
Chapter 14

Rings of Dimension One

Noetherian rings of dimension 0 are rather well understood: They are semilo-
cal, and a Noetherian local ring of dimension 0 is regular if and only if it
is a field. The next step is to study one-dimensional rings. In geometry,
one-dimensional rings occur as coordinate rings of affine curves. In algebraic
number theory, they occur as rings of algebraic integers. The final chapter
of this book is devoted to rings of dimension one. We first show that a Noe-
therian local ring of dimension one is regular if and only if it is normal. As
a consequence, we see that the process of normalization, when applied to an
affine curve, amounts to desingularization.

In the second section of this chapter we look at the multiplicative theory of
ideals. We extend the notion of ideals by including so-called fractional ideals,
and ask which ideals are invertible as fractional ideals. This is closely linked
having height one.

The last section is about Dedekind domains. These can be characterized
as normal Noetherian domains of dimension ≤ 1. It turns out that this is
equivalent to the condition that all nonzero ideals are invertible (as fractional
ideals). Yet another equivalent condition is that every ideal can be written
as a product of prime ideals. If this is satisfied, then the factorization of an
ideal as a product of prime ideals is unique. So ideals in Dedekind domains
enjoy the unique factorization property, while elements in general do not.
The extent to which a Dedekind domain fails to be factorial is measured
by the ideal class group, which we introduce. As an application, we will see
that the group law on an elliptic curve can be defined by a correspondence
between points and elements of the ideal class group of the coordinate ring.

14.1 Regular Rings and Normal Rings

We start by taking a closer look at one-dimensional regular local rings. By
definition, the maximal ideal of a one-dimensional regular local ring R is
a principal ideal m = (π). A generator π is often called a uniformizing
parameter. It follows that mn = (πn) for all nonnegative integers n. Krull’s
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198 14 Rings of Dimension One

intersection theorem (Theorem 12.9) shows that for every nonzero a ∈ R
there exists a maximal integer n such that a ∈ mn, so a = u ·πn with u ∈ R×

an invertible element. Since R is an integral domain by Corollary 13.6(a), we
can form K := Quot(R) and write every a ∈ K× (:= the multiplicative group
K\{0}) as a = u·πn with n ∈ Z and u ∈ R×. It is easy to see that n and u are
unique (and n does not depend on the choice of the uniformizing parameter).
A consequence is that R is factorial with exactly one prime element, up
to invertible elements. (As mentioned before, it is true but much harder to
show that regular local rings of any dimension are factorial.) Mapping a to n
defines a map ν: K× → Z. This map is a group homomorphism, and if we
set ν(0) := ∞, then ν satisfies ν(a + b) ≥ min{ν(a), ν(b)} for all a, b ∈ K,
and ν(a) = ∞ if and only if a = 0. A map with these properties is called a
discrete valuation on K. We can retrieve R from K by means of ν, since

R = {a ∈ K | ν(a) ≥ 0}.

This is usually expressed by saying that R is the valuation ring belonging
to the valuation ν. One also says that R is a discrete valuation ring
(abbreviated DVR). Viewing regular local rings of dimension one as discrete
valuation rings has become so common that these rings are often just referred
to as DVRs. This is justified since as a converse of what we have just found,
all DVRs are one-dimensional regular local rings (see Exercise 14.1).

Theorem 14.1. A Noetherian local ring of dimension one is regular if and
only if it is normal.

Proof. Regularity implies normality by Corollary 13.6(b).
For the converse, assume that R is a one-dimensional normal Noetherian

local domain with maximal ideal m. By Corollary 7.9 there exists a ∈ m
with

√
(a) = m. By the Noether property there exists an ideal P that is

maximal among all colon ideals (a) : (y) := {x ∈ R | xy ∈ (a)} ⊆ R with
y ∈ R \ (a). So P := (a) : (b) with b ∈ R \ (a). We claim that P is a prime
ideal. Indeed, P �= R since b /∈ (a), and if x, y ∈ R \ P , then xb /∈ (a)
and (a) : (b) ⊆ (a) : (xb), so (a) : (xb) = P by the maximality. Therefore
y /∈ (a) : (xb), so xy /∈ P . We have (a) ⊆ P , and since m is the only prime
ideal of R that contains (a), we conclude that m = P = (a) : (b). Clearly
a �= 0, so we may consider the R-submodule

I :=
b

a
· m ⊆ Quot(R).

From m = (a) : (b) we get I ⊆ R, so I is an ideal. By way of contradiction
assume that I ⊆ m. Then m is an R

[
b
a

]
-module, so by Lemma 8.3, b/a is

integral over R. By hypothesis, this implies b/a ∈ R, so b ∈ (a), a contra-
diction. We conclude that I = R. Multiplying this equation by a/b yields
m = R · a

b , so m is a principal ideal. Therefore R is regular. 	
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Exercise 12.8 shows that this result does not extend to higher dimensions.
In fact, there are examples of nonregular normal Noetherian local rings of all
dimensions ≥ 2.

Theorem 14.1 has some nice consequences. For example, if R is a Noether-
ian normal ring, then RP is normal for all P ∈ Spec(R) by Proposition 8.10,
so Theorem 14.1 says that RP is regular for all P with ht(P ) ≤ 1. Geomet-
rically, this means that if X is a normal variety over an algebraically closed
field, then the singular locus has codimension at least 2 in X . Both these
statements are referred to as regularity in codimension 1. However, regularity
in codimension 1 does not imply normality; a second condition, usually called
“S2,” is required (see Eisenbud [17, Theorem 11.15], and Exercise 14.3 for an
explicit example). The situation is better for rings of dimension 1. In fact,
it follows from Proposition 8.10 and Theorem 14.1 that a one-dimensional
Noetherian domain is normal if and only if it is regular, and an irreducible
affine curve is normal if and only if it is nonsingular. An important point is
that normality is a property that can be achieved by normalization (whereas
there is no such process as “regularization” in general). So in particular, by
combining Corollary 8.28 with Theorem 14.1 we get the following result.

Corollary 14.2 (Desingularization of affine curves). Let X be an irreducible
affine curve. Then there exists an affine curve X̃ with a surjective morphism
f : X̃ → X such that:

(a) X̃ is nonsingular.
(b) All fibers of f are finite, and if x ∈ X is a nonsingular point, then the

fiber of x consists of one point.

Generalizing Corollary 14.2, we could speak of “desingularization in codi-
mension 1” of a higher-dimensional irreducible affine variety. Moreover, in
Exercise 14.4, the corollary is generalized to arbitrary affine curves. What
Corollary 14.2 does can best be pictured in the situation of a double point:
The two branches of the curve that cross are taken apart by raising one
to a higher dimension, thereby deleting the double point. Sometimes one
also speaks of blowing up a singularity. Example 8.9(4) illustrates this. The
example also shows that the “higher” dimension can in fact be smaller. The
following is an example in which the dimension does go up.
Example 14.3. We wish to desingularize the plane complex curve X ⊆ C

2

given by the equation x4
1 +x4

2−x2
1 = 0, which is irreducible by the Eisenstein

criterion (see Lang [33, Chapter V, Theorem 7.1]). The curve X is shown in
Fig. 14.1. The idea is to desingularize X by forming the normalization of the
coordinate ring A := C[X ]. How can we find quotients of elements of A that
are integral over A? The Jacobian criterion (Theorem 13.10) yields (0, 0) as
the only singular point. By Theorem 14.1, the localization of the coordinate
ring A = C[X ] is normal at all points except (0, 0). So the normalization Ã

is contained in all Ax with x �= (0, 0). This means that an f/g ∈ Ã satisfies
g(x) �= 0 for x �= (0, 0). From this is it straightforward to try the residue class
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Fig. 14.1. A “butterfly” curve

of x1 as the denominator g. By trial and error, we find that a := x2
2/x1 (with

xi := xi + (x4
1 + x4

2 − x2
1) ∈ A) is integral over A, since dividing the defining

equation by x2
1 yields x2

1 + a2 − 1 = 0. Putting this equation together with
the defining equation for a, we consider the variety

X̃ :=
{
(ξ1, ξ2, ξ3) ∈ C

3 | ξ2
1 + ξ2

3 − 1 = ξ1ξ3 − ξ2
2 = 0

} ⊂ C
3.

We hope and guess that X̃ is the desired desingularization. To verify this, we
first check that

f : X̃ → X, (ξ1, ξ2, ξ3) �→ (ξ1, ξ2),

is a morphism, since (ξ1, ξ2, ξ3) ∈ X̃ obviously implies ξ4
1 + ξ4

2 − ξ2
1 = 0.

Secondly, every point (ξ1, ξ2) ∈ X \ {(0, 0)} has the unique preimage
(ξ1, ξ2, ξ

2
2/ξ1), and the singular point (0, 0) has two preimages: (0, 0, 1) and

(0, 0,−1). Finally, the Jacobian matrix of X̃ is

J =
(

2x1 0 2x3

x3 −2x2 x1

)
.

For points (ξ1, ξ2, ξ3) ∈ X̃ with ξ2 �= 0, also ξ1 and ξ3 are nonzero, so
J(ξ1, ξ2, ξ3) has rank 2. On the other hand, if ξ2 = 0, then ξ1 or ξ3, but not
both, are zero, and again rank (J(ξ1, ξ2, ξ3)) = 2. By the Jacobian criterion,
this shows that X̃ is nonsingular. So we have indeed found a desingulariza-
tion. With a bit more work (i.e., by verifying that the equations for X̃ define
a prime ideal) we could also establish that X̃ is exactly the normalization
of X .

This example shows very nicely what happens: The original plane curve is
wound around the cylinder given by the equation ξ1

1 + ξ2
3 − 1 = 0 in such a

way that the branches of the curve are on different sides of the cylinder. In
this way the double point is blown up. �
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More examples are contained in Exercise 14.5.
In dimension greater than one, the existence and calculation of a desin-

gularization is a much harder problem. In fact, in positive characteristic
the existence problem is still open. For a good overview and an in-depth
treatment, readers should turn to Cutkosky [14].

14.2 Multiplicative Ideal Theory

For any ring R, the set of ideals together with the ideal product forms an
abelian monoid with R as neutral element. The only invertible element in
this monoid is R itself. The situation becomes more interesting if we enlarge
our view by including fractional ideals, according to the following definition.

Definition 14.4. Let R be an integral domain and K := Quot(R) its field
of fractions.

(a) A fractional ideal is an R-submodule I ⊆ K. The product of two
fractional ideals is defined as the product of ordinary ideals (see Defi-
nition 2.5), making the set of fractional ideals into an abelian monoid
with neutral element R. (It should be noted that some authors require
fractional ideals to be nonzero, and/or impose the additional condition
that there exist a nonzero a ∈ R with aI ⊆ R.)

(b) A fractional ideal is called invertible if there exists a fractional ideal J
with I · J = R. So the invertible fractional ideals form an abelian group,
which we write as C(R). (We will give an explanation for the choice of
the letter C on page 205.)

It is possible to generalize the above definition to rings that need not be
integral domains by considering the total ring of fractions instead of the field
of fractions. However, almost none of the theory that we will develop here
carries over to this case. So we continue to assume that R is an integral
domain.

If a product I · J of fractional ideals is invertible then so are I and J
(multiply the inverse of I · J by J and by I), and conversely. For every
nonzero a ∈ K, the principal fractional ideal (a)R is invertible (with inverse(
a−1

)
R
). This gives a homomorphism from K× into C(R) with kernel R×.

In general, this is not surjective, i.e., there may exist nonprincipal invertible
ideals, as the following example shows.
Example 14.5. In the ring R := Z

[√−5
] ⊆ C, consider the ideal I =

(
2, 1 +

√−5
)
R
⊆ R. If J :=

(
1, 1−√−5

2

)

R
⊆ Quot(R), then

I · J =
(
2, 1 −√−5, 1 +

√−5, 3
)
R

= R,
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so I is invertible. But I is not a principal ideal. Indeed, from the assumption
I = (z)R with z = a+b

√−5, a, b ∈ Z, we deduce that a2+5b2 (the norm of z,
which by definition is the product of z and its complex conjugate) divides
4 and 6, the norms of 2 and of 1 +

√−5. This implies a = ±1 and b = 0, so
I = R. But I =

{
x + y

√−5 | x, y ∈ Z, x ≡ y mod 2
} �= R.

We have already studied this ring R in Example 8.9(3), and seen that it
is normal but not factorial. �

So invertible ideals generalize principal ideals. But they are not very far
away from being principal, as the following result shows.

Proposition 14.6 (Invertible ideals are locally principal). Let R be an inte-
gral domain and I ⊆ K := Quot(R) a fractional ideal. Then the following
statements are equivalent:

(a) I is invertible.
(b) If I ′ := {a ∈ K | aI ⊆ R}, then I · I ′ = R.
(c) I is nonzero, finitely generated, and for every prime ideal P ∈ Spec(R)

there exists a ∈ I such that the localization of I satisfies

IP = (a)RP .

We describe the latter property of I by saying that I is locally principal.

Proof. We start by showing that (a) implies (c). So we assume that there
exists a fractional ideal J ⊆ K with I · J = R. In particular, we have 1 =∑n

i=1 aibi with ai ∈ I and bi ∈ J . So every x ∈ I satisfies x =
∑n

i=1 xbiai,
and xbi ∈ I · J = R. Therefore I is generated by a1, . . . , an. Clearly I is
nonzero. Moreover, for every P ∈ Spec(R) there exist a ∈ I and y ∈ J with
ay ∈ R\P (otherwise, I ·J would be contained in P ). So for a general element
b/u ∈ IP (with b ∈ I and u ∈ R \ P ) we have

b

u
=

by

uay
· a ∈ (a)RP ,

since by ∈ I · J = R and uay ∈ R \ P . So I is locally principal.
Now we assume (c) and wish to deduce (b). By the definition of I ′, I ·I ′ ⊆ R

is an ideal. By way of contradiction, assume that it is proper. Then there
exists a maximal ideal P ∈ Spec(R) with I ·I ′ ⊆ P . (This conclusion requires
Zorn’s lemma.) By hypothesis we have a ∈ I with IP = (a)RP , and I =
(a1, . . . , an). It follows that there exists u ∈ R \ P with uai ∈ (a)R for all i,
so uI ⊆ (a)R. Since I �= {0}, a is nonzero, and it follows that u/a ∈ I ′, so
u = a · u/a ∈ I · I ′, in contradiction to I · I ′ ⊆ P . Therefore (b) holds.

Finally, (b) implies (a) since I ′ is a fractional ideal, and we are done. Let
us add that (b) can easily be deduced directly from (a). 	


In view of part (b) of the above proposition, we define

I−1 := {a ∈ Quot(R) | aI ⊆ R}
for any fractional ideal of an integral domain.
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The finiteness condition in part (c) cannot be omitted: Although it may
seem unlikely, there are examples of Noetherian domains with fractional ideals
that are locally principal but not finitely generated (see Exercise 14.6).

We draw a few consequences from Proposition 14.6.

Corollary 14.7 (Properties of invertible ideals). Let I ∈ C(R) be an invert-
ible fractional ideal of a Noetherian domain R.

(a) There exist invertible ideals J1, J2 ⊆ R with I = J1 · J−1
2 .

(b) If I ⊆ R, then every prime ideal P ∈ Spec(R) that is minimal over I has
height 1.

(c) If I =: P is a prime ideal of R, then P has height 1 and RP is regular.

Proof. (a) By Proposition 14.6, I is finitely generated. If a ∈ R \ {0} is
a common denominator of all elements in a generating set, then J1 :=
I · (a) ⊆ R and I = J1 · (a)−1. Since J2 := (a) and I are invertible, the
same holds for J1.

(b) Let P ∈ Spec(R) be minimal over I. Then PP is minimal over IP , which
by Proposition 14.6 is a principal ideal. So ht(PP ) ≤ 1 by the principal
ideal theorem (Theorem 7.4). Since {0} �= I ⊆ PP , the height must be
equal to 1. So ht(P ) = ht(PP ) = 1.

(c) By part (b), P has height 1, so dim(RP ) = 1. By Proposition 14.6, the
maximal ideal of RP is principal, so RP is regular. 	


So we cannot hope that prime ideals of height other than 1 are invert-
ible. But when are all height-one prime ideals invertible? By the corollary, a
necessary condition for this is regularity in codimension 1. So a normal Noe-
therian domain would be a good candidate. However, in Exercise 14.7 we find
an example of a normal Noetherian domain with a prime ideal of height 1
that is not invertible. So more is required. Recall that by Proposition 8.8,
factoriality is a stronger condition than normality, and by Proposition 8.10,
the condition that every localization at a prime ideal is factorial lies between
the two. We call an integral domain R locally factorial if RP is factorial
for every P ∈ Spec(R).

Theorem 14.8 (Invertible ideals in a locally factorial ring). Let R be a Noe-
therian domain.

(a) If R is locally factorial, then every height-one prime ideal of R is
invertible.

(b) If every height-one prime ideal of R is invertible, then an ideal I ⊆ R is
invertible if and only if it is a finite product of prime ideals of height 1
(where I = R occurs as the empty product).

Remark. As mentioned before, every regular ring is locally factorial. (We
have proved this only for rings of dimension at most 1; see page 197.) So all
regular domains lie within the scope of the theorem. �
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Proof of Theorem 14.8. (a) Let Q ⊂ R be a prime ideal of height 1. We
use Proposition 14.6. Clearly Q is finitely generated and nonzero, so we
need to show only that QP ⊆ RP is a principal ideal for every P ∈
Spec(R). If Q �⊆ P , then Q contains elements that are invertible in RP ,
so QP = (1)RP is a principal ideal. On the other hand, if Q ⊆ P , then by
Theorem 6.5, QP is a prime ideal of RP of height 1. Since RP is factorial,
it follows by Lemma 5.14 that QP is a principal ideal in this case, too.

(b) It follows from the hypothesis that every product of height-one prime
ideals is also invertible. We prove the converse by Noetherian induction.
So assume that there exists an invertible ideal that is not a product of
height-one prime ideals. By the Noether property we can choose I be
maximal among all counterexamples. Since R is not a counterexample,
I �= R, and therefore there exists a prime ideal P ∈ Spec(R) that is
minimal over I. By Corollary 14.7(b), P has height 1, so it is invertible.
Using Lemma 14.9 below, we obtain I � J := I · P−1 ⊆ R. Since I is
invertible, so is J . With the maximality of I, this implies that J is a
product of height-one prime ideals. So the same holds for I, and we are
done. 	


In the proof we have used the following lemma.

Lemma 14.9. Let R be a Noetherian domain and let I ⊆ R be a nonzero
ideal that is contained in an invertible prime ideal P . Then I � I ·P−1 ⊆ R.

Proof. From I ⊆ P it follows that J := I ·P−1 ⊆ P ·P−1 = R. Moreover, I =
J ·P ⊆ J . Assume that I = J . Then I = P · I. This localizes to IP = PP · IP ,
which by Nakayama’s lemma (Theorem 7.3) gives IP = {0}. Since there are
no zero divisors, we obtain I = {0}, contradicting the hypothesis. 	


Theorem 14.8(b) becomes even more interesting if we combine it with the
following unique factorization result.

Proposition 14.10 (Unique factorization of invertible ideals). Let R be an
integral domain and let I ⊆ R be an invertible ideal that has a factorization

I = P1 · · ·Pn

with Pi prime ideals (where n = 0 occurs if I = R). Then this factorization
is unique up to the order of the factors.

Proof. We use induction on n. Let I = Q1 · · ·Qm be another factorization
with Qi ∈ Spec(R). If n = 0 then m = 0, since otherwise I ⊆ Q1 � R=I.
Consider the case n > 0. By renumbering, we may assume that P1 is min-
imal among the Pi. Since Q1 · · ·Qm ⊆ P1, there exists i with Qi ⊆ P1. By
renumbering, we may assume i = 1. Since P1 · · ·Pn ⊆ Q1, there exists j
with Pj ⊆ Q1, so Pj ⊆ Q1 ⊆ P1. With the minimality of P1, this implies
P1 = Q1. Since I is invertible, so are all Pi. Multiplying by P−1

1 = Q−1
1 gives

P2 · · ·Pn = Q2 · · ·Qm, and the result follows by induction. 	
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Assume that R is a locally factorial Noetherian domain, or more generally a
Noetherian domain in which all height-one prime ideals are invertible. We can
extend Theorem 14.8(b) and Proposition 14.10 to invertible fractional ideals.
In fact, if I ⊆ Quot(R) is an invertible fractional ideal, then it follows by
Corollary 14.7(a) and Theorem 14.8(b) that I can be written as a product of
height-one prime ideals and inverses of height-one prime ideals. Conversely, it
follows from the group property of C(R) that every such product is invertible.
More formally, let M ⊆ Spec(R) be the set of all prime ideals of height 1.
Then a fractional ideal I is invertible if and only if it can be written as

I =
∏

Q∈M
QeI,Q (14.1)

with eI,Q ∈ Z, and all but finitely many eI,Q equal to 0. It follows from
Proposition 14.10 that the eI,Q are unique. In fact, if there existed two dif-
ferent factorizations, we could multiply both by height-one prime ideals until
we obtained two different factorizations of a nonfractional ideal, contradict-
ing Proposition 14.10. It also follows that I ⊆ R if and only if all eI,Q are
nonnegative.

If we multiply two invertible ideals, the corresponding exponents eI,Q

in (14.1) get added. So our results can be expressed by saying that the group
C(R) of invertible fractional ideals is isomorphic to the free abelian group
generated by the height-one prime ideals. This motivates the following def-
inition. For any ring R, the group Div(R) of Weil divisors is defined to
be the free abelian group generated by the height-one prime ideals of R. In
contrast to C(R), the group of Weil divisors is usually written additively, so
a Weil divisor is a “formal” Z-linear combination of height-one prime ideals.
In particular, if R is the coordinate ring of an affine curve, a Weil divisor can
be written as a formal Z-linear combination of points.

In this context, an invertible ideal of an integral domain R is called a
Cartier divisor, and C(R) is the group of Cartier divisors. This explains the
use of the letter C. (It should be noted that the standard definition of Cartier
divisors in algebraic geometry is different; see Hartshorne [26, page 141].) So
if R is a locally factorial Noetherian domain (or, more generally, a Noe-
therian domain in which all height-one prime ideals are invertible), we have
C(R) ∼= Div(R). Using the isomorphism, we can speak of the Weil divisor
associated to an invertible ideal or to a nonzero element a ∈ R: The latter is∑n

i=1 ei ·Pi if (a) =
∏n

i=1 P ei

i . The situation becomes less nice when we relax
the conditions on R. Exercise 14.8 deals with the case that R is a normal
Noetherian domain.
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14.3 Dedekind Domains

In this theory, the best-behaved domains are those in which every nonzero
ideal is invertible. We will study these rings now, and see that the invertibility
of nonzero ideals is equivalent to various other interesting conditions.

Theorem 14.11 (Rings with a perfect multiplicative ideal theory). For an
integral domain R, the following statements are equivalent:

(a) Every nonzero ideal of R is invertible.
(b) R is Noetherian and every ideal of R is locally principal.
(c) R is Noetherian and normal and has dimension at most 1.
(d) Every ideal I ⊆ R is a finite product of prime ideals (where I = R occurs

as the empty product).

If these conditions are satisfied, then the factorization of a nonzero ideal as
a product of prime ideals is unique up to the order of the factors. Moreover,
every finitely generated, nonzero fractional ideal has a unique factorization
as (14.1).

Proof. It follows from Proposition 14.6 that (a) implies (b).
We now assume (b) and wish to deduce (c). It follows that for every

P ∈ Spec(R), PP ⊆ RP is a principal ideal. If ht(P ) = 0, then P = {0} and
RP = Quot(R) is regular. Otherwise, it follows that RP is one-dimensional
and regular. Therefore R is regular (and hence normal by Corollary 13.6(b)
and Proposition 8.10) and of dimension at most 1. So we have deduced (c).

Next we assume (c) and wish to prove (d). By (c), R is locally factorial
since for every P ∈ Spec(R), the local ring RP is a field (in the case P = {0})
or a discrete valuation ring (by Theorem 14.1 and the discussion preceding it).
So by Theorem 14.8(a), every height-one prime ideal of R is invertible. By
way of contradiction, assume that there exists an ideal I ⊆ R that is not
a finite product of prime ideals. Since R is Noetherian, we may assume I
to be maximal with this property. We have {0} �= I � R, so there exists a
prime ideal P that contains I. Since dim(R) ≤ 1 and P �= {0}, P must have
height 1, so it is invertible. Lemma 14.9 yields I � I · P−1 ⊆ R, so by the
maximality of I, I · P−1 is a finite product of prime ideals. Therefore the
same is true for I.

The most work is required for deducing (a) from (d). We will first show
that (under the assumption (d)) every invertible prime ideal is maximal.
From this we will draw the (at first sight surprising) consequence that every
nonzero prime ideal is invertible, which together with the hypothesis (d)
implies (a) directly. So let P ⊆ R be an invertible prime ideal. To show that
P is maximal, we need to prove that P + (a) = R for every a ∈ R \ P . We
have factorizations

P + (a) = P1 · · ·Pn and P + (a2) = P ′
1 · · ·P ′

m
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as products of prime ideals. Computing modulo P and writing a := a + P ∈
R := R/P , we get

(a)R = P1 · · ·Pn and (a2)R = P ′
1 · · ·P ′

m.

This gives two factorizations of (a2), which is an invertible ideal of R.
By Proposition 14.10 it follows that m = 2n and, after renumbering,
P i = P ′

2i−1 = P ′
2i for i = 1, . . . , n. By Lemma 1.22, the same holds for

the original Pi and P ′
j , and we conclude that P + (a2) = (P + (a))2. In par-

ticular, every x ∈ P can be written as x = y + az + a2w with y ∈ P 2, z ∈ P ,
and w ∈ R. But then w ∈ P since a2w = x − y − az ∈ P and a2 /∈ P . So
x ∈ P 2 + a · P , and we obtain

P ⊆ P · (P + (a)) ⊆ P.

Multiplying by P−1 yields P + (a) = R, as claimed.
The second (and final) step is to show that every nonzero prime ideal is

invertible. So assume that {0} �= Q ∈ Spec(R). Choose a nonzero b ∈ Q.
By hypothesis, we have (b) = Q1 · · ·Qr with Qi ∈ Spec(R). Since (b) is
invertible, the Qi are invertible, too, so by what we have shown they are
maximal. Since Q1 · · ·Qr ⊆ Q, there exists an i with Qi ⊆ Q, so Q = Qi

by the maximality of Qi. Therefore Q is invertible, and the proof of the
equivalence of (a) through (d) is complete.

The uniqueness of a factorization of a nonzero ideal follows from (a), (d),
and Proposition 14.10. If I is a finitely generated, nonzero fractional ideal,
there exists a nonzero a ∈ R such that J := aI ⊆ R. Since J and (a) are
products of prime ideals, I has a factorization as (14.1). If there are two
such factorizations, we can multiply both by prime ideals until we obtain
two factorizations of a nonfractional ideal. So the factorizations are unique
after all. 	


An integral domain that satisfies the equivalent conditions from
Theorem 14.11 is called a Dedekind domain. Of these conditions, (c) is the
one that tends to be easiest to verify. The condition (b) shows that Dedekind
domains are not too far away from principal ideal domains. Although our
investigation originated from studying condition (a), condition (d) and the
unique factorization statement may be the most interesting. Notice that ele-
ments of a Dedekind domain do not always enjoy the unique factorization
property that holds for ideals: consider Example 8.9(3). So ideals are “ide-
alized” elements. Many more properties that are equivalent to R being a
Dedekind domain can be found in the literature. For instance, Larsen and
McCarthy [34, Theorem 6.20] list 16.

An important class of Dedekind domains comes from algebraic geometry:
If X is an irreducible, nonsingular affine curve, then the coordinate ring K[X ]
is a Dedekind domain since it satisfies (c) from Theorem 14.11.
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Another class of arguably even more importance comes from number the-
ory: Let K be a number field, i.e., a finite field extension of Q. Then the
ring of algebraic integers in K is defined as the integral closure of Z in K,
and is written as OK . It follows from Lemma 8.27 that OK is Noetherian.
Being an integral closure of a ring in a field, it is also normal. Since OK

is an integral extension of Z, it has dimension 1 by Corollary 8.13. So OK

satisfies condition (c) and is therefore a Dedekind domain. Rings of algebraic
integers are the central object of study in the field of algebraic number the-
ory. Historically, much of the interest in rings of algebraic integers originated
from the study of Diophantine problems. For instance, the question which
integers can be represented as x2 + dy2 (with x, y, d ∈ Z, but d fixed) can
be translated into a question about algebraic integers using the factorization
x2 + dy2 =

(
x + y

√−d
) (

x − y
√−d

)
. So one is led to calculations in the ring

OK of algebraic integers in the number field K = Q(
√−d). Clearly the ques-

tion whether OK is factorial plays a central role in this game. The answer is
yes for some d (e.g., d = 1), but no for most (e.g., d = 5; see Example 8.9(3)).
Another extremely well-known Diophantine equation is the Fermat equation
xn + yn = zn. With ζ2n a primitive (2n)th root of unity, this translates to

n∏

i=1

(
x − ζ2i−1

2n y
)

= zn,

an equation in the ring OK of algebraic integers in the cyclotomic field
K = Q(ζ2n). Again, the question whether OK is factorial arises naturally.
In fact, there were attempts at proving Fermat’s last theorem that hinged
on the assumption that OK is factorial. Again, this is false for most n. The
following example illustrates how the nonuniqueness of factorization in a ring
of algebraic integers is resolved by turning to ideals.
Example 14.12. Consider the ring R = Z

[√−5
]
. In Example 8.9(3) we have

seen that R is normal, so R is the ring of algebraic integers in Q(
√−5). There

we have also exhibited an example of a nonunique factorization:

6 = 2 · 3 =
(
1 +

√−5
) (

1 −√−5
)
. (14.2)

How do the corresponding principal ideals (2)R, (3)R, etc. factorize? In Exer-
cise 14.9 it is shown that every ideal of a Dedekind domain is generated by
two elements. With this in mind, it is not too hard to find the following
factorizations, which are easy to verify:

(2)R =
(
2, 1 +

√−5
)2

R
,

(3)R =
(
3, 1 +

√−5
)
R

(
3, 1 −√−5

)
R

,
(
1 +

√−5
)
R

=
(
2, 1 +

√−5
)
R

(
3, 1 +

√−5
)
R

,
(
1 −√−5

)
R

=
(
2, 1 +

√−5
)
R

(
3, 1 −√−5

)
R

.
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To see that
(
2, 1 +

√−5
)
R

and
(
3, 1 ±√−5

)
R

are prime ideals, observe that
they are the kernels of the ring homomorphisms R → F2, a + b

√−5 �→ a + b
mod 2, and R → F3, a + b

√−5 �→ a ∓ b mod 3, respectively. So we get the
unique factorization

(6)R =
(
2, 1 +

√−5
)2

R

(
3, 1 +

√−5
)
R

(
3, 1 −√−5

)
R

of ideals, and the nonuniqueness in (14.2) is explained by regroupings of the
above factors. �

We have mentioned before that for any integral domain R, the principal
ideals (a) with a ∈ Quot(R) \ {0} form a subgroup of C(R). The quotient
group

Cl(R) := C(R)
/{

(a) | a ∈ Quot(R) \ {0}
}

is called the ideal class group of R. This name is most intuitive in the case
that R is a Dedekind domain, and some authors restrict the definition to
that case. Since C(R) and Div(R) are isomorphic if R is a Dedekind domain,
Cl(R) is isomorphic to the group of equivalence classes of Weil divisors, where
two Weil divisors are called linearly equivalent if they map to a principal
fractional ideal in C(R). For a Dedekind domain R, the ideal class group
is trivial if and only if R is a principal ideal domain (which by the follow-
ing theorem is equivalent to R being factorial). So Cl(R) can be viewed as
quantifying the extent to which a Dedekind domain fails to be factorial.

Theorem 14.13 (Factorial Dedekind domains). For a Dedekind domain R,
the following statements are equivalent:

(a) R is factorial;
(b) R is a principal ideal domain.

Proof. First assume that R is factorial. By Lemma 5.14, it follows that every
prime ideal of height 1 is principal. Since every nonzero ideal is a product of
height-one prime ideals, this implies (b).

The fact that every principal ideal domain is factorial is usually part of
an abstract algebra course (see Lang [33, Chapter II, Theorem 4.2]). We give
a (shorter) proof for the case of Dedekind domains here. Let a ∈ R be a
nonzero, noninvertible element. Then (a) = P1 · · ·Pn with Pi prime ideals.
By assumption, we have Pi = (pi) with pi ∈ R prime elements. Multiplying
p1 by an invertible element if necessary, we can achieve that a = p1 · · · pn.
Now suppose that we have another factorization a = q1 · · · qm with qj ∈ R
irreducible. Since p1 is a prime element that divides the product of the qj , it
divides one of the qj , say q1. Therefore we can achieve q1 = p1 by multiplying
q1 by an invertible element if necessary. Continuing in this way, we end up
with pi = qi for i = 1, . . . , n and 1 = qn+1 · · · qm, so m = n. This proves the
uniqueness of factorization. 	
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A generalization of Theorem 14.13 is given in Exercise 14.10.
How large can ideal class groups become? For rings OK of algebraic inte-

gers in a number field, the answer is that the ideal class group is finite. Its
order is called the class number. This is one of the central results of algebraic
number theory. For a proof, see Neukirch [42, Chapter I, Theorem 6.3]. This
is in sharp contrast to the behavior in more general cases. In fact, we will
see in the following example that for a nonsingular, irreducible affine curve
X , Cl(K[X ]) can become infinite. (In fact, it is finite only in exceptional
cases.) Moreover, Claborn [10] proved that any abelian group whatsoever is
isomorphic to the ideal class group of a suitable Dedekind domain.

We finish this chapter with an example that shows how the ideal class
group can be used to give an elliptic curve the structure of an abelian group.
Example 14.14 (The group law on an elliptic curve). Let E ⊆ K2 be an
elliptic curve over an algebraically closed field K of characteristic not equal
to 2, given by the equation

x2
2 = x3

1 + ax1 + b

with a, b ∈ K such that 4a3 + 27b2 �= 0 (see Exercise 13.10). The goal of
this example is to give E (enriched by a point at infinity) the structure of an
abelian group, which is isomorphic to the ideal class group of the coordinate
ring R := K[E]. For some details and proofs we will refer to the exercises. By
Exercise 13.10, E is nonsingular, so R is a Dedekind domain. For two points
P1, P2 ∈ E, let L be the line passing through P1 and P2. If P1 = P2, take the
tangent line to E through P1. (The remark at the end of Exercise 14.11
says exactly how this is done.) If L is not parallel to the x2-axis, then
L meets E at another point P3. This is shown in Fig. 14.2, and proved in
Exercise 14.11. Notice that P3 may be equal to P1 or to P2 if P1 �= P2 and
L is tangent to E at this point, or if P1 = P2 is an inflection point of E. If
l ∈ K[x1, x2] is a polynomial of degree 1 defining L and l ∈ R is the corre-
sponding regular function on X , then l vanishes at the points Pi, so it lies in

�P1

�

P2

� P3

�P3 = P1 + P2

�

P1 = P2

�

P3

�P3 = 2P1

�

P1 + P3

�

P1 = P2 = P3

�

P1 = 2P1

Fig. 14.2. The group law on the elliptic curve y2 = x3 − x + 1
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the corresponding maximal ideals mPi ∈ Specmax(R). It is very plausible that
(l)R = mP1mP2mP3 . Exercise 14.11 gives an exact proof. (The subtlety lies
in the multiplicities in the case that some Pi coincide.) So the Weil divisor
P1 + P2 + P3 is linearly equivalent to 0. We write this as

P1 + P2 + P3 ∼ 0. (14.3)

Next we consider the case that L is parallel to the x2-axis. This happens if
and only if P2 = P1, where for any point P = (ξ1, ξ2) we write P := (ξ1,−ξ2).
In this case, P1 and P1 are the only intersections of L and E. So for every
P ∈ E we obtain

P + P ∼ 0. (14.4)

Putting this together with (14.3) yields

P1 + P2 ∼ P 3. (14.5)

This already looks like an addition on E. To show that it really defines a
group law, consider the map

ϕ: E → Cl(R), P �→ [mP ] (the class of mP in Cl(R)) .

So in terms of Weil divisors, ϕ maps every point to its equivalence class. Let
d =

∑m
i=1 niPi ∈ Div(R) (with coefficients ni ∈ Z and Pi ∈ E) be a Weil

divisor. We obtain another Weil divisor d =
∑m

i=1 kiQi by substituting every
Pi with ni < 0 in d by −Pi. Then d ∼ d by (14.4), and all coefficients ki in d
are nonnegative. If the coefficient sum of d is greater than 2, we can use (14.5)
to find a Weil divisor that is linearly equivalent to d, but has coefficient sum
one smaller than that of d. So by induction on the coefficient sum, we see
that every Weil divisor is linearly equivalent to a point P ∈ E or to 0. We
conclude that every nontrivial element of Cl(R) lies in the image of ϕ.

The most difficult part of this discussion is to prove that ϕ is injective,
i.e., that for two distinct points P, Q ∈ E, there exists no f ∈ Quot(R) with
(f)R = mP · m−1

Q . This is the content of Exercise 14.12. In this exercise, it is
also shown that the trivial class is not in the image of ϕ, i.e., there exists no
f ∈ Quot(R) such that (f)R = mP with P ∈ E. With this, we can extend ϕ

to a bijection between Ê := E ∪{∞} and Cl(R) by mapping ∞ to the trivial
class. The geometric interpretation of the additional point ∞ is that it is the
point at infinity. This makes sense since we can think of the line through
P and P as meeting E at infinity. Having a bijection between Ê and the
abelian group Cl(R), we can use this to transfer the group law from Cl(R)
to Ê. With this, (14.5) indeed defines the sum of two points P1, P2 ∈ E as
given by the following recipe: Draw the line through P1 and P2 and take
the third point P3 of E meeting this line (always counting intersections with
multiplicities). Then reflect P3 in the x1-axis to obtain the desired point
P3 = P1 + P2. Special cases apply: P + ∞ := P , and P + P := ∞.
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It is of course possible to define the addition on Ê directly by this recipe.
Then the main difficulty is to verify the associative law (e.g., this takes 12
pages in the book of Washington [52]). But by using the bijection with Cl(R),
we get the associative law automatically. This approach also gives a concep-
tual explanation of why the group law is defined in such a seemingly arbitrary
way. On the other hand, it provides the ideal class group Cl(R) with the
structure of a projective variety. In this way, elliptic curves act as the first
significant example for the theories of Jacobian varieties and abelian varieties,
which are deep and fascinating subjects in algebraic geometry.

Another important aspect is rational points. Suppose that k ⊆ K is a
subfield with a, b ∈ k (i.e., the equation defining E lies in k[x1, x2]). A point
P ∈ E(k) := k2∩E is called (k-)rational. If P is a rational point, then clearly
the same is true for −P = P . Moreover, if P1, P2 ∈ E(k) with P1 �= −P2,
then substituting a parametrization of the line through P1 and P2 into the
equation defining E gives a polynomial of degree 3 with coefficients in k.
(Exercise 14.11 has more details.) Since this polynomial has two zeros in k,
corresponding to the points P1 and P2 (or a double zero if P1 = P2), its third
zero lies in k, too. This means that P1 + P2 is also a rational point. So we
have seen that Ê(k) := E(k) ∪ {∞} is a subgroup of Ê.

This has applications in cryptography. In fact, if k is a (large) finite field,
then Ê(k) provides a finite group G in which the discrete logarithm prob-
lem (i.e., determining n from the given data g and gn, with g ∈ G, written
multiplicatively) is supposedly very hard. This gives rise to public-key cryp-
tosystems. In this business, the choice of the elliptic curve and of a “base
point” P ∈ E with large order are crucial for the security of the cryptosystem.
Applications to cryptography are among the reasons why elliptic curves have
become very fashionable (and useful) in recent years. See Washington [52] for
a good introduction to elliptic curves and their use in cryptography. �

Exercises for Chapter 14

14.1 (Discrete valuation rings). Let K be a field and let ν: K → Z∪{∞}
be a discrete valuation. Assume that ν is nontrivial, i.e., im(ν) �= {0,∞}.
Show that the valuation ring R := {a ∈ K | ν(a) ≥ 0} is a one-dimensional
regular local ring.

14.2 (Discrete valuations on the rational function field). Let K(x) be
the rational function field over a field. Classify all nontrivial discrete valua-
tions on K(x) that vanish on K×.
Hint: You will find that the valuation rings are in bijective correspondence
with the set of all monic irreducible polynomials in K[x] together with one
extra element, usually written as ∞ (why?).
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14.3 (Regular in codimension 1 does not imply normal). This exer-
cise deals with an example of an affine domain that is regular in codimension 1
but not normal. The example is drawn from Shafarevich [46, Chapter II, §5.1],
where is appears in geometric terms. The example is the subalgebra

A := K[f1, f2, f3, f4] ⊆ K[x1, x2]

with
f1 = x1, f2 = x1x2, f3 = x2(x2 − 1), f4 = x2

2(x2 − 1),

where K[x1, x2] is the polynomial algebra in two indeterminates over a field.

(a) Show that K[x1, x2] is the normalization of A.
(b) Show that there exist two maximal ideals n1, n2 ∈ Specmax (K[x1, x2])

with A ∩ ni = (f1, f2, f3, f4)A =: m.
*(c) Show that K[x1, x2] ⊆ AP for all P ∈ Spec(A) \ {m}, and conclude that

there exists Q ∈ Spec (K[x1, x2]) with AP = K[x1, x2]Q. Hint: Two of
the relations of the fi are f2

1 f3+f2(f1−f2) = 0 and f3
3 +f4(f3−f4) = 0.

(d) Conclude that A is a two-dimensional nonnormal domain such that the
singular locus in Spec(A) is {m}, so regularity in codimension 1 holds.

14.4 (Desingularization of nonirreducible curves). Show that Corol-
lary 14.2 holds for all (not necessarily irreducible) affine curves.
Hint: Use Exercises 4.3 and 6.6.

14.5 (Examples of desingularization). Find desingularizations of the
plane complex curves given by the following equations.

(a) x3
1 − x2

2 = 0 (the cubic curve with a cusp shown in Fig. 12.1)
(b) x4

1 − x2
1 + x2

2 = 0 (lemniscate of Gerono, an ∞-shaped curve)
(c) x6

1 + x6
2 − x2

1 (butterfly-shaped, similar to Fig. 14.1)
(d) x4

1 + x4
2 − x1x2 (another figure-eight curve, but tilted by 45◦ and with

perpendicular crossing)

Hint: It may be hard to do (d) by hand. If you have access to MAGMA [5]
you can use the function Normalization.

14.6 (Finite generation of fractional ideals). (a) Give an example of
a fractional Z-ideal I ⊆ Q that is locally principal but not finitely
generated.

(b) Show that for a nonzero fractional ideal I ⊆ Quot(R) of a Noetherian
domain R, I−1 is finitely generated.

(c) For your example in (a), what are I−1, I · I−1, and (I−1)−1?

14.7 (A noninvertible prime ideal of height 1). This example is taken
from Hutchins [28, Example 47] (with a slight modification), and due to
Gilmer [20, page 554, Exercise 2]. Consider the ring R = Z[x, x2/2] ⊂ Q[x].
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(a) Show that R is a normal Noetherian domain. Hint: For this part, it may
lead to a nicer notation to consider the isomorphic ring S := Z

[
x,

√
2x

]
.

You may look at Example 8.9(3) for inspiration.
(b) Show that the ideal P :=

(
x, x2/2

)
R

is a prime ideal of height 1.
(c) Show that P is not invertible.

14.8 (Cartier divisors and Weil divisors). Let R be a normal Noether-
ian domain. The goal of this exercise is to construct an injective homomor-
phism C(R) → Div(R). Write M for the set of height-one prime ideals of R,
and write F for the set of all finitely generated nonzero fractional ideals. For
each Q ∈ M, RQ is a Dedekind domain, so for I ∈ F there exists a unique
eI,Q ∈ Z with IQ = Q

eI,Q

Q .

(a) Show that
Φ: F → Div(R), I �→

∑

Q∈M
eI,Q · Q,

defines a homomorphism of monoids. Hint: The hardest part is to show
that eI,Q = 0 for all but finitely many Q.

(b) Show that the restriction

Ψ := Φ|C(R): C(R) → Div(R)

of Φ to C(R) is an injective group homomorphism. Hint: Use Exercise 8.3.
*(c) Show that Ψ is surjective if and only if every P ∈ M is invertible. In this

case, Ψ coincides with the isomorphism described on page 205. Hint: If
Ψ(I) = P ∈ M, consider P · I−1.

Remark: It follows that Exercise 14.7 gives an example in which Ψ is not
surjective.

*14.9 (Properties of Dedekind domains). Let R be a Dedekind domain.
Prove the following.

(a) If P1, . . . , Pn ∈ Spec(R) are pairwise distinct nonzero prime ideals and
e1, . . . , en are nonnegative integers, there exists a ∈ R \ {0} such that

(a) = P e1
1 · · ·P en

n · J

with J ⊆ R an ideal in whose factorization none of the Pi appear.
(b) Every ideal of R is generated by at most two elements.

14.10 (Factorial rings). Show that for an integral domain R, the following
statements are equivalent:

(a) R is factorial of dimension ≤ 1.
(b) R is a principal ideal domain.
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If these conditions are satisfied, then R is Noetherian. Is it true that every
factorial ring is Noetherian?

Exercises 14.11 and 14.12 fill the gaps in Example 14.14. Together with
the example, they form a nice application project of our methods.

14.11 (Divisor of a line intersecting a curve). In this exercise we study
a situation that seems rather special, but is general enough to handle elliptic
curves, for example. Let K be an algebraically closed field and let X ⊂ K2

be a nonsingular, irreducible affine curve. So I(X) = (g) with g ∈ K[x1, x2]
irreducible (see Theorem 5.13). Consider a line

L = {(aξ + b, cξ + d) | ξ ∈ K} ⊂ K2 (with a, b, c, d ∈ K, a or c nonzero),

and assume L �= X . With t a new indeterminate, set f := g(at + b, ct + d) ∈
K[t] and let f = an · ∏n

i=1(t − ξi) with an ∈ K \ {0} and ξi ∈ K, not
necessarily distinct. So the Pi := (aξi + b, cξi + d) are the points of the
intersection L ∩ X , counted with “multiplicities.” Multiplicity greater than
one means that L is “tangent” to X in Pi. Let mi ∈ Specmax (K[X ]) be the
maximal ideal belonging to Pi. Furthermore, let l := cx1 − ax2 + ad − bc
(which defines L), and let l := l + (g) ∈ K[X ] be the corresponding regular
function on X . Show that

(l) = m1 · · ·mn.

So the Weil divisor P1 + · · · + Pn is linearly equivalent to 0.
Remark: If X is an elliptic curve defined as in Example 14.14, then f has
degree 3 if a �= 0, i.e., if L is not parallel to the x2-axis. So in this case we get
three points whose sum is linearly equivalent to 0. Otherwise, f has degree 2,
so the sum of two points is linearly equivalent to 0. It is also clear that (for
general X) if P is a point of X , then by setting a := ∂g

∂x2
(P ), b := − ∂g

∂x1
(P ),

and (b, d) := P , one achieves that the polynomial f will become divisible
by t2, which geometrically means that L is tangent to X in P . (Solution on
page 231)

*14.12 (Rational functions on an elliptic curve). Let K be an alge-
braically closed field of characteristic not equal to 2, and let E ⊂ K2 be
an elliptic curve given by the equation

x2
2 = x3

1 + ax1 + b

with a, b ∈ K, 4a3 + 27b2 �= 0 (see Exercise 13.10). Let R := K[E] be the
coordinate ring and L := Quot(R) the field of rational functions on E. By
a place of L we mean a discrete valuation ring O such that K ⊂ O ⊂ L
and Quot(O) = L. So giving a place of L is the same as giving a nontrivial
discrete valuation on L that vanishes on K× (see Exercise 14.1).
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(a) Show that L has the following places: (1) the localizations RP =: OP of
R at points P ∈ E, and (2) one further place, which we will write as O∞.
We will write the maximal ideals of the places as pP and p∞. Also show
that R ∩ p∞ = {0}. Hint: The last statement can be proved by using a
suitable K-automorphism ϕ: L → L.

(b) Show that L is not isomorphic (as a K-algebra) to the rational func-
tion field K(x). This result is usually expressed by saying that E is not
a rational curve. Hint: This can be done by giving a K-automorphism
ϕ: L → L that fixes four places of L (in the sense that ϕ(O) = O), and
showing that K(x) has no such automorphism.

(c) Assume that there exists f ∈ L such that (f)R = mP ·m−1
Q with P, Q ∈ E

distinct points, or (f)R = mP (:= the maximal ideal of R belonging to
P ). In other words, assume that as a Weil divisor, P is linearly equivalent
to Q or to 0. Show that this implies L ∼= K(f), contradicting (b). Hint:
Consider the integral closure A of K[f ] in L. Apply the structure theorem
for finitely generated modules over a principal ideal domain (see Lang [33,
Chapter XV, Theorem 2.2]) to A.

Remark: Part (c) shows that for a nonrational, nonsingular, irreducible affine
curve that has only one point at infinity, no point is linearly equivalent to
another point or to 0. In this context, it would be more natural to consider
projective curves. Then zeros and poles at infinity would be included in the
divisor of a rational function, and the hypothesis on the number of points at
infinity would vanish. (Solution on page 232)
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