Chapter 2
Crystalline Solids: Diffraction
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24 2 Crystalline Solids: Diffraction

X-ray diffraction pattern for a Ce single crystal obtained with the experimental setup known as
a precession chamber. This directly visualises the Bragg spots corresponding to a plane of the
reciprocal lattice of the crystal (to solve Question 2.6 one has to take into account that the actual
diameter of the film in 12 cm). Image courtesy of Launois, P., Moret, R.: Laboratoire de Physique
des Solides. Orsay, France
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Our main concern in this book is to describe the electronic properties of crystalline
solids. The existence of translation symmetries associated with such ordered crystal
structures leads to specific features in the electronic structure and to a specific rep-
resentation of the energy states in wave vector space. In Sect. 2.1, we explain how
a crystal structure can be described formally by defining a crystal lattice of non-
material points together with a repeated material motif, known as the basis. This
periodic structure of matter causes diffraction of electromagnetic waves, or equiv-
alently, of quantum particles. We shall see in Sect. 2.2 that these diffraction phe-
nomena lead to the notion of reciprocal lattice in wave vector space, and this will be
important later for characterising the electronic states of these solids. In Sect. 2.3, we
outline the experimental methods used to determine the crystal structures of solids
using diffraction methods.

2.1 Crystal Structures

It is usual to consider a crystal as a natural object with regular external geometric
features, as found for example in rock salt, diamonds, and so on. By the end of the
nineteenth century, the systematic study of the external shapes of such natural crys-
tals led scientists to conclude that this regularity of the outer faces must be due to
structural regularities on the microscopic scale. The molecules or atoms had to be
assembled in a periodic manner to make a crystal. In this chapter, we shall see how
to specify the arrangement of a crystal structure. This structure can be ascertained
experimentally either by direct observation, or by light diffraction (X-ray crystallog-
raphy). These experimental methods show that many solids actually have a crystal
structure, even when their outer surfaces do not give this impression. They are in fact
polycrystalline, i.e., made up of a host of small crystals, which may themselves be of
micrometric dimensions, but which are nevertheless of macroscopic size. We begin
in Sect. 2.1.1 by describing the notions of crystal lattice and unit cell. In Sect. 2.1.2,
these ideas will be exemplified in two dimensions, i.e., for planar crystal structures,
where the geometric representations are simpler. We then illustrate some simple 3D
systems in Sect. 2.1.3.

2.1.1 Crystal Lattice

A crystal is an arrangement of atoms or molecules that is invariant under transla-
tions in three space directions constituting a triad (aj,a,,a3). Many human con-
structions have ordered structures exhibiting such characteristics, especially in two
dimensions: wall paper and floor tiling often have periodic structures that can be
considered as 2D crystals. In these cases, the primitive material basis is repeated
through two translations. A molecular example, observed by a modern microscopic
method, is shown in Fig. 2.1. These are alkane molecules with chemical formula
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Fig. 2.1 A monolayer of alkane C33Heg deposited on graphite arranges itself into a 2D crystal. The
right-hand figure was obtained with twice the resolution to reveal details of the atomic structure.
The distance between molecules is 4.5 A, and their length is 45 A. Image courtesy of Cousty, J.:
SPCSI/CEA. Saclay, France

C33Hgg, deposited on a graphite surface. Note that, if we choose an origin O in
space, the crystal can be reconstructed in two steps:

e We produce a lattice of points obtained from O by all the translations
Ry =l1a; + hay + ka3, 2.1)

where [1,/5,13 are integers. This set of points (the lattice points or nodes) consti-
tutes the crystal lattice or Bravais lattice.

e In the second step, we arrange the material basis relative to these nodes in such a
way as to completely tile the space.

The Bravais lattice is thus a set of non-material points, whereas the atoms and
molecules make up the material basis, which we shall call the ‘basis’ from now on,
when no confusion is possible. For elementary solids, containing only one atomic
species, the atoms may coincide with the lattice nodes, since the basis then often
comprises a single atom. But as soon as the solid contains several atomic species,
such a situation is no longer possible.

Note that the lattice of points provides a way of defining a primitive unit cell for
the material basis, namely, as the smallest volume that can tile the space by applying
the translations Ry. If np is the density of lattice points, the volume of the primitive
cell is v = 1/n,,. The primitive cell and the triad (a,az,a3) are not unambiguously
defined, as can be seen from Fig. 2.2. The triad (a,a,,a3) is often taken to be the
set of vectors that best reveals the symmetries of the lattice, e.g., (aj,a;) rather than
(b1,by) for the square and rectangular planar lattices in Fig. 2.2. A primitive cell
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Fig. 2.2 (a) Square lattice. (b) Rectangular lattice. These can be specified by the two vectors
(ar,ay) or the two vectors (by,b2). The vectors (aj,a) better reveal the symmetries of the lattice.
Four primitive cells are shown for the rectangular lattice, those specified by (aj,a) and (by,b»),
an arbitrary cell, and the Wigner—Seitz cell containing the lattice point O. The latter is obtained by
constructing the orthogonally bisecting planes of the four vectors (Oa;, Oay, —0Oa;,—0aj)

tiling the space may be chosen with an arbitrary shape as displayed in Fig. 2.2(b),
but we often opt for the rhombohedral primitive cell specified by (aj,aj,a3).

Of particular importance is a primitive unit cell known as the Wigner—Seitz cell.
This is constructed in such a way that every point of the cell is closer to one lattice
point (for example, O) than to any other lattice point (see Fig. 2.2). It is bounded by
the orthogonally bisecting planes of the vectors Ry with origin the chosen node. For
an elementary solid, this volume constructed with one atom at the center represents
in some sense the region of influence of this atom. !

Note that the lattice points can be grouped together in parallel planes in infinitely
many different ways. These are called lattice planes. In two dimensions, they con-
stitute parallel rows (see Fig. 2.3). The lattice planes group together points that can
be obtained from one another by two of the translations R;.

=i,

Fig. 2.3 Two families of lattice rows in the same Bravais lattice (oblique lattice in a 2D space)

2.1.2 Two-Dimensional Crystals

In the above, we illustrated the idea of a crystal by 2D representations. Since
real crystals are three-dimensional, these 2D representations may appear rather

! We shall see that, in the reciprocal lattice to be defined hereafter, the corresponding unit cell will
specify the first Brillouin zone.
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academic. However, important cases of 2D physics are becoming more and more
common today:

e The surface of any 3D crystal is obviously a 2D structure. One might think that
this would be that of the lattice plane corresponding to the infinite crystal. How-
ever, in many cases, the translational symmetry breaking associated with the ex-
istence of a surface leads to a significant modification of the surface structure.
We refer to this as surface reconstruction.

e Many 3D crystals occur in a layered form, with widely spaced molecular or
atomic layers. An example is graphite, or the high-7, cuprate superconductors.
The structural and electronic properties of these materials are strongly affected
by the 2D nature of the material.

e Finally, novel fabrication methods devised in nanotechnology are now used to
deposit monomolecular layers (see Fig. 2.1), or even monatomic layers, on the
surfaces of crystalline substrates. In 2004, it became possible to peel off graphite
sheets and hence study isolated layers of graphene, which is an almost ideal 2D
crystal form of carbon with highly original electronic properties.

Quite generally, a given (Bravais) crystal lattice is characterised by the symmetry
operations that preserve its structure, and which include, apart from the lattice trans-
lations, axes of symmetry under rotation through some angle 6 (or n-fold symmetry
axes, where 6 = 2m/n), and planes of symmetry (mirror planes). In two dimen-
sions, there are only five types of Bravais lattice. These are, in order of increasing
symmetry:

e The oblique lattice (Fig. 2.3), which has the minimal 2D symmetry, i.e., only one
two-fold symmetry axis perpendicular to the plane.

e The rectangular lattice (Fig. 2.2b), which also has mirror planes parallel to the
shortest translation axes of the lattice.

e The centered rectangular lattice (see Fig. 2.4a), with mirror planes distinct from
the shortest translation axes of the lattice.

e The hexagonal lattice (Fig. 2.4b), with a 3-fold (and hence a 6-fold) symmetry
axis.

e The square lattice (Fig. 2.2a), with a 4-fold symmetry axis.

In the centered rectangular lattice of Fig. 2.4a, the primitive cell constructed from
(aj,ap) does not help us to visualise the lattice symmetries as clearly as the con-
ventional unit cell (a,b), which is not a primitive unit cell, since it has double the

@.:q:a?:.:. “L,/_X

Fig. 2.4 Plane lattices. (a) Centered rectangular, (b) hexagonal. In the first case, we observe the
conventional centered rectangular cell specified by (a,b) and the primitive cell (aj,a). In the
plane hexagonal lattice, all the primitive triangles are equilateral
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area. In fact the latter contains two lattice points, viz., the point at the origin and the
center of the rectangle. These two points are indeed equivalent, as required by the
notion of a Bravais lattice, since each one is the center of the rectangle formed by its
four nearest neighbours. The conventional cell must be considered as a cell with one
basis (the two lattice points), and the crystal will be obtained by introducing twice
the material basis of the primitive cell around these points.

Question 2.1. 1. Determine the Bravais lattice and the primitive cell for the alkane crystal
observed by scanning tunneling microscopy in Fig. 2.1.

2. Determine the Wigner—Seitz cells associated with the centered rectangular and hexago-
nal lattices of Fig. 2.4.

The 2D structures attracting most attention since 2005 are the graphene honeycomb
structure of Fig. 2.5a and the so-called Kagomé structure. Some compounds like
hebersmithite ZnCuz(OH)Cl, are built up from alternating planes of ZnCl, with a
simple 2D structure and Kagomé planes of Cu3(OH)g. The Cu®* ions are arranged
as in Fig. 2.5b, while the (OH)™ serve to bind the Cu?*. The latter carry total elec-
tron spin 1/2, making this a very interesting material in quantum magnetism.

Question 2.2. Determine the Bravais lattice and a primitive cell for each of the two
structures of Fig. 2.5.
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Fig. 2.5 (a) Crystal structure of C atoms in graphene. (b) Atomic arragement known as ‘Kagomé’
(after a typical pattern of straw baskets made in Japan)

2.1.3 Three-Dimensional Crystals

In three dimensions, the simplest lattice to visualise is the cubic lattice. The three
primitive translation vectors (aj,a»,a3) form an orthogonal triad, and each of them
has length equal to the side a of the cube constituting a primitive cell (see Fig. 2.6a).
Chemical elements crystallise scarcely into such a simple cubic lattice, but it is
encountered in many polyatomic crystals (we shall discuss the example of CsCl
below).

However, many chemical elements crystallise into body-centered cubic (bcc)
crystal lattices (see Table 2.1). This Bravais lattice shown in Fig. 2.6b is the 3D
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Fig. 2.6 (a) Simple cubic lattice. (b) Body-centered cubic lattice. (¢) Equivalence of nodes in the

body-centered cubic lattice

Table 2.1 Lattice constants a of the conventional cell for several elementary solids which form a
body-centered cubic structure with one atom per primitive unit cell

Element a[A] Element a[A] Element a[A]
Ba 5.02 Li 349 Ta 3.31

Cr 2.88 Mo 315 TI1 3.88

Cs 6.05 Na 423 V 3.02

Fe 2.87 Nb 330 W 3.16

K 523 Rb 5.59

analog of the 2D centered rectangular lattice. In the bcc lattice, the conventional
cell contains two lattice points, one at the origin and the other at the center of the
cube. These two lattice nodes are indeed equivalent as each is the center of a cube

formed by its eight nearest neighbours (see Fig. 2.6c).

The most common lattice for elementary solids is the face-centered cubic lat-
tice (fcc). This is what is usually obtained when we try to stack hard spherical
balls. It is a common structure for many metals (see Table 2.2). The face-centered

Table 2.2 Lattice constants a of the conventional cell in several elementary solids which form

face-centered cubic structures

Element a[A] Element «[A] Element a[A]
Ar 526 Ir 3.84 Pt 3.92
Ag 4.09 Kr 572  Pu 4.64
Al 405 La 530 Rh 3.80
Au 4.08 Ne 443  Sc 4.54
Ca 558 Ni 352 Sr 6.08
Ce 5.16 Pb 495 Th 5.08
Co 355 Pd 3.89 Xe 6.20
Cu 3.61 Pr 5.16  Yb 5.49
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(a) b)

Fig. 2.7 (a) Face-centered cubic lattice. The primitive cell is the rhombohedron specified by the
vectors a1 = (a/2)(x+Y), ay = (a/2)(y+z), and a3 = (a/2)(x+z). The conventional cell contains
four lattice nodes. (b) Cubic crystal structure of diamond. The atoms are all chemically identical
in diamond, Si, and Ge. In the case of InP or GaAs, the two species differ, and are represented by
empty spheres and full spheres

cubic lattice also has a conventional cubic unit cell containing a four-node
basis comprising one vertex of the cube and the three centers of the adjacent faces
(see Fig. 2.7a). Note that the primitive translations of the Bravais lattice are the
three vectors joining the cube vertex to the centers of the adjacent faces, so a
rhombohedral primitive cell can be constructed (see Fig. 2.7a). Among the systems
crystallising in this structure are diamond and many semiconductors such as Si, Ge,
GaAs, and InP. All atoms within the conventional cell are shown in Fig. 2.7b, where
the full and empty spheres correspond to the two atomic species in the case of binary
compounds, but are identical in the case of Si or Ge.

Question 2.3. Check that the crystals in Fig. 2.7b do indeed correspond to a face-centered
cubic Bravais lattice, and determine the atomic basis.

When we consider polyatomic crystals, the primitive cell necessarily contains sev-
eral atoms. A simple illustration is given in Fig. 2.8 for the alkali halides CsCl and
NaCl. Although Cs is at the center of a CI cube, the associated Bravais lattice is the

e,
(@) / (b)

Fig. 2.8 (a) Crystal of CsCl, with simple cubic primitive cell. The basis comprises one atom of Cl
at the vertex of the cube and one atom of Cs at the center of the cube. (b) Crystal of NaCl with fcc
primitive cell comprising one atom of Cl and one atom of Na per primitive cell of Fig. 2.7a
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simple cubic lattice of side a, with a basis comprising one atom of CI at the vertex
of the cube and one atom of Cs at the center of the cube.

Many mixed oxides of transition metals crystallise into a cubic structure called
the perovskite structure, with primitive cell ABO3, in which A and B are cations
with different size and valence. The small cation, generally A", is surrounded by
an octahedron of oxygen atoms, while the large cation B"* (in general n = 3 or 4)
is surrounded by 12 oxygen atoms, as can be seen in Fig. 2.9a. These oxides can
exhibit a wide range of physical properties, from ferromagnetism in the manganites
LaMnO3 and cobaltites LaCoO3 to antiferromagnetism in iron-based perovskites
like LaFeO3. Below 120°C, slight structural distortions with respect to the ideal
structure of Fig. 2.9a induce ferroelectric properties in the case of BaTiOs.

Families of metal oxides with a highly 2D structure can sometimes be obtained
by combining planes with perovskite structure with square MO planes, where M
is a third metal cation. A classic example of such hybrid structures is provided by
the high-T. cuprate superconductors, whose discoverers, Miiller and Bednorz, were
rewarded by the Nobel prize. An example of such a structure is found in HgBa, CuOs.
This is shown in Fig. 2.9b. It is generated by intercalating sheets of BaCuQOg4, which
has the perovskite structure, with planes of HgO, or can alternatively be considered
simply as alternating planes of CuO,/BaO/HgO/BaO/Cu0O,, and so on. The prim-
itive cell of this structure is a right-angled parallelepiped whose sides a and b are
equal (tetragonal structure). In other cuprates with a # b, the structure is said to be
orthorhombic.

(a) (b)

Fig. 2.9 (a) ABO3 cubic perovskite structure. Below the 3D representation designed to show the
octahedra surrounding the A cations are two primitive cells centered respectively on the A and B
cations. (b) Quadratic structure of a high-T; cuprate superconductor made up of planes of HgO
inserted between sheets of perovskite BayCuOy. This structure confers 2D physical properties on
the material
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Naturally, there are many other 3D crystal systems with even fewer symmetries
than the simple lattices considered above. There is no question here of undertaking
an exhaustive study: there are 14 Bravais lattices in three dimensions!

2.1.4 Beyond the Perfect Crystal

Not all natural or artificial solids are crystalline. In many cases, there is no long
range order in the atomic arrangement. In particular, when a liquid is suddenly
cooled down below its solidification temperature, we can obtain a solid state which
simply freezes in the arrangement of atoms as it occurred in the liquid state. A glass
is obtained in this way by quenching the liquid, whereupon the atoms arrange them-
selves in a way that suffers only one constraint, namely that atoms are not allowed to
interpenetrate. If the atoms are thought of as hard spheres, the resulting glass struc-
ture looks like what would be obtained by putting beads in a container and shaking
them up. This glassy state is generally metastable, in the sense that the system can
have a lower free energy when the atoms are arranged into an fcc or hep crystal
structure, which correspond to the closest packing of the beads. Crystallisation can
then be obtained by heat treatment, which amounts to shaking the box of beads in
our analogy.

But many other situations can be observed, with varying degrees of order. Con-
sider for example what happens for some alloys of two metals. A structure close to
a crystal structure can often be seen in these materials. The atoms distribute them-
selves randomly at the lattice points of a perfect crystal structure. This is called
a solid solution. This happens for example for the alloys Auj_,Cu,, which can be
made with an arbitrary concentration x of Cu. The Cu and Au atoms distribute them-
selves randomly over the fcc lattice sites of pure Au, and the lattice spacing varies
slightly depending on the Cu concentration. This structure is not strictly speaking a
perfect crystal structure, although it can be treated as such in many respects.

Question 2.4. For some values of x, a heat treatment allows the atoms to arrange themselves
into a perfect crystal structure on the lattice. In the case of the Auj_,Cuy alloys, indicate
one or more values xo of x for which a perfect arrangement could in principle be obtained.
What would then be the associated primitive cell and Bravais lattice? In your opinion, if the
Auj_,Cu, alloy forms a perfect crystal arrangement for x = xp, is it likely from a physical
point of view that the same arrangement will be obtained for x = 1 —xp?

Imperfect crystal arrangements are observed in many other cases, in particular for
complex molecular structures. For example, the real crystals of cuprate supercon-
ductors shown in Fig. 2.9a are such that the HgO plane is highly deficient in oxygen.
The chemical formula is then HgBayCuO445, and the oxygen vacancies are impor-
tant in determining the physical properties.

A novel illustration of disorder in crystals is shown below in the case of the
fullerene Cgp, a molecule discovered in 1985, which has a football shape. Its
face-centered cubic structure, with large empty spaces between the Cgy molecules,
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Tetrahedral

Octahedral

Fig. 2.10 Left: Ceo crystal. Right: Rb3Cgg crystal. These lattices are face-centered cubic. In
Rb3Cgp the rhombohedral primitive cell contains a Cgp molecule and three Rb atoms

is shown in Fig. 2.10. It is easy to insert cations between the Cgp molecules and
thereby create compounds of the form A, Cgp. The compound Rb3Cg has attracted
considerable attention as it happens to be a metal that becomes a superconductor be-
low 27 K. Its fcc structure contains 3 rubidium atoms and one molecule of Cg per
primitive cell. The rubidium atoms have two different types of position: one, located
in the middle of an edge of the cube, has an octahedral Cgo environment, while the
other two have a tetrahedral Cgp environment (one vertex of the cube and three face
centers). Note that the Cgp molecule has symmetries that are not compatible with the
face-centered cubic lattice. Indeed, there is no way of orientating the Cgp molecule
so that it can map onto itself under all the symmetries of the lattice. There are not
really any 3D crystal structures whose primitive cells are given by those shown in
Fig. 2.10. These structures can nevertheless be considered as crystalline, but with
orientational disorder of the Cgy molecules.

Crystals and Molecular Motions

At high temperatures, the Cgo molecules are not immobile, but have rotational motions. These
rapid rotational movements are such that, on average, the Cgp molecules behave like spheres,
and one can consider that the symmetry of the Cgo molecule is no longer relevant. The average
structure is as shown in Fig. 2.10, treating the Cg( as simple spheres. Since the molecules are
not fixed, we do not strictly have a crystal. Such systems in which molecular motions occur are
called plastic crystals.

For pure Cgp, a phase transition takes place at 260 K from the face-centered cubic high
temperature structure of the plastic crystal to a body-centered cubic plastic crystal, as the rota-
tional motions of the Cgp molecules occur in a correlated manner about particular axes relative
to the crystal axes.

At low temperatures, these rotational motions freeze, but the relative orientations of the Cg
molecules in low temperature phases are not yet perfectly understood. Although one can speak
of an average face-centered cubic structure in Rb3Cg, the state of relative disorder or order of

the Cgp molecules has not yet been completely characterised.
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2.2 Diffraction

In Sect. 2.2.1, we describe the general principles governing the diffraction of waves
by a periodic pattern, and show that, for a crystal, the directions in which diffraction
can occur are of course associated with the crystal structure. These diffraction con-
ditions are used in Sect. 2.2.2 to define a lattice of points in the wave vector space,
which is known as the reciprocal lattice of the crystal lattice.

2.2.1 General Principles

This effect was originally demonstrated by von Laue and the Braggs (father and
son) in 1912-1913. The electromagnetic waves (photons) are generally X rays, with
wavelength given in angstrom units (A) and corresponding photon energy & given
in keV. The latter quantities are related by

Ag = 124/6ev - 2.2)

The X rays used typically have energies in the range 10 < ¢ < 50 keV. In specific
cases, the radiation may also be in the form of neutrons or electrons. The wavelength
is then given by the de Broglie relation A = //p.

To understand how diffraction works, consider first the scattering of an arbitrary
plane (electromagnetic or matter) wave by some obstacle, usually an atom located
at the origin (see Fig. 2.11). The amplitude of the incident wave will then have the
form

ain(r, 1) = age'®o TN (2.3)

where @ = c|kg| for an electromagnetic wave, with ¢ the speed of light, and
w = hkg /2m for a matter wave, with m the mass of the incident particles. Here,
ap is a vector-valued amplitude in the case of electric or magnetic fields and a
complex-valued amplitude in the case of quantum matter waves. This amplitude de-
pends only on the intensity of the incident radiation. In general, the scattered wave
will have the form

’ Scattered
/l: 1 amplitude ag.,

[ki| = [kol

Fig. 2.11 Scattering of an in- ’

cident plane wave with wave Incident = —————3= = = = =257 u
vector kg. Waves scattered :
in the direction Kk; reveal :
the phase difference between A ;
beams scattered by two ob- N R
jects at 0 and u e i

amplitude a;, 9
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ascar(r, 1) = ap Y _ oy ke ® T (2.4)
k

where conservation of energy implies that |k| = |Kko|. The determination of the co-
efficients oy, k is a (rather complex) problem of quantum mechanics which depends
on the type of wave and the quantum properties of the scattering object. However,
the exact expression for these coefficients is not needed to understand the underlying
principle of the diffraction methods described below.

Let us now ask what happens when the object is displaced through u from the
origin. Clearly, the scattered amplitude must be taken from the point u rather than
from the origin. We must therefore replace u by r —u in the exponential of the
expression in (2.4). But in addition, the incident wave will have a phase offset of
ko-u (see Fig. 2.11), and we therefore obtain

Ascar(T,1) = aoeiko‘u Zako’kei[k-(r—u)—wt] : (2.5)
k

Finally, we use a detector that only detects waves scattered in a specific direction
k. The amplitude in this specific direction will then be

ascar(K13 T, 1) = apoy k, € ®1 T e T IKU (2.6)

with
K=k —ko. @.7)

There is therefore a phase difference between the waves scattered in the direction
k; by the objects located at O and u. In the general case of a crystal where the
identical scatterers are the material bases of the primitive cell repeated at the differ-
ent lattice points, these scattered amplitudes will generally undergo different phase
shifts exp(iK -u), leading to a low value of the total scattered intensity (sum of
the squared amplitudes). However, as the Braggs and von Laue observed, if all the
phase factors are the same in certain directions ki, the resulting phase coherence
between the amplitudes scattered in these directions will lead to a high diffracted
intensity.

a. The Bragg Formulation

We consider the crystal lattice as an ensemble of lattice planes as shown in Fig. 2.12,
with O and u two lattice points belonging to one of the lattice planes, and we take
the scatterers to be the material bases of the primitive cell centered at O and u. If the
wave vector Ko of the incident wave makes an angle of incidence 6 with the lattice
plane, it is easy to see that the phase difference K-u vanishes if k; corresponds
to a reflection of kg in the lattice plane. So in this direction, there will be phase
coherence between the intensities scattered by all the bases associated with this
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Fig. 2.12 Reflection of in-
cident radiation on lattice
planes. The Bragg condition
obtains when the path dif-
ference is a multiple of the
wavelength

particular lattice plane. If in addition we wish to observe phase coherence between
the amplitudes scattered by the different parallel lattice planes, examination of
Fig. 2.12 shows that the condition that must be satisfied by 6 is

2dsin® = ni , 2.8)

where d is the distance between the lattice planes and » is an integer. This diffraction
condition, known as the Bragg condition, is given here in a form that corresponds
to the representation of the crystal lattice in lattice planes.

b. General von Laue Formulation

We now consider the scattering by a very large number of atomic bases of the prim-
itive cell arranged in positions R,,. The total scattered wave will simply be the su-
perposition of many terms of the form (2.6):

al (ki3 1,0) = ape®1 T o7 (K) (2.9)

with

o (K) = agey 1, y_e KR (2.10)

n

In this equation, oy, k, characterises the radiation and the arrangement of atoms in
the primitive cell, while the sum over 7 is only associated with the spatial positions
of the Bravais lattice points. If K is chosen such that

KR , for all translation vectors R,, in the crystal lattice |, (2.11)

we obtain .7 (K) = Noy, x,, where N is the number of primitive cells in the crystal.
Under these conditions, the diffracted intensity in the direction kj is

Laigr o< |7 (K)|* = N2 oty k, |2 - (2.12)

Equations (2.11) and (2.7) for k; and ko provide another expression of the Bragg
condition.
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2.2.2 Reciprocal Lattice

Here we interpret (2.11) in the special case of a linear chain. In one dimension, we
have seen that the Bravais lattice is specified by Ry, = ma; = max, where a is the
period and x a (dimensionless) unit vector along the Ox axis. The relation (2.11)
implies that K is an integer multiple of a* = (27 /a)x.

In three dimensions, if K is specified relative to a frame (aT, aé, a§) by

K =xja] +x2a5 +x3a3 , (2.13)
then (2.11) takes the form
(xla’f +xza§ +X3a§)(1131 + bhay +lza3) =2mny, (2.14)

with nj an integer, and this for all Ry, i.e., for all integer values of (I1,1>,/3). We thus
see that, by choosing the basis (a],a3,a}) such that

a,--a;-" = 27‘[5{] , (2.15)

the relation (2.14) reduces to
x1l1 +x2l> 4+ x313 = ny integer , (2.16)

and this for all (/1,/lp,13), implying that x1,x», and x3 are also integers. The com-
ponents of K relative to the frame (aj,a3,a3) are called the Miller indices, and are
usually denoted by (4, k,1).

As a consequence, the vectors K satisfying (2.11) generate a Bravais lattice in
the k space. This is the reciprocal lattice associated with the Bravais lattice in po-
sition space, called hereafter real or direct. The reference frame (a},a},a}) of the
reciprocal space is defined in terms of the real space frame (a;,a>,as) by (2.15). It
is easy to check that the a} are given by

aANa
at = 209 2.17)

aj-(aynaz) |’

and cyclic permutations. Here the denominator is precisely the volume of the prim-
itive cell of the direct lattice.

Note that, according to (2.11), the direct and reciprocal lattices play symmetric
roles. In particular, the reciprocal lattice of the reciprocal lattice is just the direct
lattice. However, the real crystal is a lattice of atoms or molecules, or more generally,
a lattice of what we have called material bases, whereas the reciprocal lattice is a
lattice of points that are independent of the bases of the real crystal.

For example, the reciprocal lattice of a simple cubic lattice with lattice constant
a is a simple cubic lattice with lattice constant 27r/a. The reciprocal lattice of an
fcc lattice with lattice constant a is a body-centered cubic lattice of lattice constant
47 /a, e.g., Al, Si, GaAs. Conversely, the reciprocal lattice of a body-centered cubic
lattice is an fcc lattice, e.g., Fe.
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Fig. 2.13 Determination  of
the Bragg plane

The notion of reciprocal lattice can be used to relate the Bragg and von Laue rep-
resentations of the diffraction conditions. Indeed, since |kg| = |k, the diffraction
condition k| — ko = K implies that

2k;-K=K?. (2.18)

As illustrated in Fig. 2.13, this means that ko and k; are obtained from one another
by a reflection in the orthogonally bisecting plane of the vector K. The direction
of diffraction k; therefore corresponds to a Bragg diffraction on the lattice planes
of the crystal parallel to the orthogonally bisecting plane of the vector K. There
is thus a one—one correspondence between the lattice planes of the crystal and the
orthogonally bisecting planes of the reciprocal lattice vectors, which are known con-
ventionally as Bragg planes.

2.3 Determination of Crystal Structures

In Sect. 2.3.1, we show to begin with that the directions satisfying the Bragg con-
dition are well defined experimentally, but that they are not always easy to detect.
Once they have been found, the crystal lattice can be determined. In Sect. 2.3.2, we
describe how the basis of the primitive cell can be ascertained by determining the
intensities of the different Bragg diffraction spots. This will be exemplified for the
case of X-ray diffraction in Sect. 2.3.3.

2.3.1 On the Bragg Diffraction Condition

We have seen that the diffracted intensity is high when the factor

AE) = Y e R
n

is large, and this occurs when the Bragg condition holds:

k; —ko =K, K € reciprocal lattice |. (2.19)
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Consider now the scattered intensity if the Bragg condition is not satisfied. To sim-
plify the notation, we discuss the case of a simple cubic structure with lattice con-
stant a and length La in each of the three space directions. The sum in (2.10) then
becomes the product of three geometric sums, and direct calculation gives

. o XL
sin® —
| (K = ooy *fEaf (Kya)f (Kea), with f)= —F.  (220)
sin” —
2

where K is not a reciprocal lattice vector here. Figure 2.14 shows f(x) for two val-
ues of L. We observe that, apart from the Bragg diffraction points 2n, where K is a
reciprocal lattice vector, this function remains small everywhere. If the Bragg condi-
tion is not satisfied, the scattered intensity will therefore remain very low. However,
the maxima at points x = 2nw become sharper and sharper as L increases, which
supports the result (2.12). We thus conclude that the diffraction conditions are very
precisely specified, and this will only be limited experimentally by the size of the
diffracting crystal and the wavelength dispersion of the incident radiation.

Question 2.5. For the alloy Cuj_,Au, of Question 2.4, how does the diffraction pattern
change when the Cu and Au atoms arrange themselves for the concentration xg?

To determine the reciprocal lattice, and hence the Bravais lattice, it remains only
to determine all the space directions in which Bragg diffraction occurs. Experi-
mentally, it is not totally obvious how to determine the directions in which Bragg
diffraction will occur. This is illustrated in Fig. 2.15a, which shows the Ewald con-
struction, used to determine the diffraction directions for an incident wave kg and
a given position of the crystal. The points of the reciprocal lattice corresponding
to this position of the crystal are shown in the left-hand figure, taking the origin I"
of the reciprocal lattice to be the point corresponding to the end of the vector k.
The diffraction directions are obtained by determining the points of the reciprocal
lattice on a sphere, known as the Ewald sphere, with radius |Kko| and centered at the

100 — . 1 100Ff
80 1 %0
60 {60
40t {40}
20t 20}
2 0 2 4 6 8 2 0 2 4 6 38

Fig. 2.14 The function f(x) for x between —m and 3m. Left: L = 10. Right: L = 20. Note that, on
the right-hand graph, the peak is at the ordinate value 400
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Fig. 2.15 Geometry of Bragg diffraction in reciprocal space. For an incident vector Ky, diffraction
directions such as kq are obtained using the Ewald construction as shown in (a). The reciprocal
lattice with origin I' is depicted. For an incident vector ko and a detector in the direction ki,
no Bragg diffraction will generally be detected (b), except for certain specific orientations of the
crystal, such that the associated reciprocal lattice is oriented as shown in (c), for example

origin O of kg. Diffraction directions such as kg which join O to these points of the
reciprocal lattice are few and far between.

If we have only one detector set in the direction ki, for example, there will gen-
erally be little diffraction in this direction. If the crystal is then rotated in space,
according to (2.17), the reciprocal space will also rotate about its origin I". As can
be seen from Fig. 2.15, Bragg diffraction will only be detected in the given direc-
tion k; for very specific orientations of the crystal. Given that we are working in
3D space, it is clear that, for a randomly chosen orientation of the crystal relative to
the incident radiation, we will only very rarely observe a Bragg diffraction peak (or
spot).

There are several experimental methods to get round this difficulty, e.g., using
powders rather than single crystals, but we shall not discuss the issue further here.
Knowing the orientations at which diffraction occurs, we may then characterise the
reciprocal lattice, and hence also the crystal symmetries and the size of the primitive
cell in the crystal lattice itself.

2.3.2 Diffraction Intensity and Basis of the Primitive Cell

So far we have not considered the structure of the diffracting object in any detail.
Suppose now that we observe the diffraction by a crystal whose primitive cell com-
prises N, atoms, possibly of different chemical nature, at positions r; inside the unit
cell. In this case, a coefficient a<) is associated with each atom. The sum in (2.9)
over all sites / leads to a dlffracted amphtude in the direction k; given by

) —iK. ) —iK- _iK-
00 =3l TR | 3l e | ()
n
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There are thus two multiplicative factors in the expression for the diffracted inten-
sity. One of these,

%(K) — ZefiK-Rn s
n

depends only on the Bravais lattice of the crystal and is only nonzero when the
Bragg condition (2.19) is satisfied. The second,

S(K) = Za{(’gkl —Ker (2.22)

called the structure factor, depends only on the basis of the primitive cell and the
nature of the diffracted radiation through the coefficients a() . If we measure the
intensities of many Bragg diffraction spots, we can then deduce the structure of the
primitive cell, provided we have a good understanding of the physical processes
involved in the scattering of radiation by the atoms, since it is these processes that
determine the values of the coefficients 0‘1((2,1(1- Note that these coefficients will be
different for X-ray diffraction, the X rays being scattered by electrons, and neutron
diffraction, since neutrons are scattered by the atomic nuclei.

2.3.3 X-Ray Diffraction

In the specific case of X-ray diffraction, the coefficients oy, i, can be expressed very
simply by considering the underlying physical process for the scattering of X rays by
atoms. Indeed, at the high frequencies associated with X rays, the electric field of the
electromagnetic wave couples predominantly with the electrons in the atom. Each
electron vibrates in phase with the incident wave at its frequency w. The electron
charge thus has an oscillatory motion with angular frequency w, and consequently
emits an electromagnetic wave at this same angular frequency, in phase with the
incident wave.

Consider an atom centered at the origin O and with electronic density distribution
p(u), where u indicates the position of an electron relative to O. The amplitude of
the wave scattered in the direction kj by the electronic density at O is proportional
to the electronic density at this point:

app(0)el®r=en (2.23)

Consider now an arbitrary point at position u. In an analogous way to Fig. 2.11, the
amplitude scattered in the direction k; can thus be written

aop(u)ei[kl '(rfu)fwt]eik(yu . (224)

The total wave diffracted in the direction k; by all the electrons in the atom is
therefore
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adgitr(ky, 1) = age T f pluye C kg, (2.25)

where |Ki| = |ko|. This expression, valid for any molecular ensemble of electronic
density p(u), shows that the diffraction amplitude of the X rays is directly related to
the Fourier transform of the electronic density. The diffraction pattern produced by
an arbitrary object thus contains information about the structure of the diffracting
object.

Going back to the case of a single atom and comparing (2.25) and (2.6), we define
the atomic form factor

ko) = / p(wye Eikougdy — £(k; —ko) |. (2.26)

For a crystal whose primitive cell contains N, atoms at position r;, the diffraction
amplitude is the Fourier transform of the total electronic density, which is the peri-
odic reproduction of the electronic density of the primitive cell. The latter is given
by (2.21), where the structure factor is simply

Ny
S(K) = Z fi(K)e Kerr | (2.27)

=1

It can be determined once we know the form factors and the positions of the different
atoms in the primitive cell. We thus find that the experimental determination of
the intensities of the Bragg diffraction peaks or spots will be extremely useful for
ascertaining the arrangement of atoms in the primitive cell of the Bravais lattice.
Let us consider a specific example to illustrate how the basis of the primitive cell
affects the intensity of the Bragg peaks. Consider X-ray diffraction by a crystal of
Cso whose fcc primitive cell is shown in Fig. 2.10. A suitable experimental setup
records on a photographic film all the diffraction spots corresponding to the vectors
K in one plane of reciprocal space (see the image on p. 24). The pattern observed
can thus be used to directly visualise a plane of the reciprocal lattice and its symme-
tries. In the image on p. 24, the spots are such that the vectors ¢k separating them
correspond to the vectors K in one plane of the reciprocal lattice up to a scale factor
given by |K| =27 |€x|/AL. Here A is the wavelength of the X rays and L is a length
depending on the experimental setup. (Here A = 1.542 A and L = 0.06 m.)

Question 2.6. 1. Identify the body-centered cubic reciprocal lattice plane visualised in the
image of p. 24. Deduce the dimensions of the primitive cell for Cg.

2. Some of the diffraction spots are very faint. Which vectors of the reciprocal lattice do
these correspond to? To understand this, we take into account the fact that the X rays
are scattered by electrons. We may consider the Cgp molecule as a uniform charge dis-
tribution p(r) over the surface of a hollow sphere of radius Ry, viz., p(r) = AS(r — Ry).
Calculate the structure factor for the Cgq crystal. Deduce the radius R of Ce.
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This aspect of X-ray diffraction was very important in determining the spatial struc-
ture of complex molecules, such as biological molecules, which are commonly
conserved in solution. By crystallising N molecules, one then benefits from the fact
that, in a crystal, the Bragg diffraction spots have intensities that increase as N2,
whereas the intensity only increases as N when the molecules do not have a crys-
talline arrangement. This method was used to determine the structure of DNA and
many other biologically important molecules.

Note that disorder or atomic and molecular motions modify the intensities of the
Bragg diffraction spots. The effect of lattice vibrations is discussed in Problem 1:
Debye—Waller factor.

2.4 Summary

A crystal lattice can be described as a combination of two entities: the Bravais lat-
tice, which is a periodic arrangement of lattice points in space, and hence an abstract
construction, and a material basis which is the actual physical entity associated with
each node of the Bravais lattice. These are given by

Ry =t1a; +4rar + (3a3 ,

where (a1,az,a3) is a vector basis specifying a primitive cell of the lattice. In the
simplest cases, the material basis is a single atom, but it may be a much more com-
plex physical entity, such as an arrangement of atoms, one or more molecules, and
SO on.

The structures of arbitrary molecular entities can be determined using diffraction
methods. An incident wave of wave vector K is elastically scattered by the various
objects making up the molecular entity. Interference between the scattered waves
leads to a diffraction pattern. In the case of a crystal, the diffracted intensity is only
significant in specific directions k; satisfying

ki —ko=K,

where K is a vector belonging to another lattice called the reciprocal lattice for the
actual lattice in real space. This relation is the Bragg diffraction condition.
The vectors K of the reciprocal lattice are defined by the condition

elK-R[ — 1 ,

for any R, belonging to the Bravais lattice of the crystal. The reference triad
(a},a3,a3) of the reciprocal lattice is given by

a Nas
(aj-azAa3)
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and cyclic permutations. The vectors k; satisfying the Bragg diffraction condition
can be used to determine the reciprocal lattice. The amplitude of the diffraction is
related to the basis of the primitive cell of the crystal. It is given by

AK) = S(K) Y "e R,

where S(K) is the structure factor of the basis of the crystal.

For X rays, scattering is due to electrons in the atomic orbitals, and each atom /
at r; is characterised by its atomic structure factor fij(k; — Ko). The structure factor
of the primitive cell is then

Na

SK) =Y fiKye

=1

2.5 Answers to Questions

Question 2.1

1. The alkane molecules are arranged in parallel rows. Note that two consecutive
rows are staggered in a quincuncial arrangement. This is checked by looking at
Fig. 2.1 at grazing incidence with respect to the axis of the molecules. The lattice
is therefore centered rectangular. Figure 2.16 shows the centered rectangular con-
ventional unit cell (a,b) and the primitive unit cell (a;,a;) containing one alkane
molecule. This is shown on part of the image and also on a molecular model.

2. It is an irregular polyhedron for the centered rectangular lattice and a hexagon
for the hexagonal lattice (see Fig. 2.17).

Fig. 2.16 Centered rectangular cell and primitive unit cell for the 2D alkane crystal of Fig. 2.1.
These are shown on an enlarged portion of the image of Fig. 2.1 (upper) and on a molecular model
(lower)
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e on

Fig. 2.17 First Brillouin zones of the centered rectangular and hexagonal 2D lattices: construction
displayed on the right for each reciprocal lattice

Question 2.2

The honeycomb structure of graphene corresponds to a hexagonal lattice in which
one in three sites have been removed. The primitive cell (aj,a;) is hexagonal with
three times the area of the initial hexagonal cell, i.e., 3a2\/§/2. It contains two
carbon atoms placed at the nodes of two hexagonal sublattices of types A and B,
which differ in the opposite orientations of their nearest neighbours. Each atom A
has three nearest neighbours B and vice versa.

The Kagomé plane structure corresponds to a hexagonal lattice in which one
site in four has been removed (one site out of two and in one line out of two). Its
Bravais lattice is hexagonal with twice the lattice constant of the initial structure.
The primitive cell contains 3 atoms of Cu?* and 6 (OH)~ (see Fig. 2.18).

{ 4%‘{ -/ \%\Wgﬁ. } oJ o
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Fig. 2.18 Unit cell and bases of the Bravais lattices for the graphene sheet and for the Kagomé 2D
planes of the hebersmithite crystal

Question 2.3

The crystal in Fig. 2.7b corresponds to an fcc lattice with full spheres at the lat-
tice points and empty spheres obtained from the full ones by translation through
(a/4,a/4,a/4). There are thus two atoms per polyhedral primitive cell in Fig. 2.7a,
shown by two empty spheres in Fig. 2.19, one at the corner of the cube and the other
at (a/4,a/4,a/4). There are 8 atoms per fcc unit cell: the vertex, the three centers of
adjacent faces, and the 4 empty spheres in Fig. 2.7b.
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Fig. 2.19 Primitive unit cell
of the diamond structure. The
atoms located on the two
empty spheres represent the
basis for this crystal

Question 2.4

When the atoms Au;_,Cu, are randomly distributed over the sites of the fcc Bravais
lattice, the crystal structure is not perfect. The atoms must be placed at the sites
of the fcc lattice in a periodic manner to obtain a perfect arrangement. With two
different atoms, viz., Cu and Au, the primitive cell of the perfect crystal will have at
least one two-atom basis and hence a Bravais lattice with unit cell at least doubled
in volume.

It should be fairly clear that it is not possible to associate the sites of the fcc struc-
ture two by two to define a new Bravais lattice. However, if we take 4 atoms with 3
the same, one of the atoms can be placed at the vertex of the fcc conventional unit
cell and the three others at the centers of the adjacent faces (empty in Fig. 2.20a).
We thereby construct a crystal with simple cubic Bravais lattice of side a and a basis
of 4 atoms per cell.

(a) (b)

Fig. 2.20 (a) Simple cubic crystal structure of CuzAu. Full spheres represent Au and empty
spheres Cu. (b) The reciprocal lattice of the fcc structure is the bee lattice shown by full spheres.
Empty spheres represent the extra reciprocal space nodes which appear for the ordered cubic
structure of CuzAu
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There are therefore two simple possibilities, those corresponding to AuzCu or
CuzAu, i.e., x = 0.25 or x = 0.75. Naturally, we can imagine ordered solutions for
lower concentrations of one of the metals, but there is no particular physical reason
why they should ever occur.

Note that, in the ordered CuzAu structure, the gold atoms have no Au nearest
neighbour. This structure is found to be stable on thermodynamical grounds, which
indicates that Au atoms strongly repel one another. However, the AuzCu structure is
not obtained experimentally, probably because the repulsion between copper atoms
is not strong enough. The ordered AuCu alloy exists, but crystallises into a cubic
lattice which bears no relation to the fcc structure of the pure metals.

Question 2.5

The ordered arrangement of the Au and Cu atoms can be detected by a diffraction
method. The fcc structure of the disordered solid solution has a primitive cell of vol-
ume a>/4 and a reciprocal lattice with a body-centered cubic conventional cell of
side 45 /a. The ordered lattice of CuzAu shown in Fig. 2.20a has a cubic primitive
cell of volume a>, and its reciprocal lattice is cubic with side 277 /a. There are there-
fore many diffraction spots for the ordered alloy. In Fig. 2.20b, the lattice points of
the body-centered cubic reciprocal lattice are represented by full spheres, while the
extra nodes of the simple cubic lattice are represented by empty spheres. The pres-
ence of order can thus be revealed by the appearance of diffraction spots associated
with these new vectors in reciprocal space.

Question 2.6

1. The Cgg lattice is face-centered cubic with conventional unit cell of side a. Its
reciprocal lattice is body-centered cubic with conventional cell of side 477 /a (see
Fig. 2.20b). Spots are therefore expected for

K=ha*+kb* +¢c*, (2.28)

with |a*| = |b*| = |¢*| = 27r/a and h,k,¢ of the same parity. In the observed
plane of the reciprocal lattice, the spots form a square lattice. The only planes
of the body-centered cubic reciprocal lattice with this property are the planes
passing through one of the faces of the cube, i.e., (a*,b*), or (b*,c*), or (¢*,a”).
Assuming that this is the plane (a*,b*), the a* and b* axes are shown in Fig. 2.21.
The spots correspond to the vectors K = (4,k,0) with & and k even. If £k, is
the spacing of the observed square lattice which corresponds to Ko = 47/a, it
follows that

4w 2m Lk, L
—_— =, and then a = 24— . (2.29)
a A L Lk,
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Fig. 2.21 Indexation of the reciprocal lattice plane of the Cgg crystal detected by X-ray diffraction
(image on p. 24). See answer to Question 2.6

By measuring over various rows corresponding to 8 times the lattice spacing, and
knowing that the film diameter is 12 cm, we obtain 8¢k, = 10.45£0.05 cm in
Fig. 2.21, so finally,

a=14.17+£0.07 A|. (2.30)

2. Note that the spots (4,0,0) and (0,k,0) are rather faint. In fact their intensity is
found to be at least 10° times lower than the intensity of the spots (220). Set
p(r) = Ad(r — R). The total number of electrons is 360 per Cgo. Hence,

o0
360e = f p(r)d3r = f 47'rr28(r —R)Adr = A4 R? R
0

which yields
360e

T 4R
Then

S(K) = / p(re®Td®r

360 00 2w T
= / 28(r— R)dr / db / elKreos Gin 9. dp
4R 0 0 0
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360e [ sinK
= 2 / 2 25— R)dr
0 Kr

2R?

sinKR
= 360¢ s
KR

and the spots have intensity

sin? KR

The intensity vanishes for KR = nwr with n integer. The fact that the spots corre-
sponding to K = n(4m/a) are almost extinguished thus shows that 47 R/a ~ m,
and then R ~ a/4 or R ~ 3.54 A. With a relative intensity of 10~ for the spot
(200) compared with the spot (220), the error obtained for R is found to be

R=3.54+0.04A]|. (2.32)

In fact, using (2.31) and taking into account the measured intensities for all the
spots, the error in R is much lower, namely R = 3.52 +0.01 A.
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