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Fault diagnosis of electrical drives

Electrical drives are basic components in a multitude of devices, processes, machin-

ery and vehicles, and in the large areas of mechanical power and process engineering,

manufacturing, transportation and precision mechanical devices. Their power ranges

from a few mW to hundreds MW.

The most important types of electrical motors can be divided into:

(i) DC motors

� series-wound motors

� shunt-wound motors

� permanent-field motors

(ii) Three-phase AC motors

� induction motors (asynchronous motors)

� synchronous motors

(iii) Single-phase AC motors

� commutator motors (universal motors)

� squirrel-cage motors.

Table 3.1 gives an overview of some basic types, illustrating torque characteris-

tics and corresponding control inputs. As static and dynamic models of the various

electrical motors are required for model-based fault detection, the reader is referred

to well-known basic books on electrical drives such as [3.3], [3.13], [3.18], [3.19],

[3.20].

In the following, some case studies are described for DC motors with brushes and

for AC motors. Further types of electrical motors will be considered in Chapter 4 for

electrical actuators.

3.1 Direct-current motor (DC)

3.1.1 Structure and models of a DC motor

A permanently excited DC motor with a rated power of P D 550 W at rated speed

n D 2500 rpm is considered, [3.6]. This DC motor has a two-pair brush commuta-
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tion, two pole pairs, and an analog tachometer for speed measurement; it operates

against a hysteresis brake as load, see Figure 3.1. The measured signals are the ar-

mature voltage UA, the armature current IA and the speed !. A servo amplifier with

pulse-width-modulated armature voltage as output and speed and armature current

as feedback allows a cascaded speed control system. The three measured signals

first pass analog anti-aliasing filters and are processed by a digital signal processor

(TXP 32 CP, 32-bit fpt, 50 MHz) and an Intel Pentium host PC. Also the hysteresis

brake is controlled by a pulse-width servo amplifier. Usually such DC motors can be

described by linear dynamic models.

D

A

D

A

D

A

IAUA T

personal computer with
digital signal processor

hysteresis
break

DC motor

servo amplifier

servor amp.

anti-
aliasing-
filter

tacho

D

A

D

A

(a)

(b)

Fig. 3.1. DC motor test bench with hysteresis brake: a) test bench; b) scheme of equipment

However, experiments have shown that this model with constant parameters does

not match the process in the whole operational range. Therefore, two nonlinearities

are included so that the model fits the process better. The resulting first-order differ-

ential equations are:
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LA
PIA.t/ D �RA IA.t/ �‰ !.t/ � KBj!.t/j IA.t/C U �

A.t/ (3.1.1)

J P! D ‰ IA.t/ � MF1 !.t/ � MF0 sign .!.t// � ML.t/ (3.1.2)

Figure 3.2 depicts the resulting signal flow diagram. The term KBj!.t/jIA.t/ com-

pensates for the voltage drop at the brushes in combination with a pulse-width-

modulated power supply. The friction is included by a viscous- and a dry-friction

term MF1! and MF0sign.!/, see also [3.9]. The parameters are identified by least-

squares estimation in the continuous-time domain, [3.6]. Table 3.2 gives the nominal

values. Most of them (RA; ‰;KB;MF1;MF0) influence the process gain, and the

other two (LA;J ) the time constants. The signals U �
A, IA and ! are measured with

a sampling frequency of 5 kHz, and state-variable filtered by a fourth-order low-pass

filter with Butterworth characteristic and a cut-off frequency of 250 Hz.

Table 3.2. Data for the DC motor

armature resistance RA D 1:52 �

armature inductance LA D 6:82 � 10�3 � s

magnetic flux ‰ D 0:33 V s

voltage drop factor KB D 2:21 � 10�3 V s / A

inertia constant J D 1:92 � 10�3 kg m2

viscous friction MF1 D 0:36 � 10�3 Nm s

dry friction MF0 D 0:11 Nm

M
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A

A

*

*
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Y
w1
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IA
M

M

L

F1
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Fig. 3.2. Signal flow diagram of the considered DC motor

3.1.2 Fault detection with parity equations

For the detection and isolation of sensor (output) and actuator (input) faults a set

of structured parity equations with state-space models according to Section 2.5 is

applied.
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As the differential equations (3.1.1) and (3.1.2) are nonlinear, the design pro-

cedure for a linear parity space cannot be applied directly. But defining U �
A �

KBj!.t/jIA as voltage input UA and as load input ML D MF0 sign! leads to a

linear description. The linear state-space representation then becomes

Px D
� PIA

P!

�
D
"

� RA

LA
� ‰

LA
‰
J

� MF

J

# �
IA

!

�
C
"

1
LA

0

0 � 1
J

# �
UA

ML

�

y D
�

IA

!

�
D
�

1 0

0 1

�
x

(3.1.3)

A corresponding signal flow diagram is depicted in Figure 3.2.

An observability test reveals that both outputs (IA and !) can also observe each

other. This is a precondition for a parity space of full order (here: 2). Then, W, see

Table 2.4 and [3.10] Equation (10.52), is chosen such that a set of structured resid-

uals is obtained, where residual r1.t/ is independent of ML.t/; r2.t/ of UA.t/; r3.t/

of !.t/ and r4.t/ of IA.t/, see also [3.6], [3.16], [3.4]:

W D

2
664

RA ‰ LA 0 0 0

�‰ MF1 0 J 0

˛ 0 ˇ 0 JLA 0

0 ˛ 0 ˇ o JLA

3
775 (3.1.4)

with ˛ D ‰2 C RA MF1;

ˇ D LA MF1 C J RA.

The residuals, using three measured signals, then follow as:

r1.t/ D LA
PIA.t/C RA IA.t/C‰ !.t/ � UA.t/

r2.t/ D J P!.t/ �‰ IA.t/C MF1 !.t/C ML.t/

r3.t/ D J LA
RIA.t/C .LA MF1 C J RA/ PIA.t/

C.‰2 C RAMF1/IA.t/ � J PUA.t/ � MF1 UA.t/ �‰ ML.t/

r4.t/ D J LA R!.t/C .LA MF1 C J RA/ P!.t/C .‰2 C RA MF1/ !.t/

�‰ UA.t/C LA
PML.t/C RA ML.t/

(3.1.5)

The same residual equations can be also obtained via transfer functions as described

in Example 10.3 in [3.10]. If an additive fault of the measured signals and of ML

occurs, all residuals except the decoupled one are deflected. The scheme of the struc-

tured residuals is not touched by the compensation for the nonlinear voltage drop of

the brushes, as its magnitude is small enough. Two parameters RA and MF1, how-

ever, depend on the present motor temperature. The behavior of RA and its effect on

residual r1 is depicted in Figure 3.3. Therefore, the use of adaptive parity equations

improves the residual performance, see [3.6] and [3.10].

The residuals are now examined with regard to their sensitivity to additive and

parametric faults. As r1 and r2 comprise all parameters and all signals, it is sufficient

to consider only these two, although r3 or r4 can also be taken. From (3.1.5) it yields
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Fig. 3.3. Influence of the motor temperature on resistance RA and residual r1

r1.t/ D � LA
PIA.t/C� RA IA.t/C� ‰ !.t/

CLA � PIA.t/C RA � IA.t/C‰ � !.t/ �� UA.t/

r2.t/ D C� J P!.t/ �� ‰ IA.t/C� MF1 !.t/

CJ � P!.t/ �‰ � IA.t/C MF1 � !.t/C� ML.t/

(3.1.6)

In the presence of residual noise, e.g. of r1 with a magnitude of about 1 V and an

armature current of 3 A, a resistance change must be at least 0.3� in order to deflect

the residual significantly. Therefore, the two linear parameters RA and MF1 are

selected to be tracked according to a single parameter estimation together with parity

equations, as described in [3.10], Section 10.5. The forgetting factor is chosen as

� D 0:99.

3.1.3 Fault detection with parameter estimation

The parameter estimation is based on the two differential equations (3.1.1) and

(3.1.2) in the simplified form

PIA.t/ D � O�1 IA.t/ � O�2 !.t/C O�3 UA.t/ (3.1.7)

P!.t/ D O�4 IA.t/ � O�5 !.t/ � O�6 ML.t/ (3.1.8)

with the process coefficients

RA D
O�1

O�3

I LA D 1

O�3

I ‰ D
O�2

O�3

and ‰ D
O�4

O�6

I J D 1

O�6

I MF1 D
O�5

O�6

(3.1.9)

Applying the recursive parameter estimation method DSFI (discrete square-root fil-

tering in information form), [3.11], with forgetting factor � D 0:99 yields the pa-

rameters O�i by using three measured signals. Then all process coefficients can be

calculated with (3.1.9). Experimental results with idle running (ML D 0) resulted

in standard deviations of the process coefficients in the range of 2% < �� < 6:5%,

[3.6].
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3.1.4 Experimental results for fault detection (SELECT)

Based on many test runs, five different faults are now selected to show the detection

of additive and multiplicative faults with parity equations and recursive parameter

estimation, [3.5]. The time histories depict the arising faults at t D 0:5 s. The faults

are step changes and were artificially produced. Figure 3.4 shows the parameter esti-

mates and the residuals of parity equations. The residuals are normalized by division

through their thresholds. Therefore, exceeding of 1 or �1 indicates the detection of

a fault. In the cases a) to d) and f) the DC motor is excited by a pseudo random bi-

nary signal (PRBS) of the armature voltage UA which is a requirement for dynamic

parameter estimation, as shown in Figure 3.4f). In case e) the input is constant. The

results can be summarized as:

a) A sensor-gain fault of the voltage sensor UA leads as expected to a change of

residual 1 (and 3, 4) but not of residual 2, which is independent of UA. The

parameter estimates show (incorrect) changes for RA, LA and ‰, because the

gain of the voltage sensor is not modeled

b) An offset fault in the speed sensor ! leads to a change of the residuals r4, r1

and r2, but r3 remains uneffected, because it is independent of !. The parameter

estimate of ‰ shows an (incorrect) change

c) A multiplicative change of the armature resistance RA yields a corresponding

change of the parameter estimate ORA. However, the residuals increase their vari-

ance drastically and exceed their thresholds

d) A change of the ratio of inertia is correctly given by the parameter estimate OJ .

But all residuals, except r1, exceed their thresholds by increasing their variance

e) The same fault in RA as in c) is introduced, but the input UA is kept constant.

The parameter estimate ORA does not converge to a constant value and the parity

equation residuals r1 and r4 change their mean, however, with large variance

f) A brush fault leads to an increase of RA and LA but not of ‰. The residuals

show an increase of the variance.

Table 3.3 summarizes the effects of some investigated faults on the parameter

estimates and parity residuals.

These investigations have shown:

1) Additive faults like the offsets of sensors are well detected by the parity equa-

tions. They react fast and do not need an input excitation for a part of the faults.

However, they have a relatively large variance, especially if the model parame-

ters do not fit well to the process

2) Multiplicative faults are well detected by parameter estimation, also for small

faults. Because of the inherent regression method the reactions are slower but

smoothed. But they require an input excitation for dynamic process models.

Therefore, it is recommended to combine both methods, as shown in [3.10], Sec-

tion 14.3. The parity equations are used to detect changes somewhere in the process

and if the fault detection result is unclear a parameter estimation is started, eventu-

ally by a dynamic test signal for some seconds. If the motor operates dynamically
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Fig. 3.4. Time histories of signals, residuals of parity equations and parameter estimation at

fault occurrence

– parameter estimates: RA resistance, LA inductivity, ‰ flux linkage, JA moment of iner-

tia

– parity equations: r1; r2; r3; r4
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Table 3.3. Fault-symptom table for the fault detection of a DC motor with dynamic input exci-

tation UA.t/ in the form of a PRBS. C positive deflection; CC strong positive deflection; 0 no

deflection; � negative deflection; � � strong negative deflection; ˙ increased variance

symptoms

faults parameter estimation parity equations

RA LA ‰ J MF1 r1 r2 r3 r4

armature

resistance

�RA CC 0 0 0 0 ˙ 0 ˙ ˙

brush fault CC C 0 0 0 ˙ 0 ˙ ˙
parametric

faults

change of

inertia

�J 0 0 0 CC 0 0 ˙ ˙ ˙

change of

friction

�MF1 0 0 0 0 CC 0 ˙ ˙ ˙

voltage sensor

gain fault

�UA ˙ ˙ ˙ 0 0 � 0 � �

additive faults speed sensor

offset fault

�! 0 0 � 0 0 + + 0 +

current sensor

offset fault

�I ˙ ˙ ˙ 0 0 + � + 0

anyhow (as for servo systems and actuators) then the parameter estimation can be

applied continuously, but with a supervision scheme, see [3.11].

[3.6] has shown that a considerable improvement can be obtained by continu-

ously estimating the armature resistance with a single parameter estimation using

parity equations in order to reach the temperature dependent resistance parameters,

[3.7]. Furthermore, adaptive thresholds are recommended, to compensate for model

uncertainties, see Section 2.4.4.

3.1.5 Experimental results for fault diagnosis with a learning fault-symptom tree

The model-based fault-detection system with parity equations and parameter estima-

tion is now the basis for a fault-diagnosis procedure. As described in Section 2.6 the

method for fault diagnosis can be divided in classification and inferencing. A first

simple classification is the use of fault-symptom tables and pattern recognition as in

Table 3.3. Also decision trees belong to the class of classification methods. However,

a combination with a neuro-fuzzy structure gives them a learning behavior of fuzzy

if-then rules with AND operators, forming an adaptive inference method, called SE-

LECT, [3.4]. This is applied in the following to the DC motor test bench.

a) The symptoms used

To diagnose the faults, altogether 22 symptoms are created:

� Windowed sums of the absolute values of the three measured signals U �
A
; IA; !

� Mean values and standard deviations of four residuals: Nr1; : : : ; Nr4 and N�r1; : : : ; N�r4
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� Eight parameter estimates. Symptoms are the deviations of the current values –

results of the estimation – from the nominal ones. They are normalized to the

nominal values. For the rotor resistance RA this is �RA1 D .RA;nom:�RA;est:/

RA;nom:
.

The index 1 denotes that the estimation was carried out using the first parity

equation. Similarly, �RA4; �LA1; �LA4; �J2; �J3; �MF12, and �MF13

are computed

� Additionally, two symptoms judge the quality of the estimation. They describe

the variance of an estimated parameter during a recursive estimation. This vari-

ance can give a good indication whether the structure of the estimation equation

is valid. A structural change of the system will result in a bad estimation result

where the recursively estimated parameters fluctuate significantly. Two parame-

ter estimations were chosen:‰ and MF1. Their estimation variances are denoted

by �est:;‰ and �est:;MF1.

The symptoms serve to differentiate between 14 fault situations that can artificially

be introduced on the test rig.

The DC motor diagnosis was performed by learning a SELECT tree from exper-

imentally gained fault data. For the fault cases, typically 10–50 test-cycle measure-

ments for a parameter estimation were performed. The residuals were computed from

the test runs. That way, each test run results in one data point in the symptom space.

The membership functions were created with the degressive fuzzy-c-means method.

To utilize a maximum of transparency and create a highly interpretable system, prior

knowledge was used to structure the diagnosis system.

b) Incorporation of structural knowledge

In most applications, a certain amount of knowledge about the symptom behavior is

present. Even if exact values for thresholds etc. are not known, there usually is some

insight into the process like physical understanding of similar faults or similar effects

of faults on certain symptoms. For the DC motor, this could be as simple as to use

the windowed sums of the signals in order to to detect a broken sensor cable. This

information is quite obvious, but its benefits are sometimes neglected, if a diagnosis

system is designed with the aim to be solely learned from measured data. Hence, the

task could be simpler if the designer used this information from the beginning.

Furthermore, the selection of the symptoms for the diagnosis becomes a matter

of robustness. Some symptoms are affected by faults for which they are not an appro-

priate indicator. In an experimental environment, it is virtually impossible to gather

enough measurements to adequately reflect every influence. Especially changes in

the environmental conditions and long-term changes due to wear are hardly captured

in a limited time frame. This leads to diagnosis systems that work well under the

experimental conditions but fail otherwise. The diagnosis of a fault should therefore

be based on the appropriate subset of all available symptoms. Only the relevant ones

should be selected.

Often, different faults can be categorized into larger groups if their effects on

the process are similar. It is then advantageous to find a classification system for



3.1 Direct-current motor 59

the larger groups first and later separate within them. This leads to the concept of a

hierarchical diagnosis system.

Overall, it is proposed to use prior knowledge to structure the diagnosis system.

The designer builds groups of faults and identifies the corresponding relevant symp-

toms to first differentiate between and later within them. The exact decisions can be

found automatically if enough measured data is available.

If the set of all different fault situations Fi is denoted by

F D fF1;F2; : : :Fr g (3.1.10)

and the available symptoms given by

S D fs1; s2; : : : st g (3.1.11)

one can form meta-classes Ci , i D 1 : : :m with

F D C1 [ C2 [ : : : [ Cm (3.1.12)

In the DC motor diagnosis, for instance, such a meta-class is given by all faults on

the mechanics of the motor. Such a hierarchy based on meta-classes requires at least

q D m C r decisions dj ; j D 1 : : : q assumed that no Ci is a single-element set.

Each dj is based on a subset Sdj 2 S. The SELECT approach will then produce a

system with p parameters where p is given by

p D
qX

jD1

card .Sdj / (3.1.13)

which is typically much less than a parallel network structure would result in (cardi-

nalities are the number of relevant sets). The usually larger number of parameters in

parallel network configurations can lead to slower convergence and ill-conditioned

optimization problems.

In addition to the structural knowledge, one can incorporate more detailed knowl-

edge into the individual rules if desired.

c) Results with SELECT method

A total of 14 different fault situations are applied on the DC motor test bench:

� Change of rotor inductance or resistance FRA;FLA

� Broken rotor wiring .FW /

� Failure of one the four brushes .FB/

� Increased friction in the bearings .FF /

� Offset on voltage, current or speed sensor signal .FO;UA;FO;IA;FO;!/

� Gain change of voltage, current or speed sensor signal .FG;UA;FG;IA;FG;!/

� Complete voltage, current or speed sensor failure .FUA;FIA;F!/.
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Repeated experiments with different faults were performed using a test cycle. The

symptoms described in a) were computed for each of the experiments. Overall, the

training set for the approach consisted of data from 140 experiments.

Figure 3.5 shows the resulting structure for the DC motor diagnosis. Details have

been omitted to visualize the concept only. Each block comprises a meta-class C1 of

faults. Every branching of the tree is connected to a decision dj learned with the SE-

LECT approach, i.e. it contains a fuzzy rule. In each meta-class, a classification tree

decides which individual fault has occurred based on a subset Si of the symptoms.

sensor failure

electrical faultmechanical fault

no sensor failure

fault
symptom
behavior

fault

IF ...
THEN
ELSE IF ...

friction fault
IF ...
THEN ...

IF ...
THEN voltage sensor fault
ELSE IF ....

IF ...
THEN
ELSE

mechanical fault
electrical fault

IF ...       average speed very small OR
average current very small OR
average voltage very small
THEN s

ELSE
ensor failure

no sensor failure

Fig. 3.5. Hierarchical fault-diagnosis system. Each block comprises a fuzzy classification tree

The hierarchical decision tree proved to be highly suitable for the diagnosis. It

achieved a 98% classification rate in a cross-validation scheme.

The groups of faults have been selected following basic understanding of the DC

motor supervision concept. Firstly, the three total sensor breakdowns are different

from other faults due to their strong effects on all symptoms. They form the first

meta-class C1 and can be easily differentiated by the three windowed sums of the

signals. These three symptoms accordingly form the set S1.

Since the motor can be understood as a combination of an electrical and a me-

chanical component, faults on these two parts were again treated separately, creating

two more meta-classes, C2 and C3. Accordingly, the appropriate subsets of symp-

toms S2 and S3 for the diagnosis were selected. Basically, S2 and S3 consist of

the residuals and parameter deviations connected to the corresponding meta-class.

The diagnosis of electrical faults, for instance, is not based on parameter estimates

of the mechanical parameters. Although some electrical faults may have an influ-

ence on the estimates of the mechanical parameters, this influence should not be
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used as the estimates are misleading and not reliable. Hence, S2 does not contain

�J2; �J3; �MF12 or �MF13.

To give an example of the SELECT approach, the rules for the distinction of the

electrical faults are given below:

IF Nr1 is small AND �LA4 is strongly negative THEN Fault FLA

ELSE IF Nr1 is small AND N�r4 is medium THEN Fault FRA

ELSE IF Nr1 is small AND N�r4 is large THEN Fault FB

ELSE IF Nr2 is not small THEN Fault F0;IA

ELSE IF Nr1 is small THEN Fault FG;IA

ELSE IF Nr1 is large AND �est:;‰ is not small THEN Fault F0;UA

ELSE Fault FG;UA

(3.1.14)

The relevance indices of the rule premises are not listed here. They also play a role

for the exact decision boundaries.

Nevertheless, it is possible to analyze and understand parts of these rules. Clearly,

the rules reveal the discriminatory power of the first residual, since it was used very

often. Other rule premises are also understandable. The change of the rotor induc-

tance is indicated by a strongly negative estimation of this change magnitude. Com-

pare this rule to Figure 3.6a). It shows the values�LA4 for the electrical faults from

the training set. Clearly, the fault FLA makes a distinct difference. Hence, it makes

sense to use�LA4 to distinguish the fault from the others. The corresponding mem-

bership functions are shown in Figure 3.6b). It must be noted that the experimental

setup allowed only a fixed deviation of the inductance by –50% as a fault. That can be

seen in the estimation result. If, however, also positive changes are to be diagnosed,

one is able to enhance the rule manually. For instance, one could use

IF Nr1 is small AND �LA4 is not small THEN Fault FLA (3.1.15)

The corresponding membership functions for �LA4 would also have to be adapted

accordingly to allow processing of positive values of �LA4.

Another interesting observation is the use of �est:;‰ in the sixth rule of (3.1.14) to

distinguish offset from gain faults of the voltage sensor. This can be explained by the

fact that an offset term in the estimation equation given by an offset fault will change

the structure of the estimation equation, while a gain will only effect parameters.

Hence, the normal estimation equation will still be valid in the case of gain faults,

but indicate a problem by a large �est:;‰ for offset faults.

The system performed well on new experiments, showing the increased robust-

ness through the incorporation of very simple knowledge. Additionally, the system

has a higher degree of transparency facilitating an adaptation to other motors. The

diagnostic rules can be extracted and are largely understandable.

d) Relation to fault trees

The resulting hierarchical classifier can also be interpreted as a set of fuzzy fault

trees. If one reverses the order of the structure and traces the decisions leading to a
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Fig. 3.6. Estimated rotor inductance computed from the fourth parity residual. Apparently, most

faults influence the result, however, the faulty inductance can most easily be detected due to

its strong influence: a) estimation results; b) resulting membership functions

particular fault back through the tree, it is possible to explicitly draw a fault tree for

each individual fault. Figure 3.7 shows one fault situation (increased friction in the

motor) as an example. The intermediate steps like “mechanical fault” from Figure 3.7

become events of the fault tree.

symptom
behavior

events

fault (friction parameter
increased)

friction parameter
increased

Second Parity
Residual Not

Large

fourth parity
residual not

changed

second parity
residual not

large

standard
deviation third
residual small

average speed
not small

average current
not small

average voltage
not small

mechanical fault

friction fault

no sensor failure

Fig. 3.7. Fault tree for one particular fault extracted from the diagnostic tree in Figure 3.5

Similar fault trees can be constructed for the other faults. This requires one to

analyze the rule tree and explicitly draw the trees. The resulting set of trees is a

relatively redundant representation of the fault-symptom relation because the same

events are used in multiple trees. They are nevertheless very intuitive and serve to

understand and visualize the functionality of the diagnostic system.
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e) Computational demands

The most time-critical computation of the presented supervision concept is the

computation of the continuous-time residuals. They require the evaluation of state-

variable filters that are difficult to implement in fixed-point arithmetic. If the compu-

tational resources are limited, also a discrete-time form of the residuals is possible.

This has, for instance, been implemented by [3.17].

The diagnosis, on the other hand, only needs to be evaluated if the fault-detection

thresholds are violated. It is not time critical and can, for instance, be computed

as a background job in the motor controller. Similarly, floating-point computations

such as for the computation of the exponential function in the SELECT neuron can

always be implemented on a lower-precision fixed-point controller, for instance, by

using lookup tables. If the computational time is not critical, one can also implement

floating-point arithmetic on fixed-point controllers. Since the time needed for the

diagnosis is small compared with the time that typically is needed for personnel to

reach a faulty device, it is obvious that the computational demand should not really be

an issue. Safety-critical measures can be taken as soon as the thresholds are violated

even before the diagnosis is started.

3.1.6 Conclusions

The detailed theoretical and experimental investigations with the permanently ex-

cited DC motor in idle running or with load have demonstrated that it is possible to

detect 14 different faults by measurement of only three signals and combination of

the parity equation and parameter estimation approach. Additive faults, like offsets of

sensors, are easily detectable by parity equations in normal operation without extra

input excitation signals. Multiplicative faults, like parameter deviations of the motor

are better detected by parameter estimation, but require appropriate input excitation

signals, at least for short times. The described methods can be transformed to other

types of DC motors, depending on their construction, and also to single-phase AC

motors. Further, by applying the self-learning neuro-fuzzy system SELECT all faults

could be diagnosed with a 98% correct classification rate. A selection of faults, es-

pecially in the mechanical parts can also be detected by applying only signal models

for current structure-borne vibrations, [3.2].

3.2 Alternating-current motor (AC)

Alternating-current motors in the form of induction or asynchronous motors consist

usually of three windings placed in stator slots that are interconnected with the indi-

vidual phases of a three-phase voltage supply system either in delta- or Y-connection,

see Figure 3.8a). A rotating magnetic field is generated where angular velocity de-

pends on the power supply frequency f and on the number of pole pairs p within the

stator. Depending on different rotor constructions, induction motors and synchronous

motors can be distinguished. In the following, induction motors with a squirrel-cage
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