Chapter 1
Hilbert’s Nullstellensatz

Hilbert’s Nullstellensatz may be seen as the starting point of algebraic geom-
etry. It provides a bijective correspondence between affine varieties, which are
geometric objects, and radical ideals in a polynomial ring, which are algebraic
objects. In this chapter, we give proofs of two versions of the Nullstellensatz.
We exhibit some further correspondences between geometric and algebraic
objects. Most notably, the coordinate ring is an affine algebra assigned to an
affine variety, and points of the variety correspond to maximal ideals in the
coordinate ring.

Before we get started, let us fix some conventions and notation that will
be used throughout the book. By a ring we will always mean a commutative
ring with an identity element 1. In particular, there is a ring R = {0}, the
zero ring, in which 1 = 0. A ring R is called an integral domain if R has
no zero divisors (other than 0 itself) and R # {0}. A subring of a ring R
must contain the identity element of R, and a homomorphism R — S of rings
must send the identity element of R to the identity element of S.

If R is a ring, an R-algebra is defined to be a ring A together with a
homomorphism a: R — A. In other words, by an algebra we will mean a
commutative, associative algebra with an identity element. A subalgebra
of an algebra A is a subring that contains the image «(R). If A and B
are R-algebras with homomorphisms « and (3, then a map ¢: A — B is
called a homomorphism of (R-)algebras if ¢ is a ring homomorphism,
and poa = (. If A is a nonzero algebra over a field K, then the map « is
injective, so we may view K as a subring of A. With this identification, a
homomorphism of nonzero K-algebras is just a ring homomorphism fixing K
elementwise.

One of the most important examples of an R-algebra is the ring of
polynomials in n indeterminates with coefficients in R, which is written
as R[xy,...,z,]. If A is any R-algebra and aj,...,a, € A are elements,
then there is a unique algebra homomorphism ¢: R[z1,...,z,] — A with
p(xz;) = a;, given by applying « to the coefficients of a polynomial and sub-
stituting x; by a;. Clearly the image of ¢ is the smallest subalgebra of A
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containing all a;, i.e., the subalgebra of A generated by the a;. We write this
image as Rlaq,...,ay], which is consistent with the notation R[z1,...,xy,]
for a polynomial ring. We say that A is finitely generated if there exist
ai,...,a, with A = Rlay,...,ay]. Thus an algebra is finitely generated if and
only if it is isomorphic to the quotient ring R[z1,...,x,]/I of a polynomial
ring by an ideal I C R[z1,...,z,]). By an affine (K-)algebra we mean a
finitely generated algebra over a field K. An affine (K-)domain is an affine
K-algebra that is an integral domain.

Recall that the definition of a module over a ring is identical to the def-
inition of a vector space over a field. In particular, an ideal in a ring R is
the same as a submodule of R viewed as a module over itself. Recall that a
module does not always have a basis (= a linearly independent generating
set). If it does have a basis, it is called free. If M is an R-module and S C M
is a subset, we write (S)g = (5) for the submodule of M generated by S, i.e.,
the set of all R-linear combinations of S. (The index R may be omitted if it

is clear which ring we have in mind.) If S = {my,...,my} is finite, we write
(S)r = (m1,...,mg)r = (M1,...,mg). In particular, if ay,...,ax € R are
ring elements, then (a1,...,ax)r = (a1,...,ar) denotes the ideal generated
by them.

1.1 Maximal Ideals

Let a € A be an element of a nonzero algebra A over a field K. As in field
theory, a is said to be algebraic (over K) if there exists a nonzero polynomial
f € Klz] with f(a) = 0. We say that A is algebraic (over K) if every element
from A is algebraic. Almost everything that will be said about affine algebras
in this book has its starting point in the following lemma.

Lemma 1.1 (Fields and algebraic algebras). Let A be an algebra over a field
K.

(a) If A is an integral domain and algebraic over K, then A is a field.
(b) If A is a field and is contained in an affine K-domain, then A is algebraic.

Proof. (a) We need to show that every a € A\ {0} is invertible in A. For
this, it suffices to show that K|[a] is a field. We may therefore assume that
A = K|[a]. With 2 an indeterminate, let I C K [x] be the kernel of the map
Klz] = A, f— f(a). Then A=~ K|z]/I. Since A is an integral domain,
I is a prime ideal, and since a is algebraic over K, I is nonzero. Since
K] is a principal ideal domain, it follows that I = (f) with f € K|z]
irreducible, so I is a maximal ideal. It follows that A & K|z]/I is a field.
(b) By way of contradiction, assume that A has an element a; that is
not algebraic. By hypothesis, A is contained in an affine K-domain
B = Klai,...,a,] (we may include a; in the set of generators). We
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can reorder ag,...,a, in such a way that {aq,...,a,} forms a maxi-
mal K-algebraically independent subset of {ai,...,an}. Then the field
of fractions Quot(B) of B is a finite field extension of the subfield L :=
K(ai,...,a,). For b € Quot(B), multiplication by b gives an L-linear
endomorphism of Quot(B). Choosing an L-basis of Quot(B), we obtain
a map ¢: Quot(B) — L™*™ assigning to each b € Quot(B) the repre-
sentation matrix of this endomorphism. Let g € K[aq,...,a,]\ {0} be a
common denominator of all the matrix entries of all p(a;), i =1,...,n.
So ¢(a;) € Kla,...,a,, g 1]™*™ for all i. Since ¢ preserves addition
and multiplication, we obtain

¢(B) C Klay,. .., ar,g_l]mxm.

Klas,...,a;] is isomorphic to a polynomial ring and therefore factorial
(see, for example, Lang [33, Chapter V, Corollary 6.3]). Take a factoriza-
tion of g, and let p1, ..., px be those irreducible factors of g that happen
to lie in K[a1]. Let p € KJa;] be an arbitrary irreducible element. Then
p~! € AC Bsince K[a1] € A and A is a field. Applying ¢ to p~* yields
a diagonal matrix with all entries equal to p~!, so there exists a nonneg-
ative integer s and an f € Klas,...,a,] withp=t=¢7% - f,s0g° =p- f.
By the irreducibility of p, it follows that p is a K-multiple of one of the
p;. Since this holds for all irreducible elements p € KJaq], every element
from Klaq] \ K is divisible by at least one of the p;. But none of the
p; divides Hle p; + 1. This is a contradiction, so all elements of A are
algebraic. a

The following proposition is an important application of Lemma 1.1. A
particularly interesting special case of the proposition is that A C B is a
subalgebra and ¢ is the inclusion.

Proposition 1.2 (Preimages of maximal ideals). Let ¢: A — B be a homo-
morphism of algebras over a field K, and let m C B be a mazximal ideal. If B
is finitely generated, then the preimage ¢~ '(m) C A is also a mazimal ideal.

Proof. The map A — B/m, a — ¢(a)+m, has kernel ¢~!(m) =: n. So A/n is
isomorphic to a subalgebra of B/m. By Lemma 1.1(b), B/m is algebraic over
K. Hence the same is true for the subalgebra A/n, and A/n is also an integral
domain. By Lemma 1.1(a), A/n is a field and therefore n is maximal. O

Ezxample 1.3. We give a simple example that shows that intersecting a max-
imal ideal with a subring does not always produce a maximal ideal. Let
A = K|[z] be a polynomial ring over a field and let B = K (x) be the rational
function field. Then m := {0} C B is a maximal ideal, but ANm = {0} is
not maximal in A. <

Wi . . .. 93 .
Before drawing a “serious” conclusion from Proposition 1.2 in Proposi
tion 1.5, we need a lemma.
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Lemma 1.4. Let K be a field and P = (&1,...,&,) € K™ a point in K™.
Then the ideal

mp:= (1 —&1,...,2n — &) C Klx1,. .., Ty
in the polynomial ring K[z1,...,z,] is mazimal.

Proof. Tt is clear from the definition of mp that every polynomial f €

Klx1,...,xy,] is congruent to f(&1,...,&,) modulo mp. It follows that mp is
the kernel of the homomorphism ¢: Klxy,...,z,] = K, f— f(&1,...,&),
so K[z1,...,2,]/mp = K. This implies the result. O

Together with Lemma 1.4, the following proposition describes all maximal
ideals in a polynomial ring over an algebraically closed field. Recall that a
field K is called algebraically closed if every nonconstant polynomial in K|[z]
has a root in K.

Proposition 1.5 (Maximal ideals in a polynomial ring). Let K be an alge-
braically closed field, and let m C Klzy,...,x,] be a mazimal ideal in a
polynomial ring over K. Then there exists a point P = (&1,...,&,) € K™
such that

m:(xl—fl,...,xn—fn).

Proof. By Proposition 1.2, the intersection K[z;] N'm is a maximal ideal in
K(z;] for each ¢ = 1,...,n. Since K|z,] is a principal ideal domain, K [z;]Nm
has the form (p;)k(z,) with p; an irreducible polynomial. Since K is alge-
braically closed, we obtain (p;)k(z,] = (i — &) K[z,] With & € K. So there
exist £1,...,&, € K with x; — & € m. With the notation of Lemma 1.4, it
follows that mp C m, so m = mp by Lemma 1.4. a

We make a definition before giving a refined version of Proposition 1.5.
Definition 1.6. Let K[z1,...,xy,] be a polynomial ring over a field.

(a) For a set S C Klz1,...,x,] of polynomials, the affine variety given by
S is defined as

V(S) =Vgn(S) :={(&,...,&) € K™ | f(&1,...,&,) =0 for all f € S}.

The index K™ is omitted if no misunderstanding can occur.
(b) A subset X C K" is called an affine (K-)variety if X is the affine
variety given by a set S C K[x1,...,2,] of polynomials.

Remark. In the literature, affine varieties are sometimes assumed to be
irreducible. Moreover, the definition of an affine variety is sometimes made
only in the case that K is algebraically closed. <

Theorem 1.7 (Correspondence points—maximal ideals). Let K be an alge-
braically closed field and S C K[x1,...,x,] a set of polynomials. Let Mg be
the set of all mazimal ideals m C Klx1,...,z,] with S C m. Then the map
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P:V(S) = Ms, (&1, &) = (21 =&,z — &)

s a bijection.

Proof. Let P := (&1,...,&,) € V(S). Then ¢(P) is a maximal ideal by
Lemma 1.4. All f € S satisfy f(P) = 0, so f € &(P). It follows that
d(P) € Mg. On the other hand, let m € Mg. By Proposition 1.5,
m= (x1 — &,...,xy — &) with (&,...,&,) € K™ and S C m implies
(&1,...,&n) € V(S). This shows that @ is surjective.

To show injectivity, let P = (£1,...,&,) and @ = (n1,...,m,) be points
in V(9) with &(P) = #(Q) =: m. For each i, we have z; — § € m and
also z; —m; € m, so & — n; € m. This implies & = ), since otherwise
m=Klx1,...,2)] O

Corollary 1.8 (Hilbert’s Nullstellensatz, first version). Let K be an alge-
braically closed field and let I ; Klx1,...,z,] be a proper ideal in a
polynomial ring. Then

V(1) # 0.

Proof. Consider the set of all proper ideals J ; Klx1,...,2,] containing I.
Using Zorn’s lemma, we conclude that this set contains a maximal element
m. (Instead of Zorn’s lemma, we could also use the fact that K[zq,...,2,] is
Noetherian (see Corollary 2.13). But even then, the axiom of choice, which is
equivalent to Zorn’s lemma, would have to be used to do the proof without
cheating. See Halmos [24] to learn more about Zorn’s lemma and the axiom
of choice.) So m is a maximal ideal with I C m. Now V(I) # 0 follows by
Theorem 1.7. O

Remark. (a) To see that the hypothesis that K is algebraically closed can-
not be omitted from Corollary 1.8, consider the example K = R and
I=(2*+1) & R[z].

(b) Hilbert’s Nullstellensatz is really a theorem about systems of polynomial
equations. Indeed, let f1,..., fm € K[z1,...,z,] be polynomials. If there
exist polynomials g1, ..., gm € K[z1,...,2,] such that

> gifi=1, (1.1)
i=1

then obviously the system of equations
fil€r,...,&) =0 for i=1,...,m (1.2)

has no solutions. But the existence of gi,...,gn satisfying (1.1) is
equivalent to the condition (fi,..., fm) = Klz1,...,2,]. So Hilbert’s
Nullstellensatz says that if the obvious obstacle (1.1) to solvability does
not exist, and if K is algebraically closed, then indeed the system (1.2)
is solvable. In other words, for algebraically closed fields, the obvious
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obstacle to the solvability of systems of polynomial equations is the
only one! In Chapter9 we will see how it can be checked algorithmically
whether the obstacle (1.1) exists (see (9.4) on page 123). q

1.2 Jacobson Rings

The main goal of this section is to prove the second version of Hilbert’s
Nullstellensatz (Theorem 1.17). We start by defining the spectrum and the
maximal spectrum of a ring.

Definition 1.9. Let R be a ring.
(a) The spectrum of R is the set of all prime ideals in R:

Spec(R) :={P C R| P is a prime ideal} .
(b) The maximal spectrum of R is the set of all maximal ideals in R:

Specax (R) :={P C R| P is a mazimal ideal} .

max

(¢) We also define the Rabinowitsch spectrum of R as the set
Specrab(R) = {R nm | me Specmax(R[‘r])}V

where R[x] is the polynomial ring over R. This is an ad hoc definition,
which is not found in the standard literature and will be used only within
this section.

Remark. The idea of using an additional indeterminate for proving the sec-
ond version of Hilbert’s Nullstellensatz goes back to J. L. Rabinowitsch [45],
and is often referred to as Rabinowitsch’s trick. This made my student Martin
Kohls suggest that the set from Definition 1.9(c) be called the Rabinowitsch
spectrum. N

We have the inclusions
Specmax(R) g Specrab(R) g SpeC(R)

Indeed, the second inclusion follows since for any prime ideal P C S in a
ring extension S of R, the intersection R N P is a prime ideal in R. The
first inclusion is proved in Exercise 1.3. Only the second inclusion will be
used in this book. Exercise 1.4 gives an example in which both inclusions
are strict. The importance of the Rabinowitsch spectrum is highlighted by
Proposition 1.11.

Recall that for an ideal I C R in a ring R, the radical ideal of I is defined
as

VI = {f € R | there exists a positive integer k with f* € I} .
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I is called a radical ideal if /T = I. For example, a nonzero ideal (a) C 7Z
is radical if and only if a is square-free. Recall that every prime ideal is a
radical ideal.

Lemma 1.10. Let R be a ring, I C R an ideal, and M C Spec(R) a subset.

Then
vVic () P

PeM,
Icp

If there exist no P € M with I C P, the intersection is to be interpreted as
R.

Proof. Let a € VI, so a* € I for some k. Let P € M with I C P. Then
a® € P. Since P is a prime ideal, it follows that a € P. a

Proposition 1.11 (The raison d’étre of the Rabinowitsch spectrum). Let I
C R be an ideal in a ring. Then

VI = N P

PeSpec,,;, (R),
cp

If there exist no P € Spec,,,(R) with I C P, the intersection is to be
interpreted as R.

Proof. The inclusion “C” follows from Lemma 1.10 and the fact that
Spec,.,(R) C Spec(R).

To prove the reverse inclusion, let a be in the intersection of all P €
Spec,ap, (R) with I C P. Consider the ideal

J = (I U{ax —1})p, € R[7]

generated by I and by axz — 1. Assume that J ; R[z]. By Zorn’s lemma,
there exists m € Spec,,,(R[x]) with J C m. We have I C RNJ C RNm €
Spec,,(R), so by hypothesis, a € m. But also ax — 1 € m, so m = R[z]. This
is a contradiction, showing that J = R[z]. In particular, we have

1= Zgjbj +glax —1) (1.3)

j=1

with g,91,...,9n € R[z] and b1,...,b, € I. Let R[z,2~!] be the ring of
Laurent polynomials and consider the map ¢: R[z] — R[z,z7], f+— f(z71).
Applying ¢ to both sides of (1.3) and multiplying by some x* yields

a* = Z hib; +h(a —x) with h; =2"¢(g;) and h = 2""1p(g).

j=1
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For k > max{deg(g1),...,deg(gn),deg(g) +1}, all h; and h lie in R[z], so we
may substitute x = a in the above equation and obtain

Cl,k = Zhj(a)bj el,
j=1

so a € V/I. This completes the proof. ad
We get the following important consequence.
Corollary 1.12 (Intersecting prime ideals). Let R be a ring and I C R an

ideal. Then
Vi= () P
PeSpec(R),
ICcp

If there exist no P € Spec(R) with I C P, the intersection is to be interpreted
as R.

Proof. This follows from Lemma 1.10 and Proposition 1.11. a

Theorem 1.13 (Intersecting maximal ideals). Let A be an affine algebra
and I C A an ideal. Then

Vi- ] =

mespecxrlax(A)7
ICm

If there exist no m € Spec
interpreted as A.

max(A) with I C m, the intersection is to be

Proof. The inclusion “C” again follows from Lemma 1.10.

Let P € Spec,,,(A4). Then P = ANm with m € Spec,, ... (A[z]). But Alx]
is finitely generated as an algebra over a field, so by Proposition 1.2 it follows
that P € Spec A). We conclude that

max(

Spec,a, (A) C Spec,,.(A4).

rab max

(In fact, equality holds, but we do not need this.) Now the inclusion “2”
follows from Proposition 1.11. ad

We pause here to make a definition, which is inspired by Theorem 1.13.

Definition 1.14. A ring R is called a Jacobson ring if for every proper
ideal I S R the equality

Vi= ] w

meSpec,, .« (R),

ICm

holds.
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So Theorem 1.13 says that every affine algebra is a Jacobson ring. A further
example is the ring Z of integers (see Exercise 1.6). So one wonders whether
the polynomial ring Z[z] is Jacobson, too. This is indeed the case. It is an
instance of the general fact that every finitely generated algebra A over a
Jacobson ring R is again a Jacobson ring. A proof is given in Eisenbud [17,
Theorem 4.19]. There we also find the following: If « is the homomorphism
making A into an R-algebra, then for every m € Spec,,,,.(A4) the preimage
a~!(m) is also maximal. This is in analogy to Proposition 1.2.

A typical example of a non-Jacobson ring is the formal power series ring
K|[[z]] over a field K (see Exercise 1.2). A similar example is the ring of all
rational numbers with odd denominator.

We can now prove the second version of Hilbert’s Nullstellensatz. To
formulate it, a bit of notation is useful.

Definition 1.15. Let K be a field and X C K" a set of points. The
(vanishing) ideal of X is defined as

I(X) :IK[xl,...,mn](X)
={feK[z,...,xn) | f(&1,...,&n) =0 for all (&1,...,&) € X}.

The index K[z1,...,xy] is omitted if no misunderstanding can occur.

Remark 1.16. It is clear from the definition that the ideal of a set of points
is always a radical ideal. <

Theorem 1.17 (Hilbert’s Nullstellensatz, second version). Let K be an
algebraically closed field and let I C Klx1,...,2z,] be an ideal in a polynomial
ring. Then

Z(V({I)) =VI.

Proof. We start by showing the inclusion “2”, which does not require K to
be algebraically closed. Let f € v/, so f* € I for some k. Take (&1,...,&,) €
V(I). Then f(&1,...,&.)F =0, so f(&1,...,&) = 0. This shows that f €
Z(v)).

For the reverse inclusion, assume f € Z (V(I)). In view of Theorem 1.13,
we need to show that f lies in every m € M, where

M ={m € Spec, .y (K[z1,...,2,])| I Cm}.

So let m € M;. By Theorem 1.7, m = (21 — &1, .-, Tn — &) K[an,...,0] With
(&1,...,&) € V(I). This implies f(&1,...,&,) =0, so f € m. This completes
the proof. a

The following corollary is the heart of what we call the algebra—geometry
lexicon. We need an (easy) lemma.

Lemma 1.18. Let K be a field and X C K™ an affine variety. Then

V(I(X)) = X.
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Proof. By assumption, X = V(S) with S C K[z1,...,2,]. So S C Z(X), and
applying V yields

V(Z(X)) CV(S) = X CV(Z(X)).

The lemma follows. O

Corollary 1.19 (Ideal-variety correspondence). Let K be an algebraically
closed field and n a positive integer. Then there is a bijection between the
sets

A:={I CKlz1,...,xz,) | I is a radical ideal}

and
B:={X C K" | X is an affine variety},

given by
A—B, I~ V()

and the inverse map
B— A, Xw—ZI(X).

Both maps reverse inclusions, i.e., if I,J € A, then
I1CJ < VY(J)CVvI),

and the corresponding statement holds for the inverse map.

Proof. If I € A is a radical ideal, it follows from the Nullstellensatz
(Theorem 1.17) that Z (V(I)) = I. On the other hand, take X € B. Then
Z(X) € A by Remark 1.16, and V (Z(X)) = X by Lemma 1.18. This shows
that the given maps are inverses to each other. The last statement follows
since I C J implies V(J) C V(I) for I,J € A, and X C Y implies Z(Y) C
Z(X) for X, Y € B. Now apply Z and V to get the converse implications. 0O

1.3 Coordinate Rings

The next part of the algebra—geometry lexicon is provided by assigning to an
affine variety X an affine algebra, the coordinate ring K[X], which encodes
the properties of X.

Definition 1.20. Let K be a field and X C K™ an affine variety. Let I :=
I(X) C K[z1,...,x,] be the ideal of X. Then the coordinate ring of X is
the quotient ring

K[X]:= K[z1,...,2,]/1.

The coordinate ring is sometimes also called the ring of regular functions
on X.
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Remark 1.21. (a) Every element of the coordinate ring K[X] of an affine
variety is a class f + I with f € KJz1,...,2,]. Such a class yields a
well-defined function X — K, given by (&1,...,&,) — f(&1,...,&,), and
different classes yield different functions. So K[X] can be identified with
an algebra of functions X — K. The functions from K[X] are called
regular functions. They are precisely those functions X — K that are
given by polynomials.

(b) If X =V(J) with J C K|[zy,...,x,] an ideal, then it is not necessarily
true that K[X| = K{z1,...,2,]/J. However, if K is algebraically closed,
then K[X] = K[z1,...,2,]/V/J by the Nullstellensatz (Theorem 1.17). <

The following lemma compares ideals in a quotient ring R/I to ideals in
R. Tt is rather boring and elementary, but very important.

Lemma 1.22 (Ideals in quotient rings). Let R be a ring and let I C R be
an ideal. Consider the sets
A:={J CR|Jis an ideal and I C J}
and
B:={J CR/I|J is an ideal} .

The map
S A—-B, J={a+I|acJ}=J/I

18 an inclusion-preserving bijection with inverse map
U:B—A J—{a€R|a+IeT}.

If J € A, then
R/J = (R/I) / o(J), (1.4)

and there are equivalences
J is a prime ideal <=  ®(J) is a prime ideal

and
J is a mazimal ideal <=  P(J) is a mazimal ideal.

Moreover, if J = (a1,...,an)r with a; € R, then ®(J) = (a1 + 1,...,a, +
Dgyr-

Proof. 1t is easy to check that @ and ¥ are inclusion-preserving maps and
that ¥od =id 4 and Po¥ = idg. The isomorphism (1.4) follows since P(J) is

the kernel of the epimorphism R/I — R/J, a+ I — a+ J. Both equivalences
follow from (1.4). The last statement is also clear. O

If X C K™ is an affine variety, then a subvariety is a subset Y C X that
is itself an affine variety in K™. We can now prove a correspondence between
subvarieties of a variety and radical ideals in the coordinate ring.
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Theorem 1.23 (Correspondence subvarieties—radical ideals). Let X be an
affine variety over an algebraically closed field K. Then there is an inclusion-
reversing bijection between the set of subvarietiesY C X and the set of radical
ideals J C K[X]. The bijection is given by mapping a subvariety Y C X to
I(Y)/Z(X) C K[X], and mapping an ideal J C K[X] to

Vx(J):={zxeX | flx)=0 foral feJ}.
If J C K[X] is the ideal corresponding to a subvariety Y, then
K[Y]= K[X]/J,

with an isomorphism given by K[X|/J — K[Y], f+J — f|,.
Restricting our bijection to subvarieties consisting of one point yields a
bijection
X — Spec,,,. (K[X]), z—Z({z})/ZT(X).

max

Proof. All claims are shown by putting Corollary 1.19 and Lemma 1.22
together. 0O

Another correspondence between points and algebraic objects that relates
to the coordinate ring is given in Exercise 1.11. The next theorem tells us
which types of rings occur as coordinate rings of affine algebras. To state it,
we need a definition.

Definition 1.24. Let R be a ring.

(a) An element a € R is called nilpotent if there exists a positive integer k
with a* = 0.

(b) The set of all nilpotent elements is called the nilradical of R, written as
nil(R). (So the nilradical is equal to the radical ideal \/{0} of the zero
ideal, which by Corollary 1.12 is the intersection of all prime ideals.)

(¢) R is called reduced if nil(R) = {0}. (In particular, every integral domain
is reduced.)

Theorem 1.25 (Coordinate rings and reduced algebras). Let K be a field.

(a) For every affine K -variety X, the coordinate ring K[X] is a reduced affine
K-algebra.

(b) Suppose that K is algebraically closed, and let A be a reduced affine K-
algebra. Then there exists an affine K-variety X with K[X] 2 A.

Proof. (a) With I =Z(X), we have K[X]| = K|[z1,...,%,]/I, so K[X] is an
affine algebra, and it is reduced since [ is a radical ideal.
(b) Choose generators aq,...,a, of A. Then the epimorphism

o Klz1,...,zp) = A, f— flar,...,an)
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yields A & Klzy,...,x,]/I with I = ker(y). Since A is reduced, I is
a radical ideal. Set X := V(I). By the Nullstellensatz (Theorem 1.17),
I =17(X), s0 A= K[X]. 0

Remark. The affine variety X in Theorem 1.25(b) is not uniquely deter-
mined. In fact, in the proof we have given, X depends on the choice of the
generators of A. However, given the correct concept of an isomorphism of
varieties (see Definition 3.4), it can be shown that all affine varieties with
coordinate ring A are isomorphic. In fact, we get a bijective correspondence
between isomorphism classes of affine K-varieties and isomorphism classes of
reduced affine K-algebras. N

Exercises for Chapter 1

1.1 (Some counterexamples). Give examples which show that none of the
hypotheses in Lemma 1.1(a) and (b) and in Proposition 1.2 can be omitted.

1.2 (Formal power series ring). Consider the formal power series ring

K([z]] == {iaixi |a; € K}

over a field K.

(a) Show that K[[x]] is an integral domain.

(b) Show that all power series f = > a;z* with ag # 0 are invertible in
K[[z]]. Assuming for a moment that K is only a ring, show that f is
invertible if and only if ag is invertible in K.

(c) Show that K[[z]] has exactly one maximal ideal m, i.e., K[[z]] is a local
ring (see Definition 6.7).

(d) Show that K[[z]] is not a Jacobson ring.

(e) Show that the ring

L= {Zaixi | keZ, a; € K}
i=k
of formal Laurent series is a field. The field L of formal Laurent series is
often written as K ((z)).
(f) Is K[[z]] finitely generated as a K-algebra?

1.3 (Maximal spectrum and Rabinowitsch spectrum). Let R be a
ring. Show that
Specmax(R) c Specrab(R)'

(Solution on page 217)
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*1.4 (Three types of spectra). Let R = K[[y]] be the formal power series
ring over a field K, and let S = R[z] be a polynomial ring over R. Show that

Specmax(s) ; Specrab(s) ; SpeC(S)

Hint: Consider the ideals (y)s and (2)g.

1.5 (Jacobson rings). Show that for verifying that a ring R is a Jacobson
ring it is enough to check that every prime ideal P € Spec(R) is an
intersection of maximal ideals.

1.6 (Z is a Jacobson Ring). Show that the ring Z of integers is a Jacobson
ring.

1.7 (Explicit computations with a variety). Consider the ideal
I = (214 x5 4 22723 — 27 — 23) C Rlzy, 22).

(a) Determine X := V(I) C R? and draw a picture.
(b) Is I a prime ideal? Is I a radical ideal?
(c) Does Hilbert’s Nullstellensatz (Theorem 1.17) hold for I?

1.8 (Colon ideals). If I and J C R are ideals in a ring, the colon ideal is
defined as
I:J:={a€R|a-belforallbe J}.

In this exercise we give a geometric interpretation of the colon ideal.

(a) Set M :={P € Spec(R) | I C P and J € P} and show that

VI:J= mP.

PeM

(b) Let K be a field and X,Y C K™ such that Y is an affine variety. Show
that
I(X):Z(Y)=Z(X\Y).

1.9 (A generalization of Hilbert’s Nullstellensatz). Let K be a field
and K its algebraic closure. Let I C K|y, ...,x,] be an ideal in a polynomial
ring. Show that

Tkfar,en) Vi (1) = VT

1.10 (Order-reversing maps). This exercise puts Corollary 1.19 and its
proof in a more general framework. Let A’ and B’ be two partially ordered
sets. Let p: A — B’ and ¢: B’ — A’ be maps satisfying the following
properties:
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) If aq,a2 € A" with a1 < ag, then p(a1) >
) if bl,bz € B’ with b < bg, then ’(p(bl) > ¢
) if a € A, then ¥(p(a)) > a;

) if b e B, then p(y(b)) > b.

Set A :=(B’) and B := ¢(B’), and show that the restriction

p(az);
(ba);

(1
(2
(3
(4

olar A— B

is a bijection with inverse map v|z.

Remark: In the light of this exercise, all that is needed for the proof of Corol-
lary 1.9 is that all radical ideals in K[zy,...,x,] occur as vanishing ideals
of sets of points in K™ (which is a consequence of Theorem 1.17). Another
typical situation in which this exercise applies is the correspondence between
subgroups and intermediate fields in Galois theory.

1.11 (Points of a variety and homomorphisms). Let K be a (not nec-
essarily algebraically closed) field and X a K-variety. Construct a bijection
between X and the set

Hompg (K[X],K) := {p: K[X] — K | ¢ is an algebra homomorphism} .
Remark: In the language of affine schemes, an algebra homomorphism K[X]

— K induces a morphism Spec(K ) — Spec(K[X]). Such a morphism is called
a K-rational point of the affine scheme associated to X.
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