
Chapter 1
Introduction

Abstract In this chapter, we give a brief introduction to learning to rank for infor-
mation retrieval. Specifically, we first introduce the ranking problem by taking doc-
ument retrieval as an example. Second, conventional ranking models proposed in
the literature of information retrieval are reviewed, and widely used evaluation mea-
sures for ranking are mentioned. Third, the motivation of using machine learning
technology to solve the problem of ranking is given, and existing learning-to-rank
algorithms are categorized and briefly depicted.

1.1 Overview

With the fast development of the Web, every one of us is experiencing a flood of
information. A study1 conducted in 2005 estimated the World Wide Web to contain
11.5 billion pages by January 2005. In the same year, Yahoo!2 announced that its
search engine index contained more than 19.2 billion documents. It was estimated
by http://www.worldwidewebsize.com/ that there were about 25 billion pages in-
dexed by major search engines as of October 2008. Recently, the Google blog3

reported that about one trillion web pages have been seen during their crawling and
indexing. According to the above information, we can see that the number of web-
pages is growing very fast. Actually, the same story also happens to the number of
websites. According to a report,4 the evolution of websites from 2000 to 2007 is
shown in Fig. 1.1.

The extremely large size of the Web makes it generally impossible for common
users to locate their desired information by browsing the Web. As a consequence,
efficient and effective information retrieval has become more important than ever,
and the search engine (or information retrieval system) has become an essential tool
for many people.

A typical search engine architecture is shown in Fig. 1.2. As can be seen from the
figure, there are in general six major components in a search engine: crawler, parser,

1http://www.cs.uiowa.edu/~asignori/web-size/.
2http://www.iht.com/articles/2005/08/15/business/web.php.
3http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html.
4http://therawfeed.com/.
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Fig. 1.1 Number of websites

Fig. 1.2 Search engine
overview

indexer, link analyzer, query processor, and ranker. The crawler collects webpages
and other documents from the Web, according to some prioritization strategies. The
parser analyzes these documents and generates index terms and a hyperlink graph
for them. The indexer takes the output of the parser and creates the indexes or data
structures that enable fast search of the documents. The link analyzer takes the Web
graph as input, and determines the importance of each page. This importance can
be used to prioritize the recrawling of a page, to determine the tiering, and to serve
as a feature for ranking. The query processor provides the interface between users
and search engines. The input queries are processed (e.g., removing stop words,
stemming, etc.) and transformed to index terms that are understandable by search
engines. The ranker, which is a central component, is responsible for the matching
between processed queries and indexed documents. The ranker can directly take
the queries and documents as inputs and compute a matching score using some
heuristic formulas, and can also extract some features for each query-document pair
and combine these features to produce the matching score.
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Partly because of the central role of ranker in search engines, great attention
has been paid to the research and development of ranking technologies. Note that
ranking is also the central problem in many other information retrieval applications,
such as collaborative filtering [30], question answering [3, 71, 79, 83], multimedia
retrieval [86, 87], text summarization [53], and online advertising [16, 49]. In this
book, we will mainly take document retrieval in search as an example. Note that
even document retrieval is not a narrow task. There are many different ranking sce-
narios of interest for document retrieval. For example, sometimes we need to rank
documents purely according to their relevance with regards to the query. In some
other cases, we need to consider the relationships of similarity [73], website struc-
ture [22], and diversity [91] between documents in the ranking process. This is also
referred to as relational ranking [61].

To tackle the problem of document retrieval, many heuristic ranking models have
been proposed and used in the literature of information retrieval. Recently, given
the amount of potential training data available, it has become possible to leverage
machine learning technologies to build effective ranking models. Specifically, we
call those methods that learn how to combine predefined features for ranking by
means of discriminative learning “learning-to-rank” methods.

In recent years, learning to rank has become a very hot research direction in
information retrieval. First, a large number of learning-to-rank papers have been
published at top conferences on machine learning and information retrieval. Exam-
ples include [4, 7–10, 15, 18, 20, 21, 25, 26, 31, 37, 44, 47, 55, 58, 62, 68, 72, 76,
82, 88, 89]. There have been multiple sessions in recent SIGIR conferences ded-
icated for the topic on learning to rank. Second, benchmark datasets like LETOR
[48] have been released to facilitate the research on learning to rank.5 Many re-
search papers on learning to rank have used these datasets for their experiments,
which make their results easy to compare. Third, several activities regarding learn-
ing to rank have been organized. For example, the workshop series on Learning to
Rank for Information Retrieval (2007–2009), the workshop on Beyond Binary Rel-
evance: Preferences, Diversity, and Set-Level Judgments (2008), and the workshop
on Redundancy, Diversity, and Interdependent Document Relevance (2009) have
been organized at SIGIR. A special issue on learning to rank has been organized at
Information Retrieval Journal (2009). In Table 1.1, we have listed the major activ-
ities regarding learning to rank in recent years. Active participation of researchers
in these activities has demonstrated the continued interest from the research com-
munity on the topic of learning to rank. Fourth, learning to rank has also become
a key technology in the industry. Several major search engine companies are using
learning-to-rank technologies to train their ranking models.6

When a research area comes to this stage, several questions as follows naturally
arise.

5http://research.microsoft.com/~LETOR/.
6http://glinden.blogspot.com/2005/06/msn-search-and-learning-to-rank.html,
http://www.ysearchblog.com/2008/07/09/boss-the-next-step-in-our-open-search-ecosystem/.

http://research.microsoft.com/~LETOR/
http://glinden.blogspot.com/2005/06/msn-search-and-learning-to-rank.html
http://www.ysearchblog.com/2008/07/09/boss-the-next-step-in-our-open-search-ecosystem/
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Table 1.1 Recent events on learning to rank

Year Event

2010 SIGIR Tutorial on Learning to Rank for Information Retrieval
Given by Tie-Yan Liu
Learning to Rank Challenge
Organized by Yahoo! Labs
Microsoft Learning to Rank Dataset
Released by Microsoft Research Asia
ICML Workshop on Learning to Rank
Organized by Olivier Chapelle, Yi Chang, and Tie-Yan Liu

2009 Special Issue on Learning to Rank at Information Retrieval Journal
Edited by Tie-Yan Liu, Thorsten Joachims, Hang Li, and Chengxiang Zhai
NIPS Workshop on Learning with Orderings
Organized by Tiberio Caetano, Carlos Guestrin, Jonathan Huang, Guy Lebanon,
Risi Kondor, and Marina Meila
NIPS Workshop on Advances in Ranking
Organized by Shivani Agarwal, Chris J.C. Burges, and Koby Crammer
SIGIR Workshop on Redundancy, Diversity, and Interdependent Document Relevance
Organized by Paul N. Bennett, Ben Carterette, Thorsten Joachims, and Filip Radlinski
SIGIR Workshop on Learning to Rank for Information Retrieval
Organized by Hang Li, Tie-Yan Liu, and ChengXiang Zhai
LETOR Dataset 4.0
Released by Microsoft Research Asia
ACL-IJNLP Tutorial on Learning to Rank
Given by Hang Li
WWW Tutorial on Learning to Rank for Information Retrieval
Given by Tie-Yan Liu
ICML Tutorial on Machine Learning in Information Retrieval: Recent Successes and New
Opportunities
Given by Paul Bennett, Misha Bilenko, and Kevyn Collins-Thompson

2008 SIGIR Workshop on Learning to Rank for Information Retrieval
Organized by Hang Li, Tie-Yan Liu, and ChengXiang Zhai
LETOR Dataset 3.0
Released by Microsoft Research Asia
SIGIR Tutorial on Learning to Rank for Information Retrieval
Given by Tie-Yan Liu
WWW Tutorial on Learning to Rank for Information Retrieval
Given by Tie-Yan Liu

2007 SIGIR Workshop on Learning to Rank for Information Retrieval
Organized by Thorsten Joachims, Hang Li, Tie-Yan Liu, and ChengXiang Zhai
WWW Tutorial on Learning to Rank in Vector Spaces and Social Networks
Given by Soumen Chakrabarti
LETOR Dataset 1.0 and 2.0
Released by Microsoft Research Asia

2006 ICML Workshop on Learning in Structured Output Space
Organized by Ulf Brefeld, Thorsten Joachims, Ben Taskar, and Eric P. Xing

2005 NIPS Workshop on Learning to Rank
Organized by Shivani Agarwal, Corinna Cortes, and Ralf Herbrich
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• In what respect are these learning-to-rank algorithms similar and in which aspects
do they differ? What are the strengths and weaknesses of each algorithm?

• Empirically speaking, which of those many learning-to-rank algorithms performs
the best?

• Theoretically speaking, is ranking a new machine learning problem, or can it
be simply reduced to existing machine learning problems? What are the unique
theoretical issues for ranking that should be investigated?

• Are there many remaining issues regarding learning to rank to study in the fu-
ture?

The above questions have been brought to the attention of the information re-
trieval and machine learning communities in a variety of contexts, especially during
recent years. The aim of this book is to answer these questions. Needless to say, the
comprehensive understanding of the task of ranking in information retrieval is the
first step to find the right answers. Therefore, we will first give a brief review of
ranking in information retrieval, and then formalize the problem of learning to rank
so as to set the stage for the upcoming detailed discussions.

1.2 Ranking in Information Retrieval

In this section, we will briefly review representative ranking models in the literature
of information retrieval, and introduce how these models are evaluated.

1.2.1 Conventional Ranking Models

In the literature of information retrieval, many ranking models have been proposed
[2]. They can be roughly categorized as relevance ranking models and importance
ranking models.

1.2.1.1 Relevance Ranking Models

The goal of a relevance ranking model is to produce a ranked list of documents ac-
cording to the relevance between these documents and the query. Although not nec-
essary, for ease of implementation, the relevance ranking model usually takes each
individual document as an input, and computes a score measuring the matching be-
tween the document and the query. Then all the documents are sorted in descending
order of their scores.

The early relevance ranking models retrieve documents based on the occurrences
of the query terms in the documents. Examples include the Boolean model [2]. Ba-
sically these models can predict whether a document is relevant to the query or not,
but cannot predict the degree of relevance.
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To further model the relevance degree, the Vector Space model (VSM) was pro-
posed [2]. Both documents and queries are represented as vectors in a Euclidean
space, in which the inner product of two vectors can be used to measure their sim-
ilarities. To get an effective vector representation of the query and the documents,
TF-IDF weighting has been widely used.7 The TF of a term t in a vector is defined
as the normalized number of its occurrences in the document, and the IDF of it is
defined as follows:

IDF(t) = log
N

n(t)
(1.1)

where N is the total number of documents in the collection, and n(t) is the number
of documents containing term t .

While VSM implies the assumption on the independence between terms, Latent
Semantic Indexing (LSI) [23] tries to avoid this assumption. In particular, Singular
Value Decomposition (SVD) is used to linearly transform the original feature space
to a “latent semantic space”. Similarity in this new space is then used to define the
relevance between the query and the documents.

As compared with the above, models based on the probabilistic ranking princi-
ple [50] have garnered more attention and achieved more success in past decades.
The famous ranking models like the BM25 model8 [65] and the language model
for information retrieval (LMIR), can both be categorized as probabilistic ranking
models.

The basic idea of BM25 is to rank documents by the log-odds of their relevance.
Actually BM25 is not a single model, but defines a whole family of ranking models,
with slightly different components and parameters. One of the popular instantiations
of the model is as follows.

Given a query q , containing terms t1, . . . , tM , the BM25 score of a document d

is computed as

BM25(d, q) =
M∑

i=1

IDF(ti) · TF(ti , d) · (k1 + 1)

TF(ti , d) + k1 · (1 − b + b · LEN(d)
avdl )

, (1.2)

where TF(t, d) is the term frequency of t in document d , LEN(d) is the length (num-
ber of words) of document d , and avdl is the average document length in the text
collection from which documents are drawn. k1 and b are free parameters, IDF(t)

is the IDF weight of the term t , computed by using (1.1), for example.
LMIR [57] is an application of the statistical language model on information

retrieval. A statistical language model assigns a probability to a sequence of terms.
When used in information retrieval, a language model is associated with a document.

7Note that there are many different definitions of TF and IDF in the literature. Some are purely
based on the frequency and the others include smoothing or normalization [70]. Here we just give
some simple examples to illustrate the main idea.
8The name of the actual model is BM25. In the right context, however, it is usually referred to as
“OKapi BM25”, since the OKapi system was the first system to implement this model.
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With query q as input, documents are ranked based on the query likelihood, or
the probability that the document’s language model will generate the terms in the
query (i.e., P(q|d)). By further assuming the independence between terms, one has
P(q|d) = ∏M

i=1 P(ti |d), if query q contains terms t1, . . . , tM .
To learn the document’s language model, a maximum likelihood method is used.

As in many maximum likelihood methods, the issue of smoothing the estimate is
critical. Usually a background language model estimated using the entire collection
is used for this purpose. Then, the document’s language model can be constructed
as follows:

p(ti |d) = (1 − λ)
TF(ti , d)

LEN(d)
+ λp(ti |C), (1.3)

where p(ti |C) is the background language model for term ti , and λ ∈ [0,1] is a
smoothing factor.

There are many variants of LMIR, some of them even go beyond the query like-
lihood retrieval model (e.g., the models based on K-L divergence [92]). We would
not like to introduce more about it, and readers are encouraged to read the tutorial
authored by Zhai [90].

In addition to the above examples, many other models have also been proposed
to compute the relevance between a query and a document. Some of them [74]
take the proximity of the query terms into consideration, and some others consider
the relationship between documents in terms of content similarity [73], hyperlink
structure [67], website structure [60], and topic diversity [91].

1.2.1.2 Importance Ranking Models

In the literature of information retrieval, there are also many models that rank doc-
uments based on their own importance. We will take PageRank as an example for
illustration. This model is particularly applicable to Web search because it makes
use of the hyperlink structure of the Web for ranking.

PageRank uses the probability that a surfer randomly clicking on links will arrive
at a particular webpage to rank the webpages. In the general case, the PageRank
value for any page du can be expressed as

PR(du) =
∑

dv∈Bu

PR(dv)

U(dv)
. (1.4)

That is, the PageRank value for a page du is dependent on the PageRank values
for each page dv out of the set Bu (containing all pages linking to page du), divided
by U(dv), the number of outlinks from page dv .

To get a meaningful solution to (1.4), a smoothing term is introduced. When a
random surfer walks on the link graph, she/he does not necessarily always follow the
existing hyperlinks. There is a small probability that she/he will jump to any other
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Fig. 1.3 Illustration of
PageRank

page uniformly. This small probability can be represented by (1 − α), where α is
called the damping factor. Accordingly, the PageRank model is refined as follows9:

PR(du) = α
∑

dv∈Bu

PR(dv)

U(dv)
+ (1 − α)

N
, (1.5)

where N is the total number of pages on the Web.
The above process of computing PageRank can be vividly illustrated by Fig. 1.3.

By using the above formula, it is not difficult to discover that the PageRank values
of the seven nodes in the graph are 0.304, 0.166, 0.141, 0.105, 0.179, 0.045, and
0.060, respectively. The sizes of the circles in the figure are used to represent the
PageRank values of the nodes.

Many algorithms have been developed in order to further improve the accuracy
and efficiency of PageRank. Some work focuses on the speed-up of the computation
[1, 32, 51], while others focus on the refinement and enrichment of the model. For
example, topic-sensitive PageRank [35] and query-dependent PageRank [64] intro-
duce topics and assume that the endorsement from a page belonging to the same
topic is larger than that from a page belonging to a different topic. Other variations
of PageRank include those modifying the ‘personalized vector’ [34], changing the
‘damping factor’ [6], and introducing inter-domain and intra-domain link weights
[46]. Besides, there is also some work on the theoretic issues of PageRank [5, 33].
Langville et al. [46] provide a good survey on PageRank and its related work.

Algorithms that can generate robust importance ranking against link spam have
also been proposed. For example, TrustRank [29] is an importance ranking algo-
rithm that takes into consideration the reliability of web pages when calculating the
importance of pages. In TrustRank, a set of reliable pages are first identified as seed
pages. Then the trust of a seed page is propagated to other pages on the web link
graph. Since the propagation in TrustRank starts from reliable pages, TrustRank can
be more spam-resistant than PageRank.

9If there are web pages without any inlinks (which is usually referred to as dangling nodes in the
graph), some additional heuristics is needed to avoid rank leak.
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1.2.2 Query-Level Position-Based Evaluations

Given the large number of ranking models as introduced in the previous subsection,
a standard evaluation mechanism is needed to select the most effective model.

Actually, evaluation has played a very important role in the history of informa-
tion retrieval. Information retrieval is an empirical science; and it has been a leader
in computer science in understanding the importance of evaluation and bench-
marking. Information retrieval has been well served by the Cranfield experimental
methodology [81], which is based on sharable document collections, information
needs (queries), and relevance assessments. By applying the Cranfield paradigm to
document retrieval, the corresponding evaluation process can be described as fol-
lows.

• Collect a large number of (randomly sampled) queries to form a test set.
• For each query q ,

– Collect documents {dj }mj=1 associated with the query.
– Get the relevance judgment for each document by human assessment.
– Use a given ranking model to rank the documents.
– Measure the difference between the ranking results and the relevance judgment

using an evaluation measure.
• Use the average measure on all the queries in the test set to evaluate the perfor-

mance of the ranking model.

As for collecting the documents associated with a query, a number of strategies
can be used. For example, one can simply collect all the documents containing the
query word. One can also choose to use some predefined rankers to get documents
that are more likely to be relevant. A popular strategy is the pooling method used in
TREC.10 In this method a pool of possibly relevant documents is created by taking
a sample of documents selected by the various participating systems. In particular,
the top 100 documents retrieved in each submitted run for a given query are selected
and merged into the pool for human assessment.

As for the relevance judgment, three strategies have been used in the literature.

1. Relevance degree: Human annotators specify whether a document is relevant or
not to the query (i.e., binary judgment), or further specify the degree of relevance
(i.e., multiple ordered categories, e.g., Perfect, Excellent, Good, Fair, or Bad).
Suppose for document dj associated with query q , we get its relevance judgment
as lj . Then for two documents du and dv , if lu � lv , we say that document du

is more relevant than document dv with regards to query q , according to the
relevance judgment.

2. Pairwise preference: Human annotators specify whether a document is more rel-
evant than the other with regards to a query. For example, if document du is
judged to be more relevant than document dv , we give the judgment lu,v = 1;

10http://trec.nist.gov/.

http://trec.nist.gov/
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otherwise, lu,v = −1. That is, this kind of judgment captures the relative prefer-
ence between documents.11

3. Total order: Human annotators specify the total order of the documents with
respect to a query. For the set of documents {dj }mj=1 associated with query q ,
this kind of judgment is usually represented as a certain permutation of these
documents, denoted as πl .

Among the aforementioned three kinds of judgments, the first kind is the most
popularly used judgment. This is partially because this kind of judgment is easy
to obtain. Human assessors only need to look at each individual document to pro-
duce the judgment. Comparatively, obtaining the third kind of judgment is the most
costly. Therefore, in this book, we will mostly use the first kind of judgment as an
example to perform the discussions.

Given the vital role that relevance judgments play in a test collection, it is impor-
tant to assess the quality of the judgments. In previous practices like TREC, both the
completeness and the consistency of the relevance judgments are of interest. Com-
pleteness measures the degree to which all the relevant documents for a topic have
been found; consistency measures the degree to which the assessor has marked all
the “truly” relevant documents as relevant and the “truly” irrelevant documents as
irrelevant.

Since manual judgment is always time consuming, it is almost impossible to
judge all the documents with regards to a query. Consequently, there are always
unjudged documents returned by the ranking model. As a common practice, one
regards the unjudged documents as irrelevant in the evaluation process.

With the relevance judgment, several evaluation measures have been proposed
and used in the literature of information retrieval. It is clear that understanding these
measures will be very important for learning to rank, since to some extent they
define the “true” objective function of ranking. Below we list some popularly used
measures. In order to better understand these measures, we use the example shown
in Fig. 1.4 to perform some quantitative calculation with respect to each measure.
In the example, there are three documents retrieved for the query “learning to rank”,
and binary judgment on the relevance of each document is provided.

Most of the evaluation measures are defined first for each query, as a function of
the ranked list π given by the ranking model and the relevance judgment. Then the
measures are averaged over all the queries in the test set.

As will be seen below, the maximum values for some evaluation measures, such
as MRR, MAP, and NDCG are one. Therefore, we can consider one minus these
measures (e.g., (1 − MRR), (1 − NDCG), and (1 − MAP)) as ranking errors. For
ease of reference, we call them measure-based ranking errors.

Mean Reciprocal Rank (MRR) For query q , the rank position of its first relevant
document is denoted as r1. Then 1

r1
is defined as MRR for query q . It is clear that

documents ranked below r1 are not considered in MRR.

11This kind of judgment can also be mined from click-through logs of search engines [41, 42, 63].
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Fig. 1.4 Retrieval result for
query “learning to rank”

Consider the example as shown in Fig. 1.4. Since the first document in the re-
trieval result is relevant, r1 = 1. Therefore, MRR for this query equals 1.

Mean Average Precision (MAP) To define MAP [2], one needs to define Preci-
sion at position k (P @k) first. Suppose we have binary judgment for the documents,
i.e., the label is one for relevant documents and zero for irrelevant documents. Then
P @k is defined as

P @k(π, l) =
∑

t≤k I{l
π−1(t)

=1}
k

, (1.6)

where I{·} is the indicator function, and π−1(j) denotes the document ranked at
position j of the list π .

Then the Average Precision (AP) is defined by

AP(π, l) =
∑m

k=1 P @k · I{l
π−1(k)

=1}
m1

, (1.7)

where m is the total number of documents associated with query q , and m1 is the
number of documents with label one.

The mean value of AP over all the test queries is called mean average precision
(MAP).

Consider the example as shown in Fig. 1.4. Since the first document in the re-
trieval result is relevant, it is clear P @1 = 1. Because the second document is irrel-
evant, we have P @2 = 1

2 . Then for P @3, since the third document is relevant, we
obtain P @3 = 2

3 . Then AP = 1
2 (1 + 2

3 ) = 5
6 .

Discounted Cumulative Gain (DCG) DCG [39, 40] is an evaluation measure
that can leverage the relevance judgment in terms of multiple ordered categories,
and has an explicit position discount factor in its definition. More formally, suppose
the ranked list for query q is π , then DCG at position k is defined as follows:

DCG@k(π, l) =
k∑

j=1

G(lπ−1(j))η(j), (1.8)

where G(·) is the rating of a document (one usually sets G(z) = (2z − 1)), and η(j)

is a position discount factor (one usually sets η(j) = 1/ log(j + 1)).
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By normalizing DCG@k with its maximum possible value (denoted as Zk), we
will get another measure named Normalized DCG (NDCG). That is,

NDCG@k(π, l) = 1

Zk

k∑

j=1

G(lπ−1(j))η(j). (1.9)

It is clear that NDCG takes values from 0 to 1.
If we want to consider all the labeled documents (whose number is m) to compute

NDCG, we will get NDCG@m (and sometimes NDCG for short).
Consider the example as shown in Fig. 1.4. It is easy to see that DCG@3 = 1.5,

and Z3 = 1.63. Correspondingly, NDCG = NDCG@3 = 1.5
1.63 = 0.92.

Rank Correlation (RC) The correlation between the ranked list given by the
model (denoted as π ) and the relevance judgment (denoted as πl) can be used as a
measure. For example, when the weighted Kendall’s τ [43] is used, the rank correla-
tion measures the weighted pairwise inconsistency between two lists. Its definition
is given by

τK(π,πl) =
∑

u<v wu,v(1 + sgn((π(u) − π(v))(πl(u) − πl(v))))

2
∑

u<v wu,v

, (1.10)

where wu,v is the weight, and π(u) means the rank position of document du in a
permutation π .

Note that the above rank correlation is defined with the assumption that the judg-
ment is given as total order πl . When the judgments are in other forms, we need
to introduce the concept of an equivalent permutation set to generalize the above
definition. That is, there will be multiple permutations that are consistent with the
judgment in terms of relevance degrees or pairwise preferences. The set of such
permutations is called the equivalent permutation set, denoted as Ωl .

Specifically, for the judgment in terms of relevance degree, the equivalent per-
mutation set is defined as follows.

Ωl = {πl |u < v, if l
π−1

l (u)
� l

π−1
l (v)

}.

Similarly, for the judgment in terms of pairwise preferences, Ωl is defined as
below.

Ωl = {πl |u < v, if l
π−1

l (u),π−1
l (v)

= 1}.

Then, we can refine the definition of weighted Kendall’s τ as follows.

τK(π,Ωl) = max
πl∈Ωl

τK(π,πl). (1.11)

Consider the example as shown in Fig. 1.4. It is clear that there are multiple
permutations consistent with the labels: (1, 3, 2) and (3, 1, 2). Since the ranking
result is (1, 2, 3), it is not difficult to compute that the τK between (1, 2, 3) and
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(1, 3, 2) is 2
3 and the τK between (1, 2, 3) and (3, 1, 2) is 1

3 . Therefore, we can
obtain that τK(π,Ωl) = 2

3 in this case.
To summarize, there are some common properties in these evaluation mea-

sures.12

1. All these evaluation measures are calculated at the query level. That is, first the
measure is computed for each query, and then averaged over all queries in the test
set. No matter how poorly the documents associated with a particular query are
ranked, it will not dominate the evaluation process since each query contributes
similarly to the average measure.

2. All these measures are position based. That is, rank position is explicitly used.
Considering that with small changes in the scores given by a ranking model, the
rank positions will not change until one document’s score passes another, the
position-based measures are usually discontinuous and non-differentiable with
regards to the scores. This makes the optimization of these measures quite diffi-
cult. We will conduct more discussions on this in Sect. 4.2.

Note that although when designing ranking models, many researchers have taken
the assumption that the ranking models can assign a score to each query-document
pair independently of other documents; when performing evaluation, all the docu-
ments associated with a query are considered together. Otherwise, one cannot deter-
mine the rank position of a document and the aforementioned measures cannot be
defined.

1.3 Learning to Rank

Many ranking models have been introduced in the previous section, most of which
contain parameters. For example, there are parameters k1 and b in BM25 (see (1.2)),
parameter λ in LMIR (see (1.3)), and parameter α in PageRank (see (1.5)). In order
to get a reasonably good ranking performance (in terms of evaluation measures), one
needs to tune these parameters using a validation set. Nevertheless, parameter tuning
is far from trivial, especially considering that evaluation measures are discontinuous
and non-differentiable with respect to the parameters. In addition, a model perfectly
tuned on the validation set sometimes performs poorly on unseen test queries. This
is usually called over-fitting. Another issue is regarding the combination of these
ranking models. Given that many models have been proposed in the literature, it is
natural to investigate how to combine these models and create an even more effective
new model. This is, however, not straightforward either.

12Note that this is not a complete introduction of evaluation measures for information retrieval.
There are several other measures proposed in the literature, some of which even consider the nov-
elty and diversity in the search results in addition to the relevance. One may want to refer to [2, 17,
56, 91] for more information.
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While information retrieval researchers were suffering from these problems, ma-
chine learning has been demonstrating its effectiveness in automatically tuning pa-
rameters, in combining multiple pieces of evidence, and in avoiding over-fitting.
Therefore, it seems quite promising to adopt machine learning technologies to solve
the aforementioned problems in ranking.

1.3.1 Machine Learning Framework

In many machine learning researches (especially discriminative learning), attention
has been paid to the following key components.13

1. The input space, which contains the objects under investigation. Usually objects
are represented by feature vectors, extracted according to different applications.

2. The output space, which contains the learning target with respect to the input
objects. There are two related but different definitions of the output space in
machine learning.14 The first is the output space of the task, which is highly
dependent on the application. For example, in regression, the output space is
the space of real numbers R; in classification it is the set of discrete categories
{1,2, . . . ,K}. The second is the output space to facilitate the learning process.
This may differ from the output space of the task. For example, when one uses
regression technologies to solve the problem of classification, the output space
that facilitates learning is the space of real numbers but not discrete categories.

3. The hypothesis space, which defines the class of functions mapping the input
space to the output space. That is, the functions operate on the feature vectors
of the input objects, and make predictions according to the format of the output
space.

4. In order to learn the optimal hypothesis, a training set is usually used, which
contains a number of objects and their ground truth labels, sampled from the
product of the input and output spaces. The loss function measures to what de-
gree the prediction generated by the hypothesis is in accordance with the ground
truth label. For example, widely used loss functions for classification include the
exponential loss, the hinge loss, and the logistic loss. It is clear that the loss func-
tion plays a central role in machine learning, since it encodes the understanding
of the target application (i.e., what prediction is correct and what is not). With
the loss function, an empirical risk can be defined on the training set, and the op-
timal hypothesis is usually (but not always) learned by means of empirical risk
minimization.

We plot the relationship between these four components in Fig. 1.5 for ease of
understanding.

13For a more comprehensive introduction to the machine learning literature, please refer to [54].
14In this book, when we mention the output space, we mainly refer to the second type.
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Fig. 1.5 Machine learning
framework

1.3.2 Definition of Learning to Rank

In recent years, more and more machine learning technologies have been used to
train the ranking model, and a new research area named “learning to rank” has
gradually emerged. Especially in the past several years, learning to rank has become
one of the most active research areas in information retrieval.

In general, we call all those methods that use machine learning technologies to
solve the problem of ranking “learning-to-rank” methods.15 Examples include the
work on relevance feedback16 [24, 66] and automatically tuning the parameters of
existing information retrieval models [36, 75]. However, most of the state-of-the-art
learning-to-rank algorithms learn the optimal way of combining features exacted
from query-document pairs through discriminative training. Therefore, in this book
we define learning to rank in a more narrow and specific way to better summarize
these algorithms. That is, we call those ranking methods that have the following two
properties learning-to-rank methods.

Feature Based “Feature based” means that all the documents under investigation
are represented by feature vectors,17 reflecting the relevance of the documents to the
query. That is, for a given query q , its associated document d can be represented by a
vector x = Φ(d,q), where Φ is a feature extractor. Typical features used in learning
to rank include the frequencies of the query terms in the document, the outputs of
the BM25 model and the PageRank model, and even the relationship between this
document and other documents. These features can be extracted from the index of a

15In the literature of machine learning, there is a topic named label ranking. It predicts the ranking
of multiple class labels for an individual document, but not the ranking of documents. In this regard,
it is largely different from the task of ranking for information retrieval.
16We will make further discussions on the relationship between relevance feedback and learning
to rank in Chap. 2.
17Note that, in this book, when we refer to a document, we will not use d any longer. Instead, we
will directly use its feature representation x. Furthermore, since our discussions will focus more on
the learning process, we will always assume the features are pre-specified, and will not purposely
discuss how to extract them.
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search engine (see Fig. 1.2). If one wants to know more about widely used features,
please refer to Tables 10.2 and 10.3 in Chap. 10.

Even if a feature is the output of an existing retrieval model, in the context of
learning to rank, one assumes that the parameter in the model is fixed, and only
the optimal way of combining these features is learned. In this sense, the previous
works on automatically tuning the parameters of existing models [36, 75] are not
categorized as “learning-to-rank” methods.

The capability of combining a large number of features is an advantage of
learning-to-rank methods. It is easy to incorporate any new progress on a retrieval
model by including the output of the model as one dimension of the features. Such a
capability is highly demanding for real search engines, since it is almost impossible
to use only a few factors to satisfy the complex information needs of Web users.

Discriminative Training “Discriminative training” means that the learning pro-
cess can be well described by the four components of discriminative learning as
mentioned in the previous subsection. That is, a learning-to-rank method has its
own input space, output space, hypothesis space, and loss function.

In the literature of machine learning, discriminative methods have been widely
used to combine different kinds of features, without the necessity of defining a prob-
abilistic framework to represent the generation of objects and the correctness of pre-
diction. In this sense, previous works that train generative ranking models are not
categorized as “learning-to-rank” methods in this book. If one has interest in such
works, please refer to [45, 52, 93], etc.

Discriminative training is an automatic learning process based on the training
data. This is also highly demanding for real search engines, because everyday these
search engines will receive a lot of user feedback and usage logs. It is very impor-
tant to automatically learn from the feedback and constantly improve the ranking
mechanism.

Due to the aforementioned two characteristics, learning to rank has been widely
used in commercial search engines,18 and has also attracted great attention from the
academic research community.

1.3.3 Learning-to-Rank Framework

Figure 1.6 shows the typical “learning-to-rank” flow. From the figure we can see that
since learning to rank is a kind of supervised learning, a training set is needed. The
creation of a training set is very similar to the creation of the test set for evaluation.
For example, a typical training set consists of n training queries qi (i = 1, . . . , n),
their associated documents represented by feature vectors x(i) = {x(i)

j }m(i)

j=1 (where

18See http://blog.searchenginewatch.com/050622-082709, http://blogs.msdn.com/msnsearch/
archive/2005/06/21/431288.aspx, and http://glinden.blogspot.com/2005/06/msn-search-and-
learning-to-rank.html.

http://blog.searchenginewatch.com/050622-082709
http://blogs.msdn.com/msnsearch/archive/2005/06/21/431288.aspx
http://blogs.msdn.com/msnsearch/archive/2005/06/21/431288.aspx
http://glinden.blogspot.com/2005/06/msn-search-and-learning-to-rank.html
http://glinden.blogspot.com/2005/06/msn-search-and-learning-to-rank.html
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Fig. 1.6 Learning-to-rank framework

m(i) is the number of documents associated with query qi ), and the corresponding
relevance judgments.19 Then a specific learning algorithm is employed to learn the
ranking model (i.e., the way of combining the features), such that the output of the
ranking model can predict the ground truth label in the training set20 as accurately as
possible, in terms of a loss function. In the test phase, when a new query comes in,
the model learned in the training phase is applied to sort the documents and return
the corresponding ranked list to the user as the response to her/his query.

Many learning-to-rank algorithms can fit into the above framework. In order to
better understand them, we perform a categorization on these algorithms. In partic-
ular, we group the algorithms, according to the four pillars of machine learning, into
three approaches: the pointwise approach, the pairwise approach, and the listwise
approach. Different approaches model the process of learning to rank in different
ways. That is, they may define different input and output spaces, use different hy-
potheses, and employ different loss functions.

19Please distinguish the judgment for evaluation and the judgment for constructing the training set,
although the process may be very similar.
20Hereafter, when we mention the ground-truth labels in the remainder of the book, we will mainly
refer to the ground-truth labels in the training set, although we assume every document will have
its intrinsic label, no matter whether it is judged or not.
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1.3.3.1 The Pointwise Approach

The input space of the pointwise approach contains a feature vector of each single
document.

The output space contains the relevance degree of each single document. Differ-
ent kinds of judgments can be converted to ground truth labels in terms of relevance
degree:

• If the judgment is directly given as relevance degree lj , the ground truth label for
document xj is defined as yj = lj .

• If the judgment is given as pairwise preference lu,v , one can get the ground truth
label by counting the frequency of a document beating other documents.

• If the judgment is given as the total order πl , one can get the ground truth label
by using a mapping function. For example, the position of the document in πl can
be used as the ground truth.

The hypothesis space contains functions that take the feature vector of a docu-
ment as input and predict the relevance degree of the document. We usually call
such a function f the scoring function. Based on the scoring function, one can sort
all the documents and produce the final ranked list.

The loss function examines the accurate prediction of the ground truth label for
each single document. In different pointwise ranking algorithms, ranking is mod-
eled as regression, classification, and ordinal regression, respectively (see Chap. 2).
Therefore the corresponding regression loss, classification loss, and ordinal regres-
sion loss are used as the loss functions.

Example algorithms belonging to the pointwise approach include [13–15, 19–21,
26, 28, 44, 47, 55, 68, 78]. We will introduce some of them in Chap. 2.

Note that the pointwise approach does not consider the inter-dependency between
documents, and thus the position of a document in the final ranked list is invisible
to its loss function. Furthermore, the approach does not make use of the fact that
some documents are actually associated with the same query. Considering that most
evaluation measures for information retrieval are query level and position based, the
pointwise approach has its limitations.

1.3.3.2 The Pairwise Approach

The input space of the pairwise approach contains pairs of documents, both repre-
sented by feature vectors.

The output space contains the pairwise preference (which takes values from
{+1,−1}) between each pair of documents. Different kinds of judgments can be
converted to ground truth labels in terms of pairwise preferences:

• If the judgment is given as relevance degree lj , then the pairwise preference for
(xu, xv) can be defined as yu,v = 2 · I{lu�lv} − 1.

• If the judgment is given directly as pairwise preference, then it is straightforward
to set yu,v = lu,v .
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• If the judgment is given as the total order πl , one can define yu,v = 2 ·
I{πl(u)<πl(v)} − 1.

The hypothesis space contains bi-variate functions h that take a pair of documents
as input and output the relative order between them. While some pairwise ranking
algorithms directly define their hypotheses as such [18], in some other algorithms,
the hypothesis is defined with a scoring function f for simplicity, i.e., h(xu, xv) =
2 · I{f (xu)>f (xv)} − 1.

The loss function measures the inconsistency between h(xu, xv) and the ground
truth label yu,v . In many pairwise ranking algorithms, ranking is modeled as a pair-
wise classification, and the corresponding classification loss on a pair of documents
is used as the loss function. When scoring function f is used, the classification
loss is usually expressed in terms of the difference (f (xu) − f (xv)), rather than the
thresholded quantity h(xu, xv).

Example algorithms belonging to the pairwise approach include [8, 18, 25, 27,
37, 41, 69, 76, 94, 95]. We will introduce some of them in Chap. 3.

Note that the loss function used in the pairwise approach only considers the rel-
ative order between two documents. When one looks at only a pair of documents,
however, the position of the documents in the final ranked list can hardly be derived.
Furthermore, the approach ignores the fact that some pairs are generated from the
documents associated with the same query. Considering that most evaluation mea-
sures for information retrieval are query level and position based, we can see a gap
between this approach and ranking for information retrieval.

1.3.3.3 The Listwise Approach

The input space of the listwise approach contains a set of documents associated with
query q , e.g., x = {xj }mj=1.

The output space of the listwise approach contains the ranked list (or permuta-
tion) of the documents. Different kinds of judgments can be converted to ground
truth labels in terms of a ranked list:

• If the judgment is given as relevance degree lj , then all the permutations that are
consistent with the judgment are ground truth permutations. Here we define a per-
mutation πy as consistent with relevance degree lj , if ∀u,v satisfying lu > lv , we
always have πy(u) < πy(v). There might be multiple ground truth permutations
in this case. We use Ωy to represent the set of all such permutations.21

• If the judgment is given as pairwise preferences, then once again all the permuta-
tions that are consistent with the pairwise preferences are ground truth permuta-
tions. Here we define a permutation πy as consistent with preference lu,v , if ∀u,v

satisfying lu,v = +1, we always have πy(u) < πy(v). Again, there might also be
multiple ground truth permutations in this case, and we use Ωy to represent the
set of all such permutations.

21Similar treatment can be found in the definition of Rank Correlation in Sect. 1.2.2.
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• If the judgment is given as the total order πl , one can straightforwardly define
πy = πl .

Note that for the listwise approach, the output space that facilitates the learning
process is exactly the same as the output space of the task. In this regard, the theoret-
ical analysis on the listwise approach can have a more direct value to understanding
the real ranking problem than the other approaches where there are mismatches be-
tween the output space that facilitates learning and the real output space of the task.

The hypothesis space contains multi-variate functions h that operate on a set of
documents and predict their permutation. For practical reasons, the hypothesis h

is usually implemented with a scoring function f , e.g., h(x) = sort ◦ f (x). That
is, first a scoring function f is used to give a score to each document, and then
these documents are sorted in descending order of the scores to produce the desired
permutation.

There are two types of loss functions, widely used in the listwise approach. For
the first type, the loss function is explicitly related to the evaluation measures (which
we call the measure-specific loss function), while for the second type, the loss func-
tion is not (which we call the non-measure-specific loss function). Note that some-
times it is not very easy to determine whether a loss function is listwise, since some
building blocks of a listwise loss may also seem to be pointwise or pairwise. In
this book, we mainly distinguish a listwise loss from a pointwise or pairwise loss
according to the following criteria:

• A listwise loss function is defined with respect to all the training documents as-
sociated with a query.

• A listwise loss function cannot be fully decomposed to simple summation over
individual documents or document pairs.

• A listwise loss function emphasizes the concept of a ranked list, and the positions
of the documents in the final ranking result are visible to the loss function.

Just because of these properties of the loss function, the listwise approach is in
more accordance with the ranking task in information retrieval than the pointwise
and pairwise approaches.

Example algorithms that belong to the listwise approach include [10–12, 38, 59,
72, 80, 82, 84, 85, 88, 89, 96]. We will introduce some of them in Chap. 4.

To sum up, we list the key components for each approach to learning to rank in
Table 1.2. In this table, for simplicity, we assume the use of a scoring function f in
the hypothesis of all the approaches, although it is not always necessary to be the
case.

It should be noted that although the scoring function is a kind of “pointwise”
function, it is not to say that all the approaches are in nature pointwise approaches.
The categorization of the aforementioned three approaches is mainly based on the
four pillars of machine learning. That is, different approaches regard the same train-
ing data as in different input and output spaces, and use different loss functions and
hypotheses. Accordingly, they will have difference theoretical properties. We will
make more discussions on this in Part VI, with the introduction of a new theory
called the statistical learning theory for ranking.
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Table 1.2 Summary of approaches to learning to rank

Category Pointwise

Regression Classification Ordinal regression

Input space Single document xj

Output space Real value yj Non-ordered category yj Ordered category yj

Hypothesis space f (xj ) Classifier on f (xj ) f (xj ) + thresholding

Loss function L(f ;xj , yj )

Category Pairwise Listwise

– Non-measure-specific Measure-specific

Input space Document pair (xu, xv) Set of documents x = {xj }mj=1

Output space Preference yu,v Ranked list πy

Hypothesis space 2 · I{f (xu)>f (xv)} − 1 sort ◦ f (x)

Loss function L(f ;xu, xv, yu,v) L(f ;x,πy)

1.4 Book Overview

In the rest of this book, we will first give a comprehensive review on the major ap-
proaches to learning to rank in Chaps. 2, 3 and 4. For each approach, we will present
the basic framework, give example algorithms, and discuss its advantages and dis-
advantages. It is noted that different loss functions are used in different approaches,
while the same evaluation measures are used for testing their performances. Then
a natural question is concerning the relationship between these loss functions and
the evaluation measures. The investigation on this can help us explain the empirical
results of these approaches. We will introduce such investigations in Chap. 5.

Considering that there have been some recent advances in learning to rank that
cannot be simply categorized into the three major approaches, we use a separate
part to introduce them. These include relational ranking, query-dependent ranking,
transfer ranking, and semi-supervised ranking. Details can be found in Chaps. 6, 7,
8 and 9.

Next we introduce the benchmark datasets for the research on learning to rank
in Chaps. 10 and 12, and discuss the empirical performances of typical learning-to-
rank algorithms on these datasets in Chap. 11.

Then in order to fit the needs of practitioners of learning to rank, we introduce
some practical issues regarding learning to rank in Chap. 13, e.g., how to mine
relevance judgment from search logs, and how to select documents and features
for effective training. In addition, we will also show several examples of apply-
ing learning-to-rank technologies to solve real information retrieval problems in
Chap. 14.
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“Nothing is more practical than theory” [77]. After introducing the algorithms
and their applications, we will turn to the theoretical part of learning to rank. In
particular, we will discuss the theoretical guarantee of achieving good ranking per-
formance on unseen test data by minimizing the loss function on the training data.
This is related to the generalization ability and statistical consistency of ranking
methods. We will make discussions on these topics in Chaps. 15, 16, 17 and 18.

In Chaps. 19 and 20, we will summarize the book and present some future re-
search topics.

As for the writing of the book, we do not aim to be fully rigorous. Instead we try
to provide insights into the basic ideas. However, it is still unavoidable that we will
use mathematics for better illustration of the problem, especially when we jump into
the theoretical discussions on learning to rank. We will have to assume familiarity
with basic concepts of probability theory and statistical learning in the correspond-
ing discussions. We have listed some basics of machine learning, probability theory,
algebra, and optimization in Chaps. 21 and 22. We also provide some related mate-
rials and encourage readers to refer to them in order to obtain a more comprehensive
overview of the background knowledge for this book.

Throughout the book, we will use the notation rules as listed in Table 1.3. Here
we would like to add one more note. Since in practice the hypothesis h is usually
defined with scoring function f , we sometimes use L(h) and L(f ) interchangeably
to represent the loss function. When we need to emphasize the parameter in the
scoring function f , we will use f (w,x) instead of f (x) in the discussion, although
they actually mean the same thing. We sometimes also refer to w as the ranking
model directly if there is no confusion.

1.5 Exercises

1.1 How can one estimate the size of the Web?
1.2 Investigate the relationship between the formula of BM25 and the log odds of

relevance.
1.3 List different smooth functions used in LMIR, and compare them.
1.4 Use the view of the Markov process to explain the PageRank algorithm.
1.5 Enumerate all the applications of ranking that you know, in addition to docu-

ment retrieval.
1.6 List the differences between generative learning and discriminative learning.
1.7 Discuss the connections between different evaluation measures for informa-

tion retrieval.
1.8 Given text classification as the task, and given linear regression as the algo-

rithms, illustrate the four components of machine learning in this case.
1.9 Discuss the major differences between ranking and classification (regression).

1.10 List the major differences between the three approaches to learning to rank.
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Table 1.3 Notation rules

Meaning Notation

Query q or qi

A quantity z for query qi z(i)

Number of training queries n

Number of documents associated with query q m

Number of document pairs associated with query q m̃

Feature vector of a document associated with query q x

Feature vectors of documents associated with query q x = {xj }mj=1

Term frequency of query q in document d TF(q, d)

Inverse document frequency of query q IDF(q)

Length of document d LEN(d)

Hypothesis h(·)
Scoring function f (·)
Loss function L(·)
Expected risk R(·)
Empirical risk R̂(·)
Relevance degree for document xj lj

Document xu is more relevant than document xv lu � lv

Pairwise preference between documents xu and xv lu,v

Total order of document associated with the same query πl

Ground-truth label for document xj yj

Ground-truth label for document pair (xu, xv) yu,v

Ground-truth list for documents associate with query q πy

Ground-truth permutation set for documents associate with query q Ωy

Original document index of the j th element in permutation π π−1(j)

Rank position of document j in permutation π π(j)

Number of classes K

Index of class, or top positions k

VC dimension of a function class V

Indicator function I{·}
Gain function G(·)
Position discount function η(·)
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