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Fault diagnosis of electrical drives

Electrical drives are basic components in a multitude of devices, processes, machin-
ery and vehicles, and in the large areas of mechanical power and process engineering,
manufacturing, transportation and precision mechanical devices. Their power ranges
from a few mW to hundreds MW.

The most important types of electrical motors can be divided into:

(i) DC motors

e series-wound motors
e shunt-wound motors
e permanent-field motors

(i) Three-phase AC motors
e induction motors (asynchronous motors)
e synchronous motors

(iii) Single-phase AC motors
e commutator motors (universal motors)
e squirrel-cage motors.

Table 3.1 gives an overview of some basic types, illustrating torque characteris-
tics and corresponding control inputs. As static and dynamic models of the various
electrical motors are required for model-based fault detection, the reader is referred
to well-known basic books on electrical drives such as [3.3], [3.13], [3.18], [3.19],
[3.20].

In the following, some case studies are described for DC motors with brushes and
for AC motors. Further types of electrical motors will be considered in Chapter 4 for
electrical actuators.

3.1 Direct-current motor (DC)

3.1.1 Structure and models of a DC motor

A permanently excited DC motor with a rated power of P = 550 W at rated speed
n = 2500 rpm is considered, [3.6]. This DC motor has a two-pair brush commuta-
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tion, two pole pairs, and an analog tachometer for speed measurement; it operates
against a hysteresis brake as load, see Figure 3.1. The measured signals are the ar-
mature voltage U 4, the armature current / 4 and the speed w. A servo amplifier with
pulse-width-modulated armature voltage as output and speed and armature current
as feedback allows a cascaded speed control system. The three measured signals
first pass analog anti-aliasing filters and are processed by a digital signal processor
(TXP 32 CP, 32-bit fpt, 50 MHz) and an Intel Pentium host PC. Also the hysteresis
brake is controlled by a pulse-width servo amplifier. Usually such DC motors can be
described by linear dynamic models.
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Fig. 3.1. DC motor test bench with hysteresis brake: a) test bench; b) scheme of equipment

However, experiments have shown that this model with constant parameters does
not match the process in the whole operational range. Therefore, two nonlinearities
are included so that the model fits the process better. The resulting first-order differ-
ential equations are:
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Lala(ty=—Rqls(t)—V o(t)— Kglo@)| L4(t) + U(1) (3.1.1)
J &= I4(t) — Mr o(t) — Mpg sign (w(t)) — ML(t) (3.1.2)

Figure 3.2 depicts the resulting signal flow diagram. The term K g|w(t)|1 4(t) com-
pensates for the voltage drop at the brushes in combination with a pulse-width-
modulated power supply. The friction is included by a viscous- and a dry-friction
term Mgy and M ggsign(w), see also [3.9]. The parameters are identified by least-
squares estimation in the continuous-time domain, [3.6]. Table 3.2 gives the nominal
values. Most of them (R4, WV, K, M1, MFo) influence the process gain, and the
other two (L 4, J) the time constants. The signals UA’f, 1 4 and w are measured with
a sampling frequency of 5 kHz, and state-variable filtered by a fourth-order low-pass
filter with Butterworth characteristic and a cut-off frequency of 250 Hz.

Table 3.2. Data for the DC motor

armature resistance ||R 4 = 1.52 Q
armature inductance||L 4 = 6.82-1073 Q s
magnetic flux U=033 Vs
voltage drop factor |[Kp =221-1073 V s/A
inertia constant J=192-10"3 kg m?
viscous friction Mgy =0.36-1073 Nm s
dry friction Mgy =0.11 Nm
L
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Fig. 3.2. Signal flow diagram of the considered DC motor

3.1.2 Fault detection with parity equations

For the detection and isolation of sensor (output) and actuator (input) faults a set
of structured parity equations with state-space models according to Section 2.5 is
applied.
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As the differential equations (3.1.1) and (3.1.2) are nonlinear, the design pro-
cedure for a linear parity space cannot be applied directly. But defining U} —
Kplw(t)|I 4 as voltage input Uy and as load input M = MFpgsignw leads to a
linear description. The linear state-space representation then becomes

. I'A:|_ —f—A—Li:||:IA:| [LL 0}[&}
X = . = A + A
[‘” 7 —ﬁ @ 0 -7 ] LM (3.1.3)
(141 _[10
=0 ]=[o1]

A corresponding signal flow diagram is depicted in Figure 3.2.

An observability test reveals that both outputs (/4 and w) can also observe each
other. This is a precondition for a parity space of full order (here: 2). Then, W, see
Table 2.4 and [3.10] Equation (10.52), is chosen such that a set of structured resid-
uals is obtained, where residual r; (¢) is independent of M (t), r2(¢) of U4(¢), r3(2)
of w(t) and r4(¢) of I 4(t), see also [3.6], [3.16], [3.4]:

Ry VvV Ly0 O 0
-V Mgy 0 J O

W = « 0 B OJL, 0 (3.1.4)
0 a 0B o JLy
with @ = W2 + Ry Mpy;
B=LgMpi+J Ry.
The residuals, using three measured signals, then follow as:
ri(t) = La La(t) + Ra L4(t) + ¥ o(t) — Ua(t)
r(t) = J o) =W I4(1) + Mpy (1) + ML(1)
r3(t) =J La14(t)+(Lg Mpi+J Ry) 14(1) (.15)

+ (W2 + RyMF)La(t) — J Ua(t) — Mp1 Ug(t) — ¥ ML (1)
ra(t) = J Lg &)+ (La Mp1+J Ry) 0t) + (V2 + R4 MFp) (1)
W U4 () +Lag Mp(t)+ Rqg Mp(2)

The same residual equations can be also obtained via transfer functions as described
in Example 10.3 in [3.10]. If an additive fault of the measured signals and of M7,
occurs, all residuals except the decoupled one are deflected. The scheme of the struc-
tured residuals is not touched by the compensation for the nonlinear voltage drop of
the brushes, as its magnitude is small enough. Two parameters R 4 and M F;, how-
ever, depend on the present motor temperature. The behavior of R 4 and its effect on
residual ry is depicted in Figure 3.3. Therefore, the use of adaptive parity equations
improves the residual performance, see [3.6] and [3.10].

The residuals are now examined with regard to their sensitivity to additive and
parametric faults. As ry and r, comprise all parameters and all signals, it is sufficient
to consider only these two, although r3 or r4 can also be taken. From (3.1.5) it yields
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Fig. 3.3. Influence of the motor temperature on resistance R 4 and residual r{

r(t) = A Ly iA_(z) +ARAT4(1)+ AW ()
FLAAT4(t)+ R4 A T40)+ VA w(t)— A Uy(t)
) =4+AJ o) — AV I 0)+ A Mp; ()
+J Aw@) =W AT4(t)+ Mpy Aw(t)+ A Mp(1)

(3.1.6)

In the presence of residual noise, e.g. of r; with a magnitude of about 1V and an
armature current of 3 A, a resistance change must be at least 0.3 2 in order to deflect
the residual significantly. Therefore, the two linear parameters R 4 and Mp; are
selected to be tracked according to a single parameter estimation together with parity
equations, as described in [3.10], Section 10.5. The forgetting factor is chosen as
A =10.99.

3.1.3 Fault detection with parameter estimation

The parameter estimation is based on the two differential equations (3.1.1) and
(3.1.2) in the simplified form

T4(t) = =6y 14(1) — 0> (1) + 63 U4(t) (3.1.7)
@) = 04 14(t) — s w(t) — Og M1 (1) (3.1.8)

with the process coefficients

é1 1 é2 é4 1 95
93 93 03 06 96 06

Applying the recursive parameter estimation method DSFI (discrete square-root fil-
tering in information form), [3.11], with forgetting factor A = 0.99 yields the pa-
rameters éi by using three measured signals. Then all process coefficients can be
calculated with (3.1.9). Experimental results with idle running (M7, = 0) resulted
in standard deviations of the process coefficients in the range of 2% < 0p < 6.5%,
[3.6].
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3.1.4 Experimental results for fault detection (SELECT)

Based on many test runs, five different faults are now selected to show the detection
of additive and multiplicative faults with parity equations and recursive parameter
estimation, [3.5]. The time histories depict the arising faults at # = 0.5s. The faults
are step changes and were artificially produced. Figure 3.4 shows the parameter esti-
mates and the residuals of parity equations. The residuals are normalized by division
through their thresholds. Therefore, exceeding of 1 or —1 indicates the detection of
a fault. In the cases a) to d) and f) the DC motor is excited by a pseudo random bi-
nary signal (PRBS) of the armature voltage U 4 which is a requirement for dynamic
parameter estimation, as shown in Figure 3.4f). In case e) the input is constant. The
results can be summarized as:

a) A sensor-gain fault of the voltage sensor U,4 leads as expected to a change of
residual 1 (and 3, 4) but not of residual 2, which is independent of U,4. The
parameter estimates show (incorrect) changes for R 4, L 4 and W, because the
gain of the voltage sensor is not modeled

b) An offset fault in the speed sensor w leads to a change of the residuals r4, rq
and r,, but r3 remains uneffected, because it is independent of @. The parameter
estimate of W shows an (incorrect) change

¢) A multiplicative change of the armature resistance R 4 yields a corresponding
change of the parameter estimate R 4. However, the residuals increase their vari-
ance drastically and exceed their thresholds .

d) A change of the ratio of inertia is correctly given by the parameter estimate J.
But all residuals, except 71, exceed their thresholds by increasing their variance

e) The same fault in R4 as in ¢) is introduced, but the input U4 is kept constant.
The parameter estimate R 4 does not converge to a constant value and the parity
equation residuals r; and r4 change their mean, however, with large variance

f) A brush fault leads to an increase of R4 and L 4 but not of W. The residuals
show an increase of the variance.

Table 3.3 summarizes the effects of some investigated faults on the parameter
estimates and parity residuals.
These investigations have shown:

1) Additive faults like the offsets of sensors are well detected by the parity equa-
tions. They react fast and do not need an input excitation for a part of the faults.
However, they have a relatively large variance, especially if the model parame-
ters do not fit well to the process

2) Multiplicative faults are well detected by parameter estimation, also for small
faults. Because of the inherent regression method the reactions are slower but
smoothed. But they require an input excitation for dynamic process models.

Therefore, it is recommended to combine both methods, as shown in [3.10], Sec-
tion 14.3. The parity equations are used to detect changes somewhere in the process
and if the fault detection result is unclear a parameter estimation is started, eventu-
ally by a dynamic test signal for some seconds. If the motor operates dynamically
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— parity equations: rq, ¥y, 73,74
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Table 3.3. Fault-symptom table for the fault detection of a DC motor with dynamic input exci-
tation U 4(¢) in the form of a PRBS. + positive deflection; ++ strong positive deflection; 0 no

deflection; — negative deflection; — — strong negative deflection; 4 increased variance
symptoms
faults parameter estimation |parity equations
RA[LA[‘I’[ J [MFI l‘][l‘z[}’}[ ra
armature ARy |++] 0 |0] O] O |£|O0|£] =+
resistance
brush fault ++|+ (0] 0 0 [£|0]|£] =+
parametric change of AJ 010 |0|++] O |O|E£|£| £
faults inertia
change of AMpgi| O |0 |0] O | 4+4+|0|£|£| £
friction
voltage sensor ||AU 4 + | £ (x| 0 0 [—]|0]—] —
gain fault
additive faults |speed sensor Aw 0101|—|0 0 [+|+]0] +
offset fault
current sensor ||A[7 + |+ (x| O 0O |+][—|+| O

offset fault

anyhow (as for servo systems and actuators) then the parameter estimation can be
applied continuously, but with a supervision scheme, see [3.11].

[3.6] has shown that a considerable improvement can be obtained by continu-
ously estimating the armature resistance with a single parameter estimation using
parity equations in order to reach the temperature dependent resistance parameters,
[3.7]. Furthermore, adaptive thresholds are recommended, to compensate for model
uncertainties, see Section 2.4.4.

3.1.5 Experimental results for fault diagnosis with a learning fault-symptom tree

The model-based fault-detection system with parity equations and parameter estima-
tion is now the basis for a fault-diagnosis procedure. As described in Section 2.6 the
method for fault diagnosis can be divided in classification and inferencing. A first
simple classification is the use of fault-symptom tables and pattern recognition as in
Table 3.3. Also decision trees belong to the class of classification methods. However,
a combination with a neuro-fuzzy structure gives them a learning behavior of fuzzy
if-then rules with AND operators, forming an adaptive inference method, called SE-
LECT, [3.4]. This is applied in the following to the DC motor test bench.

a) The symptoms used

To diagnose the faults, altogether 22 symptoms are created:

e Windowed sums of the absolute values of the three measured signals Uj;, 4,0
e Mean values and standard deviations of four residuals: 71, ...,7s and 6,1, ..., 04
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e Eight parameter estimates. Symptoms are the deviations of the current values —
results of the estimation — from the nominal ones. They are normalized to the

. . . R —Res
nominal values. For the rotor resistance R 4 thisis A R 41 = (A'"I‘QZ‘—A“").
Jhom.

The index 1 denotes that the estimation was carried out using the first parity
equation. Similarly, A R 44, AL 41, AL g4, AJy, A J3, A MF15,and A MFp;3
are computed

e Additionally, two symptoms judge the quality of the estimation. They describe
the variance of an estimated parameter during a recursive estimation. This vari-
ance can give a good indication whether the structure of the estimation equation
is valid. A structural change of the system will result in a bad estimation result
where the recursively estimated parameters fluctuate significantly. Two parame-
ter estimations were chosen: W and M . Their estimation variances are denoted

by Oess.,w and Oesr MF1-

The symptoms serve to differentiate between 14 fault situations that can artificially
be introduced on the test rig.

The DC motor diagnosis was performed by learning a SELECT tree from exper-
imentally gained fault data. For the fault cases, typically 10-50 test-cycle measure-
ments for a parameter estimation were performed. The residuals were computed from
the test runs. That way, each test run results in one data point in the symptom space.
The membership functions were created with the degressive fuzzy-c-means method.
To utilize a maximum of transparency and create a highly interpretable system, prior
knowledge was used to structure the diagnosis system.

b) Incorporation of structural knowledge

In most applications, a certain amount of knowledge about the symptom behavior is
present. Even if exact values for thresholds etc. are not known, there usually is some
insight into the process like physical understanding of similar faults or similar effects
of faults on certain symptoms. For the DC motor, this could be as simple as to use
the windowed sums of the signals in order to to detect a broken sensor cable. This
information is quite obvious, but its benefits are sometimes neglected, if a diagnosis
system is designed with the aim to be solely learned from measured data. Hence, the
task could be simpler if the designer used this information from the beginning.

Furthermore, the selection of the symptoms for the diagnosis becomes a matter
of robustness. Some symptoms are affected by faults for which they are not an appro-
priate indicator. In an experimental environment, it is virtually impossible to gather
enough measurements to adequately reflect every influence. Especially changes in
the environmental conditions and long-term changes due to wear are hardly captured
in a limited time frame. This leads to diagnosis systems that work well under the
experimental conditions but fail otherwise. The diagnosis of a fault should therefore
be based on the appropriate subset of all available symptoms. Only the relevant ones
should be selected.

Often, different faults can be categorized into larger groups if their effects on
the process are similar. It is then advantageous to find a classification system for
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the larger groups first and later separate within them. This leads to the concept of a
hierarchical diagnosis system.

Overall, it is proposed to use prior knowledge to structure the diagnosis system.
The designer builds groups of faults and identifies the corresponding relevant symp-
toms to first differentiate between and later within them. The exact decisions can be
found automatically if enough measured data is available.

If the set of all different fault situations F; is denoted by

F={F1,F,...F} (3.1.10)
and the available symptoms given by
S ={s51,82,...5} 3.1.11)
one can form meta-classes C;, i = 1...m with
F=C UC U...UZCp (3.1.12)

In the DC motor diagnosis, for instance, such a meta-class is given by all faults on
the mechanics of the motor. Such a hierarchy based on meta-classes requires at least
g = m + r decisions d;j, j = 1...q assumed that no C; is a single-element set.
Each d; is based on a subset Sy; € S. The SELECT approach will then produce a
system with p parameters where p is given by

q
p = card (Sq;) (3.1.13)

Jj=1

which is typically much less than a parallel network structure would result in (cardi-
nalities are the number of relevant sets). The usually larger number of parameters in
parallel network configurations can lead to slower convergence and ill-conditioned
optimization problems.

In addition to the structural knowledge, one can incorporate more detailed knowl-
edge into the individual rules if desired.

c) Results with SELECT method

A total of 14 different fault situations are applied on the DC motor test bench:

Change of rotor inductance or resistance Fr 4, Fr 4

Broken rotor wiring (Fy)

Failure of one the four brushes (Fp)

Increased friction in the bearings (F'r)

Offset on voltage, current or speed sensor signal (Fo,u4, F0,14. Fo,0)

Gain change of voltage, current or speed sensor signal (Fg,u4, FG,14, FG.0)
Complete voltage, current or speed sensor failure (Fy g, Fra, Fyp).
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Repeated experiments with different faults were performed using a test cycle. The
symptoms described in a) were computed for each of the experiments. Overall, the
training set for the approach consisted of data from 140 experiments.

Figure 3.5 shows the resulting structure for the DC motor diagnosis. Details have
been omitted to visualize the concept only. Each block comprises a meta-class C; of
faults. Every branching of the tree is connected to a decision d; learned with the SE-
LECT approach, i.e. it contains a fuzzy rule. In each meta-class, a classification tree
decides which individual fault has occurred based on a subset S; of the symptoms.

fault
symptom IF .. average speed very small OR
behavior average current very small OR
average voltage very small
THEN sensor failure

ELSE no sensor failure

T~

sensor failure no sensor failure

IF ... IF ...

THEN voltage sensor fault THEN mechanical fault

ELSEIF .... ELSE electrical fault
mechanical fault electrical fault
IF ... IF ...
THEN friction fault THEN ...

V¥ fault |ELSEIF..

Fig. 3.5. Hierarchical fault-diagnosis system. Each block comprises a fuzzy classification tree

The hierarchical decision tree proved to be highly suitable for the diagnosis. It
achieved a 98% classification rate in a cross-validation scheme.

The groups of faults have been selected following basic understanding of the DC
motor supervision concept. Firstly, the three total sensor breakdowns are different
from other faults due to their strong effects on all symptoms. They form the first
meta-class C; and can be easily differentiated by the three windowed sums of the
signals. These three symptoms accordingly form the set S;.

Since the motor can be understood as a combination of an electrical and a me-
chanical component, faults on these two parts were again treated separately, creating
two more meta-classes, C» and C3. Accordingly, the appropriate subsets of symp-
toms S, and Sz for the diagnosis were selected. Basically, S, and S3 consist of
the residuals and parameter deviations connected to the corresponding meta-class.
The diagnosis of electrical faults, for instance, is not based on parameter estimates
of the mechanical parameters. Although some electrical faults may have an influ-
ence on the estimates of the mechanical parameters, this influence should not be
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used as the estimates are misleading and not reliable. Hence, S, does not contain
AJz, AJ3, AMFIZ or AMF13.

To give an example of the SELECT approach, the rules for the distinction of the
electrical faults are given below:

IF 7y is small AND AL 44 is strongly negative THEN Fault Fr 4

ELSE IF 7y is small AND 6,4 is medium THEN Fault Fg 4

ELSE IF 7; is small AND 06,4 is large THEN Fault F'p

ELSE IF 7, is not small THEN Fault Fy 74 (3.1.14)
ELSE IF 7; is small THEN Fault Fg 14

ELSE IF 7; is large AND 0., w is not small THEN Fault Fy 14

ELSE Fault FG,UA

The relevance indices of the rule premises are not listed here. They also play a role
for the exact decision boundaries.

Nevertheless, it is possible to analyze and understand parts of these rules. Clearly,
the rules reveal the discriminatory power of the first residual, since it was used very
often. Other rule premises are also understandable. The change of the rotor induc-
tance is indicated by a strongly negative estimation of this change magnitude. Com-
pare this rule to Figure 3.6a). It shows the values A L 44 for the electrical faults from
the training set. Clearly, the fault Fr 4 makes a distinct difference. Hence, it makes
sense to use AL 44 to distinguish the fault from the others. The corresponding mem-
bership functions are shown in Figure 3.6b). It must be noted that the experimental
setup allowed only a fixed deviation of the inductance by —-50% as a fault. That can be
seen in the estimation result. If, however, also positive changes are to be diagnosed,
one is able to enhance the rule manually. For instance, one could use

IF r; is small AND AL 44 is not small THEN Fault Fy 4 (3.1.15)

The corresponding membership functions for AL 44 would also have to be adapted
accordingly to allow processing of positive values of AL 44.

Another interesting observation is the use of 0. w in the sixth rule of (3.1.14) to
distinguish offset from gain faults of the voltage sensor. This can be explained by the
fact that an offset term in the estimation equation given by an offset fault will change
the structure of the estimation equation, while a gain will only effect parameters.
Hence, the normal estimation equation will still be valid in the case of gain faults,
but indicate a problem by a large o, ,w for offset faults.

The system performed well on new experiments, showing the increased robust-
ness through the incorporation of very simple knowledge. Additionally, the system
has a higher degree of transparency facilitating an adaptation to other motors. The
diagnostic rules can be extracted and are largely understandable.

d) Relation to fault trees

The resulting hierarchical classifier can also be interpreted as a set of fuzzy fault
trees. If one reverses the order of the structure and traces the decisions leading to a
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fault situation
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Fig. 3.6. Estimated rotor inductance computed from the fourth parity residual. Apparently, most
faults influence the result, however, the faulty inductance can most easily be detected due to
its strong influence: a) estimation results; b) resulting membership functions

particular fault back through the tree, it is possible to explicitly draw a fault tree for
each individual fault. Figure 3.7 shows one fault situation (increased friction in the
motor) as an example. The intermediate steps like “mechanical fault” from Figure 3.7
become events of the fault tree.

A fault (friction parameter

increased)

friction fault

(A

mechanical fault

friction parameter
increased

PN

events

second parity | | fourth parity standard i
residual not residual not deviation third no sensor failure
large changed residual small /\

symptom
behavior

|~

not

average speed

small

average current
not small

average voltage
not small

Fig. 3.7. Fault tree for one particular fault extracted from the diagnostic tree in Figure 3.5

Similar fault trees can be constructed for the other faults. This requires one to

analyze the rule tree and explicitly draw the trees. The resulting set of trees is a
relatively redundant representation of the fault-symptom relation because the same
events are used in multiple trees. They are nevertheless very intuitive and serve to
understand and visualize the functionality of the diagnostic system.
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e) Computational demands

The most time-critical computation of the presented supervision concept is the
computation of the continuous-time residuals. They require the evaluation of state-
variable filters that are difficult to implement in fixed-point arithmetic. If the compu-
tational resources are limited, also a discrete-time form of the residuals is possible.
This has, for instance, been implemented by [3.17].

The diagnosis, on the other hand, only needs to be evaluated if the fault-detection
thresholds are violated. It is not time critical and can, for instance, be computed
as a background job in the motor controller. Similarly, floating-point computations
such as for the computation of the exponential function in the SELECT neuron can
always be implemented on a lower-precision fixed-point controller, for instance, by
using lookup tables. If the computational time is not critical, one can also implement
floating-point arithmetic on fixed-point controllers. Since the time needed for the
diagnosis is small compared with the time that typically is needed for personnel to
reach a faulty device, it is obvious that the computational demand should not really be
an issue. Safety-critical measures can be taken as soon as the thresholds are violated
even before the diagnosis is started.

3.1.6 Conclusions

The detailed theoretical and experimental investigations with the permanently ex-
cited DC motor in idle running or with load have demonstrated that it is possible to
detect 14 different faults by measurement of only three signals and combination of
the parity equation and parameter estimation approach. Additive faults, like offsets of
sensors, are easily detectable by parity equations in normal operation without extra
input excitation signals. Multiplicative faults, like parameter deviations of the motor
are better detected by parameter estimation, but require appropriate input excitation
signals, at least for short times. The described methods can be transformed to other
types of DC motors, depending on their construction, and also to single-phase AC
motors. Further, by applying the self-learning neuro-fuzzy system SELECT all faults
could be diagnosed with a 98% correct classification rate. A selection of faults, es-
pecially in the mechanical parts can also be detected by applying only signal models
for current structure-borne vibrations, [3.2].

3.2 Alternating-current motor (AC)

Alternating-current motors in the form of induction or asynchronous motors consist
usually of three windings placed in stator slots that are interconnected with the indi-
vidual phases of a three-phase voltage supply system either in delta- or Y-connection,
see Figure 3.8a). A rotating magnetic field is generated where angular velocity de-
pends on the power supply frequency f and on the number of pole pairs p within the
stator. Depending on different rotor constructions, induction motors and synchronous
motors can be distinguished. In the following, induction motors with a squirrel-cage
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