Multi Front-End Engineering

Goetz Botterweck

Abstract. Multi Front-End Engineering (MFE) deals with the design of multiple
consistent user interfaces (UI) for one application. One of the main challenges is the
conflict between commonality (all front-ends access the same application core) and
variability (multiple front-ends on different platforms). This can be overcome by
extending techniques from model-driven user interface engineering. We present the
MANTRA approach, where the common structure of all interfaces of an applica-
tion is modelled in an abstract Ul model (AUI) annotated with temporal constraints
on interaction tasks. Based on these constraints we adapt the AUI, e.g., to tailor
presentation units and dialogue structures for a particular platform. We use model
transformations to derive concrete, platform-specific Ul models (CUI) and imple-
mentation code. The presented approach generates working prototypes for three
platforms (GUI, web, mobile) integrated with an application core via web service
protocols. In addition to static evaluation such prototypes facilitate early functional
evaluations by practical use cases.

1 Introduction

Multi Front-End Engineering (MFE) deals with the systematic design and imple-
mentation of multiple consistent user interfaces for one application.

One of the main challenges in MFE is the inherent conflict between common-
ality and variability. On the one hand, all front-ends provide access to the same
application core. Hence, they share a common structure and provide similar func-
tionality. On the other hand, each front-end has to take into account the specifics
of the particular user interface platform. Hence, each front-end has to be adapted to
these specific characteristics, e.g., when grouping interaction elements into logical
presentation units of varying sizes.

Goetz Botterweck

Lero — The Irish Software Engineering Research Centre
University of Limerick, Limerick, Ireland

e-mail: goetz.botterweck@lero.ie

H. Hussmann and G. Meixner (Eds.): MDD of Advanced User Interfaces, SCI 340, pp. 274421
springerlink.com (© Springer-Verlag Berlin Heidelberg 2011

goetz.botterweck@lero.ie

28 G. Botterweck

The challenges that arise from this conflict between commonality and variabil-
ity can be overcome by adapting and extending techniques from model-driven
user interface engineering. To support multiple user interfaces, however, we have
to prepare by providing additional information that can guide an automatic or
semi-automatic adaptation, for instance to take into account platform-dependent
characteristics.

To illustrate how this can be done, we present the MANTRA[! approach, where
the abstract structure of all user interfaces of an application is modelled in an ab-
stract Ul model (AUI). This model is annotated with temporal constraints on the
dialogue flow and the relative order of interaction tasks. Based on this informa-
tion, we are able to adapt the user interface on an abstract level, for instance, by
deriving and tailoring dialogue structures, which take into account constraints im-
posed by the particular user interface platform. The adaptation includes the cluster-
ing into presentation units and the insertion of control-oriented interaction elements.
Based on this abstract model, we use model-to-model transformations to derive
concrete, platform-specific Ul models (CUI). Subsequently, we use model-to-text
transformations to generate implementation code.

The presented approach is realised as a set of Eclipse-based tools and model
transformations in ATL (Atlas Transformation Language). It generates working pro-
totypes for three platforms: desktop GUI applications, dynamic web sites and mo-
bile applications. These prototypes are integrated with an application core via web
service protocols. Because of the functional integration with the application core,
in addition to the evaluation of the static user interface (composition, layout and vi-
sual presentation of interaction elements), such prototypes also facilitate functional
evaluations by performing and analysing practical use cases.

The remainder of this chapter is structured as follows: Section [2| summarises
related work, Section [3] gives an overview of the presented approach, Section @]
explains the use of Abstract User Interface (AUI) models in the context of MFE,
Section [3] deals with the adaptation of user interfaces on the AUI level, Section
describes the transformation from AUI to Concrete User Interface (CUI) Models and
the generation of implementation artefacts, Section [7] explains the meta-models of
the modelling languages used by our approach, and Section [§concludes the chapter
by discussing the presented approach and future work.

2 Related Work

Calvary et al. [1]] define a reference framework for multi-target user interfaces. This
is also known as the Cameleon reference framework after the European project of
the same name. Calvary at al. define the challenges of “multi-targeting” and “plas-
ticity”, which are related to the problem addressed in this chapter. Also, the pro-
cesses and artefacts in our approach are structured on abstraction levels similar to
the Cameleon framework (see Section[3|for an overview).

I MANTRA stands for Model-driven Approach to UI-Engineering with Transformations.

Multi Front-End Engineering 29

The mapping problem [2]] is the problem of defining mappings between abstract
and concrete elements is one of the fundamental challenges in model-based ap-
proaches to User Interface Engineering. This challenge can occur in various forms
and can be dealt with by various types of approaches [3]]. One instance of this is the
question of how we can identify concrete interaction elements that match a given
abstract element and other constraints [4].

A similar challenge is the derivation of structures in a new model based on
information given in another existing model. Many task-oriented approaches use
requirements given by the task model to determine UI structures; for example, tem-
poral constraints similar to the ones in our approach have been used to derive the
structure of an AUI [5] or dialogue model [6].

Florins et al. [7] take an interesting perspective on a similar problem by dis-
cussing rules for splitting existing presentations into smaller ones. That approach
combines information from the abstract user interface and the underlying task model
- similar to our approach using an AUI annotated with temporal constraints which
are also derived from a task model.

Many model-driven approaches to Ul engineering have proposed a hierarchical
organisation of interaction elements, which are grouped together into logical units.
For instance, Eisenstein et al. [8] use such an structure when they aim to support
designers in building user interfaces across several platforms.

A number of approaches to multiple user interfaces has been collected in a book
edited by Seffah and Javahery [9].

Earlier work on MANTRA, the approach discussed in this chapter, has been pre-
sented in [10]. In current work [[11]] we adapt and specialise techniques taken from
the MANTRA approach to support the configuration, derivation and tailoring of
user interfaces for products in a product line.

3 Overview of the MANTRA Approach

Horizontally, the MANTRA approach (see Fig.[l)) is structured by three tiers, Front-
Ends, Application Core, and Resources. Vertically, the MANTRA activities and
created artefacts are structured by abstraction levels similar to the CAMELEON
framework [1]. They include Abstract User Interface (AUI), Adapted Abstract User
Interface (Adapted AUI), Concrete User Interface (CUI), and Implemented User
Interface (IUI).

The ultimate goal of MANTRA is to create multiple implemented front-ends of
the application (see the UM, [UM, and MM at the bottom of Fig. [I)). These front-ends
are based on different platforms, but provide access to the same Application Core
and indirectly to Resources, which are used by the application.

The MANTRA approach starts with the activity of Abstract Ul Modelling @,
which creates an abstract user interface B¥l. Then, the interface is adapted on an
abstract level @. The resulting adapted AUI models are then transformed @ into
concrete platform-specific Ul models (CUI) for three different platforms (Web,

30 G. Botterweck

|
describes

i
: |
describes

Fig. 1 Overview of the artefacts and data flow between them in the MANTRA approach

GUI, Mobile). Finally, the desired front-ends (implemented UI, IUI) are created by
generating platform-specific code ©.

The following sections will explain these activities and the processed artefacts in
more detail.

Multi Front-End Engineering 31

4 Abstract Modelling of User Interfaces

We will now explain the subsequent activities of the MANTRA approach in more
detail. For the illustration and discussion we will use a simple time table application.

We start of with the activity of Abstract UI Modelling @, which creates an ab-
stract user interface B¥. Fig. 2] shows the corresponding AUI model of our sample
timetable application. The user can search for train and bus connections by specify-
ing several search criteria like departure and destination locations, time of travel or
the preferred means of transportation (lower part of Fig. D).

Please note that in the context of the overall MANTRA approach the AUI model,
which describes the front-ends of the application, references concepts in models
describing other parts or aspects of the system (see AUI layer in the overview in
Fig. [I). For instance, abstract Ul elements can refer to web service operations to
describe integration with the application core or data types defined in a data model.

In our sample shown in Fig. [2| one of the nodes refers to a web service operation
Timetable.getConnections(), which retrieves connections from the Timetable web
services and provides them to the subsequent presentation Timetable Results for
display.

Timetable
enquiry

WS Operation
Timetable.
getConnections()

Timetable
criteria

Timetable
Results

ListView
Connections

Place of
departure and
destination

SelectOne
from

Time of
travel

SelectOne
fastOrCheap

DateField =l TimeField DateField - TimeField
date : time returnDate | ' | returnTime

Fig. 2 AUI model of the sample application annotated with temporal constraints (horizontal
lines)

At first, the AUI model only contains Ul Elements ((]) and UI Composites
() organised in a simple composition hierarchy (indicated by @——— rela-
tions) and the web service operation necessary to retrieve the results. This model
is the starting point of our approach (see B in Fig.[I)) and captures the common

32 G. Botterweck

essence of the multiple user interfaces of the application in one abstract UI. This
AUI contains platform-independent interaction concepts like “Select one element
from a list” or “Enter a date”.

As an input for later adaptation techniques, the AUI is then further annotated by
dialogue flow constraints based on the temporal relationships of the ConcurTaskTree
approach [12]]. For instance we can describe that two interaction elements have to
be processed sequentially (>>) or can be processed in any order (I=1).

S Adaptation of Abstract User Interfaces

As a next step (@ in Fig. [[) we augment the AUI by deriving dialogue and pre-
sentation structures. These structures are still platform-independent. However, they
can be adapted and tailored to take into account constraints imposed, for instance,
by platforms with limited display size or by inexperienced users. The result of this
process step, the adapted AUI model, is shown in Fig.[3l

5.1 Clustering Interaction Elements to Generate Presentation
Units

To derive this adapted AUI model we cluster Ul elements by identifying suitable UI
composites. The subtrees starting at these nodes will become coherent presentations
in the user interface (). For instance we decided that “Time of Travel” and
all UI elements below it will be presented coherently. This first automatic cluster-
ing is done by heuristics based on metrics like the number of Ul elements in each
presentation or the nesting level of grouping elements.

To further optimise the results the clustering can be refined by the human designer
by an interactive editors that operates on the adapted AUI model.

5.2 Inserting Control-Oriented Interaction Elements

Secondly, we generate the navigation elements necessary to traverse between the
presentations identified in the preceding step. For this we create triggers ((3).
These are abstract interaction elements which can start an operation (OperationTrig-
ger) or the transition to a different presentation (NavigationTrigger). In graphical
interfaces these can be represented as buttons, menus, or hyperlinks. In other front-
ends they could for instance be implemented as speech commands.

To generate NavigationTriggers in a presentation p we calculate dialogue-
Successors(p) which is the set of all presentations which can “come next” if we ob-
serve the temporal constraints. We can then create NavigationTriggers (and related
Transitions) so that the user can reach all presentations in dialogueSuccessors(p).
In addition to this we have to generate OperationTriggers for all presentations
which will trigger a web service operation, e.g., “Search” to retrieve matching train
connections (see the lower right corner of Fig. [3)).

Multi Front-End Engineering 33

These two adaptation steps (derivation of presentations, insertion of triggers)
are implemented as ATL model transformations. These transformations augment
the AUI with dialogue structures (e.g., presentations and transitions
between them) which determine the paths a user can take through our application.

It is important to note that the dialogue structures are not fully determined by the
AUL Instead, we can adapt the AUI according to the requirements and create differ-
ent variants of it (see the two adapted AUI models resulting from step @ in Fig.[I).
For instance, we could create more (but smaller) presentations to facilitate viewing
on a mobile device — or we could decide to have large coherent presentations, taking
the risk that the user has to do lots of scrolling if restricted to a small screen.

Timetable
enquiry

Timetable
criteria

Results

ListView
Connections

Navigation-
Trigger
Search again

S B N“"'“"‘“’" Outward
Trigger
Nert> J journey

theFle\d |op| TimeField DateField |, | TimeField
time retunDate || returnTime

Fig. 3 Adopted AUI model with generated presentations and triggers

Navugaumﬂ
Tngger

Next >

SelectMany |, | SelectOne | °$fi’““°r"-
vehicleTypes fastOrCheap Se:?:h

5.3 Selecting Content

To reflect limitations of the platform, e.g., limited screen estate, which only allows
to show a limited number of interaction elements, can apply an additional adaptation
step that filters content retrieved from the web service based on priorities.

For instance, if a user has a choice, higher priority is given to knowing when
the train is leaving and where it is going before discovering whether it has a restau-
rant. This optional information can be factored out to separate “more details”
presentations.

A similar concept are substitution rules which provide alternative representations
for reoccurring content. A train, for example, might be designated as InterCityEx-
press, ICE, or by a graphical symbol based on the train category (for instance, #
to indicate a luxury train) depending on how much display space is available. These
priorities and substitution rules are domain knowledge which cannot be inferred
from other models. The necessary information can, for instance be modelled as
annotations to the underlying data model.

34 G. Botterweck

6 Generating Concrete Interface Models and Their
Implementation

Subsequently, we transform the adapted AUI models into several CUIs using a spe-
cialised model transformation (© in Fig.[T) for each target platform. These transfor-
mations encapsulate the knowledge of how the abstract interaction elements are best
transformed into platform-specific concepts. Hence, they can be reused for other
applications over and over again.

As a result we get platform-specific CUI models. These artefacts are still repre-
sented and handled as models, but now use platform-specific concepts like “HTML-
Submit-Button” or “.NET GroupBox”. This makes them more suitable to use them
as a basis for the code generation (@ in Fig. [[l), which produces the implemen-
tations of the desired user interfaces in platform-typical programming or markup
languages.

Ul Structure Data Model
_ -
P | typedby T
v | - e |
describes I - .7 (indir‘ectly)
(coarse-grained) contains; _ typed by typed by
behaviour of | = - |
7 | == - |
/ - -
| - - - |
e
—
i operate on :
Dialogue Mf)dd Ul Components P Data use operations Web Service
(State Machine) — —data elements— —{ Components — — — — — definedin ~
defined in ‘f etinedin
! |
_ 2

Fig. 4 Overview of the AUI metamodel

7 Modelling Languages

In this section we will present the modelling languages (i.e., meta-models) used by
the MANTRA approach. We will focus on the AUI level, where the common aspects
of all front-ends are represented and differences between platforms are abstracted
away. Fig. @] shows an overview of the involved packages.

First, we will now introduce modelling elements that describe the overall user in-
terface structure. Then, we will then focus on modelling elements for describing the
dialogue structure. Finally, we will show how user interface elements can be bound
to data components and how these data components are bound to the application
core.

Multi Front-End Engineering 35

7.1 User Interface Structure

Fig. S shows a simplified excerpt from the AUI metamodel with metaclasses to de-
scribe Ul structure (on the left) and metaclasses to describe dialogue structures (on
the right). Please note that the sections “UI Structure” and “Dialogue” correspond
to packages in the metamodel, which was shown earlier overview in Fig.[dl

The core structure of a user interface is given by the composition hierarchy of
the various user interface components. In the AUI metamodel this is modelled by a
“Composite” design pattern consisting of the classes UlComponent,
UlElement, and UIComposite (see @ in Fig.).

There are two types of UIComponents: The first subtype are UlElements (see
@ in the metamodel in Fig.[5) which cannot contain further UIComponents. Hence,
they become the “leaves” of the hierarchy tree (see the [symbols in the Timetable
sample in Fig.2)). Subclasses of UIElement can be used to describe various abstract
interaction tasks, such as the editing of a simple string value (InputField) or the
selection of one value from a list (SelectOne). A special case of UlElements are
Triggers which can start the transition to another presentation (NavigationTrigger)
or start a (potential data modifying) transaction (TransactionTrigger). Please note
that the AUI modelling language contains many more UIElement subclasses, but
they have been omitted here to simplify the illustration.

«Component» * + uiComponents 1 1 .
‘ O urcomponent 1] UserInterface] StateMachine
T
o T
1
«Leaf» Pattern Instance> «Composite» : +source + outgoing *
= UIElement ‘ i =} Urcomposite L] state | Transition
[Presentation | 0.1 1 F E—
1 1 *
+ destination + incoming
0.1 + fightSibling 0.1
\ & i \
0.1 (&6 temporalOperator : TemporalOperator |
+ leftsibling ;
«enumeration»
[©] TemporalOperator
Lot = enabling & Event
B !nputFieldj = suspendResume
7] = disabling
= concurrency
= orderIndependency
[l selectGne = choice
‘ = undefined
[more types of = EnumerationLiterall
o, UIElements omitted]
L ElTrigger | 1 |] UTElementTriggeredEvent
0.1

Fig. 5 Binding user interface elements to a data model

The second subtype of UIComponents are UlComposites (see © in Fig. [3).
UIComposites can contain other UIComponents via the association “uiComponents”
and hence build up the “branches” of the hierarchy tree (see the (> symbols in the

36 G. Botterweck

Timetable sample in Fig.2). A UIComposite can be connected to its left and right
sibling by temporal relations (see the horizontal lines ——I=—— in Fig.). In
the metamodel this is described by an instance of the association class Temporal-
Relation which connects two UIComposites leftSibling and rightSibling. There are
several kinds of temporal operators, such as enabling, suspendResume or choice
(see the enumeration TemporalOperator).

There are two special cases of UIComposites: A UserInterface represents the
whole user interface and is therefore the root of the hierarchy. In the Timetable
sample this is the node “Timetable enquiry” (see Fig.[2).

Another special case of an UIComposite is a Presentation. A Presentation is a
hierarchy node that was selected during the adaptation process, because all UIEle-
ments contained in the subtree below it should be presented coherently. For instance
see the node “Time of travel” in the Timetable sample (Fig. B): This node and the
subtree below it are surrounded by a marked area to indicate that all UICompo-
nents within that area will be presented in one coherent Presentation. Hence, this
UlComposite will be converted into a Presentation in further transformation steps.

7.2 Dialogue Model

The dialogue model of an abstract user interface is described by a state machine
(see @ in Fig. [5) which is based on UML Statecharts [14]]. It consists of States,
which are linked to Presentations generated in the adaptation process. As long as
the Userlnterface is one particular state the related Presentation is displayed (or
presented in different ways on non-visual interfaces).

When the UserInterface performs a Transition to a different State the next Pre-
sentation is displayed. Transitions can be started by Events, for instance by a UIEle-
mentTriggeredEvent, which fires as soon as the related UIElement, such as a Trigger,
is triggered.

There are many other event types, which have been omitted here to simplify the
metamodel illustration.

7.3 Binding Ul Elements to Data Components

In the MANTRA metamodel user interface elements are grouped into different
categories depending on their main function, for instance structure-oriented (e.g.,
UlComposite, UIComponentGroup, see Section [Z1)), control-oriented (e.g., Trig-
ger, Hyperlink, Menultem, see Section [Z.2)), and data-oriented (e.g., various forms
of Input, various forms of Select, and the composite DataTableView).

For the latter category, data-oriented user interface elements MANTRA allows to
describe corresponding data components that will hold and organise the correspond-
ing processed data, which is presented (and potentially edited) via the data-oriented
UI elements.

Fig. [6] shows both data-oriented user interface elements (left) and data compo-
nents (right) as well as some of the mappings between them. For instance, each

Multi Front-End Engineering 37

Data-oriented UI-Components _
E DataComponent
———4 + dataComponents

1

+ Vil + dataS: fi*
E DataOrientedUIComposite views atasourd E DataComposite
* 0.1 —_

E DataOrientedUIElement .
[5& hidden : Boolean +views + dataSource E DataElement
[53 secret : Boolean * 0.1

[5G readOnly : Boolean
+ selectionValueSource
= DataTableView

1 = Dataset
selectionlabelSource

. 0.1 1
+ dataColumnViews
*

E Input .
E DataColumnView + selectionSource

0.1

¥
. + dataTables

Hnputfied | £ InputArea = DateTimeField = = Select E DataTable

1

E DateField E TimeField E SelectOne E SelectMany

+ dataColumns

E DataColumn

Fig. 6 Binding data-oriented UI elements to data components

DataOrientedUIElement (including specialisations) has a DataElement as data
source. Again the shown sections correspond to packages in the metamodel overview

(Fig.[@.
7.4 Binding Data Components to the Application Core
As mentioned earlier, the front-end is integrated with the application core via web

service protocols. To allow this integration, the AUI model references concepts in a
web service model, which is based on a WSDL description.

38 G. Botterweck

H webservice
[Eg name : String
[targetNamespace : String
1

1

* .+ ports

* E port
=] DataComponent 5§ name : String
. + dataComponents [location : String

1

« \ + messages
* | + operations
+ insertOperati

E DataComposite | 01 E OperationAdapter E Operation 4 inputM E Message

+ deleteOperation [name : String [58 name : String [5§ name : String

* 0.1 + pperati * 0.1

= DataEtement + updateOperation

* 0.1 * 0. outputMessage
+ selectOperation * 0.1

* 0.1

1 1

. + parameters
« ., + parameterBindings *

+ internalParameter + |] parameterBinding + externalParameter|] parameter

- 1 1
(E DataSet

1

+ dataTables

1

+ dataColumns

= Dacanlumn

Fig. 7 Binding user interface elements to a web service

As an example of how this integration works on a metamodel level, Fig. [Z]shows
how data-oriented components are referring to the corresponding web service oper-
ations, which are used to retrieve or store data from/to the web service.

8 Discussion and Outlook

We have shown how our MANTRA approach can be used to generate several con-
sistent user interfaces for a multi tier application (see Fig.[8).

We discussed how the user interface can be adapted on the AUI level by tailoring
dialogue and logical presentation structures which take into account requirements

Multi Front-End Engineering

™y

pfe 280 6 8 TEme.e—

Timetable Criteria

From | DuossoldartHot v
To Koeln Hbf v
L T — L
Time 1200 | e 355
RetumbDate Go1; | ez
RetwmTme 400 | stz
teans of transport
Pubc Transport
Fastorcheap Fastcomection ¥

Search Connections

e R

Search

e G e @ B Ter b

& ‘}“.5& @ %l © - O wrmansmanare ¥ 0 6 [C

Timetable Results

Connections us From o o
TrainiBus Fr g Departure Arrival Type

38 DucssaloortHof KosnHbt 1152 1215 InerCiy or EwroCiy
1G2113 Duesseldaf Hol KodnHbl 1226 1249 IneGityor FoCity

102017 DuessalorfHof Koo Hbf 1251 1315 iecCiyor EwoCity
RE 11115 Dussseidof Kol KoshHbi 1158 1229 Local Trns
e 5 T owi

[TimetableCriteria

Time of travel
Outward joumey
Date

Time:

Retum joumey
Retum Date.

Retum Time.

Preferences

Means of transport

Fast or cheap

Place of departure and destination

39

ogaone B
iy
February

7 8 g | Meh
w15 16 | Aed
212 B My
% 2% 0| e
45 2y

Septemb
October ~
November

| 1otay: 2
[m December

ekl

Search

ot desioain_depatueTive _ onvaTioe sehileTiped | vehceTypeome |

cos

207

Dussslion | Kobenz | 1152 1316 2 iy o Bty

Duessoldor b 4 1251 1615 2

e

o
Dl ot s 1158 na s s Taee
|

hchsrittel

intercity odr Eurocty

Fig. 8 The generated front-ends (Web, GUI, mobile)

imposed by front-end platforms or inexperienced users. For this we used the hierar-
chical structure of interaction elements and constraints on the dialogue flow which

can be derived from a task model.

40 G. Botterweck

The approach generates fully working prototypes of user-interfaces on three
target platforms (GUI, dynamic website, mobile device), which can serve as front-
ends to arbitrary web services. Such generated prototypes are beneficial in rapid
prototyping and early evaluation of user interfaces, since they facilitate functional
evaluations by performing and analysing practical use cases.

The approach is geared towards interaction patterns that are commonly found
in electronic forms and hypertext-like applications. It would, for instance, be very
difficult to model and generate applications like an image processing tool or a
spreadsheet calculation application.

8.1 Applied Technologies

When implementing MANTRA, we described the meta-models (including platform-
specific concepts) in UML and then converted these to Ecore, since we use the
Eclipse Modeling Framework (EMF) [15] to handle all processed models and the
corresponding meta-models.

The various model transformations (e.g., for steps @ and © in Fig. [I) are
described in ATL [[16].

We use a combination of Java Emitter Templates and XSLT to generate (@
in Fig. [I) arbitrary text-oriented or XML-based implementation languages (e.g.,
C-Sharp or XHTML with embedded PHP).

The coordination of several steps in the model flow is automated by Apache
Ant [17] (integrated into Eclipse) and custom-developed “Ant Tasks” to manage the
chain of transformations and code generation.

We use web services as an interface between the Uls and the application core.
Hence, the Ul models reference a WSDL-based description of operations in the
application core. The generated Uls then use web service operations, for instance,
to retrieve results for a query specified by the user.

8.2 Future Work

In the discussion of the AUI adaptation it has been mentioned that the derived user
interface structures (first the adapted AUI, then later the CUI) are not fully specified
by the given input models (AUI with temporal constraints). In other words, when
progressing down the MANTRA model workflow (see Fig.[2) and making decisions
on how to best implement the given abstract specifications we can choose among
different potential solutions. This provides the opportunity for various optimisation
approaches. We intend to explore this further.

Another aspect for future work is the modelling and handling of variability and
commonality among the multiple front-ends of one application. On an element level
this can be addressed by abstraction, where one abstract element (e.g., “Select One”
can describe multiple concrete solutions (e.g., “HTML Link List” and “*MS Win-
dows ListBox™). This however does not allow to describe variations among front-
ends on a structural level. For instance, how do you represent that certain dialog

Multi Front-End Engineering 41

structures and navigation paths are only available in some front-ends, but not all
of them? Here, approaches from product line engineering and variability modelling
could be beneficial [18,[19].

Related to this, feature modelling [20] could be applied to describe variation
and configuration options. Then, techniques from product configuration [21} 22]
could be applied and extend to describe how configuration options are chosen —
potentially over multiple stages [23]. Finally, techniques from feature mapping [24]
and variability realisation [25] could be used to describe how the chosen options
influence the artefacts that actually describe the user interface.

In current work, we have take first steps towards such an integration of model-
based user interface engineering and model-driven product line engineering ap-
proaches. In particular, we integrated feature models, which describe the variability
and configuration choices of the product line, and abstract user interface models,
which describe the common user interface structure of all products. More details
are described in [11].

Acknowledgements. This work was partly supported, in part, by the Science Foundation
Ireland (SFI) grant 03/CE2/1303_1 to Lero — The Irish Software Engineering Research Centre,
http://www.lero.ie/.

References

1. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.: A
unifying reference framework for multi-target user interfaces. Interacting with Comput-
ers 15(3), 289-308 (2003)

2. Puerta, A.R., Eisenstein, J.: Interactively mapping task models to interfaces in MOBI-D.
In: DSV-IS 1998 (Design, Specication and Verication of Interactive Systems), Abingdon,
UK, June 3-5, pp. 261-273 (1998)

3. Clerckx, T., Luyten, K., Coninx, K.: The mapping problem back and forth: customizing
dynamic models while preserving consistency. In: TAMODIA 2004 (Third Annual Con-
ference on Task Models and Diagrams), Prague, Czech Republic, November 15-16, pp.
33-42. ACM Press, New York (2004)

4. Vanderdonckt, J.: Advice-giving systems for selecting interaction objects. In: UIDIS
1999 (User Interfaces to Data Intensive Systems), Edinburgh, Scotland, September 5-
6, pp. 152-157 (1999)

5. Paterno, F.: One model, many interfaces. In: CADUI 2002 (Fourth International Confer-
ence on Computer-Aided Design of User Interfaces), Valenciennes, France, May 15-17
(2002)

6. Forbrig, P., Dittmar, A., Reichart, D., Sinnig, D.: From models to interactive systems
— tool support and XIML. In: IUI/CADUI 2004 Workshop Making Model-Based User
Interface Design Practical: Usable and Open Methods and Tools, Island of Madeira,
Portugal (2004)

7. Florins, M., Simarro, F.M., Vanderdonckt, J., Michotte, B.: Splitting rules for graceful
degradation of user interfaces. In: IUI 2006 (Intelligent User Interfaces 2006), Sydney,
Australia, January 29 - February 1, pp. 264-266 (2006)

42

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

G. Botterweck

. Eisenstein, J., Vanderdonckt, J., Puerta, A.R.: Applying model-based techniques to the

development of Uls for mobile computers. In: IUI 2001 (6th International Conference
on Intelligent User Interfaces), Santa Fe, NM, USA, January 14-17, pp. 69-76 (2001)

. Seffah, A., Javahery, H.: Multiple user interfaces: cross-platform applications and

context-aware interfaces. John Wiley & Sons, New York (2004)

Botterweck, G.: A model-driven approach to the engineering of multiple user interfaces.
In: Auletta, V. (ed.) MoDELS 2006. LNCS, vol. 4364, pp. 106-115. Springer, Heidelberg
(2007), doi:10.1007/978-3-540-69489-2_14

Pleuss, A., Botterweck, G., Dhungana, D.: Integrating automated product derivation and
individual user interface design. In: Proceedings of the 4th International Workshop on
Variability Modelling of Software-Intensive Systems (VAMOS 2010), pp. 69-76 (Jan-
uary 2010)

Paterno, F., Mancini, C., Meniconi, S.: ConcurTaskTrees: A diagrammatic notation for
specifying task models. In: Howard, S., Hammond, J., Lindgaard, G. (eds.) Interact 1997
(Sixth IFIP International Conference on Human-Computer Interaction), Sydney, Aus-
tralia, July 14-16, pp. 362-369. Chapman and Hall, Boca Raton (1997)

Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: Elements of reusable
object-oriented software. Addison-Wesley, Reading (1995)

OMG: Uml 2.0 superstructure specification (formal/05-07-04). Object Management
Group (2005)

Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.J.: Eclipse modeling frame-
work: a developer’s guide. In: The Eclipse Series. Addison-Wesley, Boston (2003)
Jouault, F., Kurtev, L.: Transforming models with ATL. In: Bruel, J.-M. (ed.) MoDELS
2005. LNCS, vol. 3844, pp. 128-138. Springer, Heidelberg (2006)

Holzner, S., Tilly, J.: Ant: the definitive guide, 2nd edn. O’Reilly, Sebastopol (2005)
Clements, P., Northrop, L.M.: Software Product Lines: Practices and Patterns. In: The
SEI series in software engineering. Addison-Wesley, Boston (2002)

Pohl, K., Boeckle, G., van der Linden, F.: Software Product Line Engineering: Founda-
tions, Principles, and Techniques. Springer, New York (2005)

Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature oriented domain analy-
sis (FODA) feasibility study. SEI Technical Report CMU/SEI-90-TR-21, ADA 235785,
Software Engineering Institute (1990)

Botterweck, G., Thiel, S., Nestor, D., bin Abid, S., Cawley, C.: Visual tool support for
configuring and understanding software product lines. In: 12th International Software
Product Line Conference (SPLC 2008), Limerick, Ireland (September 2008); ISBN 978-
7695-3303-2.

Botterweck, G., Janota, M., Schneeweiss, D.: A design of a configurable feature model
configurator. In: Proceedings of the 3rd International Workshop on Variability Modelling
of Software-Intensive Systems (VAMOS 2009), pp. 165-168 (January 2009)

Czarnecki, K., Antkiewicz, M., Kim, C.H.P.: Multi-level customization in application
engineering. Commun. ACM 49(12), 60-65 (2006)

Heidenreich, F., Kopcsek, J., Wende, C.: Featuremapper: Mapping features to models.
In: ICSE Companion 2008: Companion of the 13th international conference on Software
engineering, pp. 943-944. ACM, New York (2008)

Svahnberg, M., van Gurp, J., Bosch, J.: A taxonomy of variability realization techniques.
Software - Practice and Experience (SP&E) 35, 705-754 (2005)

2 Springer
http://www.springer.com/978-3-642-14561-2

Model-Driven Development of Advanced User Interfaces
Hussmann, H.; Meixner, G.; Zuehlke, D. (Eds.)

2011, XX, 304 p., Hardcowver

ISEMN: @78-3-642-14561-2

	Introduction
	Related Work
	Overview of the MANTRA Approach
	Abstract Modelling of User Interfaces
	Adaptation of Abstract User Interfaces
	Clustering Interaction Elements to Generate Presentation Units
	Inserting Control-Oriented Interaction Elements
	Selecting Content

	Generating Concrete Interface Models and Their Implementation
	Modelling Languages
	User Interface Structure
	Dialogue Model
	Binding UI Elements to Data Components
	Binding Data Components to the Application Core

	Discussion and Outlook
	Applied Technologies
	Future Work

	References

