g. These representations are found from a direct

extension of the identity in (2.9) for each 0 � k � n=3, with:

PS
PMRW 3; n jCIACX k�ð Þð Þ ¼

3
Pk
q¼0

N
Af g

PMRW 3; n; IACX qð Þð Þ

Pk
q¼0

K 3; n; IACX qð Þð Þ
: (2.28)

The algebraic manipulations that are required to obtain these representations

for each X 2 b; t; c; uf g were performed to obtain results in Gehrlein (2008) for

odd n:

PS
PMRW 3;n jCIACb k�ð Þð Þ ¼ PS

PMRW 3;n jCIACt k
�ð Þð Þ

¼ 2½ð � 41þ 69kþ 22k2Þkþ 5ð5� 18k� 2k2Þnþ 10ð3� kÞn2 þ 5n3�
ð � 73þ 117kþ 36k2Þkþ 5ð10� 33k� 3k2Þnþ 20ð3� kÞn2 þ 10n3

;

for 0� k � n� 1ð Þ=4
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195�1968k�720k2þ3840k3þ4320k4þ1728k5

þð1661�1680k�6000k2�5760k3�2880k4Þnþ10ð165þ200kþ216k2þ192k3Þn2
þ30ð9�8k�24k2Þn3þ5ð15þ32kÞn4�11n5

2
64

3
75

16ðkþ1Þðkþ2Þ½ð�73þ117kþ36k2Þkþ5ð10�33k�3k2Þnþ20ð3�kÞn2þ10n3� ;

for nþ1ð Þ=4�k� n�1ð Þ=3:
(2.29)

PS
PMRW 3;n jCIACc k�ð Þð Þ

¼

kþ1ð Þ 165�783kþ1743k2þ1597k3þ278k4þ10ð71�233k�143k2�7k3Þn
þ30ð31þ3k�6k2Þn2þ80ðkþ2Þn3

" #

�15d2kf11þ30kþ6k2�2 3�2kð Þn�2n2g

2
664

3
775

8ðkþ1Þðkþ2Þ½ð�73þ117kþ36k2Þkþ5ð10�33k�3k2Þnþ20ð3�kÞn2þ10n3� ;

for 0� k� n�1ð Þ=4
435�952kþ480k2þ2200k3�90k4�468k5

þð1349�2520k�4160k2þ840k3þ1140k4Þnþ10ð177þ120k�162k2�100k3Þn2

þ10ð39þ72kþ32k2Þn3�5ð3þ4kÞn4þn5�30d2kf11þ30kþ6k2�2ð3�2kÞn�2n2g

2
664

3
775

16ðkþ1Þðkþ2Þ½ð�73þ117kþ36k2Þkþ5ð10�33k�3k2Þnþ20ð3�kÞn2þ10n3� ;

for nþ1ð Þ=4� k� n�1ð Þ=3:
(2.30)

PS
PMRW 3;n jCIACu k�ð Þð Þ

¼ 30þ 121kþ 261k2 þ 38k3 � 10ð1þ 15k� 3k2Þnþ 10ð3� 4kÞn2 þ 10n3

2ð15þ 56kþ 111k2 þ 13k3Þ� 5ð2þ 27k� 7k2Þnþ 10ð3� 4kÞn2 þ 10n3
;

for 0� k� n� 1ð Þ=4
27ð25þ 64kþ 480k2 þ 1280k3 þ 1440k4 þ 576k5Þ

þ 9ð101� 960k� 3840k2 � 5760k3 � 2880k4Þnþ 90ð29þ 128kþ 288k2 þ 192k3Þn2

�10ð85þ 576kþ 576k2Þn3 þ 15ð37þ 64kÞn4 � 59n5

2
664

3
775

16 n� 2uð Þ 18ðkþ 1Þð13þ 42kþ 63k2 þ 27k3Þ� 3ð35þ 250kþ 360k2 þ 144k3Þn
þð25þ 24kÞð5þ 6kÞn2 � 3ð5þ 6kÞn3 þ n4

" #

for nþ 1ð Þ=4� k� n� 1ð Þ=3:
(2.31)

Here, dyx ¼ 1 if x is an integer multiple of y. Otherwise, dyx ¼ 0.

It follows directly from definitions for each X 2 b; t; c; uf g that

PS
PMRW 3; n jCIACX

n

3

�� �� �
¼ PS

PMRW 3; n; IACð Þ ¼ 15ðnþ 3Þ2
16ðnþ 2Þðnþ 4Þ : (2.32)

These representations are far too unwieldy to serve as the basis of any useful

analysis, so attention will be focused on the potentially most interesting case of

large electorates with limiting probability as n ! 1. To do this, k is replaced with
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akn in the PS
PMRW 3; n jCIACX k�ð Þð Þ representations, so that k is expressed as a

proportion, ak, of n, rather than as an integer value. It then follows from definitions

that 0 � ak � 1=3. The limiting representation as n ! 1 is then determined.

The resulting representations for the limiting distributions are denoted by

PS
PMRW 3;1jCIACX a�k

� �� �
, with:

PS
PMRW 3;1jCIACb a�k

� �� �¼ PS
PMRW 3;1jCIACt a�k

� �� �
¼ 10� 20ak � 20a2k þ 44a3k
10� 20ak � 15a2k þ 36a3k

; for 0� ak � 1=4

�11þ 160ak � 720a2k þ 1920a3k � 2880a4k þ 1728a5k
16a2kð10� 20ak � 15a2k þ 36a3kÞ

; for 1=4� ak � 1=3:

(2.33)

PS
PMRW 3;1; jCIACc a�k

� �� �
¼ 40� 90ak � 35a2k þ 139a3k

40� 80ak � 60a2k þ 144a3k
; for 0 � ak � 1=4

¼ 1� 20ak þ 320a2k � 1000a3k þ 1140a4k � 468a5k
16a2kð10� 20ak � 15a2k þ 36a3kÞ

; for 1=4 � ak � 1=3:

(2.34)

PS
PMRW 3;1jCIACu a�k

� �� �
¼ 10� 40ak þ 30a2k þ 38a3k

10� 40ak þ 35a2k þ 26a3k
; for 0 � ak � 1=4

�59þ 960ak � 5760a2k þ 17280a3k � 25920a4k þ 15552a5k
16ð1� 2akÞð1� 18ak þ 144a2k � 432a3k þ 486a4kÞ

;

for 1=4 � ak � 1=3: (2.35)

These limiting representations as n ! 1 are much more tractable. Following

earlier discussion, these limiting representations result in specific values such

that PS
PMRW 3;1jCIACX 0�ð Þð Þ ¼ 1 and PS

PMRW 3;1jCIACX 1=3�ð Þð Þ ¼ 15=16
for each X 2 b; t; c; uf g. The cumulative probability representations ultimately

will be very helpful in showing the relationship that exists between the probability

that a PMRW exists and the degree of group mutual coherence that is present in

voters’ preferences. However, the original issue regarding the fact that there is a

greater proportion of voting situations with ak ¼ 0 for Parameter u than for Param-

eter b has not yet been resolved. In order to address this problem, attention is turned

to the consideration of the proportion of voting situations that have a specified

parameter value.
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2.6 Proportions of Profiles with Specified Parameters

Wewant to develop representations for the proportion of all possible voting situations

that have a specified value, q, of Parameter X in some given range 0 � q � k. Define
this proportion as PVS 3; n jCIACX k�ð Þð Þ for each X 2 b; t; c; uf g. The representa-

tions for PVS 3; n jCIACX k�ð Þð Þ are obtained from an identity that follows directly

from definitions for 0 � k � n=3, with

PVS 3; n jCIACX k�ð Þð Þ ¼

Pk
q¼0

K 3; n; IACX qð Þð Þ

K 3; n; IACð Þ : (2.36)

Gehrlein (2008) performs the algebraic reduction of (2.36) to obtain

PVS 3;n jCIACb k�ð Þð Þ ¼ PVS 3;n jCIACt k
�ð Þð Þ ¼ PVS 3;n jCIACc k�ð Þð Þ

¼
3 kþ 1ð Þ kþ 2ð Þ ð �73þ 117kþ 36k2Þk

þ5ð10� 33k� 3k2Þnþ 20ð3� kÞn2 þ 10n3

( )" #

ðnþ 1Þðnþ 2Þðnþ 3Þðnþ 4Þðnþ 5Þ ;

for 0� k � n� 1ð Þ=3
1; for k ¼ n=3: (2.37)

Attention will be focused on the limiting distribution, PVS 3;1jCIACX ak�ð Þð Þ, as
n ! 1, and following the procedure that was used in earlier analyses,

PVS 3;1jCIACb ak�ð Þð Þ ¼ PVS 3;1jCIACt ak�ð Þð Þ ¼ PVS 3;1jCIACc ak�ð Þð Þ
¼ 3ak2ð10� 20ak � 15ak2 þ 36ak3Þ; for 0 � ak � 1=3: ð2:38Þ

The representation in (2.38) can be used as a basis of a search procedure to find

specific values of bpb such that PVS n;1jCIACb b p�
b

� �� �¼ p for each proportion p¼
0.00(0.05)1.00, and the results are listed in Table 2.5. Based on previous discussion,

b p
b ¼ b p

t ¼ b p
c for all p. The results in Table 2.5 indicate for example that 65% of

all possible voting situations are included in the range of ak parameter values

with 0 � ak � 0:1924 for Parameter b, t, or c, and 15% of all possible voting

situations are included in the range of ak parameter values with 0 � ak � 0:0564
for Parameter u.

The results of Table 2.5 can now be used in conjunction with the limiting

representations from (2.33) to compute the limiting conditional cumulative proba-

bility PS
PMRW n;1jCIACb bp

�
b

� �� �
that a PMRW exists for the p percent of all

voting situations that are closest to having a perfect weak positively unifying

candidate. For example, suppose that we wish to consider the 20% of voting situa-

tions that are closest to having a perfect weak positively unifying candidate.
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The results on Table 2.5 show that b:20b ¼ 0:0908. This particular value is used with
(2.33) to find that PVS 3;1jCIACb b:20

�
b

� �� � ¼ 0:9956. So, the probability that a

PMRW exists for the 20% of voting situations that are closest to having a perfect

weak positively unifying candidate is 0.9956.

Computed values from all of the associated representations for

PS
PMRW n;1jCIACX bp

�
X

� �� �
for each X 2 b; t; c; uf g are listed in Table 2.6 for

each proportion p ¼ 0.00(0.05)1.00.

The values in Table 2.6 show some very interesting results. For example, the

50% of all possible voting situations that are closest to having a perfect weak

positively or negatively unifying candidate have a PMRW with probability of

0.9857 for large electorates. And, the 15% of all possible voting situations that

are closest to having a perfect weak polarizing candidate have a PMRW with

probability of 0.9814 for large electorates. Clearly, any significant degree of

group mutual coherence among voters’ preferences that approaches having a

perfect weak positively or negatively unifying candidate leads to a high probability

that a PMRW exists. The impact of having voters’ preferences that suggest

the presence of a candidate approaching a perfect weak polarizing candidate in

voting situations is also quite strong, but it is not as significant as the proximity to

having a perfect weakly unifying candidate, assuming that there is an equivalence

of these factors as they are measured by ak, since PS
PMRW n;1jCIACb bp

�
b

� �� �
>

PS
PMRW n;1jCIACc bp

�
c

� �� �
for all 0< p< 1. Moreover, the results from Table 2.6

show that the 50% of voting situations that are most closely related to having a

perfect weak overall unifying candidate have a probability 0.9910 of having a

Table 2.5 Computed

values of bpb, b
p
t , b

p
c and bpu;

for each proportion

p ¼ 0.00(0.05)1.00

p bpb ¼ bpt ¼ bpc bpu
0.00 0.0000 0.0000

0.05 0.0428 0.0308

0.10 0.0619 0.0449

0.15 0.0772 0.0564

0.20 0.0908 0.0667

0.25 0.1033 0.0763

0.30 0.1150 0.0854

0.35 0.1264 0.0943

0.40 0.1374 0.1031

0.45 0.1483 0.1118

0.50 0.1591 0.1206

0.55 0.1700 0.1296

0.60 0.1811 0.1388

0.65 0.1924 0.1484

0.70 0.2042 0.1585

0.75 0.2166 0.1695

0.80 0.2298 0.1815

0.85 0.2445 0.1951

0.90 0.2614 0.2117

0.95 0.2829 0.2344

1.00 0.3333 0.3333
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PMRW. This suggests that any voting situation that is relatively close to represent-

ing perfect weak overall unifying candidate, as measure by Parameter u, will have a
very high probability of yielding a PMRW with large electorates.

2.7 Results with Strong Measures of Group Coherence

The same type of analysis that we have just used with weak measures of group

mutual coherence was applied to strong measures in Gehrlein (2009), but there are

some differences in how these methods must be applied in that case. Representa-

tions are obtained for PS
PMRW 3; n j IACX� kð Þð Þ for each X� 2 b�; t�; c�; u�f g in exactly

the same fashion with EUPIA2. But, a major difference then occurs during the

process of obtaining the cumulative probability representations that a PMRW exists

with these strong measures of group coherence. The identity in (2.28) was based on

the fact that parameter values for the weak measures of group mutual coherence in

X 2 b; t; c; uf g were each closest to the condition of requiring that a PMRW must

exist with X ¼ 0. However, the parameters for the strong measures of group mutual

coherence in X� 2 b�; t�; c�; u�f g are each closest to requiring that a PMRW must

exist when X� ¼ n.
For the strong measures of group mutual coherence in X� 2 b�; t�; c�; u�f g, the

cumulative probability that a PMRW exists is therefore found for a specified range

of q values for Parameter X� in the range k � q � n. The resulting cumulative

Table 2.6 Computed values

of PS
PMRW n;1jCIACX bp�Xð Þð Þ

for X ¼ b, t, c, u for

each proportion

p ¼ 0.00(0.05)1.00

p b, t c u

0.00 1.0000 1.0000 1.0000

0.05 0.9991 0.9895 0.9995

0.10 0.9980 0.9850 0.9989

0.15 0.9969 0.9814 0.9983

0.20 0.9956 0.9782 0.9975

0.25 0.9943 0.9753 0.9967

0.30 0.9929 0.9726 0.9958

0.35 0.9913 0.9701 0.9948

0.40 0.9896 0.9676 0.9936

0.45 0.9877 0.9652 0.9924

0.50 0.9857 0.9628 0.9910

0.55 0.9834 0.9605 0.9894

0.60 0.9809 0.9582 0.9876

0.65 0.9781 0.9558 0.9856

0.70 0.9749 0.9535 0.9832

0.75 0.9712 0.9510 0.9804

0.80 0.9669 0.9486 0.9770

0.85 0.9616 0.9460 0.9728

0.90 0.9548 0.9433 0.9671

0.95 0.9466 0.9405 0.9583

1.00 0.9375 0.9375 0.9375
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probability is denoted by PS
PMRW 3; n jCIACX� kþð Þð Þ. The representations for these

cumulative probabilities follow directly from definitions for each possible value of

k with n=3 � k � n, with

PS
PMRW 3; n jCIACX� kþð Þð Þ ¼

3
Pn
q¼k

N
Af g

PMRW 3; n; IACX� qð Þð Þ
Pn
q¼k

K 3; n; IACX� qð Þð Þ
: (2.39)

The resulting representations are given by:

PS
PMRW 3;n jCIACb� kþð Þð Þ ¼ PS

PMRW 3;n jCIACt� kþð Þð Þ

¼

3ð576k5�1440k4þ1280k3�1200k2þ784kþ65Þ
� ð2880k4�5760k3þ6000k2�4560k�221Þn

þ10ð192k3�360k2þ344k�11Þn2�30ð24k2�40kþ7Þn3þ5ð32k�17Þn4�11n5

2
64

3
75

16½kðkþ1Þfðk�1Þð36k2þ45k�154Þ�5ð3k2þ27k�40Þn�20ðk�4Þn2þ10n3g� ;

for nþ1ð Þ=3� k� n�1ð Þ=2:
(2.40)

1, for nþ 1ð Þ=2 � k � n

PS
PMRW 3;njCIACc� kþð Þð Þ

¼

1476k5�2610k4þ40k3þ824kþ435�ð2100k4�2760k3þ2000k2�2200k�757Þn
þ10ð116k3�186k2þ216kþ25Þn2�10ð40k2�80kþ9Þn3þ5 20k�11ð Þn4�7n5

�30d2kf3ð10k2�18kþ5Þ�2ð14k�11Þnþ6n2g

2
664

3
775

16½kðkþ1Þfðk�1Þð36k2þ45k�154Þ�5ð3k2þ27k�40Þn�20ðk�4Þn2þ10n3g� ;

for nþ1ð Þ=3�k� n�1ð Þ=2

nþ3�kð Þ nþ1�kð Þ 34k3�169k2þ42kþ365

�2ð31k2�49k�139Þnþð22kþ71Þn2þ6n3

( )

�15ð1�d2kÞf2k2�10kþ9�2ð2k�5Þnþ2n2g

2
664

3
775

8ðnþ1�kÞðnþ2�kÞðnþ3�kÞðnþ4�kÞðnþ5þ4kÞ ;

for nþ1ð Þ=2�k�n:

(2.41)

PS
PMRW 3;n jCIACu� kþð Þð Þ

¼

3

�9ð576k5�1440k4þ1280k3�480k2þ64k�25Þ
þ3ð2880k4�5760k3þ3840k2�960kþ229Þn

�30ð192k3�288k2þ128k�29Þn2þ30ð64k2�64kþ19Þn3�5ð64k�37Þn4þ23n5

2
64

3
75

16
36kðk�1Þð27k3�63k2þ42k�13Þ�6ð315k4�810k3þ695k2�240kþ13Þn

þ 5ð6k�1Þð48k2�82kþ37Þn2�5ð108k2�132kþ31Þn3þ5ð20k�11Þn4�7n5

" # ;

for n=3� k� 3n�1ð Þ=8:
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¼

8608k5�31760k4þ41600k3�23920k2þ5892k�135

�3ð5920k4�16960k3þ16320k2�6160kþ501Þnþ90ð160k3�336k2þ212k�33Þn2
�90ð64k2�88kþ25Þn3þ15ð76k�49Þn4�87n5

2
64

3
75

8
36kðk�1Þð27k3�63k2þ42k�13Þ�6ð315k4�810k3þ695k2�240kþ13Þn

þ5ð6k�1Þð48k2�82kþ37Þn2�5ð108k2�132kþ31Þn3þ5ð20k�11Þn4�7n5

� 	 ;

for 3nþ1ð Þ=8�k� n�1ð Þ=2
¼1; for nþ1ð Þ=2�k�n: (2:42)

It then follows directly from definitions for each X� 2 b�; t�; c�; u�f g that

PS
PMRW 3; n jCIACX�

n

3

� �þ� �� �
¼ PS

PMRW 3; n; IACð Þ

¼ 15ðnþ 3Þ2
16ðnþ 2Þðnþ 4Þ : (2.43)

Just as we observed in the case of the representations that were obtained for

PS
PMRW 3; n j IACX kð Þð Þ in (2.29), (2.30) and (2.31), the resulting representations for

PS
PMRW 3; n jCIACX� kþð Þð Þ in (2.40), (2.41) and (2.42) are far too cumbersome

for any meaningful analysis. Following earlier analysis, attention therefore is

focused on the limiting case for voters as n ! 1, and the resulting representations

are defined by PS
PMRW 3;1jCIACX� aþk

� �� �
; for the range 1=3 � ak � 1, with

PS
PMRW 3;1jCIACb� akþð Þð Þ ¼ PS

PMRW 3;1jCIACt� akþð Þð Þ

¼ 1728a5k � 2880a4k þ 1920a3k � 720a2k þ 160ak � 11

16a2kð36a3k � 15a2k � 20ak þ 10Þ ; for 1=3 � ak � 1=2

1; for 1=2 � ak � 1: (2.44)

PS
PMRW 3;1jCIACc� aþk

� �� �
¼ 1476a5k � 2100a4k þ 1160a3k � 400a2k þ 100ak � 7

16a2kð36a3k � 15a2k � 20ak þ 10Þ ; for 1=3 � ak � 1=2

¼ 17ak þ 3

4ð4ak þ 1Þ ; for 1=2 � ak � 1: ð2:45Þ

PS
PMRW 3;1jCIACu� aþk

� �� �
¼3ð�5184a5kþ8640a4k�5760a3kþ1920a2k�320akþ23Þ

16ð6ak�1Þð1;62a4k�288a3kþ192a2k�58akþ7Þ ; for 1=3�ak�3=8:

8608a5k�17760a4kþ14400a3k�5760a2kþ1140ak�87

8ð6ak�1Þð162a4k�288a3kþ192a2k�58akþ7Þ ; for 3=8�ak�1=2

1; for 1=2�ak�1: ð2:46Þ
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A direct comparison of the cumulative probability values that are obtained from

these PS
PMRW 3;1jCIACX� aþk

� �� �
representations for different strong measure of

group mutual coherence, as measured by parameters in X� 2 b�; t�; c�; u�f g, does not
lead to any clear results. The reason for this follows from the fact that the subset of

all voting situations for which b� ¼ n are included in the set of all voting situations
with u� ¼ n, along with all other voting situations with t� ¼ n. So the basis of

comparison is not the same in all cases. In order to facilitate further analysis, we

develop representations for the proportion, PVS 3; n jCIACX� kþð Þð Þ, of all voting
situations that have a specified value, q, for Parameter X* in the range k � q � n.
These representations are obtained from the identity.

PVS 3; n jCIACX� kþð Þð Þ ¼

Pn
q¼k

K 3; n; IACX� qð Þð Þ

K 3; n; IACð Þ : (2.47)

The necessary algebraic reduction of (2.47) is performed in Gehrlein (2009), to

obtain representations for PVS 3; n jCIACX� kþð Þð Þ with each X� 2 b�; t�; c�; u�f g:

PVS 3;n;CIACb� kþð Þð Þ¼PVS 3;n;CIACt� kþð Þð Þ¼PVS 3;n;CIACc� kþð Þð Þ

¼3kðkþ1Þ½ðk�1Þð36k2þ45k�154Þ�5ð3k2þ27k�40Þn�20ðk�4Þn2þ10n3�
ðnþ1Þðnþ2Þðnþ3Þðnþ4Þðnþ5Þ ;

for n=3<k� n�1ð Þ=2
3ðnþ1�kÞðnþ2�kÞðnþ3�kÞðnþ4�kÞðnþ5þ4kÞ

ðnþ1Þðnþ2Þðnþ3Þðnþ4Þðnþ5Þ ; for ½ nþ1ð Þ=2�k�n:

(2.48)

PVS 3;n;CIACu� kþð Þð Þ

¼
3

36kðk�1Þð27k3�63k2þ42k�13Þ�6ð315k4�810k3þ695k2�240kþ13Þn
þ5ð6k�1Þð48k2�82kþ37Þn2�5ð108k2�132kþ31Þn3þ5ð20k�11Þn4�7n5

" #

ðnþ1Þðnþ2Þðnþ3Þðnþ4Þðnþ5Þ ;

for n=3<k� n�1ð Þ=2
6ðnþ1�kÞðnþ2�kÞðnþ3�kÞðnþ4�kÞð6k�nÞ

ðnþ1Þðnþ2Þðnþ3Þðnþ4Þðnþ5Þ ; for nþ1ð Þ=2�k�n: ð2:49Þ

The limiting representations as n ! 1 are obtained from (2.48) and (2.49)

following previous discussion, with:

PVS 3;1;CIACb� aþk
� �� � ¼ PVS 3;1;CIACt� aþk

� �� � ¼ PVS 3;1;CIACc� aþk
� �� �

¼ 3a2kð36a3k � 15a2k � 20ak þ 10Þ; for 1=3 � ak � 1=2

3ð1� akÞ4ð4ak þ 1Þ; for 1=2 � ak � 1: ð2:50Þ
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PVS 3;1;CIACu� aþk
� �� �

¼ 3ð6ak � 1Þð162a4k � 288a3k þ 192a2k � 58ak þ 7Þ; for 1=3� ak � 1=2

6ð1� akÞ4ð6ak � 1Þ; for 1=2� ak � 1: (2.51)

These results show for example that PVS 3;1;CIACu� 0:50þð Þð Þ ¼ 0:75, so that

75% of all voting situations have a value of u�=n in the range 0.50–1.00 in the limit

as n ! 1. A search procedure was then initiated with these representations to find

the specific values of b p
X� such that PVS 3;1;CIACX bpX�

þ� �� � ¼ p for each

X� 2 b�; t�; c�; u�f g with p ¼ 0:00 0:05ð Þ1:00 and the results are summarized in

Table 2.7.

These bpX� values from Table 2.7 are used in conjunction with the representations

from (2.44), (2.45) and (2.46) to obtain the cumulative probability values that a

PMRW exists from PS
PMRW 3;1jCIACX� bpX�

þ� �� �
for each strong measure of

group mutual coherence from X� 2 b�; t�; c�; u�f g with p ¼ 0:00 0:05ð Þ1:00. The
results of these computations are summarized in Table 2.8, and some very interest-

ing and compelling observations directly follow from them.

Just as we observed in the case of the proximity of a voting situation to having a

perfect weak polarizing candidate for weak measures of group mutual coherence,

the proximity of a voting situation to having a perfect strong centrist candidate has

the least amount of impact on the probability that a PMRW will exist. A somewhat

surprising result is that the 55% of voting situations that are closest to having a

perfect strong positively unifying candidate or perfect strong negatively unifying

Table 2.7 Values of bpX� for

each X� 2 b�; t�; c�; u�f g for

each p ¼ 0.00(0.05)1.00

p bpb� ¼ bpt� ¼ bpc� bpu�
0.00 1.0000 1.0000

0.05 0.7456 0.7820

0.10 0.6934 0.7357

0.15 0.6574 0.7032

0.20 0.6289 0.6770

0.25 0.6049 0.6546

0.30 0.5839 0.6347

0.35 0.5651 0.6166

0.40 0.5479 0.5998

0.45 0.5320 0.5840

0.50 0.5173 0.5689

0.55 0.5033 0.5545

0.60 0.4902 0.5405

0.65 0.4773 0.5268

0.70 0.4645 0.5133

0.75 0.4514 0.5000

0.80 0.4376 0.4865

0.85 0.4226 0.4720

0.90 0.4054 0.4551

0.95 0.3838 0.4323

1.00 0.3333 0.3333
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candidate have a PMRW with certainty. The most compelling observation is that

the 75% of voting situations that are closest to having a perfect strong overall

unifying candidate will have a PMRW with absolute certainty.

2.8 Conclusion

When voters’ preferences in a three-candidate voting situation reflect any signifi-

cant degree of proximity to having a perfect weak positively or negatively unifying

candidate, the probability that a PMRW exists is high. When voters’ preferences are

at all close to reflecting a situation in which a perfect weak overall unifying

candidate exists, the probability that a PMRW exists is very high. An even stronger

relationship is shown to exist when voting situations are at all close to having a

perfect strong positively or negatively unifying candidate. A PMRW must exist

when voting situations are even remotely close to having a perfect strong overall

unifying candidate.

It is very important to note that the associated underlying models that lead to any

of these measures of mutual group coherence do not actually have to be the basis of

the mechanism by which the voters’ preference rankings on candidates were

actually formed. It is only required that the preferences in a given voting situation

could have been obtained by one of these models. As a result, it is easily concluded

that Condorcet’s Paradox should very rarely be observed in any real elections on a

Table 2.8 Values of

PS
PMRW 1jCIACX� bpX�

þ� �� �
;

for each X� 2 b�; t�; c�; u�f g
for each p ¼ 0.00(0.05)1.00

p b�,t� c� u�

0.00 1.0000 1.0000 1.0000

0.05 1.0000 0.9840 1.0000

0.10 1.0000 0.9797 1.0000

0.15 1.0000 0.9764 1.0000

0.20 1.0000 0.9736 1.0000

0.25 1.0000 0.9711 1.0000

0.30 1.0000 0.9688 1.0000

0.35 1.0000 0.9667 1.0000

0.40 1.0000 0.9646 1.0000

0.45 1.0000 0.9626 1.0000

0.50 1.0000 0.9607 1.0000

0.55 1.0000 0.9588 1.0000

0.60 0.9988 0.9569 1.0000

0.65 0.9946 0.9544 1.0000

0.70 0.9885 0.9530 1.0000

0.75 0.9812 0.9508 1.0000

0.80 0.9732 0.9485 0.9969

0.85 0.9647 0.9460 0.9891

0.90 0.9558 0.9433 0.9775

0.95 0.9468 0.9405 0.9617

1.00 0.9375 0.9375 0.9375
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small number of candidates with large electorates, as long as voters’ preferences

reflect any reasonable degree of group mutual coherence from a number of different

possible models, and the observations that have been made from numerous empiri-

cal studies should no longer seem surprising.

It can also be concluded from these observations that the use of the Condorcet
Criterion that voting rules should select the PMRW whenever one exists is a very

valid measure of the effectiveness of various voting rules at selecting the alternative

that is the overall most preferred candidate. Arguments against the use of the

Condorcet Criterion are typically based on the fact that a PMRW does not always

exist, so that there might be some confusion over which candidate should be

selected as the winner. However, our results indicate that the probability that this

confounding issue would ever result is expected to be very small for elections on a

small number of candidates with a large number of voters.
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