Chapter 2

On-Line Coupled Meteorology and Chemistry
Models in the US

Yang Zhang

2.1 Introduction

The climate—chemistry—aerosol—cloud-radiation feedbacks are important in the
context of many areas including climate modelling, air quality (AQ)/atmospheric
chemistry modelling, numerical weather prediction (NWP) and AQ forecasting, as
well as integrated atmospheric-ocean-land surface modelling at all scales. Some
potential impacts of aerosol feedbacks include a reduction of downward solar
radiation (direct effect); a decrease in surface temperature and wind speed but an
increase in relative humidity and atmospheric stability (semi-direct effect), a
decrease in cloud drop size but an increase in drop number via serving as cloud
condensation nuclei (first indirect effect), as well as an increase in liquid water
content, cloud cover, and lifetime of low level clouds but a suppression of precipi-
tation (the second indirect effect). Aerosol feedbacks are traditionally neglected in
meteorology and AQ modelling due largely to historical separation of meteorology,
climate, and AQ communities as well as our limited understanding of underlying
mechanisms. Those feedbacks, however, are important as models accounting (e.g.,
Jacobson 2002; Chung and Seinfeld 2005) or not accounting (e.g., Penner 2003) for
those feedbacks may give different results and future climate changes may be
affected by improved air quality. Accurately simulating those feedbacks requires
fully-coupled models for meteorological, chemical, physical processes and presents
significant challenges in terms of both scientific understanding and computational
demand. In this work, the history and current status of development and application
of on-line models are reviewed. Several representative models developed in the US
are used to illustrate the current status of on-line coupled models. Major challenges
and recommendations for future development and improvement of on-line- coupled
models are provided.
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2.2 History of Coupled Chemistry/Air Quality
and Climate/Meteorology Models

2.2.1 Concepts and History of On-Line Models

Atmospheric chemistry/air quality and climate/meteorology modelling was
traditionally separated prior to mid. 1970s. The three-dimensional (3D) atmo-
spheric chemical transport models (ACTMs) until that time were primarily driven
by either measured/analyzed meteorological fields or outputs at a time resolution of
1-6 h from a mesoscale meteorological model on urban/regional scale or outputs at
a much coarser time resolution (e.g., 6-h or longer) from a general circulation
model (GCM) (referred to as off-line coupling). In addition to a large amount of
data exchange, this off-line separation does not permit simulation of feedbacks
between AQ and climate/meteorology and may result in an incompatible and
inconsistent coupling between both meteorological and AQ models and a loss of
important process information (e.g., cloud formation and precipitation) that occur at
a time scale smaller than that of the outputs from the off-line climate/meteorology
models. Such feedbacks, on the other hand, are allowed in the fully-coupled on-line
models, without space and time interpolation of meteorological fields but com-
monly with higher computational costs.

The earliest attempt in coupling global climate/meteorology and chemistry can
be traced back to late 1960s, when 3D transport of ozone and simple stratospheric
chemistry (e.g., the Chapman reactions, the NO, catalytic cycle, and reactions
between hydrogen and atomic oxygen) was first incorporated into a GCM to
simulate global ozone (O3) production and transport (e.g., Hunt 1969; Clark
1970; Cunnold et al. 1975; Schlesimger and Mintz 1979). In such models,
atmospheric transport and simple stratospheric O3 chemistry are simulated in one
model, accounting for the effect of predicted O3 on radiation heating and the effect
of radiation heating on atmospheric circulation, which in turn affects distribution of
O;. Since mid. 1980s, a large number of on-line global climate/chemistry models
have been developed to address the Antarctic/stratospheric O3 depletion (e.g.,
Cariolle et al. 1990; Cariolle and Deque 1986; Rose and Brasseur 1989; Austin
et al. 1992; Rasch et al. 1995; Jacobson 1995), tropospheric O3 and sulfur cycle
(e.g., Roelofs and Lelieveld 1995; Feichter et al. 1996; Barth et al. 2000), tropo-
spheric aerosol and its interactions with cloud (e.g., Chuang et al. 1997; Lohmann
et al. 2000; Jacobson 2000, 2001a; Easter et al. 2004). The coupling in most on-line
models, however, has been enabled only for very limited prognostic gaseous
species such as O; and/or bulk aerosol (e.g., Schlesimger and Mintz 1979) or
selected processes such as transport and gas-phase chemistry (i.e., incompletely-
or partially-coupling). This is mainly because such a coupling largely restricts
to gas-phase/heterogeneous chemistry and simple aerosol/cloud chemistry and
microphysics and often neglects the feedbacks between prognostic chemical
species (e.g., O3 and aerosols) and radiation (e.g., Roelofs and Lelieveld 1995;
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Eckman et al. 1996; Barth et al. 2000) and aerosol indirect effects (e.g., Liao et al.
2003), with a few exceptions after mid. 1990s when truly-coupled systems were
developed to enable a full range of feedbacks between meteorology/climate vari-
ables and a myriad of gases and size-resolved aerosols (e.g., Jacobson 1995, 2000;
Ghan et al. 2001a, b, ¢).

The earliest attempt in coupling meteorology and air pollution in mesoscale
models can be traced back to early 1980s (Baklanov et al. 2007 and references
therein). Since then, a number of mesoscale on-line coupled meteorology-
chemistry models have been developed in North America (e.g., Jacobson 1994,
1997a, b; Mathur et al. 1998; Coté et al. 1998; Grell et al. 2000) and Australia
(e.g., Manins 2007) but mostly developed recently by European researchers
largely through the COST Action 728 (http://www.cost728.org) (e.g., Baklanov
et al. 2004, 2007, and references therein). The coupling was enabled between
meteorology and tropospheric gas-phase chemistry only in some regional models
(e.g., Grell et al. 2000); and among more processes/components including meteo-
rology, chemistry, aerosols, clouds, and radiation (e.g., Jacobson 1994, 1997a, b;
Jacobson et al. 1996; Mathur et al. 1998; Grell et al. 2005; Fast et al. 2006; Zhang
et al. 2005a, b, 2010a, b; Krosholm et al. 2007; and Misenis and Zhang 2010).
Similar to global models, a full range of climate—chemistry—aerosol—cloud-radia-
tion feedbacks is treated in very few mesoscale models (e.g., Jacobson 1994,
1997a, b; Grell et al. 2005).

Two coupling frameworks are conventionally used in all mesoscale and global
on-line coupled models: one couples a meteorology model with an AQ model in
which the two systems operate separately but exchange information every time
step through an interface (referred to as separate on-line coupling), the other
integrates an AQ model into a meteorology model as a unified model system in
which meteorology and AQ variables are simulated together in one time step
without a model-to-model interface (referred to as unified on-line coupling).
Transport of meteorological and chemical variables is typically simulated with
separate schemes in separate on-line models but the same scheme in unified on-
line models. Depending on the objectives of the applications, the degrees of
coupling and complexities in coupled atmospheric processes in those models
vary, ranging from a simple coupling of meteorology and gas-phase chemistry
(e.g., Rasch et al. 1995; Grell et al. 2000) to the most sophistic coupling of
meteorology, chemistry, aerosol, radiation, and cloud (e.g., Jacobson 1994,
2004b, 2006; Grell et al. 2005). While on-line coupled models can in theory enable
a full range of feedbacks among major components and processes, the coupling is
typically enabled in two modes: partially-coupled where only selected species
(e.g., O3) and/or processes (e.g., transport and gas-phase chemistry) are coupled
and other processes (e.g., solar absorption of O3 and total radiation budget) remain
decoupled; fully-coupled where all major processes are coupled and a full range of
atmospheric feedbacks can be realistically simulated. At present, very few fully-
coupled on-line models exist; and most on-line models are partially-coupled and
still under development.
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2.2.2 History of Representative On-Line Models in the US

In this review, five models on both regional and global scales developed in the US
are selected to represent the current status of on-line-coupled models. These
include:

¢ One global-through-urban model, i.e., the Stanford University’s Gas, Aerosol,
TranspOrt, Radiation, General Circulation, Mesoscale, Ocean Model (GATOR/
GCMOM) (Jacobson 2001c, 2002, 2004a; Jacobson et al. 2004)

¢ One mesoscale model, i.e., the National Oceanic and Atmospheric Administration
(NOAA)’s Weather Research Forecast model with Chemistry (WRF/Chem)
(Grell et al. 2005; Fast et al. 2006; Zhang et al. 2010a)

e Three global models, i.e., the National Center for Atmospheric Chemistry
(NCAR)’s Community Atmospheric Model v. 3 (CAM3), the Pacific Northwest
National laboratory (PNNL)’s Model for Integrated Research on Atmospheric
Global Exchanges version 2 (MIRAGE2) (Textor et al. 2006; Ghan and Easter
2006), and the Caltech unified GCM (Liao et al. 2003; Liao and Seinfeld 2005)

All these models predict gases, aerosols, and clouds with varying degrees of
complexities in chemical mechanisms and aerosol/cloud microphysics. The history
and current status of these models along with other relevant models are reviewed
below.

Jacobson (1994, 1997a, b) and Jacobson et al. (1996) developed the first unified
fully-coupled on-line model that accounts for major feedbacks among meteorology,
chemistry, aerosol, cloud, radiation on urban/regional scales: a gas, aerosol, trans-
port, and radiation AQ model/a mesoscale meteorological and tracer dispersion
model (GATOR/MMTD, also called GATORM). Grell et al. (2000) developed a
unified on-line coupled meteorology and gas-phase chemistry model: Multiscale
Climate Chemistry Model (MCCM, also called MM5/Chem). Built upon MM5/
Chem and NCAR’s WREF, Grell et al. (2002) developed a unified fully-coupled
on-line model, WRF/Chem, to simulate major atmospheric feedbacks among mete-
orology, chemistry, aerosol, and radiation. This is the first community on-line
model in the US. Since its first public release in 2002, WRF/Chem has attracted a
number of external developers and users from universities, research organizations,
and private sectors to continuously and collaboratively develop, improve, apply,
and evaluate the model. In WRF/Chem, transport of meteorological and chemical
variables is treated using the same vertical and horizontal coordinates and the same
physics parametrization with no interpolation in space and time. In addition to
Regional Acid Deposition Model v.2 (RADM2) in MM5/Chem, WRF/Chem
includes an additional gas-phase mechanism: the Regional Atmospheric Chemistry
Mechanism (RACM) of Stockwell et al. (1997) and a new aerosol module:
the Modal Aerosol Dynamics Model for Europe (MADE) (Ackermann et al.
1998) with the secondary organic aerosol model (SORGAM) of Schell et al.
(2001) (referred to as MADE/SORGAM). Two additional gas-phase mechanisms
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and two new aerosol modules have been recently incorporated into WRF/Chem by
external developers (Fast et al. 2006; Zhang et al. 2005a, b, 2007, 2010a; Pan et al.
2008). The two new gas-phase mechanisms are the Carbon-Bond Mechanism
version Z (CBMZ) (Zaveri and Peters 1999) and the 2005 version of Carbon
Bond mechanism (CBO05) of Yarwood et al. (2005). The two new aerosol modules
are the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC)
(Zaveri et al. 2008) and the Model of Aerosol Dynamics, Reaction, Ionization,
and Dissolution (MADRID) (Zhang et al. 2004, 2010c).

On a global scale, a number of climate or AQ models have been developed in
the past three decades among which very few of them are on-line models. Since
its initial development as a general circulation model without chemistry, CCMO
(Washington 1982), the NCAR’s Community Climate Model (CCM) has
evolved to be one of the first unified on-line climate/chemistry models, initially
with gas-phase chemistry only (e.g., CCM2 (Rasch et al. 1995) and CCM3
(Kiehl et al. 1998; Rasch et al. 2000)) and most recently with additional aerosol
treatments (e.g., CAM3 (Collins et al. 2004, 2006a, b; and CAM4 (http://www.
ccsm.ucar.edu)). Jacobson (1995, 2000, 2001a) developed a unified fully-
coupled Gas, Aerosol, TranspOrt, Radiation, and General circulation model
(GATORG) built upon GATORM and a 1994 version of the University of
Los Angeles GCM (UCLA/GCM). Jacobson (2001b, c) linked the regional
GATORM and global GATORG and developed the first unified, nested global-
through-urban scale Gas, Aerosol, Transport, Radiation, General Circulation,
and Mesoscale Meteorological model, GATOR/GCMM. GATOR/GCMM
was designed to treat gases, size- and composition-resolved aerosols, radiation,
and meteorology for applications from the global to urban (<5 km) scales and
accounts for radiative feedbacks from gases, size-resolved aerosols, liquid water
and ice particles to meteorology on all scales. GATOR/GCMM was extended to
Gas, Aerosol, TranspOrt, Radiation, General Circulation, Mesoscale, Ocean
Model (GATOR/GCMOM) in Jacobson (2004a, 2006) and Jacobson et al.
(2004, 2006). Built upon NCAR CCM2 and PNNL Global Chemistry Model
(GChM), MIRAGEI was developed and can be run off-line or fully-coupled
on-line (Ghan et al. 2001a, b, ¢ and Easter et al. 2004). In MIRAGE?2, the
gas/aerosol treatments are an integrated model imbedded in NCAR CAM2 (i.e.
unified on-line coupling). Several on-line-coupled global climate/aerosol models
with full oxidant chemistry have also been developed since early 2000 but most
of them do not include all feedbacks, in particular, aerosol indirect effects;
and they are under development (e.g., Liao et al. 2003). Among all 3D models
that have been developed for climate and AQ studies at all scales, GATOR/
GCMOM, MIRAGE, and WRF/Chem represent the state of science global and
regional coupled models; and GATOR/GCMOM appears to be the only model
that represents gas, size- and composition-resolved aerosol, cloud, and meteoro-
logical processes from the global down to urban scales via nesting, allowing
feedback from gases, aerosols, and clouds to meteorology and radiation on all
scales in one model simulation.
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2.3 Current Treatments in On-Line Coupled Models in the US

In this section, model features and treatments for the five representative on-line
coupled meteorology and chemistry models developed in the US are reviewed in
terms of model systems and typical applications, aerosol and cloud properties,
aerosol and cloud microphysics and aerosol-cloud interactions. As shown in
Table 2.1, four out of the five models are unified on-line models (i.e., GATOR/
GCMOM; WRF/Chem, CAM3, and Caltech unified GCM) and one (i.e., MIRAGE)
is a separate on-line model, all with different levels of details in gas-phase chemis-
try and aerosol and cloud treatments ranging from the simplest one in CAM3 to the
most complex one in GATOR/GCMOM. Those models have been developed for
different applications. As shown in Table 2.2, the treatments of aerosol properties
in those models are different in terms of composition, size distribution, aerosol
mass/number concentrations, mixing state, hygroscopicity, and radiative properties.
For example, MIRAGE?2 treats the least number of species, and GATOR/GCMOM
treats the most. Size distribution of all aerosol components are prescribed in Caltech
unified GCM and that of all aerosols except sea-salt and dust is prescribed in
CAM3; they are predicted in the other three models. Prescribed aerosol size
distribution may introduce significant biases in simulated aerosol direct and indirect
radiative forcing that highly depends on aerosol size distributions. The mixing state
of aerosols affects significantly the predictions of direct/indirect radiative forcing.
The internally-mixed (i.e., well-mixed) hydrophilic treatment for BC is unphysical
and reality lies between the externally-mixed, hydrophobic and core treatments.
Among the five models, GATOR/GCMOM is the only model treating internal/
external aerosol mixtures with a coated BC core. All the five models predict aerosol
mass concentration, but only some of them can predict aerosol number concentra-
tion (e.g., GATOR/GCMOM, WRF/Chem, and MIRAGE?2). For aerosol radiative
properties, GATOR/GCMOM assumes a BC core surrounded by a shell where the
refractive indices (RIs) of the dissolved aerosol components are determined from
partial molar refraction theory and those of the remaining aerosol components are
calculated to be volume-averaged based on core-shell MIE theory. MIRAGE2,
WRF/Chem, and Caltech unified GCM predict RIs and optical properties using
Mie parametrizations that are function of wet surface mode radius and wet RI of
each mode. Volume mixing is assumed for all components, including insoluble
components. The main difference between Caltech unified GCM and MIRAGE2
(and WRF/Chem) is that Caltech unified GCM prescribes size distribution, but
MIRAGE?2? predicts it. In CAM3, RIs and optical properties are prescribed for each
aerosol type, size, and wavelength of the external mixtures.

Table 2.3 summarizes model treatments of cloud properties, reflecting the
levels of details in cloud microphysics treatments from the simplest in Caltech
unified GCM to the most sophistic in GATOR/GCMOM. GATOR/GCMOM uses
prognostic, multiple size distributions (typically three, for liquid, ice, and graupel),
each with 30 size sections. MIRAGE2 and WRF/Chem simulate bulk condensate in
single size distribution, with either a modal distribution (MIRAGE?2) or a sectional
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2 On-Line Coupled Meteorology and Chemistry Models in the US 27

distribution (WRF/Chem/MOSAIC). CAM3 treats bulk liquid and ice with the
same prognostic droplet size treatment as MIRAGE2. Caltech unified GCM treats
bulk liquid and ice with their distributions diagnosed from predicted cloud water
content. Among the five models, Caltech unified GCM is the only model that
prescribes cloud droplet number, which is predicted in the other four models.
CAM3, MIRAGE2, and WRF/Chem use the same treatment for droplet number,
with droplet nucleation parameterized by Abdul-Razzak and Ghan (2000). GATOR
treats prognostic, size- and composition-dependent cloud droplet number from
multiple aerosol size distributions. While an empirical relationship between sulfate
aerosols and CCN is commonly used in most atmospheric models, CCN is calcu-
lated from Kohler theory using the aerosol size distribution and hygroscopicity in
all models but Caltech unified GCM. Other than Caltech unified GCM that does not
treat CCN and Ice Deposition Nuclei (IDN), all other four models treat the
competition among different aerosol species for CCN but the hydrophobic species
are not activated in CAM3 since it assumes an external-mixture. Among the five
models, GATOR/GCMOM is the only model that simulates composition of IDN.
MIARGE and CAM use a prognostic parametrization in terms of cloud water, ice
mass, and number to predict cloud radiative properties. WRF/Chem also uses the
same method but with sectional approach. Caltech unified GCM simulates cloud
optical properties based on MIE theory and prescribed Gamma distribution for
liquid clouds. GATOR/GCMOM simulates volume-average cloud RIs and optical
properties based on MIE theory and an iterative dynamic effective medium approx-
imation (DEMA) to account for multiple BC inclusions within clouds. The DEMA
is superior to classic effective-medium approximation that is used by several
mixing rules such as the volume-average RI mixing rule (Jacobson 2006).

Table 2.4 shows model treatments of aerosol chemistry and microphysics that
differ in many aspects. For example, Caltech unified GCM treats aerosol thermo-
dynamics only, the rest of models treat both aerosol thermodynamics and dynamics
such as coagulation and new particle formation via homogeneous nucleation. The
degree of complexity varies in terms of number of species and reactions treated and
assumptions made in the inorganic aerosol thermodynamic modules used in those
models. The simplest module, MARS-A, is used in WRF/Chem/MADE/SORGAM,
and the most comprehensive module, EQUISOLYV II, is used in GATOR/GCMOM.
For secondary organic aerosol (SOA) formation, both CAM3 and MIRAGE2
use prescribed aerosol yields for a few condensable volatile organic compounds
(VOCs), which is the simplest, computationally most efficient approach but it
does not provide a mechanistic understanding of SOA formation. GATOR/
GCMOM simulates SOA formation from 10 to 40 classes VOCs via condensation
and dissolution based on Henry’s law. Caltech unified GCM simulates SOA
formation based on a reversible absorption of five classes of biogenic VOCs and
neglects that from anthropogenic VOCs. In MADE/SORGAM in WRF/Chem,
SOA formation via reversible absorption of eight classes VOCs is simulated
based on Caltech smog-chamber data. Two approaches are used to simulate SOA
formation in WRF/Chem/MADRID (Zhang et al. 2004). MADRID 1 uses an
absorptive approach for 14 parent VOCs and 38 SOA species. MADRID 2 combines
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30 Y. Zhang

absorption and dissolution approaches to simulate an external mixture of 42
hydrophilic and hydrophobic VOCs. SOA formation in not treated in MOSAIC.
Coagulation is currently not treated in CAM3 but simulated with a modal approach
in MIRAGE?2, sectional approach in GATOR/GCMOM, and both in WRF/Chem/
MADE/SORGAM and MOSIAC. Different from other model treatments, GATOR
accounts for van der Waals, viscous forces, and fractal geometry in simulating
coagulation among particles from multiple size distributions (Jacobson and Seinfeld
2004). For gas/particle mass transfer, CAM3 and Caltech unified GCM use the
simplest full equilibrium approach. MIRAGE2 uses a dynamic approach for H,SO,
and MSA. GATOR/GCMOM uses a computationally-efficient dynamic approach
with a long time step (150-300 s) (PNG/EQUISOLV II) for all treated species
(Jacobson 2005). In WRF/Chem, a full equilibrium approach is used for HNO; and
NH; in MADE/SORGAM, a dynamic approach is used in MOSAIC. MADRID
offers three approaches: full equilibrium, dynamic, and hybrid; their performance
has been evaluated in Zhang et al. (1999, 2010a) and Hu et al. (2008). Hu et al.
(2008) have shown that the bulk equilibrium approach is computationally-efficient
but less accurate, whereas the kinetic approach predicts the most accurate solutions
but typically with higher CPUs.

Table 2.5 summarizes the treatments of aerosol—cloud interactions and cloud
processes. Aerosol activation by cloud droplets to form CCN is an important process
affecting simulations of aerosol—cloud interactions, and aerosol direct and indirect
forcing. CAM uses empirical, prescribed activated mass fraction for bulk CCN.
MIRAGE and WRF/Chem use a mechanistic, parameterized activation module that
is based on Kohler theory to simulate bulk CCN. Important parameters for activation
such as the peak supersaturation, S,,,,, mass of activated aerosols, and the size of the
smallest aerosol activated are calculated using a parametrization of Abdul-Razzak
et al. (1998) and Abdul-Razzak and Ghan (2000) that relate the aerosol number
activated directly to fundamental aerosol properties. GATOR/GCMOM also simu-
lates a mechanistic, size- and composition-resolved CCN/IDN based on Kohler
theory. One difference between the treatments in GATOR/GCMOM and MIRAGE
is that the MIRAGE activation parametrization neglects size-dependence of the
water vapor diffusivity coefficient and mass transfer coefficient, which may lead
to an underestimation of cloud droplet number concentration. In addition, the
equilibrium Kohler theory may be inappropriate for larger particles due to the kinetic
effect (i.e., mass transfer limitation). Such size-dependence and kinetic effect are
accounted for in GATOR/GCMOM. A more detailed description of US integrated
models along with example case studies can be found in Zhang (2008).

2.4 Major Challenges and Future Directions

Significant progress has been made in the past two decades in the development of
on-line coupled climate- (or meteorology-) chemistry and their applications for
modelling global/regional climate, meteorology, and air quality, as well as the
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entire earth system. Several major challenges exist. First, accurately representing
climate—aerosol-chemistry—cloud-radiation feedbacks in 3D climate- or meteorol-
ogy-chemistry models at all scales will remain a major scientific challenge in
developing a future generation of coupled models. There is a critical need for
advancing the scientific understanding of key processes. Second, representing
scientific complexity within the computational constraint will continue to be a
technical challenge. Key issues include (1) the development of benchmark model
and simulation and the use of available measurements to characterize model biases,
uncertainties, and sensitivity and to develop bias-correction techniques (e.g., chem-
ical data assimilation); (2) the optimization/parametrization of model algorithms
with an acceptable accuracy. Third, integrated model evaluation and improvement
and laboratory/field studies for an improved understanding of major properties/
processes will also pose significant challenges, as they involve researchers from
multiple disciplinaries and require a multidisciplinary and/or interdisciplinary
approach. Key issues include (1) continuous operation of monitoring networks
and remote sensing instrument to provide real-time data (e.g., AirNow and Satel-
lite) for data assimilation/model evaluation and (2) the development of process-
oriented models to isolate complex feedbacks among various modules/processes in
on-line-coupled models. Finally, a unified modelling system that allows a single
platform to operate over the full scale will represent a substantial advancement in
both the science and the computational efficiency. Major challenges include glob-
alization/downscaling with consistent model physics and two-way nesting with
mass conservation and consistency. Such a unified global-to-urban scale modelling
system will provide a new scientific capability for studying important problems that
require a consideration of multi-scale feedbacks.
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Appendix — List of Acronyms and Symbols

Acronym Definition

3D Three-dimensional

APC The analytical predictor of condensation
ASTEEM The adaptive step time-split explicit Euler method
BC Black carbon

CAM3 The community atmospheric model v. 3

(continued)
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Acronym Definition

CBO05 The 2005 version of carbon bond mechanism

CBM-EX The Stanford University’s extended carbon bond mechanism

CBM-Z The Carbon-bond mechanism version Z

CCM The NCAR community climate model

CCN Cloud condensation nuclei

CFCs Chlorofluorocarbons

CH,4 Methane

CMAQ The EPA’s community multiple air quality

CMU Carnegie Mellon University

CcO Carbon monoxide

CO, Carbon dioxide

CTMs Chemical transport models

DEMA The iterative dynamic effective medium approximation

DMS Dimethyl sulfide

EQUISOLV II The EQUIlibrium SOLVer version 2

EPA The US Environmental Protection Agency

GCM General circulation model

GATORG The Gas, Aerosol, TranspOrt, Radiation, and General circulation model

GATOR/GCMOM The Gas, Aerosol, TranspOrt, Radiation, General Circulation,
Mesoscale, Ocean Model

GATOR/MMTD (or The gas, aerosol, transport, and radiation air quality model/a mesoscale

GATORM) meteorological and tracer dispersion model

GChM The PNNL global chemistry model

H,O Water

H,SOy4 Sulfuric acid

IDN Ice deposition nuclei

ISORROPIA “Equilibrium” in Greek, refers to The ISORROPIA thermodynamic
module

MADE/SORGAM The Modal Aerosol Dynamics Model for Europe (MADE) with the
secondary organic aerosol model (SORGAM)

MADRID The model of aerosol dynamics, reaction, ionization, and dissolution

MARS-A The model for an aerosol reacting system (MARS) —version A

MCCM (or MM5/ The multiscale climate chemistry model

Chem)

MESA The multicomponent equilibrium solver for aerosols

MMS5 The Penn State University (PSU)/NCAR mesoscale model

MIRAGE The model for integrated research on atmospheric global exchanges

MOSAIC The model for simulating aerosol interactions and chemistry

MOZART4 The model for ozone and related chemical tracers version 4

MSA Methane sulfonic acid

MTEM The multicomponent Taylor expansion method

NCAR The National Center for Atmospheric Research

NH4NO;3 Ammonium nitrate

(NHy4),S04 Ammonium sulfate

NO; Nitrate radical

NOy Nitrogen oxides

N,O Nitrous oxide

NOAA The national oceanic and atmospheric administration

05 Ozone

oC Organic carbon

PM, 5 Particles with aerodynamic diameters less than or equal to 2.5 pm

(continued)
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Acronym Definition

PNNL The Pacific Northwest national laboratory

Q, Water vapor

RACM The regional atmospheric chemistry mechanism

RADM2 The gas-phase chemical mechanism of Regional Acid Deposition
Model, version 2

RIs Refractive indices

SAV) Dissolved sulfur compounds with oxidation state IV

SOA Secondary organic aerosol

STAR The US EPA-science to achieve results program

UCLA/GCM The University of Los Angeles general circulation model

vVOC Volatile organic compound

WRF/Chem The weather research forecast model with chemistry

ZSR Zdanovskii-Stokes-Robinson
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