Chapter 2
Basic Mathematical Concepts and Methods

This chapter and the next two have three objectives. First, to introduce the reader to
some basic concepts and formulas that will be needed in later chapters. Second, to
serve as an introduction to computation and numerical methods and the use of Excel
and Matlab procedures. The present chapter is devoted to mathematics and Chap. 3
is an introduction to computation and Chap. 4 will concentrate on probability theory
and statistics. Those who are familiar with the material may want to glance through
these chapters and move on. A third function of the chapters is to provide a handy
reference for readers who, in reading later chapters, might feel a need to refresh
their understanding of a concept or to check a formula.

2.1 Functions of Real Variables

In studying economic phenomena, we frequently come across cases in which varia-
tion in one variable induces variation in another. For example, an increase in income
increases consumption, and an increase in price of a good or service reduces its
demand. In other words, one variable, say y, depends on another, say x. Such depen-
dencies are not confined to economics; they are observed in physical sciences and in
everyday life. For example, the area of a circle, denoted by A, depends on its radius
R, that is, A = 7 R?. Similarly, the distance traveled by a car depends on the speed
and time traveled.

If the relationship is such that every value of x leads to a unique value of y, then
we can write y = f(x) and say that y is a function of x. Note that the same y can
be attached to more than one x, but that each x should be attached to only one y.
Functions of real variables can be written as a mapping from the extended real line
to itself. In other words, every real number in the domain corresponds to a unique
real number in the range.

fih—> % 2.1)

Needless to say, a function need not be confined to one argument. We can write
y as a function of x and z or as a function of xp, ..., x;. We can write them as

K. Dadkhah, Foundations of Mathematical and Computational Economics, 2nd ed., 17
DOI 10.1007/978-3-642-13748-8_2, © Springer-Verlag Berlin Heidelberg 2011
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RSN or y=f(x2 (2.2)

and
FRE SR or y=f(n,....x0) (2.3)

We will encounter many kinds of functions in this chapter, and more functions
yet throughout this book (examples of functions appear in Fig. 2.1a—c). Among them
are polynomial functions, which are of the general form

k
y= Z aix’ 24
i=0
Letting k =0, 1, 2, 3, we have
y=ap Constant function
y=ao+ax Linear function
y=ap+ax+ azx2 Quadratic function

y=ag+ax+ arx* + azx®>  Cubic function

Example 2.1 (Utility Function). The utility function is an important tool of eco-
nomic analysis. But as a function, it has a special feature that we would like to
emphasize. The function attaches a real number to any bundle of goods and services.
For instance, if the amount of each good or service is denoted by x;, i = 1,--- ,n,
then

U= U()C], T 7xn)

This function is such that if a particular bundle, say, bundle a, is preferred to another
bundle b, then the utility, U?, attached to a, is a bigger number than the utility
attached to b. That is, U¢ > U?. But the numbers themselves do not have any
significance in the following sense. Suppose U¢ = 10 and U? = 5. Clearly, the
bundle a is preferred to bundle b. But we could also assign U” = 9.5 to the bundle
b and it would make no difference, in the sense that it conveys the same informa-
tion as U? = 5. The only important consideration is that U? > U”. Because of the
property just described, utility is an ordinal number and utility function is an ordi-
nal function. An ordinal number is different from a cardinal one like the amount of
income. If a person makes $50,000 a year and another person $25,000, then there is
a $25,000 difference between their incomes, and the first one makes twice as much
as the second. But the difference between U = 10 and U = 5 does not convey
any information, nor does it mean that one bundle is preferred twice as much as the
other. Another important property of the utility function is that if we keep all x;’s
constant and increase only one of them, then the new bundle is preferred to the old
one. To put it simply, the utility function is based on the idea that more is preferred
to less.
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Fig. 2.1 (a) Quadratic function or parabola; (b) cubic function; (¢) hyperbola

Example 2.2 (Cobb Douglas Production Function). A production function relates
services of labor (L) and capital (K) to the maximum amount of output (Q) attainable
from their combination. There are a number of production functions, which

we shall discuss in Chap. 9. An important production function is the Cobb Douglas,
which has the form

0 = AK*LFP

Graphing functions with Matlab is straightforward
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Matlab code

Define the domain of the function from -3 to 3 with
increments of 0.1

x = -3:0.1:3;

% Define the function

y = x.73;

% Plot the function

plot(x, vy)

% You can plot more than one function on the

% same graph

hold on

for k=1:3
vy = x.°3 + 3%k;
plot(x, vy);

end

hold off

If you plot the function y = x°, you will get a graph similar to Fig. 2.1b above. The
same can be accomplished using Excel. To graph the function y = x> + 3, create the
following on an Excel sheet. Highlight column B and use

>Insert — Line

You can use Select Data and use column A as the horizontal axis.

A B

-3.0 =A1"3+3
-29 =A2"343
—2.8 =A3"3+3
29 =A60"3+3
3.0 =A61"3+3

Plotting three-dimensional graphs is slightly different. In Matlab use the follow-
ing code:

Matlab code
% Define the domain of the function

[x, y] = meshgrid(-2:0.1:2,-2:.1:2);
Define the function

oe

= x.%exp(-x.72 - y."2);
Plot the function
mesh(x, vy, z)

N

oP

You will get the following graph (Fig. 2.2):
Similarly, we can plot the Cobb-Douglas production function.
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Fig. 2.2 Graph of the function z = xexp(—x> — y?).

A B C AQ
-2.0 -1.9 2.0
-2.0 = A2%exp( — = A2%exp( — = A2%exp( —
A2"2 — B 2"2) A272 —C272) A272 — AQ 2"'2)
—-1.9 = A3%exp( — = A3*exp( — = A3%exp( —
A2"2 — B 2"2) A272 —C2M2) A272 — AQ 2"'2)
—-1.8 = Ad*exp( — = Ad¥exp( — = Ad*exp( —
A2"2 — B 2"2) A272 —C272) A2"2 — AQ 272)
1.9 = A41*exp( — = A41%¥exp( — = Adl*exp( —
A2"2 —B272) A2"2 — C2M2) A2"2 — AQ 2"'2)
2.0 = Ad2%exp( — = Ad2%*exp( — = Ad2%exp( —
A2"2 —B272) A2"2 — C272) A2"2 — AQ 2"'2)
Matlab code

Q

% Define the domain of the function
[K, L] = meshgrid(0:0.1:2, 0:0.1:4);
% Define the production function

Q = 5.%(K."0.4).%(L."0.6);

% Plot the function

mesh (K, L, Q)

Creating a three dimensional graph in Excel is a bit more time consuming and the
result not as expressive as that of Matlab. Create the above worksheet in Excel.
Highlight the square containing the computed numbers but not the values assigned
to x and y. Then click Insert — Other Charts and choose one of the options.
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2.1.1 Variety of Economic Relationships
In economics, we encounter three types of relationships:

1. Identities or definitions
2. Causal relationships
3. Equilibrium conditions

Identities or definitions are relationships that are true by definition or because we
constructed them as such. Examples are the national income identity, in which GDP
(Y) is defined as the sum of consumption (C), investment (/), government expen-
ditures (G), and the difference between exports and imports, that is, net exports

X — M):
Y=C+I1+G+X-M
Similarly, we define profit as revenues (quantity sold times price) net of cost:
T=P0—-C

Given their nature, such identities are not subject to empirical verification; they
are always true. If we estimate the national income identity above using data from
any country, we get an R = 1 and coefficients that are highly significant and are
usually 0.99999 (or —0.99999) and 1.00001 (or —1.00001). More important, since
identities do not posit any hypothesis, no amount of algebraic manipulation of them
will result in new insights into the workings of an economy.

Causal relationships are the mainstay of economics. They incorporate hypothe-
ses regarding the behavior of economic agents, or technical and legal characteristics
of the economy. Therefore, they are subject to empirical testing. Examples of behav-
ioral relationships are consumption function, demand function, demand for imports,
production functions, and tax revenues as a function of aggregate income.

By writing one variable as a function of a set of other variables, we implicitly
declare that causation runs from the right-hand side (RHS) or explanatory variables
to the left-hand side (LHS) or dependent variable. But how do we know this? How
could we substantiate such a statement? Unlike physics and chemistry where exper-
iments are the main source for accepting or rejecting a hypothesis, experiments play
a very limited role in economics. Economics is an observational science.

Having been denied experiments and knowing well that correlation does not
imply causation, econometricians have devised statistical tests of causality. The
most widely used test of causality is due to Clive Granger (Nobel Laureate 2003).
The test is for the necessary, but not sufficient, condition of the existence of causal-
ity in the strict sense. Thus, failing to reject the null hypothesis of no causality via
the Granger test shows that x does not cause y in the strict sense. On the other hand,
rejecting the null hypothesis establishes the necessary, but not sufficient, condition
for causation. Most economic variables mutually affect each other. Money supply
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affects prices, which in turn affect the demand for money and indirectly the supply of
money. Given that many economic variables are measured over arbitrary intervals of
a month, quarter, or year, we may observe the mutual causation in the form of simul-
taneity. Of course, we may also observe simultaneity among economic variables
because they are simultaneously determined through interdependent processes.

Equilibrium conditions describe the situation or condition when two or several
variables are in such configuration that they need not change. Unlike identities, equi-
librium conditions do not always hold. On the other hand, equilibrium conditions
differ from causal relations in that a change in one variable does not automatically
bring a change in another. Only if equilibrium is restored would a change in one vari-
able bring about a change in the other. An equilibrium condition, if stable, implies
that any deviation from equilibrium sets in motion forces that will bring back equi-
librium. Therefore, stable equilibrium conditions are subject to statistical testing.
Such tests, referred to as tests of cointegration, were proposed by Robert Engle
(Noble Laureate 2003) and Granger, and by Sgren Johansen. Furthermore, because
there must be a force to restore the equilibrium, cointegration implies an error-
correction mechanism. Thus, a delayed causation arises through error correction
if the equilibrium is stable. We will encounter all these types of economic relation-
ships in this book, and the reader will get a better sense of them after working with
several specific examples.

2.1.2 Exercises

E.2.1. Graph the following functions for —5 < x < 5.

i.y=10+2x
ii. y=5+42x+3x%
iii. y="7x—14x+5
1 —x
I+x
E.2.2 Make a list of economic relationships that you recall from economics
courses and classify them as identities, causal relationships, and equilibrium
conditions.

. y=

2.2 Series

The sequence of numbers
X1 X2 X3 ... Xp—1 Xn 2.5)

is called a series.

Example 2.3 The following are examples of series
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i. 1 2 3 ... n
i. 2022 2% .2
11 11
1. 5 ? 2—3 2n—_1 2_11

Two issues are of importance here. First, could we write a series in a more com-
pact format instead of enumerating its members? This can be done in two ways: by
writing a general expression for its n-th term or by writing its recurrence relation.
For instance, the n-th terms of series in Example 2.3 can be written as

I
T2

i. X,=n ii. x,=2" iii. X,

Not all series can be written in this format. An alternative is to write their
recurrence relation. For the above series the recurrence relations are

. x1=1, Xy = Xp—1 + 1
ii. x1 =2, Xp = 2X,—1

1

1. X1 = E, Xp = Ex,,_l

Example 2.4 Consider the Fibonacci sequence
1 12358 13 21

It starts with 1 and 1 and then each term is the sum of its two previous numbers.
Thus, the recurrence relation is

xo=x1=1 and Xp = Xp—1 + Xp—2 n=2,3,...,

We cannot always find recurrence relations for a series. For example, if the series is
the realization of a random variable, we would not be able to find such a formula.
The second question is whether the sum of a series exists and if so, how we could
calculate it. Note that mathematically speaking, when we say something exists, we
mean that the entity in question has a finite value. Thus, here the question is whether
the sum of a series is finite or tends to infinity. Before discussing these questions,
however, we need to learn about the summation notation ¥ and the concept of limit.

2.2.1 Summation Notation X
We are all familiar with summing a set of specific numbers. But suppose we would

like to talk of the sum of x1, x2, x3, x4, X5, X6, X7, and xg. Of course, we can always
write it as

X1 +x2+x3+ x4+ X5+ X6+ X7+ X3
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But such a formula is cumbersome and inefficient. It is even more cumbersome
when we have 20 or 100 values to add. Even worse is when we want to represent
the sum of an infinite series of numbers. We make the following convention:

in (2.6)

i=1

by which we mean the sum of numbers xj to x, inclusive. Note that i is simply a
counter and can easily be exchanged with j or k or any other symbol, although by
usage, i, j and k are the most commonly used letters for counters. Other examples of
summation are

00 n T
DD I DD
i=0 =1

j=—n

A few properties of sums should be noted:
n
Z a=(a+a+...4+a)=na where a is a constant 2.7
— ———
i=1

n
Saxi=axi+ax+...tax, =alx; +x2+ ...+ x,)
i=1
n (2.8)

i=1 =1
- i#] ] 2.9)

2.2.2 Limit

Consider the series (ii) in Example 2.3. As n increases, the last term of the series
gets increasingly large. As n tends to 0o, so does the last term of the series. In such
cases we say that the series has no limit. Note that co is not a number. On the other
hand, as n increases, the last term in (iii) in the same example becomes smaller and
smaller as depicted in Table 2.1:

It can be seen that as n increases, 1/2" tends to zero and, for all practical pur-
poses, we can take it to be zero. In such cases, we say that the limit of the series
exists and as n tends to 0o, 1/2" tends to zero, and we write

1
lim — =0 (2.10)

n—oo 2N
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Table 2.1 Approaching limit

N 1/2"

1 0.5

2 0.25

10 0.0009765

11 0.0004882

100 7.8886 x
10731

101 3.9443 x
10731

Note that the limit needs not always be zero. It can be any number L < co. Now
that we have an intuitive notion of a limit, let us present a formal definition.

Definition 2.1 Let x, x2, x3, . .. be a sequence of points on the real line. L is called
the limit of this sequence if, for any number ¢ > 0, we could find a number N such
that [x, — L| < eif n>N.

If we apply the above definition to series (i7) in Example 2.3, we can reason that
the series does not have a limit, because no matter what values we choose for L and
N and no matter how large or small € is, we cannot have |2" — L| < ¢ for all n > N.
The reason: As n gets larger, so does 2" and there is no limit to how large it can get.
For the series (iii) the story is different. Let L = 0 and set ¢ = 0.001, then for all n >
9 we have 1/2" < 0.001. For example, 1/2'9 = 0.0009765. We can set ¢ = 10733,
that is the decimal point followed by 32 zeros and then one. Now for all n > 109, we
have 1/2" < 10733, The following properties of limits will prove quite useful.

Property 2.1 Let x,, and y, represent two series and assume that both

lim x, and lim y,
n—o0o n—0oo
exist. Then
lim (x, +y,) = lim x, + lim y, (2.11)
n— 00 n— 0o n—0o0o

The proposition is also true for the sum of any finite number of series. If c is a
constant, it follows from (2.11) that

lim (¢ +x,) =c+ lim x, (2.12)
n— oo n—o0
and
lim cx, = ¢ lim x, (2.13)

n—0o0 n—00
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It is evident that the limit of the series

isc.
Property 2.2 Let the series x, and y, be as in Property 2.1, then

lim Xy, = lim x, lim y, (2.14)
n—oo n— oo n— 0o

Also

lim — = — (2.15)
n—ooy,  limyj
provided lim y, # 0.
n—oQo
2.2.3 Convergent and Divergent Series
Consider the sum of the first n terms of a series
n
S, = Z X; (2.16)
i=1

Clearly, for every value of n we have a different sum. These sums, referred to as
partial sums, form a series themselves. The question is whether the sum S,, exists as
n — oo. In other words, is the following statement true?

S= lim §, < o0 2.17)

n— o0
The answer is that the sum exists if
Iim x, =0 (2.18)
n— o0

If S exists, then the series is called convergent, or else it is called divergent.
Example 2.5 The sum
|
$=Jim 25
1=

exists because lim (1/2") = 0. Later in this chapter we will show how such sums
n—oo

can be calculated.
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Example 2.6 Is the sum

T A
37577 gl

convergent or divergent? Because

1 1
lim —— = lim — = - #0
n—oo 2n + 1 n—o0 2+ 1/n 2

we conclude that the series is divergent.

An alternative way of determining if a series is convergent or divergent when all
terms are positive is the d’Alembert! test.

Property 2.3 (d’ Alembert test). The sequence of positive numbers

X1 X2 X3 ... Xn ... (2.19)
is convergent and the limit
n
S = lim §, = lim X]:x,, (2.20)
=
exists, if
lim L 2.21)
n—>0o X

If the above limit is greater than one, then the series is divergent. The case of the
limit being equal to one is indeterminate.

Let us apply this test to some of the series we have encountered in this section.
Note that all terms in these series are positive.

Example 2.7 The series in (ii) in Example 2.3 is divergent because:

n+1
lim =2>1
n—oo 2N

Probably the most dramatic event in the life of the French mathematician Jean Le Rond
d’Alembert (1717-1783) was that as a newborn he was left on the steps of a church. He was
found and taken to a home for homeless children. Later, his father found him and provided for
his son’s living and education. D’ Alembert made contributions to mathematics, mechanics, and
mathematical physics. The eighteenth century was the age of European enlightenment and nothing
represented the spirit of that age better than the Encyclopédistes, a group of intellectuals gath-
ered around Diderot including Voltaire, Condorcet, and d’ Alembert. They published the 28-volume
Encyclopedia that contained articles on all areas of human knowledge including political economy.
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But, the series in (ii7) is convergent because

) 1/2n+l 1
lim ==-<1
n—oo /2" 2

For the series in Example 2.6 we have:

n+1
lim 20E DT
n—0o0

2n+1

Thus, in this case the d’ Alembert test cannot resolve the issue.
In the following two subsections we will discuss two examples of series:
arithmetic and geometric progressions.

2.2.4 Arithmetic Progression

The series

a a+d a+2d a+3d ... a+n—1)d (2.22)

is called arithmetic progression. We can write it more compactly as

Xxp=a+ (n—1)d n=12,... (2.23)

or

X1 =a Xp =Xp—1 +d n=2,3,... (2.24)

Thus, every member of the series is equal to its predecessor plus a constant
number.

Example 2.8 The following are arithmetic series:

i 1234 ...20
ii. 5811 14 ...

To calculate the sum of arithmetic series in (i), above, we can write

S =1 4 24 3+---420
S =20419+18+4---4 1
2§ =21+21+21+---+21

Thus,
28 =20 x 21

and

20 x 21
§=2=

=210
2
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This can be generalized to the sum of any n consecutive integers starting with 1.

_ nn+1)

1+2434...+n 5

(2.25)

Following the same line of reasoning for the general case, the sum of n
consecutive terms in an arithmetic progression is,

(n—1)d

Example 2.9 For the sum of the first 20 integers, we have a = d = 1 and n = 20.
Plugging the numbers into (2.26), we get the sum of 210.

Example 2.10 For the sum of the first 10 integers divisible by 3, we havea = d = 3
and n = 10. Plugging the numbers into (2.26), we get the sum of 165.

These formulas can be programmed in Matlab in two ways. First, we can sim-
ply write a procedure that adds up, one by one, the n terms in a particular series.
Alternatively, we can use (2.26) to evaluate the sum of the series.

Matlab code

o

Initialize n, a, d, and S

n = 20;
a = 1;
d = 3;
S = 0;

oe

Compute S by adding the 20 terms
for i = 1:n
S =8+ a + (i-1)*d;
end
% Call S

n

% Alternatively you can write
S = n*(a + (n-1)*ds/2)

Note that you can change n, a, and d to any number and run the procedure again
and again.

The same can be accomplished using Excel. By replacing n, a, and d with the
desired values, you will get the sum of the arithmetic series in two different ways.

Note that in the illustration below and in subsequent Excel illustrations we make
reference to cell numbers. In the next chapter we learn how to name variable in
Excel and to refer to them by name.
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A B C E
=Cl1 1 20
=A1+D$1

=A2+D$1 =EI*(CI+E1—1)*D1/2)

=SUM(A1:A20)

2.2.5 Geometric Progression

The series

a aqg aq® aq® ... aq""!

is called a geometric progression. The recurrence relation is

X1 =a Xp = qXn—1 n=2,3,...

We are interested in finding the sum of the first n terms of this series. Let

n—1

S:Zaqi:a+aq+aq2+aq3+...+aqn

i=0
Multiplying S by ¢ and subtracting it from S, we have

S=a+aqg+aq* +aq® + - +aq"!

—-Sq= —aq—aq®* —aq® — - —aqg" " —
S—8Sq=a—aq"
Thus,
1_ n
S=a q
l—q

Example 2.11 Find the following sum:

S=24+6+ 18454+ 162 + 486 + 1458

Because a = 2, = 3, and n = 7, we have

S—21_37—2186
=255 =

31

(2.27)

(2.28)

(2.29)

(2.30)

Geometric progression finds a few applications in macroeconomics including

aggregate demand multiplier, money multiplier, and present value.
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Example 2.12 (Keynesian multiplier) When discussing the effect of an increase
in government expenditures on aggregate demand and income, the following argu-
ment is offered. Suppose the government increases its expenditures by $100 billion.
These additional expenditures by the government will become the income of indi-
viduals who provide the goods and services to the government. Assuming a marginal
propensity to consume of 0.92, the additional consumption will be $92 billion. This
consumption, in turn, forms the income of those who produce consumer goods and
services. But then they will spend 0.92 x 92 or $84.64 billion on consumption which
in turn will be the income of those who produce consumption goods and services.
You get the idea. The stream of income generated in different stages is shown in
Table 2.2:

The sum of the first 20 terms of the addition to national income can be calculated
as

1—0.922%0
S=100———— = 1014.13
1-0.92

If we repeat the same calculation for the first 40 terms, we get a total of $1205
billion. The second 20 terms add less than a quarter of the first 20. The sum of
the first 100 terms equals 1249.7. The reason: 0.92 < 1 and when a number whose
absolute value is less than one is raised to increasing exponents, it becomes smaller
and smaller. The smaller the absolute value of the number, the sooner it reaches
zero. For example, if the marginal propensity to consume was 0.5 instead of 0.92,
the sum of the first 44 terms would be $250 billion and additional terms would have
no effect. Indeed, terms beyond the first 20 would have no practical significance.
Thus, if we allow the process to continue indefinitely, that is, letting n — oo, we
will have

1
S 001_0'92 50

Note 0.92 is marginal propensity to consume, and 1/(1—0.92) is our good old
multiplier.

Table 2.2 Multiplier effect
at work: the effect of
government expenditures on

Steps Increase in income

come 0 100 =100
1 92 =100 x 0.92
2 84.64 =100 x 0.922
3 77.8688 =100 x 0.923
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We can generalize the results of the last example by noting that

lim ¢" =0 if lq] < 1 (2.31)
n—oo
It follows that
_ " 1
lim S = lim a =a—— if lgl <1 (2.32)
n—00 n—soco 1 —gq 1—g¢g

As in arithmetic progression we can use Matlab to carry out the necessary
calculations:

Matlab code

% Initialize n, a, g, and S
n = 17;

a = 2;

qa = 3;

S = 0;

% Compute S by adding the 20 terms
for i = 1:n
S =S + a.*qg. " (i-1);
end
% Call s

n

% Alternatively you can write
= a.*(1-q."n)./(1-q)

n

If you use the second method, you may want to define a function and call it when
needed. First you create an M-file in Matlab containing the function.

Matlab code

function G = Geoprog(v) ;
n=v(l);
a = v(2);
g = v(3);
G = a.x(l-g."n)./(1-q);

Then you can call this function for different values of n, a, and q.

Matlab code

v = [7 2 3];
S = Geoprog (v) ;
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We can perform these computations in Excel as illustrated below:

A B C D E
=Cl 2 3 7
=A1*D$1

=A2*D$1 =CI*(1-DI"E1)/(1-D1)
=SUM(A1:A7)

2.2.6 Exercises

E.2.3 Find the sum of all odd numbers from 1 to 451.
E.2.4 Find the sum of all even numbers from 2 to 450.
E.2.5 Find the sum of the following geometric series:

N —
FNy-
oo —

[OSHIE
»—h O | =
[}
\1|"

E.2.6 The present value (PV) of a stream of income is D;, t =0, 1,...,T is defined

as
PNt
- 1+
pr 1+r
where ¢t = 0 is the current year and r is the rate of interest.

i.  Compute the present value of a winning lottery ticket that will pay
$200,000 per year for 20 years starting in the present year. Assume
an interest rate of 12%. Solve the same problem assuming interest rates
of 15% and 20%. [Hint: For interest rate of 12%, r = 0.12.]

ii.  Compute the value of a government bond that pays one dollar every
year in perpetuity (i.e., forever) given the interest rate of r.

E.2.7 Show that
Z(H— DA = A)z, Al <1

[Hint: lim nA" = 0.]
n—oo
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2.3 Permutations, Factorial, Combinations, and the Binomial
Expansion

Counting rules discussed in this section are the elementary building blocks of com-
binatorics, a branch of mathematics that has applications in many areas including
cryptography, computer science, probability theory, statistics, econometrics, and
economics. Consider a collection of n items denoted by A = {A1,A2,...,A,}.
Suppose we choose r < n items from A and arrange them in the order they are
chosen. A typical arrangement will look like

—
A3aA7’ e ’Ar+2

How many such collections can we form that are different from each other at least
in one item or in the position of one item? We can argue as follows. For the first item,
we can choose from n items; for the second place, from among the remaining n — 1
items, because one item has already been taken for the first place. Continuing in this
way, for the r-th item we can choose from among the remaining n — (r—1) items.
Thus, the total possible arrangements are

nxm—1)x...x(n—r+1) (2.33)

For example if we have five objects, we can make 5 x 4 x 3 = 60 different
arrangements containing three elements. If we allow r = n, then we have

n

Ix2x3x...xn=[]i=n (2.34)

i=1

n! is called “n factorial,” and its meaning is quite obvious. IT is similar to the sum-
mation notation, except that it stands for the product of a set of numbers or variables.
Note that 0!=1. The reason: We can arrange or permute in only one way the ele-
ments of a null set (the set with zero elements). Using the convention of (2.34) we
can write (2.33) as

n!

ppy (2.35)

Now suppose we ask, in how many ways can we pick r elements from the set
containing n elements? The number of combinations is
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n l’l!
(1)-m 20

Example 2.13 Suppose five soccer teams are playing in a tournament. How many
games will be played? Let us designate our teams by letters A, B, C, D, and E. Here
is the list of games to be played:

AB, AC,AD, AE,BC,BD, BE, CD, CE,DE

which makes a total of 10 games. Note that we do not have both AB and BA because
when A has played against B, the reverse is also true. The problem is the same as
choosing two out of a set of five. Based on (2.36) we have,

|
2 213! 2

Example 2.14 A mutual fund is a portfolio consisting of a number of equities held
in different proportions. For example, it may have 5% of its assets in IBM stock,
6% in Verizon, 10% in Microsoft, and so on. Assume that 1000 stocks in the market
are deemed to be appropriate for inclusion in such funds. Further suppose that each
fund consists of 30 stocks. How many different portfolios can one form from the
1000 stocks?

1000 1000! 3
( 30 ) = 300701 — 242960819217375 x 10

A very large number indeed. As can be seen, the precision of these numbers is 15
digits; that is, the first 15 digits are accurate and the rest give the order of magnitude.
What is interesting is that the number of potential mutual funds far exceeds the
number of stocks. Note that a mutual fund needs not consist of exactly 30 stocks; it
can have 40, 50, 100, 200, or any other number of stocks. For each of those numbers,
a large number of funds could be formed. Thus, the total number of potential mutual
funds is astronomical.

Two functions in Matlab allow calculations of n! and (Z)

Matlab code

% for n!
factorial (n)
% for
nchoosek (n, r)

Excel has a function for factorial and for combination. In Formulas choose Insert
Function and then choose Math & Trig, Finally choose FACT for factorial and
COMBIN for combination. Alternatively you could type in:
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=FACT(n) =COMBIN(n,r)

Combinations prove useful in writing the binomial expansion.

n_ (1 n n n—1 n n—232 L n n—1
(a+b) —<O)a +<1>a b+<2>a b- + +<n_1)ab
n n _ 4 n n—ipi
()= ()

Example 2.15 We can illustrate the general formula in (2.37) by applying it to
n=2,34.

(a+b)2=<§>a2+<%)ab+<§>b2=a2+2ab+b2

3 3\ 3 3\ o 3\ .2 3Vi3_ 3 2 2,13
(a+ b)Y = 0 a’ + 1 ab + ) ab” + 3 b’ =a’ + 3a°b + 3ab” + b
oot () (v (v (o= (3

4+ 4a3b + 6a%b* + 4ab® + b*

(2.37)

2.3.1 Exercises

E.2.8 Evaluate the following expressions using a calculator, the Excel function
COMBIN, and the Matlab function nchoosek.

14 9 23 33

3 ) 6)° 8 )’ 12
E.2.9 There are 50 delegates at a convention, 32 men and 18 women. In how
many ways can we choose a committee of eight equally divided between men
and women?

E.2.10 There are 9 potential judges for a contest including 5 women and four
men. In how many ways can we choose 5 judges provided that at least two

of them are women?
n
2(7) _ ()++() _
Jj 0 n
j=0

E.2.11 Show that
[Hint: Consider the binomial expansion of (1 + 1)".]
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2.4 Logarithm and Exponential Functions

Most likely you are already familiar with logarithm and exponential functions,
because both play important roles in mathematics. In addition, they find many uses
in economics, especially in dynamic models and growth theory. Many economet-
ric models involve logarithms of both dependent (endogenous) and explanatory
(exogenous) variables.

2.4.1 Logarithm
Suppose

y=a" y>0, a>1 (2.38)
then x is the logarithm2 of y in the base a, which we denote as

x =log,y (2.39)

Note that both a and y are positive real numbers. Logarithms of negative numbers
are complex numbers. In this book we confine ourselves to logarithm of positive
numbers. Whereas a could be any positive real number, the three important bases
are 2, 10, and e. Base 2 is used in information science and communication. Base 10
is convenient for certain calculations; note that the logarithm of 1, 10, 100, 1000, ...
inbase 10are 0, 1,2, 3, ....

The base we will be dealing with in this book is e, an irrational number approx-
imately equal to 2.7182818285. This unusual number somewhat like 7z, will prove
quite useful and will play a significant role in mathematics and computation. In the
next section, we have more to say about e, but for the time being consider it a num-
ber. The logarithm in base e is referred to as the natural logarithm and sometimes
(to avoid confusion) is denoted by In—a practice we will adopt in this book.

A basic property of logarithm that makes manipulation and calculations easier is
that

In(xy) =Inx+1Iny (2.40)

Let

then

2john N apier (1550-1617), a Scottish nobleman, conceived the idea of the logarithm. The first
tables using base 10 were calculated by Henry Briggs (1561-1631), a professor of geometry at
Gresham College.



2.4  Logarithm and Exponential Functions 39
xy = %P = TP
and
In(xy)=a+ B =Inx+1Iny
Repeated application of (2.40) results in

In(x") =nlnx (2.41)

Combining (2.40) and (2.41), we have

In <f> =In(xy H=Inx+InGy")=Inx—Iny (2.42)
y

Thus, logarithm turns multiplication into addition, division into subtraction,
raising to a power into multiplication, and finding the roots of a number into
division.

Logarithmic functions are programmed in every calculator and in software such
as Excel. In Matlab one can get the logarithm of a positive number in three bases.

Matlab code

% Natural logarithm
log(x)

% In base 10

logl0 (x)

% In base 2

log2 (x)

Excel has three functions for logarithm: LN for the natural logarithm, LOG10 for
the base 10, and LOG for any base the user specifies.

You will hardly ever need the logarithm of a number in any other base, but should
such a need arise, the calculation is simple. Suppose you are interested in finding the
logarithm of y in the arbitrary base of b > 1. Let x, and z be, respectively, logarithms
of y in bases e and b. We can write

y = ex = bZ
and

Iny=x=zInb

Therefore,

1 * _lny (2.43)
0 = = —_——= — .
&Y== 10 T nb
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Example 2.16
In45 = 3.8066625 In 10 = 2.3025851
In45  3.8066625
log g 45 = —— = — 1.6532125
n10 _ 2.3025851
Example 2.17
n1024 69314718
log, 1024 = —— — -

In2 ~ 0.6931471

2.4.2 Base of Natural Logarithm, e

Next to m, the base of natural logarithm, e, is the most famous irrational number
among mathematicians and those who apply mathematics. It is approximately equal
to 2.71828182845905 and more precisely

X
e = lim (1 + l) (2.44)
X— 00 X

We need not dwell on the origin and the logic behind this number. Rather, we can
gain an intuitive understanding of it through an example from economics. Suppose
you deposit $1000 in an interest-bearing account with an interest rate of 12%. After
a year, your money would be $1000 (1+0.12) = $1120. But the underlying assump-
tion in this calculation is that the interest accrues to your money at the end of the
year. Why should it be that way? Suppose at the end of 6 months you receive half of
the annual interest and increase your account to $1060. For the next 6 months you
earn interest on this new amount and, at the end of the year, your balance would be

0.12\\?
$1000 <1+T) = $1123.60

Why should we stop there? Why not ask for the interest to accrue every season,
every month, or even instantaneously? Table 2.3 shows the amount of principal plus
interest when interest accrues at different frequencies. The last amount is approxi-
mately equal to $1000 x ¢%!2 = $ 1127.50. This is the amount you would have had
if interest accrued every second. As a matter of notation, sometimes e* is written as
exp(x). Matlab has a ready-made function for exp(x).

Matlab code

% Exponential function
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Table 2.3 Effect of the frequency of interest accrual on the total amount of interest

Frequency Total interest

Annual 1000(1 +0.12) = 1120.00
2

Semiannual 1000 (14 %2)" = 112360
4

Seasonal 1000 (14 %2)" = 112551
12

Monthly 1000( +ﬁ) — 1126.83
365

Daily 1000( +52)7 = 112747

exp (x)

The Excel function for exponential is EXP.

2.4.3 Exercises

E.2.12 Graph the following functions for 0.1 < x < 6:

X —2x

y=Inlx) y=e y=e

E.2.13 For the annual interest rates 20, 18,15, 12, 10, 8, 5, and 2%,

i. Compute the corresponding daily rates.
ii. Compute the corresponding effective annual rates if the interest is
compounded daily.
iii. Compute the corresponding effective annual rates if the interest is
compounded instantaneously.
iv.  How close are the results in ii and iii?

E.2.14 Given the following equations, find x and y.

y =
y=2x
x>0
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2.5 Mathematical Proof

In many math books proofs of theorems end with the abbreviation QED that stands
for the Latin phrase “Quod Erat Demonstrandum,” meaning “which was to be
shown.” But what is to be shown and what do we mean by a mathematical proof?

2.5.1 Deduction, Mathematical Induction, and Proof by
Contradiction

Mathematicians prove their propositions in one of three ways: deduction or direct
proof, mathematical induction, or by contradiction. As we mentioned in Chap. 1,
mathematical propositions are tautologies, although the connection between the
assumptions (the starting point) and proposition (the end point) may not be easy
to see. The goal of Mathematics is to find and substantiate such connections. The
genius of a great mathematician is in discerning an important proposition and in
proving how it can be derived from a minimal set of assumptions. On many occa-
sions it is easier to start from a proposition and work backward. Other times,
mathematicians must refine the assumptions or add to or subtract from them. In still
other cases, the proposition may need adjustment. Once a proposition is proved,
others may find easier proofs, discover that the proposition needs less strict assump-
tions, or that the proposition is simply a special case of a more general theorem.
Finding implications of a general proposition, finding interesting applications and
special cases for it, and discovering its connections to other propositions provide
avenues for further research.

Proof by Deduction. Direct proofs or deductions start with assumptions and lead
to the proposition. We have to show that every statement follows logically from
the previous one. In other words, we have to show that each step is implied by
what we knew in the previous step. In this process we can use any theorem or
lemma that has already been proved because by having proved them, we know
they are logically correct. Our derivation of the formula for the sums of arithmetic
and geometric series, although elementary, are examples of direct proof. Similarly,
many propositions you remember from high school geometry are proved by direct
reasoning.

Proof by Induction. Another way of proving a proposition is by induction, in which
we first prove the validity of a proposition for the case of n = 1; then assuming that
the proposition is true for the case of n — 1, we show that it is also true for n. Since
we already know that the theorem or lemma is true for n = 1, then it should be true
for n = 2, and therefore, n = 3, and indeed for any n.

Example 2.18 We have already seen that the sum of integers from 1 to n is equal to
n(n+ 1)/2. We can verify that this formula is correct for n = 1 and indeed for n = 2
and n = 3. Suppose we know that the formula is true for the sum of n — 1 numbers,
that is,
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_ (n—Dn

Sn—1 )

Then for the sum of n consecutive integers we have

n—Dn+2n nn+1
Sn:Snfl'i‘n:( )2 = (2 )

Example 2.19 Similarly we showed that the sum of n terms of geometric progres-
sion is
1—-4"
l—g
We can verify that this sum is correct for the first term, and the sum of the first
two terms. Now let us assume that the formula is correct for the first n—1 terms.
Then

S=ua

Sp =81+ aqrﬁ]

_n—1

1
=a 13 +aq
l_qn—]+q)1—l qn
I—q
.
= a7,

Proof by Contradiction. In proving a proposition by contradiction, we first assume
that the proposition is false. Then, deriving the implications of the proposition being
false, we show that they contradict some proven theorems or known facts. The
conclusion is that the proposition cannot be false.

Example 2.20 One of Euclid’s theorems states that the number of primes is infinite.
Recall that a prime number is divisible only by one and itself. To prove the theorem,
we assume the contrary, that prime numbers are finite. Therefore, we can write them
as

P1Lp2pP3... Pn
But now consider
Dntl =P1 X P2 Xp3 X ...Xp,+1

This number is not divisible by other primes because the division will have a
remainder of one, therefore, it is a prime. Thus, no matter how many numbers we
have, we can add one more and then another. This contradicts the assumption that
there are only a finite number of primes.>

3 Alternatively, the fact that p,,,is not divisible by any prime contradicts the fundamental theorem
of arithmetic that states that any integer k > 1 has a unique factorization of the form
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2.5.2 Computer-Assisted Mathematical Proof

Proofs of mathematical propositions rely on logical steps that are convincing, if not
to all ordinary mortals, at least to all who have the proper training. Moreover, such
proofs are general in the sense that they apply to a class of problems. For instance,
the proof of the solution of the quadratic equation does not rely on any particular
values of the coefficients. Rather it is correct for all equations with real coefficients.
But suppose we make a statement about all integers less than a particular finite
number n. Could we use the computer and check the statement for all such numbers
and show that it is true and call it a mathematical proof? Well, it did not happen
exactly like that, but in 1976 computers made their first nontrivial appearance in the
realm of mathematical proofs. It involved the famous four-color problem.

Consider a map of the world on a flat surface or on a globe.* We want to color
the map with the condition that no two countries with a common border are of the
same color. To make the problem more specific, the areas of all countries have to be
contiguous, and no common boundary can be only a single point. The first condition
rules out countries with two or more pieces; for instance, the United States (because
Alaska and Hawaii are not attached to the mainland). The question is, how many
colors do we need? Cartographers have dealt with this problem for ages. It was
conjectured that the feat could be accomplished with four or fewer colors. But proof
of this conjecture seemed to be out of reach.

In 1976 Kenneth Appel and Wolfgang Haken® proved the theorem with partial
help from a computer. The proof relies on old-fashioned mathematical work, but
1200 hours of computer time were used to check certain difficult cases.

Computer-assisted mathematical proofs are still exceptions and most mathemati-
cians go about their work in the old-fashioned way. It is said that computer proofs
are uncertain and cannot be checked and verified. The uncertainty arises because
there may be faults in the hardware, problems with the operating system, or bugs
in the program. Assuming that these issues have been thoroughly checked, we can
be sure with a high probability of the validity of the proof. This is different from
traditional proofs that are offered with certainty and there can be no doubt about
them, even an infinitesimal one. If computer-assisted proofs become the prevalent
mode of work, mathematics would resemble physics, in which laws are tested and
either rejected or not rejected, but never 100% accepted. Furthermore, it is said that

k=p1 xXpyX---Xp;

Therefore, p,41must be a prime.

4Technically, we are talking about a planar map or graph. Suppose we represent every country by
a node and connect each pair of the nodes representing adjacent countries by a line. If we are able
to draw such a graph without the lines crossing, then the graph is planar.

SFor a better idea of the problem and its solution you may want to check Appel and Haken’s article
in Scientific American (October 1977) or their book Every Planar Map is Four Colorable (1989).
A more technical understanding of the subject could be gained from textbooks on graph theory or
discrete mathematics.
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computer-assisted proofs that involve thousands of lines of codes cannot be veri-
fied; no one would spend her energy on the thankless job of checking a complicated
computer program.

One may think of these issues as a matter of degree. After all, complicated
proofs such as Godel’s theorem or Fermat’s last theorem (conjecture)® cannot easily
be checked even by many mathematicians. On the other hand, if computers make
headway in proving mathematical theorems, we can imagine that in the future math-
ematical proofs will not be checked but confirmed through independent replications
and then held to be true with a high probability. There is another way that com-
puters could help in the advancement of mathematics. A computer program could
be written to carry out all logical steps necessary for the proof of a theorem. This
doesn’t mean that the computer is proving the theorem. Rather it is carrying out the
instructions of the mathematician. Such a step-by-step operation would be time con-
suming and too tedious for human beings, but computers don’t mind. The procedure
would be especially beneficial when the proof runs into tens and perhaps hundreds
of pages. Such activities are already under way, but the role of computers in the
mathematics of the future is a matter of speculation.

2.5.3 Exercises

E.2.15 Use mathematical induction to show that

nn+1)2n+1)

i 124224324 4n?= c

ii.  n!>n?, Vn>4

n
ii. Y. —1)=n?
1

Jj=

6Consider the equation x"+y" = . If n = 2, we can find integers satisfying the equation 32 +42 =
52. But could the same be done for n > 3? French mathematician Pierre de Fermat (1601-1665)
claimed that he could prove that no such solutions could be found. But because he was writing on
the margin of a book, he said he could not write it out. In all likelihood he did not have such a proof.
Over the years, many contributed to the solution of the problem. In 1993, the British mathematician
Andrew John Wiles (1953) (now at Princeton University in the United States) announced that he
had proved the theorem. But there was a significant gap in the proof that took Wiles and a co-worker
one and a half years to fill. There are two books written for the public on this subject: Fermat’s Last
Theorem: Unlocking the Secret of an Ancient Mathematical Problem (1996) by Amir Aczel, and
Fermat’s Enigma: The Epic Quest to Solve the World’s Greatest Mathematical Problem (1997) by
Simon Singh. Both are available in paperback.
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Fig. 2.3. Geometric
representation of
trigonometric functions

2.6 Trigonometry

Trigonometry, one of the most fun areas of mathematics,” has many practical appli-
cations in engineering, statistics, and econometrics, as well as in everyday life. What
is more, it requires learning only a few basic relationships and the rest is a matter
of deduction. Consider the circle in Fig. 2.3. It has a radius of unity. We define the
following functions® of the angle 6:

b b d
sinf = o = ab, cosfh = ® = ob, tand = &« =dc (2.45)
oa oa od

Thus, for the angle 6 and the point a on the unit circle, cosf and sin6 are,
respectively, the coordinates of the point a on the x-and y-axes. If we consider
the right-angle triangle oab, then sin@ is the ratio of the side opposing the angle
to the hypotenuse. Similarly, cosé is the ratio of the side forming the angle to
the hypotenuse. This definition applies to all right-angle triangles regardless of the
length of the hypotenuse. In the case depicted in Fig. 2.3, the hypotenuse has a
length of one and, therefore, we can ignore the denominator of the ratios.

A graph of sin(x) is shown in Fig. 2.4. As Figs. 2.3 and 2.4 show, both sine and
cosine functions take values between —1 and 1. The tangent function, however, is
bounded neither from below nor from above. If we multiply sine or cosine functions
by p, the range of the functions is changed from [—1, 1] to [—p, p] and p is referred
to as the amplitude.

TThe interested reader is referred to Trigonometric Delights by Eli Maor (1998).

80ther trigonometric functions exist, but we will not discuss them here because economists rarely
if ever come across them and, therefore, we have no reason to clutter the subject with many
unfamiliar notations.
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Using elementary geometry the following relationships can be deduced:

sin &

tan® = (2.46)
cos 6

sin? @ 4 cos’ 6 = 1 (2.47)

The first is based on the Thales theorem” and the second on the Pythagoras theo-
rem.'? Observe the notation for the square of a trigonometric function. It is written
sin? @ and not sin @2, as the latter means the angle 6 is raised to the power 2. Of
course, we could write it as (sin @), but we prefer the economy in the universally
accepted convention. Recall that angles can be measured in terms of degrees, radi-
ans, and grads. A circle spans 360 degrees, 27 radians, and 400 grads. Thus, a right
angle would be 90 degrees, /2 radians, and 100 grads. In this book and in most
mathematics books, angles are measured in radians.

From Fig. 2.3 it is evident that

sinQ =sinw =sin2w =0,

. T -1
s =1 (2.48)
. 3w
sin - =—1
Similarly
cosO0 =cos2m =1,
T 3
— = — =0, 2.49
cos 5 = cos = (2.49)

cost = —1

In addition, using well-drawn circles and a ruler, the reader should convince
herself of the following identities:

. s s .
sin (9 + 5) = cos6, cos (9 + 5) = —sind,
sin(f + ) = —sin6 cos(f +m) = —cosH, (2.50)
sin(f + 27) = siné, cos(f + 2mw) = cos O
sin(—0) = —siné, cos(—0) = cos(0)

Trigonometric functions are programmed in all scientific calculators. In addi-
tion, software such as Excel, Matlab, and Maple also have these functions. Matlab’s
trigonometric functions follow.

9The theorem is named after Thales de Miletos (624 B.C.—547 B.C.) although the germ of the idea
dates back to 1650 B.C. and the building of the Pyramids.

10Thjs is the famous Pythagoras theorem that the square of hypotenuse is equal to the sum of the
squares of the other two sides of a right-angle triangle. Egyptians who built the Pyramids clearly
had an empirical understanding of this theorem. Pythagoras (569 B.C.—475 B.C.), for whom the
theorem is named, is one of the great mathematicians of antiquity and pioneers of mathematics.
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Matlab code

% sin, cos and tan of x are obtained using

sin (x)

cos (x)

tan (x)

Matlab assumes that x is expressed in terms of
radians. Thus, the sin of m/6 or 30° can be

o0 o0 o°

calculated in one of the the following ways

n

in(pi./6)

0P
o
e

= 30;
in(x.*pi./180)
% Both return

n X

ans =
0.5000

In Excel the sine, cosine, and tangent of an angel, say 7 /4, can be obtained as

=SIN(PI()/4) =COS(PI()/4) =TAN(PI()/4)

The fact that sin(6 4+ 7/2) = cos(f) shows that the sine and cosine functions
are out of phase by 7 /2 radians. In other words, it takes /2 angle rotations for
the sine function to catch up with the cosine function. Similarly, the two functions
y1 = sin(0) and y, = sin(0 +/4) (see Fig. 2.4) are out of phase by /4. In general,
when we have sin(¢ + 6) or cos(¢ + 6) with ¢ being a constant, then ¢ is referred
to as the phase.

In many applications we need to find trigonometric functions of sums or
differences of two or more angles. The following relationships exist between
trigonometric functions of sums and differences of angles, and the trigonometric
functions of the angles themselves.

sin(f & ¢) = sinf cos ¢ % sin ¢ cos b (2.51)
cos(f & ¢) = cos b cos ¢ F sin b sin ¢ (2.52)
Letting ¢ = 6, we have

sin20 = 2sin6 cos 6 (2.53)

and

cos 26 = cos® 6§ — sin® 0 (2.54)
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Fig. 2.4 Sin functions with different phases and frequencies

Recalling (2.47), (2.54) can be written as
c0s20 =2cos’0 —1=1—2sin’6 (2.55)

Example 2.21

sin (%) —0588  cos (%) — 0.809

sin (2%) = 25sin (%) cos (%) — 2 x 0.588 x 0.809 = 0.951
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cm(2%):cof(%)—ﬂmz(%)::O&D2—058§::0%D

2.6.1 Cycles and Frequencies

Trigonometric functions are cyclical because as the point on the circle travels coun-
terclockwise, it comes back to the same point again and again (see Fig. 2.4). As a
result, the sine and cosine functions assume the same values for angles 0,2m + 6,
and, in general, 2 kw + 6. Similarly, the tan function has the same value for 6 and
6 + 7. These functions are called periodic.'' Compare the two functions

y1 = sin(x) = sin(x + 2 kw)
and
yo = sin(2x) = sin(2x + 2 k) = sin[2(x + k)]

Clearly y, returns to the same value—or completes a cycle—twice as fast as y.
In general,

y = sin(fx) (2.56)

completes a cycle f times faster than sin(x). We call f the frequency of the function.
Alternatively we can write (2.56) as

y = sin (f) 2.57)
p

Because p = 1/f, it is clear that every p periods the function will have the same
value. In other words, the function completes a cycle in p periods or the cycle length
is p. These concepts are better understood if we take the argument of the function to
be time, measured in discrete values for a given time interval, thatis, r = 1,...,T.

Let
2t
y:gn<ii) (2.58)
p

If p = T, then it takes T time periods to complete the cycle and the frequency is
1/T. On the other hand, if frequency is 4/T, then the length of the cycle is 7/4. As
an example, let time be measured in months and the period under consideration be
ayear, thatis, 7= 12. If p = 3, then we have four cycles per year and the frequency
is 1/3 of a cycle per month. On the other hand, if p = 1/2, there are 24 cycles in a
year and the frequency per month is two.

T A function y = f (x) is called periodic if f(x) = f(x + ¢), ¢ # 0.
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2.6.2 Exercises

E.2.16 Find the numerical value of the following:

)7 . .35
COS” —mr — SIn =7 sin” -7 —tan —7
i sinom, i 2 3 i 3 4
2 5 .3
2cos —1 sin -1
4 4
E.2.17 Graph the following functions in the interval 0 < x < 2.
- men(ee) i e )
i =cos(x+ =), ii. y=sin{x+ —
Y 2 Y 2
—cos( +z)+sin<x+ z) v —cos(x+ z)—sin()c+ Z)
ii. y= X > 5): W y= > >
T
V. y=tan <x+ E)’ vi. y=sinx 4+ sin2x + sin3x
vii. y = sinx 4+ 0.5sin2x + 0.25sin 3x
E.2.18 Show that
2tan6
tan2 = ———
1 —tan2 0

E.2.19 Write sin 3x in terms of sin x and its powers.
E.2.20 Write sin 4x in terms of sin x and its powers.
E.2.21 Show that

. 1 . .1 —sinx coS X
i. ————— =sinfcosd ii. = 7 -
tan 6 + CcoS X + sinx
tan 0 5
.. 14sinf 1—sinf 1 . 1 —sin® 1
Iii. - — - =4 tanf iv. —— = (tanf —
1 —sin6 1+ sin6 cos 6 1+ sin6 cos 6

2.7 Complex Numbers

Complex numbers are two-dimensional numbers where one dimension is on the
real axis and the other on the imaginary axis.'> We are already familiar with real
numbers and the real line. The imaginary number is

i=A—1 (2.59)

121t is customary to introduce complex numbers in the context of the solution to quadratic equations
involving the square root of a negative number. This practice has the unfortunate consequence that
students may get the impression that somewhere among the real numbers or along the real line
there are caves where complex numbers are hiding and once in a while show their faces.
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Fig. 2.5 Point z in the y
complex plane
A iiaiiiaiiabdietlt bt L z
P i
0 :
X R
i is an imaginary number because ;> = —1, and there is no real number whose

square is a negative number. Geometrically, a complex number is a point in the
two-dimensional complex space. Any function of complex variables maps these
variables into the two-dimensional complex plane.

Figure 2.5 depicts point z in the complex plane where the horizontal axis is the
real line and the vertical axis the imaginary line. Thus, we can write z as

Z=x-+1iy (2.60)

Two complex numbers are equal if they are equal in both real and imaginary
dimensions. That is, z; = x1 + iy; is equal to zp = x2 + iy; if x] = x2 and y; = y».
Real numbers are a special case of complex numbers when the imaginary dimension
is set equal to zero. Similarly, an imaginary number is a complex number with its
real dimension set equal to zero.

Example 2.22 The following are examples of complex numbers:
21 =341, 22 =5-3i 3 =6+0.5i
Complex numbers come in pairs. Every complex number has its twin, called a

conjugate. If z = x+1iy, thenits conjugate complex number is z = x—iy. It follows
that z = z. In other words, z is the conjugate of z.

Example 2.23 The conjugates of the complex numbers in Example 2.22 are
21=3—1 22 =543i, 3=6—-0.5i

Operations of addition, subtraction, and multiplication of complex variables are
defined as
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Atz =@ +x)+ O +y)i
zZ1—2=0 —x2)+ Q1 —y)i
. . 2.61
Gz =+ iy1) (1 + iya) (2.61)
= (x1x2 — y1y2) + (x1y2 +x2y1) i

Example 2.24

B-D+G+3)=8+2i
G+3)—(06+05)=—-1425i
(6—-05)3+i) =185+45i
Addition, subtraction, and multiplication of a complex number by its conjugate
result in

Z2+z=2x
z—2z=2iy (2.62)
Z=x"+y?=p?
where the last equality refers to Fig. 2.5 and is based on the Pythagoras theorem.
Division of complex numbers is a bit more involved:

a2 XX +y2 Xy — Xy
2 22 B +y; X3+ y3

(2.63)

Example 2.25

—05i 285 20
6-05 _ 285 205 ) e38 06030
5+3i 34 34

Referring again to Fig. 2.5, we observe that

x = pcosb and y = psinf

which implies that
p? =22 4+
tanf = 2
X

These relationships enable us to write a complex variable either in terms of its
Euclidean coordinates or in terms of p and 0, that is, its polar coordinates:

z=x4 iy = p(cosf + isinh) (2.64)
where

_ 2 2
g =VXty (2.65)
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Example 2.26 Let us rewrite complex numbers in Example 2.22 using polar
coordinates.'3 For

z1=341
we have
p=+3"+12=10
6 = tan™! % =0.32175 = 0.1024167
therefore,
21 = v/10(cos 0.1024167 + i sin 0.1024167)
Similarly,

72 = 4/34(c0s 0.54042 — isin 0.54042)
= 4/34(c0s0.17202r — isin 0.172027)

73 = +/36.25(c0s 0.08314 4 is5in 0.08314)
= 4/36.25(c0s 0.026467 + isin 0.026467)

Note that because sin(—0) = — sin 6, (2.64) implies
Z = p(cos® — isin0)

We have a third way to write complex numbers. For this, we state without proof
the following relationships'#:

exp(if) = cos 6 +isin@
exp(—if) = cos® —isin® (2.66)
Therefore,

x4+ iy = pexp(if)

x — iy = pexp(—if) (2.67)

Where p and 6 are as defined in (2.65).

13 Angles are measured in radians. If you use a calculator, you need to set it in the radian mode to
get the same numbers as in the text. If your calculator is in the degree mode, then in order to get
the same numbers as in the text, § = tan~!(x/y) needs to be converted into radians by multiplying
it by 77/180.

14We shall provide a proof of these relationships in Chap. 10.
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Example 2.27 Again using complex numbers in Example 2.22, we have

21 = v/10exp(0.32175i)
20 = /34 exp(—0.54042i)

73 = +/36.25 exp(0.08314i)
Using the following program, the reader could check the validity of the formulas
in (2.66) for different values of the angle 7.
Matlab code

oe

Set the value of the angle
= pi./3;
Trigonometric version

o+

o

cos (t)+i*sin(t)

% Exponential version
exp (i*t)

% Trigonometric version
cos (t)-i*sin(t)

% Exponential version
exp (-i*t)

The idea of the equivalence of circular sine and cosine functions with the expo-
nential function may bother the intuitive sense of some readers. But exp(if) is indeed
a circular function in the complex plane that traces a circle as 6 changes from
0 to 2m. On the other hand, p determines the distance of the point from the ori-
gin. Indeed, we can define trigonometric functions in terms of the exponentials of
complex numbers.

_exp(it)) + exp(—ib)

0s 6 5
. . (2.68)
exp(if) — exp(—if)
B 2i
An important consequence of (2.66) is De Moivre’s theorem.
Theorem 2.1
2 = [p(cos b + isin )k
— ok 0\ \k
= p*(exp(i6)) 2.69)

= pk exp(ik9)
= pK(cos kb + isink0)

15 Abraham De Moivre (1667-1754), a French mathematician who spent most of his life in
England, was a pioneer in the development of probability theory and analytic geometry. He was
appointed to the commission set up to examine Newton’s and Leibnitz’s claims for the discovery
of calculus.
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Example 2.28

(cos 8 + isin#)> = cos 30 + isin 30
(cos® — isinf)® = cos 36 — isin30

Example 2.29 Let 0 = 7 /4, then

T, TN .5
(oos T +isin Z> — (07071 4+ 0.7071)
— ~0.7071 — 0.7071i

57r+,. S5 ( +n>+.. ( Jr7T>
cos — sin — = cos — sin —
2 isi 7 T 1 nll T 1
= —CcoSs — — isin —
4 4

= —0.7071 — 0.7071i

2.7.1 Exercises

E.2.22 Write the following complex numbers in alternative forms of (2.64) and
(2.67)

i. z=1+1i ii. o=1—1i
iti. z3 =5i iv. z4=35-26i
v. zs5=T+4i

E.2.23 Referring to E.2.21, compute

<1

i. 7122 i. — iii. 7324
22 _
. 24 - . 35
iv. — V. 2375 vi. —
25 23

E.2.24 We already know that e“e? = ¢*+? where a and b are real numbers.
Show that for real numbers a and b,

eaz+bz — eazebz
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